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Preface

The purview of science grows rapidly with time. It is the responsibility
of each generation to join new insights to old wisdom, and to distill the
key ideas for the next generation. This is my distillation of the last fifty
years of statistical mechanics—a period of grand synthesis and great
expansion.
This text is careful to address the interests and background not only

of physicists, but of sophisticated students and researchers in mathe-
matics, biology, engineering, computer science, and the social sciences.
It therefore does not presume an extensive background in physics, and
(except for Chapter 7) explicitly does not assume that the reader knows
or cares about quantum mechanics. The text treats the intersection of
the interests of all of these groups, while the exercises encompass the
union of interests. Statistical mechanics will be taught in all of these
fields of science in the next generation, whether wholesale or piecemeal
by field. By making statistical mechanics useful and comprehensible to
a variety of fields, we enrich the subject for those with backgrounds in
physics. Indeed, many physicists in their later careers are now taking
excursions into these other disciplines.
To make room for these new concepts and applications, much has

been pruned. Thermodynamics no longer holds its traditional key role
in physics. Like fluid mechanics in the last generation, it remains incred-
ibly useful in certain areas, but researchers in those areas quickly learn it
for themselves. Thermodynamics also has not had significant impact in
subjects far removed from physics and chemistry: nobody finds Maxwell
relations for the stock market, or Clausius–Clapeyron equations appli-
cable to compression algorithms. These and other important topics in
thermodynamics have been incorporated into a few key exercises. Sim-
ilarly, most statistical mechanics texts rest upon examples drawn from
condensed matter physics and physical chemistry—examples which are
then treated more completely in other courses. Even I, a condensed-
matter physicist, find the collapse of white dwarfs more fun than the
low-temperature specific heat of metals, and the entropy of card shuf-
fling still more entertaining.
The first half of the text includes standard topics, treated with an

interdisciplinary slant. Extensive exercises develop new applications of
statistical mechanics: random matrix theory, stock-market volatility,
the KAM theorem, Shannon entropy in communications theory, and
Dyson’s speculations about life at the end of the Universe. The second
half of the text incorporates Monte Carlo methods, order parameters,
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linear response and correlations (including a classical derivation of the
fluctuation-dissipation theorem), and the theory of abrupt and contin-
uous phase transitions (critical droplet theory and the renormalization
group).
This text is aimed for use by upper-level undergraduates and gradu-

ate students. A scientifically sophisticated reader with a familiarity with
partial derivatives and introductory classical mechanics should find this
text accessible, except for Chapter 4 (which demands Hamiltonian me-
chanics), Chapter 7 (quantum mechanics), Section 8.2 (linear algebra),
and Chapter 10 (Fourier methods, introduced in the Appendix). An un-
dergraduate one-semester course might cover Chapters 1–3, 5–7, and 9.
Cornell’s hard-working first-year graduate students covered the entire
text and worked through perhaps half of the exercises in a semester.
I have tried to satisfy all of these audiences through the extensive use
of footnotes: think of them as optional hyperlinks to material that is
more basic, more advanced, or a sidelight to the main presentation. The
exercises are rated by difficulty, from ©1 (doable by inspection) to ©5 (ad-
vanced); exercises rated ©4 many of them computational laboratories)
should be assigned sparingly. Much of Chapters 1–3, 5, and 6 was de-
veloped in an sophomore honors ‘waves and thermodynamics’ course;
these chapters and the exercises marked ©1 and ©2 should be accessible
to ambitious students early in their college education. A course designed
to appeal to an interdisciplinary audience might focus on entropy, order
parameters, and critical behavior by covering Chapters 1–3, 5, 6, 8, 9,
and 12. The computational exercises in the text grew out of three differ-
ent semester-long computational laboratory courses. We hope that the
computer exercise hints and instructions on the text web site [129] will
facilitate their incorporation into similar courses elsewhere.
The current plan is to make individual chapters available as PDF files

on the Internet. I also plan to make the figures in this text accessible
in a convenient form to those wishing to use them in course or lecture
presentations.
I have spent an entire career learning statistical mechanics from friends

and colleagues. Since this is a textbook and not a manuscript, the
presumption should be that any ideas or concepts expressed are not
mine, but rather have become so central to the field that continued
attribution would be distracting. I have tried to include references to
the literature primarily when it serves my imagined student. In the
age of search engines, an interested reader (or writer of textbooks) can
quickly find the key ideas and articles on any topic, once they know
what it is called. The textbook is now more than ever only a base from
which to launch further learning. My thanks to those who have patiently
explained their ideas and methods over the years—either in person, in
print, or through the Internet.
I must thank explicitly many people who were of tangible assistance

in the writing of this book. I would like to thank the National Science
Foundation and Cornell’s Laboratory of Atomic and Solid State Physics
for their support during the writing of this text. I would like to thank
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Pamela Davis Kivelson for the magnificent cover art. I would like to
thank Eanna Flanagan, Eric Siggia, Saul Teukolsky, David Nelson, Paul
Ginsparg, Vinay Ambegaokar, Neil Ashcroft, David Mermin, Mark New-
man, Kurt Gottfried, Chris Henley, BarbaraMink, Tom Rockwell, Csaba
Csaki, Peter Lepage, and Bert Halperin for helpful and insightful con-
versations. Eric Grannan, Piet Brouwer, Michelle Wang, Rick James,
Eanna Flanagan, Ira Wasserman, Dale Fixsen, Rachel Bean, Austin
Hedeman, Nick Trefethen, Sarah Shandera, Al Sievers, Alex Gaeta,
Paul Ginsparg, John Guckenheimer, Dan Stein, and Robert Weiss were
of important assistance in developing various exercises. My approach
to explaining the renormalization group (Chapter 12) was developed in
collaboration with Karin Dahmen, Chris Myers, and Olga Perković. The
students in my class have been instrumental in sharpening the text and
debugging the exercises; Jonathan McCoy, Austin Hedeman, Bret Han-
lon, and Kaden Hazzard in particular deserve thanks. Adam Becker,
Surachate (Yor) Limkumnerd, Sarah Shandera, Nick Taylor, Quentin
Mason, and Stephen Hicks, in their roles of proof-reading, grading, and
writing answer keys, were powerful filters for weeding out infelicities. I
would like to thank Joel Shore, Mohit Randeria, Mark Newman, Stephen
Langer, Chris Myers, Dan Rokhsar, BenWidom, and Alan Bray for read-
ing portions of the text, providing invaluable insights, and tightening the
presentation. I would like to thank Julie Harris at Oxford University
Press for her close scrutiny and technical assistance in the final prepa-
ration stages of this book. Finally, Chris Myers and I spent hundreds
of hours together developing the many computer exercises distributed
through this text; his broad knowledge of science and computation, his
profound taste in computational tools and methods, and his good hu-
mor made this a productive and exciting collaboration. The errors and
awkwardness that persist, and the exciting topics I have missed, are in
spite of the wonderful input from these friends and colleagues.
I would especially like to thank Carol Devine, for consultation, insight-

ful comments and questions, and for tolerating the back of her spouse’s
head for perhaps a thousand hours over the past two years.

James P. Sethna
Ithaca, NY

February, 2006
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What is statistical

mechanics? 1
Many systems in nature are far too complex to analyze directly. Solving
for the behavior of all the atoms in a block of ice, or the boulders in an
earthquake fault, or the nodes on the Internet, is simply infeasible. De-
spite this, such systems often show simple, striking behavior. Statistical
mechanics explains the simple behavior of complex systems.
The concepts and methods of statistical mechanics have infiltrated

into many fields of science, engineering, and mathematics: ensembles,
entropy, Monte Carlo, phases, fluctuations and correlations, nucleation,
and critical phenomena are central to physics and chemistry, but also
play key roles in the study of dynamical systems, communications, bioin-
formatics, and complexity. Quantum statistical mechanics, although not
a source of applications elsewhere, is the foundation of much of physics.
Let us briefly introduce these pervasive concepts and methods.
Ensembles. The trick of statistical mechanics is not to study a single

system, but a large collection or ensemble of systems. Where under-
standing a single system is often impossible, one can often calculate the
behavior of a large collection of similarly prepared systems.
For example, consider a random walk (Fig. 1.1). (Imagine it as the

trajectory of a particle in a gas, or the configuration of a polymer in
solution.) While the motion of any given walk is irregular and typically
impossible to predict, Chapter 2 derives the elegant laws which describe
the set of all possible random walks.
Chapter 3 uses an ensemble of all system states of constant energy to

derive equilibrium statistical mechanics; the collective properties of tem-
perature, entropy, and pressure emerge from this ensemble. In Chapter 4
we provide the best existing mathematical arguments for this constant-
energy ensemble. In Chapter 6 we develop free energies which describe
parts of systems; by focusing on the important bits, we find new laws
that emerge from the microscopic complexity.
Entropy. Entropy is the most influential concept arising from statis-

tical mechanics (Chapter 5). It was originally understood as a ther-
modynamic property of heat engines that inexorably increases with
time. Entropy has become science’s fundamental measure of disorder
and information—quantifying everything from compressing pictures on
the Internet to the heat death of the Universe.
Quantum statistical mechanics, confined to Chapter 7, provides

the microscopic underpinning to much of astrophysics and condensed
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2 What is statistical mechanics?

Fig. 1.1 Random walks. The mo-
tion of molecules in a gas, and bacteria
in a liquid, and photons in the Sun, are
described by random walks. Describing
the specific trajectory of any given ran-
dom walk (left) is not feasible. Describ-
ing the statistical properties of a large
number of random walks is straightfor-
ward (right, showing endpoints of many
walks starting at the origin). The deep
principle underlying statistical mechan-
ics is that it is often easier to under-
stand the behavior of these ensembles

of systems.

matter physics. There we use it to explain metals, insulators, lasers,
stellar collapse, and the microwave background radiation patterns from
the early Universe.
Monte Carlo methods allow the computer to find ensemble averages

in systems far too complicated to allow analytical evaluation. These
tools, invented and sharpened in statistical mechanics, are used every-
where in science and technology—from simulating the innards of particle
accelerators, to studies of traffic flow, to designing computer circuits. In
Chapter 8, we introduce Monte Carlo methods, the Ising model, and the
mathematics of Markov chains.
Phases. Statistical mechanics explains the existence and properties of

phases. The three common phases of matter (solids, liquids, and gases)
have multiplied into hundreds: from superfluids and liquid crystals, to
vacuum states of the Universe just after the Big Bang, to the pinned and
sliding ‘phases’ of earthquake faults. We explain the deep connection
between phases and perturbation theory in Section 8.3. In Chapter 9
we introduce the order parameter field, which describes the properties,
excitations, and topological defects that emerge in a given phase.
Fluctuations and correlations. Statistical mechanics not only de-

scribes the average behavior of an ensemble of systems, it describes
the entire distribution of behaviors. We describe how systems fluctuate
and evolve in space and time using correlation functions in Chapter 10.
There we also derive powerful and subtle relations between correlations,
response, and dissipation in equilibrium systems.
Abrupt Phase Transitions. Beautiful spatial patterns arise in sta-

tistical mechanics at the transitions between phases. Most such tran-
sitions are abrupt; ice is crystalline and solid until (at the edge of the
ice cube) it becomes unambiguously liquid. We study the nucleation
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What is statistical mechanics? 3

Fig. 1.2 Ising model at the criti-

cal point. The two-dimensional Ising
model of magnetism at its transition
temperature Tc. At higher tempera-
tures, the system is non-magnetic; the
magnetization is on average zero. At
the temperature shown, the system is
just deciding whether to magnetize up-
ward (white) or downward (black).

of new phases and the exotic structures that can form at abrupt phase
transitions in Chapter 11.
Criticality. Other phase transitions are continuous. Figure 1.2 shows

a snapshot of a particular model at its phase transition temperature
Tc. Notice the self-similar, fractal structures; the system cannot decide
whether to stay gray or to separate into black and white, so it fluctuates
on all scales, exhibiting critical phenomena. A random walk also forms
a self-similar, fractal object; a blow-up of a small segment of the walk
looks statistically similar to the original (Figs 1.1 and 2.2). Chapter 12
develops the scaling and renormalization-group techniques that explain
these self-similar, fractal properties. These techniques also explain uni-
versality; many properties at a continuous transition are surprisingly
system independent.
Science grows through accretion, but becomes potent through distil-

lation. Statistical mechanics has grown tentacles into much of science
and mathematics (see, e.g., Fig. 1.3). The body of each chapter will pro-
vide the distilled version: those topics of fundamental importance to all
fields. The accretion is addressed in the exercises: in-depth introductions
to applications in mesoscopic physics, astrophysics, dynamical systems,
information theory, low-temperature physics, statistics, biology, lasers,
and complexity theory.
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4 What is statistical mechanics?

Fig. 1.3 The onset of chaos. Me-
chanical systems can go from simple,
predictable behavior (left) to a chaotic
state (right) as some external param-
eter µ is tuned. Many disparate sys-
tems are described by a common, uni-
versal scaling behavior near the onset
of chaos (note the replicated structures
near µ∞). We understand this scaling
and universality using tools developed
to study continuous transitions in liq-
uids and gases. Conversely, the study of
chaotic motion provides statistical me-
chanics with our best explanation for
the increase of entropy.

µ

µ
2

x  *(  )

µ
1

µ

Exercises

The first three exercises provide a brief review of probabil-
ity and probability distributions, mathematical concepts
that are central to statistical mechanics. Quantum dice
explores discrete distributions and also acts as a preview
to Bose and Fermi statistics. Probability distributions in-
troduces the form and moments for the key distributions
for continuous variables and then introduces convolutions
and multidimensional distributions. Waiting times shows
the paradoxes one can concoct by confusing different en-
semble averages.

Stirling’s approximation derives the useful approxima-
tion n! ∼

√
2πn(n/e)n; more advanced students can con-

tinue with Stirling and asymptotic series to explore the
zero radius of convergence for this series, often found in
perturbative statistical mechanics calculations.

The last three exercises are more challenging: they de-
mand no background in statistical mechanics, yet illus-
trate both general themes of the subject and the broad
range of its applications. Random matrix theory briefly
introduces an entire active field of research, with applica-
tions in nuclear physics, mesoscopic physics, and number
theory; part (a) provides a good exercise in histograms
and ensembles, and the remaining more advanced parts
illustrate level repulsion, the Wigner surmise, universal-
ity, and emergent symmetry. Six degrees of separation

introduces the ensemble of small world networks, popular
in the social sciences and epidemiology for modeling the
interconnectedness in groups. This computational project
introduces network data structures, breadth-first search
algorithms, a continuum limit, and our first glimpse of
scaling. In Satisfactory map colorings we introduce the
challenging computer science problems of graph colorabil-
ity and logical satisfiability: these search through an en-
semble of different choices just as statistical mechanics
averages over an ensemble of states.

Finally, much of statistical mechanics focuses on the
average and typical behavior in an ensemble. There are
many applications, however, when it is the extreme case
that is of most interest. If a bridge strut has N micro-
cracks, each with a different failure stress, the engineer
is not concerned with the average failure stress but the
minimum. Similarly, the insurance company is most in-
terested, not in the typical weather, but the largest likely
hurricane. This introduces the study of extreme value
statistics, and the Weibull and Gumbel distributions. A
post-publication exercise on this subject is planned for
the book web site [126].

(1.1) Quantum dice.1 (Quantum) ©2
You are given several unusual ‘three-sided’ dice
which, when rolled, show either one, two, or three

1This exercise was developed in collaboration with Sarah Shandera.
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spots. There are three games played with these
dice: Distinguishable, Bosons, and Fermions. In
each turn in these games, the player rolls one die
at a time, starting over if required by the rules,
until a legal combination occurs. In Distinguish-
able, all rolls are legal. In Bosons, a roll is legal
only if the new number is larger or equal to the
preceding number. In Fermions, a roll is legal
only if the new number is strictly larger than the
preceding number. See Fig. 1.4 for a table of pos-
sibilities after rolling two dice.
Our dice rules are the same ones that govern the
quantum statistics of identical particles.

3

2

1

1 2 3
Roll #1

R
ol

l #
2

4

2 3 4

4 5 6

3 5

Fig. 1.4 Quantum dice. Rolling two dice. In
Bosons, one accepts only the rolls in the shaded
squares, with equal probability 1/6. In Fermions, one
accepts only the rolls in the darkly-shaded squares
(not including the diagonal from lower left to upper
right), with probability 1/3.

(a) Presume the dice are fair: each of the three
numbers of dots shows up 1/3 of the time. For
a legal turn rolling a die twice in Bosons, what
is the probability ρ(4) of rolling a 4? Similarly,
among the legal Fermion turns rolling two dice,
what is the probability ρ(4)?
(b) For a legal turn rolling three ‘three-sided’ dice
in Fermions, what is the probability ρ(6) of rolling
a 6? (Hint: There is a Fermi exclusion princi-
ple: when playing Fermions, no two dice can have
the same number of dots showing.) Electrons are
fermions; no two electrons can be in exactly the
same state.
When rolling two dice in Bosons, there are six dif-
ferent legal turns (11), (12), (13), . . . , (33); half
of them are doubles (both numbers equal), while
for plain old Distinguishable turns only one-third
would be doubles2; the probability of getting dou-
bles is enhanced by 1.5 times in two-roll Bosons.
When rolling three dice in Bosons, there are ten

different legal turns (111), (112), (113), . . . , (333).
When rollingM dice each with N sides in Bosons,
one can show that there are

(
N +M − 1

M

)
=

(N +M − 1)!

M ! (N − 1)!

legal turns.
(c) In a turn of three rolls, what is the factor by
which the probability of getting triples in Bosons is
enhanced over that in Distinguishable? In a turn
of M rolls, what is the enhancement factor for
generating an M-tuple (all rolls having the same
number of dots showing)?
Notice that the states of the dice tend to cluster
together in Bosons. Examples of real bosons clus-
tering into the same state include Bose condensa-
tion (Section 7.6.3) and lasers (Exercise 7.9).

(1.2) Probability distributions. ©2
Most people are more familiar with probabilities
for discrete events (like coin flips and card games),
than with probability distributions for continuous
variables (like human heights and atomic veloc-
ities). The three continuous probability distri-
butions most commonly encountered in physics
are: (i) uniform: ρuniform(x) = 1 for 0 ≤ x < 1,
ρ(x) = 0 otherwise (produced by random num-
ber generators on computers); (ii) exponential :
ρexponential(t) = e−t/τ/τ for t ≥ 0 (familiar from
radioactive decay and used in the collision the-
ory of gases); and (iii) Gaussian: ρgaussian(v) =

e−v2/2σ2

/(
√
2πσ), (describing the probability dis-

tribution of velocities in a gas, the distribution
of positions at long times in random walks, the
sums of random variables, and the solution to the
diffusion equation).
(a) Likelihoods. What is the probability that a
random number uniform on [0, 1) will happen to
lie between x = 0.7 and x = 0.75? That the wait-
ing time for a radioactive decay of a nucleus will
be more than twice the exponential decay time τ?
That your score on an exam with a Gaussian dis-
tribution of scores will be greater than 2σ above
the mean? (Note:

∫∞
2

(1/
√
2π) exp(−v2/2) dv =

(1− erf(
√
2))/2 ∼ 0.023.)

(b) Normalization, mean, and standard devia-
tion. Show that these probability distributions
are normalized:

∫
ρ(x) dx = 1. What is the

mean x0 of each distribution? The standard de-

viation
√∫

(x− x0)2ρ(x) dx? (You may use

2For Fermions, of course, there are no doubles.
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the formulæ
∫∞
−∞(1/

√
2π) exp(−v2/2) dv = 1 and∫∞

−∞ v2(1/
√
2π) exp(−v2/2) dv = 1.)

(c) Sums of variables. Draw a graph of the proba-
bility distribution of the sum x + y of two ran-
dom variables drawn from a uniform distribu-
tion on [0, 1). Argue in general that the sum
z = x + y of random variables with distributions
ρ1(x) and ρ2(y) will have a distribution given by
ρ(z) =

∫
ρ1(x)ρ2(z − x) dx (the convolution of ρ

with itself ).
Multidimensional probability distributions. In sta-
tistical mechanics, we often discuss probability
distributions for many variables at once (for ex-
ample, all the components of all the velocities of
all the atoms in a box). Let us consider just the
probability distribution of one molecule’s veloci-
ties. If vx, vy , and vz of a molecule are indepen-
dent and each distributed with a Gaussian distri-
bution with σ =

√
kT/M (Section 3.2.2) then we

describe the combined probability distribution as
a function of three variables as the product of the
three Gaussians:

ρ(vx, vy , vz) =
1

(2π(kT/M))3/2
exp(−Mv2/2kT )

=

√
M

2πkT
exp

(
−Mv2x
2kT

)

×
√

M

2πkT
exp

(−Mv2y
2kT

)

×
√

M

2πkT
exp

(
−Mv2z
2kT

)
. (1.1)

(d) Show, using your answer for the standard de-
viation of the Gaussian in part (b), that the mean
kinetic energy is kT/2 per dimension. Show that
the probability that the speed is v = |v| is given by
a Maxwellian distribution

ρMaxwell(v) =
√

2/π(v2/σ3) exp(−v2/2σ2).
(1.2)

(Hint: What is the shape of the region in 3D ve-
locity space where |v| is between v and v + δv?
The surface area of a sphere of radius R is 4πR2.)

(1.3) Waiting times.3 (Mathematics) ©3
On a highway, the average numbers of cars and
buses going east are equal: each hour, on aver-
age, there are 12 buses and 12 cars passing by.
The buses are scheduled: each bus appears ex-
actly 5 minutes after the previous one. On the

other hand, the cars appear at random: in a short
interval dt, the probability that a car comes by is
dt/τ , with τ = 5 minutes. An observer is counting
the cars and buses.
(a) Verify that each hour the average number of
cars passing the observer is 12.
(b) What is the probability Pbus(n) that n buses
pass the observer in a randomly chosen 10 minute
interval? And what is the probability Pcar(n) that
n cars pass the observer in the same time inter-
val? (Hint: For the cars, one way to proceed
is to divide the interval into many small slivers
of time dt; in each sliver the probability is dt/τ
that a car passes, and 1 − dt/τ ≈ e−dt/τ that no
car passes. However you do it, you should get
a Poisson distribution, Pcar(n) = ane−a/n!. See
also Exercise 3.9.)
(c) What are the probability distributions ρbus and
ρcar for the time interval ∆ between two succes-
sive buses and cars, respectively? What are the
means of these distributions? (Hint: To write
the probability distribution for the bus, you will
need to use the Dirac δ-function.4)
(d) If another observer arrives at the road at a
randomly chosen time, what is the probability dis-
tribution for the time ∆ she has to wait for the
first bus to arrive? What is the probability distri-
bution for the time she has to wait for the first car
to pass by? (Hint: What would the distribution
of waiting times be just after a car passes by?
Does the time of the next car depend at all on
the previous car?) What are the means of these
distributions?
The mean time between cars is 5 minutes. The
mean time to the next car should be 5 minutes. A
little thought should convince you that the mean
time since the last car should also be 5 minutes.
But 5 + 5 6= 5; how can this be?
The same physical quantity can have different
means when averaged in different ensembles! The
mean time between cars in part (c) was a gap av-
erage: it weighted all gaps between cars equally.
The mean time to the next car from part (d) was
a time average: the second observer arrives with
equal probability at every time, so is twice as
likely to arrive during a gap between cars that
is twice as long.
(e) In part (c), ρgapcar (∆) was the probability that
a randomly chosen gap was of length ∆. Write a

3This exercise was developed in collaboration with Piet Brouwer.
4The δ-function δ(x−x0) is a probability density which has 100% probability of being in any interval containing x0; thus δ(x−x0)
is zero unless x = x0, and

∫
f(x)δ(x − x0) dx = f(x0) so long as the domain of integration includes x0. Mathematically, this

is not a function, but rather a distribution or a measure.
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formula for ρtime
car (∆), the probability that the sec-

ond observer, arriving at a randomly chosen time,
will be in a gap between cars of length ∆. (Hint:
Make sure it is normalized.) From ρtime

car (∆), cal-
culate the average length of the gaps between cars,
using the time-weighted average measured by the
second observer.

(1.4) Stirling’s approximation. (Mathematics) ©2
Stirling’s approximation [123] for n!, valid for
large n, is extremely useful in statistical mechan-
ics.
Show, by converting the sum to an integral, that
log(n!) =

∑n
1 log n ∼ (n + 1/2) log(n + 1/2) − n −

1/2 log(1/2). (As always in this book, log repre-
sents the natural logarithm, not log10.) Show that
this is compatible with the more precise and tra-
ditional formula n! ≈ (n/e)n

√
2πn; in particu-

lar, show that the difference between the logs of
the two formulæ goes to a constant as n → ∞.
Show that the latter is compatible with the first
term in the series we use in Exercise 1.5, n! ∼
(2π/(n + 1))

1/2e−(n+1)(n + 1)n+1, in that the dif-
ference between the logs goes to zero as n → ∞.
(Related formulæ:

∫
log xdx = x log x − x, and

log(n + 1) − log(n) = log(1 + 1/n) ∼ 1/n up to
terms of order 1/n2.)

(1.5) Stirling and asymptotic series. (Mathemat-
ics) ©3
Stirling’s formula (which is actually originally due
to de Moivre) can be improved upon by extending
it into an entire series. It is not a traditional Tay-
lor expansion; rather, it is an asymptotic series.
Asymptotic series are important in many fields of
applied mathematics, statistical mechanics [121],
and field theory [122].
We want to expand n! for large n; to do this, we
need to turn it into a continuous function, inter-
polating between the integers. This continuous
function, with its argument perversely shifted by
one, is Γ(z) = (z−1)!. There are many equivalent
formulæ for Γ(z); indeed, any formula giving an
analytic function satisfying the recursion relation
Γ(z + 1) = zΓ(z) and the normalization Γ(1) = 1
is equivalent (by theorems of complex analysis).
We will not use it here, but a typical definition is
Γ(z) =

∫∞
0

e−ttz−1 dt; one can integrate by parts
to show that Γ(z + 1) = zΓ(z).

(a) Show, using the recursion relation Γ(z + 1) =
zΓ(z), that Γ(z) has a singularity (goes to infin-
ity) at all the negative integers.
Stirling’s formula is extensible [13, p. 218] into a
nice expansion of Γ(z) in powers of 1/z = z−1:

Γ[z] = (z − 1)!

∼ (2π/z)
1/2e−zzz(1 + (1/12)z−1

+ (1/288)z−2 − (139/51840)z−3

− (571/2488320)z−4

+ (163879/209018880)z−5

+ (5246819/75246796800)z−6

− (534703531/902961561600)z−7

− (4483131259/86684309913600)z−8

+ . . .). (1.3)

This looks like a Taylor series in 1/z, but is sub-
tly different. For example, we might ask what the
radius of convergence [125] of this series is. The
radius of convergence is the distance to the near-
est singularity in the complex plane (see note 27
on p. 173 and Fig. 8.7(a)).
(b) Let g(ζ) = Γ(1/ζ); then Stirling’s formula is
something times a Taylor series in ζ. Plot the
poles (singularities) of g(ζ) in the complex ζ plane
that you found in part (a). Show that the radius
of convergence of Stirling’s formula applied to g
must be zero, and hence no matter how large z is
Stirling’s formula eventually diverges.
Indeed, the coefficient of z−j eventually grows
rapidly; Bender and Orszag [13, p. 218] state
that the odd coefficients (A1 = 1/12, A3 =
−139/51840, . . . ) asymptotically grow as

A2j+1 ∼ (−1)j2(2j)!/(2π)2(j+1) . (1.4)

(c) Show explicitly, using the ratio test applied to
formula 1.4, that the radius of convergence of Stir-
ling’s formula is indeed zero.5

This in no way implies that Stirling’s formula is
not valuable! An asymptotic series of length n
approaches f(z) as z gets big, but for fixed z it
can diverge as n gets larger and larger. In fact,
asymptotic series are very common, and often are
useful for much larger regions than are Taylor se-
ries.
(d) What is 0!? Compute 0! using successive
terms in Stirling’s formula (summing to AN for

5If you do not remember about radius of convergence, see [125]. Here you will be using every other term in the series, so the
radius of convergence is

√
|A2j−1/A2j+1|.
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the first few N). Considering that this formula
is expanding about infinity, it does pretty well!
Quantum electrodynamics these days produces
the most precise predictions in science. Physicists
sum enormous numbers of Feynman diagrams
to produce predictions of fundamental quantum
phenomena. Dyson argued that quantum elec-
trodynamics calculations give an asymptotic se-
ries [122]; the most precise calculation in sci-
ence takes the form of a series which cannot con-
verge. Many other fundamental expansions are
also asymptotic series; for example, Hooke’s law
and elastic theory have zero radius of conver-
gence [21,22].

(1.6) Random matrix theory.6 (Mathematics,
Quantum) ©3
One of the most active and unusual applications
of ensembles is random matrix theory, used to de-
scribe phenomena in nuclear physics, mesoscopic
quantum mechanics, and wave phenomena. Ran-
dom matrix theory was invented in a bold attempt
to describe the statistics of energy level spectra
in nuclei. In many cases, the statistical behavior
of systems exhibiting complex wave phenomena—
almost any correlations involving eigenvalues and
eigenstates—can be quantitatively modeled using
ensembles of matrices with completely random,
uncorrelated entries!
To do this exercise, you will need to find a soft-
ware environment in which it is easy to (i) make
histograms and plot functions on the same graph,
(ii) find eigenvalues of matrices, sort them, and
collect the differences between neighboring ones,
and (iii) generate symmetric random matrices
with Gaussian and integer entries. Mathematica,
Matlab, Octave, and Python are all good choices.
For those who are not familiar with one of these
packages, I will post hints on how to do these three
things under ‘Random matrix theory’ in the com-
puter exercises section of the book web site [129].
The most commonly explored ensemble of matri-
ces is the Gaussian orthogonal ensemble (GOE).
Generating a member H of this ensemble of size
N ×N takes two steps.

• Generate an N ×N matrix whose elements are
independent random numbers with Gaussian
distributions of mean zero and standard devia-
tion σ = 1.

• Add each matrix to its transpose to symmetrize
it.

As a reminder, the Gaussian or normal proba-
bility distribution of mean zero gives a random
number x with probability

ρ(x) =
1√
2πσ

e−x2/2σ2

. (1.5)

One of the most striking properties that large ran-
dom matrices share is the distribution of level
splittings.
(a) Generate an ensemble with M = 1000 or so
GOE matrices of size N = 2, 4, and 10. (More is
nice.) Find the eigenvalues λn of each matrix,
sorted in increasing order. Find the difference
between neighboring eigenvalues λn+1 − λn, for
n, say, equal to7 N/2. Plot a histogram of these
eigenvalue splittings divided by the mean splitting,
with bin size small enough to see some of the fluc-
tuations. (Hint: Debug your work with M = 10,
and then change to M = 1000.)
What is this dip in the eigenvalue probability near
zero? It is called level repulsion.
For N = 2 the probability distribution for the
eigenvalue splitting can be calculated pretty sim-
ply. Let our matrix be M =

(
a b
b c

)
.

(b) Show that the eigenvalue difference for M is
λ =

√
(c− a)2 + 4b2 = 2

√
d2 + b2 where d =

(c−a)/2, and the trace c+a is irrelevant. Ignoring
the trace, the probability distribution of matrices
can be written ρM (d, b). What is the region in the
(b, d) plane corresponding to the range of eigen-
value splittings (λ, λ + ∆)? If ρM is continuous
and finite at d = b = 0, argue that the probabil-
ity density ρ(λ) of finding an eigenvalue splitting
near λ = 0 vanishes (level repulsion). (Hint:
Both d and b must vanish to make λ = 0. Go to
polar coordinates, with λ the radius.)
(c) Calculate analytically the standard deviation
of a diagonal and an off-diagonal element of the
GOE ensemble (made by symmetrizing Gaussian
random matrices with σ = 1). You may want
to check your answer by plotting your predicted
Gaussians over the histogram of H11 and H12

from your ensemble in part (a). Calculate ana-
lytically the standard deviation of d = (c−a)/2 of
the N = 2 GOE ensemble of part (b), and show
that it equals the standard deviation of b.
(d) Calculate a formula for the probability dis-

6This exercise was developed with the help of Piet Brouwer.
7Why not use all the eigenvalue splittings? The mean splitting can change slowly through the spectrum, smearing the distri-
bution a bit.
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tribution of eigenvalue spacings for the N = 2
GOE, by integrating over the probability density
ρM(d, b). (Hint: Polar coordinates again.)
If you rescale the eigenvalue splitting distribution
you found in part (d) to make the mean splitting
equal to one, you should find the distribution

ρWigner(s) =
πs

2
e−πs2/4. (1.6)

This is called the Wigner surmise; it is within 2%
of the correct answer for larger matrices as well.8

(e) Plot eqn 1.6 along with your N = 2 results
from part (a). Plot the Wigner surmise formula
against the plots for N = 4 and N = 10 as well.
Does the distribution of eigenvalues depend in de-
tail on our GOE ensemble? Or could it be univer-
sal, describing other ensembles of real symmetric
matrices as well? Let us define a ±1 ensemble of
real symmetric matrices, by generating an N ×N
matrix whose elements are independent random
variables, each ±1 with equal probability.
(f) Generate an ensemble ofM = 1000 symmetric
matrices filled with ±1 with size N = 2, 4, and 10.
Plot the eigenvalue distributions as in part (a).
Are they universal (independent of the ensemble
up to the mean spacing) for N = 2 and 4? Do they
appear to be nearly universal 9 (the same as for the
GOE in part (a)) for N = 10? Plot the Wigner
surmise along with your histogram for N = 10.
The GOE ensemble has some nice statistical prop-
erties. The ensemble is invariant under orthogo-
nal transformations:

H → R⊤HR with R⊤ = R−1. (1.7)

(g) Show that Tr[H⊤H ] is the sum of the squares
of all elements of H. Show that this trace is in-
variant under orthogonal coordinate transforma-
tions (that is, H → R⊤HR with R⊤ = R−1).
(Hint: Remember, or derive, the cyclic invariance
of the trace: Tr[ABC] = Tr[CAB].)
Note that this trace, for a symmetric matrix, is
the sum of the squares of the diagonal elements
plus twice the squares of the upper triangle of off-
diagonal elements. That is convenient, because
in our GOE ensemble the variance (squared stan-
dard deviation) of the off-diagonal elements is half
that of the diagonal elements (part (c)).
(h) Write the probability density ρ(H) for finding
GOE ensemble member H in terms of the trace

formula in part (g). Argue, using your formula
and the invariance from part (g), that the GOE
ensemble is invariant under orthogonal transfor-
mations: ρ(R⊤HR) = ρ(H).
This is our first example of an emergent sym-
metry. Many different ensembles of symmetric
matrices, as the size N goes to infinity, have
eigenvalue and eigenvector distributions that are
invariant under orthogonal transformations even
though the original matrix ensemble did not have
this symmetry. Similarly, rotational symmetry
emerges in random walks on the square lattice as
the number of steps N goes to infinity, and also
emerges on long length scales for Ising models at
their critical temperatures.

(1.7) Six degrees of separation.10 (Complexity,
Computation) ©4
One of the more popular topics in random net-
work theory is the study of how connected they
are. ‘Six degrees of separation’ is the phrase com-
monly used to describe the interconnected nature
of human acquaintances: various somewhat un-
controlled studies have shown that any random
pair of people in the world can be connected to
one another by a short chain of people (typically
around six), each of whom knows the next fairly
well. If we represent people as nodes and acquain-
tanceships as neighbors, we reduce the problem to
the study of the relationship network.
Many interesting problems arise from studying
properties of randomly generated networks. A
network is a collection of nodes and edges, with
each edge connected to two nodes, but with
each node potentially connected to any number
of edges (Fig. 1.5). A random network is con-
structed probabilistically according to some defi-
nite rules; studying such a random network usu-
ally is done by studying the entire ensemble of
networks, each weighted by the probability that
it was constructed. Thus these problems natu-
rally fall within the broad purview of statistical
mechanics.

8The distribution for large matrices is known and universal, but is much more complicated to calculate.
9Note the spike at zero. There is a small probability that two rows or columns of our matrix of ±1 will be the same, but this
probability vanishes rapidly for large N .
10This exercise and the associated software were developed in collaboration with Christopher Myers.
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Fig. 1.5 Network. A network is a collection of nodes
(circles) and edges (lines between the circles).

In this exercise, we will generate some random
networks, and calculate the distribution of dis-
tances between pairs of points. We will study
small world networks [95,142], a theoretical model
that suggests how a small number of shortcuts
(unusual international and intercultural friend-
ships) can dramatically shorten the typical chain
lengths. Finally, we will study how a simple, uni-
versal scaling behavior emerges for large networks
with few shortcuts.
In the computer exercises section on the book web
site [129], you will find some hint files and graphic
routines to facilitate working this exercise. We
plan to support a variety of languages and sys-
tems.

Constructing a small world network. The L nodes
in a small world network are arranged around
a circle. There are two kinds of edges. Each
node has Z short edges connecting it to its near-
est neighbors around the circle (up to a distance
Z/2). In addition, there are p×L×Z/2 shortcuts
added to the network, which connect nodes at ran-
dom (see Fig. 1.6). (This is a more tractable ver-
sion [95] of the original model [142], which rewired
a fraction p of the LZ/2 edges.)
(a) Define a network object on the computer. For
this exercise, the nodes will be represented by in-
tegers. Implement a network class, with five func-
tions:

(1) HasNode(node), which checks to see if a node
is already in the network;

(2) AddNode(node), which adds a new node to the

system (if it is not already there);

(3) AddEdge(node1, node2), which adds a new
edge to the system;

(4) GetNodes(), which returns a list of existing
nodes; and

(5) GetNeighbors(node), which returns the
neighbors of an existing node.

Fig. 1.6 Small world network with L = 20, Z = 4,
and p = 0.2.11

Write a routine to construct a small world net-
work, which (given L, Z, and p) adds the nodes
and the short edges, and then randomly adds the
shortcuts. Use the software provided to draw this
small world graph, and check that you have im-
plemented the periodic boundary conditions cor-
rectly (each node i should be connected to nodes
(i− Z/2)modL, . . . , (i+ Z/2)modL).12

Measuring the minimum distances between nodes.
The most studied property of small world graphs
is the distribution of shortest paths between
nodes. Without the long edges, the shortest path
between i and j will be given by hopping in steps
of length Z/2 along the shorter of the two arcs
around the circle; there will be no paths of length
longer than L/Z (half-way around the circle), and
the distribution ρ(ℓ) of path lengths ℓ will be con-
stant for 0 < ℓ < L/Z. When we add shortcuts,
we expect that the distribution will be shifted to
shorter path lengths.

11There are seven new shortcuts, where pLZ/2 = 8; one of the added edges overlapped an existing edge or connected a node
to itself.
12Here (i− Z/2) mod L is the integer 0 ≤ n ≤ L− 1 which differs from i− Z/2 by a multiple of L.
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(b) Write the following three functions to find and
analyze the path length distribution.

(1) FindPathLengthsFromNode(graph, node),
which returns for each node2 in the graph
the shortest distance from node to node2. An
efficient algorithm is a breadth-first traversal
of the graph, working outward from node in
shells. There will be a currentShell of nodes
whose distance will be set to ℓ unless they
have already been visited, and a nextShell

which will be considered after the current one
is finished (looking sideways before forward,
breadth first), as follows.

– Initialize ℓ = 0, the distance from node

to itself to zero, and currentShell =

[node].

– While there are nodes in the new
currentShell:

∗ start a new empty nextShell;

∗ for each neighbor of each node in
the current shell, if the distance to
neighbor has not been set, add the
node to nextShell and set the dis-
tance to ℓ+ 1;

∗ add one to ℓ, and set the current
shell to nextShell.

– Return the distances.

This will sweep outward from node, measur-
ing the shortest distance to every other node
in the network. (Hint: Check your code with
a network with small N and small p, compar-
ing a few paths to calculations by hand from
the graph image generated as in part (a).)

(2) FindAllPathLengths(graph), which gener-
ates a list of all lengths (one per pair
of nodes in the graph) by repeatedly us-
ing FindPathLengthsFromNode. Check your
function by testing that the histogram of path
lengths at p = 0 is constant for 0 < ℓ < L/Z,
as advertised. Generate graphs at L = 1000
and Z = 2 for p = 0.02 and p = 0.2; dis-
play the circle graphs and plot the histogram
of path lengths. Zoom in on the histogram;
how much does it change with p? What value
of p would you need to get ‘six degrees of sep-
aration’?

(3) FindAveragePathLength(graph), which
computes the mean 〈ℓ〉 over all pairs of nodes.

Compute ℓ for Z = 2, L = 100, and p = 0.1
a few times; your answer should be around
ℓ = 10. Notice that there are substantial sta-
tistical fluctuations in the value from sample
to sample. Roughly how many long bonds
are there in this system? Would you expect
fluctuations in the distances?

(c) Plot the average path length between nodes ℓ(p)
divided by ℓ(p = 0) for Z = 2, L = 50, with p on
a semi-log plot from p = 0.001 to p = 1. (Hint:
Your curve should be similar to that of with Watts
and Strogatz [142, fig. 2], with the values of p
shifted by a factor of 100; see the discussion of
the continuum limit below.) Why is the graph
fixed at one for small p?

Large N and the emergence of a continuum limit.
We can understand the shift in p of part (c) as
a continuum limit of the problem. In the limit
where the number of nodes N becomes large and
the number of shortcuts pLZ/2 stays fixed, this
network problem has a nice limit where distance
is measured in radians ∆θ around the circle. Di-
viding ℓ by ℓ(p = 0) ≈ L/(2Z) essentially does
this, since ∆θ = πZℓ/L.

(d) Create and display a circle graph of your ge-
ometry from part (c) (Z = 2, L = 50) at p = 0.1;
create and display circle graphs of Watts and Stro-
gatz’s geometry (Z = 10, L = 1000) at p = 0.1
and p = 0.001. Which of their systems looks
statistically more similar to yours? Plot (per-
haps using the scaling collapse routine provided)
the rescaled average path length πZℓ/L versus
the total number of shortcuts pLZ/2, for a range
0.001 < p < 1, for L = 100 and 200, and for
Z = 2 and 4.

In this limit, the average bond length 〈∆θ〉 should
be a function only of M . Since Watts and Stro-
gatz [142] ran at a value of ZL a factor of 100
larger than ours, our values of p are a factor
of 100 larger to get the same value of M =
pLZ/2. Newman and Watts [99] derive this con-
tinuum limit with a renormalization-group anal-
ysis (Chapter 12).
(e) Real networks. From the book web site [129],
or through your own research, find a real net-
work13 and find the mean distance and histogram
of distances between nodes.

13Examples include movie-actor costars, ‘Six degrees of Kevin Bacon’, or baseball players who played on the same team.
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In the small world network, a few long edges are
crucial for efficient transfer through the system
(transfer of information in a computer network,
transfer of disease in a population model, . . . ).
It is often useful to measure how crucial a given
node or edge is to these shortest paths. We say
a node or edge is ‘between’ two other nodes if
it is along a shortest path between them. We
measure the ‘betweenness’ of a node or edge as
the total number of such shortest paths passing
through it, with (by convention) the initial and
final nodes included in the ‘between’ nodes; see
Fig. 1.7. (If there are K multiple shortest paths
of equal length between two nodes, each path adds
1/K to its intermediates.) The efficient algorithm
to measure betweenness is a depth-first traversal
quite analogous to the shortest-path-length algo-
rithm discussed above.

Fig. 1.7 Betweenness Small world network with
L = 500, K = 2, and p = 0.1, with node and edge
sizes scaled by the square root of their betweenness.

(f) Betweenness (advanced). Read [46, 96], which
discuss the algorithms for finding the between-
ness. Implement them on the small world net-
work, and perhaps the real world network you an-
alyzed in part (e). Visualize your answers by us-
ing the graphics software provided on the book web
site [126].

(1.8) Satisfactory map colorings.14 (Computer
science, Computation, Mathematics) ©3
Many problems in computer science involve find-
ing a good answer among a large number of pos-
sibilities. One example is 3-colorability (Fig. 1.8).
Can the N nodes of a graph be colored in three
colors (say red, green, and blue) so that no two
nodes joined by an edge have the same color?15

For an N-node graph one can of course explore the
entire ensemble of 3N colorings, but that takes a
time exponential in N . Sadly, there are no known
shortcuts that fundamentally change this; there
is no known algorithm for determining whether a
given N-node graph is three-colorable that guar-
antees an answer in a time that grows only as a
power of N .16

A

D
CB

A

D C

B

Fig. 1.8 Graph coloring. Two simple examples of
graphs with N = 4 nodes that can and cannot be
colored with three colors.

Another good example is logical satisfiability
(SAT). Suppose one has a long logical expression
involving N boolean variables. The logical ex-
pression can use the operations NOT (¬), AND
(∧), and OR (∨). It is satisfiable if there is some
assignment of True and False to its variables that
makes the expression True. Can we solve a gen-
eral satisfiability problem with N variables in a
worst-case time that grows less quickly than ex-
ponentially in N? In this exercise, you will show
that logical satisfiability is in a sense computa-
tionally at least as hard as 3-colorability. That is,
you will show that a 3-colorability problem with
N nodes can be mapped onto a logical satisfiabil-
ity problem with 3N variables, so a polynomial-
time (non-exponential) algorithm for the SAT

14This exercise and the associated software were developed in collaboration with Christopher Myers, with help from Bart
Selman and Carla Gomes.
15The famous four-color theorem, that any map of countries on the world can be colored in four colors, shows that all planar
graphs are 4-colorable.
16Because 3-colorability is NP–complete (see Exercise 8.15), finding such a polynomial-time algorithm would allow one to solve
traveling salesman problems and find spin-glass ground states in polynomial time too.
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would imply a (hitherto unknown) polynomial-
time solution algorithm for 3-colorability.
If we use the notation AR to denote a variable
which is true when node A is colored red, then
¬(AR ∧ AG) is the statement that node A is not
colored both red and green, while AR∨AG∨AB is
true if node A is colored one of the three colors.17

There are three types of expressions needed to
write the colorability of a graph as a logical sat-
isfiability problem: A has some color (above), A
has only one color, and A and a neighbor B have
different colors.
(a) Write out the logical expression that states that
A is colored with only a single color. Write out the
logical expression that states that A and B are not
colored with the same color. Hint: Both should
be a conjunction (AND, ∧) of three clauses each
involving two variables.
Any logical expression can be rewritten into a
standard format, the conjunctive normal form. A
literal is either one of our boolean variables or
its negation; a logical expression is in conjunctive
normal form if it is a conjunction of a series of
clauses, each of which is a disjunction (OR, ∨) of
literals.
(b) Show that, for two boolean variables X and
Y , that ¬(X ∧ Y ) is equivalent to a disjunction
of literals (¬X) ∨ (¬Y ). (Hint: Test each of the
four cases). Write your answers to part (a) in
conjunctive normal form. What is the maximum
number of literals in each clause you used? Is it

the maximum needed for a general 3-colorability
problem?
In part (b), you showed that any 3-colorability
problem can be mapped onto a logical satisfiabil-
ity problem in conjunctive normal form with at
most three literals in each clause, and with three
times the number of boolean variables as there
were nodes in the original graph. (Consider this a
hint for part (b).) Logical satisfiability problems
with at most k literals per clause in conjunctive
normal form are called kSAT problems.
(c) Argue that the time needed to translate the 3-
colorability problem into a 3SAT problem grows
at most quadratically in the number of nodes M
in the graph (less than αM2 for some α for large
M). (Hint: the number of edges of a graph is
at most M2.) Given an algorithm that guaran-
tees a solution to any N-variable 3SAT problem
in a time T (N), use it to give a bound on the time
needed to solve an M-node 3-colorability problem.
If T (N) were a polynomial-time algorithm (run-
ning in time less than Nx for some integer x),
show that 3-colorability would be solvable in a time
bounded by a polynomial in M .
We will return to logical satisfiability, kSAT, and
NP–completeness in Exercise 8.15. There we will
study a statistical ensemble of kSAT problems,
and explore a phase transition in the fraction of
satisfiable clauses, and the divergence of the typ-
ical computational difficulty near that transition.

17The operations AND (∧) and NOT ¬ correspond to common English usage (∧ is true only if both are true, ¬ is true only if
the expression following is false). However, OR (∨) is an inclusive or—false only if both clauses are false. In common English
usage ‘or’ is usually exclusive, false also if both are true. (‘Choose door number one or door number two’ normally does not
imply that one may select both.)
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What makes physics possible? Why are the mathematical laws that
describe our macroscopic world so simple? Our physical laws are not
direct statements about the underlying reality of the Universe. Rather,
our laws emerge out of far more complex microscopic behavior.1 Statis-

1You may think that Newton’s law of
gravitation, or Einstein’s refinement to
it, is more fundamental than the diffu-
sion equation. You would be correct;
gravitation applies to everything. But
the simple macroscopic law of gravita-
tion emerges, presumably, from a quan-
tum exchange of immense numbers of
virtual gravitons just as the diffusion
equation emerges from large numbers
of long random walks. The diffusion
equation and other continuum statisti-
cal mechanics laws are special to partic-
ular systems, but they emerge from the
microscopic theory in much the same
way as gravitation and the other fun-
damental laws of nature do. This is the
source of many of the surprisingly sim-
ple mathematical laws describing na-
ture [145].

tical mechanics provides a set of powerful tools for understanding simple
behavior that emerges from underlying complexity.
In this chapter, we will explore the emergent behavior for random

walks. Random walks are paths that take successive steps in random
directions. They arise often in statistical mechanics: as partial sums of
fluctuating quantities, as trajectories of particles undergoing repeated
collisions, and as the shapes for long, linked systems like polymers. They
introduce two kinds of emergent behavior. First, an individual random
walk, after a large number of steps, becomes fractal or scale invariant
(explained in Section 2.1). Secondly, the endpoint of the random walk
has a probability distribution that obeys a simple continuum law, the
diffusion equation (introduced in Section 2.2). Both of these behaviors
are largely independent of the microscopic details of the walk; they are
universal. Random walks in an external field provide our first exam-
ples of conserved currents, linear response, and Boltzmann distributions
(Section 2.3). Finally we use the diffusion equation to introduce Fourier
and Green’s function techniques (Section 2.4). Random walks neatly
illustrate many of the themes and methods of statistical mechanics.

