Phys 4C Fall 2019
Chapter 2 Solutions to Exercises

2.31. Finding the potential

The line integral along the first path is (we'll suppress the = component of the argu-
ment )
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The line integral along the second path is
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These two results are equal, as desired. The electric potential ¢, if taken to be zero

at (0,0), is just the negative of our result, because we define ¢ by ¢ = — [E - ds, or
equivalently E = —V¢. Hence ¢(x,y) = y° — 32%y. The negative gradient of this is
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which does indeed equal the given E.

An alternative method of finding ¢ is to integrate the components of E to find the
general form that ¢ must take. Since —do/dr equals E, = 6y, we see that —¢
must take the form of 322y + f(y, z), where f(y.z) is an arbitrary function of y and
z. Likewise, since —d¢/dy equals E, = 3z — 3y*, we see that —¢ must take the
form of 3x%y — y* + g(x, z). Finally, since —8¢/dz equals I, = 0, we see that —¢
must take the form of 0+ A{x, y). that is, ¢ is a function of only = and y. The only
function consistent with all three of these forms is —¢ = 3%y — »* (plus a constant),
in agreement with the above result.



2.42. F and ¢ for a cylinder

(a) Consider a coaxial cylinder with length ¢ and radius r < a. The charge contained
inside is mr2fp. The area of the cylindrical part of the surface is 27rf, and since
E is perpendicular to the swrface by symmetry, the fAux is 2arfE. So Gauss's
law gives the internal electric field as
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We'll also need the external field for part (b). For this field, consider a cylinder
of radius r > a. This contains a fixed amount of charge ma“fp, so Gauss's law
gives
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This is the same as the fleld from a line of charge {(namely A/2mepr) with linear
density A = ma?p. Note that the internal and external fields agree at r = a.

(b) If ¢ =0 at r =0, then we have
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This goes to —oo as r — oc. It also goes to —oo for any given value of v if @ — 0
while the charge per unit length (wa?p) is held constant.



2.55. Hole in a disk

(a)

(b)

Slicing the disk into concentric rings, we find the potential at the center to be
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Plugging in the various quantities gives
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The electron’s final kinetic energy at inlinity equals the loss in potential energy.
This loss has magnitude

(—e)p =(—=1.6-10" C)(—11,300 V) = 1.81-10~%° J.

Since this is only about 2% of the electron’s rest energy, namely mc? = 8.2 .
107" J, a nonrelativistic calculation will suffice:
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which is about 20% of the speed of light. This answer is very close to the answer
obtained via the correct relativistic calculation: Conservation of energy gives
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Hence (with & = v/c),

B=1-1/72=0206 = v=fc=62-10"m/s. (160)



2.61. Dipole field on the axes

With the charges ¢ and —¢ located at z = /2 and —{/2, consider a distant point
on the positive z axis with z = ». The charge g is slightly closer than the charge —qg
is to this point, so the upward field due to the charge ¢ is slightly stronger than the
downward field due to the charge —q. The net field will therefore point upward, and
it has magnitude {with k= 1/4mey)
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where we have dropped terms of order £2/r2. Using 1/(1 =€) = 1 F ¢, we obtain
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This field points in the positive v direction, so it agrees with the result in Eq. (2.36),
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when # = 0.

In the transverse direction, we have the situation shown in Fig. 47. The magnitudes of
the two fields are equal. The horizontal components cancel. but the downward com-
ponents add. The distances from the given point to the two charges are essentially
equal to 7, so the magnitudes of the fields are kq/r?. The (negative) vertical compo-
nents are obtained by multiplying by sin 3, which is approximately equal to (£/2)/r in
the small-angle approximation. The vertical field is therefore directed downward with
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This agrees with the result in Eq. (2.36) when # = /2, because the € vector points i)
downward at the given point (in the direction of increasing #, which 1s measured down -g o

from the wertical). This field is half as large as the field on the vertical axis, for a
given value of r. Figure 47



2.68. E and p for a sphere

Ag in the example in Section 2.10, the Cartesian components of the electric field are
given by E, = (z/r)E,, and likewise for y and =.

