Phys 4C Fall 2019
Chapter 10 and 11 Solutions to Exercises

10.16.

10.30.

Leyden jar
Assume that the jar is cylindrical, with the height being twice the diameter d (the result
will depend somewhat on the proportions assumed). Then the volume is 7(d/2)?-(2d).

Setting this equal to 1073 m? gives d = 0.086 m. The area of the capacitor (assuming
it has no top) is A = m(d/2)? + 7d(2d) = 97d?/4 = 0.052m?. So the capacitance is

rkeoAd  (4)(8.85-10712 £C3)(0.052m?)
s 0.002m

If we had chosen the height to instead be four times the diameter, then the capacitance
would be about 20% larger. As long as the jar isn’t too squat (in which case it would

C= =9.2-10"'°F. (641)

be better called a tray) or too tall (in which case it would be better called a tube), the
dependence of the capacitance on the exact dimensions is fairly weak. (If the height
is b = nd, then you can show that the capacitance is proportional to (n + 1/4)/n%/3))

The capacitance of a sphere is 47egr, so a sphere will have a capacitance of 9.2-10710 F
if r = 8.3m. The diameter is then 16.6 m, or about 54 feet.

Polarized hydrogen

Since volume is proportional to 73, the negative charge inside radius Az is g =

—e(Az/a)®. Gauss’s law therefore gives the field due to the inner part of the elec-
tron cloud as
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This field pulls the proton downward. In equilibrium, it must be equal and opposite
to the applied field E that pushes the proton upward. Hence Az is given by
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which agrees with Eq. (10.27). The hydrogen atom won’t actually remain spherically
symmetric, but that won’t affect the rough size of Az.



10.42. Energy density in a dielectric

With a dielectric present, the capacitance of a parallel-plate capacitor is C' = kegA/s =
€A/s. The energy stored is still C¢? /2, because it equals Q¢/2 for all the same reasons
as in the vacuum case (imagine a battery doing work in transferring charge from one
plate to the other). So the energy density is
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as desired. Since € = keg, this energy density is x times the ¢y E2/2 energy density
without the dielectric. Basically, since C'is k times larger, so is the energy, and hence
the energy density. To see physically why the energy is larger, consider the case of
induced dipole moments, discussed in Section 10.5. The stretched atoms and molecules
are effectively little springs that are stretched, so they store potential energy. This
makes the total energy larger than it would be for the same equivalent charge on/at
the capacitor plates (free charge plus bound-charge layer).
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In an electromagnetic wave in a dielectric, the energy density of the magnetic field is
still B?/2ug. (It would be B?/2u in a magnetized material, but we're assuming that
the material here is only electrically polarizable.) But from Eq. (10.83) the amplitudes
of the E and B fields are related by By = /pge Ep. So B?/2p9 = e¢E?/2. The E and
B energy densities are therefore equal, just as they are in vacuum.

11.20. Force between a wire and a loop

At an arbitrary point on the wire, the magnetic field from the square-loop dipole has
both an upward vertical (z) component and a horizontal component along the wire.
But the latter produces no force on the current in the wire, so we care only about
the z component. Since the current in the wire in Fig. 6.47 points into the page, the
right-hand rule gives the magnetic force on the wire as pointing to the right.

Equation (11.14) gives the 2 component of the dipole field, with m equal to m = I,¢2.
The rightward force on a little piece dx of the wire equals I1 B, dz. With § measured
away from the vertical axis, dr is given by the usual expression, dz = zdf/ cos? 6.
(See the reasoning in the paragraph following Eq. (1.37).) Also, the distance r to the
little piece is r = z/cosf. Integrating over the entire infinite wire, we find the total
rightward force on it to be
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The integral here equals 2, as you can check with Mathematica or the integral table
in Appendix K. This force is consistent with the magnitude of the leftward force on
the square loop we found in Eq. (458) in Exercise 6.54, because z ~ R for large z.