2.1 Random walk examples: universality

and scale invariance

Statistical mechanics often demands sums or averages of a series of fluc-
tuating quantities: sN =

∑N
i=1 ℓi. The energy of a material is a sum

over the energies of the molecules composing the material; your grade
on a statistical mechanics exam is the sum of the scores on many indi-
vidual questions. Imagine adding up this sum one term at a time. The
path s1, s2, . . . forms an example of a one-dimensional random walk. We
illustrate random walks with three examples: coin flips, the drunkard’s
walk, and polymers.
Coin flips. For example, consider flipping a coin and recording the

difference sN between the number of heads and tails found. Each coin
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flip contributes ℓi = ±1 to the total. How big a sum sN =
∑N

i=1 ℓi =
(heads− tails) do you expect after N flips?
The average of sN is not a good measure for the sum, because it is zero

(positive and negative steps are equally likely). We could measure the
average2 absolute value 〈|sN |〉, but it turns out that a nicer characteristic2We use angle brackets 〈·〉 to denote av-

erages over ensembles. Here our ensem-
ble contains all 2N possible sequences
of N coin flips.

distance is the root-mean-square (RMS) of the sum,
√
〈s2N 〉. After one

coin flip, the mean square

〈s21〉 = 1 = 1/2(−1)2 + 1/2(1)
2; (2.1)

and after two and three coin flips

〈s22〉 = 2 = 1/4(−2)2 + 1/2(0)
2 + 1/4(2)

2,

〈s23〉 = 3 = 1/8(−3)2 + 3/8(−1)2 + 3/8(1)
2 + 1/8(3)

2 (2.2)

(for example, the probability of having two heads in three coin flips is
three out of eight, HHT, THT, and TTT). Can you guess what 〈s27〉 will
be, without computing it?
Does this pattern continue? We can try writing the RMS after N

steps in terms of the RMS after N − 1 steps, plus the last step. Because
the average of the sum is the sum of the average, we find

〈s2N 〉 = 〈(sN−1 + ℓN)2〉 = 〈s2N−1〉+ 2〈sN−1 ℓN 〉+ 〈ℓ2N 〉. (2.3)

Now, ℓN is ±1 with equal probability, independent of what happened
earlier (and thus independent of sN−1). Thus 〈sN−1 ℓN 〉 = 1/2sN−1(+1)+
1/2sN−1(−1) = 0. We also know that ℓ2N = 1, so

〈s2N 〉 = 〈s2N−1〉+✘✘✘✘✘✘
2〈sN−1 ℓN 〉+ 〈ℓ2N〉 = 〈s2N−1〉+ 1. (2.4)

If we assume 〈s2N−1〉 = N − 1 we have proved by induction on N that
〈s2N 〉 = N .33The mean of the absolute value 〈|sN |〉

is not nearly as simple to calculate.
This is why we generally measure fluc-
tuations by using the mean square, and
then taking the square root.

Hence the square root of the mean square (RMS) of (heads − tails)
is equal to the square root of the number of coin flips:

σs =
√
〈s2N 〉 =

√
N. (2.5)

Drunkard’s walk. Random walks also arise as trajectories that un-
dergo successive random collisions or turns; for example, the trajectory
of a perfume molecule in a sample of air4 (Exercise 2.4). Because the4Real perfume in a real room will pri-

marily be transported by convection; in
liquids and gases, diffusion dominates
usually only on short length scales.
Solids do not convect, so thermal or
electrical conductivity would be a more
accurate—but less vivid—illustration
of random walks.

air is dilute and the interactions are short ranged, the molecule will
basically travel in straight lines, with sharp changes in velocity during
infrequent collisions. After a few substantial collisions, the molecule’s
velocity will be uncorrelated with its original velocity. The path taken
by the molecule will be a jagged, random walk through three dimensions.
The random walk of a perfume molecule involves random directions,

random velocities, and random step sizes. It is more convenient to study
steps at regular time intervals, so we will instead consider the classic
problem of a drunkard’s walk (Fig. 2.1). The drunkard is presumed to
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start at a lamp-post at x = y = 0. He takes steps ℓN each of length L, at
regular time intervals. Because he is drunk, the steps are in completely
random directions, each uncorrelated with the previous steps. This lack
of correlation says that the average dot product between any two steps
ℓm and ℓn is zero, since all relative angles θ between the two directions
are equally likely: 〈ℓm · ℓn〉 = L2〈cos(θ)〉 = 0.5 This implies that the dot 5More generally, if two variables are

uncorrelated then the average of their
product is the product of their aver-
ages; in this case this would imply
〈ℓm · ℓn〉 = 〈ℓm〉 · 〈ℓn〉 = 0 · 0 = 0.

product of ℓN with sN−1 =
∑N−1

m=1 ℓm is zero. Again, we can use this to
work by induction:

〈s 2
N〉 = 〈(sN−1 + ℓN )2〉 = 〈s 2

N−1〉+ 〈2sN−1 · ℓN 〉+ 〈ℓ 2
N 〉

= 〈s 2
N−1〉+ L2 = · · · = NL2, (2.6)

so the RMS distance moved is
√
NL.

Fig. 2.1 Drunkard’s walk. The
drunkard takes a series of steps of
length L away from the lamp-post, but
each with a random angle.

Random walks introduce us to the concepts of scale invariance and
universality.
Scale invariance. What kind of path only goes

√
N total distance in

N steps? Random walks form paths which look jagged and scrambled.
Indeed, they are so jagged that if you blow up a small corner of one,
the blown-up version looks just as jagged (Fig. 2.2). Each of the blown-
up random walks is different, just as any two random walks of the same
length are different, but the ensemble of random walks of length N looks
much like that of length N/4, until N becomes small enough that the
individual steps can be distinguished. Random walks are scale invariant:
they look the same on all scales.6

6They are also fractal with dimension
two, in all spatial dimensions larger
than two. This just reflects the fact
that a random walk of ‘volume’ V = N
steps roughly fits into a radius R ∼
sN ∼ N1/2 (see Fig. 2.2). The frac-
tal dimension D of the set, defined by
RD = V , is thus two.

Universality. On scales where the individual steps are not distin-
guishable (and any correlations between steps is likewise too small to
see) we find that all random walks look the same. Figure 2.2 depicts
a drunkard’s walk, but any two-dimensional random walk would give
the same behavior (statistically). Coin tosses of two coins (penny sums
along x, dime sums along y) would produce, statistically, the same ran-
dom walk ensemble on lengths large compared to the step sizes. In three
dimensions, photons7 in the Sun (Exercise 2.2) or in a glass of milk un-

7In case you have not heard, a photon
is a quantum of light or other electro-
magnetic radiation.

dergo a random walk with fixed speed c between collisions. Nonetheless,
after a few steps their random walks are statistically indistinguishable
from that of our variable-speed perfume molecule. This independence
of the behavior on the microscopic details is called universality.
Random walks are simple enough that we could show directly that

each individual case behaves like the others. In Section 2.2 we will
generalize our argument that the RMS distance scales as

√
N to simul-

taneously cover both coin flips and drunkards; with more work we could
include variable times between collisions and local correlations to cover
the cases of photons and molecules in a gas. We could also calculate
properties about the jaggedness of paths in these systems, and show
that they too agree with one another after many steps. Instead, we will
wait for Chapter 12 (and specifically Exercise 12.11), where we will give
a deep but intuitive explanation of why each of these problems is scale
invariant, and why all of these problems share the same behavior on long
length scales. Universality and scale invariance will be explained there
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Fig. 2.2 Random walk: scale in-

variance. Random walks form a
jagged, fractal pattern which looks the
same when rescaled. Here each suc-
ceeding walk is the first quarter of
the previous walk, magnified by a fac-
tor of two; the shortest random walk
is of length 31, the longest of length
32 000 steps. The left side of Fig. 1.1
is the further evolution of this walk to
128 000 steps.
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using renormalization-groupmethods, originally developed to study con-
tinuous phase transitions.

1985 1990 1995 2000 2005
Year

1

1.5

2

S&
P 

50
0 

in
de

x 
/ a

vg
. r

et
ur

n

S & P
Random

Fig. 2.3 S&P 500, normalized.
Standard and Poor’s 500 stock index
daily closing price since its inception,
corrected for inflation, divided by the
average 6.4% return over this time pe-
riod. Stock prices are often modeled as
a biased random walk (Exercise 2.11).
Notice that the fluctuations (risk) in in-
dividual stock prices will typically be
much higher. By averaging over 500
stocks, the random fluctuations in this
index are reduced, while the average re-
turn remains the same; see [85,86]. For
comparison, a one-dimensional multi-
plicative random walk is also shown.

Polymers. Finally, random walks arise as the shapes for polymers.
Polymers are long molecules (like DNA, RNA, proteins, and many plas-
tics) made up of many small units (called monomers) attached to one
another in a long chain. Temperature can introduce fluctuations in the
angle between two adjacent monomers; if these fluctuations dominate
over the energy,8 the polymer shape can form a random walk. Here each

8Polymers do not always form random
walks. Polymeric plastics at low tem-
perature can form crystals; functional
proteins and RNA often pack tightly
into well-defined shapes. Molten plas-
tics and denatured proteins, though,
do form self-avoiding random walks.
Double-stranded DNA is rather stiff;
the step size for the random walk of
DNA in solution is many nucleic acids
long (Exercise 2.10).

step does not increase the time, but rather the number of the monomer
along the chain.
The random walks formed by isolated polymers are not the same as

those in our first two examples; they are in a different universality class.
This is because the polymer cannot intersect itself; a walk that would
cause two monomers to overlap is not allowed. Polymers undergo self-
avoiding random walks. In two and three dimensions, it turns out that
the effects of these self-intersections is not a small, microscopic detail,
but changes the properties of the random walk in an essential way.9 One

9Self-avoidance is said to be a rel-

evant perturbation that changes the
universality class. In (unphysical)
spatial dimensions higher than four,
self-avoidance is irrelevant; hypotheti-
cal hyper-polymers in five dimensions
would look like regular random walks
on long length scales.

can show that these forbidden intersections would often arise on far-
separated regions of the polymer, and that they change the dependence
of squared radius 〈s2N 〉 on the number of segments N (Exercise 2.10).
In particular, the power law

√
〈s2N 〉 ∼ Nν changes from the ordinary

random walk value ν = 1/2 to a higher value (ν = 3/4 in two dimensions
and ν ≈ 0.59 in three dimensions [90]). Power laws are central to the
study of scale-invariant systems; ν is our first example of a universal
critical exponent (Chapter 12).

2.2 The diffusion equation

In the continuum limit of long length and time scales, simple behav-
ior emerges from the ensemble of irregular, jagged random walks; their
evolution is described by the diffusion equation:10

10In the remainder of this chapter we
specialize for simplicity to one dimen-
sion. We also change variables from the
sum s to position x.

∂ρ

∂t
= D∇2ρ = D

∂2ρ

∂x2
. (2.7)

The diffusion equation can describe the evolving density ρ(x, t) of a local
cloud of perfume as the molecules random walk through collisions with
the air molecules. Alternatively, it can describe the probability density of
an individual particle as it random walks through space; if the particles
are non-interacting, the probability distribution of one particle describes
the density of all particles.
In this section, we derive the diffusion equation by taking a continuum

limit of the ensemble of random walks. Consider a general, uncorrelated
random walk where at each time step ∆t the particle’s position x changes
by a step ℓ:

x(t+∆t) = x(t) + ℓ(t). (2.8)

Let the probability distribution for each step be χ(ℓ).11 We will as-

11In our two examples the distribution
χ(ℓ) is discrete; we can write it using
the Dirac δ-function (note 4 on p. 6).
For coin flips, χ(ℓ) = 1/2δ(ℓ + 1) +
1/2δ(ℓ − 1); for the drunkard, χ(ℓ) =
δ(|ℓ| −L)/(2πL), evenly spaced around
the circle.sume that χ has mean zero and standard deviation a, so the first few
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moments12 of χ are12The nth moment of a function ρ(x)
is defined to be 〈xn〉 =

∫
xnρ(x) dx. ∫

χ(z) dz = 1,
∫
zχ(z) dz = 0, (2.9)

∫
z2χ(z) dz = a2.

What is the probability distribution ρ(x, t+∆t) at the next time step,
given the probability distribution ρ(x′, t)?

a
x

ρ

Fig. 2.4 Continuum limit for ran-

dom walks. We suppose the typical
step sizes a are small compared to the
broad ranges on which ρ(x) varies, so
we may do a Taylor expansion in gra-
dients of ρ.

For the particle to go from x′ at time t to x at time t +∆t, the step
ℓ(t) must be x− x′. This happens with probability χ(x− x′) times the
probability density ρ(x′, t) that it started at x′. Integrating over original
positions x′, we have

ρ(x, t+∆t) =

∫ ∞

−∞
ρ(x′, t)χ(x − x′) dx′

=

∫ ∞

−∞
ρ(x − z, t)χ(z) dz, (2.10)

where we change variables to z = x− x′.1313Notice that although dz = −dx′, the

limits of integration
∫∞
−∞ →

∫−∞
∞ =

−
∫∞
−∞, canceling the minus sign. This

happens often in calculations; watch
out for it.

Now, suppose ρ is broad; the step size is very small compared to the
scales on which ρ varies (Fig. 2.4). We may then do a Taylor expansion
of eqn 2.10 in z:

ρ(x, t+∆t) ≈
∫ [

ρ(x, t)− z
∂ρ

∂x
+
z2

2

∂2ρ

∂x2

]
χ(z) dz

= ρ(x, t)
✟

✟
✟
✟
✟✯

1∫
χ(z) dz − ∂ρ

∂x✟✟
✟
✟
✟✟✯

0∫
zχ(z) dz +

1

2

∂2ρ

∂x2

∫
z2χ(z) dz

= ρ(x, t) +
1

2

∂2ρ

∂x2
a2, (2.11)

using the moments of χ in eqn 2.9. Now, if we also assume that ρ
is slow, so that it changes only slightly during this time step, we can
approximate ρ(x, t+∆t)− ρ(x, t) ≈ (∂ρ/∂t)∆t, and we find

∂ρ

∂t
=

a2

2∆t

∂2ρ

∂x2
. (2.12)

This is the diffusion equation14 (eqn 2.7), with

14D must be greater than zero. Ran-
dom walks and diffusion tend to even
out the hills and valleys in the den-
sity. Hills have negative second deriva-
tives (∂2ρ/∂x2 < 0) and should flatten
(∂ρ/∂t < 0), valleys have positive sec-
ond derivatives and fill up. D = a2/2∆t. (2.13)

The diffusion equation applies to all random walks, so long as the prob-
ability distribution is broad and slowly varying compared to the size and
time of the individual steps.

2.3 Currents and external forces

As the particles in our random walks move around, they are never cre-
ated or destroyed; they are locally conserved.15 If ρ(x) is the density of

15Something is locally conserved if its
integral (zeroth moment) is indepen-
dent of time, and if the substance
only moves continuously from one place
to another (no ‘teleportation’ allowed).
For example, the probability density
ρ(x) of a single particle undergoing a
random walk is also conserved; like par-
ticle density, probability cannot be cre-
ated or destroyed, it can only ‘slosh
around’.
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a conserved quantity, we may write its evolution law (see Fig. 2.5) in
terms of the current J(x) passing a given point x:

∂ρ

∂t
= −∂J

∂x
. (2.14)

Here the current J is the rate at which ‘stuff’ flows to the right through

J x +   xρ(  ) ∆x x ∆J x (  )  (  )

Fig. 2.5 Conserved current. Let
ρ(x, t) be the density of some conserved
quantity (number of molecules, mass,
energy, probability, etc.) varying in
one spatial dimension x, and J(x) be
the net rate at which the quantity is
passing to the right through a point x.
The amount of ‘stuff’ in a small region
(x, x+∆x) is n = ρ(x)∆x. The flow of
particles into this region from the left
is J(x) and the flow out is J(x + ∆x),
so

∂n

∂t
= J(x)− J(x+∆x) ≈ ∂ρ

∂t
∆x,

and we derive the conserved current re-
lation:

∂ρ

∂t
= −J(x+∆x)− J(x)

∆x
= −∂J

∂x
.

the point x; since the ‘stuff’ is conserved, the only way the density can
change is by flowing from one place to another. The diffusion eqn 2.7
results from current conservation (eqn 2.14) and a current16 that is pro-

16The diffusion equation implies a cur-
rent J = −D∂ρ/∂x+C, but a constant
background current C independent of ρ
is not physical for random walks.

portional to the local gradient in the density:

Jdiffusion = −D∂ρ

∂x
, (2.15)

as we would expect in general from linear response.17 Particles diffuse

17See note 43 on page 122.

(random walk) on average from regions of high density toward regions
of low density.
In many applications one has an average drift term along with a ran-

dom walk. In some cases (like the total grade in a multiple-choice test,
Exercise 2.1) there is naturally a non-zero mean for each step in the
random walk. In other cases, there is an external force F that is biasing
the steps to one side; the mean net drift is F ∆t times a mobility γ:

x(t+∆t) = x(t) + Fγ∆t+ ℓ(t). (2.16)

We can derive formulæ for this mobility given a microscopic model. On
the one hand, if our air is dense and the diffusing molecule is large, we
might treat the air as a viscous fluid of dynamical viscosity η; if we also
simply model the molecule as a sphere of radius r, a fluid mechanics
calculation tells us that the mobility is γ = 1/(6πηr). On the other
hand, if our air is dilute and the diffusing molecule is small, we can model
the trajectory as free acceleration between collisions separated by equal
times ∆t, and we can assume that the collisions completely scramble
the sign of the initial velocity v0.

18 In this case, the net motion due to 18More realistic models have a distri-
bution of velocities and step sizes.the external force is half the acceleration F/m times the time squared:

1/2(F/m)(∆t)2 = F ∆t(∆t/2m) so γ = (∆t/2m) Using eqn 2.13, we find

γ =
∆t

2m

(
D
2∆t

a2

)
=

D

m(a/∆t)2
=

D

mv20
, (2.17)

where a = v0∆t is the size of the unbiased random-walk step.
Starting from eqn 2.16, we can repeat our analysis of the continuum

limit (eqns 2.10–2.12) to derive the diffusion equation in an external
force:19

19Warning: If the force is not constant
in space, the evolution also depends on
the gradient of the force:

∂ρ

∂t
= −∂J

∂x
= −γ ∂F (x)ρ(x)

∂x
+D

∂2ρ

∂x2

= −γρ∂F
∂x

− γF
∂ρ

∂x
+D

∂2ρ

∂x2
.

Similar problems can arise if the diffu-
sion constant depends on space or den-
sity. When working with a conserved

property, write your equations first in

terms of the current, to guarantee that

it is conserved: J = −D(ρ,x)∇ρ +
γ(x)F (x)ρ(x). The author has ob-
served himself and several graduate stu-
dents wasting up to a week at a time
when this rule is forgotten.

∂ρ

∂t
= −γF ∂ρ

∂x
+D

∂2ρ

∂x2
, (2.18)

which follows from the current

J = γFρ−D
∂ρ

∂x
. (2.19)
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The sign of the new term can be explained intuitively: if ρ is increasing
in space (positive slope ∂ρ/∂x) and the force is dragging the particles
forward (F > 0), then ρ will decrease with time because the high-density
regions ahead of x are receding and the low-density regions behind x are
moving in.
The diffusion equation describes how systems of random-walking par-

ticles approach equilibrium (see Chapter 3). The diffusion equation in
the absence of an external force describes the evolution of perfume den-
sity in a room. A time-independent equilibrium state ρ∗ obeying the
diffusion eqn 2.7 must have ∂2ρ∗/∂x2 = 0, so ρ∗(x) = ρ0 + Bx. If the
perfume cannot penetrate the walls, ∂ρ∗/∂x ∝ J = 0 at the boundaries,
so B = 0. Thus, as one might expect, the perfume evolves to a rather
featureless equilibrium state ρ∗(x) = ρ0, evenly distributed throughout
the room.
In the presence of a constant external force (like gravitation) the equi-

librium state is more interesting. Let x be the height above the ground,
and F = −mg be the force due to gravity. By eqn 2.18, the equilibrium
state ρ∗ satisfies

0 =
∂ρ∗

∂t
= γmg

∂ρ∗

∂x
+D

∂2ρ∗

∂x2
, (2.20)

which has general solution ρ∗(x) = A exp[−(γ/D)mgx]+B. We assume
that the density of perfume B in outer space is zero,20 so the density of

20Non-zero B would correspond to a
constant-density rain of perfume.

perfume decreases exponentially with height:

ρ∗(x) = A exp
(
− γ

D
mgx

)
. (2.21)

The perfume molecules are pulled downward by the gravitational force,
and remain aloft only because of the random walk. If we generalize
from perfume to oxygen molecules (and ignore temperature gradients
and weather) this gives the basic explanation for why it becomes harder
to breathe as one climbs mountains.21

21In Chapter 6 we shall derive the
Boltzmann distribution, implying that
the probability of having energymgh =
E in an equilibrium system is propor-
tional to exp(−E/kBT ), where T is
the temperature and kB is Boltzmann’s
constant. This has just the same form
as our solution (eqn 2.21), if

D/γ = kBT. (2.22)

This is called the Einstein relation.
The constants D and γ in the (non-
equilibrium) diffusion equation are re-
lated to one another, because the den-
sity must evolve toward the equilib-
rium distribution dictated by statisti-
cal mechanics. Our rough derivation
(eqn 2.17) also suggested that D/γ =
mv2, which with eqn 2.22 suggests that
kBT must equal twice the mean kinetic
energy along x; this is also true, and is
called the equipartition theorem (Sec-
tion 3.2.2).

2.4 Solving the diffusion equation

We take a brief mathematical interlude, to review two important meth-
ods for solving the diffusion equation: Fourier transforms and Green’s
functions. Both rely upon the fact that the diffusion equation is linear;
if a family of solutions ρn(x, t) are known, then any linear combination
of these solutions

∑
n anρn(x, t) is also a solution. If we can then expand

the initial density ρ(x, 0) =
∑

n anρn(x, 0), we have formally found the
solution.
Fourier methods are wonderfully effective computationally, because

of fast Fourier transform (FFT) algorithms for shifting from the real-
space density to the solution space. Green’s function methods are more
important for analytical calculations and as a source of approximate
solutions.22

22One should note that much of quan-
tum field theory and many-body quan-
tum mechanics is framed in terms of
things also called Green’s functions.
These are distant, fancier cousins of the
simple methods used in linear differen-
tial equations (see Exercise 10.9).



 Copyright Oxford University Press 2006  v1.0                       --  

2.4 Solving the diffusion equation 23

2.4.1 Fourier

The Fourier transform method decomposes ρ into a family of plane wave
solutions ρ̃k(t)e

ikx.
The diffusion equation is homogeneous in space; our system is transla-

tionally invariant. That is, if we have a solution ρ(x, t), another equally
valid solution is given by ρ(x − ∆, t), which describes the evolution of
an initial condition translated by ∆ in the positive x direction.23 Un- 23Make sure you know that g(x) =

f(x−∆) shifts the function in the pos-
itive direction; for example, the new
function g(∆) is at ∆ what the old one
was at the origin, g(∆) = f(0).

der very general circumstances, a linear differential equation describing
a translation-invariant system will have solutions given by plane waves
ρ(x, t) = ρ̃k(t)e

ikx.
We argue this important truth in detail in the Appendix (Section A.4).

Here we just try it. Plugging a plane wave24 into the diffusion eqn 2.7, 24Many readers will recognize this
method of calculation from wave equa-
tions or Schrödinger’s equation. In-
deed, Schrödinger’s equation in free
space is the diffusion equation with an
imaginary diffusion constant.

we find

∂ρ

∂t
=

dρ̃k
dt

eikx = D
∂2ρ

∂x2
= −Dk2ρ̃keikx, (2.23)

dρ̃k
dt

= −Dk2ρ̃k, (2.24)

ρ̃k(t) = ρ̃k(0)e
−Dk2t. (2.25)

Now, these plane wave solutions by themselves are unphysical; we must
combine them to get a sensible density. First, they are complex; we
must add plane waves at k and −k to form cosine waves, or subtract
them and divide by 2i to get sine waves. Cosines and sines are also not
by themselves densities (because they go negative), but they in turn can
be added to one another (for example, added to a k = 0 constant back-
ground ρ0) to make for sensible densities. Indeed, we can superimpose
all different wavevectors to get the general solution

ρ(x, t) =
1

2π

∫ ∞

−∞
ρ̃k(0)e

ikxe−Dk2t dk. (2.26)

Here the coefficients ρk(0) we use are just the Fourier transform of the
initial density profile (eqn A.9):

ρ̃k(0) =

∫ ∞

−∞
ρ(x, 0)e−ikx dx, (2.27)

and we recognize eqn 2.26 as the inverse Fourier transform (eqn A.10) of
the solution time evolved in Fourier space (eqn 2.25). Thus, by writing
ρ as a superposition of plane waves, we find a simple law: the short-
wavelength parts of ρ are ‘squelched’ as time t evolves, with wavevector
k being suppressed by a factor e−Dk2t.

2.4.2 Green

The Green’s function method decomposes ρ into a family of solutions
G(x − y, t) where G describes the evolution of an initial state concen-
trated at one point, here representing the diffusing particles all starting
at a particular point y.
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Let us first consider the case where all particles start at the origin.
Suppose we have one unit of perfume, released at the origin at time
t = 0. What is the initial condition ρ(x, t = 0)? It is zero except at
x = 0, but the integral

∫
ρ(x, 0) dx = 1, so ρ(0, 0) must be really, really

infinite. This is the Dirac delta-function δ(x) (see note 4 on page 6)
which mathematically (when integrated) is a linear operator on functions
returning the value of the function at zero:

∫
f(y)δ(y) dy = f(0). (2.28)

Fig. 2.6 Many random walks.
10 000 endpoints of random walks, each
1000 steps long. Notice that after
1000 steps, the distribution of end-
points looks quite Gaussian. Indeed af-
ter about five steps the distribution is
extraordinarily close to Gaussian, ex-
cept far in the tails.

Let us define the Green’s function G(x, t) to be the time evolution of
the density G(x, 0) = δ(x) with all the perfume at the origin. Naturally,
G(x, t) obeys the diffusion equation ∂G/∂t = D∂2G/∂x2. We can use
the Fourier transformmethods of the previous section to solve forG(x, t).
The Fourier transform at t = 0 is

G̃k(0) =

∫
G(x, 0)e−ikx dx =

∫
δ(x)e−ikx dx = 1 (2.29)

(independent of k). Hence the time-evolved Fourier transform is G̃k(t) =
e−Dk2t, and the time evolution in real space is

G(x, t) =
1

2π

∫
eikxG̃k(0)e

−Dk2t dk =
1

2π

∫
eikxe−Dk2t dk. (2.30)

This last integral is the inverse Fourier transform of a Gaussian,25 which

25Physicists call exp(−x2) a Gaussian.
In statistics, the corresponding proba-
bility distribution (1/

√
2π) exp(−x2/2)

is called a normal distribution. It is
useful to remember that the Fourier
transform of a normalized Gaus-
sian (1/

√
2πσ) exp(−x2/2σ2) is an-

other Gaussian, exp(−σ2k2/2) of stan-
dard deviation 1/σ and with no prefac-
tor (eqn 2.32).

can be performed26 giving another Gaussian

26Take the exponent ikx − Dk2t in
eqn 2.30 and complete the square to
−Dt(k − ix/(2Dt))2 − x2/(4Dt), and
then change variables to κ = k −
ix/(2Dt):

G(x, t) =
1

2π
e−

x2

4Dt (2.31)

∫ ∞−ix/(2Dt)

−∞−ix/(2Dt)
e−Dtκ2

dκ.

If we could shift the limits of integra-
tion downward to the real axis, the in-
tegral would give

√
π/Dt, yielding a

derivation of eqn 2.32. This last step
(shifting the limits of integration), is
not obvious; we must rely on Cauchy’s
theorem, which allows one to deform
the integration contour in the complex
plane (Fig. 10.11 in Section 10.9). This
is done backward (real to Fourier space)
in note 23, Exercise A.4.

G(x, t) =
1√
4πDt

e−x2/4Dt. (2.32)

This is the Green’s function for the diffusion equation. The Green’s
function directly tells us the distribution of the endpoints of random
walks centered at the origin (Fig. 2.6).

• The Green’s function gives us the whole probability distribution of
distances. For an N -step random walk of step size a, we saw in Sec-
tion 2.1 that

√
〈x2〉 =

√
Na; does this also follow from our Green’s

function? At time t, the Green’s function (eqn 2.32) is a Gaus-
sian with standard deviation σ(t) =

√
2Dt; substituting in our dif-

fusion constant D = a2/2∆t (eqn 2.13), we find an RMS distance of
σ(t) = a

√
t/∆t = a

√
N , where N = t/∆t is the number of steps taken

in the random walk; our two methods do agree.

• Finally, since the diffusion equation has translational symmetry, we
can solve for the evolution of random walks centered at any point
y; the time evolution of an initial condition δ(x − y) is G(x − y, t).
Since we can write any initial condition ρ(x, 0) as a superposition of
δ-functions:

ρ(x, 0) =

∫
ρ(y, 0)δ(x− y) dy =

∫
ρ(y, 0)G(x− y, 0) dy, (2.33)
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we can write a general solution ρ(x, t) to the diffusion equation:

ρ(x, t) =

∫
ρ(y, 0)G(x− y, t) dy

=

∫
ρ(y, 0) exp(−(x− y)2/4Dt)/

√
4πDt dy. (2.34)

This equation states that the current value of the density is given by
the original values of the density in the neighborhood, smeared side-
ways (convolved) with the function G. Thus by writing ρ as a super-
position of point sources, we find that the diffusion equation smears
out all the sharp features in the initial condition. The distribution
after time t is the initial distribution averaged over a range given by
the typical random walk distance

√
2Dt.

Equation 2.32 is the central limit theorem: the sum of many indepen-
dent random variables has a probability distribution that converges to
a Gaussian.27

27 This is presumably why statisticians
call the Gaussian a normal distribu-
tion, since under normal circumstances
a sum or average of many measure-
ments will have fluctuations described
by a Gaussian.

Exercises

Random walks in grade space, Photon diffusion in the
Sun, and Molecular motors describe random walks in di-
verse contexts. Perfume walk explores the atomic trajec-
tories in molecular dynamics. Generating random walks
numerically explores emergent symmetries and the cen-
tral limit theorem for random walks. Fourier and Green
and Periodic diffusion illustrate the qualitative behavior
of the Fourier and Green’s function approaches to solv-
ing the diffusion equation. Thermal diffusion and Frying
pan derive the diffusion equation for thermal conductivity,
and apply it to a practical problem in culinary physics.
Polymers and random walks explores self-avoiding ran-
dom walks; in two dimensions, we find that the constraint
that the walk must avoid itself gives new critical expo-
nents and a new universality class (see also Chapter 12).

Stocks, volatility, and diversification quantifies the fluc-
tuations in the stock-market, and explains why diversifi-
cation lowers your risk without changing your mean asset
growth. Computational finance: pricing derivatives fo-
cuses on a single step of a random walk in stock prices,
to estimate the value of stock option. Finally, Building
a percolation network introduces another ensemble (per-
colating networks) that, like random walks, exhibits self-
similarity and power-law scaling; we will study the (much
more subtle) continuum limit for percolation in Chap-
ter 12 and Exercise 12.12.

Random walks arise in many contexts; post-publication

exercises on two subjects are planned for the book web
site [126]. (i) Bacteria search for food (chemotaxis) us-
ing a biased random walk, randomly switching from a
swimming state (random walk step) to a tumbling state
(scrambling the velocity), see [16]. (ii) Random walks
with infrequent, very long steps can form a different uni-
versality class, called Levy flights, which are not described
by the diffusion equation and do not obey the central limit
theorem.

(2.1) Random walks in grade space. ©2
Let us make a model of the grade distribution
in an exam. Let us imagine a multiple-choice
test of ten problems of ten points each. Each
problem is identically difficult, and the mean is
70. How much of the point spread on the exam
is just luck, and how much reflects the differ-
ences in skill and knowledge of the people tak-
ing the exam? To test this, let us imagine that
all students are identical, and that each question
is answered at random with a probability 0.7 of
getting it right.
(a) What is the expected mean and standard devi-
ation for the exam? (Work it out for one ques-
tion, and then use our theorems for a random
walk with ten steps.)
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A typical exam with a mean of 70 might have a
standard deviation of about 15.
(b) What physical interpretation do you make of
the ratio of the random standard deviation and
the observed one?

(2.2) Photon diffusion in the Sun. (Astro-
physics) ©2
Most of the fusion energy generated by the Sun is
produced near its center. The Sun is 7× 105 km
in radius. Convection probably dominates heat
transport in approximately the outer third of
the Sun, but it is believed that energy is trans-
ported through the inner portions (say to a ra-
dius R = 5 × 108 m) through a random walk of
X-ray photons. (A photon is a quantized package
of energy; you may view it as a particle which
always moves at the speed of light c. Ignore for
this exercise the index of refraction of the Sun.)
Assume that the mean free path ℓ for the photon
is ℓ = 5× 10−5 m.
About how many random steps N will the pho-
ton take of length ℓ to get to the radius R where
convection becomes important? About how many
years ∆t will it take for the photon to get there?
(You may assume for this exercise that the pho-
ton takes steps in random directions, each of
equal length given by the mean free path.) Re-
lated formulæ: c = 3 × 108 m/s; 〈x2〉 ∼ 2Dt;
〈s2n〉 = nσ2 = n〈s21〉.
There are 31 556 925.9747 ∼ π × 107 ∼ 3× 107 s
in a year.

(2.3) Molecular motors and random walks.28

(Biology) ©2

Vfext Motor

ATP ADP, P

Fig. 2.7 Motor protein. As it carries some cargo
along the way (or builds an RNA or protein, . . . ) it
moves against an external force fext and consumes
ATP molecules, which are hydrolyzed to ADP and
phosphate (P).

Inside your cells, there are several different
molecular motors, which move and pull and copy
(Fig. 2.7). There are molecular motors which
contract your muscles, there are motors which
copy (transcribe) your DNA into RNA and copy
(translate) your RNA into protein, there are
motors which transport biomolecules around in
the cell. All of these motors share some com-
mon features: (1) they move along some linear
track (microtubule, DNA, . . . ), hopping forward
in discrete jumps between low-energy positions;
(2) they consume energy (burning ATP or NTP)
as they move, generating an effective force push-
ing them forward; and (3) their mechanical prop-
erties can be studied by seeing how their motion
changes as the external force on them is changed.

Distance x
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Fig. 2.8 Effective potential for moving along

DNA. The energy (or rather the Gibbs free energy)
for the molecular motor as a function of distance
along the DNA. The motor is in a low-energy state
just after it transcribes one nucleotide into RNA.
The energy barrier V needs to be crossed in order
to transcribe the next nucleotide. The energy asym-
metry δ is a sum of contributions from the bonding
of the RNA nucleotide, the burning of ATP, and the
detachment of the apparatus at the completed end.
The experiment changes this asymmetry by adding
an external force tilting the potential to the left, re-
tarding the transcription.

For transcription of DNA into RNA, the motor
moves on average one base pair (A, T, G, or C)
per step; ∆x is about 0.34 nm. The motor must
cross an asymmetric energy barrier as it attaches
another nucleotide to the RNA (Fig. 2.8). Wang
and co-authors (Fig. 2.9) showed that the motor
stalls at an external force of about 27 pN (pico-
Newton).
(a) At that force, what is the energy difference be-
tween neighboring wells due to the external force

28This exercise was developed with the assistance of Michelle Wang.
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from the bead? Let us assume that this stall
force is what is needed to balance the natural
force downhill that the motor develops to pro-
pel the transcription process. What does this im-
ply about the ratio of the forward rate to the
backward rate, in the absence of the external
force from the laser tweezers, at a temperature
of 300K? (kB = 1.381 × 10−23 J/K.) (Hints: If
the population was in thermal equilibrium the
net flux would be equal going forward and back-
ward, the net flux out of a well is the population
in that well times the rate, and a given motor
does not know whether it is part of an equilib-
rium ensemble.)

fext

DNA

Focused

Bead
RNA

laser

Fig. 2.9 Laser tweezer experiment. The laser
beam is focused at a point (the laser trap); the
polystyrene bead is pulled (from dielectric effects)
into the intense part of the light beam. The track

is a DNA molecule attached to the bead, the mo-
tor is an RNA polymerase molecule, and the force
is applied by a glass cover slip to which the motor
is attached. As the motor copies DNA onto RNA,
it pulls the DNA track toward itself, dragging the
bead out of the trap, generating a force resisting the
motion.

The natural force downhill is coming from the
chemical reactions which accompany the motor
moving one base pair; the motor burns up an
NTP molecule into a PPi molecule, and attaches
a nucleotide onto the RNA. The net energy from
this reaction depends on details, but varies be-
tween about 2 and 5 times 10−20 J. This is actu-

ally a Gibbs free energy difference, but for this
exercise treat it as just an energy difference.
(b) The motor is not perfectly efficient; not all
the chemical energy is available as motor force.
From your answer to part (a), give the efficiency
of the motor as the ratio of force-times-distance
produced to energy consumed, for the range of
consumed energies given.
Many of the models for these motors are based
on Feynman’s Ratchet and pawl discussion [41,
I.46], where he (presciently) speculates about
how gears and ratchets would work on a molec-
ular level.

(2.4) Perfume walk.29 (Computation) ©2
The trajectory of a perfume molecule in still air,
or more generally any molecule in a dilute gas,
is a chaotic path of nearly straight segments fol-
lowed by collisions—a random walk. You may
download our molecular dynamics software [10]
from the text web site [129].
Run a simulation of an interacting dilute gas,
setting the average velocity of the atoms to
zero.30 Watch the motion of a single ‘perfume’
atom. Notice that as it passes the edge of the
container, it reappears at the opposite face; this
simulation uses periodic boundary conditions31

Your software should have options to plot and
analyze the trajectory ru = (xu, yu, zu) of a
given atom ‘unfolded’ into a continuous path
which ignores the periodic boundary conditions.
(a) Does the trajectory of the perfume atom ap-
pear qualitatively like a random walk? Plot xu(t)
versus t, and xu(t) versus yu(t). The time it
takes the atom to completely change direction
(lose memory of its original velocity) is the col-
lision time, and the distance it takes is the colli-
sion length. Crudely estimate these.
(b) Plot r2u(t) versus t, for several individual par-
ticles (making sure the average velocity is zero).
Do they individually grow with time in a regu-
lar fashion? Plot 〈r2u〉 versus t, averaged over all
particles in your simulation. Does it grow lin-
early with time? Estimate the diffusion constant
D.

29This exercise and the associated software were developed in collaboration with Christopher Myers.
30The atoms interact via a Lennard–Jones pair potential, which is a good approximation for the forces between noble gas
molecules like argon.
31Periodic boundary conditions are an artificial method which allows a small simulation to mimic infinite space, by mathemat-
ically identifying the opposite faces of a square region; (x, y, z) ≡ (x± L, y, z) ≡ (x, y ± L, z) ≡ (x, y, z ± L).
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(2.5) Generating random walks.32 (Computa-
tion) ©3
One can efficiently generate and analyze random
walks on the computer.
(a) Write a routine to generate an N-step ran-
dom walk in d dimensions, with each step uni-
formly distributed in the range (−1/2, 1/2) in
each dimension. (Generate the steps first as an
N × d array, then do a cumulative sum.) Plot
xt versus t for a few 10 000-step random walks.
Plot x versus y for a few two-dimensional ran-
dom walks, with N = 10, 1000, and 100 000.
(Try to keep the aspect ratio of the XY plot equal
to one.) Does multiplying the number of steps by
one hundred roughly increase the net distance by
ten?

Fig. 2.10 Emergent rotational symmetry. End-
points of many random walks, with one step (central
square of bright dots) and ten steps (surrounding
pattern). Even though the individual steps in a ran-
dom walk break rotational symmetry (the steps are
longer along the diagonals), multi-step random walks
are spherically symmetric. The rotational symmetry
emerges as the number of steps grows.

Each random walk is different and unpredictable,
but the ensemble of random walks has elegant,
predictable properties.
(b) Write a routine to calculate the endpoints
of W random walks with N steps each in d di-
mensions. Do a scatter plot of the endpoints of
10 000 random walks with N = 1 and 10, su-
perimposed on the same plot. Notice that the

longer random walks are distributed in a circu-
larly symmetric pattern, even though the single
step random walk N = 1 has a square probability
distribution (Fig. 2.10).
This is an emergent symmetry; even though the
walker steps longer distances along the diagonals
of a square, a random walk several steps long has
nearly perfect rotational symmetry.33

The most useful property of random walks is the
central limit theorem. The endpoints of an en-
semble of N step one-dimensional random walks
with root-mean-square (RMS) step-size a has a
Gaussian or normal probability distribution as
N →∞,

ρ(x) =
1√
2πσ

exp(−x2/2σ2), (2.35)

with σ =
√
Na.

(c) Calculate the RMS step-size a for one-
dimensional steps uniformly distributed in
(−1/2, 1/2). Write a routine that plots a his-
togram of the endpoints of W one-dimensional
random walks with N steps and 50 bins, along
with the prediction of eqn 2.35 for x in (−3σ, 3σ).
Do a histogram with W = 10 000 and N = 1, 2,
3, and 5. How quickly does the Gaussian distri-
bution become a good approximation to the ran-
dom walk?

(2.6) Fourier and Green. ©2
An initial density profile ρ(x, t = 0) is per-
turbed slightly away from a uniform density ρ0,
as shown in Fig. 2.11. The density obeys the
diffusion equation ∂ρ/∂t = D∂2ρ/∂x2, where
D = 0.001m2/s. The lump centered at x = 5
is a Gaussian exp(−x2/2)/

√
2π, and the wiggle

centered at x = 15 is a smooth envelope function
multiplying cos(10x).
(a) Fourier. As a first step in guessing how the
pictured density will evolve, let us consider just a
cosine wave. If the initial wave were ρcos(x, 0) =
cos(10x), what would it be at t = 10 s? Related
formulæ: ρ̃(k, t) = ρ̃(k, t′)G̃(k, t − t′); G̃(k, t) =
exp(−Dk2t).
(b) Green. As a second step, let us check how
long it would take to spread out as far as the
Gaussian on the left. If the wave at some earlier
time −t0 were a δ-function at x = 0, ρ(x,−t0) =
δ(x), what choice of the time elapsed t0 would

32This exercise and the associated software were developed in collaboration with Christopher Myers.
33The square asymmetry is an irrelevant perturbation on long length and time scales (Chapter 12). Had we kept terms up to
fourth order in gradients in the diffusion equation ∂ρ/∂t = D∇2ρ + E∇2

(
∇2ρ

)
+ F

(
∂4ρ/∂x4 + ∂4ρ/∂y4

)
, then F is square

symmetric but not isotropic. It will have a typical size ∆t/a4, so is tiny on scales large compared to a.



 Copyright Oxford University Press 2006  v1.0                       --  

Exercises 29

yield a Gaussian ρ(x, 0) = exp(−x2/2)/
√
2π for

the given diffusion constant D = 0.001m2/s?
Related formulæ: ρ(x, t) =

∫
ρ(y, t′)G(y − x, t−

t′) dy; G(x, t) = (1/
√
4πDt) exp(−x2/(4Dt)).
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Fig. 2.11 Initial profile of density deviation from
average.

(c) Pictures. Now consider time evolution for
the next ten seconds. The initial density pro-
file ρ(x, t = 0) is as shown in Fig. 2.11. Which
of the choices (A)–(E) represents the density at
t = 10 s? (Hint: Compare t = 10 s to the time
t0 from part (b).) Related formulæ: 〈x2〉 ∼ 2Dt.
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(2.7) Periodic diffusion. ©2
Consider a one-dimensional diffusion equation
∂ρ/∂t = D∂2ρ/∂x2, with initial condition pe-
riodic in space with period L, consisting of
a δ-function at every xn = nL: ρ(x, 0) =∑∞

n=−∞ δ(x− nL).
(a) Using the Green’s function method, give an
approximate expression for the the density, valid
at short times and for −L/2 < x < L/2, involv-
ing only one term (not an infinite sum). (Hint:
How many of the Gaussians are important in this
region at early times?)
(b) Using a Fourier series,34 give an approx-
imate expression for the density, valid at long
times, involving only two terms (not an infinite

34You can use a Fourier transform, but you will find ρ̃(k, 0) is zero except at the values k = 2πm/L, where it is a δ-function.
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sum). (Hint: How many of the wavelengths are
important at late times?)
(c) Give a characteristic time τ in terms of L
and D, such that your answer in (a) is valid for
t≪ τ and your answer in (b) is valid for t≫ τ .

(2.8) Thermal diffusion. ©2
The rate of energy flow in a material with ther-
mal conductivity kt and a temperature field
T (x, y, z, t) = T (r, t) is J = −kt∇T .35 Energy is
locally conserved, so the energy density E satis-
fies ∂E/∂t = −∇ · J.
(a) If the material has constant specific heat cp
and density ρ, so E = cpρT , show that the
temperature T satisfies the diffusion equation
∂T/∂t = kt/(cpρ)∇2T .
(b) By putting our material in a cavity with mi-
crowave standing waves, we heat it with a pe-
riodic modulation T = sin(kx) at t = 0, at
which time the microwaves are turned off. Show
that the amplitude of the temperature modula-
tion decays exponentially in time. How does
the amplitude decay rate depend on wavelength
λ = 2π/k?

(2.9) Frying pan. ©2
An iron frying pan is quickly heated on a stove
top to 400 degrees Celsius. Roughly how long
it will be before the handle is too hot to touch
(within, say, a factor of two)? (Adapted from
[114, p. 40].)
Do this three ways.
(a) Guess the answer from your own experience.
If you have always used aluminum pans, consult
a friend or parent.
(b) Get a rough answer by a dimensional ar-
gument. You need to transport heat cpρV∆T
across an area A = V/∆x. How much heat will
flow across that area per unit time, if the temper-
ature gradient is roughly assumed to be ∆T/∆x?
How long δt will it take to transport the amount
needed to heat up the whole handle?
(c) Model the problem as the time needed for a
pulse of heat at x = 0 on an infinite rod to spread
out a root-mean-square distance σ(t) equal to
the length of the handle, and use the Green’s
function for the heat diffusion equation (Exer-
cise 2.8).
Note: For iron, the specific heat cp = 450 J/(kg
C), the density ρ = 7900 kg/m3, and the thermal
conductivity kt = 80W/(m C).

(2.10) Polymers and random walks. (Computa-
tion, Condensed matter) ©3
Polymers are long molecules, typically made of
identical small molecules called monomers that
are bonded together in a long, one-dimensional
chain. When dissolved in a solvent, the polymer
chain configuration often forms a good approxi-
mation to a random walk. Typically, neighbor-
ing monomers will align at relatively small an-
gles; several monomers are needed to lose mem-
ory of the original angle. Instead of modeling
all these small angles, we can produce an equiv-
alent problem focusing all the bending in a few
hinges; we approximate the polymer by an un-
correlated random walk of straight segments sev-
eral monomers in length. The equivalent seg-
ment size is called the persistence length.36

(a) If the persistence length to bending of DNA is
50 nm, with 3.4 Å per nucleotide base pair, what
will the root-mean-square distance

√
〈R2〉 be be-

tween the ends of a gene in solution with 100 000
base pairs, if the DNA is accurately represented
as a random walk?
Polymers are not accurately represented as pure
random walks, however. Random walks, partic-
ularly in low dimensions, often intersect them-
selves. Polymers are best represented as self-
avoiding random walks: a polymer samples only
those configurations that do not cross them-
selves.
Let us investigate whether self-avoidance will
change the basic nature of the polymer config-
uration in two dimensions. In particular, does
the end-to-end typical distance continue to scale
with the square root of the length L of the poly-
mer, R ∼

√
L?

(b) Two-dimensional self-avoiding random walk.
Give a convincing, short argument explaining
whether or not a typical, non-self-avoiding ran-
dom walk in two dimensions will come back af-
ter large numbers of monomers and cross itself.
(Hint: How big a radius does it extend to? How
many times does it traverse this radius?)
Run the code linked to from our web
site [129] under ‘Self-avoiding random walks’
(currently [90]). This site models a two-
dimensional random walk as a connected line
between nearest-neighbor neighboring lattice
points on the square lattice of integers. They

35We could have derived this law of thermal conductivity from random walks of phonons, but we have not
36Some seem to define the persistence length with a different constant factor.
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start random walks at the origin, grow them
without allowing backtracking, and discard them
when they hit the same lattice point twice. As
long as they survive, they average the squared
length as a function of the number of steps.
(c) Measure for a reasonable length of time, print
out the current state, and enclose it. Did the
simulation give R ∼

√
L? If not, what is the esti-

mate that your simulation gives for the exponent
ν relating R to L? How does it compare with the
two-dimensional theoretical exponent ν = 3/4?

(2.11) Stocks, volatility, and diversification. (Fi-
nance, Computation) ©2
Stock prices are fairly good approximations to
random walks. The Standard and Poor’s 500 in-
dex is a weighted average of the prices of five
hundred large companies in the United States
stock-market.
From the ‘Stock market’ link on the computer
exercises web site [129], download SandPCon-
stantDollars.dat and the hints files for your pre-
ferred programming language. Each line in the
data file represents a weekday (no prices are
listed on Saturday or Sunday). The first column
is time t (in days, since mid-October 1982), and
the second column is the Standard and Poor’s
index SP (t) for that day, corrected for inflation
(using the consumer price index for that month).
Are the random fluctuations in the stock-market
due to external events?
(a) Plot the price index versus time. Notice the
large peak near year 2000. On September 11,
2001 the World Trade Center was attacked (day
number 6903 in the list). Does it seem that the
drop in the stock-market after 2000 is due mostly
to this external event?
Sometimes large fluctuations are due to exter-
nal events; the fluctuations in ecological popu-
lations and species are also quite random, but
the dinosaur extinction was surely caused by a
meteor.
What do the steps look like in the random walk
of Standard and Poor’s index? This depends on
how we define a step; do we ask how much it has
changed after a year, a month, a week, or a day?
A technical question arises: do we measure time
in days, or in trading days? We shall follow the
finance community, and consider only trading
days. So, we will define the lag variable ℓ to be
one trading day for a daily percentage change
(even if there is a weekend or holiday in be-
tween), five for a weekly percentage change, and

252 for a yearly percentage change (the number
of trading days in a typical year).
(b) Write a function Pℓ that finds all pairs of
time points from our data file separated by a time
interval ∆t = ℓ and returns a list of per cent
changes

Pℓ(t) = 100
SP (t+ ℓ)− SP (t)

SP (t)

over that time interval. Plot a histogram of the
daily changes, the weekly changes, and the yearly
changes. Which of the three represents a reason-
able time for you to stay invested in the Standard
and Poor’s index (during which you have mean
percentage growth larger than a tiny fraction of
the fluctuations)? Also, why do you think the
yearly changes look so much more complicated
than the other distributions? (Hint for the latter
question: How many years are there in the data
sample? Are the steps SP (n)− SP (n− ℓ) inde-
pendent from SP (m)−SP (m−ℓ) for n−m < ℓ?
The fluctuations are determined not by the total
number of steps, but by the effective number of
independent steps in the random walk.)
The distributions you found in part (b) for the
shorter lags should have looked quite close to
Gaussian—corresponding nicely to our Green’s
function analysis of random walks, or more gen-
erally to the central limit theorem. Those in
mathematical finance, though, are interested in
the deviations from the expected behavior. They
have noticed that the tails of the distribution de-
viate from the predicted Gaussian.
(c) Show that the logarithm of a Gaussian is
an inverted parabola. Plot the logarithm of
the histogram of the weekly percentage changes
from part (b). Are there more large percentage
changes than expected from a Gaussian distribu-
tion (fat tails) or fewer? (Hint: Far in the
tails the number of measurements starts becom-
ing sparse, fluctuating between zero and one. Fo-
cus on the region somewhat closer in to the cen-
ter, where you have reasonable statistics.)
Some stocks, stock funds, or indices are more
risky than others. This is not to say that one
on average loses money on risky investments; in-
deed, they usually on average pay a better return
than conservative investments. Risky stocks
have a more variable return; they sometimes
grow faster than anticipated but sometimes de-
cline steeply. Risky stocks have a high standard
deviation in their percentage return. In finance,
the standard deviation of the percentage return
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is called the volatility

vℓ =

√〈(
Pℓ(t)− P̄ℓ

)2〉
.