Inside the sphere, the field is radial with E,. = pr/3eq, so we guickly find the Cartesian
components to be (E,, E, E.) = (p/3e){x,y,z). Equation (2.59) therefore gives
divE = (p/3eg)(1 + 1+ 1) = p/ey, as desired.

Outside the sphere, the field is radial with I, = pR*/3eyr®. The Cartesian x compo-
nent is .
r pR* = x
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The constant of proportionality doesn't matter becanse the end result will be zero.
The OF,/Ox term in Eq. (2.59) is then
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with similar expressions for the dF, /Oy and JF./dz terms. The sum of all three
terms is zero, because the coefficient of x? is (—2 4 1+ 1), ete. This is consistent with
divE = p/ey because p = 0 outside the sphere.



2.69. IY and ¢ for a slab

(a) At position x inside the slab, there is a slab with thickness £ — & to the right of
a, which acts effectively like a sheet with surface charge density og = (£ — x)p.
Likewise, to the left of @ we effectively have a sheet with surface charge density
or, = (£ + x)p. Since the electric field from a sheet is o/2¢;. the net field at
position x inside the slab is
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and it is directed away from the center plane (if p is positive). You can also
quickly obtain this by using a Gaussian surface that extends a distance & on
either side of the center plane.

Outside the slab, the slab acts effectively like a sheet with surface charge density
p(21), so the field has magnitude (2p)/2¢y = pf/ey and is directed away from
the slab. F(x) is continuous at @ = +/, as it should be since there are no surface
charge densities in the setup.

(b) The potential relative to x = 01is ¢ = — ﬁ; F dx. Inside the slab this gives
in(z) = — i P _,o_.rz (201)
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Outside the slab, we must continue the integral past x = +¢. On the right side
of the slab, where 2 > £, the potential is
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On the left side of the slab, where @ < —¢, vou can show that the only change in
¢ is that there is a relative “+" sign between the terms [basically, just change ¢
to —£}). So the potential outside the slab equals
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From Eqs. (201) and (203) we see that ¢(z) is continuous at the boundaries at
o = +#, as it should be. Plots of E(z} and ¢(x) are shown in Fig. 54.

(¢) For a single Cartesian direction, we have V- E = 9E, /dz and V2o = 8%¢/dz>.
The following four relations are indeed all true:

Inside ple) = gV - B <= p=cudlpz/en)/0z, (204)
Outside : plx)=eV-E = 0=¢edplfey)/Oz,
Inside : p(x) = -V = p=—d*(—pz®/2e) /02",
Qutside : p(x) = —€aV2¢p <= 0= —ed?(pl?/2¢q £ plx/e)/0x2.
We also have E = — V¢ both inside and outside, which is true by construction

due to the line integrals we calculated in part (b).



2.75. Curls and divergences

In Cartesian coordinates,
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(a) If F = (z+y,—x+y,—22) we quickly find V x F = (0,0,-2) and V- F =
1+1—2=0. Since the curl isn't zero, there is no associated potential ¢.

(b) G = (2y, 20+ 32, 3y) then we ind Vx G ={0,0,0) and V- G =0+0+0 = 0.
Since ¥V x G = 0 there exists a g such that G = Vg. To determine g, we can
compute the line integral of G from a fixed point, say (0,0,0), to a general point
(g, Yo, zn) over any path. Using the path composed of the three segments in the
x, then g, then z directions, we have
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Since (g, 4o, zo) is a general point, we can drop the subscripts and write g{x, y, z) =
2wy + 3yz. You can quickly check that the gradient of g is indeed G.

A quicker method of obtaining g is the following, The & component of Vg = G
tells us that dg/dr = 2y. So g must be a function of the form 2xy + f1{y, z).
Similarly, the i component tells us that g must take the form 2zy+3yz + folx, 2),
and the z component tells us that g must take the form 3yz + fs(x,y). You can
quickly verify that the only function satisfving all three of these forms is 2oy +3yz
(plus a constant).

(¢) fH = (2%—2%,2,2z2) then we find VxH = (0, —42,0) and V-H = 22 +0+2x =
dx. Sinee the curl isn't zero, there is no associated potential ¢.