(d) Calculate the daily volatility, the weekly
volatility, and the monthly volatility of the
inflation-corrected Standard and Poor’s 500
data. Plot the volatility as a function of lag,
and the volatility squared as a function of lag,
for lags from zero to 100 days. Does it behave as
a random walk should?
The volatility of a stock is often calculated from
the price fluctuations within a single day, but it
is then annualized to estimate the fluctuations
after a year, by multiplying by the square root
of 252.
The individual stocks in the Standard and Poor’s
500 index will mostly have significantly higher
volatility than the index as a whole.
(e) Suppose these five hundred stocks had mean
annual percentage returns mi and each had mean
volatility σi. Suppose they were equally weighted
in the index, and their fluctuations were uncor-
related. What would the return and volatility
for the index be? Without inside information37

or insight as to which stocks will have higher
mean returns, is there any average disadvantage
of buying portions of each stock over buying the
index? Which has lower volatility?
Investment advisers emphasize the importance
of diversification. The fluctuations of different
stocks are not independent, especially if they
are in the same industry; one should have in-
vestments spread out between different sectors
of the economy, and between stocks and bonds
and other types of investments, in order to avoid
risk and volatility.

(2.12) Computational finance: pricing deriva-
tives.38 (Finance) ©2
Suppose you hope to buy a particular house in
two years when you get your degree. You are
worried about it going way up in price (you have
budgeted ‘only’ $100,000), but you do not wish
to purchase it now. Furthermore, your plans
may change. What you want is a call option,39

where you pay a few thousand dollars to the
current owner, who promises (if you choose to
exercise your option) to sell the house to you
in two years for $100,000. Your mother, who
plans to retire in fifteen years, might want a put
option, which for a fee gives her the option to
sell the house at a fixed price in fifteen years.
Since these options are not tangible property,
but they derive their value from something else
(here a house), these options are called deriva-
tives. Derivatives are not common in housing
transactions, but they are big business in stocks
and in foreign currencies.40

The buyer of the option is shielding themselves
from risk; the seller of the option gets cash now
in exchange for risking an unusual price rise
or drop in the future. What price should the
seller of the option charge you for incurring this
risk? The rather elegant answer to this question
is given by the Black–Scholes model [101], and
launched a multi-trillion dollar industry.
Black and Scholes make several assumptions: no
jumps in stock prices, instant trading, etc. These
assumed, there is a risk-free strategy and a fair
price for the derivative, at which no net profit is
made. (The 1987 market crash may have been
caused by traders using the model, a seeming
conspiracy to punish those who think they can
eliminate risk.) We treat a special case.

• There are only two investments in the world:
a risky asset (which we will call a stock) and
cash (a risk-free investment). Initially the
stock is worth X0; cash is worth 1.

• The stock has one of two values at the date of
the option (the expiration date), Xu > Xd.

41

• The interest rates are zero, so the cash at the
expiration date is still worth 1. (This does not
change anything fundamental.)

• We can borrow and lend any amount of cash
at the prevailing interest rate (that is, zero)
and can buy or sell stock (even if we do not
own any; this is called selling short). There
are no transaction costs.

37Insider trading is illegal.
38This exercise was developed in collaboration with Eric Grannan, based on Hull [61].
39Technically, this is a European-style call option; an American-style option would allow you to buy the house at any time in
the next two years, not just at the end date.
40If you sell widgets for dollars, but pay salaries in pesos, you are likely to want to buy insurance to help out if the dollar falls
dramatically with respect to the peso between now and when you are paid for the widgets.
41Having only two final prices makes the calculation less complicated. The subscripts u and d stand for up and down.
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Let the two possible values of the option at the
expiration date be Vu and Vd.

42 Let V0 be the
fair initial price of the derivative that we wish to
determine.
Consider a portfolio P that includes the deriva-
tive and a certain amount α of the stock. Ini-
tially the value of P is P0 = V0 + αX0. At the
expiration date the value will either be Vu+αXu

or Vd + αXd.
(a) What value of α makes these two final port-
folio values equal? What is this common final
value PF ?
(b) What initial value V0 of the derivative makes
the initial value of the portfolio equal to the final
value? (Express your answer first in terms of
PF , α, and X0, before substituting in your an-
swers for part (a).) This is the value at which
no net profit is made by either buyer or seller of
the derivative; on average, the derivative gives
the same return as cash.
(c) Does your answer depend upon the probabil-
ities pu and pd of going up or down?
This portfolio is a weighted average of derivative
and stock that makes the owner indifferent as to
whether the stock goes up or down. It becomes a
risk-free asset, and so its value must increase at
the risk-free rate; this is the fundamental insight
of arbitrage pricing. (An arbitrage is roughly a
situation where there is free money to be made;
a strategy for updating a portfolio where some
final states have positive value and no final states
have negative value with respect to risk-free in-
vestments. In an efficient market, there are no
opportunities for arbitrage; large investors have
bought and sold until no free money is available.)
You can run exactly the same argument for more
than one time step, starting at the final state
where the values of the derivative are known, and
working your way back to the initial state; this
is the binomial tree method of pricing options. If
the market is efficient, the average growth in the
value of the stock must also grow at the risk-free
rate, so the only unknown is the volatility of the
stock (how large the fluctuations are in the stock
price, Exercise 2.11). In the continuum limit this
tree becomes the famous Black–Scholes partial
differential equation.

(2.13) Building a percolation network.43 (Com-
plexity, Computation) ©4
Figure 2.12 shows what a large sheet of paper,
held at the edges, would look like if small holes
were successively punched out at random loca-
tions. Here the ensemble averages over the differ-
ent choices of random locations for the holes; this
figure shows the sheet just before it fell apart.
Certain choices of hole positions would cut the
sheet in two far earlier (a straight line across
the center) or somewhat later (checkerboard pat-
terns), but for the vast majority of members of
our ensemble the paper will have the same kinds
of hole patterns seen here. Again, it is easier to
analyze all the possible patterns of punches than
to predict a particular pattern.

Fig. 2.12 Bond percolation network. Each bond
on a 10 × 10 square lattice is present with probabil-
ity p = 0.4. This is below the percolation threshold
p = 0.5 for the infinite lattice, and indeed the net-
work breaks up into individual clusters (each shaded
separately). Note the periodic boundary conditions.
Note there are many small clusters, and only a few
large ones; here twelve clusters of size S = 1, three
of size S = 2, and one cluster of size S = 29 (black).
For a large lattice near the percolation threshold the
probability distribution of cluster sizes ρ(S) forms a
power law (Exercise 12.12).

42For example, if the derivative is a call option allowing the buyer to purchase the stock at Xf with Xu > Xf > Xd, the value
of the derivative at the expiration date will either be Vu = Xu −Xf or Vd = 0 (since in the latter case the buyer would choose
not to exercise the option).
43This exercise and the associated software were developed in collaboration with Christopher Myers.
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Percolation theory is the study of the qualita-
tive change in connectivity of a large system as
its components are randomly removed. Outside
physics, it has become an archetype of criticality
at continuous transitions, presumably because
the problem is simple to state and the analy-
sis does not demand a background in equilib-
rium statistical mechanics.44 In this exercise, we
will study bond percolation and site percolation
(Figs 2.12 and 2.13) in two dimensions.
In the computer exercises portion of the web site
for this book [129], you will find some hint files
and graphic routines to facilitate the working of
this exercise.

Bond percolation on a square lattice.
(a) Define a 2D bond percolation network with
periodic boundary conditions on the computer,
for size L × L and bond probability p. For
this exercise, the nodes will be represented by
pairs of integers (i, j). You will need the method
GetNeighbors(node), which returns the neigh-
bors of an existing node. Use the bond-drawing
software provided to draw your bond percolation
network for various p and L, and use it to check
that you have implemented the periodic bound-
ary conditions correctly. (There are two basic
approaches. You can start with an empty net-
work and use AddNode and AddEdge in loops to
generate the nodes, vertical bonds, and horizon-
tal bonds (see Exercise 1.7). Alternatively, and
more traditionally, you can set up a 2D array
of vertical and horizontal bonds, and implement
GetNeighbors(node) by constructing the list of
neighbors from the bond networks when the site
is visited.)

The percolation threshold and duality. In most
continuous phase transitions, one of the chal-
lenges is to find the location of the transition.
We chose bond percolation on the square lattice
because one can argue, in the limit of large sys-
tems, that the percolation threshold pc = 1/2.
The argument makes use of the dual lattice.
The nodes of the dual lattice are the centers of
the squares between nodes in the original lattice.
The edges of the dual lattice are those which do
not cross an edge of the original lattice. Since ev-
ery potential dual edge crosses exactly one edge
of the original lattice, the probability p∗ of hav-
ing bonds on the dual lattice is 1− p, where p is

the probability of bonds for the original lattice.
If we can show that the dual lattice percolates
if and only if the original lattice does not, then
pc = 1/2. This is easiest to see graphically.
(b) Generate and print a small lattice with p =
0.4, picking one where the largest cluster does not
span across either the vertical or the horizontal
direction (or print Fig. 2.12). Draw a path on
the dual lattice spanning the system from top to
bottom and from left to right. (You will be emu-
lating a rat running through a maze.) Is it clear
for large systems that the dual lattice will perco-
late if and only if the original lattice does not?

Finding the clusters.
(c) Write the following two functions that to-
gether find the clusters in the percolation net-
work.

(1) FindClusterFromNode(graph, node,

visited), which returns the cluster in graph

containing node, and marks the sites in the
cluster as having been visited. The clus-
ter is the union of node, the neighbors, the
neighbors of the neighbors, etc. The trick is
to use the set of visited sites to avoid going
around in circles. The efficient algorithm is
a breadth-first traversal of the graph, work-
ing outward from node in shells. There will
be a currentShell of nodes whose neighbors
have not yet been checked, and a nextShell

which will be considered after the current one
is finished (hence breadth first), as follows.

– Initialize visited[node] = True,
cluster = [node], and
currentShell

= graph.GetNeighbors(node).

– While there are nodes in the new
currentShell:

∗ start a new empty nextShell;

∗ for each node in the current shell, if the
node has not been visited,

· add the node to the cluster,

· mark the node as visited,

· and add the neighbors of the node to
the nextShell;

∗ set the current shell to nextShell.

44Percolation is, in a formal sense, an equilibrium phase transition. One can show that percolation is the q → 1 limit of an
equilibrium q-state Potts model—a model where each site has a spin which can take q different states (so q = 2 is the Ising
model) [25, section 8.4]. But you do not need partition functions and the Boltzmann distribution to define the problem, or to
study it.
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– Return the cluster.

(2) FindAllClusters(graph), which sets up the
visited set to be False for all nodes, and
calls FindClusterFromNode(graph, node,

visited) on all nodes that have not been
visited, collecting the resulting clusters. Op-
tionally, you may want to order the clusters
from largest to smallest, for convenience in
the graphics (and in finding the largest clus-
ter).

Check your code by running it for small L and
using the graphics software provided. Are the
clusters, drawn in different colors, correct?

Site percolation on a triangular lattice. Univer-
sality states that the statistical behavior of the
percolation clusters at long length scales should
be independent of the microscopic detail. That
is, removing bonds from a square lattice should
leave the same fractal patterns of holes, near pc,
as punching out circular holes in a sheet just
before it falls apart. Nothing about your algo-
rithms from part (c) depended on their being
four neighbors of a node, or their even being
nodes at all sites. Let us implement site perco-
lation on a triangular lattice (Fig. 2.13); nodes
are occupied with probability p, with each node
connected to any of its six neighbor sites that are
also filled (punching out hexagons from a sheet
of paper). The triangular site lattice also has a
duality transformation, so again pc = 0.5.
It is computationally convenient to label the site
at (x, y) on a triangular lattice by [i, j], where
x = i + j/2 and y = (

√
3/2)j. If we again use

periodic boundary conditions with 0 ≤ i < L
and 0 ≤ j < L, we cover a region in the shape of
a 60◦ rhombus.45 Each site [i, j] has six neigh-
bors, at [i, j] + e with e = [1, 0], [0, 1], [−1, 1] up-
ward and to the right, and minus the same three
downward and to the left.
(d) Generate a site percolation network on a tri-
angular lattice. You can treat the sites one at a
time, using AddNode with probability p, and check
HasNode(neighbor) to bond to all existing neigh-

bors. Alternatively, you can start by generating
a whole matrix of random numbers in one sweep
to determine which sites are occupied by nodes,
add those nodes, and then fill in the bonds. Check
your resulting network by running it for small L
and using the graphics software provided. (No-
tice the shifted periodic boundary conditions at
the top and bottom, see Fig. 2.13.) Use your rou-
tine from part (c) to generate the clusters, and
check these (particularly at the periodic bound-
aries) using the graphics software.

Fig. 2.13 Site percolation network. Each site on
a 10× 10 triangular lattice is present with probabil-
ity p = 0.5, the percolation threshold for the infinite
lattice. Note the periodic boundary conditions at the
sides, and the shifted periodic boundaries at the top
and bottom.

(e) Generate a small square-lattice bond percola-
tion cluster, perhaps 30 × 30, and compare with
a small triangular-lattice site percolation cluster.
They should look rather different in many ways.
Now generate a large46 cluster of each, perhaps
1000×1000 (or see Fig. 12.7). Stepping back and
blurring your eyes, do the two look substantially
similar?
Chapter 12 and Exercise 12.12 will discuss per-
colation theory in more detail.

45The graphics software uses the periodic boundary conditions to shift this rhombus back into a rectangle.
46Your code, if written properly, should run in a time of order N , the number of nodes. If it seems to slow down more than a
factor of 4 when you increase the length of the side by a factor of two, then check for inefficiencies.
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We now turn to equilibrium statistical mechanics—a triumph of the
nineteenth century. Equilibrium statistical mechanics provided them
the fundamental definition for temperature and the laws determining the
behavior of all common liquids and gases.1 We will switch in this chapter

1Quantum statistical mechanics is nec-
essary to understand solids at low tem-
peratures.

between discussing the general theory and applying it to a particular
system—the ideal gas. The ideal gas provides a tangible example of the
formalism, and its analysis will provide a preview of material coming in
the next few chapters.
A system which is not acted upon by the external world2 is said to

2If the system is driven (i.e., there are
externally imposed forces or currents)
we instead call this final condition the
steady state.

approach equilibrium if and when it settles down3 at long times to a state

3If the system is large, the equilibrium
state will also usually be time indepen-
dent and ‘calm’, hence the name. Small
systems will continue to fluctuate sub-
stantially even in equilibrium.

which is independent of the initial conditions (except for conserved quan-
tities like the total energy). Statistical mechanics describes the equilib-
rium state as an average over all states in phase space consistent with
the conservation laws; this microcanonical ensemble is introduced in Sec-
tion 3.1. In Section 3.2, we shall calculate the properties of the ideal
gas using the microcanonical ensemble. In Section 3.3 we shall define
entropy and temperature for equilibrium systems, and argue from the
microcanonical ensemble that heat flows to maximize the entropy and
equalize the temperature. In Section 3.4 we will derive the formula for
the pressure in terms of the entropy, and define the chemical potential.
Finally, in Section 3.5 we calculate the entropy, temperature, and pres-
sure for the ideal gas, and introduce two refinements to our definitions
of phase-space volume.

3.1 The microcanonical ensemble

Statistical mechanics allows us to solve en masse many problems that
are impossible to solve individually. In this chapter we address the
general equilibrium behavior of N atoms in a box of volume V—any
kinds of atoms, in an arbitrary external potential.4 Let us presume for 4However, we do ignore quantum me-

chanics until Chapter 7.simplicity that the walls of the box are smooth and rigid, so that energy
is conserved when atoms bounce off the walls. This makes our system
isolated, independent of the world around it.
How can we solve for the behavior of our atoms? We can in prin-

ciple determine the positions5 Q = (x1, y1, z1, x2, . . . , xN , yN , zN) =

5The 3N-dimensional space of posi-
tions Q is called configuration space.
The 3N-dimensional space of momenta
P is called momentum space. The 6N-
dimensional space (P,Q) is called phase

space.(q1, . . . , q3N ) and momenta P = (p1, . . . , p3N ) of the particles at any



 Copyright Oxford University Press 2006  v1.0                       --  

38 Temperature and equilibrium

future time given their initial positions and momenta using Newton’s
laws:

Q̇ = m−1P, Ṗ = F(Q) (3.1)

(where F is the 3N -dimensional force due to the other particles and the
walls, and m is the particle mass).6

6Here m is a diagonal matrix if the par-
ticles are not all the same mass.

In general, solving these equations is plainly not feasible.

• Many systems of interest involve far too many particles to allow
one to solve for their trajectories.

• Most systems of interest exhibit chaotic motion, where the time
evolution depends with ever increasing sensitivity on the initial
conditions—you cannot know enough about the current state to
predict the future.

• Even if it were possible to evolve our trajectory, knowing the solu-
tion would for most purposes be useless; we are far more interested
in the typical number of atoms striking a wall of the box, say, than
the precise time a particular particle hits.

How can we extract the simple, important predictions out of the com-
plex trajectories of these atoms? The chaotic time evolution will rapidly
scramble7 whatever knowledge we may have about the initial condi-

7This scrambling is precisely the ap-
proach to equilibrium.

tions of our system, leaving us effectively knowing only the conserved
quantities—for our system, just the total energy E.8 Rather than solving

8In an infinite system, total momentum
and angular momentum would also be
conserved; the box breaks rotation and
translation invariance.

for the behavior of a particular set of initial conditions, let us hypothe-
size that the energy is all we need to describe the equilibrium state. This
leads us to a statistical mechanical description of the equilibrium state
of our system as an ensemble of all possible states with energy E—the
microcanonical ensemble.
We calculate the properties of our ensemble by averaging over states

with energies in a shell (E,E+ δE) taking the limit9 δE → 0 (Fig. 3.1).

9What about quantum mechanics,
where the energy levels in a finite sys-
tem are discrete? In that case (Chap-
ter 7), we will need to keep δE large
compared to the spacing between en-
ergy eigenstates, but small compared to
the total energy.

E
E +   Eδ

Fig. 3.1 Energy shell. The shell of
energies between E and E + δE can
have an irregular ‘thickness’. The vol-
ume of this shell in 6N-dimensional
phase space, divided by δE, is the def-
inition of Ω(E). Notice that the mi-
crocanonical average weights the thick
regions more heavily. In Section 4.1 we
will show that, just as a water drop in a
river spends more time in the deep sec-
tions where the water flows slowly, so
also a trajectory in phase space spends
more time in the thick regions.

Let us define the function Ω(E) to be the phase-space volume of this
thin shell, divided by δE:10

Ω(E) δE =

∫

E<H(P,Q)<E+δE

dP dQ. (3.5)

10More formally, one can write the energy shell E < H(P,Q) < E + δE in terms of the Heaviside step function Θ(x), where
Θ(x) = 1 for x ≥ 0, and Θ(x) = 0 for x < 0. We see that Θ(E + δE −H)− Θ(E − H) is one precisely inside the energy shell
(Fig. 3.1). In the limit δE → 0, we can write Ω(E) as a derivative:

Ω(E)δE =

∫

E<H(P,Q)<E+δE
dP dQ =

∫
dP dQ [Θ(E + δE −H)−Θ(E −H)] = δE

∂

∂E

∫
dPdQ Θ(E −H), (3.2)

and the expectation of a general operator O as

〈O〉 = 1

Ω(E)

∫
dP dQ [Θ(E + δE −H) −Θ(E −H)]O(P,Q) =

1

Ω(E)

∂

∂E

∫
dP dQ Θ(E −H)O(P,Q). (3.3)

It will be important later to note that the derivatives in eqns 3.2 and 3.3 are at constant N and constant V : (∂/∂E)|V,N .
Finally, we know the derivative of the Heaviside function is the Dirac δ-function (see note 4 on p. 6). Thus we have

Ω(E) =

∫
dPdQ δ (E −H(P,Q)) , 〈O〉 = 1

Ω(E)

∫
dP dQ δ (E −H(P,Q))O(P,Q). (3.4)

Thus the microcanonical ensemble can be written as a probability density δ (E −H(P,Q)) /Ω(E) in phase space.
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Here H(P,Q) is the Hamiltonian for our system.11 Finding the average 11The Hamiltonian H is the function of
P and Q that gives the energy. For our
purposes, this will always be

P2

2m
+ U(Q) =

3N∑

α=1

p2α
2m

+ U(q1, . . . , q3N ),

where the force in Newton’s laws
(eqn 3.1) is Fα = −∂U/∂qα.

〈O〉 of a property in the microcanonical ensemble is done by averaging
O(P,Q) over this same energy shell:

〈O〉E =
1

Ω(E)δE

∫

E<H(P,Q)<E+δE

O(P,Q) dP dQ. (3.6)

Notice that, by averaging equally over all states in phase space com-
patible with our knowledge about the system (that is, the conserved
energy), we have made a hidden assumption: all points in phase space
(with a given energy) are a priori equally likely, so the average should
treat them all with equal weight. In Section 3.2, we will see that this
assumption leads to sensible behavior, by solving the case of an ideal
gas.12 We will fully justify this equal-weighting assumption in Chap- 12In Section 3.5, we shall add two

refinements to our definition of the
energy-shell volume Ω(E).

ter 4, where we will also discuss the more challenging question of why
so many systems actually reach equilibrium.
The fact that the microcanonical distribution describes equilibrium

systems should be amazing to you. The long-time equilibrium behavior
of a system is precisely the typical behavior of all systems with the same
value of the conserved quantities. This fundamental ‘regression to the
mean’ is the basis of statistical mechanics.

3.2 The microcanonical ideal gas

We can talk about a general collection of atoms, and derive general sta-
tistical mechanical truths for them, but to calculate specific properties
we must choose a particular system. The archetypal statistical mechani-
cal system is the monatomic13 ideal gas. You can think of helium atoms 13Air is a mixture of gases, but most

of the molecules are diatomic: O2 and
N2, with a small admixture of tri-
atomic CO2 and monatomic Ar. The
properties of diatomic ideal gases are
only slightly more complicated than the
monatomic gas; one must keep track of
the internal rotational degree of free-
dom and, at high temperatures, the vi-
brational degrees of freedom.

at high temperatures and low densities as a good approximation to this
ideal gas—the atoms have very weak long-range interactions and rarely
collide. The ideal gas will be the limit when the interactions between
particles vanish.14

14With no interactions, how can the
ideal gas reach equilibrium? If the par-
ticles never collide, they will forever be
going with whatever initial velocity we
started them. We imagine delicately
taking the long-time limit first, before
taking the limit of infinitely weak inter-
actions, so we can presume an equilib-
rium distribution has been established.

For the ideal gas, the energy does not depend upon the spatial con-
figuration Q of the particles. This allows us to study the positions
(Section 3.2.1) separately from the momenta (Section 3.2.2).

3.2.1 Configuration space

Since the energy is independent of the position, our microcanonical en-
semble must weight all configurations equally. That is to say, it is pre-
cisely as likely that all the particles will be within a distance ǫ of the
middle of the box as it is that they will be within a distance ǫ of any
other particular configuration.
What is the probability density ρ(Q) that the ideal gas particles will

be in a particular configurationQ ∈ R3N inside the box of volume V? We
know ρ is a constant, independent of the configuration. We know that
the gas atoms are in some configuration, so

∫
ρ dQ = 1. The integral
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over the positions gives a factor of V for each of the N particles, so
ρ(Q) = 1/V N .
It may be counterintuitive that unusual configurations, like all the

particles on the right half of the box, have the same probability density
as more typical configurations. If there are two non-interacting particles
in an L×L×L box centered at the origin, what is the probability that
both are on the right (have x > 0)? The probability that two particles
are on the right half is the integral of ρ = 1/L6 over the six-dimensional
volume where both particles have x > 0. The volume of this space is
(L/2)×L×L× (L/2)×L×L = L6/4, so the probability is 1/4, just as
one would calculate by flipping a coin for each particle. The probability
that N such particles are on the right is 2−N—just as your intuition
would suggest. Do not confuse probability density with probability!
The unlikely states for molecules are not those with small probability
density. Rather, they are states with small net probability, because their
allowed configurations and/or momenta occupy insignificant volumes of
the total phase space.
Notice that configuration space typically has dimension equal to sev-

eral times Avogadro’s number.15 Enormous-dimensional vector spaces15A gram of hydrogen has approxi-

mately N = 6.02 × 1023 atoms, known
as Avogadro’s number. So, a typical
3N will be around 1024.

have weird properties—which directly lead to important principles in
statistical mechanics.
As an example of weirdness, most of configuration space has almost

exactly half the x-coordinates on the right side of the box. If there are
2N non-interacting particles in the box, what is the probability Pm that
N +m of them will be in the right half? There are 22N equally likely
ways the distinct particles could sit in the two sides of the box. Of these,(

2N
N+m

)
= (2N)!/((N +m)!(N −m)!) have m extra particles in the right

half.16 So,16(p
q

)
is the number of ways of choosing

an unordered subset of size q from a set
of size p. There are p(p− 1) · · · (p− q+
1) = p!/(p− q)! ways of choosing an or-
dered subset, since there are p choices
for the first member and p − 1 for the
second, . . . There are q! different or-
dered sets for each unordered one, so(p
q

)
= p!/(q!(p− q)!).

Pm = 2−2N

(
2N

N +m

)
= 2−2N (2N)!

(N +m)!(N −m)!
. (3.7)

We can calculate the fluctuations in the number on the right using
Stirling’s formula,17

17Stirling’s formula tells us that the
‘average’ number in the product n! =
n(n − 1) · · · 1 is roughly n/e; see Exer-
cise 1.4.

n! ∼ (n/e)n
√
2πn ∼ (n/e)n. (3.8)

For now, let us use the second, less accurate form; keeping the factor√
2πn would fix the prefactor in the final formula (Exercise 3.9) which

we will instead derive by normalizing the total probability to one. Using
Stirling’s formula, eqn 3.7 becomes

Pm ≈ 2−2N

(
2N

e

)2N /(N +m

e

)N+m(
N −m

e

)N−m

= N2N (N +m)−(N+m)(N −m)−(N−m)

= (1 +m/N)−(N+m)(1−m/N)−(N−m)

= ((1 +m/N)(1−m/N))
−N

(1 +m/N)−m(1−m/N)m

= (1 −m2/N2)−N (1 +m/N)−m(1−m/N)m, (3.9)
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and, since |m| ≪ N we may substitute 1 + ǫ ≈ exp(ǫ), giving us

Pm ≈
(
e−m2/N2

)−N (
em/N

)−m (
e−m/N

)m
≈ P0 exp(−m2/N),

(3.10)
where P0 is the prefactor we missed by not keeping enough terms in
Stirling’s formula. We know that the probabilities must sum to one, so
again for |m| ≪ N , we have 1 =

∑
m Pm ≈

∫∞
−∞ P0 exp(−m2/N) dm =

P0

√
πN . Hence

Pm ≈
√

1

πN
exp

(
−m

2

N

)
. (3.11)

This is a nice result: it says that the number fluctuations are distributed
in a Gaussian or normal distribution18 (1

/√
2πσ) exp(−x2

/
2σ2) with 18This is the central limit theorem

again. We derived it in Section 2.4.2
using random walks and a continuum
approximation, instead of Stirling’s for-
mula; the Gaussian was the Green’s
function for the number of heads in 2N
coin flips. We will derive it again in
Exercise 12.11 using renormalization-
group methods.

a standard deviation σ =
√
N/2. If we have Avogadro’s number of

particles N ∼ 1024, then the fractional fluctuations σ/N = 1/
√
2N ∼

10−12 = 0.0000000001%. In almost all the volume of a box in R3N ,
almost exactly half of the coordinates are on the right half of their range.
In Section 3.2.2 we will find another weird property of high-dimensional
spaces.
In general, the relative fluctuations of most quantities of interest in

equilibrium statistical mechanics go as 1/
√
N . For many properties of

macroscopic systems, statistical mechanical fluctuations about the aver-
age value are very small.19

19We will show this in great generality
in Section 10.7, see eqn 10.50.

3.2.2 Momentum space

Working with the microcanonical momentum distribution is more chal-
lenging,20 but more illuminating, than working with the ideal gas con-

20The numerical factors won’t be im-
portant here: it is just easier to keep
them than to explain why we don’t need
to. Watch the factors of R. In Sec-
tion 6.2 we will find that these same
derivations are far less complex using
the canonical distribution.

figuration space of the last section. Here we must study the geometry
of spheres in high dimensions.
The kinetic energy for particles (whether or not they interact) is

3N∑

α=1

1/2mαvα
2 =

3N∑

α=1

p2α
2mα

=
P2

2m
, (3.12)

where the last form assumes all of our atoms have the same mass m.
Hence the condition that a system of equal-mass particles has energy E
is that the system lies on a sphere in 3N -dimensional momentum space
of radius R =

√
2mE. Mathematicians21 call this the 3N−1 sphere,

21Mathematicians like to name sur-
faces, or manifolds, after the number of
dimensions or local coordinates internal
to the manifold, rather than the dimen-
sion of the space the manifold lives in.
After all, one can draw a circle embed-
ded in any number of dimensions (down
to two). Thus a basketball is a two
sphere S2, the circle is the one sphere
S1, and the zero sphere S0 consists of
the two points ±1.

S3N−1
R . Specifically, if the energy of the system is known to be in a

small range between E and E + δE, what is the corresponding volume
of momentum space? The volume µ

(
Sℓ−1
R

)
of the ℓ − 1 sphere (in ℓ

dimensions) of radius R is22

22Does this give the area of a circle
in ℓ = 2 dimensions? The factorial
function can be defined for non-integers
(see Exercise 1.5); (3/2)! = 3

√
π/4 and

eqn 3.13 imply the correct area of a
sphere in three dimensions. The for-
mula in general dimensions is an in-
duction exercise in multiple integration.
Hint: It is easiest to do the integrals
two dimensions at a time.µ

(
Sℓ−1
R

)
= πℓ/2Rℓ/(ℓ/2)!. (3.13)
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Fig. 3.2 The energy surface in mo-
mentum space is the 3N−1 sphere of
radius R =

√
2mE. The conditions

that the x-component of the momen-
tum of atom #1 is p1 restricts us to
a circle (or rather a 3N−2 sphere) of
radius R′ =

√
2mE − p12. The con-

dition that the energy is in the shell
(E,E + δE) leaves us with the annu-
lar region shown in the inset.

The volume of the thin shell23 between E and E + δE is given by23Why is this not the surface area? Be-
cause its width is an infinitesimal en-
ergy δE, and not an infinitesimal thick-
ness δR ≈ δE(∂R/∂E) = δE(R/2E).
The distinction does not matter for
the ideal gas (both would give uniform
probability densities over all directions
of P) but it is important for interact-
ing systems (where the thickness of the
energy shell varies, see Fig. 3.1).

shell volume

δE
=

µ

(
S3N−1√

2m(E+δE)

)
− µ

(
S3N−1√

2mE

)

δE

= dµ
(
S3N−1√

2mE

)/
dE

=
d

dE

(
π3N/2(2mE)3N/2

/
(3N/2)!

)

= π3N/2(3Nm)(2mE)3N/2−1
/
(3N/2)!

= (3Nm)π3N/2R3N−2
/
(3N/2)!. (3.14)

Given our microcanonical ensemble that equally weights all states with
energy E, the probability density for having any particular set of particle
momenta P is the inverse of this shell volume.
Let us do a tangible calculation with this microcanonical ensemble.

Let us calculate the probability density ρ(p1) that the x-component of
the momentum of the first atom is p1.

24 The probability density that24It is a sloppy physics convention to
use ρ to denote probability densities of
all sorts. Earlier, we used it to denote
probability density in 3N-dimensional
configuration space; here we use it to
denote probability density in one vari-
able. The argument of the function ρ
tells us which function we are consider-
ing.

this momentum is p1 and the energy is in the range (E,E + δE) is
proportional to the area of the annular region in Fig. 3.2. The sphere
has radius R =

√
2mE, so by the Pythagorean theorem, the circle has

radius R′ =
√
2mE − p12. The volume in momentum space of the

annulus is given by the difference in areas inside the two ‘circles’ (3N−2
spheres) with momentum p1 and energies E and E + δE. We can use
eqn 3.13 with ℓ = 3N − 1:

annular area

δE
= dµ

(
S3N−2√

2mE−p1
2

)/
dE

=
d

dE

(
π(3N−1)/2(2mE − p1

2)(3N−1)/2
/
[(3N − 1)/2]!

)

= π(3N−1)/2(3N−1)m(2mE−p21)(3N−3)/2
/
[(3N − 1)/2]!.

= (3N − 1)mπ(3N−1)/2R′3N−3
/
[(3N − 1)/2]! (3.15)
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The probability density ρ(p1) of being in the annulus at height p1 is its
area divided by the shell volume in eqn 3.14:

ρ(p1) = annular area
/
shell volume

=
(3N − 1)mπ(3N−1)/2R′3N−3/ [(3N − 1)/2]!

3Nmπ3N/2R3N−2/ (3N/2)!

∝ (R2/R′3)(R′/R)3N

= (R2/R′3)(1 − p1
2/2mE)3N/2. (3.16)

The probability density ρ(p1) will be essentially zero unless R′/R =√
1− p12/2mE is nearly equal to one, since this factor in eqn 3.16 is

taken to an enormous power (3N , around Avogadro’s number). We can
thus simplify R2/R′3 ≈ 1/R = 1/

√
2mE and 1 − p1

2/2mE = 1 − ǫ ≈
exp(−ǫ) = exp(−p12/2mE), giving us

ρ(p1) ∝
1√
2mE

exp

(−p12
2m

3N

2E

)
. (3.17)

The probability density ρ(p1) is a Gaussian distribution of standard
deviation

√
2mE/3N ; we can again set the constant of proportionality

to normalize the Gaussian, leading to

ρ(p1) =
1√

2πm(2E/3N)
exp

(−p12
2m

3N

2E

)
. (3.18)

This is the probability distribution for any momentum component of any
of our particles; there was nothing special about particle number one.
Our ensemble assumption has allowed us to calculate the momentum
distribution explicitly in terms of E, N , and m, without ever consid-
ering a particular trajectory; this is what makes statistical mechanics
powerful.
Formula 3.18 tells us that most of the surface area of a large-dimen-

sional sphere is very close to the equator! Think of p1 as the latitude
on the sphere. The range of latitudes containing most of the area is
δp ≈ ±

√
2mE/3N , and the total range of latitudes is ±

√
2mE; the belt

divided by the height is the square root of Avogadro’s number. This is
true whatever equator you choose, even intersections of several equators.
Geometry is weird in high dimensions.
In the context of statistical mechanics, this seems much less strange;

typical configurations of gases have the kinetic energy divided roughly
equally among all the components of momentum; configurations where
one atom has most of the kinetic energy (far from its equator) are van-
ishingly rare.
Formula 3.18 foreshadows four key results that will emerge from our

systematic study of equilibrium statistical mechanics in the following
few chapters.

(1) Temperature. In our calculation, a single momentum component
competed for the available energy with the rest of the ideal gas. In
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Section 3.3 we will study the competition in general between two
large subsystems for energy, and will discover that the balance is
determined by the temperature. The temperature T for our ideal
gas will be given (eqn 3.52) by kBT = 2E/3N .25 Equation 3.1825We shall see that temperature is nat-

urally measured in units of energy. His-
torically we measure temperature in
degrees and energy in various other
units (Joules, ergs, calories, eV, foot-
pounds, . . . ); Boltzmann’s constant
kB = 1.3807 × 10−23 J/K is the con-
version factor between units of temper-
ature and units of energy.

then gives us the important formula

ρ(p1) =
1√

2πmkBT
exp

(
− p1

2

2mkBT

)
. (3.19)

(2) Boltzmann distribution. The probability of the x momentum
of the first particle having kinetic energy K = p21/2m is propor-
tional to exp(−K/kBT ) (eqn 3.19). This is our first example of a
Boltzmann distribution. We shall see in Section 6.1 that the proba-
bility of a small subsystem being in a particular state26 of energy E26This is different from the probabil-

ity of the subsystem having energy E,
which is the product of the Boltzmann
probability and the number of states
with that energy.

will in completely general contexts have probability proportional to
exp(−E/kBT ).

(3) Equipartition theorem. The average kinetic energy 〈p21/2m〉 from
eqn 3.19 is kBT/2. This is an example of the equipartition theorem
(Section 6.2): each harmonic degree of freedom in an equilibrium
classical system has average energy kBT/2.

(4) General classical27 momentum distribution. Our derivation27Molecular gases will have internal
vibration modes that are often not
well described by classical mechanics.
At low temperatures, these are of-
ten frozen out; including rotations and
translations but ignoring vibrations is
a good approximation for air at room
temperature (see note 13 on p. 39).

was in the context of a monatomic ideal gas. But we could have
done an analogous calculation for a system with several gases of
different masses; our momentum sphere would become an ellipsoid,
but the momentum distribution is given by the same formula. More
surprising, we shall see (using the canonical ensemble in Section 6.2)
that interactions do not matter either, as long as the system is clas-
sical:28 the probability densities for the momenta are still given by28Relativistic effects, magnetic fields,

and quantum mechanics will change the
velocity distribution. Equation 3.19
will be reasonably accurate for all gases
at reasonable temperatures, all liquids
but helium, and many solids that are
not too cold. Notice that almost
all molecular dynamics simulations are
done classically: their momentum dis-
tributions are given by eqn 3.19.

the same formula, independent of the potential energies. The mo-
mentum distribution of formula 3.19 is correct for nearly all classical
equilibrium systems; interactions will affect only the configurations
of such particles, not their velocities.

3.3 What is temperature?

Our ordinary experience suggests that heat energy will flow from a hot
body into a neighboring cold body until they reach the same tempera-
ture. Statistical mechanics insists that the distribution of heat between
the two bodies is determined by the microcanonical assumption that all
possible states of fixed total energy for the two bodies are equally likely.
Can we make these two statements consistent? Can we define the tem-
perature so that two large bodies in equilibrium with one another will
have the same temperature?
Consider a general, isolated system of total energy E consisting of two

parts, labeled 1 and 2. Each subsystem has a fixed volume and a fixed
number of particles, and is energetically weakly connected to the other
subsystem. The connection is weak in that we assume we can neglect
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the dependence of the energy E1 of the first subsystem on the state s2
of the second one, and vice versa.29 29A macroscopic system attached to

the external world at its boundaries is
usually weakly connected, since the in-
teraction energy is only important near
the surfaces, a negligible fraction of
the total volume. More surprising, the
momenta and configurations in a non-
magnetic, non-quantum system are two
uncoupled subsystems: no terms in the
Hamiltonian mix them (although the
dynamical evolution certainly does).

Our microcanonical ensemble then asserts that the equilibrium be-
havior of the total system is an equal weighting of all possible states
of the two subsystems having total energy E. A particular state of the
whole system is given by a pair of states (s1, s2) with E = E1 + E2.
This immediately implies that a particular configuration or state s1 of
the first subsystem at energy E1 will occur with probability density30

30That is, if we compare the probabil-

ities of two states sa1 and sb1 of subsys-
tem 1 with energies Ea

1 and Eb
1, and

if Ω2(E − Ea
1 ) is 50 times larger than

Ω2(E − Eb
1), then ρ(sa1) = 50 ρ(sb1) be-

cause the former has 50 times as many
partners that it can pair with to get an
allotment of probability.

ρ(s1) ∝ Ω2(E − E1), (3.20)

where Ω1(E1) δE1 and Ω2(E2) δE2 are the phase-space volumes of the
energy shells for the two subsystems. The volume of the energy surface
for the total system at energy E will be given by adding up the product
of the volumes of the subsystems for pairs of energies summing to E:

Ω(E) =

∫
dE1 Ω1(E1)Ω2(E − E1), (3.21)

as should be intuitively clear.31 Notice that the integrand in eqn 3.21,
normalized by the total integral, is just the probability density32 for the 32Warning: Again we are being sloppy;

we use ρ(s1) in eqn 3.20 for the prob-
ability density that the subsystem is in
a particular state s1 and we use ρ(E1)
in eqn 3.23 for the probability density
that a subsystem is in any of many par-
ticular states with energy E1.

subsystem to have energy E1:

ρ(E1) = Ω1(E1)Ω2(E − E1)/Ω(E). (3.23)

If the two subsystems have a large number of particles then it turns out33

33Just as for the configurations of the
ideal gas, where the number of particles
in half the box fluctuated very little,
so also the energy E1 fluctuates very
little from the value E∗1 at which the
probability is maximum. We will show
this explicitly in Exercise 3.8, and more
abstractly in note 37 below.

that ρ(E1) is a very sharply peaked function near its maximum at E∗
1 .

Hence in equilibrium the energy in subsystem 1 is given (apart from small
fluctuations) by the maximum in the integrand Ω1(E1)Ω2(E−E1). The
maximum is found when the derivative (dΩ1/dE1)Ω2 − Ω1 (dΩ2/dE2)
is zero, which is where

1

Ω1

dΩ1

dE1

∣∣∣∣
E∗

1

=
1

Ω2

dΩ2

dE2

∣∣∣∣
E−E∗

1

. (3.24)

It is more convenient not to work with Ω, but rather to work with its
logarithm. We define the equilibrium entropy

Sequil(E) = kB log(Ω(E)) (3.25)

for each of our systems.34 Like the total energy, volume, and number

34Again, Boltzmann’s constant kB is a
unit conversion factor with units of [en-
ergy]/[temperature]; the entropy would
be unitless except for the fact that we
measure temperature and energy with
different scales (note 25 on p. 44).of particles, the entropy in a large system is ordinarily proportional

31It is also easy to derive using the Dirac δ-function (Exercise 3.6). We can also derive it, more awkwardly, using energy shells:

Ω(E) =
1

δE

∫

E<H1+H2<E+δE
dP1 dQ1 dP2 dQ2 =

∫
dP1 dQ1

(
1

δE

∫

E−H1<H2<E+δE−H1

dP2 dQ2

)

=

∫
dP1 dQ1 Ω2(E −H1(P1,Q1)) =

∑

n

∫

nδE<H1<(n+1)δE
dP1 dQ1 Ω2(E −H1(P1,Q1))

≈
∫

dE1

(
1

δE

∫

E1<H1<E1+δE
dP1 dQ1

)
Ω2(E −E1) =

∫
dE1 Ω1(E1)Ω2(E − E1), (3.22)

where we have converted the sum to an integral
∑

n f(n δE) ≈ (1/δE)
∫
dE1f(E1).
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to its size.35 Quantities like these which scale linearly with the system35We can see this by using the fact
that most large systems can be decom-
posed into many small, weakly-coupled
subsystems, for which the entropies
add. (For systems with long-range
forces like gravitation, breaking the
system up into many weakly-coupled
subsystems may not be possible,
and entropy and energy need not be
extensive.) This additivity of the
entropy for uncoupled systems is
exactly true in the canonical ensemble
(Section 6.2). It is true for macro-
scopic systems in the microcanonical
ensemble; eqn 3.28 tells us Ω(E) ≈
Ω1(E∗1 )Ω2(E∗2 )

∫
e−(E1−E∗

1 )2/2σE dE1

= Ω1(E∗1 )Ω2(E∗2 )(
√
2πσE), so the

entropy of the total system is

Stot(E) =kB log Ω(E)

≈S1(E
∗
1 ) + S2(E −E∗1 )

+ kB log(
√
2πσE).

This is extensive up to the microscopic
correction kB log(

√
2πσE) (due to the

enhanced energy fluctuations by cou-
pling the two subsystems).

size are called extensive. (Quantities, like the temperature, pressure,
and chemical potential defined below, that stay constant as the system
grows, are called intensive.)
Thus dS/dE = kB(1/Ω) (dΩ/dE), and eqn 3.24 simplifies to the state-

ment

d

dE1
(S1(E1) + S2(E − E1)) =

dS1

dE1

∣∣∣∣
E∗

1

− dS2

dE2

∣∣∣∣
E−E∗

1

= 0 (3.26)

that the total entropy S1 + S2 is maximized.36 We want to define the

36Entropy is a maximum rather than
just an extremum because eqn 3.26
is the logarithm of the probability
(eqn 3.23) expanded about a maximum.

temperature so that it becomes equal when the two subsystems come to
equilibrium. We have seen that

dS1

dE1
=

dS2

dE2
(3.27)

in thermal equilibrium. As dS/dE decreases upon increasing energy, we
define the temperature in statistical mechanics as 1/T = dS/dE. We
have been assuming constant volume and number of particles in our
derivation; the formula for a general system is37

1

T
=

∂S

∂E

∣∣∣∣
V,N

. (3.29)

The inverse of the temperature is the cost of buying energy from the
rest of the world. The lower the temperature, the more strongly the
energy is pushed downward. Entropy is the currency being paid. For
each unit of energy δE bought, we pay δE/T = δE (dS/dE) = δS in
reduced entropy of the outside world. Inverse temperature is the cost in
entropy to buy a unit of energy.3838More correctly, one pays in negative

entropy; one must accept entropy δE/T
when buying energy δE from the heat
bath.

The ‘rest of the world’ is often called the heat bath; it is a source and
sink for heat and fixes the temperature. All heat baths are equivalent,
depending only on the temperature. More precisely, the equilibrium
behavior of a system weakly coupled to the external world is independent
of what the external world is made of—it depends only on the world’s
temperature. This is a deep truth.

37Is the probability density ρ(E1) sharply peaked, as we have assumed? We can Taylor expand the numerator in eqn 3.23
about the maximum E1 = E∗1 , and use the fact that the temperatures balance at E∗1 to remove the terms linear in E1 −E∗1 :

Ω1(E1)Ω2(E − E1) = exp (S1(E1)/kB + S2(E − E1)/kB)

≈ exp

[(
S1(E

∗
1 ) +

1

2
(E1 − E∗1 )

2 ∂
2S1

∂E2
1

+ S2(E −E∗1 ) +
1

2
(E1 −E∗1 )

2 ∂
2S2

∂E2
2

)/
kB

]

= Ω1(E
∗
1 )Ω2(E

∗
2 ) exp

(
(E1 − E∗1 )

2

(
∂2S1

∂E2
1

+
∂2S2

∂E2
2

)/
(2kB)

)
. (3.28)

Thus the energy fluctuations are Gaussian: ρ(E1) = (1/
√
2πσE) e−(E1−E∗

1 )2/2σ2
E , with standard deviation σE given by 1/σ2E =

−(1/kB)
(
∂2S1/∂E2

1 + ∂2S2/∂E2
2

)
. (Note the minus sign; ∂2S/∂E2 = ∂(1/T )/∂E is typically negative, because 1/T decreases

as energy increases. This is also the statement that S(E) is convex downward.) Since both S and E are extensive, they are
proportional to the number of particles N , and σ2E ∝ 1

/
(∂2S/∂E2) ∝ N (because there is one S in the numerator and two

Es in the denominator). Hence, the energy fluctuations per particle σE/N are tiny; they scale as 1/
√
N . This is typical of

fluctuations in statistical mechanics.



 Copyright Oxford University Press 2006  v1.0                       --  

3.4 Pressure and chemical potential 47
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∆E

∆

V

N

∆

S  E V   N S  E
1 1 2 22 21 1

V   N , ),( ,), (

Fig. 3.3 Two subsystems. Two
subsystems, isolated from the outside
world, may exchange energy (open door
through the insulation), volume (pis-
ton), or particles (tiny uncorked holes).

The entropy S(E, V,N) is our first example of a thermodynamic poten-
tial.39 In thermodynamics, all the macroscopic properties can be calcu-

39Most of the other thermodynamic
potentials we will use are more com-
monly called free energies.

lated by taking derivatives of thermodynamic potentials with respect to
their arguments. It is often useful to think of thermodynamic potentials
as surfaces; Fig. 3.4 shows the surface in S,E, V space (at constant num-
ber of particles N). The energy E(S, V,N) is another thermodynamic
potential, completely equivalent to S(E, V,N); it is the same surface
with a different direction ‘up’.
In Section 3.3 we defined the temperature using (∂S/∂E)|V,N . What

about the other two first derivatives, (∂S/∂V )|E,N and (∂S/∂N)|E,V ?
That is, how does the entropy change when volume or particles are
exchanged between two subsystems? The change in the entropy for a
tiny shift ∆E, ∆V , and ∆N from subsystem 2 to subsystem 1 (Fig. 3.3)
is

∆S =

(
∂S1

∂E1

∣∣∣∣
V,N

− ∂S2

∂E2

∣∣∣∣
V,N

)
∆E +

(
∂S1

∂V1

∣∣∣∣
E,N

− ∂S2

∂V2

∣∣∣∣
E,N

)
∆V

+

(
∂S1

∂N1

∣∣∣∣
E,V

− ∂S2

∂N2

∣∣∣∣
E,V

)
∆N. (3.30)

The first term is, as before, (1/T1 − 1/T2)∆E; exchanging energy to
maximize the entropy sets the temperatures equal. Just as for the en-
ergy, if the two subsystems are allowed to exchange volume and number
then the entropy will maximize itself with respect to these variables as
well, with small fluctuations. Equating the derivatives with respect to
volume gives us our statistical mechanics definition of the pressure P :

P

T
=

∂S

∂V

∣∣∣∣
E,N

, (3.31)

and equating the derivatives with respect to number gives us the defini-
tion of the chemical potential µ:40 40These relations are usually summa-

rized in the formula dS = (1/T ) dE +
(P/T ) dV −(µ/T ) dN (see Section 6.4).− µ

T
=

∂S

∂N

∣∣∣∣
E,V

. (3.32)

These definitions are a bit odd; usually we define pressure and chem-
ical potential in terms of the change in energy E, not the change in
entropy S. We can relate our definitions to the more usual ones using
an important mathematical identity that we derive in Exercise 3.10; if
f is a function of x and y, then (see Fig. 3.4)41 41Notice that this is exactly minus the

result you would have derived by can-
celing ∂f , ∂x, and ∂y from ‘numerator’
and ‘denominator’; derivatives are al-
most like fractions, but not quite.

∂f

∂x

∣∣∣∣
y

∂x

∂y

∣∣∣∣
f

∂y

∂f

∣∣∣∣
x

= −1. (3.33)

Remember also that if we keep all but one variable fixed, partial deriva-
tives are like regular derivatives, so

∂f

∂x

∣∣∣∣
y

= 1
/ ∂x

∂f

∣∣∣∣
y

. (3.34)
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Using this for S(E, V ) and fixing N , we find

− 1 =
∂S

∂V

∣∣∣∣
E,N

∂V

∂E

∣∣∣∣
S,N

∂E

∂S

∣∣∣∣
V,N

=
P

T

(
1
/ ∂E

∂V

∣∣∣∣
S,N

)
T, (3.35)

so
∂E

∂V

∣∣∣∣
S,N

= −P. (3.36)

Thus the pressure is minus the energy cost per unit volume at constant
entropy. Similarly,

− 1 =
∂S

∂N

∣∣∣∣
E,V

∂N

∂E

∣∣∣∣
S,V

∂E

∂S

∣∣∣∣
N,V

= −µ

T

(
1
/ ∂E

∂N

∣∣∣∣
S,V

)
T, (3.37)

so
∂E

∂N

∣∣∣∣
S,V

= µ; (3.38)

the chemical potential is the energy cost of adding a particle at constant
entropy.

Fig. 3.4 The surface of state. The
entropy S(E,V,N) as a function of en-
ergy E and volume V (at fixed num-
ber N). Viewed sideways, this surface
also defines the energy E(S, V,N). The
three curves are lines at constant S, E,
and V ; the fact that they must close
yields the relation

∂S

∂E

∣∣∣∣
V,N

∂E

∂V

∣∣∣∣
S,N

∂V

∂S

∣∣∣∣
E,N

= −1

(see Exercise 3.10).

The chemical potential will be unfamiliar to most of those new to
statistical mechanics. We can feel pressure and temperature as our bod-
ies exchange volume with balloons and heat with coffee cups. Most
of us have not had comparable tactile experience with exchanging par-
ticles.42 You can view chemical potential as a ‘force’ associated with

42We do have experience with the
chemical potential of one gas. Our
lungs exchange carbon dioxide for oxy-
gen. A high chemical potential for CO2

in the blood causes us to breathe hard.

particle number, in the same spirit as pressure is a force associated with
volume and temperature is a ‘force’ associated with energy; differences
in µ, P , and T will induce transfers of particles, volume, or energy
from one subsystem into another. Chemical potentials are crucial to the
study of chemical reactions; whether a reaction will proceed depends
in part on the relative cost of the products and the reactants, mea-
sured by the differences in their chemical potentials (Section 6.6). They
drive the osmotic pressure that holds your cell membranes taut. The
chemical potential will also play a central role in calculations involving
non-interacting quantum systems, where the number of particles in each
quantum state can vary (Chapter 7). Your intuition about chemical
potentials will improve as you work with them.

3.4.1 Advanced topic: pressure in mechanics and

statistical mechanics.

Our familiar notion of pressure is from mechanics: the energy of a sub-
system increases as the volume decreases, as ∆E = −P∆V . Our sta-
tistical mechanics definition (P = −(∂E/∂V )|S,N , eqn 3.36) states that
this energy change is measured at fixed entropy—which may not be so
familiar.
Not all mechanical volume changes are acceptable for measuring the

pressure. A mechanical measurement of the pressure must not exchange
heat with the body. (Changing the volume while adding heat to keep
the temperature fixed, for example, is a different measurement.) The
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mechanical measurement must also change the volume slowly. If the
volume changes fast enough that the subsystem goes out of equilibrium
(typically a piston moving near the speed of sound), then the energy
needed to change the volume will include the energy for generating the
sound and shock waves—energies that are not appropriate to include
in a good measurement of the pressure. We call a process adiabatic if
it occurs without heat exchange and sufficiently slowly that the system
remains in equilibrium.
In this section we will show in a microcanonical ensemble that the me-

chanical definition of the pressure (the rate of change in average internal
energy as one slowly varies the volume, Pm = −∆E/∆V ) equals the sta-
tistical mechanical definition of the pressure (Pstat = T (∂S/∂V )|E,N =
−(∂E/∂V )|S,N , eqns 3.31 and 3.36). Hence, an adiabatic measurement
of the pressure is done at constant entropy.
The argument is somewhat technical and abstract, using methods that

will not be needed in the remainder of the text. Why is this question im-
portant, beyond justifying our definition of pressure? In Chapter 5, the
entropy will become our fundamental measure of irreversibility. Since
the system remains in equilibrium under adiabatic changes in the vol-
ume, its entropy should not change.43 Our arguments there will work 43It is the entropy of the entire sys-

tem, including the mechanical instru-
ment that changes the volume, that
cannot decrease. We’re using the fact
that instrument can be made with few
moving parts that couple to our system;
the entropy of a system with only a few
degrees of freedom can be neglected.
(You will notice that the entropy is al-
ways NkB times a logarithm. The log-
arithm is an extremely slowly varying
function, so the entropy is always a rea-
sonably small constant times N times
kB . If a system has only a few mov-
ing parts N , its entropy is only a few
kB—hence tiny.)

backward from the macroscopic principle that perpetual motion ma-
chines should not exist. Our argument here works forward from the mi-
croscopic laws, showing that systems that stay in equilibrium (changed
adiabatically, thermally isolated and slowly varying) are consistent with
a constant entropy.44

44Our argument will not use the fact
that the parameter V is the volume.
Any adiabatic change in the system
happens at constant entropy.

We must first use statistical mechanics to find a formula for the me-
chanical force per unit area Pm. Consider some general liquid or gas
whose volume is changed smoothly from V to V +∆V , and is otherwise
isolated from the rest of the world.
We can find the mechanical pressure if we can find out how much the

energy changes as the volume changes. The initial system at t = 0 is an
microcanonical ensemble at volume V , uniformly filling phase space in
an energy range E < H < E+δE with density 1/Ω(E, V ). A member of
this volume-expanding ensemble is a trajectory P(t),Q(t) that evolves
in time under the changing Hamiltonian H

(
P,Q, V (t)

)
. The amount

this particular trajectory changes in energy under the time-dependent
Hamiltonian is

dH
(
P(t),Q(t), V (t)

)

dt
=
∂H
∂P

Ṗ+
∂H
∂Q

Q̇+
∂H
∂V

dV

dt
. (3.39)

A Hamiltonian for particles of kinetic energy 1/2P2/m and potential en-
ergy U(Q) will have ∂H/∂P = P/m = Q̇ and ∂H/∂Q = ∂U/∂Q = −Ṗ,
so the first two terms cancel on the right-hand side of eqn 3.39.45 Hence 45Some may recognize these as Hamil-

ton’s equations of motion: the cancella-
tion works for general Hamiltonian sys-
tems, even those not of the standard
Newtonian form.

the energy change for this particular trajectory is

dH
(
P(t),Q(t), V (t)

)

dt
=
∂H
∂V

(
P,Q

) dV
dt
. (3.40)

That is, the energy change of the evolving trajectory is the same as the
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expectation value of ∂H/∂t at the static current point in the trajectory:
we need not follow the particles as they zoom around.
We still must average this energy change over the equilibrium ensemble

of initial conditions. This is in general not possible, until we make the
second assumption involved in the adiabatic measurement of pressure:
we assume that the potential energy turns on so slowly that the system
remains in equilibrium at the current volume V (t) and energy E(t). This
allows us to calculate the ensemble average energy change in terms of
an equilibrium average at the fixed, current volume:

d〈H〉
dt

=

〈
∂H
∂V

〉

E(t),V (t)

dV

dt
. (3.41)

Since this energy change must equal −Pm (dV/dt), we find (eqn 3.4):

− Pm =

〈
∂H
∂V

〉
=

1

Ω(E)

∫
dP dQ δ(E −H(P,Q, V ))

∂H
∂V

. (3.42)

We now turn to calculating the derivative of interest for the statistical
mechanical definition of pressure:

∂S

∂V

∣∣∣∣
E,N

=
∂

∂V
kB log(Ω) =

kB
Ω

∂Ω

∂V

∣∣∣∣
E,N

. (3.43)

Using eqn 3.2 to write Ω in terms of a derivative of the Θ function, we
can change orders of differentiation:

∂Ω

∂V

∣∣∣∣
E,N

=
∂

∂V

∣∣∣∣
E,N

∂

∂E

∣∣∣∣
V,N

∫
dP dQ Θ(E −H(P,Q, V ))

=
∂

∂E

∣∣∣∣
V,N

∫
dP dQ

∂

∂V
Θ(E −H(P,Q, V ))

= − ∂

∂E

∣∣∣∣
V,N

∫
dP dQ δ(E −H(P,Q, V ))

∂H
∂V

. (3.44)

But the phase-space integral in the last equation is precisely the same in-
tegral that appears in our mechanical formula for the pressure, eqn 3.42:
it is Ω(E)(−Pm). Thus

∂Ω

∂V

∣∣∣∣
E,N

=
∂

∂E

∣∣∣∣
V,N

(Ω(E)Pm)

=
∂Ω

∂E

∣∣∣∣
V,N

Pm +Ω
∂Pm

∂E

∣∣∣∣
V,N

, (3.45)

so

∂S

∂V

∣∣∣∣
E,N

=
∂

∂V
kB log(Ω) =

kB
Ω

(
∂Ω

∂E

∣∣∣∣
V,N

Pm +Ω
∂Pm

∂E

∣∣∣∣
V,N

)

=
∂kB log(Ω)

∂E

∣∣∣∣
V,N

Pm + kB
∂Pm

∂E

∣∣∣∣
V,N

=
∂S

∂E

∣∣∣∣
V,N

Pm + kB
∂Pm

∂E

∣∣∣∣
V,N

=
Pm

T
+ kB

∂Pm

∂E

∣∣∣∣
V,N

. (3.46)
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Now, P and T are both intensive variables, but E is extensive (scales
linearly with system size). Hence P/T is of order one for a large system,
but kB(∂P/∂E) is of order 1/N where N is the number of particles.
(For example, we shall see that for the ideal gas, PV = 2/3E = NkBT ,
so kB(∂P/∂E) = 2kB/3V = 2P/3NT = 2P/3NT ≪ P/T for large N .)
Hence the second term, for a large system, may be neglected, giving us
the desired relation:

∂S

∂V

∣∣∣∣
E,N

=
Pm

T
. (3.47)

The derivative of the entropy S(E, V,N) with respect to V at constant
E and N is thus indeed the mechanical pressure divided by the temper-
ature.

3.5 Entropy, the ideal gas, and

phase-space refinements

Let us find the temperature and pressure for the ideal gas, using our mi-
crocanonical ensemble. We will then introduce two subtle refinements
to the phase-space volume (one from quantum mechanics, and one for
undistinguished particles) which will not affect the temperature or pres-
sure, but will be important for the entropy and chemical potential.
We derived the volume Ω(E) of the energy shell in phase space in

Section 3.2; it factored46 into a momentum-shell volume from eqn 3.14 46It factors only because the potential
energy is zero.and a configuration-space volume V N . Before our refinements, we have

Ωcrude(E) = V N

(
3N

2E

)
π3N/2(2mE)3N/2

/
(3N/2)!

≈ V Nπ3N/2(2mE)3N/2
/
(3N/2)!. (3.48)

Notice that in the second line of eqn 3.48 we have dropped the term
3N/2E; it divides the phase-space volume by a negligible factor (two-
thirds the energy per particle).47 The entropy and its derivatives are 47Multiplying Ω(E) by a factor in-

dependent of the number of particles
is equivalent to adding a constant to
the entropy. The entropy of a typi-
cal system is so large (of order Avo-
gadro’s number times kB) that adding
a number-independent constant to it is
irrelevant. Notice that this implies that
Ω(E) is so large that multiplying it by
a constant does not significantly change
its value (Exercise 3.2).

(before our refinements)

Scrude(E) = kB log
(
V Nπ3N/2(2mE)3N/2

/
(3N/2)!

)

= NkB log(V ) +
3NkB

2
log(2πmE)− kB log[(3N/2)!],

(3.49)

1

T
=

∂S

∂E

∣∣∣∣
V,N

=
3NkB
2E

, (3.50)

P

T
=

∂S

∂V

∣∣∣∣
E,N

=
NkB
V

, (3.51)

so the temperature and pressure are given by

kBT =
2E

3N
, (3.52)

PV = NkBT. (3.53)
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The first line above is the temperature formula we promised in forming
eqn 3.19; velocity components of the particles in an ideal gas each have
average energy equal to 1/2kBT .
The second formula is the equation of state48 for the ideal gas. The48It is rare that the ‘equation of state’

can be written out as an explicit equa-
tion! Only in special cases (e.g., non-
interacting systems like the ideal gas)
can one solve in closed form for the
thermodynamic potentials, equations
of state, or other properties.

equation of state is the relation between the macroscopic variables of an
equilibrium system that emerges in the limit of large numbers of parti-
cles. The force per unit area on the wall of an ideal gas will fluctuate in
time around the pressure P (T, V,N) = NkBT/V given by the equation
of state, with the magnitude of the fluctuations vanishing as the system
size gets large.
In general, our definition for the energy-shell volume in phase space

needs two refinements. First, the phase-space volume has dimensions of
([length][momentum])3N ; the volume of the energy shell depends multi-
plicatively upon the units chosen for length, mass, and time. Changing
these units will change the corresponding crude form for the entropy
by adding a constant times 3N . Most physical properties, like tem-
perature and pressure above, are dependent only on derivatives of the
entropy, so the overall constant will not matter; indeed, the zero of the
entropy is undefined within classical mechanics. It is suggestive that
[length][momentum] has units of Planck’s constant h, and we shall see
in Chapter 7 that quantum mechanics in fact does set the zero of the
entropy. We shall see in Exercise 7.3 that dividing49 Ω(E) by h3N nicely49This is equivalent to using units for

which h = 1. sets the entropy density to zero in equilibrium quantum systems at ab-
solute zero.
Second, there is an important subtlety in quantum physics regarding

identical particles. Two electrons, or two helium atoms of the same
isotope, are not just hard to tell apart; they really are completely and
utterly the same (Fig. 7.3). We shall see in Section 7.3 that the proper
quantum treatment of identical particles involves averaging over possible
states using Bose and Fermi statistics.
In classical physics, there is an analogous subtlety regarding undistin-

guished particles. Undistinguished classical particles include the case of
identical (indistinguishable) particles at high temperatures, where the
Bose and Fermi statistics become unimportant (Chapter 7). We use
the term ‘undistinguished’ to also describe particles which in princi-
ple are not identical, but for which our Hamiltonian and measurement
instruments treat identically (pollen grains and colloidal particles, for
example). For a system of two undistinguished particles, the phase-
space points (pA,pB,qA,qB) and (pB ,pA,qB,qA) should not both be
counted; the volume of phase space Ω(E) should be half that given by a
calculation for distinguished particles. For N undistinguished particles,
the phase-space volume should be divided by N !, the total number of
ways the labels for the particles can be permuted.5050This N ! is sometimes known as the

Gibbs factor. Unlike the introduction of the factor h3N above, dividing the phase-
space volume by N ! does change the predictions of classical statistical
mechanics in important ways. We will see in Section 5.2.1 that the en-
tropy increase for joining containers of different kinds of particles should
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be substantial, while the entropy increase for joining containers filled
with undistinguished particles should be near zero. This result is cor-
rectly treated by dividing Ω(E) by N ! for each set of N undistinguished
particles. We call the resulting ensemble Maxwell–Boltzmann statistics,
to distinguish it from distinguishable statistics and from the quantum-
mechanical Bose and Fermi statistics.
Combining these two refinements gives us the proper energy-shell vol-

ume for classical undistinguished particles, replacing eqn 3.5:51 51Note that we also have dropped δE
from the left-hand side. Just as in
eqn 3.48 where we dropped a factor of
3N/2E for the ideal gas to simplify the
formulas (e.g., making the entropy ex-
tensive), one factor of δE is negligible
when the number of particles N is large
(see note 47).

Ω(E) =

∫

E<H(P,Q)<E+δE

dP dQ

N !h3N
. (3.54)

For the ideal gas, this refines Ωcrude of eqn 3.48 to

Ω(E) = (V N/N !) (π3N/2(2mE)3N/2/ (3N/2)!) (1/h)3N , (3.55)

S(E) = NkB log

[
V

h3
(2πmE)3/2

]
− kB log [N ! (3N/2)!] . (3.56)

We can make our equation for the ideal gas entropy more useful by using
Stirling’s formula log(N !) ≈ N logN −N , valid at large N :

S(E, V,N) =
5

2
NkB +NkB log

[
V

Nh3

(
4πmE

3N

)3/2
]
. (3.57)

This is the standard formula for the entropy of an ideal gas. We can put
it into a somewhat simpler form by writing it in terms of the particle
density ρ = N/V :

S = NkB

(
5

2
− log(ρλ3)

)
, (3.58)

where52

52De Broglie realized that matter could
act as a wave; a particle of momen-
tum p had a wavelength λquantum =
h/p. The mean square of one com-
ponent of momentum in our gas is
p2 = 2m(E/3N), so our parti-
cles have a quantum wavelength of
h/
√

2mE/3N =
√
2πλthermal—close

enough that we give de Broglie’s name
to λ too.

λ = h/
√
4πmE/3N (3.59)

is called the thermal de Broglie wavelength, and will be physically sig-
nificant for quantum systems at low temperature (Chapter 7).

Exercises

It is fun to notice the large and small numbers that show
up in statistical mechanics. We explore these in Temper-
ature and energy and Large and very large numbers.

Escape velocity explores why the Earth is not a gas gi-
ant like Jupiter. Pressure provides a concrete derivation
of the pressure for the ideal gas, directly from a simula-
tion of the molecular impacts on a surface. Hard sphere
gas provides the next step beyond the ideal gas law.

The next four exercises explore the statistics and fluc-
tuations of weakly-coupled systems. Connecting two
macroscopic systems illustrates the utility of δ-functions
in deriving the product law for the phase-space energy-
shell volume. Gas mixture, and Microcanonical energy
fluctuations show that the energy fluctuations are tiny,
first specifically and then in general. Gauss and Pois-
son explores the dependence of these fluctuations on the
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outside world.
Triple product relation, and Maxwell relations intro-

duce some of the tricky partial derivative relations in
thermodynamics. Finally, Solving differential equations:
the pendulum introduces the numerical methods used in
molecular dynamics, which can be used to simulate more
realistic gases (and liquids and solids), emphasizing the
three themes of accuracy, stability, and fidelity.

(3.1) Temperature and energy. ©1
What units [joules, millijoules, microjoules,
nanojoules, . . . , zeptojoules (10−21 joules), yoc-
tojoules (10−24 joules)] would we use to mea-
sure temperature if we used energy units in-
stead of introducing Boltzmann’s constant kB =
1.3807 × 10−23 J/K?

(3.2) Large and very large numbers. ©1
The numbers that arise in statistical mechanics
can defeat your calculator. A googol is 10100

(one with a hundred zeros after it). A googol-
plex is 10googol .
Consider a monatomic ideal gas with one mole of
particles (N = Avogadro’s number, 6.02×1023),
room temperature T = 300K, and volume V =
22.4 liters (corresponding to atmospheric pres-
sure).
(a) Which of the properties (S, T , E, and Ω(E))
of our gas sample are larger than a googol? A
googolplex? Does it matter what units you use,
within reason?
Some properties of the gas are intensive (inde-
pendent of N for large N), some are extensive
(proportional to N), and some grow even faster
with N .
(b) Which category (intensive, extensive, faster)
does each of the properties from part (a) belong
to?

(3.3) Escape velocity. ©2
The molecules in planetary atmospheres are
slowly leaking into interstellar space. The tra-
jectory of each molecule is a random walk, with
a step size that grows with height as the air be-
comes more dilute. Let us consider a crude ideal
gas model for this leakage, with no collisions ex-
cept with the ground.
For this exercise, treat diatomic oxygen as a
monatomic ideal gas with twice the mass of
an oxygen atom mO2 = 2mO. (This is not

an approximation; the rotations and vibra-
tions do not affect the center-of-mass trajec-
tory.) Assume that the probability distribu-
tion for the z-component of momentum53 is that
of the ideal gas, given in eqn 3.19: ρ(pz) =
1/
√
2πmkBT exp(−p2z/2mkBT ). For your con-

venience, kB = 1.3807 × 10−16 erg/K, mO2 =
5.3× 10−23 g, and T = 300K.
(a) What is the root-mean-square (RMS) verti-
cal velocity

√
〈v2z〉 of an O2 molecule? If a col-

lisionless molecule started at the Earth’s surface
with this RMS vertical velocity, how high would it
reach? How long before it hit the ground? (Use-
ful constant: g = 980 cm/s2.)
(b) Give the probability that an O2 molecule will
have a vertical component of the velocity greater
than Earth’s escape velocity (about 11 km/s).

(Hint:
∫∞
x

e−t2 dt ≈ e−x2

/2x for large x.)
(c) If we assume that the molecules do not col-
lide with one another, and each thermalizes its
velocity each time it collides with the ground (at
roughly the time interval from part (a)), about
what fraction of the oxygen molecules will we lose
per year? Do we need to worry about losing our
atmosphere? (It is useful to know that there
happen to be about π × 107 seconds in a year.)
Try this for H2, using T = 1000K (the temper-
ature in the upper atmosphere where the last
collision occurs). Is this why Jupiter has a hy-
drogen atmosphere, and Earth does not?

(3.4) Pressure computation.54 (Computation) ©2
Microscopically, pressure comes from atomic col-
lisions onto a surface. Let us calculate this mi-
croscopic pressure for an ideal gas, both analyti-
cally and using a molecular dynamics simulation.
You may download our molecular dynamics soft-
ware [10] from the text web site [129].
Run a simulation of the ideal gas in a system
with reflective walls. Each time an atom collides
with a wall, it undergoes specular reflection, with
the parallel momentum components unchanged
and the perpendicular momentum component
reversed.
(a) Remembering that pressure P = F/A is the
force per unit area, and that force F = dp/dt =
(
∑

∆P )/∆t is the net rate of momentum per
unit time. Suppose a wall of area A at x = L
is holding atoms to values x < L inside a box.
Write a formula for the pressure in terms of

53That is, we ignore wind and the rotation of the Earth.
54This exercise and the associated software were developed in collaboration with Christopher Myers.
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ρc(px), the expected number of collisions at that
wall per unit time with incoming momentum
px. (Hint: Check the factors of two, and lim-
its of your integral. Do negative momenta con-
tribute?)
The simulation provides an ‘observer’, which
records the magnitudes of all impacts on a wall
during a given time interval.
(b) Make a histogram of the number of impacts
on the wall during an interval ∆t with momen-
tum transfer ∆p. By what factor must you mul-
tiply ρc(px) from part (a) to get this histogram?
Unlike the distribution of momenta in the gas,
the probability ρc(px) of a wall collision with mo-
mentum px goes to zero as px goes to zero; the
ideal gas atoms which are not moving do not
collide with walls. The density of particles of
momentum px per unit volume per unit momen-
tum is the total density of particles N/V times
the probability that a particle will have momen-
tum px (eqn 3.19):

N

V

1√
2πmkBT

exp

(
− px

2

2mkBT

)
. (3.60)

(c) In a time ∆t, from how far away will will
atoms of incoming momentum px collide with
the wall? What should the resulting formula be
for ρc(px)? Does it agree with your histogram
of part (b)? What is your resulting equation for
the pressure P? Does it agree with the ideal gas
law?

(3.5) Hard sphere gas. ©2
We can improve on the realism of the ideal gas by
giving the atoms a small radius. If we make the
potential energy infinite inside this radius (hard
spheres), the potential energy is simple (zero un-
less the spheres overlap, which is forbidden). Let
us do this in two dimensions; three dimensions
is no more complicated, but slightly harder to
visualize.
A two-dimensional L × L box with hard walls
contains a gas of N hard disks of radius r ≪ L
(Fig. 3.5). The disks are dilute; the summed area
Nπr2 ≪ L2. Let A be the effective area allowed
for the disks in the box (Fig. 3.5): A = (L−2r)2.
(a) The area allowed for the second disk is A −
π(2r)2 (Fig. 3.6), ignoring the small correction
when the excluded region around the first disk
overlaps the excluded region near the walls of
the box. What is the allowed 2N-dimensional
volume in configuration space, of allowed zero-
energy configurations of hard disks, in this di-

lute limit? Ignore small corrections when the ex-
cluded region around one disk overlaps the ex-
cluded regions around other disks, or near the
walls of the box. Remember the 1/N ! correction
for identical particles. Leave your answer as a
product of N terms.

r

Fig. 3.5 Hard sphere gas.

Fig. 3.6 Excluded area around a hard disk.

(b) What is the configurational entropy for the
hard disks? Here, simplify your answer so that
it does not involve a sum over N terms, but
valid to first order in the area of the disks
πr2. Show, for large N , that it is well ap-
proximated by SQ = NkB(1 + log(A/N − b)),
with b representing the effective excluded area
due to the other disks. (You may want to
derive the formula

∑N
n=1 log (A− (n− 1)ǫ) =

N log (A− (N − 1)ǫ/2) + O(ǫ2).) What is the
value of b, in terms of the area of the disk?
(c) Find the pressure for the hard-disk gas in the
large N approximation of part (b). Does it re-
duce to the ideal gas law for b = 0?

(3.6) Connecting two macroscopic systems. ©3

An isolated system with energy E is composed
of two macroscopic subsystems, each of fixed vol-
ume V and number of particles N . The subsys-
tems are weakly coupled, so the sum of their en-
ergies is E1 + E2 = E (Fig. 3.3 with only the
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energy door open). ) We can use the Dirac
delta-function δ(x) (note 4 on p. 6) to define the
volume of the energy surface of a system with
Hamiltonian H:

Ω(E) =

∫
dPdQ
h3N

δ (E −H(P,Q)) (3.61)

=

∫
dP1 dQ1

h3N1

dP2 dQ2

h3N2

× δ (E − (H1(P1,Q1) +H2(P2,Q2))) .
(3.62)

Derive formula 3.21, Ω(E) =
∫
dE1 Ω1(E1)Ω2(E−

E1), for the volume of the energy surface of the
whole system using Dirac δ-functions (instead of
using energy shells, as in eqn 3.22). (Hint: In-
sert

∫
δ(E1−H1(P1,Q1)) dE1 = 1 into eqn 3.62.)

(3.7) Gas mixture. ©3
Consider a monatomic gas (He) mixed with a di-
atomic gas (H2). We approximate both as ideal
gases, so we may treat the helium gas as a sepa-
rate system, weakly coupled to the hydrogen gas
(despite the intermingling of the two gases in
space). We showed that a monatomic ideal gas

of N atoms has Ω1(E1) ∝ E
3N/2
1 . A diatomic

molecule has Ω2(E2) ∝ E5N/2
2 .55

(a) Calculate the probability density of system 1
being at energy E1 (eqn 3.23). For these two
gases, which energy Emax

1 has the maximum
probability?
(b) Approximate your answer to part (a) as a
Gaussian, by expanding the logarithm in a Tay-
lor series log (ρ(E1)) ≈ log (ρ(Emax

1 )) + (E1 −
Emax

1 )+. . . up to second derivatives, and then re-
exponentiating. In this approximation, what is
the mean energy 〈E1〉? What are the energy fluc-
tuations per particle

√
〈(E1 −Emax

1 )2〉/N? Are
they indeed tiny (proportional to 1/

√
N)?

For subsystems with large numbers of particles
N , temperature and energy density are well de-
fined because Ω(E) for each subsystem grows ex-
tremely rapidly with increasing energy, in such
a way that Ω1(E1)Ω2(E−E1) is sharply peaked
near its maximum.

(3.8) Microcanonical energy fluctuations. ©2
We argued in Section 3.3 that the energy fluctu-
ations between two weakly-coupled subsystems
are of order

√
N . Let us calculate them explic-

itly.

Equation 3.28 showed that for two subsystems
with energy E1 and E2 = E − E1 the proba-
bility density of E1 is a Gaussian with variance
(standard deviation squared):

σ2
E1

= −kB/
(
∂2S1/∂E

2
1 + ∂2S2/∂E

2
2

)
. (3.63)

(a) Show that

1

kB

∂2S

∂E2
= − 1

kBT

1

NcvT
, (3.64)

where cv is the inverse of the total specific heat
at constant volume. (The specific heat cv is the
energy needed per particle to change the tem-
perature by one unit: Ncv = (∂E/∂T )|V,N .)
The denominator of eqn 3.64 is the product
of two energies. The second term NcvT is a
system-scale energy; it is the total energy that
would be needed to raise the temperature of the
system from absolute zero, if the specific heat per
particle cv were temperature independent. How-
ever, the first energy, kBT , is an atomic-scale
energy independent of N . The fluctuations in
energy, therefore, scale like the geometric mean
of the two, summed over the two subsystems in
eqn 3.28, and hence scale as

√
N ; the total en-

ergy fluctuations per particle are thus roughly
1/
√
N times a typical energy per particle.

This formula is quite remarkable; it is a
fluctuation-response relation (see Section 10.7).
Normally, to measure a specific heat one would
add a small energy and watch the temperature
change. This formula allows us to measure the
specific heat of an object by watching the equi-
librium fluctuations in the energy. These fluc-
tuations are tiny for the sample sizes in typi-
cal experiments, but can be quite substantial in
computer simulations.
(b) If c

(1)
v and c

(2)
v are the specific heats per parti-

cle for two subsystems of N particles each, show
using eqns 3.63 and 3.64 that

1

c
(1)
v

+
1

c
(2)
v

=
NkBT

2

σ2
E1

. (3.65)

We do not even need to couple two systems. The
positions and momenta of a molecular dynamics
simulation (atoms moving under Newton’s laws
of motion) can be thought of as two uncoupled
subsystems, since the kinetic energy does not de-
pend on the configuration Q, and the potential
energy does not depend on the momenta P.

55This is true in the range ~2/2I ≪ kBT ≪ ~ω, where ω is the vibrational frequency of the stretch mode and I is the moment of
inertia. The lower limit makes the rotations classical; the upper limit freezes out the vibrations, leaving us with three classical
translation modes and two rotational modes—a total of five degrees of freedom.
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Assume a molecular dynamics simulation of N
interacting particles has measured the kinetic
energy as a function of time in an equilibrium,
constant-energy simulation,56 and has found a
mean kinetic energy K = 〈E1〉 and a standard
deviation σK .
(c) Using the equipartition theorem, write the

temperature in terms of K. Show that c
(1)
v =

3kB/2 for the momentum degrees of freedom. In
terms of K and σK , solve for the total specific
heat of the molecular dynamics simulation (con-
figurational plus kinetic).

(3.9) Gauss and Poisson. ©2
The deep truth underlying equilibrium statis-
tical mechanics is that the behavior of large,
weakly-coupled systems is largely independent of
their environment. What kind of heat bath sur-
rounds the system is irrelevant, so long as it has
a well-defined temperature, pressure, and chem-
ical potential. This is not true, however, of the
fluctuations around the average behavior, unless
the bath is large compared to the system. In
this exercise, we will explore the number fluctu-
ations of a subvolume of a total system K times
as large.
Let us calculate the probability of having n par-
ticles in a subvolume V , for a box with to-
tal volume KV and a total number of particles
T = KN0. For K = 2 we will derive our previ-
ous result, eqn 3.11, including the prefactor. As
K →∞ we will derive the infinite volume result.
(a) Find the exact formula for this probability;
n particles in V , with a total of T particles in
KV . (Hint: What is the probability that the
first n particles fall in the subvolume V , and
the remainder T − n fall outside the subvolume
(K − 1)V ? How many ways are there to pick n
particles from T total particles?)
The Poisson probability distribution

ρn = ane−a/n! (3.66)

arises in many applications. It arises whenever
there is a large number of possible events T each
with a small probability a/T ; e.g., the number
of cars passing a given point during an hour on a
mostly empty street, the number of cosmic rays
hitting in a given second, etc.
(b) Show that the Poisson distribution is nor-
malized:

∑
n ρn = 1. Calculate the mean of the

distribution 〈n〉 in terms of a. Calculate the vari-
ance (standard deviation squared)

〈
(n− 〈n〉)2

〉
.

(c) As K → ∞, show that the probability that n
particles fall in the subvolume V has the Poisson
distribution 3.66. What is a? (Hint: You will
need to use the fact that e−a = (e−1/K)Ka →
(1 − 1/K)Ka as K → ∞, and the fact that
n ≪ T . Here do not assume that n is large;
the Poisson distribution is valid even if there are
only a few events.)
From parts (b) and (c), you should be able to
conclude that the variance in the number of par-
ticles found in a volume V inside an infinite sys-
tem should be equal to N0, the expected number
of particles in the volume:

〈
(n− 〈n〉)2

〉
= N0. (3.67)

This is twice the squared fluctuations we found
for the case where the volume V was half of the
total volume, eqn 3.11. That makes sense, since
the particles can fluctuate more freely in an in-
finite volume than in a doubled volume.
IfN0 is large, will the probability Pm thatN0+m
particles lie inside our volume still be Gaus-
sian? Let us check this for all K. First, as
in Section 3.2.1, let us use the weak form of
Stirling’s approximation, eqn 3.8 dropping the
square root: n! ∼ (n/e)n.
(d) Using your result from part (a), write the
exact formula for log(Pm). Apply the weak form
of Stirling’s formula. Expand your result around
m = 0 to second order in m, and show that
log(Pm) ≈ −m2/2σ2

K , giving a Gaussian form

Pm ∼ e−m2/2σ2
K . (3.68)

What is σK? In particular, what are σ2 and σ∞?
Your result for σ2 should agree with the calcu-
lation in Section 3.2.1, and your result for σ∞
should agree with eqn 3.67.
Finally, we should address the normalization of
the Gaussian. Notice that the ratio of the strong
and weak forms of Stirling’s formula (eqn 3.8) is√
2πn. We need to use this to produce the nor-

malization 1 /
√
2πσK of our Gaussian.

(e) In terms of T and n, what factor would the
square root term have contributed if you had kept
it in Stirling’s formula going from part (a) to
part (d)? (It should look like a ratio involving
three terms like

√
2πX.) Show from eqn 3.68

that the fluctuations are small, m = n − N0 ≪

total momentum and angular momentum are not conserved.
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N0 for large N0. Ignoring these fluctuations, set
n = N0 in your factor, and give the prefactor
multiplying the Gaussian in eqn 3.68. (Hint:
Your answer should be normalized.)

(3.10) Triple product relation. (Thermodynamics,
Mathematics) ©3
In traditional thermodynamics, one defines the
pressure as minus the change in energy with vol-
ume P = −(∂E/∂V )|N,S , and the chemical po-
tential as the change in energy with number of
particles µ = (∂E/∂N)|V,S . The total internal
energy satisfies

dE = T dS − P dV + µdN. (3.69)

(a) Show by solving eqn 3.69 for dS that
(∂S/∂V )|N,E = P/T and (∂S/∂N)|V,E =
−µ/T .
I have always been uncomfortable with manipu-
lating dXs.57 How can we derive these relations
with traditional partial derivatives? Our equa-
tion of state S(E, V,N) at fixed N is a surface
embedded in three dimensions. Figure 3.4 shows
a triangle on this surface, which we can use to
derive a general triple-product relation between
partial derivatives.
(b) Show, if f is a function of x and y, that
(∂x/∂y)|f (∂y/∂f)|x(∂f/∂x)|y = −1. (Hint:
Consider the triangular path in Fig. 3.4. The
first side starts at (x0, y0, f0) and moves along a
contour at constant f to y0 +∆y. The resulting
vertex will thus be at (x0 + (∂x/∂y)|f∆y, y0 +
∆y, f0). The second side runs at constant x back
to y0, and the third side runs at constant y back
to (x0, y0, f0). The curve must close to make f
a single-valued function; the resulting equation
should imply the triple-product relation.)
(c) Starting from the ‘traditional’ definitions for
P and µ, apply your formula from part (b) to S
at fixed E to derive the two equations in part (a)
again. (This last calculation is done in the re-
verse direction in Section 3.4.)

(3.11) Maxwell relations. (Thermodynamics,
Mathematics) ©3
Consider the microcanonical formula for the
equilibrium energy E(S, V,N) of some general
system.58 One knows that the second deriva-
tives of E are symmetric; at fixed N , we get
the same answer whichever order we take partial
derivatives with respect to S and V .
(a) Use this to show the Maxwell relation

∂T

∂V

∣∣∣∣
S,N

= − ∂P
∂S

∣∣∣∣
V,N

. (3.70)

(This should take two lines of calculus or less.)
Generate two other similar formulæ by taking
other second partial derivatives of E. There are
many of these relations [52].
(b) Statistical mechanics check of the Maxwell
relation. Using eqn 3.57, derive formulæ for
E(S, V,N), T (S, V,N) = (∂E/∂S)|V,N , and
P (S,V,N) = −(∂E/∂V )|S,N for the ideal gas.
(Make sure you have T and P as functions N ,
V , and S and not E.) Show explicitly that the
Maxwell relation eqn 3.70 is satisfied.

(3.12) Solving differential equations: the pendu-
lum.59 (Computation) ©4
Physical systems usually evolve continuously in
time; their laws of motion are differential equa-
tions. Computer simulations must approximate
these differential equations using discrete time
steps. In this exercise, we will introduce the
most common and important method used for
molecular dynamics simulations, together with
fancier techniques used for solving more general
differential equations.
We will use these methods to solve for the dy-
namics of a pendulum:

d2θ

dt2
= θ̈ = − g

L
sin(θ). (3.71)

This equation gives the motion of a pendulum
with a point mass at the tip of a massless rod60

of length L. You may wish to rederive it using a
free-body diagram.
Go to our web site [129] and download the pen-
dulum files for the language you will be using.

57They are really differential forms, which are mathematically subtle (see note 23 on p. 116).
58One can derive the formula by solving S = S(N, V,E) for E. It is the same surface in four dimensions as S(N, V,E) (Fig. 3.4)
with a different direction pointing ‘up’.
59This exercise and the associated software were developed in collaboration with Christopher Myers. See also Numerical

Recipes [106, chapter 16].
60We will depict our pendulum emphasizing the rod rather than the mass; the equation for a physical rod without an end mass
is similar.
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The animation should show a pendulum oscillat-
ing from an initial condition θ0 = 2π/3, θ̇ = 0;
the equations being solved have g = 9.8m/s2

and L = 1m.
There are three independent criteria for picking a
good algorithm for solving differential equations:
fidelity, accuracy, and stability.

Fidelity. In our time step algorithm, we do not
make the straightforward choice—using the cur-
rent (θ(t), θ̇(t)) to produce (θ(t + δ), θ̇(t + δ)).
Rather, we use a staggered algorithm: θ(t) de-
termines the acceleration and the update θ̇(t)→
θ̇(t+δ), and then θ̇(t+δ) determines the update
θ(t)→ θ(t+ δ):

θ̇(t+ δ) = θ̇(t) + θ̈(t) δ, (3.72)

θ(t+ δ) = θ(t) + θ̇(t+ δ) δ. (3.73)

Would it not be simpler and make more sense to
update θ and θ̇ simultaneously from their current
values, so that eqn 3.73 would read θ(t + δ) =
θ(t) + θ̇(t) δ? This simplest of all time-stepping
schemes is called the Euler method, and should
not be used for ordinary differential equations
(although it is sometimes used for solving par-
tial differential equations).
(a) Try the Euler method. First, see why revers-
ing the order of the updates to θ and θ̇,

θ(t+ δ) = θ(t) + θ̇(t) δ,

θ̇(t+ δ) = θ̇(t) + θ̈(t) δ,
(3.74)

in the code you have downloaded would produce a
simultaneous update. Swap these two lines in the
code, and watch the pendulum swing for several
turns, until it starts looping the loop. Is the new
algorithm as good as the old one? (Make sure
you switch the two lines back afterwards.)
The simultaneous update scheme is just as accu-
rate as the one we chose, but it is not as faithful
to the physics of the problem; its fidelity is not
as good. For subtle reasons that we will not ex-
plain here, updating first θ̇ and then θ allows
our algorithm to exactly simulate an approxi-
mate Hamiltonian system;61 it is called a sym-
plectic algorithm.62 Improved versions of this

algorithm—like the Verlet algorithms below—
are often used to simulate systems that conserve
energy (like molecular dynamics) because they
exactly63 simulate the dynamics for an approx-
imation to the Hamiltonian—preserving impor-
tant physical features not kept by just approxi-
mately solving the dynamics.

Accuracy. Most computational methods for solv-
ing differential equations (and many other con-
tinuum problems like integrating functions) in-
volve a step size δ, and become more accurate
as δ gets smaller. What is most important is
not the error in each time step, but the accu-
racy of the answer after a fixed time T , which
is the accumulated error after T/δ time steps.
If this accumulated error varies as δn, we say
that the algorithm has nth order cumulative ac-
curacy. Our algorithm is not very high order!
(b) Solve eqns 3.72 and 3.73 to give θ(t + δ)
in terms of θ(t), θ̇(t) and θ̈(t) for our stag-
gered algorithm. Comparing to the Taylor series
x(t + τ ) = x(t) + vτ + 1/2aτ

2 + O(τ 3) applied to
θ(t), what order in δ is the error for θ in a single
time-step? Looking at eqn 3.73, what is the error
in one time step for θ̇? Given that the worst of
the two accuracies should determine the overall
accuracy, and that the time step error accumu-
lates over more steps as the step size decreases,
what order should the cumulative accuracy be for
our staggered algorithm?
(c) Plot the pendulum trajectory θ(t) for time
steps δ = 0.1, 0.01, and 0.001. Zoom in on the
curve at one of the coarse points (say, t = 1)
and visually compare the values from the three
time steps. Does it appear that the trajectory is
converging64 as δ → 0? What order cumulative
accuracy do you find: is each curve better by a
factor of 10, 100, 1000. . . ?
A rearrangement of our staggered time-step
(eqns 3.72 and 3.73) gives the velocity Verlet al-
gorithm:

θ̇(t+ δ/2) = θ̇(t) + 1/2θ̈(t) δ,

θ(t+ δ) = θ(t) + θ̇(t+ δ/2) δ, (3.75)

θ̇(t+ δ) = θ̇(t+ δ/2) + 1/2θ̈(t+ δ)δ.

61Equation 3.73 is Hamiltonian dynamics for non-interacting particles, and m times eqn 3.72 is the momentum evolution law
ṗ = F for a system of particles with infinite mass.
62It conserves a symplectic form. In non-mathematician’s language, this means our time step perfectly simulates a Hamiltonian
system satisfying Liouville’s theorem and energy conservation, but with an approximation to the true energy.
63Up to rounding errors.
64You may note that the approximate answers seem to extrapolate nicely to the correct answer. One can use this to converge
more quickly to the correct answer. This is called Richardson extrapolation and is the basis for the Bulirsch–Stoer methods.
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The trick that makes this algorithm so good is
to cleverly split the velocity increment into two
pieces, half for the acceleration at the old posi-
tion and half for the new position. (Initialize θ̈
once before starting the loop.)
(d) Show that N steps of our staggered time-
step would give the velocity Verlet algorithm, if
we shifted the velocities before and afterward by
∓1/2δθ̈.
(e) As in part (b), write θ(t+δ) for velocity Ver-
let in terms of quantities at t. What order cu-
mulative accuracy does this suggest?
(f) Implement velocity Verlet, and plot the tra-
jectory for time steps δ = 0.1, 0.01, and 0.001.
What is the order of cumulative accuracy?

Stability. In many cases high accuracy is not
crucial. What prevents us from taking enormous
time steps? In a given problem, there is usually
a typical fastest time scale: a vibration or os-
cillation period (as in our exercise) or a growth
or decay rate. When our time step becomes a
substantial fraction of this fastest time scale, al-
gorithms like ours usually become unstable; the
first few time steps may be fairly accurate, but
small errors build up exponentially until the er-
rors become unacceptable (indeed, often one’s
first warning of problems are machine overflows).
(g) Plot the pendulum trajectory θ(t) for time
steps δ = 0.1, 0.2, . . . , 0.8, using a small-
amplitude oscillation θ0 = 0.01, θ̇0 = 0.0, up to
tmax = 10. At about what δc does it go unstable?
How does δc compare with the characteristic time
period of the pendulum? At δc/2, how accurate is
the amplitude of the oscillation? (You will need
to observe several periods in order to estimate
the maximum amplitude of the solution.)
In solving the properties of large, nonlinear sys-
tems (e.g., partial differential equations (PDEs)
and molecular dynamics) stability tends to be
the key difficulty. The maximum step-size de-
pends on the local configuration, so highly non-
linear regions can send the system unstable be-
fore one might expect. The maximum safe sta-
ble step-size often has accuracy far higher than
needed.
The Verlet algorithms are not hard to code.
There are higher-order symplectic algorithms
for Hamiltonian systems, but they are mostly
used in unusual applications (planetary motion)
where high accuracy is demanded, because they
are typically significantly less stable. In sys-
tems of differential equations where there is

no conserved energy or Hamiltonian, or even
in Hamiltonian systems (like high-energy colli-
sions) where accuracy at short times is more cru-
cial than fidelity at long times, we use general-
purpose methods.

ODE (Ordinary Differential Equation) packages.
The general-purpose solvers come in a variety
of basic algorithms (Runge-Kutta, predictor-
corrector, . . . ), and methods for maintaining and
enhancing accuracy (variable step size, Richard-
son extrapolation). There are also implicitmeth-
ods for stiff systems. A system is stiff if there
is a large separation between the slowest and
fastest relevant time scales; implicit methods of-
ten allow one to take time steps much larger than
the fastest time scale (unlike the explicit Verlet
methods you studied in part (d), which go un-
stable). Large, sophisticated packages have been
developed over many years for solving differ-
ential equations—switching between algorithms
and varying the time steps to most efficiently
maintain a given level of accuracy. They solve
dy/dt = dydt(y, t), where for us y = [θ, θ̇] and
dydt = [θ̇, θ̈]. They typically come in the form
of subroutines or functions, which need the fol-
lowing as arguments:

• initial conditions y0,

• the right-hand side dydt, a function of the
vector y and time t, which returns a vector
giving the current rate of change of y, and

• the initial and final times, and perhaps inter-
mediate times, at which the trajectory y(t) is
desired.

They often have options that

• ask for desired accuracy goals, typically a rel-
ative (fractional) accuracy and an absolute ac-
curacy, sometimes set separately for each com-
ponent of y,

• ask for and return derivative and time step
information from the end of the last step
(to allow efficient restarts after intermediate
points),

• ask for a routine that computes the derivatives
of dydt with respect to the current compo-
nents of y (for use by the stiff integrator), and

• return information about the methods, time
steps, and performance of the algorithm.

You will be supplied with one of these general-
purpose packages, and instructions on how to use
it.
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(h) Write the function dydt, and use the
general-purpose solver to solve for the motion of
the pendulum as in parts (a)–(c), and informally

check that the trajectory is accurate.



 Copyright Oxford University Press 2006  v1.0                       --  



 Copyright Oxford University Press 2006  v1.0                       --  

Phase-space dynamics and

ergodicity 4
4.1 Liouville’s theorem 63

4.2 Ergodicity 65

So far, our justification for using the microcanonical ensemble was sim-
ple ignorance; all we know about the complex motion is that energy
must be conserved, so we average over all states in phase space of fixed
energy.1 Here we provide a much more convincing argument for the en- 1If you are willing to take this energy-

surface average on trust, the rest of this
text does not depend on the results in
this chapter.

semble, and hence for equilibrium statistical mechanics as a whole. In
Section 4.1 we will show for classical systems that averaging over the en-
ergy surface2 is consistent with time evolution. Liouville’s theorem will

2The energy surface should be thought
of as the energy shell E < H(P,Q) <
E + δE in the limit δE → 0. We fo-
cus here on the energy surface rather
than the energy shell because the dif-
ferent energies in the shell do not get
intermingled by the time evolution.

tell us that volume in phase space is conserved, so the trajectories only
stir the energy surface around, they do not change the relative weights
of different parts of the surface. In Section 4.2 we introduce the con-
cept of ergodicity; an ergodic system has an energy surface which is well
stirred. Using Liouville’s theorem and assuming ergodicity will allow us
to show3 that the microcanonical ensemble average gives the long-time

3We do not aspire to mathematical
rigor, but we will provide physical ar-
guments for rigorously known results;
see [79].

average behavior that we call equilibrium.

4.1 Liouville’s theorem

In Chapter 3, we saw that treating all states in phase space with a given
energy on an equal footing gave sensible predictions for the ideal gas,
but we did not show that this democratic treatment was necessarily the
correct one. Liouville’s theorem, true for all Hamiltonian systems, will
tell us that all states are created equal.
Systems of point particles obeying Newton’s laws without dissipation

are examples of Hamiltonian dynamical systems. These systems con-
serve the energy, given by the Hamiltonian H(P,Q). The laws of motion
are given from H by Hamilton’s equations:

q̇α = ∂H/∂pα,
ṗα = −∂H/∂qα,

(4.1)

where as usual Ẋ = ∂X/∂t. The standard example of a Hamiltonian,
and the only example we will discuss in this text, is a bunch of particles
interacting with a potential energy U :

H(P,Q) =
∑

α

pα
2/2mα + U(q1, . . . , q3N ). (4.2)

In this case, one immediately finds the expected Newtonian equations
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of motion:

q̇α = ∂H/∂pα = pα/mα,

ṗα = −∂H/∂qα = −∂U/∂qα = fα(q1, . . . , q3N ),
(4.3)

where fα is the force on coordinate α. More general Hamiltonians4 arise4You will cover Hamiltonian dynam-
ics in detail in most advanced courses
in classical mechanics. For those who
do not already know about Hamiltoni-
ans, rest assured that we will not use
anything other than the special case of
Newton’s laws for point particles; you
can safely ignore the more general case
for our purposes.

when studying, for example, the motions of rigid bodies or mechanical
objects connected by hinges and joints, where the natural variables are
angles or relative positions rather than points in space. Hamiltonians
also play a central role in quantum mechanics.5

5In Section 7.1 we discuss the quantum
version of Liouville’s theorem.

Hamiltonian systems have properties that are quite distinct from gen-
eral systems of differential equations. They not only conserve energy,
they also have many other unusual properties.6 Liouville’s theorem de-

6For the mathematically sophisticated
reader, Hamiltonian dynamics pre-
serves a symplectic form ω = dq1 ∧
dp1 + . . . + dq3N ∧ dp3N ; Liouville’s
theorem follows because the volume in
phase space is ω3N .

scribes the most important of these properties.

J

Fig. 4.1 Conserved currents in 3D.
Think of the flow in and out of a small
volume ∆V in space. The change in the
density inside the volume ∂ρ3D/∂t∆V
must equal minus the flow of mate-
rial out through the surface −

∫
J · dS,

which by Gauss’ theorem equals −
∫
∇·

J dV ∼ −∇ · J∆V .

Consider the evolution law for a general probability density in phase
space:

ρ(P,Q) = ρ(q1, . . . , q3N , p1, . . . , p3N ). (4.4)

(As a special case, the microcanonical ensemble has ρ equal to a con-
stant in a thin range of energies, and zero outside that range.) This
probability density ρ is locally conserved: probability cannot be created
or destroyed, it can only flow around in phase space. As an analogy,
suppose a fluid of mass density ρ3D(x) in three dimensions has a veloc-
ity v(x). Because mass density is locally conserved, ρ3D must satisfy
the continuity equation ∂ρ3D/∂t = −∇ · J, where J = ρ3Dv is the mass
current (Fig. 4.1). In the same way, the probability density in 6N dimen-
sions has a phase-space probability current (ρ Ṗ, ρ Q̇) and hence satisfies
a continuity equation

∂ρ

∂t
= −∇6N (ρv6N ) = −

3N∑

α=1

(
∂(ρq̇α)

∂qα
+
∂(ρṗα)

∂pα

)

= −
3N∑

α=1

(
∂ρ

∂qα
q̇α + ρ

∂q̇α
∂qα

+
∂ρ

∂pα
ṗα + ρ

∂ṗα
∂pα

)
. (4.5)

Now, it is clear what is meant by ∂ρ/∂qα, since ρ is a function of the
qαs and pαs. But what is meant by ∂q̇α/∂qα? For our example of
point particles, q̇α = pα/m has no dependence on qα; nor does ṗα =
fα(q1, . . . , q3N ) have any dependence on the momentum pα.

7 Hence these7In contrast, it would typically gener-
ally depend on the coordinate qα. two mysterious terms in eqn 4.5 both vanish for Newton’s laws for point

particles. Indeed, using Hamilton’s equations 4.1, we find that they
cancel one another for a general Hamiltonian system:

∂q̇α/∂qα = ∂(∂H/∂pα)/∂qα = ∂2H/∂pα∂qα = ∂2H/∂qα∂pα
= ∂(∂H/∂qα)/∂pα = ∂(−ṗα)/∂pα = −∂ṗα/∂pα. (4.6)

This leaves us with the equation

∂ρ

∂t
+

3N∑

α=1

∂ρ

∂qα
q̇α +

∂ρ

∂pα
ṗα =

dρ

dt
= 0. (4.7)
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This is Liouville’s theorem.
What is dρ/dt, and how is it different from ∂ρ/∂t? The former is

called the total derivative of ρ with respect to time; it is the evolution
of ρ seen by a particle moving with the flow. In a three-dimensional
flow, dρ3D/dt = ∂ρ/∂t + v · ∇ρ = ∂ρ/∂t +

∑3
i=1 ẋi(∂ρ/∂xi); the first

term is the change in ρ due to the time evolution at fixed position, and
the second is the change in ρ that a particle moving with velocity v
would see if the ρ field did not change in time. Equation 4.7 is the same
physical situation, but in 6N -dimensional phase space.

t

Fig. 4.2 Incompressible flow. A
small volume in phase space may be
stretched and twisted by the flow, but
Liouville’s theorem shows that the vol-
ume stays unchanged.

What does Liouville’s theorem, dρ/dt = 0, tell us about Hamiltonian
dynamics?

• Flows in phase space are incompressible. In fluid mechanics, if
the density dρ3D/dt = 0 it means that the fluid is incompressible. The
density of a small element of fluid does not change as it moves around
in the fluid; hence the small element is not compressing or expanding.
In Liouville’s theorem, it means the same thing; a small volume in
phase space will evolve into a new shape, perhaps stretched, twisted,
or folded, but with exactly the same volume (Fig. 4.2).

• There are no attractors. In other dynamical systems, most states
of the system are usually transient, and the system settles down onto
a small set of states called the attractor. A damped pendulum will
stop moving; the attractor has zero velocity and vertical angle (Ex-
ercise 4.2). A forced, damped pendulum will settle down to oscillate
with a particular amplitude; the attractor is a circle in phase space.
The decay of these transients in dissipative systems would seem closely
related to equilibration in statistical mechanics, where at long times
all initial states of a system will settle down into static equilibrium
behavior.8 Perversely, we have just proven that equilibration in sta- 8We will return to the question of

how irreversibility and damping emerge
from statistical mechanics many times
in the rest of this book. It will always
involve introducing approximations to
the microscopic theory.

tistical mechanics happens by a completely different mechanism! In
equilibrium statistical mechanics all states are created equal; transient
states are temporary only insofar as they are very unusual, so as time
evolves they disappear, to arise again only as rare fluctuations.

• Microcanonical ensembles are time independent. An initial
uniform density in phase space will stay uniform. More generally, since
energy is conserved, a uniform density over a small shell of energies
(E,E + δE) will stay uniform.

Liouville’s theorem tells us that the energy surface may get stirred
around, but the relative weights of parts of the surface are given by
their phase-space volumes (Fig. 3.1) and do not change. This property
is a necessary condition for our microcanonical ensemble to describe the
time-independent equilibrium state.

4.2 Ergodicity

By averaging over the energy surface, statistical mechanics is making a
hypothesis, first stated by Boltzmann. Roughly speaking, the hypothesis
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Fig. 4.3 KAM tori and non-

ergodic motion. This is a (Poincaré)
cross-section (Fig. 4.8) of Earth’s mo-
tion in the three-body problem (Exer-
cise 4.4), with Jupiter’s mass set at al-
most 70 times its actual value. The
closed loops correspond to trajectories
that form tori in phase space, whose
cross-sections look like deformed circles
in our view. The complex filled region
is a single trajectory exhibiting chaotic
motion, and represents an ergodic com-
ponent. The tori, each an ergodic com-
ponent, can together be shown to oc-
cupy non-zero volume in phase space,
for small Jovian masses. Note that this
system is not ergodic according to ei-
ther of our definitions. The trajectories
on the tori never explore the rest of the
energy surface. The region R formed
by the chaotic domain is invariant un-
der the time evolution; it has positive
volume and the region outside R also
has positive volume.

is that the energy surface is thoroughly stirred by the time evolution; it
is not divided into some kind of components that do not intermingle (see
Fig. 4.3). A system which is thoroughly stirred is said to be ergodic.9

9Mathematicians distinguish between
ergodic (stirred) and mixing (scram-
bled); we only need to assume ergodic-
ity here. See [79] for more information
about ergodicity.

The original way of defining ergodicity is due to Boltzmann. Adapting
his definition, we have

Definition 1 In an ergodic system, the trajectory of almost every1010What does almost every mean?
Technically, it means all but a set of
zero volume (measure zero). Basically,
the qualification ‘almost’ is there to
avoid problems with unusual, specific
initial conditions like all the particles
moving precisely at the same velocity
in neat rows.

point in phase space eventually passes arbitrarily close11 to every

11Why not just assume that every
point on the energy surface gets passed
through? Boltzmann originally did
assume this. However, it can be
shown that a smooth curve (our time-
trajectory) cannot fill up a whole vol-
ume (the energy surface). In an ergodic
system the trajectory covers the energy
surface densely, but not completely.

other point (position and momentum) on the surface of constant
energy.

The most important consequence of ergodicity is that time averages
are equal to microcanonical averages.12 Intuitively, since the trajectory

12If an ergodic system equilibrates (i.e.,
does not oscillate forever), the time
average behavior will be determined
by the equilibrium behavior; ergodicity
then implies that the equilibrium prop-
erties are equal to the microcanonical
averages.

(P(t),Q(t)) covers the whole energy surface, the average of any property
O(P(t),Q(t)) over time is the same as the average of O over the energy
surface.
This turns out to be tricky to prove, though. It is easier mathemat-

ically to work with another, equivalent definition of ergodicity. This
definition roughly says that the energy surface cannot be divided into
components which do not intermingle. Let us define an ergodic compo-
nent R of a set13 S to be a subset that remains invariant under the flow

13Here S is the energy surface.

(so r(t) ∈ R for all r(0) ∈ R).

Definition 2 A time evolution in a set S is ergodic if and only if
all the ergodic components R in S either have zero volume or have
a volume equal to the volume of S.

We can give an intuitive explanation of why these two definitions
are equivalent (but it is hard to prove). A trajectory r(t) must lie
within a single ergodic component. If r(t) covers the energy surface



 Copyright Oxford University Press 2006  v1.0                       --  

4.2 Ergodicity 67

densely (Definition 1), then there is ‘no more room’ for a second ergodic
component with non-zero volume (Definition 2).14 Conversely, if there 14Mathematicians must be careful in

the definitions and proofs to exclude
different invariant sets that are in-
finitely finely intertwined.

is only one ergodic component R with volume equal to S (Definition 2),
then any trajectory starting in R must get arbitrarily close to all points
in R (Definition 1), otherwise the points in R ‘far’ from the trajectory
(outside the closure of the trajectory) would be an invariant set of non-
zero volume.
Using this second definition of ergodic, we can argue that time av-

erages must equal microcanonical averages. Let us denote the micro-
canonical average of an observable O as 〈O〉S , and let us denote the
time average starting at initial condition (P,Q) as O(P(0),Q(0)) =

limT→∞ (1/T )
∫ T

0 O(P(t),Q(t)) dt.
Showing that the time average Ō equals the ensemble average 〈O〉S

for an ergodic system (using this second definition) has three steps.

(1) Time averages are constant on trajectories. If O is a nice
function (e.g. without any infinities on the energy surface), then

O(P(0),Q(0)) = O(P(t),Q(t)); (4.8)

the future time average does not depend on the values of O during
the finite time interval (0, t). Thus the time average Ō is constant
along the trajectory.15

15If we could show that Ō had to be
a continuous function, we would now
be able to use the first definition of
ergodicity to show that it was con-
stant on the energy surface, since our
trajectory comes close to every point
on the surface. But it is not obvious
that Ō is continuous; for example, it
is not continuous for Hamiltonian sys-
tems that are not ergodic. We can see
this from Fig. 4.3; consider two initial
conditions at nearby points, one just in-
side a chaotic region and the other on
a KAM torus. The infinite time aver-
ages on these two trajectories for most
quantities will be quite different; Ō will
typically have a jump at the boundary.

(2) Time averages are constant on the energy surface. Now
consider the subset Ra of the energy surface where Ō < a, for some
value a. Since Ō is constant along a trajectory, any point in Ra

is sent under the time evolution to another point in Ra, so Ra is
an ergodic component. If we have ergodic dynamics on the energy
surface, that means the set Ra has either zero volume or the volume
of the energy surface. This implies that Ō is a constant on the energy
surface (except on a set of zero volume); its value is a∗, the lowest
value where Ra∗ has the whole volume. Thus the equilibrium, time
average value of our observable O is independent of initial condition.

(3) Time averages equal microcanonical averages. Is this equi-
librium value given by the microcanonical ensemble average over S?
We need to show that the trajectories do not linger in some regions
of the energy surface more than they should (based on the thickness
of the energy shell, Fig. 3.1). Liouville’s theorem in Section 4.1 told
us that the microcanonical ensemble was time independent, so the
ensemble average equals its time average, which equals the ensemble
average of the time average. But the time average is constant (ex-
cept on a set of zero volume), so in an ergodic system the ensemble
average equals the time average everywhere (except on a set of zero
volume).16

16In formulæ, 〈O〉S = 〈O(t)〉S =
〈O(P(t),Q(t))〉S , where the average
〈·〉S integrates over initial condi-
tions (P(0),Q(0)) but evaluates O at
(P(t),Q(t)). Averaging over all time,
and using the fact that the time aver-
age Ō = a∗ (almost everywhere), tells
us

〈O〉S = lim
T→∞

1

T

∫ T

0
〈O(P(t),Q(t))〉S dt

=

〈
lim

T→∞
1

T

∫ T

0
O(P(t),Q(t)) dt

〉

S

= 〈O(P,Q)〉S = 〈a∗〉S = a∗.
(4.9)

Can we show that our systems are ergodic? Usually not.17 Ergodic-

17That is, it cannot be proven for
the microscopic dynamics: it is of-
ten straightforward to show ergodicity
for computer equilibration algorithms
(see 8.2).

ity has been proven for the collisions of hard spheres, and for geodesic
motion on finite surfaces with constant negative curvature,18 but not

18Geodesic motion on a sphere would
be motion at a constant speed around
great circles. Geodesics are the short-
est paths between two points. In gen-
eral relativity, falling bodies travel on
geodesics in space–time.

for many systems of immediate practical importance. Indeed, several
fundamental problems precisely involve systems which are not ergodic.
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• KAM tori and the three-body problem. Generations of mathe-
maticians and physicists have worked on the gravitational three-body
problem.19 The key challenge was showing that the interactions be-19Newton solved the gravitational two-

body problem, giving Kepler’s ellipse. tween the planets do not completely mess up their orbits over long
times. One must note that ‘messing up their orbits’ is precisely what
an ergodic system must do! (There is just as much phase space at con-
stant energy with Earth and Venus exchanging places, and a whole
lot more with Earth flying out into interstellar space.) In the last cen-
tury20 the KAM theorem was proven, which showed that (for small20That is, the twentieth century.

interplanetary interactions and a large fraction of initial conditions)
the orbits of the planets qualitatively stayed in weakly-perturbed el-
lipses around the Sun (KAM tori, see Fig. 4.3). Other initial con-
ditions, intricately intermingled with the stable ones, lead to chaotic
motion. Exercise 4.4 investigates the KAM tori and chaotic motion
in a numerical simulation.
From the KAM theorem and the study of chaos in these systems we
learn that Hamiltonian systems with small numbers of particles are
often, even usually, not ergodic—there are commonly regions formed
by tori of non-zero volume which do not mix with the rest of the
energy surface.

• Fermi, Pasta, Ulam, and KdV. You might think that this is a
peculiarity of having only a few particles. Surely if there are lots
of particles, such funny behavior has to go away? On one of the
early computers developed for the Manhattan project, Fermi, Pasta,
and Ulam tested this [38]. They took a one-dimensional chain of
atoms, coupled them with anharmonic potentials, and tried to look
for thermalization. To quote them [38, p. 978] :

Let us say here that the results of our computations were,
from the beginning, surprising us. Instead of a continuous
flow of energy from the first mode to the higher modes, all
of the problems show an entirely different behavior. [. . . ]
Instead of a gradual increase of all the higher modes, the
energy is exchanged, essentially, among only a certain few.
It is, therefore, very hard to observe the rate of ‘thermal-
ization’ or mixing in our problem, and this was the initial
purpose of the calculation.

It turns out that their system, in the continuum limit, gave a partial
differential equation (the Korteweg–de Vries equation) that was even
weirder than planetary motion; it had an infinite family of conserved
quantities, and could be exactly solved using a combination of fronts
called solitons.
The kind of non-ergodicity found in the Korteweg–de Vries equa-
tion was thought to arise in only rather special one-dimensional sys-
tems. The discovery of anharmonic localized modes in generic, three-
dimensional systems [110, 115, 133] suggests that non-ergodicity may
arise in rather realistic lattice models.

• Broken symmetry phases. Many phases have broken symmetries.
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Magnets, crystals, superfluids, and liquid crystals, for example, violate
ergodicity because they only explore one of a variety of equal-energy
ground states (see Chapter 9). For example, a liquid may explore all
of phase space with a given energy, but an infinite crystal (with a neat
grid of atoms aligned in a particular orientation) will never fluctuate
to change its orientation, or (in three dimensions) the registry of its
grid. That is, a 3D crystal has broken orientational and translational
symmetries. The real system will explore only one ergodic component
of the phase space (one crystal position and orientation), and we must
do the same when making theories of the system.

• Glasses. There are other kinds of breakdowns of the ergodic hypoth-
esis. For example, glasses fall out of equilibrium as they are cooled;
they no longer ergodically explore all configurations, but just oscil-
late about one of many metastable glassy states. Certain models of
glasses and disordered systems can be shown to break ergodicity—not
just into a small family of macroscopic states as in normal symmetry-
breaking phase transitions, but into an infinite number of different,
disordered ground states. It is an open question whether real glasses
truly break ergodicity when cooled infinitely slowly, or whether they
are just sluggish, ‘frozen liquids’.

Should we be concerned that we cannot prove that our systems are
ergodic? It is entertaining to point out the gaps in the foundations
of statistical mechanics, especially since they tie into so many central
problems in mathematics and physics (above). We emphasize that these
gaps are for most purposes purely of academic concern. Statistical me-
chanics works phenomenally well in most systems with large numbers of
interacting degrees of freedom.
Indeed, the level of rigor here is unusual. In other applications of

statistical mechanics we rarely have as thorough a justification of our
ensemble as Liouville and assuming ergodicity provides for equilibrium
thermal systems.

Exercises

Equilibration checks that realistic molecular dynamics
simulations actually do settle down to states predicted
by our equilibrium theories.

Liouville vs. the damped pendulum and Invariant mea-
sures explore analogues of Liouville’s theorem in dissipa-
tive and chaotic systems. The first investigates how the
theorem breaks down when dissipation is added. The sec-
ond explores the complex, singular ensemble formed by

the folding and stretching of a chaotic map.
Jupiter! and the KAM theorem vividly illustrates the

breakdown of ergodicity in planetary motion; an ergodic
solar system would be an unpleasant place to live.

(4.1) Equilibration.21 (Computation) ©2
Can we verify that realistic systems of atoms equi-
librate? As we have discussed in Section 4.2, we
do not know how to prove that systems of realistic

21This exercise and the associated software were developed in collaboration with Christopher Myers.
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atoms are ergodic. Also, phase space is so large
we cannot verify ergodicity by checking compu-
tationally that a trajectory visits all portions of
it.
(a) For 20 particles in a box of size L × L × L,
could we hope to test if our trajectory came close
to all spatial configurations of the atoms? Let us
call two spatial configurations ‘nearby’ if the cor-
responding atoms in the two configurations are
in the same (L/10) × (L/10) × (L/10) subvol-
ume. How many ‘distant’ spatial configurations
are there? On a hypothetical computer that could
test 1012 such configurations per second, how
many years would it take to sample this number of
configurations? (Hint: Conveniently, there are
roughly π × 107 seconds in a year.
We certainly can solve Newton’s laws using molec-
ular dynamics to check the equilibrium predictions
made possible by assuming ergodicity. You may
download our molecular dynamics software [10]
and hints for this exercise from the text web
site [129].
Run a constant-energy (microcanonical) simula-
tion of a fairly dilute gas of Lennard–Jones par-
ticles (crudely modeling argon or other noble
gases). Start the atoms at rest (an atypical, non-
equilibrium state), but in a random configuration
(except ensure that no two atoms in the initial
configuration overlap, less than |∆r| = 1 apart).
The atoms that start close to one another should
start moving rapidly, eventually colliding with the
more distant atoms until the gas equilibrates into
a statistically stable state.
We have derived the distribution of the compo-
nents of the momenta (px, py, pz) for an equilib-
rium ideal gas (eqn 3.19 of Section 3.2.2),

ρ(px) =
1√

2πmkBT
exp

(
− px

2

2mkBT

)
(4.10)

This momentum distribution also describes inter-
acting systems such as the one we study here (as
we shall show in Chapter 6).
(b) Plot a histogram of the components of the
momentum in your gas for a few time intervals,
multiplying the averaging time by four for each
new graph, starting with just the first time-step.
At short times, this histogram should be peaked
around zero, since the atoms start at rest. Do
they appear to equilibrate to the Gaussian predic-
tion of eqn 4.10 at long times? Roughly estimate

the equilibration time, measured using the time de-
pendence of the velocity distribution. Estimate the
final temperature from your histogram.
These particles, deterministically following New-
ton’s laws, spontaneously evolve to satisfy the
predictions of equilibrium statistical mechanics.
This equilibration, peculiar and profound from a
dynamical systems point of view, seems obvious
and ordinary from the perspective of statistical
mechanics. See Fig. 4.3 and Exercise 4.4 for a
system of interacting particles (planets) which in-
deed does not equilibrate.

(4.2) Liouville vs. the damped pendulum.
(Mathematics) ©2
The damped pendulum has a force −γp propor-
tional to the momentum slowing down the pen-
dulum. It satisfies the equations

ẋ = p/M,

ṗ = −γp−K sin(x).
(4.11)

At long times, the pendulum will tend to an equi-
librium stationary state, zero velocity at x = 0
(or more generally at the equivalent positions
x = 2mπ, for m an integer); (p, x) = (0, 0) is an
attractor for the damped pendulum. An ensem-
ble of damped pendulums is started with initial
conditions distributed with probability ρ(p0, x0).
At late times, these initial conditions are gathered
together near the equilibrium stationary state; Li-
ouville’s theorem clearly is not satisfied.
(a) In the steps leading from eqn 4.5 to eqn 4.7,
why does Liouville’s theorem not apply to the
damped pendulum? More specifically, what are
∂ṗ/∂p and ∂q̇/∂q?
(b) Find an expression for the total derivative
dρ/dt in terms of ρ for the damped pendulum. If
we evolve a region of phase space of initial vol-
ume A = ∆p∆x how will its volume depend upon
time?

(4.3) Invariant measures.22 (Mathematics, Com-
plexity) ©4
Liouville’s theorem tells us that all available
points in phase space are equally weighted when
a Hamiltonian system is averaged over all times.
What happens for systems that evolve according
to laws that are not Hamiltonian? Usually, the
system does not continue to explore all points in
its state space; at long times it is confined to a

22This exercise and the associated software were developed in collaboration with Christopher Myers; see [64]. Hints avail-
able [129].
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subset of the original space known as the attrac-
tor.
We consider the behavior of the ‘logistic’ mapping
from the unit interval (0, 1) into itself:23

f(x) = 4µx(1− x). (4.12)

We talk of the trajectory of an initial point x0 as
the sequence of points x0, f(x0), f(f(x0)), . . . ,
f [n](x0), . . . . Iteration can be thought of as a
time step (one iteration of a Poincaré return map
of Exercise 4.4 or one step ∆t in a time-step al-
gorithm as in Exercise 3.12).
Attracting fixed point. For small µ, our mapping
has an attracting fixed-point. A fixed-point of a
mapping is a value x∗ = f(x∗); a fixed-point is
stable if small perturbations shrink after iterat-
ing:

|f(x∗ + ǫ)− x∗| ≈ |f ′(x∗)|ǫ < ǫ, (4.13)

which happens if the derivative |f ′(x∗)| < 1.24

(a) Iteration. Set µ = 0.2; iterate f for some ini-
tial points 0 < x0 < 1 of your choosing, and con-
vince yourself that they are all attracted to zero.
Plot f and the diagonal y = x on the same plot.
Are there any fixed-points other than x = 0? Re-
peat for µ = 0.4, and 0.6. What happens?
Analytics. Find the non-zero fixed-point x∗(µ) of
the map 4.12, and show that it exists and is sta-
ble for 1/4 < µ < 3/4. If you are ambitious
or have a computer algebra program, show that
there is a stable, period-two cycle for 3/4 < µ <
(1 +

√
6)/4.

An attracting fixed-point is the antithesis of Liou-
ville’s theorem; all initial conditions are transient
except one, and all systems lead eventually to
the same, time-independent state. (On the other
hand, this is precisely the behavior we expect
in statistical mechanics on the macroscopic scale;
the system settles down into a time-independent
equilibrium state! All microstates are equivalent,
but the vast majority of accessible microstates
have the same macroscopic behavior in most large
systems.) We could define a rather trivial ‘equi-
librium ensemble’ for this system, which consists

of the single point x∗; any property O(x) will have
the long-time average 〈O〉 = O(x∗).
For larger values of µ, more complicated things
happen. At µ = 1, the dynamics can be shown
to fill the entire interval; the dynamics is ergodic,
and the attractor fills the entire set of available
states. However, unlike the case of Hamiltonian
systems, not all states are weighted equally (i.e.,
Liouville’s theorem does not hold).
We can find time averages for functions of x in
two ways: by averaging over time (many iterates
of the map) or by weighting an integral over x
by the invariant density ρ(x). The invariant den-
sity ρ(x) dx is the probability that a point on a
long trajectory will lie between x and x+ dx. To
find it numerically, we iterate a typical point25

x0 a thousand or so times (Ntransient) to find a
point xa on the attractor, and then collect a long
trajectory of perhaps a million points (Ncycles). A
histogram of this trajectory gives ρ(x). Averaging
over this density is manifestly the same as a time
average over the trajectory of a million points.
We call ρ(x) invariant because it is left the same
under the mapping f ; iterating our million-point
approximation for ρ once under f only removes
the first point xa and adds one extra point to the
end.

(b) Invariant density. Set µ = 1; iterate f many
times, and form a histogram of values giving the
density ρ(x) of points along the trajectory. You
should find that points x near the boundaries are
approached more often than points near the cen-
ter.
Analytics. Using the fact that the long-time aver-
age ρ(x) must be independent of time, verify for
µ = 1 that the density of points is26

ρ(x) =
1

π
√
x(1− x)

. (4.14)

Plot this theoretical curve with your numerical
histogram. (Hint: The points in a range dx
around a point x map under f to a range dy =
f ′(x) dx around the image y = f(x). Each it-
eration maps two points xa and xb = 1 − xa to
y, and thus maps all the density ρ(xa)|dxa| and

23We also study this map in Exercises 5.9, 5.16, and 12.9.
24For many-dimensional mappings, a sufficient criterion for stability is that all the eigenvalues of the Jacobian have mag-
nitude smaller than one. A continuous time evolution dy/dt = F (y) will be stable if dF/dy is smaller than zero, or (for
multidimensional systems) if the Jacobian DF has eigenvalues whose real parts are all less than zero.
25For example, we must not choose an unstable fixed-point or unstable periodic orbit!
26You need not derive the factor 1/π, which normalizes the probability density to one.
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ρ(xb)|dxb| into dy. Hence the probability ρ(y) dy
must equal ρ(xa)|dxa|+ ρ(xb)|dxb|, so

ρ(f(xa)) = ρ(xa)/|f ′(xa)|+ ρ(xb)/|f ′(xb)|.
(4.15)

Substitute eqn 4.14 into eqn 4.15. You will need
to factor a polynomial.)
Mathematicians call this probability density
ρ(x) dx the invariant measure on the attractor.27

To get the long-term average of any function
O(x), one can use

〈O〉 =
∫
O(x)ρ(x) dx. (4.16)

To a mathematician, a measure is a way of weight-
ing different regions when calculating integrals—
precisely our ρ(x) dx. Notice that, for the case of
an attracting fixed-point, we would have ρ(x) =
δ(x∗).28

Cusps in the invariant density. At values of µ
slightly smaller than one, our mapping has a
rather complex invariant density.
(c) Find the invariant density (as described above)
for µ = 0.9. Make your trajectory length Ncycles

big enough and the bin size small enough to see the
interesting structures. Notice that the attractor no
longer fills the whole range (0, 1); locate roughly
where the edges are. Notice also the cusps in ρ(x)
at the edges of the attractor, and also at places
inside the attractor (called boundaries, see [64]).
Locate some of the more prominent cusps.

0.2 0.4 0.6 0.8

Fig. 4.4 Invariant density in the chaotic region
(µ = 0.95).

Analytics of cusps. Notice that f ′(1/2) = 0, so
by eqn 4.15 we know that ρ(f(x)) ≥ ρ(x)/|f ′(x)|
must have a singularity near x = 1/2; all the points
near x = 1/2 are squeezed together and folded to
one side by f . Further iterates of this singular-
ity produce more cusps; the crease after one fold
stays a crease after being further stretched and
kneaded.

(d) Set µ = 0.9. Calculate f(1/2), f(f(
1/2)), . . .

and compare these iterates to the locations of the
edges and cusps from part (c). (You may wish to
include them both on the same plot.)

µ

x

Fig. 4.5 Bifurcation diagram in the chaotic re-

gion. Notice the boundary lines threading through
the diagram, images of the crease formed by the fold-
ing at x = 1/2 in our map (see [64]).

Bifurcation diagram. The evolution of the attrac-
tor and its invariant density as µ varies are plot-
ted in the bifurcation diagram, which is shown for
large µ in Fig. 4.5. One of the striking features in
this plot are the sharp boundaries formed by the
cusps.
(e) Bifurcation diagram. Plot the attractor (dupli-
cating Fig. 4.5) as a function of µ, for 0.8 < µ <
1. (Pick regularly-spaced δµ, run ntransient steps,
record ncycles steps, and plot. After the routine is
working, you should be able to push ntransient and
ncycles both larger than 100, and δµ < 0.01.)
On the same plot, for the same µs, plot the first
eight images of x = 1/2, that is, f(

1/2), f(f(
1/2)), . . . .

Are the boundaries you see just the cusps? What
happens in the bifurcation diagram when two
boundaries touch? (See [64].)

(4.4) Jupiter! and the KAM theorem. (Astro-
physics, Mathematics) ©3
See also the Jupiter web pages [120].
The foundation of statistical mechanics is the er-
godic hypothesis: any large system will explore
the entire energy surface. We focus on large sys-
tems because it is well known that many systems
with a few interacting particles are definitely not
ergodic.

27There are actually many possible invariant measures on some attractors; this one is the SRB measure (John Guckenheimer,
private communication).
28The case of a fixed-point then becomes mathematically a measure with a point mass at x∗.
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The classic example of a non-ergodic system is the
Solar System. Jupiter has plenty of energy to send
the other planets out of the Solar System. Most
of the phase-space volume of the energy surface
has eight planets evaporated and Jupiter orbiting
the Sun alone; the ergodic hypothesis would doom
us to one long harsh winter. So, the big question
is: why has the Earth not been kicked out into
interstellar space?

Fig. 4.6 The Earth’s trajectory around the Sun if
Jupiter’s mass is abruptly increased by about a factor
of 100.

Mathematical physicists have studied this prob-
lem for hundreds of years. For simplicity, they
focused on the three-body problem: for exam-
ple, the Sun, Jupiter, and the Earth. The early
(failed) attempts tried to do perturbation theory
in the strength of the interaction between plan-
ets. Jupiter’s gravitational force on the Earth is
not tiny, though; if it acted as a constant brake
or accelerator, our orbit would be seriously per-
turbed in a few thousand years. Jupiter’s effects
must cancel out over time rather perfectly. . .
This exercise is mostly discussion and exploration;
only a few questions need to be answered. Down-
load the program Jupiter from the computer ex-
ercises portion of the text web site [129]. Check
that Jupiter does not seem to send the Earth out
of the Solar System. Try increasing Jupiter’s mass
to 35 000 Earth masses.
Start the program over again (or reset Jupiter’s
mass back to 317.83 Earth masses). View Earth’s
trajectory, run for a while, and zoom in to see the
small effects of Jupiter on the Earth. Note that
the Earth’s position shifts depending on whether
Jupiter is on the near or far side of the Sun.

(a) Estimate the fraction that the Earth’s radius
from the Sun changes during the first Jovian year
(about 11.9 years). How much does this fractional
variation increase over the next hundred Jovian
years?
Jupiter thus warps Earth’s orbit into a kind of spi-
ral around a tube. This orbit in physical three-
dimensional space is a projection of the tube in
6N-dimensional phase space. The tube in phase
space already exists for massless planets. . .
Let us start in the non-interacting planet approx-
imation (where Earth and Jupiter are assumed to
have zero mass). Both Earth’s orbit and Jupiter’s
orbit then become circles, or more generally el-
lipses. The field of topology does not distinguish
an ellipse from a circle; any stretched, ‘wiggled’
rubber band is a circle so long as it forms a curve
that closes into a loop. Similarly, a torus (the sur-
face of a doughnut) is topologically equivalent to
any closed surface with one hole in it (like the sur-
face of a coffee cup, with the handle as the hole).
Convince yourself in this non-interacting approx-
imation that Earth’s orbit remains topologically
a circle in its six-dimensional phase space.29

Fig. 4.7 Torus. The Earth’s orbit around the Sun af-
ter adiabatically increasing the Jovian mass to 50 000
Earth masses.

(b) In the non-interacting planet approximation,
what topological surface is it in the eighteen-
dimensional phase space that contains the tra-
jectory of the three bodies? Choose between
(i) sphere, (ii) torus, (iii) Klein bottle, (iv) two-
hole torus, and (v) complex projective plane.
(Hint: It is a circle cross a circle, parameterized
by two independent angles—one representing the
time during Earth’s year, and one representing

29Hint: Plot the orbit in the (x, y), (x, px), and other planes. It should look like the projection of a circle along various axes.
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the time during a Jovian year. Feel free to look
at Fig. 4.7 and part (c) before committing your-
self, if pure thought is not enough.) About how
many times does Earth wind around this surface
during each Jovian year? (This ratio of years is
called the winding number.)
The mathematical understanding of the three-
body problem was only solved in the past hun-
dred years or so, by Kolmogorov, Arnol’d, and
Moser. Their proof focuses on the topological in-
tegrity of this tube in phase space (called now the
KAM torus). They were able to prove stability
if the winding number (Jupiter year over Earth
year) is sufficiently irrational.30 More specifically,
they could prove in this case that for sufficiently
small planetary masses there is a distorted torus
in phase space, near the unperturbed one, around
which the planets spiral around with the same
winding number (Fig. 4.7).
(c) About how large can you make Jupiter’s mass
before Earth’s orbit stops looking like a torus
(Fig. 4.6)? (Restart each new mass at the same
initial conditions; otherwise, your answer will
depend upon the location of Jupiter in the sky
when you begin.) Admire the remarkable trajec-
tory when the mass becomes too heavy.
Thus, for ‘small’ Jovian masses, the trajectory in
phase space is warped and rotated a bit, so that
its toroidal shape is visible looking at Earth’s po-
sition alone. (The circular orbit for zero Jovian
mass is looking at the torus on edge.)
The fact that the torus is not destroyed immedi-
ately is a serious problem for statistical mechan-
ics! The orbit does not ergodically explore the
entire allowed energy surface. This is a counterex-
ample to Boltzmann’s ergodic hypothesis. That
means that time averages are not equal to aver-
ages over the energy surface; our climate would
be very unpleasant, on the average, if our orbit
were ergodic.
Let us use a Poincaré section to explore these
tori, and the chaotic regions between them. If
a dynamical system keeps looping back in phase
space, one can take a cross-section of phase space
and look at the mapping from that cross-section
back into itself (see Fig. 4.8).

Fig. 4.8 The Poincaré section of a torus is a circle.
The dynamics on the torus becomes a mapping of the
circle onto itself.

The Poincaré section shown in Fig. 4.8 is a pla-
nar cross-section in a three-dimensional phase
space. Can we reduce our problem to an interest-
ing problem with three phase-space coordinates?
The original problem has an eighteen-dimensional
phase space. In the center of mass frame it has
twelve interesting dimensions. If we restrict the
motion to a plane, it reduces to eight dimen-
sions. If we assume that the mass of the Earth
is zero (the restricted planar three-body problem)
we have five relevant coordinates (Earth xy po-
sitions and velocities, and the location of Jupiter
along its orbit). If we remove one more variable
by going to a rotating coordinate system that ro-
tates with Jupiter, the current state of our model
can be described with four numbers: two posi-
tions and two momenta for the Earth. We can
remove another variable by confining ourselves to
a fixed ‘energy’. The true energy of the Earth is
not conserved (because Earth feels a periodic po-
tential), but there is a conserved quantity which
is like the energy in the rotating frame; more de-
tails are described on the web site [120] under ‘De-
scription of the three-body problem’. This leaves
us with a trajectory in three dimensions (so, for
small Jovian masses, we have a torus embedded
in a three-dimensional space). Finally, we take a
Poincaré cross-section; we plot a point of the tra-
jectory every time Earth passes directly between

30A ‘good’ irrational number x cannot be approximated by rationals p/q to better than ∝ 1/q2: given a good irrational x,
there is a C > 0 such that |x − p/q| > C/q2 for all integers p and q. Almost all real numbers are good irrationals, and the
KAM theorem holds for them. For those readers who have heard of continued fraction expansions, the best approximations of
x by rationals are given by truncating the continued fraction expansion. Hence the most irrational number is the golden mean,
(1 +

√
5)/2 = 1/(1 + 1/(1 + 1/(1 + . . . ))).
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Jupiter and the Sun. We plot the distance to
Jupiter along the horizontal axis, and the veloc-
ity component towards Jupiter along the vertical
axis; the perpendicular component of the velocity
is not shown (and is determined by the ‘energy’).
Set the view to Poincaré. Set Jupiter’s mass to
2000, and run for 1000 years. You should see two
nice elliptical cross-sections of the torus. As you
increase the mass (resetting to the original ini-
tial conditions) watch the toroidal cross-sections
as they break down. Run for a few thousand years
atMJ = 22 000Me; notice that the toroidal cross-
section has become three circles.
Fixing the mass at MJ = 22 000Me, let us ex-
plore the dependence of the planetary orbits on
the initial condition. Set up a chaotic trajectory
(MJ = 22 000Me) and observe the Poincaré sec-
tion. Launch trajectories at various locations in
the Poincaré view at fixed ‘energy’.31 You can
thus view the trajectories on a two-dimensional
cross-section of the three-dimensional constant-
‘energy’ surface.
Notice that many initial conditions slowly fill out
closed curves. These are KAM tori that have
been squashed and twisted like rubber bands.32

Explore until you find some orbits that seem to
fill out whole regions; these represent chaotic or-
bits.33

(d) If you can do a screen capture, print out a
Poincaré section with initial conditions both on
KAM tori and in chaotic regions; label each. See
Fig. 4.3 for a small segment of the picture you
should generate.
It turns out that proving that Jupiter’s effects
cancel out depends on Earth’s smoothly averaging
over the surface of the torus. If Jupiter’s year is a
rational multiple of Earth’s year, the orbit closes
after a few years and you do not average over the
whole torus; only a closed spiral. Rational wind-
ing numbers, we now know, lead to chaos when
the interactions are turned on; the large chaotic
region you found above is associated with an un-
perturbed orbit with a winding ratio of 3:1 (hence
the three circles). Disturbingly, the rational num-
bers are dense; between any two KAM tori there
are chaotic regions, just because between any two
irrational numbers there are rational ones. It is
even worse; it turns out that numbers which are
extremely close to rational (Liouville numbers like

1+1/10+1/1010+1/1010
10

+. . . ) may also lead to
chaos. It was amazingly tricky to prove that lots
of tori survive nonetheless. You can imagine why
this took hundreds of years to understand (espe-
cially without computers to illustrate the tori and
chaos graphically).

31This is probably done by clicking on the point in the display, depending on implementation. In the current implementation,
this launches a trajectory with that initial position and velocity towards Jupiter; it sets the perpendicular component of the
velocity to keep the current ‘energy’. Choosing a point where energy cannot be conserved, the program complains.
32Continue if the trajectory does not run long enough to give you a complete feeling for the cross-section; also, increase the
time to run. Zoom in and out.
33Notice that the chaotic orbit does not throw the Earth out of the Solar System. The chaotic regions near infinity and near
our initial condition are not connected. This may be an artifact of our low-dimensional model; in other larger systems it is
believed that all chaotic regions (on a connected energy surface) are joined through Arnol’d diffusion.
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5.1 Entropy as irreversibility: en-

gines and the heat death of

the Universe 77

5.2 Entropy as disorder 81

5.3 Entropy as ignorance: infor-

mation and memory 85

Entropy is the most influential concept to arise from statistical mechan-
ics. What does it mean? Can we develop an intuition for it?
We shall see in this chapter that entropy has three related interpreta-

tions.1 Entropy measures the disorder in a system; in Section 5.2 we

1Equilibrium is a word with posi-
tive connotations, presumably because
it allows us to compute properties
easily. Entropy and the quanti-
ties it measures—disorder, ignorance,
uncertainty—are words with negative
connotations, presumably because en-
tropy interferes with making efficient
heat engines. Notice that these conno-
tations are not always reliable; in in-
formation theory, for example, having
high Shannon entropy is good, reflect-
ing better compression of data.

will see this using the entropy of mixing and the residual entropy of
glasses. Entropy measures our ignorance about a system; in Section 5.3
we will give examples from non-equilibrium systems and information
theory. But we will start in Section 5.1 with the original interpretation,
that grew out of the nineteenth century study of engines, refrigerators,
and the end of the Universe. Entropy measures the irreversible changes
in a system.

5.1 Entropy as irreversibility: engines and

the heat death of the Universe

The early 1800s saw great advances in understanding motors and en-
gines. In particular, scientists asked a fundamental question: how effi-
cient can an engine be? The question was made more difficult because
there were two relevant principles2 to be discovered: energy is conserved 2These are the first and second laws

of thermodynamics, respectively (Sec-
tion 6.4).

and entropy always increases.3

3Some would be pedantic and say only
that entropy never decreases, since a
system in equilibrium has constant en-
tropy. The phrase ‘entropy always in-
creases’ has a ring to it, though.

For some kinds of engines, only energy conservation is important.
For example, there are electric motors that convert electricity into me-
chanical work (running an electric train), and generators that convert
mechanical work (from a rotating windmill) into electricity.4 For these

4Electric motors are really the same as
generators run in reverse; turning the
shaft of an electric motor can generate
electricity.

electromechanical engines, the absolute limitation is given by the conser-
vation of energy: the motor cannot generate more energy in mechanical
work than is consumed electrically, and the generator cannot generate
more electrical energy than is input mechanically. An ideal electrome-
chanical engine can convert all the energy from one form to another.

Steam engines are more complicated. Scientists in the early 1800s
were figuring out that heat is a form of energy. A steam engine, running
a power plant or an old-style locomotive, transforms a fraction of the
heat energy from the hot steam (the ‘hot bath’) into electrical energy
or work, but some of the heat energy always ends up ‘wasted’—dumped
into the air or into the cooling water for the power plant (the ‘cold
bath’). In fact, if the only limitation on heat engines was conservation
of energy, one would be able to make a motor using the heat energy from
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a rock, getting both useful work and a very cold rock.

+∆
∆

∆2 2

2 2

plant
power impossible

engine
Q W

Q  +W

Q

Q  +W

refrigerator
Carnot

T1

T2

Fig. 5.1 Perpetual motion and

Carnot. How to use an engine which
produces ∆ more work than the Carnot
cycle to build a perpetual motion ma-
chine doing work ∆ per cycle.

There is something fundamentally less useful about energy once it
becomes heat. By spreading out the energy among all the atoms in a
macroscopic chunk of material, not all of it can be retrieved again to
do useful work. The energy is more useful for generating power when
divided between hot steam and a cold lake, than in the form of water
at a uniform, intermediate warm temperature. Indeed, most of the time
when we use mechanical or electrical energy, the energy ends up as heat,
generated from friction or other dissipative processes.
The equilibration of a hot and cold body to two warm bodies in an

isolated system is irreversible; one cannot return to the original state
without inputting some kind of work from outside the system. Carnot,
publishing in 1824, realized that the key to producing the most efficient
possible engine was to avoid irreversibility. A heat engine run in reverse
is a refrigerator; it consumes mechanical work or electricity and uses it
to pump heat from a cold bath to a hot one. A reversible heat engine
would be able to run forward generating work by transferring heat from
the hot to the cold bath, and then run backward using the same work
to pump the heat back into the hot bath.

P

P

T

T

Q
2

2

1

Fig. 5.2 Prototype heat engine. A
piston with external exerted pressure
P , moving through an insulated cylin-
der. The cylinder can be put into ther-
mal contact with either of two heat
baths: a hot bath at temperature T1
(say, a coal fire in a power plant) and a
cold bath at T2 (say water from a cold
lake). During one cycle of the piston in
and out, heat energy Q1 flows into the
piston, mechanical energyW is done on
the external world by the piston, and
heat energy Q2 flows out of the piston
into the cold bath.

If you had an engine more efficient than a reversible one, you could
run it side by side with a reversible engine running as a refrigerator
(Fig. 5.1). The pair of engines would together generate work by ex-
tracting energy from the hot bath (as from our rock, above) without
adding heat to the cold one. After we used this work, we could dump
the extra heat from friction back into the hot bath, getting a perpet-
ual motion machine that did useful work without consuming anything.
In thermodynamics we postulate that such perpetual motion machines
are impossible.5 By calculating the properties of this reversible engine,

5This postulate is one formulation of
the second law of thermodynamics. It
is equivalent to the more standard ver-
sion, that entropy always increases.

Carnot placed a fundamental limit on the efficiency of heat engines and
discovered what would later be called the entropy.
Carnot considered a prototype heat engine (Fig. 5.2), built from a

piston with external pressure P , two heat baths at a hot temperature
T1 and a cold temperature T2, and some type of gas inside the piston.
During one cycle of his engine heat Q1 flows out of the hot bath, heat Q2

flows into our cold bath, and net workW = Q1−Q2 is done by the piston
on the outside world. To make his engine reversible Carnot must avoid
(i) friction, (ii) letting hot things touch cold things, (iii) letting systems
at high pressure expand into systems at low pressure, and (iv) moving
the walls of the container too quickly (emitting sound or shock waves).
Carnot, a theorist, could ignore the practical difficulties. He imagined

a frictionless piston which ran through a cycle at arbitrarily low veloci-
ties. The piston was used both to extract work from the system and to
raise and lower the temperature. Carnot connected the gas thermally to
each bath only when its temperature agreed with the bath, so his engine
was fully reversible.
The Carnot cycle moves the piston in and out in four steps (Fig. 5.3).

• (a→b) The compressed gas is connected to the hot bath, and the pis-
ton moves outward at a varying pressure; heat Q1 flows in to maintain
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the gas at temperature T1.

• (b→c) The piston expands further at varying pressure, cooling the
gas to T2 without heat transfer.

• (c→d) The expanded gas in the piston is connected to the cold bath
and compressed; heat Q2 flows out maintaining the temperature at
T2.

• (d→a) The piston is compressed, warming the gas to T1 without heat
transfer, returning it to the original state.

Volume V

Pr
es

su
re

 P

Heat In Q
1

Heat Out Q
2

Expand

Compress

PV = N k
B
T

1

PV = N k
B
T

2

a

b

c

d

Fig. 5.3 Carnot cycle P–V dia-

gram. The four steps in the Carnot cy-
cle: a→b, heat in Q1 at constant tem-
perature T1; b→c, expansion without
heat flow; c→d, heat out Q2 at con-
stant temperature T2; and d→a, com-
pression without heat flow to the origi-
nal volume and temperature.

Energy conservation tells us that the net heat energy flowing into the
piston, Q1 −Q2, must equal the work done on the outside world W :

Q1 = Q2 +W. (5.1)

The work done by the piston is the integral of the force exerted times
the distance. The force is the piston surface area times the pressure, and
the distance times the piston surface area is the volume change, giving
the geometrical result

W =

∫
F dx =

∫
(F/A)(Adx) =

∫

cycle

P dV = area inside PV loop.

(5.2)
That is, if we plot P versus V for the four steps of our cycle, the area
inside the resulting closed loop is the work done by the piston on the
outside world (Fig. 5.3).
Carnot realized that all reversible heat engines working with the same

hot and cold bath had to produce exactly the same amount of work for
a given heat flow (since they are all perfectly efficient). This allowed
him to fill the piston with the simplest possible material (a monatomic
ideal gas), for which he knew the relation between pressure, volume, and
temperature. We saw in Section 3.5 that the ideal gas equation of state
is

PV = NkBT (5.3)

and that its total energy is its kinetic energy, given by the equipartition
theorem

E =
3

2
NkBT =

3

2
PV. (5.4)

Along a→b where we add heat Q1 to the system, we have P (V ) =
NkBT1/V . Using energy conservation, we have

Q1 = Eb − Ea +Wab =
3

2
PbVb −

3

2
PaVa +

∫ b

a

P dV. (5.5)

But PaVa = NkBT1 = PbVb, so the first two terms cancel; the last term
can be evaluated, giving

Q1 =

∫ b

a

NkBT1
V

dV = NkBT1 log

(
Vb
Va

)
. (5.6)
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Similarly,

Q2 = NkBT2 log

(
Vc
Vd

)
. (5.7)

For the other two steps in our cycle we need to know how the ideal gas
behaves under expansion without any heat flow in or out. Again, using
energy conservation on a small segment of the path, the work done for a
small volume change −P dV must equal the change in energy dE. Using
eqn 5.3, −P dV = −(NkBT/V ) dV , and using eqn 5.4, dE = 3/2NkB dT ,
so dV/V = −3/2 dT/T . Integrating both sides from b to c, we find

∫ c

b

dV

V
= log

(
Vc
Vb

)
=

∫ c

b

−3

2

dT

T
= −3

2
log

(
T2
T1

)
, (5.8)

so Vc/Vb = (T1/T2)
3/2. Similarly, Vd/Va = (T1/T2)

3/2. Thus Vc/Vb =
Vd/Va, and hence

Vc
Vd

=
Vc
Vb

Vb
Vd

=
Vd
Va

Vb
Vd

=
Vb
Va
. (5.9)

We can use the volume ratios from the insulated expansion and com-
pression (eqn 5.9) to substitute into the heat flow (eqns 5.6 and 5.7) to
find

Q1

T1
= NkB log

(
Vb
Va

)
= NkB log

(
Vc
Vd

)
=
Q2

T2
. (5.10)

This was Carnot’s fundamental result; his cycle, and hence any re-
versible engine, satisfies the law

Q1

T1
=
Q2

T2
. (5.11)

Later scientists decided to define6 the entropy change to be this ratio of

6The thermodynamic entropy is de-
rived with a heat flow ∆E = Q at
a fixed temperature T , so our statisti-
cal mechanics definition of temperature
1/T = ∂S/∂E (from eqn 3.29) is equiv-
alent to the thermodynamics definition
of entropy 1/T = ∆S/∆E ⇒ ∆S =
Q/T (eqn 5.12).

heat flow to temperature:

∆Sthermo =
Q

T
. (5.12)

For a reversible engine the entropy flow from the hot bath into the
piston Q1/T1 equals the entropy flow from the piston into the cold bath
Q2/T2; no entropy is created or destroyed. Any real engine will create7

7For example, a small direct heat leak
from the hot bath to the cold bath of δ
per cycle would generate

Q2 + δ

T2
− Q1 + δ

T1
= δ

(
1

T2
− 1

T1

)
> 0

(5.13)
entropy per cycle.

net entropy during a cycle; no engine can reduce the net amount of
entropy in the Universe.
The irreversible increase of entropy is not a property of the microscopic

laws of nature. In particular, the microscopic laws of nature are time-
reversal invariant: the laws governing the motion of atoms are the same
whether time is running backward or forward.8 The microscopic laws do

8More correctly, the laws of nature are
only invariant under CPT: changing the
direction of time (T) along with invert-
ing space (P) and changing matter to
antimatter (C). Radioactive beta de-
cay and other weak interaction forces
are not invariant under time-reversal.
The basic conundrum for statistical me-
chanics is the same, though: we can-
not tell from the microscopic laws if we
are matter beings living forward in time
or antimatter beings living backward in
time in a mirror. Time running back-
ward would appear strange macroscop-
ically even if we were made of antimat-
ter.

not tell us the arrow of time. The direction of time in which entropy
increases is our definition of the future.9

9In electromagnetism, the fact that
waves radiate away from sources more
often than they converge upon sources
is a closely related distinction of past
from future.

This confusing point may be illustrated by considering the game of
pool or billiards. Neglecting friction, the trajectories of the pool balls are
also time-reversal invariant. If the velocities of the balls were reversed
half-way through a pool shot, they would retrace their motions, building
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up all the velocity into one ball that then would stop as it hit the cue
stick. In pool, the feature that distinguishes forward from backward time
is the greater order at early times; all the momentum starts in one ball,
and is later distributed among all the balls involved in collisions. Simi-
larly, the only reason we can resolve the arrow of time—distinguish the
future from the past—is that the Universe started in an unusual, low-
entropy state, and is irreversibly moving towards equilibrium.10 (One 10Suppose after waiting a cosmologi-

cally long time one observed a sponta-
neous fluctuation of an equilibrium sys-
tem into a low-entropy, ordered state.
Preceding that time, with extremely
high probability, all of our laws of
macroscopic physics would appear to
run backward. The most probable
route building up to an ordered state
from equilibrium is the time reverse of
the most probable decay of that ordered
state back to equilibrium.

would think that the Big Bang was high entropy! It was indeed hot
(high momentum-space entropy), but it was dense (low configurational
entropy), and in total the entropy was lower11 than it is now.) The tem-

11In the approximation that the Uni-
verse remained in equilibrium as it ex-
panded, the entropy would have re-
mained constant; indeed, the photon
entropy did remain constant during
the expansion of the Universe (Ex-
ercise 7.15). The nuclei did not:
primordial nucleosynthesis—the forma-
tion of heavier nuclei from protons and
neutrons—stalled after a few light el-
ements [143]. (Just as an ideal gas
under abrupt expansion is left hotter
than it would have been had it done
work against the adiabatic expansion
of a piston, so the photons emitted
now by stars changing hydrogen and
helium into iron 56 are higher frequency
and hotter than the red-shifted photons
that would have been emitted from the
same processes during a hypothetical
equilibrium Big Bang.) It has been ar-
gued [104] that the root source of the
low-entropy at the Big Bang was the
very flat (low-entropy) initial state of
space–time.

perature and pressure differences we now observe to be moving towards
equilibrium as time increases are echoes of this low-entropy state in the
distant past.
The cosmic implications of the irreversible increase of entropy were not

lost on the intellectuals of the nineteenth century. In 1854, Helmholtz
predicted the heat death of the Universe: he suggested that as the Uni-
verse ages all energy will become heat, all temperatures will become
equal, and everything will ‘be condemned to a state of eternal rest’. In
1895, H. G. Wells in The Time Machine [144, chapter 11] speculated
about the state of the Earth in the distant future:

. . . the sun, red and very large, halted motionless upon the
horizon, a vast dome glowing with a dull heat. . . The earth
had come to rest with one face to the sun, even as in our own
time the moon faces the earth. . . There were no breakers and
no waves, for not a breath of wind was stirring. Only a slight
oily swell rose and fell like a gentle breathing, and showed
that the eternal sea was still moving and living. . . . the life
of the old earth ebb[s] away. . .

This gloomy prognosis has been re-examined recently; it appears that the
expansion of the Universe may provide loopholes. While there is little
doubt that the Sun and the stars will indeed die, it may be possible—if
life can evolve to accommodate the changing environments—that civi-
lization, memory, and thought could continue for an indefinite subjective
time (Exercise 5.1).

5.2 Entropy as disorder

A second intuitive interpretation of entropy is as a measure of the disor-
der in a system. Scientist mothers tell their children to lower the entropy
by tidying their rooms; liquids have higher entropy than crystals intu-
itively because their atomic positions are less orderly.12 We illustrate

12There are interesting examples of
systems that appear to develop more
order as their entropy (and tempera-
ture) rises. These are systems where
adding order of one, visible type (say,
crystalline or orientational order) al-
lows increased disorder of another type
(say, vibrational disorder). Entropy is
a precise measure of disorder, but is not
the only possible or useful measure.

this interpretation by first calculating the entropy of mixing, and then
discussing the zero-temperature entropy of glasses.
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5.2.1 Entropy of mixing: Maxwell’s demon and

osmotic pressure

Scrambling an egg is a standard example of irreversibility; you cannot
re-separate the yolk from the white. A model for scrambling is given in
Figs 5.4 and 5.5: the mixing of two different types of particles. Here the
entropy change upon mixing is a measure of increased disorder.

VV

Fig. 5.4 Unmixed atoms. The pre-
mixed state: N/2 white atoms on one
side, N/2 black atoms on the other.

V2

Fig. 5.5 Mixed atoms. The mixed
state: N/2 white atoms and N/2 black
atoms scattered through the volume
2V .

Consider a volume separated by a partition into two equal volumes
of volume V . There are N/2 undistinguished ideal gas white atoms on
one side of the partition, and N/2 undistinguished ideal gas black atoms
on the other side. The configurational entropy of this system (eqn 3.55,
ignoring the momentum space parts) is

Sunmixed = 2 kB log[V N/2/(N/2)!], (5.14)

just twice the configurational entropy of N/2 undistinguished atoms in
a volume V . We assume that the black and white atoms have the same
masses and the same total energy. Now consider the entropy change
when the partition is removed, and the two sets of atoms are allowed to
mix. Because the temperatures and pressures from both sides are equal,
removing the partition does not involve any irreversible sound emission
or heat transfer; any entropy change is due to the mixing of the white
and black atoms. In the desegregated state,13 the entropy has increased

13This has no social policy implica-
tions; the entropy of mixing for a few
billion humans would not power an eye
blink.

to
Smixed = 2kB log[(2V )N/2/(N/2)!], (5.15)

twice the entropy of N/2 undistinguished atoms in a volume 2V . Since
log(2mx) = m log 2 + log x, the change in entropy due to the mixing is

∆Smixing = Smixed − Sunmixed = kB log 2N = NkB log 2. (5.16)

We gain kB log 2 in entropy every time we place an atom into one
of two boxes without looking which box we chose. More generally, we
might define a counting entropy:

Scounting = kB log(number of configurations) (5.17)

for systems with a discrete number of equally-likely configurations.
This kind of discrete choice arises often in statistical mechanics. In

equilibrium quantum mechanics (for a finite system) the states are quan-
tized; so adding a new (non-interacting) particle into one of m degen-
erate states adds kB logm to the entropy. In communications theory
(Section 5.3.2, Exercises 5.14 and 5.15), each bit transmitted down your
channel can be in one of two states, so a random stream of bits of length
N has ∆S = kSN log 2.1414The Shannon constant kS is defined

in Section 5.3.2. In more general cases, the states available to one particle depend
strongly on the configurations of the other particles. Nonetheless, the
equilibrium entropy still measures the logarithm of the number of differ-
ent states that the total system could be in. For example, our equilib-
rium statistical mechanics entropy Sequil(E) = kB log(Ω(E)) (eqn 3.25)
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is the logarithm of the number of states of energy E, with phase-space
volume h3N allocated to each state.

Fig. 5.6 Ion pump. An implemen-
tation of Maxwell’s demon in biology
is Na+/K+-ATPase, an enzyme located
on the membranes of almost every cell
in your body. This enzyme maintains
extra potassium (K+) ions inside the
cell and extra sodium (Na+) ions out-
side the cell. The enzyme exchanges
twoK+ ions from outside for three Na+

ions inside, burning as fuel one ATP
(adenosine with three phosphates, the
fuel of the cell) into ADP (two phos-
phates). When you eat too much salt
(Na+Cl−), the extra sodium ions in
the blood increase the osmotic pres-
sure on the cells, draw more water
into the blood, and increase your blood
pressure. The figure (Toyoshima et
al., c© Nature 2000) shows the struc-
ture of the related enzyme calcium AT-
Pase [140]. The arrow shows the shape
change as the two Ca+ ions are re-
moved.

What would happen if we removed a partition separating N/2 black
atoms on one side from N/2 black atoms on the other? The initial
entropy is the same as above SBB

unmixed = 2 kB log[V N/2/(N/2)!], but the
final entropy is now SBB

mixed = kB log((2V )N/N !). Notice we have N !
rather than the ((N/2)!)2 from eqn 5.15, since all of our particles are
now undistinguished. Now N ! = (N)(N − 1)(N − 2)(N − 3) . . . and
((N/2)!)2 = (N/2)(N/2)[(N − 2)/2][(N − 2)/2] . . . ; they roughly differ
by 2N , canceling the entropy change due to the volume doubling. Indeed,
expanding the logarithm using Stirling’s formula logn! ≈ n logn− n we
find the entropy per atom is unchanged.15 This is why we introduced

15If you keep Stirling’s formula to
higher order, you will see that the en-
tropy increases a microscopic amount
when you remove the partition. This is
due to the number fluctuations on the
two sides that are now allowed. See Ex-
ercise 5.2 for a small system where this
entropy increase is important.

the N ! term for undistinguished particles in Section 3.2.1; without it the
entropy would decrease by N log 2 whenever we split a container into two
pieces.16

16This is often called the Gibbs para-
dox.

How can we intuitively connect this entropy of mixing with the ther-
modynamic entropy of pistons and engines in Section 5.1? Can we use
our mixing entropy to do work? To do so we must discriminate between
the two kinds of atoms. Suppose that the barrier separating the two
walls in Fig. 5.4 was a membrane that was impermeable to black atoms
but allowed white ones to cross. Since both black and white atoms are
ideal gases, the white atoms would spread uniformly to fill the entire
system, while the black atoms would remain on one side. This would
lead to a pressure imbalance; if the semipermeable wall was used as a
piston, work could be extracted as the black chamber was enlarged to
fill the total volume.17

17Such semipermeable membranes are
quite common, not for gases, but for
dilute solutions of ions in water; some
ions can penetrate and others cannot.
The resulting force on the membrane is
called osmotic pressure.

Suppose we had a more active discrimination? Maxwell introduced
the idea of an intelligent ‘finite being’ (later termed Maxwell’s demon)
that would operate a small door between the two containers. When a
black atom approaches the door from the left or a white atom approaches
from the right the demon would open the door; for the reverse situations
the demon would leave the door closed. As time progresses, this active
sorting would re-segregate the system, lowering the entropy. This is not
a concern for thermodynamics, since running a demon is an entropy
generating process! Indeed, one can view this thought experiment as
giving a fundamental limit on demon efficiency, putting a lower bound
on how much entropy an intelligent being must create in order to engage
in this kind of sorting process (Fig. 5.6 and Exercise 5.2).

5.2.2 Residual entropy of glasses: the roads not

taken

Unlike a crystal, in which each atom has a set position, a glass will have a
completely different configuration of atoms each time it is formed. That
is, the glass has a residual entropy; as the temperature goes to absolute
zero, the glass entropy does not vanish, but rather equals kB logΩglass,
where Ωglass is the number of zero-temperature configurations in which
the glass might be trapped.
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What is a glass? Glasses are disordered like liquids, but are rigid like
crystals. They are not in equilibrium; they are formed when liquids are
cooled too fast to form the crystalline equilibrium state. You are aware
of glasses made from silica, like window glass,18 and PyrexTM.19 You18Windows are made from soda-lime

glass (silica (SiO2) mixed with sodium
and calcium oxides).

19PyrexTM is a borosilicate glass
(boron and silicon oxides) with a low
thermal expansion, used for making
measuring cups that do not shatter
when filled with boiling water.

also know of some molecular glasses, like hard candy20 (a glass made

20Hard candy is an American usage; in
British English they are called boiled

sweets.

of sugar). Many other materials (even metals) can form glasses when
cooled quickly.
How is the residual glass entropy measured? First, one estimates the

entropy of the equilibrium liquid;21 then one measures the entropy flow

21One can measure Sliquid(Tℓ) by
slowly heating a crystal from absolute
zero and measuring

∫ Tℓ
0 dQ/T flowing

in.

Q/T out from the glass as it is cooled from the liquid down to absolute
zero. The difference

Sresidual = Sliquid(Tℓ)−
∫

1

T

dQ

dt
dt = Sliquid(Tℓ)−

∫ Tℓ

0

1

T

dQ

dT
dT (5.18)

gives the residual entropy.

i

i

q i

V

δ

Fig. 5.7 Double-well potential. A
model for the potential energy for one
coordinate qi in a glass; two states sep-
arated by a barrier Vi and with a small
energy difference δi. In equilibrium,
the atom is exp(−δi/kBT ) less likely
to be in the upper well. For barriers
Vi ≫ kBT , the molecule will spend
most of its time vibrating in one of the
wells, and rarely hop across the barrier.

How big is the residual entropy of a typical glass? The residual en-
tropy is of the order of kB per molecular unit of the glass (SiO2 or
sugar molecule, for example). This means that the number of glassy
configurations eS/kB is enormous (Exercise 5.11).
How is it possible to measure the number of glass configurations the

system did not choose? The glass is, after all, in one particular con-
figuration. How can measuring the heat flow Q(t) out of the liquid as
it freezes into one glassy state be used to measure the number Ωglass

of possible glassy states? In other words, how exactly is the statisti-
cal mechanics definition of entropy Sstat = kB logΩglass related to the
thermodynamic definition ∆Sthermo = Q/T ?
To answer this question, we need a simplified model of how a glass

might fall out of equilibrium as it is cooled.22 We view the glass as
a collection of independent molecular units. Each unit has a double-
well potential energy: along some internal coordinate qi there are two
minima with an energy difference δi and separated by an energy barrier
Vi (Fig. 5.7). This internal coordinate might represent a rotation of a
sugar molecule in a candy, or a shift in the location of an oxygen atom
in a SiO2 window glass.
Consider the behavior of one of these double-well degrees of freedom.

As we cool our system, the molecular unit will be thermally excited over
its barrier more and more slowly. So long as the cooling rate Γcool is
small compared to this hopping rate, our unit will remain in equilibrium.
However, at the temperature Ti where the two rates cross for our unit
the transitions between the wells will not keep up and our molecular unit
will freeze into position. If the cooling rate Γcool is very slow compared
to the molecular vibration frequencies (as it almost always is)23 the

23Atomic vibration times are around

10−12 seconds, and cooling times are
typically between seconds and years, so
the cooling rate is indeed slow com-
pared to microscopic times.

22The glass transition is not a sharp phase transition; the liquid grows thicker (more viscous) as it is cooled, with slower and
slower dynamics, until the cooling rate becomes too fast for the atomic rearrangements needed to maintain equilibrium to keep
up. At that point, there is a smeared-out transition as the viscosity effectively becomes infinite and the glass becomes bonded
together. Our model is not a good description of the glass transition, but is a rather accurate model for the continuing thermal
rearrangements (β-relaxation) at temperatures below the glass transition, and an excellent model for the quantum dynamics
(tunneling centers) which dominate many properties of glasses below a few degrees Kelvin. See Section 12.3.4 for how little we
understand glasses.
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hopping rate will change rapidly with temperature, and our system will
freeze into place in a small range of temperature near Ti.

24

24This can be derived straightfor-
wardly using Arrhenius rates (Sec-
tion 6.6) for the two transitions.
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Fig. 5.8 Roads not taken by the

glass. The branching path of glassy
states in our model. The entropy (both
statistical and thermodynamic) is pro-
portional to the number of branchings
the glass chooses between as it cools. A
particular glass will take one trajectory
through this tree as it cools; nonethe-
less the thermodynamic entropy mea-
sures the total number of states.

Our frozen molecular unit has a population in the upper well given by
the Boltzmann factor e−δi/kBTi times the population in the lower well.
Hence, those units with δi ≫ kBTi will be primarily in the ground state
(and hence already roughly in equilibrium). However, consider those N
units with barriers high compared to the asymmetry, δi ≪ kBTi; as the
glass is cooled, one by one these units randomly freeze into one of two
states (Fig. 5.8). For these units, both states will be roughly equally
populated when they fall out of equilibrium, so each will contribute
about kB log 2 to the residual entropy. Thus the N units with Ti > δi/kB
will contribute about kB log 2 ∼ kB to the statistical residual entropy
Sstat.

25

25We are losing factors like log 2 be-
cause we are ignoring those units with
kBTi ∼ δi, which freeze into partly oc-
cupied states that are not equally oc-
cupied, a case we have not treated yet.
The thermodynamic and statistical en-
tropies of course agree quantitatively
if calculated properly, apart from non-
equilibrium effects.

Is the thermodynamic entropy flow ∆S =
∫
dQ/T out of the glass

also smaller than it would be in equilibrium? Presumably so, since some
of the energy remains trapped in the glass within those units left in
their upper wells. Is the residue the same as the statistical residual
entropy? Those units with kBTi ≪ δi which equilibrate into the lower
well before they freeze will contribute the same amount to the entropy
flow into the heat bath as they would in an equilibrium system. On the
other hand, those units with kBT ≫ δi will each fail (half the time) to
release their energy δi to the heat bath, when compared to an infinitely
slow (equilibrium) cooling. Since during an equilibrium cooling this heat
would be transferred to the bath at a temperature around δi/kB, the
missing entropy flow for that unit is ∆Q/T ∼ δi/(δi/kB) ∼ kB . Again,
the N units each contribute around kB to the (experimentally measured)
thermodynamic residual entropy Sthermo.
Thus the heat flow into a particular glass configuration counts the

number of roads not taken by the glass on its cooling voyage.

5.3 Entropy as ignorance: information and

memory

The most general interpretation of entropy is as a measure of our igno-
rance26 about a system. The equilibrium state of a system maximizes the

26In information theory they use the
alternative term uncertainty, which has
misleading connotations from quantum
mechanics; Heisenberg uncertainty has
no associated entropy.

entropy because we have lost all information about the initial conditions
except for the conserved quantities; maximizing the entropy maximizes
our ignorance about the details of the system. The entropy of a glass,
or of our mixture of black and white atoms, is a measure of the number
of arrangements the atoms could be in, given our ignorance.27

27Again, entropy is a precise measure
of ignorance, but not necessarily a sen-
sible one for all purposes. In particular,
entropy does not distinguish the utility

of the information. Isothermally com-
pressing a mole of gas to half its volume
decreases our ignorance by 1023 bits—
a far larger change in entropy than
would be produced by memorizing all
the written works of human history.

This interpretation—that entropy is not a property of the system,
but of our knowledge about the system28 (represented by the ensemble

28The entropy of an equilibrium sys-
tem remains purely a property of the
composition of the system, because our
knowledge is fixed (at zero).

of possibilities)—cleanly resolves many otherwise confusing issues. The
atoms in a glass are in a definite configuration, which we could measure
using some futuristic X-ray holographic technique. If we did so, our
ignorance would disappear, and the residual entropy would become zero
for us.29 We could in principle use our knowledge of the glass atom

29The X-ray holographic process must,
naturally, create at least as much en-
tropy during the measurement as the
glass loses.
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positions to extract extra useful work out of the glass, not available
before measuring the positions (Exercise 5.2).
So far, we have confined ourselves to cases where our ignorance is

maximal, where all allowed configurations are equally likely. What about
systems where we have partial information, where some configurations
are more probable than others? There is a powerful generalization of the
definition of entropy to general probability distributions, which we will
introduce in Section 5.3.1 for traditional statistical mechanical systems.
In Section 5.3.2 we will show that this non-equilibrium entropy provides
a generally useful measure of our ignorance about a wide variety of
systems, with broad applications outside of traditional physics.

5.3.1 Non-equilibrium entropy

The second law of thermodynamics tells us that entropy increases. We
want a definition of entropy for systems that are out of equilibrium, so
we can watch it grow. In general, we may describe our partial knowledge
about such a system as a probability distribution ρ, defining an ensemble
of states.
Let us start with a probability distribution among a discrete set of

states. We know from Section 5.2.1 that the entropy for M equally-
likely states (eqn 5.17) is S(M) = kB logM . In this case, the proba-
bility of each state is pi = 1/M . If we write S(M) = −kB log(1/M) =
−kB〈log(pi)〉, we get an appealing generalization for the counting en-
tropy for cases where pi is not constant:

Sdiscrete = −kB〈log pi〉 = −kB
∑

i

pi log pi. (5.19)

We shall see in Section 5.3.2 and Exercise 5.17 that this is the correct
generalization of entropy to systems out of equilibrium.
What about continuum distributions? Any non-equilibrium state of a

classical Hamiltonian system can be described with a probability density
ρ(P,Q) on phase space. The non-equilibrium entropy then becomes

Snonequil = −kB〈log ρ〉 = −kB
∫
ρ log ρ

= −kB
∫

E<H(P,Q)<E+δE

dP dQ

h3N
ρ(P,Q) log ρ(P,Q). (5.20)

In the case of the microcanonical ensemble where ρequil = 1/(Ω(E)δE),
the non-equilibrium definition of the entropy is shifted from our equilib-
rium definition S = kB logΩ by a negligible amount kB log(δE)/N per
particle:3030The arbitrary choice of the width of

the energy shell in the microcanonical
ensemble is thus related to the arbitrary
choice of the zero for the entropy of a
classical system. Unlike the (extensive)
shift due to the units of phase space
(Section 3.5), this shift is microscopic.

Smicro = −kB log ρequil = kB log(Ω(E)δE)

= kB log(Ω(E)) + kB log(δE). (5.21)

For quantum systems, the non-equilibrium entropy will be written in
terms of the density matrix ρ (Section 7.1):

Squantum = −kBTr(ρ logρ). (5.22)
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Finally, notice that Snoneq and Squantum are defined for the micro-
scopic laws of motion, which (Section 5.1) are time-reversal invariant.
We can thus guess that these microscopic entropies will be time indepen-
dent, since microscopically the system does not know in which direction
of time entropy should increase.31 No information is lost (in principle) 31You can show this explicitly in Exer-

cises 5.7 and 7.4.by evolving a closed system in time. Entropy (and our ignorance) in-
creases only in theories where we ignore or exclude some degrees of
freedom. These degrees of freedom may be external (information flow-
ing into the environment or heat bath) or internal (information flowing
into irrelevant microscopic degrees of freedom which are ignored in a
coarse-grained theory).

5.3.2 Information entropy

Understanding ignorance is central to many fields! Entropy as a mea-
sure of ignorance has been useful in everything from the shuffling of
cards (Exercise 5.13) to reconstructing noisy images. For these other
applications, the connection with temperature is unimportant, so we do
not need to make use of Boltzmann’s constant. Instead, we normalize
the entropy with the constant kS = 1/ log(2):

SS = −kS
∑

i

pi log pi = −
∑

i

pi log2 pi, (5.23)

so that entropy is measured in bits.32 32Each bit doubles the number of pos-
sible states Ω, so log2 Ω is the number
of bits.

This normalization was introduced by Shannon [131], and the for-
mula 5.23 is referred to as Shannon entropy in the context of information
theory. Shannon noted that this entropy, applied to the ensemble of pos-
sible messages or images, can be used to put a fundamental limit on the
amount they can be compressed33 to efficiently make use of disk space 33Lossless compression schemes (files

ending in gif, png, zip, and gz) remove
the redundant information in the orig-
inal files, and their efficiency is lim-
ited by the entropy of the ensemble of
files being compressed (Exercise 5.15).
Lossy compression schemes (files end-
ing in jpg, mpg, and mp3) also remove
information that is thought to be unim-
portant for humans looking at or listen-
ing to the files (Exercise 5.14).

or a communications channel (Exercises 5.14 and 5.15). A low-entropy
data set is highly predictable; given the stream of data so far, we can
predict the next transmission with some confidence. In language, twins
and long-married couples can often complete sentences for one another.
In image transmission, if the last six pixels were white the region being
depicted is likely to be a white background, and the next pixel is also
likely to be white. We need only transmit or store data that violates
our prediction. The entropy measures our ignorance, how likely the best
predictions about the rest of the message are to be wrong.
Entropy is so useful in these various fields because it is the unique

(continuous) function that satisfies three key properties.34 In this sec- 34Unique, that is, up to the overall con-
stant kS or kB .tion, we will explain what these three properties are and why they are

natural for any function that measures ignorance. We will also show
that our non-equilibrium Shannon entropy satisfies these properties. In
Exercise 5.17 you can show that this entropy is the only function to do
so.
To take a tangible example of ignorance, suppose your room-mate

has lost their keys, and they are asking for your advice. You want to
measure the room-mate’s progress in finding the keys by measuring your
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ignorance with some function SI . Suppose there are Ω possible sites Ak

that they might have left the keys, which you estimate have probabilities
pk = P (Ak), with

∑Ω
1 pi = 1.
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x
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g(
x) f(a)

f(b)λ f(a) + (1-λ) f(b)

f(λa+(1-λ)b)

Fig. 5.9 Entropy is concave. For
x ≥ 0, f(x) = −x log x is strictly con-
vex downward (concave). That is, for
0 < λ < 1, the linear interpolation lies
below the curve:

f (λa + (1 − λ)b)

≥ λf(a)+(1 − λ)f(b). (5.24)

We know f is concave because its sec-
ond derivative, −1/x, is everywhere
negative.

What are the three key properties we want our ignorance function
SI(p1, . . . , pΩ) to have?
(1) Entropy is maximum for equal probabilities. Without further in-

formation, surely the best plan is for your room-mate to look first at the
most likely site, which maximizes pi. Your ignorance must therefore be
maximal if all Ω sites have equal likelihood:

SI

(
1

Ω
, . . . ,

1

Ω

)
> SI(p1, . . . , pΩ) unless pi =

1

Ω
for all i. (5.25)

Does the Shannon entropy obey eqn 5.25, property (1)?35 We notice

35In Exercise 6.6 we will ask you to
show that the Shannon entropy SS is
an extremum when all probabilities are
equal. Here we provide a stronger proof
that it is a global maximum, using the
convexity of x logx (note 36).

that the function f(p) = −p log p is concave (convex downward, Fig. 5.9).
For a concave function f , the average value of f(p) over a set of points
pk is less than or equal to f evaluated at the average of the pk:

36

1

Ω

∑

k

f(pk) ≤ f

(
1

Ω

∑

k

pk

)
. (5.27)

But this tells us that

SS(p1, . . . , pΩ) = −kS
∑

pk log pk = kS
∑

f(pk)

≤ kSΩf

(
1

Ω

∑

k

pk

)
= kSΩf

(
1

Ω

)

= −kS
Ω∑

1

1

Ω
log

(
1

Ω

)
= SS

(
1

Ω
, . . . ,

1

Ω

)
. (5.28)

(2) Entropy is unaffected by extra states of zero probability. If there
is no possibility that the keys are in your shoe (site AΩ), then your
ignorance is no larger than it would have been if you had not included
your shoe in the list of possible sites:

SI(p1, . . . , pΩ−1, 0) = SI(p1, . . . , pΩ−1). (5.29)

The Shannon entropy obeys property (2) because pΩ log pΩ → 0 as
pΩ → 0.

36Equation 5.27 is Jensen’s inequality. It can be proven by induction from the definition of concave (eqn 5.24). For Ω = 2,
we use λ = 1/2, a = p1, and b = p2 to see that f((p1 + p2)/2) ≥ (f(p1) + f(p2))/2. For general Ω, we use λ = (Ω − 1)/Ω,
a = (

∑Ω−1
1 pk)/(Ω − 1), and b = pΩ to see that

f

(∑Ω
k=1 pk

Ω

)
= f

(
Ω− 1

Ω

∑Ω−1
1 pk

Ω− 1
+

1

Ω
pΩ

)
≥ Ω− 1

Ω
f

(∑Ω−1
1 pk

Ω− 1

)
+

1

Ω
f(pΩ)

≥ Ω− 1

Ω

(
Ω−1∑

k=1

1

Ω− 1
f(pk)

)
+

1

Ω
f(pΩ) =

1

Ω

Ω∑

k=1

f(pk), (5.26)

where we have used the truth of eqn 5.27 for Ω− 1 to inductively prove it for Ω.
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(3) Entropy change for conditional probabilities. This last property for
our ignorance function demands a new concept, conditional probability.37 37If you find the discussion of condi-

tional probability subtle, and the re-
sulting third property for the ignorance
function (eqn 5.35) less self evident
than the first two properties, you are
in good company. Generalizations of
the entropy that modify this third con-
dition are sometimes useful.

To aid in the search, you are likely to ask the room-mate where they
were when they last saw the keys. Suppose there areM locations Bℓ that
the room-mate may have been (opening the apartment door, driving the
car, in the basement laundry room, . . . ), with probabilities qℓ. Surely
the likelihood that the keys are currently in a coat pocket is larger if
the room-mate was outdoors when the keys were last seen. Let rkℓ =
P (Ak and Bℓ) be the probability the keys are at site k and were last
seen at location ℓ. Let38 38The conditional probability P (A|B)

(read as ‘the probability of A given B’)
times the probability of B is the prob-
ability of A and B both occurring, so
P (A|B)P (B) = P (A and B) (or equiv-
alently ckℓqℓ = rkℓ).

ckℓ = P (Ak|Bℓ) =
P (Ak and Bℓ)

P (Bℓ)
=
rkℓ
qℓ

(5.30)

be the conditional probability, given that the keys were last seen at Bℓ,
that the keys are now at site Ak. Naturally

∑

k

P (Ak|Bℓ) =
∑

k

ckℓ = 1; (5.31)

wherever [ℓ] they were last seen the keys are now somewhere with prob-
ability one.
Before you ask your room-mate where the keys were last seen, you

have ignorance SI(A) = SI(p1, . . . , pΩ) about the site of the keys, and
ignorance SI(B) = SI(q1, . . . , qM ) about the location they were last
seen. You have a joint ignorance about the two questions given by the
ignorance function applied to all Ω×M conditional probabilities:

SI(AB) = SI(r11, r12, . . . , r1M , r21, . . . , rΩM )

= SI(c11q1, c12q2, . . . , c1MqM , c21q1, . . . , cΩMqM ). (5.32)

After the room-mate answers your question, your ignorance about the
location last seen is reduced to zero (decreased by SI(B)). If the location
last seen was in the laundry room (site Bℓ), the probability for the keys
being at Ak shifts to ckℓ and your ignorance about the site of the keys
is now

SI(A|Bℓ) = SI(c1ℓ, . . . , cΩℓ). (5.33)

So, your combined ignorance has decreased from SI(AB) to SI(A|Bℓ).
We can measure the usefulness of your question by the expected

amount that it decreases your ignorance about where the keys reside.
The expected ignorance after the question is answered is given by weight-
ing the ignorance after each answer Bℓ by the probability qℓ of that
answer:

〈SI(A|Bℓ)〉B =
∑

ℓ

qℓSI(A|Bℓ). (5.34)

This leads us to the third key property for an ignorance function. If
we start with the joint distribution AB, and then measure B, it would
be tidy if, on average, your joint ignorance declined by your original
ignorance of B:

〈SI(A|Bℓ)〉B = SI(AB)− SI(B). (5.35)
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Does the Shannon entropy satisfy eqn 5.35, property (3)? The condi-
tional probability SS(A|Bℓ) = −kS

∑
k ckℓ log ckℓ, since ckℓ is the prob-

ability distribution for the Ak sites given location ℓ. So,

SS(AB) = −kS
∑

kℓ

ckℓqℓ log(ckℓqℓ)

= −kS
(
∑

kℓ

ckℓqℓ log(ckℓ) +
∑

kℓ

ckℓqℓ log(qℓ)

)

=
∑

ℓ

qℓ

(
−kS

∑

k

ckℓ log(ckℓ)

)
− kS

∑

ℓ

qℓ log(qℓ)

✚
✚
✚
✚
✚

(
∑

k

ckℓ

)

=
∑

ℓ

qℓSS(A|Bℓ) + SS(B)

= 〈SS(A|Bℓ)〉B + SS(B), (5.36)

and the Shannon entropy does satisfy condition (3).
If A and B are uncorrelated (for example, if they are measurements

on uncoupled systems), then the probabilities of A will not change upon
measuring B, so SI(A|Bℓ) = SI(A). Then our third condition implies
SI(AB) = SI(A) + SI(B); our ignorance of uncoupled systems is addi-
tive. This is simply the condition that entropy is extensive. We argued
that the entropy of weakly-coupled subsystems in equilibrium must be
additive in Section 3.3. Our third condition implies that this remains
true for uncorrelated systems in general.

Exercises

The exercises explore four broad aspects of entropy.
Entropy provides fundamental limits. We explore en-

tropic limits to thought in Life and the heat death of the
Universe, to measurement in Burning information and
Maxwellian demons, to computation in Reversible com-
putation, and to memory in Black hole thermodynamics.
We exercise our understanding of entropic limits to engine
efficiency in P–V diagram and Carnot refrigerator.

Entropy is an emergent property. We argued from
time-reversal invariance that a complete microscopic de-
scription of a closed system cannot lose information, and
hence the entropy must be a constant; you can show this
explicitly in Does entropy increase? Entropy increases
because the information stored in the initial conditions
is rapidly made irrelevant by chaotic motion; this is il-
lustrated pictorially by The Arnol’d cat map and numer-
ically (in a dissipative system) in Chaos, Lyapunov, and
entropy increase. Entropy also increases in coarse-grained

theories which ignore microscopic degrees of freedom; we
see one example of this in Entropy increases: diffusion.

Entropy has tangible experimental consequences. In
Entropy of glasses we explore how an experiment can put
upper and lower bounds on the entropy due to our massive
ignorance about the zero-temperature atomic configura-
tion in a glass. In Rubber band we find that the entropy
in a random walk can exert forces.

Entropy is a general measure of ignorance, with
widespread applications to other fields. In How many
shuffles? we apply it to card shuffling (where ignorance
is the goal). In Information entropy and Shannon entropy
we explore the key role entropy plays in communication
theory and compression algorithms. In Fractal dimen-
sions we find a useful characterization of fractal sets in
dissipative systems that is closely related to the entropy.
Finally, in Deriving entropy you can reproduce the famous
proof that the Shannon entropy is the unique measure of
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ignorance with the three key properties explicated in Sec-
tion 5.3.2.

(5.1) Life and the heat death of the Universe.
(Astrophysics) ©2
Freeman Dyson [36] discusses how living things
might evolve to cope with the cooling and dim-
ming we expect during the heat death of the Uni-
verse.
Normally one speaks of living things as beings
that consume energy to survive and proliferate.
This is of course not correct; energy is conserved,
and cannot be consumed. Living beings inter-
cept entropy flows; they use low-entropy sources
of energy (e.g., high-temperature solar radiation
for plants, candy bars for us) and emit high-
entropy forms of the same energy (body heat).
Dyson ignores the survival and proliferation is-
sues; he’s interested in getting a lot of thinking
in before the Universe ends. He presumes that
an intelligent being generates a fixed entropy ∆S
per thought.39

Energy needed per thought. Assume that the be-
ing draws heat Q from a hot reservoir at T1 and
radiates it away to a cold reservoir at T2.
(a) What is the minimum energy Q needed per
thought, in terms of ∆S and T2? You may
take T1 very large. Related formulæ: ∆S =
Q2/T2 − Q1/T1; Q1 − Q2 = W (energy is con-
served).
Time needed per thought to radiate energy.
Dyson shows, using theory not important here,
that the power radiated by our intelligent-being-
as-entropy-producer is no larger than CT 3

2 , a
constant times the cube of the cold tempera-
ture.40

(b) Write an expression for the maximum rate of
thoughts per unit time dH/dt (the inverse of the
time ∆t per thought), in terms of ∆S, C, and
T2.
Number of thoughts for an ecologically efficient
being. Our Universe is expanding; the radius R
grows roughly linearly in time t. The microwave
background radiation has a characteristic tem-
perature Θ(t) ∼ R−1 which is getting lower as
the Universe expands; this red-shift is due to the
Doppler effect. An ecologically efficient being
would naturally try to use as little heat as pos-
sible, and so wants to choose T2 as small as pos-

sible. It cannot radiate heat at a temperature
below T2 = Θ(t) = A/t.
(c) How many thoughts H can an ecologically ef-
ficient being have between now and time infinity,
in terms of ∆S, C, A, and the current time t0?
Time without end: greedy beings. Dyson would
like his beings to be able to think an infinite
number of thoughts before the Universe ends,
but consume a finite amount of energy. He pro-
poses that his beings need to be profligate in
order to get their thoughts in before the world
ends; he proposes that they radiate at a temper-
ature T2(t) ∼ t−3/8 which falls with time, but
not as fast as Θ(t) ∼ t−1.
(d) Show that with Dyson’s cooling schedule, the
total number of thoughts H is infinite, but the
total energy consumed U is finite.
We should note that there are many refinements
on Dyson’s ideas. There are potential difficulties
that may arise, like quantum limits to cooling
and proton decay. And there are different chal-
lenges depending on the expected future of the
Universe; a big crunch (where the Universe col-
lapses back on itself) demands that we adapt to
heat and pressure, while dark energy may lead
to an accelerating expansion and a rather lonely
Universe in the end.

(5.2) Burning information and Maxwellian
demons. (Computer science) ©3
Is there a minimum energy cost for taking a mea-
surement? In this exercise, we shall summarize
the work of Bennett [15], as presented in Feyn-
man [40, chapter 5].
We start by addressing again the connection be-
tween information entropy and thermodynamic
entropy. Can we burn information as fuel?
Consider a really frugal digital memory tape,
with one atom used to store each bit (Fig. 5.10).
The tape is a series of boxes, with each box con-
taining one ideal gas atom. The box is split into
two equal pieces by a removable central parti-
tion. If the atom is in the top half of the box,
the tape reads one; if it is in the bottom half
the tape reads zero. The side walls are friction-
less pistons that may be used to push the atom
around.
If we know the atom position in the nth box,
we can move the other side wall in, remove the
partition, and gradually retract the piston to its

39Each thought can be an arbitrarily complex computation; the only entropy necessarily generated is associated with recording
the answer (see Exercise 5.3).
40The constant scales with the number of electrons in the being, so we can think of our answer ∆t as the time per thought per
mole of electrons.
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original position (Fig. 5.11)—destroying our in-
formation about where the atom is, but extract-
ing useful work.
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0 10 0 0 0 0 0 0 0 01 1 1

Fig. 5.10 Minimalist digital memory tape. The
position of a single ideal gas atom denotes a bit. If it
is in the top half of a partitioned box, the bit is one,
otherwise it is zero. The side walls of the box are
pistons, which can be used to set, reset, or extract
energy from the stored bits. The numbers above the
boxes are not a part of the tape, they just denote
what bit is stored in a given position.

Fig. 5.11 Expanding piston. Extracting energy
from a known bit is a three-step process: compress
the empty half of the box, remove the partition, and
retract the piston and extract P dV work out of the
ideal gas atom. (One may then restore the partition
to return to an equivalent, but more ignorant, state.)
In the process, one loses one bit of information (which
side of the the partition is occupied).

0
0

0
0

0

0

0
00

0
0000

Fig. 5.12 Information-burning engine. A mem-
ory tape can therefore be used to power an engine. If
the engine knows or can guess the sequence written
on the tape, it can extract useful work in exchange
for losing that information.

(a) Burning the information. Assuming the gas
expands at a constant temperature T , how much
work

∫
P dV is done by the atom as the piston

retracts?
This is also the minimum work needed to set a
bit whose state is currently unknown. However,
a known bit can be reset for free (Fig. 5.13).

Fig. 5.13 Pistons changing a zero to a one.

(b) Rewriting a bit. Give a sequence of parti-
tion insertion, partition removal, and adiabatic
side-wall motions that will reversibly convert a
bit zero (atom on bottom) into a bit one (atom
on top), with no net work done on the system.
Thus the only irreversible act in using this mem-
ory tape occurs when one forgets what is written
upon it (equivalent to removing and then rein-
serting the partition).
(c) Forgetting a bit. Suppose the atom location
in the nth box is initially known. What is the
change in entropy, if the partition is removed
and the available volume doubles? Give both the
thermodynamic entropy (involving kB) and the
information entropy (involving kS = 1/ log 2).
This entropy is the cost of the missed oppor-
tunity of extracting work from the bit (as in
part (a)).
What prevents a Maxwellian demon from using
an atom in an unknown state to extract work?
The demon must first measure which side of the
box the atom is on. Early workers suggested
that there must be a minimum energy cost to
take this measurement, equal to the energy gain
extractable from the bit (part (a)). Bennett [15]
showed that no energy need be expended in the
measurement process.41 Why does this not vio-
late the second law of thermodynamics?
(d) Demonic states. After the bit has been
burned, is the demon in a known42 state? What
is its entropy? How much energy would it take
to return the demon to its original state, at tem-
perature T? Is the second law violated?

41He modeled the demon as a two-state system (say, another partitioned box). If the demon starts in a known state, one can
copy the state of the box into the demon with no cost in energy or entropy, by adiabatically turning on an appropriate coupling.
The demon has now measured the atom position, and can extract work from the pistons.
42That is, known to the outside world, not just to the demon.
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The demon can extract an unlimited amount of
useful work from a tape with an unknown bit
sequence if it has enough internal states to store
the sequence—basically it can copy the informa-
tion onto a second, internal tape. But the same
work must be expended to re-zero this internal
tape, preparing it to be used again.
Bennett’s insight might seem self-evident; one
can always pay for energy from the bath with an
increase in entropy. However, it had deep con-
sequences for the theory of computation (Exer-
cise 5.3).

(5.3) Reversible computation. (Computer sci-
ence) ©3
Is there a minimum energy cost for computation?
Again, this exercise is based on the work of Ben-
nett [15] and Feynman [40, chapters 5 and 6].
A general-purpose computer can be built out of
certain elementary logic gates. Many of these
gates destroy information.

A B=

A

B

(different?)XOR

Fig. 5.14 Exclusive-or gate. In logic, an exclu-
sive or (XOR) corresponds to the colloquial English
usage of the word: either A or B but not both. An
XOR gate outputs a one (true) if the two input bits
A and B are different, and outputs a zero (false) if
they are the same.

(a) Irreversible logic gates. Consider the XOR
gate shown in Fig. 5.14. How many bits of in-
formation are lost during the action of this gate?
Presuming the four possible inputs are equally
probable, what is the minimum work needed to
perform this operation, if the gate is run at tem-
perature T? (Hint: Just like the demon in Exer-
cise 5.2(d), the gate must pay energy to compress
into a more definite state.)
Early workers in this field thought that these
logical operations must have a minimum energy
cost. Bennett recognized that they could be
done with no energy cost by adding extra out-
puts to the gates. Naturally, keeping track of

these extra outputs involves the use of extra
memory storage—he traded an energy cost for
a gain in entropy. However, the resulting gates
now became reversible.
(b) Reversible gate. Add an extra output to the
XOR gate, which just copies the state of input
A to the first output (C = A, D = A ⊕ B).
(This is the Controlled-Not gate, one of three
that Feynman uses to assemble a general-purpose
computer, see [40, chapter 6])
Make a table, giving the four possible outputs
(C,D) of the resulting gate for the four possi-
ble inputs (A,B) = (00, 01, 10, 11). If we run the
outputs (C,D) of the gate into the inputs (A′, B′)
of another Controlled-Not gate, what net opera-
tion is performed?
A completely reversible computer can therefore
be constructed out of these new gates. The com-
puter performs the calculation, carefully copies
the answer into an output buffer, and then per-
forms the reverse computation. In reversing the
computation, all the stored information about
the extra bits can be reabsorbed, just as in
part (b). The only energy or entropy cost for
the computation is involved in writing the an-
swer.
These ideas later led to the subject of quantum
computation. Quantum computers are naturally
reversible, and would be much more powerful for
some kinds of computations than ordinary com-
puters.

(5.4) Black hole thermodynamics. (Astro-
physics) ©3
Astrophysicists have long studied black holes:
the end state of massive stars which are too
heavy to support themselves under gravity (see
Exercise 7.16). As the matter continues to fall
into the center, eventually the escape velocity
reaches the speed of light. After this point, the
in-falling matter cannot ever communicate infor-
mation back to the outside. A black hole of mass
M has radius43

Rs = G
2M

c2
, (5.37)

where G = 6.67 × 10−8 cm3/g s2 is the gravita-
tional constant, and c = 3 × 1010 cm/s is the
speed of light.

43This is the Schwarzschild radius of the event horizon for a black hole with no angular momentum or charge.
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Hawking, by combining methods from quantum
mechanics and general relativity, calculated the
emission of radiation from a black hole.44 He
found a wonderful result: black holes emit per-
fect black-body radiation at a temperature

Tbh =
~c3

8πGMkB
. (5.38)

According to Einstein’s theory, the energy of the
black hole is E =Mc2.
(a) Calculate the specific heat of the black hole.
The specific heat of a black hole is negative. That
is, it gets cooler as you add energy to it. In a
bulk material, this would lead to an instability;
the cold regions would suck in more heat and
get colder. Indeed, a population of black holes
is unstable; the larger ones will eat the smaller
ones.45

(b) Calculate the entropy of the black hole, by us-
ing the definition of temperature 1/T = ∂S/∂E
and assuming the entropy is zero at massM = 0.
Express your result in terms of the surface area
A = 4πR2

s, measured in units of the Planck
length L∗ =

√
~G/c3 squared.

As it happens, Bekenstein had deduced this for-
mula for the entropy somewhat earlier, by think-
ing about analogies between thermodynamics,
information theory, and statistical mechanics.
On the one hand, when black holes interact or
change charge and angular momentum, one can
prove in classical general relativity that the area
can only increase. So it made sense to assume
that the entropy was somehow proportional to
the area. He then recognized that if you had
some waste material of high entropy to dispose
of, you could ship it into a black hole and never
worry about it again. Indeed, given that the en-
tropy represents your lack of knowledge about a
system, once matter goes into a black hole one
can say that our knowledge about it completely
vanishes.46 (More specifically, the entropy of a
black hole represents the inaccessibility of all in-
formation about what it was built out of.) By
carefully dropping various physical systems into
a black hole (theoretically) and measuring the
area increase compared to the entropy increase,

he was able to deduce these formulæ purely from
statistical mechanics.
We can use these results to provide a fundamen-
tal bound on memory storage.
(c) Calculate the maximum number of bits that
can be stored in a sphere of radius one centime-
ter.
Finally, in perhaps string theory’s first phys-
ical prediction, your formula for the entropy
(part (b)) was derived microscopically for a cer-
tain type of black hole.

(5.5) Pressure–volume diagram. (Thermody-
namics) ©2
A monatomic ideal gas in a piston is cycled
around the path in the P–V diagram in Fig. 5.15.
Leg a cools at constant volume by connecting
to a heat bath at Tc; leg b heats at constant
pressure by connecting to a heat bath at Th; leg
c compresses at constant temperature while re-
maining connected to the bath at Th.

b

c

VV

0

0 0

0

h

c

P4

P

P

V4

T

T

Isotherm

a

Fig. 5.15 P–V diagram.

Which of the following six statements are true?
(T) (F) The cycle is reversible; no net entropy
is created in the Universe.
(T) (F) The cycle acts as a refrigerator, using
work from the piston to draw energy from the
cold bath into the hot bath, cooling the cold bath.

44Nothing can leave a black hole; the radiation comes from vacuum fluctuations just outside the black hole that emit particles.
45A thermally insulated glass of ice water also has a negative specific heat. The surface tension at the curved ice surface will
decrease the coexistence temperature a slight amount (see Section 11.3); the more heat one adds, the smaller the ice cube, the
larger the curvature, and the lower the resulting temperature [100].
46Except for the mass, angular momentum, and charge. This suggests that baryon number, for example, is not conserved in
quantum gravity. It has been commented that when the baryons all disappear, it will be hard for Dyson to build his progeny
out of electrons and neutrinos (Exercise 5.1).
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(T) (F) The cycle acts as an engine, transfer-
ring heat from the hot bath to the cold bath and
doing positive net work on the outside world.
(T) (F) The work done per cycle has magnitude
|W | = P0V0 |4 log 4− 3|.
(T) (F) The heat transferred into the cold bath,
Qc, has magnitude |Qc| = (9/2)P0V0.
(T) (F) The heat transferred from the hot bath,
Qh, plus the net work W done by the piston onto
the gas, equals the heat Qc transferred into the
cold bath.
Related formulæ: PV = NkBT ; U =
(3/2)NkBT ; ∆S = Q/T ; W = −

∫
P dV ; ∆U =

Q + W . Notice that the signs of the various
terms depend on convention (heat flow out vs.
heat flow in); you should work out the signs on
physical grounds.

(5.6) Carnot refrigerator. (Thermodynamics) ©2
Our refrigerator is about 2m×1m×1m, and has
insulation about 3 cm thick. The insulation is
probably polyurethane, which has a thermal con-
ductivity of about 0.02 W/m K. Assume that
the refrigerator interior is at 270K, and the room
is at 300K.
(a) How many watts of energy leak from our re-
frigerator through this insulation?
Our refrigerator runs at 120V, and draws a max-
imum of 4.75 amps. The compressor motor turns
on every once in a while for a few minutes.
(b) Suppose (i) we do not open the refrigerator
door, (ii) the thermal losses are dominated by
the leakage through the foam and not through the
seals around the doors, and (iii) the refrigerator
runs as a perfectly efficient Carnot cycle. How
much power on average will our refrigerator need
to operate? What fraction of the time will the
motor run?

(5.7) Does entropy increase? (Mathematics) ©3
The second law of thermodynamics says that en-
tropy always increases. Perversely, we can show
that in an isolated system, no matter what non-
equilibrium condition it starts in, entropy cal-
culated with a complete microscopic description
stays constant in time.
Liouville’s theorem tells us that the total deriva-
tive of the probability density is zero; following
the trajectory of a system, the local probability
density never changes. The equilibrium states

have probability densities that only depend on
energy and number. Something is wrong; if the
probability density starts non-uniform, how can
it become uniform?
Show

∂f(ρ)

∂t
= −∇ · [f(ρ)V]

= −
∑

α

∂

∂pα
(f(ρ)ṗα) +

∂

∂qα
(f(ρ)q̇α),

where f is any function and V = (Ṗ, Q̇) is the
6N-dimensional velocity in phase space. Hence
(by Gauss’s theorem in 6N dimensions), show∫
(∂f(ρ)/∂t) dPdQ = 0, assuming that the prob-

ability density vanishes at large momenta and
positions and f(0) = 0. Show, thus, that the
entropy S = −kB

∫
ρ log ρ is constant in time.

We will see that the quantum version of the en-
tropy is also constant for a Hamiltonian system
in Exercise 7.4. Some deep truths are not mi-
croscopic; the fact that entropy increases is an
emergent property.

(5.8) The Arnol’d cat map. (Mathematics) ©3
Why do we think entropy increases? Points in
phase space do not just swirl in circles; they get
stretched and twisted and folded back in compli-
cated patterns—especially in systems where sta-
tistical mechanics seems to hold. Arnol’d, in a
take-off on Schrödinger’s cat, suggested the fol-
lowing analogy. Instead of a continuous trans-
formation of phase space onto itself preserving
6N-dimensional volume, let us think of an area-
preserving mapping of an n × n square in the
plane into itself (figure 5.16).47 Consider the
mapping (Fig. 5.16)

Γ

(
x
y

)
=

(
2x+ y
x+ y

)
modn. (5.39)

Check that Γ preserves area. (It is basically mul-
tiplication by the matrix M =

(
2 1
1 1

)
. What is

the determinant of M?). Show that it takes a
square n × n (or a picture of n × n pixels) and
maps it into itself with periodic boundary condi-
tions. (With less cutting and pasting, you can
view it as a map from the torus into itself.) As
a linear map, find the eigenvalues and eigenvec-
tors. Argue that a small neighborhood (say a cir-
cle in the center of the picture) will initially be

47More general, nonlinear area-preserving maps of the plane are often studied as Hamiltonian-like dynamical systems. Area-
preserving maps come up as Poincaré sections of Hamiltonian systems 4.4, with the area weighted by the inverse of the velocity
with which the system passes through the cross-section. They are particularly relevant in studies of high-energy particle
accelerators, where the mapping gives a snapshot of the particles after one orbit around the ring.
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Fig. 5.16 Arnol’d cat transform, from
Poon [105]; see the movie too [113].

stretched along an irrational direction into a thin
strip (Fig. 5.17).

Fig. 5.17 Arnol’d map stretches. A small circu-
lar region stretches along an irrational angle under
the Arnol’d cat map. The center of the figure is the
origin x = 0, y = 0.

When this thin strip hits the boundary, it gets
split into two; in the case of an n×n square, fur-
ther iterations stretch and chop our original cir-
cle into a thin line uniformly covering the square.
In the pixel case, there are always exactly the

same number of pixels that are black, white, and
each shade of gray; they just get so kneaded to-
gether that everything looks a uniform color. So,
by putting a limit to the resolution of our mea-
surement (rounding errors on the computer, for
example), or by introducing any tiny coupling
to the external world, the final state can be seen
to rapidly approach equilibrium, proofs to the
contrary (Exercise 5.7) notwithstanding.

(5.9) Chaos, Lyapunov, and entropy increase.48

(Mathematics, Complexity) ©3
Chaotic dynamical systems have sensitive depen-
dence on initial conditions. This is commonly
described as the ‘butterfly effect’ (due to Lorenz
of the Lorenz attractor): the effects of the flap of
a butterfly’s wings in Brazil build up with time
until months later a tornado in Texas could
be launched. In this exercise, we will see this
sensitive dependence for a particular system (the

48This exercise and the associated software were developed in collaboration with Christopher Myers.
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logistic map)49 and measure the sensitivity by
defining the Lyapunov exponents.
The logistic map takes the interval (0, 1) into it-
self:

f(x) = 4µx(1− x), (5.40)

where the time evolution is given by iterating the
map:

x0, x1, x2, . . . = x0, f(x0), f(f(x0)), . . . . (5.41)

In particular, for µ = 1 it precisely folds the unit
interval in half, and stretches it (non-uniformly)
to cover the original domain.
The mathematics community lumps together
continuous dynamical evolution laws and dis-
crete mappings as both being dynamical sys-
tems.50 The general stretching and folding ex-
hibited by our map is often seen in driven phys-
ical systems without conservation laws.
In this exercise, we will focus on values of µ near
one, where the motion is mostly chaotic. Chaos
is sometimes defined as motion where the final
position depends sensitively on the initial con-
ditions. Two trajectories, starting a distance ǫ
apart, will typically drift apart in time as ǫeλt,
where λ is the Lyapunov exponent for the chaotic
dynamics.
Start with µ = 0.9 and two nearby points
x0 and y0 = x0 + ǫ somewhere between
zero and one. Investigate the two tra-
jectories x0, f(x0), f(f(x0)), . . . , f

[n](x0) and
y0, f(y0), . . . . How fast do they separate? Why
do they stop separating? Estimate the Lyapunov
exponent. (Hint: ǫ can be a few times the pre-
cision of the machine (around 10−17 for double-
precision arithmetic), so long as you are not near
the maximum value of f at x0 = 0.5.)
Many Hamiltonian systems are also chaotic.
Two configurations of classical atoms or billiard
balls, with initial positions and velocities that
are almost identical, will rapidly diverge as the
collisions magnify small initial deviations in an-
gle and velocity into large ones. It is this chaotic
stretching, folding, and kneading of phase space
that is at the root of our explanation that en-
tropy increases.

(5.10) Entropy increases: diffusion. ©3
We saw that entropy technically does not in-
crease for a closed system, for any Hamilto-
nian, either classical or quantum. However, we
can show that entropy increases for most of the
coarse-grained effective theories that we use in
practice; when we integrate out degrees of free-
dom, we provide a means for the information
about the initial condition to be destroyed. Here
you will show that entropy increases for the dif-
fusion equation.
Let ρ(x, t) obey the one-dimensional diffusion
equation ∂ρ/∂t = D∂2ρ/∂x2. Assume that the
density ρ and all its gradients die away rapidly
at x = ±∞.51

Derive a formula for the time derivative of the
entropy S = −kB

∫
ρ(x) log ρ(x) dx and show

that it strictly increases in time. (Hint: In-
tegrate by parts. You should get an integral of
a positive definite quantity.)

(5.11) Entropy of glasses. (Condensed matter) ©3
Glasses are not really in equilibrium. If you
put a glass in an insulated box, it will warm up
(very slowly) because of microscopic atomic re-
arrangements which lower the potential energy.
So, glasses do not have a well-defined tempera-
ture or specific heat. In particular, the heat flow
upon cooling and on heating (dQ/dT )(T ) will
not precisely match (although their integrals will
agree by conservation of energy).
Thomas and Parks in Fig. 5.18 are making the
approximation that the specific heat of the glass
is dQ/dT , the measured heat flow out of the glass
divided by the temperature change of the heat
bath. They find that the specific heat defined in
this way measured on cooling and heating dis-
agree. Assume that the liquid at 325 ◦C is in
equilibrium both before cooling and after heat-
ing (and so has the same liquid entropy Sliquid).
(a) Is the residual entropy, eqn 5.18, experimen-
tally larger on heating or on cooling in Fig. 5.18?
(Hint: Use the fact that the integrals under
the curves,

∫ Tℓ

0
(dQ/dT ) dT give the heat flow,

which by conservation of energy must be the
same on heating and cooling. The heating curve

49We also study this map in Exercises 4.3, 5.16, and 12.9.
50The Poincaré section (Fig. 4.8) takes a continuous, recirculating dynamical system and replaces it with a once-return map,
providing the standard motivation for treating maps and continuous evolution laws together. This motivation does not directly
apply here, because the logistic map 4.12 is not invertible, so it is not directly given by a Poincaré section of a smooth differential
equation. (Remember the existence and uniqueness theorems from math class? The invertibility follows from uniqueness.)
51Also, you may assume ∂nρ/∂xn log ρ goes to zero at x = ±∞, even though log ρ goes to −∞.
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in Fig. 5.18 shifts weight to higher tempera-
tures; will that increase or decrease the integral∫
(1/T )(dQ/dT ) dT ?)

(b) By using the second law (entropy can only in-
crease), show that when cooling and then heating
from an equilibrium liquid the residual entropy
measured on cooling must always be less than the
residual entropy measured on heating. Your
argument should be completely general, appli-
cable to any system out of equilibrium. (Hint:
Consider the entropy flow into the outside world
upon cooling the liquid into the glass, compared
to the entropy flow from the outside world to
heat the glass into the liquid again. The initial
and final states of the liquid are both in equilib-
rium. See [77].)

100 200 300
Temperature ( C)

0.4
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Fig. 5.18 Glass transition specific heat. Specific
heat of B2O3 glass measured while heating and cool-
ing [138]. The glass was first rapidly cooled from the
melt (500 ◦C → 50 ◦C in a half hour), then heated
from 33 ◦C → 345 ◦C in 14 hours, cooled from 345 ◦C
to room temperature in 18 hours (diamonds), and fi-
nally heated from 35 ◦C → 325 ◦C (crosses). See [75].

The residual entropy of a typical glass is about
kB per molecular unit. It is a measure of how
many different glassy configurations of atoms the
material can freeze into.
(c) In a molecular dynamics simulation with one
hundred indistinguishable atoms, and assuming
that the residual entropy is kB log 2 per atom,
what is the probability that two coolings to zero
energy will arrive at equivalent atomic config-
urations (up to permutations)? In a system
with 1023 molecular units, with residual entropy

kB log 2 per unit, about how many coolings would
be needed for one to duplicate the original con-
figuration again, with probability 1/2?

(5.12) Rubber band. (Condensed matter) ©2
Figure 5.19 shows a one-dimensional model for
rubber. Rubber is formed from long polymeric
molecules, which undergo random walks in the
undeformed material. When we stretch the rub-
ber, the molecules respond by rearranging their
random walk to elongate in the direction of the
external stretch. In our model, the molecule
is represented by a set of N links of length d,
which with equal energy point either parallel or
antiparallel to the previous link. Let the total
change in position to the right, from the begin-
ning of the polymer to the end, be L.
As the molecule extent L increases, the entropy
of our rubber molecule decreases.
(a) Find an exact formula for the entropy of this
system in terms of d, N , and L. (Hint: How
many ways can one divide N links into M right-
pointing links and N −M left-pointing links, so
that the total length is L?)

L

d

Fig. 5.19 Rubber band. Simple model of a rubber
band with N = 100 segments. The beginning of the
polymer is at the top; the end is at the bottom; the
vertical displacements are added for visualization.

The external world, in equilibrium at temper-
ature T , exerts a force pulling the end of the
molecule to the right. The molecule must exert
an equal and opposite entropic force F .
(b) Find an expression for the force F exerted
by the molecule on the bath in terms of the bath
entropy. (Hint: The bath temperature 1/T =
∂Sbath/∂E, and force times distance is energy.)
Using the fact that the length L must maximize
the entropy of the Universe, write a general ex-
pression for F in terms of the internal entropy
S of the molecule.
(c) Take our model of the molecule from part (a),
the general law of part (b), and Stirling’s formula



 Copyright Oxford University Press 2006  v1.0                       --  

Exercises 99

log(n!) ≈ n log n − n, write the force law F (L)
for our molecule for large lengths N . What is
the spring constant K in Hooke’s law F = −KL
for our molecule, for small L?
Our model has no internal energy; this force is
entirely entropic.
(d) If we increase the temperature of our rubber
band while it is under tension, will it expand or
contract? Why?
In a more realistic model of a rubber band, the
entropy consists primarily of our configurational
random-walk entropy plus a vibrational entropy
of the molecules. If we stretch the rubber band
without allowing heat to flow in or out of the
rubber, the total entropy should stay approxi-
mately constant. (Rubber is designed to bounce
well; little irreversible entropy is generated in a
cycle of stretching and compression, so long as
the deformation is not too abrupt.)
(e) True or false?
(T) (F) When we stretch the rubber band, it will
cool; the configurational entropy of the random
walk will decrease, causing the entropy in the vi-
brations to decrease, causing the temperature to
decrease.
(T) (F) When we stretch the rubber band, it will
cool; the configurational entropy of the random
walk will decrease, causing the entropy in the vi-
brations to increase, causing the temperature to
decrease.
(T) (F) When we let the rubber band relax, it
will cool; the configurational entropy of the ran-
dom walk will increase, causing the entropy in
the vibrations to decrease, causing the tempera-
ture to decrease.
(T) (F) When we let the rubber band relax, there
must be no temperature change, since the entropy
is constant.
This more realistic model is much like the ideal
gas, which also had no configurational energy.
(T) (F) Like the ideal gas, the temperature
changes because of the net work done on the sys-
tem.
(T) (F) Unlike the ideal gas, the work done on
the rubber band is positive when the rubber band
expands.
You should check your conclusions experimen-

tally; find a rubber band (thick and stretchy is
best), touch it to your lips (which are very sen-
sitive to temperature), and stretch and relax it.

(5.13) How many shuffles? (Mathematics) ©3
How many shuffles does it take to randomize a
deck of 52 cards?
The answer is a bit controversial; it depends
on how one measures the information left in
the cards. Some suggest that seven shuffles are
needed; others say that six are enough.52 We will
follow reference [141], and measure the growing
randomness using the information entropy.
We imagine the deck starts out in a known order
(say, A♠, 2♠, . . . , K♣).
(a) What is the information entropy of the deck
before it is shuffled? After it is completely ran-
domized?
The mathematical definition of a riffle shuffle is
easiest to express if we look at it backward.53

Consider the deck after a riffle; each card in the
deck either came from the upper half or the lower
half of the original deck. A riffle shuffle makes
each of the 252 choices (which card came from
which half) equally likely.
(b) Ignoring the possibility that two different rif-
fles could yield the same final sequence of cards,
what is the information entropy after one riffle?
You can convince yourself that the only way two
riffles can yield the same sequence is if all the
cards in the bottom half are dropped first, fol-
lowed by all the cards in the top half.
(c) How many of the 252 possible riffles drop the
entire bottom half and then the entire top half,
leaving the card ordering unchanged? Hence,
what is the actual information entropy after one
riffle shuffle? (Hint: Calculate the shift from
your answer for part (b).)
We can put a lower bound on the number of
riffles needed to destroy all information by as-
suming the entropy increase stays constant for
future shuffles.
(d) Continuing to ignore the possibility that two
different sets of m riffles could yield the same fi-
nal sequence of cards, how many riffles would it
take for the entropy to pass that of a completely
randomized deck?

52More substantively, as the number of cards N → ∞, some measures of information show an abrupt transition near 3/2 log2N ,
while by other measures the information vanishes smoothly and most of it is gone by log2N shuffles.
53In the forward definition of a riffle shuffle, one first cuts the deck into two ‘halves’, according to a binomial distribution: the
probability that n cards are chosen for the top half is 2−52

(52
n

)
. We then drop cards in sequence from the two halves into a

pile, with the probability of a card being dropped proportional to the number of cards remaining in its half. You can check
that this makes each of the 252 choices in the backward definition equally likely.
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(5.14) Information entropy. (Computer science,
Mathematics, Complexity) ©2
Entropy is a measure of your ignorance about a
system; it is a measure of the lack of information.
It has important implications in communication
technologies: messages passed across a network
communicate information, reducing the informa-
tion entropy for the receiver.
Your grandparent has sent you an e-mail mes-
sage. From the header of the message, you know
it contains 1000 characters. You know each char-
acter is made of 8 bits, which allows 28 = 256
different letters or symbols per character.
(a) Assuming all possible messages from your
grandparent are equally likely (a typical message
would then look like G*me‘!8V[beep]. . . ), how
many different messages N could there be? What
is the corresponding upper bound Smax for the in-
formation entropy kS logN?
Your grandparent writes rather dull messages;
they all fall into the same pattern. They have a
total of 16 equally likely messages.54 After you
read the message, you forget the details of the
wording anyhow, and only remember these key
points of information.
(b) What is the actual information entropy
change ∆SShannon you undergo when reading the
message? If your grandparent writes one mes-
sage per month, what is the minimum number
of 8-bit characters per year that it would take to
send your grandparent’s messages? (You may
lump multiple messages into a single character.)
(Hints: ∆SShannon is your change in entropy
from before you read the message to after you
read which of 16 messages it was. The length of
1000 is not important for this part.)
Remark: This is an extreme form of lossy data
compression, like that used in jpeg images, mpeg
animations, and mp3 audio files. We are asking
for the number of characters per year for an op-
timally compressed signal.

(5.15) Shannon entropy. (Computer science) ©3
Natural languages are highly redundant; the
number of intelligible fifty-letter English sen-
tences is many fewer than 2650, and the num-
ber of distinguishable ten-second phone conver-
sations is far smaller than the number of sound

signals that could be generated with frequencies
up to 20 000Hz.55

This immediately suggests a theory for signal
compression. If you can recode the alphabet so
that common letters and common sequences of
letters are abbreviated, while infrequent combi-
nations are spelled out in lengthy fashion, you
can dramatically reduce the channel capacity
needed to send the data. (This is lossless com-
pression, like zip, gz, and gif.)
An obscure language A’bç! for long-distance
communication has only three sounds: a hoot
represented by A, a slap represented by B, and
a click represented by C. In a typical message,
hoots and slaps occur equally often (p = 1/4),
but clicks are twice as common (p = 1/2). As-
sume the messages are otherwise random.
(a) What is the Shannon entropy in this lan-
guage? More specifically, what is the Shannon
entropy rate −kS

∑
pm log pm, the entropy per

sound or letter transmitted?
(b) Show that a communication channel trans-
mitting bits (ones and zeros) can transmit no
more than one unit of Shannon entropy per bit.
(Hint: This should follow by showing that, for
N = 2n messages, the Shannon entropy is maxi-
mized by pm = 1/N . We have proved this al-
ready in a complicated way (note 36, p. 88);
here prove it is a local extremum, either using
a Lagrange multiplier or by explicitly setting
pN = 1−∑N−1

m=1 pm.)
(c) In general, argue that the Shannon entropy
gives the minimum number of bits needed to
transmit the ensemble of messages. (Hint: Com-
pare the Shannon entropy of the N original
messages with the Shannon entropy of the N
(shorter) encoded messages.) Calculate the min-
imum number of bits per letter on average needed
to transmit messages for the particular case of an
A’bç! communication channel.
(d) Find a compression scheme (a rule that con-
verts a A’bç! message to zeros and ones, that
can be inverted to give back the original message)
that is optimal, in the sense that it saturates the
bound you derived in part (b). (Hint: Look
for a scheme for encoding the message that com-

54Each message mentions whether they won their bridge hand last week (a fifty-fifty chance), mentions that they wish you
would write more often (every time), and speculates who will win the women’s college basketball tournament in their region
(picking at random one of the eight teams in the league).
55Telephones, for example, do not span this whole frequency range: they are limited on the low end at 300–400Hz, and on the
high end at 3000–3500 Hz. You can still understand the words, so this crude form of data compression is only losing non-verbal
nuances in the communication (Paul Ginsparg, private communication).
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presses one letter at a time. Not all letters need
to compress to the same number of bits.)
Shannon also developed a measure of the chan-
nel capacity of a noisy wire, and discussed error-
correction codes, etc.

(5.16) Fractal dimensions.56 (Mathematics, Com-
plexity) ©4
There are many strange sets that emerge in sci-
ence. In statistical mechanics, such sets often
arise at continuous phase transitions, where self-
similar spatial structures arise (Chapter 12). In
chaotic dynamical systems, the attractor (the set
of points occupied at long times after the tran-
sients have disappeared) is often a fractal (called
a strange attractor). These sets are often tenu-
ous and jagged, with holes on all length scales;
see Figs 12.2, 12.5, and 12.11.
We often try to characterize these strange sets by
a dimension. The dimensions of two extremely
different sets can be the same; the path exhib-
ited by a random walk (embedded in three or
more dimensions) is arguably a two-dimensional
set (note 6 on p. 17), but does not locally look
like a surface. However, if two sets have different
spatial dimensions (measured in the same way)
they are certainly qualitatively different.
There is more than one way to define a di-
mension. Roughly speaking, strange sets are
often spatially inhomogeneous, and what di-
mension you measure depends upon how you
weight different regions of the set. In this ex-
ercise, we will calculate the information dimen-
sion (closely connected to the non-equilibrium
entropy), and the capacity dimension (originally
called the Hausdorff dimension, also sometimes
called the fractal dimension).
To generate our strange set—along with some
more ordinary sets—we will use the logistic
map57

f(x) = 4µx(1− x). (5.42)

The attractor for the logistic map is a periodic
orbit (dimension zero) at µ = 0.8, and a chaotic,
cusped density filling two intervals (dimension
one)58 at µ = 0.9. At the onset of chaos at

µ = µ∞ ≈ 0.892486418 (Exercise 12.9) the di-
mension becomes intermediate between zero and
one; this strange, self-similar set is called the
Feigenbaum attractor.
Both the information dimension and the capac-
ity dimension are defined in terms of the occu-
pation Pn of cells of size ǫ in the limit as ǫ→ 0.
(a) Write a routine which, given µ and a set of
bin sizes ǫ, does the following.

• Iterates f hundreds or thousands of times (to
get onto the attractor).

• Iterates f a large number Ntot more times, col-
lecting points on the attractor. (For µ ≤ µ∞,
you could just integrate 2n times for n fairly
large.)

• For each ǫ, use a histogram to calculate the
probability Pj that the points fall in the jth
bin.

• Return the set of vectors Pj [ǫ].

You may wish to test your routine by using it
for µ = 1 (where the distribution should look
like ρ(x) = 1/π

√
x(1− x), Exercise 4.3(b)) and

µ = 0.8 (where the distribution should look like
two δ-functions, each with half of the points).
The capacity dimension. The definition of the
capacity dimension is motivated by the idea that
it takes at least

Ncover = V/ǫD (5.43)

bins of size ǫD to cover a D-dimensional set of
volume V .59 By taking logs of both sides we
find logNcover ≈ log V + D log ǫ. The capacity
dimension is defined as the limit

Dcapacity = lim
ǫ→0

logNcover

log ǫ
, (5.44)

but the convergence is slow (the error goes
roughly as log V/ log ǫ). Faster convergence is
given by calculating the slope of logN versus
log ǫ:

Dcapacity = lim
ǫ→0

d logNcover

d log ǫ

= lim
ǫ→0

logNj+1 − logNj

log ǫi+1 − log ǫi
. (5.45)

56This exercise and the associated software were developed in collaboration with Christopher Myers.
57We also study this map in Exercises 4.3, 5.9, and 12.9.
58See Exercise 4.3. The chaotic region for the logistic map does not have a strange attractor because the map is confined to
one dimension; period-doubling cascades for dynamical systems in higher spatial dimensions have fractal, strange attractors in
the chaotic region.
59Imagine covering the surface of a sphere in 3D with tiny cubes; the number of cubes will go as the surface area (2D volume)
divided by ǫ2.
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(b) Use your routine from part (a), write a rou-
tine to calculate N [ǫ] by counting non-empty
bins. Plot Dcapacity from the fast convergence
eqn 5.45 versus the midpoint 1/2(log ǫi+1+log ǫi).
Does it appear to extrapolate to D = 1 for
µ = 0.9? 60 Does it appear to extrapolate to
D = 0 for µ = 0.8? Plot these two curves to-
gether with the curve for µ∞. Does the last one
appear to converge to D1 ≈ 0.538, the capacity
dimension for the Feigenbaum attractor gleaned
from the literature? How small a deviation from
µ∞ does it take to see the numerical cross-over
to integer dimensions?
Entropy and the information dimension.
The probability density ρ(xj) ≈ Pj/ǫ =
(1/ǫ)(Nj/Ntot). Converting the entropy for-
mula 5.20 to a sum gives

S = −kB
∫
ρ(x) log(ρ(x)) dx

≈ −
∑

j

Pj

ǫ
log

(
Pj

ǫ

)
ǫ

= −
∑

j

Pj logPj + log ǫ (5.46)

(setting the conversion factor kB = 1 for conve-
nience).
You might imagine that the entropy for a fixed-
point would be zero, and the entropy for a
period-m cycle would be kB logm. But this is in-
correct; when there is a fixed-point or a periodic
limit cycle, the attractor is on a set of dimension
zero (a bunch of points) rather than dimension
one. The entropy must go to minus infinity—
since we have precise information about where
the trajectory sits at long times. To estimate
the ‘zero-dimensional’ entropy kB logm on the
computer, we would use the discrete form of the
entropy (eqn 5.19), summing over bins Pj in-
stead of integrating over x:

Sd=0 = −
∑

j

Pj log(Pj) = Sd=1−log(ǫ). (5.47)

More generally, the ‘natural’ measure of the en-
tropy for a set with D dimensions might be de-
fined as

SD = −
∑

j

Pj log(Pj) +D log(ǫ). (5.48)

Instead of using this formula to define the en-
tropy, mathematicians use it to define the infor-
mation dimension

Dinf = lim
ǫ→0

(∑
Pj logPj

)
/ log(ǫ). (5.49)

The information dimension agrees with the or-
dinary dimension for sets that locally look like
RD. It is different from the capacity dimen-
sion (eqn 5.44), which counts each occupied bin
equally; the information dimension counts heav-
ily occupied parts (bins) in the attractor more
heavily. Again, we can speed up the convergence
by noting that eqn 5.48 says that

∑
j Pj logPj is

a linear function of log ǫ with slope D and inter-
cept SD. Measuring the slope directly, we find

Dinf = lim
ǫ→0

d
∑

j Pj(ǫ) logPj(ǫ)

d log ǫ
. (5.50)

(c) As in part (b), write a routine that plots
Dinf from eqn 5.50 as a function of the midpoint
log ǫ, as we increase the number of bins. Plot the
curves for µ = 0.9, µ = 0.8, and µ∞. Does the
information dimension agree with the ordinary
one for the first two? Does the last one appear
to converge to D1 ≈ 0.517098, the information
dimension for the Feigenbaum attractor from the
literature?
Most ‘real world’ fractals have a whole spec-
trum of different characteristic spatial dimen-
sions; they are multifractal.

(5.17) Deriving entropy. (Mathematics) ©3
In this exercise, you will show that there is a
unique continuous function SI (up to the con-
stant kB) satisfying the three key properties
(eqns 5.25, 5.29, and 5.35) for a good measure
of ignorance:

SI

(
1

Ω
, . . . ,

1

Ω

)
> SI(p1, . . . , pΩ) (5.51)

unless pi = 1/Ω for all i,

SI(p1, . . . , pΩ−1, 0) = SI(p1, . . . , pΩ−1), (5.52)

and

〈SI(A|Bℓ)〉B = SI(AB)− SI(B). (5.53)

60In the chaotic regions, keep the number of bins small compared to the number of iterates in your sample, or you will start
finding empty bins between points and eventually get a dimension of zero.
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Here

SI(A) = SI(p1, . . . , pΩ),

SI(B) = SI(q1, . . . , qM ),

〈SI(A|Bℓ)〉B =
∑

ℓ

qℓSI(c1ℓ, . . . , cΩℓ),

SI(AB) = SI(c11q1, . . . , cΩMqM ).

You will show, naturally, that this function is our
non-equilibrium entropy 5.19. The presentation
is based on the proof in the excellent small book
by Khinchin [66].
For convenience, define L(g) = SI(1/g, . . . , 1/g).
(a) For any rational probabilities qℓ, let g be
the least common multiple of their denominators,
and let qℓ = gℓ/g for integers gℓ. Show that

SI(B) = L(g)−
∑

ℓ

qℓL(gℓ). (5.54)

(Hint: Consider AB to have g possibilities of
probability 1/g, B to measure which group of
size gℓ, and A to measure which of the gℓ mem-
bers of group ℓ, see Fig. 5.20.)

1/3

1/4

1/4

1/61/2

k

k

c

A

B

q

1/3 1/3 1/3

1/31/31/3

1/4 1/4 1/4 1/4

1/2

Fig. 5.20 Rational probabilities and condi-

tional entropy. Here the probabilities qℓ =

(1/6, 1/3, 1/3, 1/2) of state Bℓ are rational. We
can split the total probability into g = 12 equal
pieces (circles, each probability rkℓ = 1/12), with
gk = (2, 3, 3, 4) pieces for the corresponding measure-
ment Bℓ. We can then write our ignorance SI(B) in
terms of the (maximal) equal-likelihood ignorances
L(g) = SI(1/g, . . . ) and L(gk), and use the en-
tropy change for conditional probabilities property
(eqn 5.35) to derive our ignorance SI(B) (eqn 5.54).

(b) If L(g) = kS log g, show that eqn 5.54 is the
Shannon entropy 5.23.
Knowing that SI(A) is the Shannon entropy
for all rational probabilities, and assuming that
SI(A) is continuous, makes SI(A) the Shannon
entropy. So, we have reduced the problem to
showing L(g) is the logarithm up to a constant.
(c) Show that L(g) is monotone increasing with
g. (Hint: You will need to use both of the first
two key properties.)
(d) Show L(gn) = nL(g). (Hint: Consider n
independent probability distributions each of g
equally-likely events. Use the third property re-
cursively on n.)
(e) If 2m < sn < 2m+1, using the results of
parts (c) and (d) show

m

n
<
L(s)

L(2)
<
m+ 1

n
. (5.55)

(Hint: How is L(2m) related to L(sn) and
L(2m+1)?) Show also using the same argument
that m/n < log(s)/log(2) < (m + 1)/n. Hence,
show that |L(s)/L(2) − log(s)/log(2)| < 1/n and
thus L(s) = k log s for some constant k.
Hence our ignorance function SI agrees with
the formula for the non-equilibrium entropy
uniquely (up to an overall constant).
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In this chapter, we explain how to study parts of statistical mechanical
systems. If we ignore most of our system—agreeing not to ask questions
about certain degrees of freedom—the statistical mechanical predictions
about the remaining parts of our system are embodied in a new statisti-
cal ensemble and its associated free energy. These free energies usually
make calculations easier and the physical behavior more comprehensible.
What do we ignore?
We ignore the external world. Most systems are not isolated; they

often can exchange energy, volume, or particles with an outside world in
equilibrium (often called the heat bath). If the coupling to the external
world is weak, we can remove it from consideration. The constant-
temperature canonical1 ensemble (Section 6.1) and the Helmholtz free

1Canonical (Oxford English dictio-

nary): . . . 4. gen. Of the nature of
a canon or rule: of admitted author-
ity, excellence, or supremacy; author-
itative; orthodox; accepted; standard.
5. Math. Furnishing, or according to,
a general rule or formula.

energy arise from a bath which can exchange energy; the grand canonical
ensemble (Section 6.3) and the grand free energy arise from baths which
also exchange particles at fixed chemical potential. For large systems,
these different ensembles predict the same average behavior (apart from
tiny fluctuations); we could in principle do most calculations of interest
at constant energy and particle number. However, calculations using
the appropriate free energy can be much simpler (Section 6.2).
We ignore unimportant internal degrees of freedom. In studying (say)

chemical reactions, magnets, or the motion of large mechanical objects,
one is normally not interested in the motions of the individual atoms.
To ignore them in mechanical systems, one introduces friction and noise
(Section 6.5). By ignoring the atomic motions in chemical reactions, one
derives reaction rate theory (Section 6.6).
We coarse grain. Many systems are not homogeneous, because of ini-

tial conditions or boundary conditions; their properties vary in space
and/or time. If these systems are locally near equilibrium, we can ig-
nore the internal degrees of freedom in small volumes, coarse-graining
our description by keeping only the continuum fields which describe the
local state.2 As an example, in Section 6.7 we will calculate the free en- 2These are the order parameter fields

that we will study in Chapter 9.ergy density for the ideal gas, and use it to (again) derive the diffusion
equation.
We will calculate free energies explicitly in several important cases in

this chapter. Note that free energies are important tools, however, even
for systems too complex to solve analytically. We provide these solvable
examples in part to motivate later continuum derivations of free energies
for systems where microscopic calculations are not feasible.
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6.1 The canonical ensemble

Fig. 6.1 The canonical ensemble

describes equilibrium systems which
can exchange energy with a heat
bath. The bath is at temperature
T . The probability of a state s of
the system with energy Es is ρ(s) =
exp(−Es/kBT )/Z. The thermody-
namics of the canonical ensemble is em-
bodied in the Helmholtz free energy
A(T, V,N) = E − TS.

The canonical ensemble governs the equilibrium behavior of a system
at fixed temperature. We defined the temperature in Section 3.3 by
considering a total system comprised of two weakly-coupled parts, with
phase-space coordinates (P1,Q1) and (P2,Q2) that can exchange energy.
We will now focus on the first of these two parts (the system); the second
part (the heat bath) we will assume to be large. We are not interested in
measuring any properties that depend upon the heat bath, and want a
statistical ensemble for the system that averages over the relevant states
of the bath.
How does the probability that our system is in a state s depend upon

its energy Es? As we discussed in Section 3.3, the probability density
that our system will be in the particular state s is proportional to the
volume of the energy shell for our heat bath at bath energy E − Es:

ρ(s) ∝ Ω2(E − Es) = exp (S2(E − Es)/kB) (6.1)

since a state s gets a share of the microcanonical probability for each
heat-bath partner it can coexist with at the fixed total energy E.
Let us compare the probability of two typical states A and B of our

equilibrium system. We know that the energy fluctuations are small, and
we assume that the heat bath is large. We can therefore assume that
the inverse temperature 1/T2 = ∂S2/∂E2 of the heat bath is constant
in the range (E − EA, E − EB). Hence,

ρ(sB)/ρ(sA) = Ω2(E − EB)/Ω2(E − EA)

= e(S2(E−EB)−S2(E−EA))/kB = e(EA−EB) (∂S2/∂E)/kB

= e(EA−EB)/kBT2 . (6.2)

This is the general derivation of the Boltzmann distribution; the prob-
ability of a particular system state3 of energy Es is3For a classical system, this is instead

the probability per phase-space volume
h3N . ρ(s) ∝ exp(−Es/kBT ). (6.3)

We know that the probability is normalized, so

ρ(s) = exp(−Es/kBT )
/∫ dP1 dQ1

h3N1
exp(−H1(P1,Q1)/kBT )

= exp(−Es/kBT )
/∑

n

exp(−En/kBT )

= exp(−Es/kBT )/Z, (6.4)

where the normalization factor

Z(T,N, V ) =
∑

n

exp(−En/kBT ) =

∫
dP1 dQ1

h3N1
exp(−H1(P1,Q1)/kBT )

(6.5)
is the partition function.4

4To avoid blinding ourselves with inte-
grals, we will write them as a ‘continu-
ous sum’;

∫
dP dQ/h3N →

∑
n for the

rest of this chapter. This notation fore-
shadows quantum mechanics (Chap-
ter 7), where for bound systems the
energy levels are discrete; it will also
be appropriate for lattice systems like
the Ising model (Section 8.1), where we
have integrated away all the continuous
degrees of freedom. No complications
arise from translating the sums for the
equations in this chapter back into in-
tegrals over phase space.
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Equation 6.4 is the definition of the canonical ensemble,5 appropriate
for calculating properties of systems which can exchange energy with an
external world at temperature T .
The partition function Z is just the normalization factor that keeps

the total probability summing to one. It may surprise you to discover
that this normalization factor plays a central role in the theory. Indeed,
most quantities of interest can be calculated in two different ways: as
an explicit sum over states or in terms of derivatives of the partition
function. Let us see how this works by using Z to calculate the mean
energy, the specific heat, and the entropy of a general system.

Internal energy. To calculate the average internal energy of our sys-
tem6 〈E〉, we weight each state by its probability. Writing β = 1/(kBT ),

6The angle brackets represent canoni-
cal averages.

〈E〉 =
∑

n

EnPn =

∑
nEne

−βEn

Z
= −∂Z/∂β

Z

= −∂ logZ/∂β. (6.11)

Specific heat. Let cv be the specific heat per particle at constant vol-
ume. (The specific heat is the energy needed to increase the temperature
by one unit, ∂〈E〉/∂T .) Using eqn 6.11, we get

Ncv =
∂〈E〉
∂T

=
∂〈E〉
∂β

dβ

dT
= − 1

kBT 2

∂〈E〉
∂β

=
1

kBT 2

∂2 logZ

∂β2
. (6.12)

5A formal method of deriving the canonical ensemble is as a partial trace, removing the bath degrees of freedom from a
microcanonical ensemble. To calculate the expectation of an operator B that depends only on system coordinates (P1,Q1),
we start by averaging over the energy shell in the entire space (eqn 3.5), including both the system coordinates and the bath
coordinates (P2,Q2):

Ω(E) =
1

δE

∫

E<H1+H2<E+δE
dP1 dQ1 dP2 dQ2 =

∫
dE1 Ω1(E1)Ω2(E − E1). (6.6)

〈B〉 = 1

Ω(E)δE

∫

E<H1+H2<E+δE
dP1 dQ1B(P1,Q1) dP2 dQ2 =

1

Ω(E)

∫
dP1 dQ1B(P1,Q1)Ω2(E −H1(P1,Q1)). (6.7)

(The indistinguishability factors and Planck’s constants in eqn 3.54 complicate the discussion here in inessential ways.) Again,
if the heat bath is large the small variations E1 − 〈E1〉 will not change its temperature. 1/T2 = ∂S2/∂E2 being fixed implies
∂Ω2(E −E1)/∂E1 = −(1/kBT )Ω2; solving this differential equation gives

Ω2(E − E1) = Ω2(E − 〈E1〉) exp(−(E1 − 〈E1〉)/kBT ). (6.8)

This gives us

Ω(E) =

∫
dE1 Ω1(E1)Ω2(E − 〈E1〉) e−(E1−〈E1〉)/kBT = Ω2(E − 〈E1〉) e〈E1〉/kBT

∫
dE1 Ω1(E1) e

−E1/kBT

= Ω2(E − 〈E1〉) e〈E1〉/kBTZ (6.9)

and

〈B〉 =
∫
dP1 dQ1B(P1,Q1) Ω2(E − 〈E1〉) e−(H1(P1,Q1)−〈E1〉)/kBT

Ω2(E − 〈E1〉) e〈E1〉/kBTZ
=

1

Z

∫
dP1 dQ1B(P1,Q1) exp(−H1(P1,Q1)/kBT ).

(6.10)
By explicitly doing the integrals over P2 and Q2, we have turned a microcanonical calculation into the canonical ensemble
(eqn 6.4). Our calculation of the momentum distribution ρ(p1) in Section 3.2.2 was precisely of this form; we integrated out all
the other degrees of freedom, and were left with a Boltzmann distribution for the x-momentum of particle number one. This
process is called integrating out the degrees of freedom for the heat bath, and is the general way of creating free energies.
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We can expand the penultimate form of this formula into a sum, finding
the intriguing result

Ncv = − 1

kBT 2

∂〈E〉
∂β

= − 1

kBT 2

∂

∂β

∑
Ene

−βEn

∑
e−βEn

= − 1

kBT 2

[(∑
Ene

−βEn
)2

Z2
+

∑
−En

2e−βEn

Z

]

=
1

kBT 2

[
〈E2〉 − 〈E〉2

]
=

σE
2

kBT 2
, (6.13)

where σE is the root-mean-square fluctuation7 in the energy of our sys-7We have used the standard trick σ2E =

〈(E−〈E〉)2〉 = 〈E2〉−2〈E〈E〉〉+〈E〉2 =
〈E2〉−〈E〉2, since 〈E〉 is just a constant
that can be pulled out of the ensemble
average.

tem at constant temperature. Equation 6.13 is remarkable;8 it is a re-

8We will properly introduce suscepti-
bilities (linear responses) and other re-
markable relations in Chapter 10.

lationship between a macroscopic susceptibility (cv, the energy changes
when the temperature is perturbed) and a microscopic fluctuation (σE ,
the energy fluctuation in thermal equilibrium). In general, fluctuations
can be related to responses in this fashion. These relations are extremely
useful, for example, in extracting susceptibilities from numerical simu-
lations. For example, to measure the specific heat there is no need to
make small changes in the temperature and measure the heat flow; just
watch the energy fluctuations in equilibrium (Exercises 3.8 and 8.1).
Are results calculated using the canonical ensemble the same as those

computed from our original microcanonical ensemble? Equation 6.13
tells us that the energy fluctuations per particle

σE/N =
√
〈E2〉 − 〈E〉2/N =

√
(kBT )(cvT )/

√
N. (6.14)

are tiny; they are 1/
√
N times the geometric mean of two microscopic

energies: kBT (two-thirds the kinetic energy per particle) and cvT (the
energy per particle to heat from absolute zero, if the specific heat were
temperature independent). These tiny fluctuations will not change the
properties of a macroscopic system; the constant energy (microcanoni-
cal) and constant temperature (canonical) ensembles predict the same
behavior.

Entropy. Using the general statistical mechanical formula9 for the en-

9Alternatively, we could use the micro-
canonical definition of the entropy of
the entire system and eqn 6.8 to show

S =kB log

∫
dE1 Ω1(E1)Ω2(E −E1)

=kB log

∫
dE1 Ω1(E1)Ω2(E − 〈E1〉)

exp(−(E1 − 〈E1〉)/kBT )
=kB log Ω2(E − 〈E1〉)

+ kB log (exp(〈E1〉/kBT ))

+ kB log

∫
dE1 Ω1(E1)

exp(−E1/kBT )

=kB log Ω2(E2)

+ kBβ〈E1〉+ kB logZ1

=S2 + 〈E1〉/T − A1/T,

so

S1 = 〈E1〉/T + kB logZ1

= 〈E1〉/T − A1/T, (6.15)

avoiding the use of the non-equilibrium
entropy to derive the same result.

tropy 5.20, we find

S = −kB
∑

Pn logPn = −kB
∑ exp(−βEn)

Z
log

(
exp(−βEn)

Z

)

= −kB
∑

exp(−βEn)(−βEn − logZ)

Z

= kBβ〈E〉 + kB logZ

∑
exp(−βEn)

Z
=

〈E〉
T

+ kB logZ. (6.16)

Notice that the formulæ for 〈E〉, cv, and S all involve logZ and its
derivatives. This motivates us10 to define a free energy for the canonical10Historically, thermodynamics and

the various free energies came before
statistical mechanics.

ensemble, called the Helmholtz free energy:

A(T, V,N) = −kBT logZ = 〈E〉 − TS. (6.17)
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The entropy is minus the derivative of A with respect to T . Explicitly,

∂A

∂T

∣∣∣∣
N,V

= −∂kBT logZ

∂T
= −kB logZ − kBT

∂ logZ

∂β

∂β

∂T

= −kB logZ − kBT 〈E〉/(kBT 2) = −kB logZ − 〈E〉/T
= −S. (6.18)

Why is it called a free energy? First, kBT gives it the dimensions of an
energy. Second, it is the energy available (free) to do work. A heat engine
drawing energy E = Q1 from a hot bath that must discharge an entropy
S = Q2/T2 into a cold bath can do work W = Q1 − Q2 = E − T2S;
A = E − TS is the energy free to do useful work (Section 5.1).
We see that exp(−A(T, V,N)/kBT ) = Z, quite analogous to the

Boltzmann weight exp(−Es/kBT ). The former is the phase-space vol-
ume or weight contributed by all states of a given N and V ; the latter
is the weight associated with a particular state s. In general, free en-
ergies F (X) will remove all degrees of freedom except for certain con-
straints X. The phase-space volume consistent with the constraints X is
exp(−F (X)/kBT ).

6.2 Uncoupled systems and canonical

ensembles

E∆E∆

Ei

L

RL
Bath

E
R

j

Fig. 6.2 Uncoupled systems at-

tached to a common heat bath.
Calculating the properties of two
weakly-coupled subsystems is easier in
the canonical ensemble than in the mi-
crocanonical ensemble. This is because
energy in one subsystem can be ex-
changed with the bath, and does not
affect the energy of the other subsys-
tem.

The canonical ensemble is typically much more convenient for doing
calculations because, for systems in which the Hamiltonian splits into
uncoupled components, the partition function factors into pieces that
can be computed separately. Let us show this.
Suppose we have a system with two weakly-interacting subsystems L

and R, both connected to a heat bath at β = 1/kBT . The states for the
whole system are pairs of states (sLi , s

R
j ) from the two subsystems, with

energies EL
i and ER

j , respectively. The partition function for the whole
system is

Z =
∑

ij

exp
(
−β(EL

i + ER
j )
)
=
∑

ij

e−βEL
i e−βER

j

=

(
∑

i

e−βEL
i

)
∑

j

e−βER
j




= ZLZR. (6.19)

Thus partition functions factor for uncoupled subsystems. The Helmholtz
free energy therefore adds

A = −kBT logZ = −kBT log(ZL · ZR) = AL +AR, (6.20)

as does the entropy, average energy, and other extensive properties that
one expects to scale with the size of the system.
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This is much simpler than the same calculation would be in the mi-
crocanonical ensemble! In a microcanonical ensemble, each subsystem
would compete with the other for the available total energy. Even though
two subsystems are uncoupled (the energy of one is independent of the
state of the other) the microcanonical ensemble intermingles them in the
calculation. By allowing each to draw energy from a large heat bath, the
canonical ensemble allows uncoupled subsystems to become independent
calculations.
We can now immediately solve several important examples of uncou-

pled systems.

Ideal gas. The different atoms in an ideal gas are uncoupled. The
partition function for N distinguishable ideal gas atoms of mass m in
a cube of volume V = L3 factors into a product over each degree of
freedom α:

Zdist
ideal =

3N∏

α=1

1

h

∫ L

0

dqα

∫ ∞

−∞
dpα e−βp2

α/2mα =

(
L

h

√
2πm

β

)3N

= (L
√
2πmkBT/h2)

3N = (L/λ)3N .

Here

λ = h/
√
2πmkBT =

√
2π~2/mkBT (6.21)

is again the thermal de Broglie wavelength (eqn 3.59).
The mean internal energy in the ideal gas is

〈E〉 = −∂ logZideal

∂β
= − ∂

∂β
log(β−3N/2) =

3N

2β
=

3

2
NkBT, (6.22)

giving us the equipartition theorem for momentum without our needing
to find volumes of spheres in 3N dimensions (Section 3.2.2).
For N undistinguished particles, we have counted each real configur-

ation N ! times for the different permutations of particles, so we must
divide Zdist

ideal by N ! just as we did for the phase-space volume Ω in Sec-
tion 3.5:

Z indist
ideal = (L/λ)3N/N !. (6.23)

This does not change the internal energy, but does affect the Helmholtz
free energy:

Aindist
ideal =−kBT log

(
(L/λ)3N/N !

)

=−NkBT log(V/λ3) + kBT log(N !)

∼−NkBT log(V/λ3) + kBT (N logN −N)

=−NkBT
(
log(V/Nλ3) + 1

)

=NkBT
(
log(ρλ3)− 1

)
, (6.24)

where ρ = N/V is the average density, and we have used Stirling’s
formula log(N !) ∼ N logN −N .
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Finally, the entropy of N undistinguished particles, in the canonical
ensemble, is

S = −∂A
∂T

= −NkB
(
log(ρλ3)− 1

)
−NkBT

∂ logT−3/2

∂T
= NkB

(
5/2− log(ρλ3)

)
, (6.25)

as we derived (with much more effort) using the microcanonical ensemble
(eqn 3.58).

Classical harmonic oscillator. Electromagnetic radiation, the vibra-
tions of atoms in solids, and the excitations of many other systems near
their equilibria can be approximately described as a set of uncoupled
harmonic oscillators.11 Using the canonical ensemble, the statistical me-

11For example, at temperatures low
compared to the melting point a solid
or molecule with an arbitrary many-
body interaction potential V(Q) typi-
cally only makes small excursions about
the minimum Q0 of the potential. We
expand about this minimum, giving us

V(Q) ≈V(Q0) +
∑

α

(Q− Q0)α∂αV

+
∑

α,β

1

2
(Q− Q0)α(Q− Q0)β

× ∂α∂βV + . . . . (6.26)

Since the potential is a minimum at Q0,
the gradient of the potential must be
zero, so second term on the right-hand
side must vanish. The third term is a
large 3N×3N quadratic form, which we
may diagonalize by converting to nor-

mal modes qk. (If the masses of the
atoms are not all the same, one must
rescale the components of Q−Q0 by the
square root of the corresponding mass
before diagonalizing.) In terms of these
normal modes, the Hamiltonian is a set
of uncoupled harmonic oscillators:

H =
∑

k

p2k/2m +mω2
kq

2
k/2. (6.27)

At high enough temperatures that
quantum mechanics can be ignored, we
can then use eqn 6.30 to find the to-
tal partition function for our harmonic
system

Z =
∏

k

Zk =
∏

k

(1/β~ωk). (6.28)

(In Section 7.2 we will consider the
quantum harmonic oscillator, which of-
ten gives an accurate theory for atomic
vibrations at all temperatures up to the
melting point.)

chanics of these systems thus decomposes into a calculation for each
mode separately.
A harmonic oscillator of mass m and frequency ω has a total energy

H(p, q) = p2/2m+mω2q2/2. (6.29)

The partition function for one such oscillator is (using ~ = h/2π)

Z =

∫ ∞

−∞
dq

∫ ∞

−∞
dp

1

h
e−β(p2/2m+mω2q2/2) =

1

h

√
2π

βmω2

√
2πm

β

=
1

β~ω
. (6.30)

Hence the Helmholtz free energy for the classical oscillator is

Aω(T ) = −kBT logZ = kBT log(~ω/kBT ), (6.31)

the internal energy is

〈E〉ω(T ) = −∂ logZ
∂β

=
∂

∂β
(log β + log ~ω) = 1/β = kBT, (6.32)

and hence cv = ∂〈E〉/∂T = kB. This is the general statement of the
equipartition theorem:12 each harmonic degree of freedom (p and q count

12We saw the theorem for p in Sec-
tion 3.2.2.

as two) in a classical equilibrium system has mean energy 1/2kBT .

Classical velocity distributions. One will notice both for the ideal
gas and for the harmonic oscillator that each component of the mo-
mentum contributed a factor

√
2πm/β to the partition function. As

we promised in Section 3.2.2, this will happen in any classical system
where the momenta are uncoupled to the positions; that is, where the
momentum parts of the energy are of the standard form

∑
α p

2
α/2mα

(non-quantum, non-relativistic, non-magnetic particles). In these sys-
tems the velocity distribution is always Maxwellian (eqn 1.2), indepen-
dent of what configuration the positions have.
This is a powerful, counterintuitive truth. The equilibrium velocity

distribution of atoms crossing barriers in chemical reactions (Section 6.6)
or surrounding mountain tops is the same as those in the low-energy
valleys.13 Each atom does slow down as it climbs, but only the formerly 13Mountain tops would not be colder if

the atmosphere were in equilibrium.energetic ones make it to the top. The population density at the top
is thus smaller, but the kinetic energy distribution remains the same
(Exercise 6.1).
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6.3 Grand canonical ensemble

E

)1,1,1(1

N

∆

Φ µT

System

V T,µ

Bath

∆

Fig. 6.3 The grand canonical en-

semble describes equilibrium systems
which can exchange energy and par-
ticles with a heat bath. The proba-
bility of a state s of the system with
Ns particles and energy Es is ρ(s) =
exp (−(Es − µNs)/(kBT ))

/
Z. The

thermodynamics of the grand canoni-
cal ensemble is embodied in the grand
free energy Φ(T, V, µ).

The grand canonical ensemble allows one to decouple the calculations
of systems which can exchange both energy and particles with their
environment.
Consider our system in a state s with energy Es and number Ns,

together with a bath with energy E2 = E−Es and number N2 = N−Ns

(Fig. 3.3). By analogy with eqn 6.3, the probability density that the
system will be in state s is proportional to

ρ(s) ∝ Ω2(E − Es, N −Ns)

= exp ((S2(E − Es, N −Ns)) /kB)

∝ exp

((
−Es

∂S2

∂E
−Ns

∂S2

∂N

)
/kB

)

= exp (−Es/kBT +Nsµ/kBT )

= exp (−(Es − µNs)/kBT ) , (6.33)

where

µ = −T∂S/∂N (6.34)

is the chemical potential. Notice the factor of −T ; this converts the
entropy change into an energy change. Using dE = T dS−P dV +µ dN ,
we see that µ = (∂E/∂N)|S,V is precisely the energy change needed to
add an additional particle adiabatically and keep the (N + 1)-particle
system in equilibrium. At low temperatures a given system will fill with
particles until the energy needed to jam in another particle reaches µ,
and then exhibit thermal number fluctuations around that filling.
Again, just as for the canonical ensemble, there is a normalization

factor called the grand partition function

Ξ(T, V, µ) =
∑

n

e−(En−µNn)/kBT ; (6.35)

the probability density of state si is ρ(si) = e−(Ei−µNi)/kBT /Ξ. There
is a grand free energy

Φ(T, V, µ) = −kBT log(Ξ) = 〈E〉 − TS − µN (6.36)

analogous to the Helmholtz free energy A(T, V,N). In Exercise 6.8 you
shall derive the Euler relation E = TS−PV +µN , and hence show that
Φ(T, µ, V ) = −PV .
Partial traces.14 Note in passing that we can write the grand canon-

14The classical mechanics integrals
over phase space become traces over
states in Hilbert space in quantum me-
chanics. Removing some of the de-
grees of freedom in quantum mechan-
ics is done by a partial trace over the
states (Chapter 7). The name ‘partial
trace’ for removing some of the degrees
of freedom has also become standard in
classical statistical physics (as in note 5
on page 107).

ical partition function as a sum over canonical partition functions. Let
us separate the sum over states n of our system into a double sum—an
inner restricted sum15 over states of fixed number of particles M in the

15This restricted sum is said to inte-

grate over the internal degrees of free-
dom ℓM .
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system and an outer sum over M . Let sℓM ,M have energy EℓM ,M , so

Ξ(T, V, µ) =
∑

M

∑

ℓM

e−(EℓM,M−µM)/kBT

=
∑

M

(
∑

ℓM

e−EℓM,M/kBT

)
eµM/kBT

=
∑

M

Z(T, V,M) eµM/kBT

=
∑

M

e−(A(T,V,M)−µM)/kBT . (6.37)

Again, notice how the Helmholtz free energy in the last equation plays
exactly the same role as the energy plays in eqn 6.35; exp(−En/kBT ) is
the probability of the system being in a particular system state n, while
exp(−A(T, V,M)/kBT ) is the probability of the system having any state
with M particles.
Using the grand canonical ensemble. The grand canonical en-

semble is particularly useful for non-interacting quantum systems (Chap-
ter 7). There each energy eigenstate can be thought of as a separate sub-
system, independent of the others except for the competition between
eigenstates for the particle number. A closely related ensemble emerges
in chemical reactions (Section 6.6).
For now, to illustrate how to use the grand canonical ensemble, let us

compute the number fluctuations. The expected number of particles for
a general system is

〈N〉 =
∑

mNme−(Em−µNm)/kBT

∑
m e−(Em−µNm)/kBT

=
kBT

Ξ

∂Ξ

∂µ
= −∂Φ

∂µ
. (6.38)

Just as the fluctuations in the energy were related to the specific heat
(the rate of change of energy with temperature, Section 6.1), the number
fluctuations are related to the rate of change of particle number with
chemical potential:

∂〈N〉
∂µ

=
∂

∂µ

∑
mNme−(Em−µNm)/kBT

Ξ

= − 1

Ξ2

(∑
mNme−(Em−µNm)/kBT

)2

kBT

+
1

kBT

∑
mNm

2e−(Em−µNm)/kBT

Ξ

=
〈N2〉 − 〈N〉2

kBT
=

〈(N − 〈N〉)2〉
kBT

. (6.39)

6.4 What is thermodynamics?

Thermodynamics and statistical mechanics historically were closely tied,
and often they are taught together. What is thermodynamics?
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(0) Thermodynamics (Oxford English dictionary): The theory of
the relations between heat and mechanical energy, and of the conversion
of either into the other.

(1)Thermodynamics is the theory that emerges from statisti-
cal mechanics in the limit of large systems. Statistical mechanics
originated as a derivation of thermodynamics from an atomistic micro-
scopic theory (somewhat before the existence of atoms was universally
accepted). Thermodynamics can be viewed as statistical mechanics in
the limit16 as the number of particles N → ∞. When we calculate16The limit N → ∞ is thus usually

called the thermodynamic limit. the relative fluctuations in properties like the energy or the pressure
and show that they vanish like 1/

√
N , we are providing a microscopic

justification for thermodynamics. Thermodynamics is the statistical me-
chanics of near-equilibrium systems when one ignores the fluctuations.

In this text, we will summarize many of the important methods and
results of traditional thermodynamics in the exercises (see the index of
this book under ‘Exercises, thermodynamics’. Our discussions of order
parameters (Chapter 9) will be providing thermodynamic laws, broadly
speaking, for a wide variety of states of matter.
Statistical mechanics has a broader purview than thermodynamics.

Particularly in applications to other fields like information theory, dy-
namical systems, and complexity theory, statistical mechanics describes
many systems where the emergent behavior does not have a recognizable
relation to thermodynamics.

(2)Thermodynamics is a self-contained theory. Thermodynam-
ics can be developed as an axiomatic system. It rests on the so-called
three laws of thermodynamics, which for logical completeness must be
supplemented by a ‘zeroth’ law. Informally, they are as follows.

(0) Transitivity of equilibria. If two systems are in equilibrium with a
third, they are in equilibrium with one another.

(1) Conservation of energy. The total energy of an isolated system,
including the heat energy, is constant.

(2) Entropy always increases. An isolated system may undergo irre-
versible processes, whose effects can be measured by a state func-
tion called the entropy.

(3) Entropy goes to zero at absolute zero. The entropy per particle of
any two large equilibrium systems will approach the same value1717This value is set to zero by measur-

ing phase-space volume in units of h3N

(Section 3.5).
as the temperature approaches absolute zero.

The zeroth law (transitivity of equilibria) becomes the basis for defin-
ing the temperature. Our statistical mechanics derivation of the temper-
ature in Section 3.3 provides the microscopic justification of the zeroth
law: systems that can only exchange heat energy are in equilibrium with
one another when they have a common value of 1/T = (∂S/∂E)|V,N .
The first law (conservation of energy) is now a fundamental principle

of physics. Thermodynamics automatically inherits it from the micro-
scopic theory. Historically, the thermodynamic understanding of how
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work transforms into heat was important in establishing that energy is
conserved. Careful arguments about the energy transfer due to heat flow
and mechanical work18 are central to thermodynamics. 18As we saw in our analysis of the

Carnot cycle in Section 5.1.The second law (entropy always increases) is the heart of thermody-
namics,19 and was the theme of Chapter 5. 19In The Two Cultures, C. P. Snow

suggests being able to describe the sec-
ond law of thermodynamics is to sci-
ence as having read a work of Shake-
speare is to the arts. (Some in non-
English speaking cultures may wish to
object.) Remembering which law is
which number is not of great import,
but the concept of entropy and its in-
evitable increase is indeed central.

The third law (entropy goes to zero at T = 0, also known as Nernst’s
theorem) basically reflects the fact that quantum systems at absolute
zero are in a ground state. Since the number of ground states of a
quantum system typically is small20 and the number of particles is large,

20Some systems have multiple degen-
erate ground states, but the number
of such states is typically constant or
slowly growing with system size, so
the entropy per particle goes to zero.
Glasses have large residual entropy,
(Section 5.2.2), but are not in equilib-
rium.

equilibrium systems at absolute zero have zero entropy per particle.
The laws of thermodynamics have been written in many equivalent

ways.21 Carathéodory [23, 24], for example, states the second law as

21Occasionally you hear the first and
second laws stated: (1) you can’t win;
and (2) you can’t break even. Popular
versions of the zeroth and third laws are
not as compelling.

There are states of a system, differing infinitesimally from a
given state, which are unattainable from that state by any
quasi-static adiabatic22 process.

22Carathéodory is using the term adi-

abatic just to exclude heat flow; we use
it to also imply infinitely slow (quasi-
static) transitions.

The axiomatic form of the subject has attracted the attention of math-
ematicians ever since Carathéodory. In this text, we will not attempt to
derive properties axiomatically or otherwise from the laws of thermody-
namics; we focus on statistical mechanics.

(3) Thermodynamics is a zoo of partial derivatives, trans-
formations, and relations. More than any other field of science,
the thermodynamics literature seems filled with partial derivatives and
tricky relations between varieties of physical quantities.
This is in part because there are several alternative free energies to

choose among. For studying molecular systems one has not only the en-
tropy (or the internal energy), the Helmholtz free energy, and the grand
free energy, but also the Gibbs free energy, the enthalpy, and a number
of others. There are corresponding free energies for studying magnetic
systems, where instead of particles one studies the local magnetization
or spin. There appears to be little consensus across textbooks on the
symbols or even the names for these various free energies (see the inside
front cover of this text).
How do we transform from one free energy to another? Let us write

out the Helmholtz free energy in more detail:

A(T, V,N) = E − TS(E, V,N). (6.40)

The terms on the right-hand side of the equation involve four variables:
T , V , N , and E. Why is A not a function also of E? Consider the
derivative of A = Es − TbSs(Es) with respect to the energy Es of the
system, at fixed bath temperature Tb:

∂A/∂Es = 1− Tb∂Ss/∂Es = 1− Tb/Ts. (6.41)

Since A represents the system in equilibrium with the bath, the temper-
ature of the system and the bath must agree, and hence ∂A/∂E = 0;
A is independent of E. Physically, energy is transferred until A is a
minimum; E is no longer an independent variable. This is an example
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of a Legendre transformation (Exercise 6.7). Legendre transformations
allow one to change from one type of energy or free energy to another,
by changing from one set of independent variables (here E, V , and N)
to another (T , V , and N).
Thermodynamics seems cluttered in part also because it is so pow-

erful. Almost any macroscopic property of interest can be found by
taking derivatives of the free energy. First derivatives of the entropy,
energy, or free energy give properties like the temperature and pressure.
Thermodynamics introduces a condensed notation to help organize these
derivatives. For example,2323These formulæ have precise mean-

ings in differential geometry, where the
terms dX are differential forms. Ther-
modynamics distinguishes between ex-

act differentials like dS and inexact

differentials like work and heat which
are not derivatives of a state function,
but path-dependent quantities. Math-
ematicians have closed and exact dif-
ferential forms, which (in a simply-
connected space) both correspond to
the exact differentials in thermodynam-
ics. The relation between closed and
exact differential forms gives a type of
cohomology theory, etc. These elegant
topics are not central to statistical me-
chanics, and we will not pursue them
here.

dE = T dS − P dV + µ dN (6.42)

basically asserts that E(S, V,N) satisfies eqns 3.29, 3.36, and 3.38:

∂E

∂S

∣∣∣∣
N,V

= T,
∂E

∂V

∣∣∣∣
N,S

= −P, and
∂E

∂N

∣∣∣∣
V,S

= µ. (6.43)

The corresponding equation for the Helmholtz free energy A(T, V,N) is

dA = d(E − TS) = dE − T dS − S dT

= −S dT − P dV + µ dN, (6.44)

which satisfies

∂A

∂T

∣∣∣∣
N,V

= −S, ∂A

∂V

∣∣∣∣
N,T

= −P, and
∂A

∂N

∣∣∣∣
V,T

= µ. (6.45)
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Fig. 6.4 The Gibbs ensemble

G(T, P,N) embodies the thermody-
namics of systems that can exchange
heat and volume with a bath. The en-

thalpy H(S, P,N) is used for systems
that only exchange volume.

Similarly, systems at constant temperature and pressure (for example,
most biological and chemical systems) minimize the Gibbs free energy
(Fig. 6.4)

G(T, P,N) = E − TS + PV, dG = −S dT + V dP + µ dN. (6.46)

Systems at constant entropy and pressure minimize the enthalpy

H(S, P,N) = E + PV, dH = T dS + V dP + µ dN, (6.47)

and, as noted in Section 6.3, systems at constant temperature, volume,
and chemical potential are described by the grand free energy

Φ(T, V, µ) = E − TS − µN, dΦ = −S dT − P dV −N dµ. (6.48)

There are also many tricky, unintuitive relations in thermodynamics.
The first derivatives must agree around a tiny triangle (Fig. 3.4), yield-
ing a relation between their products (eqn 3.33, Exercise 3.10). Second
derivatives of the free energy give properties like the specific heat, the
bulk modulus, and the magnetic susceptibility. The second derivatives
must be symmetric (∂2/∂x∂y = ∂2/∂y∂x), giving Maxwell relations be-
tween what naively seem like different susceptibilities (Exercise 3.11).
There are further tricks involved with taking derivatives in terms of ‘un-
natural variables’,24 and there are many inequalities that can be derived

24For example, there are useful tricks
to take the derivative of S(E,V,N)
with respect to P at constant T with-
out re-expressing it in the variables P
and T [52].
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from stability criteria.
Of course, statistical mechanics is not really different from thermo-

dynamics; it inherits the entire zoo of complex relationships. Indeed,
statistical mechanics has its own collection of important relations that
connect equilibrium fluctuations to transport and response, like the Ein-
stein relation connecting fluctuations to diffusive transport in Section 2.3
and the fluctuation-dissipation theorem we will derive in Chapter 10. In
statistical mechanics, though, the focus of attention is usually not on the
general relations between properties, but on calculating the properties
of specific systems.

6.5 Mechanics: friction and fluctuations

0

m

mg

h*

h* h 0

h
K(h − h )

Fig. 6.5 A mass on a spring in equi-
librium sits very close to the minimum
of the energy.

A mass m hangs on the end of a spring with spring constant K and
unstretched length h0, subject to a gravitational field of strength g.
How far does the spring stretch? We have all solved innumerable statics
exercises of this sort in first-year mechanics courses. The spring stretches
to a length h∗ where −mg = K(h∗ − h0). At h

∗ the forces balance and
the energy is minimized.
What principle of physics is this? In physics, energy is conserved, not

minimized! Should we not be concluding that the mass will oscillate
with a constant amplitude forever?
We have now come to the point in your physics education where we

can finally explain why the mass appears to minimize energy. Here our
system (the mass and spring)25 is coupled to a very large number N of

25We think of the subsystem as being
just the macroscopic configuration of
mass and spring, and the atoms com-
prising them as being part of the envi-
ronment, the rest of the system.

internal atomic or molecular degrees of freedom. The oscillation of the
mass is coupled to these other degrees of freedom (friction) and will share
its energy with them. The vibrations of the atoms is heat; the energy of
the pendulum is dissipated by friction into heat. Indeed, since the spring
potential energy is quadratic we can use the equipartition theorem: in
equilibrium 1/2K(h − h∗)2 = 1/2kBT . For a spring with K = 10N/m at
room temperature (kBT = 4 × 10−21 J),

√
〈(h− h∗)2〉 =

√
kBT/K =

2 × 10−11 m = 0.2 Å. The position indeed minimizes the energy up to
thermal fluctuations smaller than an atomic radius.26 26We will return to the fluctuating har-

monic oscillator in Exercise 10.3.How do we connect this statistical mechanics picture to the friction
coefficient of the damped harmonic oscillator? A careful statistical me-
chanics treatment (Exercise 10.7) gives a law of motion for the mass of
the form

ḧ = −K
m

(h− h⋆)− γḣ+ ξ(t), (6.49)

where γ represents the friction or dissipation, and ξ(t) is a random,
time-dependent noise force coming from the internal vibrational degrees
of freedom of the system. This is an example of a Langevin equation. The
strength of the noise ξ depends on the dissipation γ and the temperature
T so as to guarantee a Boltzmann distribution as the steady state. In
general both ξ and γ can be frequency dependent; we will study these
issues in detail in Chapter 10.
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6.6 Chemical equilibrium and reaction

rates

Fig. 6.6 Ammonia collision. The
simple motivating argument for the law
of mass-action views the reaction as a
simultaneous collision of all the reac-
tants.

In studying chemical reactions, one is often interested in the number
of molecules of various types as a function of time, and not interested
in observing properties depending on the positions or momenta of the
molecules. In this section we develop a free energy to derive the laws
of chemical equilibrium, and in particular the law of mass-action. We
will then discuss more carefully the subtle question of exactly when
the chemical reaction takes place, and motivate the Arrhenius law of
thermally-activated reaction rates.
Chemical reactions change one type of molecule into another. For

example, ammonia (NH3) can be produced from hydrogen and nitrogen
through the reaction

3H2 +N2 ⇆ 2NH3. (6.50)

All chemical reactions are in principle reversible, although the backward
reaction rate may be very different from the forward rate. In chemi-
cal equilibrium,27 the concentrations [X] of the various molecules X (in27Experimentally it is more common to

work at constant pressure, which makes
things more complicated but conceptu-
ally no more interesting.

number per unit volume, say) satisfy the law of mass-action28

28More generally, we can write a reac-
tion as

∑
i νiAi = 0. Here the νi are

the stoichiometries, giving the number
of molecules of type Ai changed dur-
ing the reaction (with νi < 0 for reac-
tants and νi > 0 for products). The law
of mass-action in general states that∏

i[Ai]νi = Keq.

[NH3]
2

[N2][H2]3
= Keq(T ). (6.51)

The law of mass-action can naively be motivated by imagining a chem-
ical reaction arising from a simultaneous collision of all the reactants.
The probability of one nitrogen and three hydrogen molecules colliding
in a small reaction region is proportional to the nitrogen concentration
and to the cube of the hydrogen concentration, so the forward reac-
tion would occur with some rate per unit volume KF [N2][H2]

3; simi-
larly the backward reaction would occur with a rate per unit volume
KB[NH3]

2 proportional to the probability that two NH3 molecules will
collide. Balancing these two rates to get a steady state gives us eqn 6.51
with Keq = KF/KB.
This naive motivating argument becomes unconvincing when one re-

alizes that the actual reaction may proceed through several short-lived
intermediate states—at no point is a multiple collision required.29 How29The Haber–Bosch process used in-

dustrially for producing ammonia in-
volves several intermediate states. The
nitrogen and hydrogen molecules ad-
sorb (stick) onto an iron substrate, and
disassociate into atoms. The nitrogen
atom picks up one hydrogen atom at
a time. Finally, the NH3 molecule des-
orbs (leaves the surface) into the vapor.
The iron acts as a catalyst, lowering the
energy barrier and speeding up the re-
action without itself being consumed.
(Protein catalysts in biology are called
enzymes.)

can we derive the law of mass-action soundly from statistical mechanics?
Since we are uninterested in the positions and momenta, at fixed vol-

ume and temperature our system is described by a Helmholtz free energy
A(T, V,NH2 , NN2 , NNH3

). When the chemical reaction takes place, it
changes the number of the three molecules, and changes the free energy
of the system:

∆A =
∂A

∂NH2

∆NH2 +
∂A

∂NN2

∆NN2 +
∂A

∂NNH3

∆NNH3

= −3µH2 − µN2 + 2µNH3 , (6.52)

where µX = ∂A/∂X is the chemical potential of molecule X . The
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reaction will proceed until the free energy is at a minimum, so

− 3µH2 − µN2 + 2µNH3
= 0 (6.53)

in equilibrium.
To derive the law of mass-action, we must now make an assumption:

that the molecules are uncorrelated in space.30 This makes each molec- 30This assumption is also often valid
for ions and atoms in solution; if the
ion–ion interactions can be neglected
and the solute (water) is not impor-
tant, the ions are well described as ideal
gases, with corrections due to integrat-
ing out the solvent degrees of freedom.

ular species into a separate ideal gas. The Helmholtz free energies of the
three gases are of the form

A(N, V, T ) = NkBT
[
log((N/V )λ3)− 1

]
+NF0, (6.54)

where λ = h/
√
2πmkBT is the thermal deBroglie wavelength. The first

two terms give the contribution to the partition function from the po-
sitions and momenta of the molecules (eqn 6.24); the last term NF0

comes from the internal free energy of the molecules.31 So, the chemical 31For atoms in their ground state, F0

is the ground-state energy E0. For
small spinless molecules near room tem-
perature, the internal free energy F0

is usually dominated by the molec-
ular ground-state energy E0, with a
classical contribution from rotational
motion; vibrations and internal elec-
tronic excitations are frozen out. In
this regime, the homonuclear diatomic
molecules H2 and N2 have F0 = E0 −
kBT log(IT/~2), where I is the mo-
ment of inertia; ammonia with three
moments of inertia has F0 = E0 −
kBT log(

√
8πT 3I1I2I3/3~3) (see [71,

sections 47–51]).

potential is

µ(N, V, T ) =
∂A

∂N
= kBT

[
log((N/V )λ3)− 1

]
+NkBT (1/N) + F0

= kBT log((N/V )λ3) + F0

= kBT log(N/V ) + c+ F0, (6.55)

where the constant c = kBT log(λ3) is independent of density. Using
eqn 6.55 in eqn 6.53, dividing by kBT , writing concentrations [X ] =
NX/V , and pulling terms independent of concentrations to the right,
we find the law of mass-action:

−3 log[H2]− log[N2] + 2 log[NH3] = log(Keq),

=⇒ [NH3]
2

[H2]3[N2]
= Keq. (6.56)

We also find that the equilibrium constant depends exponentially on
the net internal free energy difference ∆Fnet = −3FH2

0 − FN2
0 + 2FNH3

0

between reactants and products:

Keq = K0 exp(−∆Fnet/kBT ) (6.57)

with a prefactor

K0 =
λ9H2

λ3N2

λ6NH3

=
h6m3

NH3

8π3k3BT
3m

9/2
H2
m

3/2
N2

∝ T−3 (6.58)

that depends weakly on the temperature. The factor e−∆Fnet/kBT rep-
resents the Boltzmann factor favoring a final state with molecular free
energy ∆Fnet lower than the initial state. The temperature dependence
of the prefactor (four molecules have more momentum-space entropy
than two), and the temperature dependence of the molecular free en-
ergies F0 (see note 31), are usually weak compared to the exponential
dependence on the difference in molecular ground-state energies ∆Enet:

Keq ∝ exp(−∆Enet/kBT ), (6.59)
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with ∆Enet = 92.4 kJ/mole for the ammonia synthesis reaction.32 Equi-32Ammonia synthesis is exothermic, re-
leasing energy. The reverse reaction,
consuming ammonia to make nitrogen
and hydrogen is endothermic.

librium constants usually grow in the thermally-activated form suggested
by eqn 6.57.

Position

B
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E
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y

x
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x

Fig. 6.7 Barrier-crossing potential.
Energy E as a function of some reac-
tion coordinate X for a chemical reac-
tion. The dots schematically represent
how many atoms are at each position.
The reactants (left) are separated from
the products (right) by an energy bar-
rier of height B. One can estimate the
rate of the reaction by calculating the
number of reactants crossing the top of
the barrier per unit time.

We now go beyond chemical equilibrium, to consider the rates of the
forward and backward reactions. To do so, we need a more precise
definition of which atoms belong to which molecules. Exactly when
during the trajectory do we say that the reaction has occurred?
An M -atom chemical reaction (classically) is a trajectory in a 3M -

dimensional configuration space. It is traditional in chemistry to pick out
one ‘reaction coordinate’X , and plot the energy (minimized with respect
to the other 3M−1 coordinates) versus X . Figure 6.7 shows this energy
plot.33 Notice the energy barrier B separating the reactants from the

33The picture 6.7 applies to barrier-
crossing problems in extended systems,
like diffusion in crystals and atomic
transitions between metastable states
(glasses, Section 5.2.2; biomolecules,
Exercise 6.4; and nanojunctions, Exer-
cise 10.5). In each of these systems, this
partial trace leaves us with a discrete
set of states.

products; the atomic configuration at the top of the barrier is called the
transition state. (This barrier, in 3M -dimensional configuration space,
is actually a saddlepoint; dividing the reactants from the products de-
mands the identification of a (3M−1)-dimensional transition-state di-
viding surface.) Our free energy A(T, V,NH2 , NN2 , NNH3

) is properly a
partial trace, with all configurations to the left of the transition state B
contributing to the free energy of the reactants and all configurations to
the right of B contributing as products.
How fast does our chemical reaction proceed, if we start out of equi-

librium with extra reactants? In dilute systems where the mass-action
law holds, the forward reaction rate is to a good approximation inde-
pendent of the concentration of the product.34 If our reactions occur

34Crowding could change this. For
example, a surface catalyst where the
product does not leave the surface
could stop reacting as the product cov-
ers the active sites.

slowly enough so that the molecules remain in equilibrium at the cur-
rent concentrations, we can estimate the non-equilibrium reaction rate
by studying the equilibrium transitions from reactant to product at the
same reactant concentration.
The reaction rate cannot be larger than the total number of atoms

in equilibrium crossing past the energy barrier from reactant to prod-
uct. (It can be smaller if trajectories which do cross the barrier often
immediately re-cross backward before equilibrating on the other side.35

35Re-crossing is a dynamical correction

to transition-state theory; see [55].

Such re-crossings are minimized by choosing the transition-state divid-
ing surface properly.36) The density of particles at the top of the barrier

36At low temperatures, it is mainly
important that this surface be per-
pendicular to the unstable ‘downward’
eigendirection of the Hessian (second
derivative matrix) for the potential en-
ergy at the transition state.

is smaller than the density at the bottom of the well by a Boltzmann
factor of exp(−B/kBT ). The rate of the reaction will therefore be of
the thermally-activated, or Arrhenius, form

Γ = Γ0 exp(−B/kBT ), (6.60)

with some prefactor Γ0 which will be proportional to the mass-action
formula (e.g., Γ0 ∝ [H2]

3[N2] for our ammonia formation reaction). By
carefully calculating the population near the bottom of the well and the
population and velocities near the top of the barrier, one can derive a
formula for the constant of proportionality (see Exercise 6.11).
This Arrhenius law for thermally-activated motion governs not only

chemical reaction rates, but also diffusion constants and more macro-
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scopic phenomena like nucleation rates (Section 11.3).37 37There are basically three ways in
which slow processes arise in physics.
(1) Large systems can respond slowly
to external changes because communi-
cation from one end of the system to the
other is sluggish; examples are the slow
decay at long wavelengths in the diffu-
sion equation (Section 2.2) and Gold-
stone modes (Section 9.3). (2) Sys-
tems like radioactive nuclei can respond
slowly—decaying with lifetimes of bil-
lions of years—because of the slow rate
of quantum tunneling through barriers.
(3) Systems can be slow because they
must thermally activate over barriers
(with the Arrhenius rate of eqn 6.60).

6.7 Free energy density for the ideal gas

We began our text (Section 2.2) studying the diffusion equation. How is
it connected with free energies and ensembles? Broadly speaking, inho-
mogeneous systems out of equilibrium can also be described by statistical
mechanics, if the gradients in space and time are small enough that the
system is close to a local equilibrium. We can then represent the local
state of the system by order parameter fields, one field for each property
(density, temperature, magnetization) needed to characterize the state
of a uniform, macroscopic body. We can describe a spatially-varying,
inhomogeneous system that is nearly in equilibrium using a free energy
density, typically depending on the order parameter fields and their gra-
dients. The free energy of the inhomogeneous system will be given by
integrating the free energy density.38 38Properly, given an order parameter

field s(x) there is a functional F{s}
which gives the system free energy. (A
functional is a mapping from a space of
functions into the real numbers.) Writ-
ing this functional as an integral over
a free energy density (as we do) can
be subtle, not only due to long-range
fields, but also due to total divergence
terms (Exercise 9.3).

We will be discussing order parameter fields and free energy densities
for a wide variety of complex systems in Chapter 9. There we will use
symmetries and gradient expansions to derive the form of the free energy
density, because it will often be too complex to compute directly. In this
section, we will directly derive the free energy density for an inhomoge-
neous ideal gas, to give a tangible example of the general case.39

39We will also use the free energy den-
sity of the ideal gas when we study cor-
relation functions in Section 10.3.

Fig. 6.8 Density fluctuations in

space. If nj is the number of points in
a box of size ∆V at position xj , then
ρ(xj ) = nj/∆V .

Remember that the Helmholtz free energy of an ideal gas is nicely
written (eqn 6.24) in terms of the density ρ = N/V and the thermal
deBroglie wavelength λ:

A(N, V, T ) = NkBT
[
log(ρλ3)− 1

]
. (6.61)

Hence the free energy density for nj = ρ(xj)∆V atoms in a small volume
∆V is

F ideal(ρ(xj), T ) =
A(nj ,∆V, T )

∆V
= ρ(xj)kBT

[
log(ρ(xj)λ

3)− 1
]
.

(6.62)
The probability for a given particle density ρ(x) is

P{ρ} = e−β
∫
dV F ideal(ρ(x))/Z. (6.63)

As usual, the free energy F{ρ} =
∫
F(ρ(x)) dx acts just like the energy

in the Boltzmann distribution. We have integrated out the microscopic
degrees of freedom (positions and velocities of the individual particles)
and replaced them with a coarse-grained field ρ(x). The free energy
density of eqn 6.62 can be used to determine any equilibrium property
of the system that can be written in terms of the density ρ(x).40

40In Chapter 10, for example, we will
use it to calculate correlation functions
〈ρ(x)ρ(x′)〉, and will discuss their rela-
tionship with susceptibilities and dissi-
pation.

The free energy density also provides a framework for discussing the
evolution laws for non-uniform densities. A system prepared with some
non-uniform density will evolve in time ρ(x, t). If in each small volume
∆V the system is close to equilibrium, then one may expect that its
time evolution can be described by equilibrium statistical mechanics
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even though it is not globally in equilibrium. A non-uniform density will
have a force which pushes it towards uniformity; the total free energy
will decrease when particles flow from regions of high particle density to
low density. We can use our free energy density to calculate this force,
and then use the force to derive laws (depending on the system) for the
time evolution.

Fig. 6.9 Coarse-grained density in

space. The density field ρ(x) repre-
sents all configurations of points Q con-
sistent with the average. Its free energy
density F ideal(ρ(x)) contains contribu-
tions from all microstates (P,Q) with
the correct number of particles per box.
The probability of finding this particu-
lar density is proportional to the inte-
gral of all ways Q that the particles in
Fig. 6.8 can be arranged to give this
density.

The chemical potential for a uniform system is

µ =
∂A

∂N
=
∂A/V

∂N/V
=
∂F
∂ρ

,

i.e., the change in free energy for a change in the average density ρ. For
a non-uniform system, the local chemical potential at a point x is

µ(x) =
δ

δρ(x)

∫
F(y)dy (6.64)

the variational derivative41 of the free energy density with respect to

41That is, the derivative in function
space, giving the linear approximation
to
∫
(F{ρ+ δρ} −F{ρ}) (see note 7 on

p. 218). We will seldom touch upon
variational derivatives in this text.

ρ(x). Because our ideal gas free energy has no terms involving gradients
of ρ, the variational derivative δ

∫
F/δρ equals the partial derivative

∂F/∂ρ:

µ(x) =
δ
∫
F ideal

δρ
=

∂

∂ρ

(
ρkBT

[
log(ρλ3)− 1

])

= kBT
[
log(ρλ3)− 1

]
+ ρkBT/ρ

= kBT log(ρλ3). (6.65)

The chemical potential is like a number pressure for particles: a particle
can lower the free energy by moving from regions of high chemical po-
tential to low chemical potential. The gradient of the chemical potential
−∂µ/∂x is thus a pressure gradient, effectively the statistical mechanical
force on a particle.
How will the particle density ρ evolve in response to this force µ(x)?

This depends upon the problem. If our density were the density of
the entire gas, the atoms would accelerate under the force—leading to
sound waves.42 There momentum is conserved as well as particle density.

42In that case, we would need to add
the local velocity field into our descrip-
tion of the local environment. If our particles could be created and destroyed, the density evolution

would include a term ∂ρ/∂t = −ηµ not involving a current. In systems
that conserve (or nearly conserve) energy, the evolution will depend on
Hamilton’s equations of motion for the free energy density; in magnets,
the magnetization responds to an external force by precessing; in super-
fluids, gradients in the chemical potential are associated with winding
and unwinding the phase of the order parameter field (vortex motion). . .
Let us focus on the case of a small amount of perfume in a large body

of still air. Here particle density is locally conserved, but momentum
is strongly damped (since the perfume particles can scatter off of the
air molecules). The velocity of our particles will be proportional to the
effective force on them v = −γ(∂µ/∂x), with γ the mobility.43 Hence

43This is linear response. Systems
that are nearly in equilibrium typi-
cally have currents proportional to gra-
dients in their properties. Examples
include Ohm’s law where the electri-
cal current is proportional to the gra-
dient of the electromagnetic potential
I = V/R = (1/R)(dφ/dx), thermal
conductivity where the heat flow is pro-
portional to the gradient in temper-
ature J = κ∇T , and viscous fluids,
where the shear rate is proportional to
the shear stress. We will study linear
response with more rigor in Chapter 10.
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the current J = ρv of particles will be

J = γρ(x)

(
−∂µ
∂x

)
= −γρ(x)∂kBT log(ρλ3)

∂x

= −γρ(x)kBT
ρ

∂ρ

∂x
= −γkBT

∂ρ

∂x
, (6.66)

and thus the rate of change of ρ is given by the diffusion equation

∂ρ

∂t
= −∇ · J = γkBT

∂2ρ

∂x2
. (6.67)

Notice,

• we have again derived the diffusion equation (eqn 2.7) ∂ρ/∂t =
D∂2ρ/∂x2, this time by starting with a free energy density from
equilibrium statistical mechanics, and assuming a linear law relat-
ing velocity to force;

• we have rediscovered the Einstein relation (eqn 2.22) D = γkBT ;

• we have asserted that −∂µ/∂x acts just like an external force, even
though µ comes from the ideal gas, which itself has no potential
energy (see Exercises 5.12 and 6.13).

Our free energy density for the ideal gas is simpler than the free energy
density of a general system because the ideal gas has no stiffness (free
energy cost for gradients in the density). Our derivation above worked
by splitting space into little boxes; in general, these box regions will not
be independent systems, and there will be a free energy difference that
depends on the change in the coarse-grained fields between boxes (e.g.,
the (free) energy cost to bend an elastic rod) leading to terms involving
gradients of the field.

Exercises

Free energies are the work-horses of statistical mechan-
ics and thermodynamics. There are an immense num-
ber of practical applications of the various free energies
in chemistry, condensed matter physics, and engineer-
ing. These exercises do not explore these applications
in depth; rather, they emphasize the central themes and
methods that span across fields.

Exponential atmosphere, Two-state system, and Nega-
tive temperature explore the most basic of statistical me-
chanics systems. The last also explores the the links
between the canonical and microcanonical ensembles.
Molecular motors provides a biophysics example of how
to construct the appropriate free energies in systems ex-

changing things other than energy, volume, and number,
and introduces us to telegraph noise in bistable systems.

Laplace, Lagrange, and Legendre explore mathemati-
cal tools important in thermodynamics, and their links
to statistical mechanics. Euler, Gibbs–Duhem, and
Clausius–Clapeyron each prompt you to derive the cor-
responding fundamental thermodynamic relation named
after them.

Barrier crossing introduces the quantitative meth-
ods used to calculate the rates of chemical reactions.
Michaelis–Menten and Hill gives another example of how
one integrates out degrees of freedom leading to effec-
tive theories; it derives two forms for chemical reaction
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rates commonly seen in molecular biology. Pollen and
hard squares gives an explicitly solvable example of an
entropic potential free energy.

Statistics, it is sad to say, has almost no overlap with
statistical mechanics in audience or vocabulary, although
the subjects are tightly coupled. Statistical mechanics
and statistics is a tiny attempt to bridge that gap, intro-
ducing Bayesian analysis.

How does one measure entropy or free energies on a
computer? One cannot afford to enumerate the probabil-
ities of every state in the ensemble; alternative methods
must be used [14, 63, 94]. A computational exercise on
this topic is planned for the book web site [126]

(6.1) Exponential atmosphere.44 (Computa-
tion) ©2
As you climb a mountain, the air becomes thin
and cold, and typically rather windy. Are any of
these effects due to equilibrium statistical me-
chanics? The wind is not; it is due to non-
uniform heating and evaporation in far distant
regions. We have determined that equilibrium
statistical mechanics demands that two equilib-
rium bodies in contact must share the same tem-
perature, even when one of them is above the
other. But gas molecules fall down under grav-
ity, . . .
This example is studied in [41, I.40], where Feyn-
man uses it to deduce much of classical equilib-
rium statistical mechanics. Let us reproduce his
argument. Download our molecular dynamics
software [10] from the text web site [129] and
the hints for this exercise. Simulate an ideal gas
in a box with reflecting walls, under the influ-
ence of gravity. Since the ideal gas has no inter-
nal equilibration, the simulation will start in an
equilibrium ensemble at temperature T .
(a) Does the distribution visually appear statisti-
cally stationary? How is it possible to maintain
a static distribution of heights, even though all
the atoms are continuously accelerating down-
ward? After running for a while, plot a his-

togram of the height distribution and velocity dis-
tribution. Do these distributions remain time
independent, apart from statistical fluctuations?
Do their forms agree with the predicted equilib-
rium Boltzmann distributions?
The equilibrium thermal distribution is time in-
dependent even if there are no collisions to keep
things in equilibrium. The number of atoms
passing a plane at constant z from top to bot-
tom must match the number of atoms passing
from bottom to top. There are more atoms at
the bottom, but many of them do not have the
vertical kinetic energy to make it high enough.
Macroscopically, we can use the ideal gas law
(PV = NkBT , so P (z) = ρ(z)kBT ) to deduce
the Boltzmann distribution giving the density
dependence on height.45

(b) The pressure increases with depth due to the
increasing weight of the air above. What is the
force due to gravity on a slab of thickness ∆z and
area A? What is the change in pressure from z
to z − ∆z? Use this, and the ideal gas law, to
find the density dependence on height. Does it
agree with the Boltzmann distribution?
Feynman then deduces the momentum distribu-
tion of the particles from the balancing of up-
ward and downward particle fluxes we saw in
part (a). He starts by arguing that the equi-
librium probability ρv that a given atom has a
particular vertical velocity vz is independent of
height.46 (The atoms at different heights are all
at the same temperature, and only differ in their
overall density; since they do not interact, they
do not know the density, hence the atom’s veloc-
ity distribution cannot depend on z).
(c) If the unknown velocity distribution is ρv(vz),
use it and the Boltzmann height distribution de-
duced in part (b) to write the joint equilibrium
probability distribution ρ(vz, z, t).
Now consider47 the atoms with vertical velocity
vz in a slab of gas of area A between z and z+∆z

44This exercise and the associated software were developed in collaboration with Christopher Myers.
45Feynman then notes that this macroscopic argument can be used for any external force! If F is the force on each
atom, then in equilibrium the pressure must vary to balance the external force density Fρ. Hence the change in pressure
Fρdx = dP = d(kBTρ) = kBT dρ. If the force is the gradient of a potential U(x), then picking a local coordinate x along
the gradient of U we have −∇U = F = kBT (dρ/dx)/ρ = kBT (d log ρ)/dx = kBT∇ log ρ. Hence log ρ = C − U/kBT and
ρ ∝ exp(−U/kBT ). Feynman then makes the leap from the ideal gas (with no internal potential energy) to interacting
systems. . .
46At this point in the text, we already know the formula giving the velocity distribution of a classical system, and we know
it is independent of position. But Feynman, remember, is re-deriving everything from scratch. Also, be warned: ρ in part (b)
was the mass density; here we use it for the probability density.
47Feynman gives a complicated argument avoiding partial derivatives and gently introducing probability distributions, which
becomes cleaner if we just embrace the math.
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at time t. Their probability density (per unit
vertical velocity) is ρ(vz, z, t)A∆z. After a time
∆t, this slab will have accelerated to vz − g∆t,
and risen a distance h+ vz∆t, so

ρ(vz, z, t) = ρ(vz−g∆t, z+vz∆t, t+∆t). (6.68)

(d) Using the fact that ρ(vz, z, t) is time in-
dependent in equilibrium, write a relation be-
tween ∂ρ/∂vz and ∂ρ/∂z. Using your result from
part (c), derive the equilibrium velocity distribu-
tion for the ideal gas.
Feynman then argues that interactions and col-
lisions will not change the velocity distribution.

(e) Simulate an interacting gas in a box with re-
flecting walls, under the influence of gravity. Use
a temperature and a density for which there is a
layer of liquid at the bottom (just like water in a
glass). Plot the height distribution (which should
show clear interaction effects) and the momen-
tum distribution. Use the latter to determine the
temperature; do the interactions indeed not dis-
tort the momentum distribution?
What about the atoms which evaporate from the
fluid? Only the very most energetic atoms can
leave the liquid to become gas molecules. They
must, however, use up every bit of their extra
energy (on average) to depart; their kinetic en-
ergy distribution is precisely the same as that of
the liquid.48

Feynman concludes his chapter by pointing out
that the predictions resulting from the classical
Boltzmann distribution, although they describe
many properties well, do not match experiments
on the specific heats of gases, foreshadowing the
need for quantum mechanics.49

(6.2) Two-state system. ©1
Consider the statistical mechanics of a tiny ob-
ject with only two discrete states:50 one of en-
ergy E1 and the other of higher energy E2 > E1.
(a) Boltzmann probability ratio. Find the ra-
tio of the equilibrium probabilities ρ2/ρ1 to find
our system in the two states, when weakly cou-
pled to a heat bath of temperature T . What is
the limiting probability as T → ∞? As T →

0? Related formula: Boltzmann probability
= Z(T ) exp(−E/kT ) ∝ exp(−E/kT ).
(b) Probabilities and averages. Use the normal-
ization of the probability distribution (the system
must be in one or the other state) to find ρ1 and
ρ2 separately. (That is, solve for Z(T ) in the ‘re-
lated formula’ for part (a).) What is the average
value of the energy E?

(6.3) Negative temperature. ©3
A system of N atoms each can be in the ground
state or in an excited state. For convenience,
we set the zero of energy exactly in between, so
the energies of the two states of an atom are
±ε/2. The atoms are isolated from the outside
world. There are only weak couplings between
the atoms, sufficient to bring them into internal
equilibrium but without other effects.
(a) Microcanonical entropy. If the net energy is
E (corresponding to a number of excited atoms
m = E/ε + N/2), what is the microcanon-
ical entropy Smicro(E) of our system? Sim-
plify your expression using Stirling’s formula,
log n! ∼ n log n− n.
(b) Negative temperature. Find the temperature,
using your simplified expression from part (a).
What happens to the temperature when E > 0?
Having the energy E > 0 is a kind of popula-
tion inversion. Population inversion is the driv-
ing mechanism for lasers.
For many quantities, the thermodynamic deriva-
tives have natural interpretations when viewed
as sums over states. It is easiest to see this in
small systems.
(c) Canonical ensemble. (i) Take one of our
atoms and couple it to a heat bath of temperature
kBT = 1/β. Write explicit formulæ for Zcanon,
Ecanon, and Scanon in the canonical ensemble, as
a trace (or sum) over the two states of the atom.
(E should be the energy of each state multiplied
by the probability ρn of that state, and S should
be the trace of −kBρn log ρn.) (ii) Compare the
results with what you get by using the thermo-
dynamic relations. Using Z from the trace over
states, calculate the Helmholtz free energy A, S
as a derivative of A, and E from A = E − TS.

48Ignoring quantum mechanics.
49Quantum mechanics is important for the internal vibrations within molecules, which absorb energy as the gas is heated.
Quantum effects are not so important for the pressure and other properties of gases, which are dominated by the molecular
center-of-mass motions.
50Visualize this as a tiny biased coin, which can be in the ‘heads’ or ‘tails’ state but has no other internal vibrations or center
of mass degrees of freedom. Many systems are well described by large numbers of these two-state systems: some paramagnets,
carbon monoxide on surfaces, glasses at low temperatures, . . .



 Copyright Oxford University Press 2006  v1.0                       --  

126 Free energies

Do the thermodynamically derived formulæ you
get agree with the statistical traces?
(d) What happens to E in the canonical ensem-
ble as T → ∞? Can you get into the negative-
temperature regime discussed in part (b)?
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Energy E = ε(-N/2 + m)
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Fig. 6.10 Negative temperature. Entropies and
energy fluctuations for this problem with N = 50.
The canonical probability distribution for the energy
is for 〈E〉 = −10ε, and kBT = 1.207ε. You may wish
to check some of your answers against this plot.

(e) Canonical–microcanonical correspondence.
Find the entropy in the canonical distribution
for N of our atoms coupled to the outside world,
from your answer to part (c). Explain the value
of S(T = ∞) − S(T = 0) by counting states.
Using the approximate form of the entropy from
part (a) and the temperature from part (b), show
that the canonical and microcanonical entropies
agree, Smicro(E) = Scanon(T (E)). (Perhaps use-
ful: arctanh(x) = 1/2 log ((1 + x)/(1− x)) .) No-
tice that the two are not equal in Fig. 6.10; the
form of Stirling’s formula we used in part (a) is
not very accurate for N = 50. Explain in words
why the microcanonical entropy is smaller than
the canonical entropy.
(f) Fluctuations. Calculate the root-mean-square
energy fluctuations in our system in the canoni-
cal ensemble. Evaluate it at T (E) from part (b).
For large N , are the fluctuations in E small com-
pared to E?

(6.4) Molecular motors and free energies.51

(Biology) ©2
Figure 6.11 shows the set-up of an experiment
on the molecular motor RNA polymerase that
transcribes DNA into RNA.52 Choosing a good
ensemble for this system is a bit involved. It
is under two constant forces (F and pressure),
and involves complicated chemistry and biology.
Nonetheless, you know some things based on fun-
damental principles. Let us consider the optical
trap and the distant fluid as being part of the
external environment, and define the ‘system’ as
the local region of DNA, the RNA, motor, and
the fluid and local molecules in a region immedi-
ately enclosing the region, as shown in Fig. 6.11.

F

DNA

RNA

laser
Focused

Bead

x

Syste
m

Fig. 6.11 RNA polymerase molecular motor

attached to a glass slide is pulling along a DNA
molecule (transcribing it into RNA). The opposite
end of the DNA molecule is attached to a bead which
is being pulled by an optical trap with a constant ex-
ternal force F . Let the distance from the motor to
the bead be x; thus the motor is trying to move to
decrease x and the force is trying to increase x.

(a) Without knowing anything further about the
chemistry or biology in the system, which of the
following must be true on average, in all cases?
(T) (F) The total entropy of the Universe (the
system, bead, trap, laser beam, . . . ) must in-
crease or stay unchanged with time.
(T) (F) The entropy Ss of the system must in-
crease with time.

51This exercise was developed with the help of Michelle Wang.
52RNA, ribonucleic acid, is a long polymer like DNA, with many functions in living cells. It has four monomer units (A, U, C,
and G: Adenine, Uracil, Cytosine, and Guanine); DNA has T (Thymine) instead of Uracil. Transcription just copies the DNA
sequence letter for letter into RNA, except for this substitution.
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(T) (F) The total energy ET of the Universe
must decrease with time.
(T) (F) The energy Es of the system must de-
crease with time.
(T) (F) Gs − Fx = Es − TSs + PVs − Fx
must decrease with time, where Gs is the Gibbs
free energy of the system. Related formula:
G = E − TS + PV .
(Hint: Precisely two of the answers are correct.)
The sequence of monomers on the RNA can
encode information for building proteins, and
can also cause the RNA to fold into shapes
that are important to its function. One of the
most important such structures is the hairpin
(Fig. 6.12). Experimentalists study the strength
of these hairpins by pulling on them (also with
laser tweezers). Under a sufficiently large force,
the hairpin will unzip. Near the threshold for
unzipping, the RNA is found to jump between
the zipped and unzipped states, giving telegraph
noise53 (Fig. 6.13). Just as the current in a tele-
graph signal is either on or off, these systems are
bistable and make transitions from one state to
the other; they are a two-state system.

Fig. 6.12 Hairpins in RNA. (Reprinted with per-
mission from Liphardt et al. [82], c©2001 AAAS.) A
length of RNA attaches to an inverted, complemen-
tary strand immediately following, forming a hairpin
fold.

The two RNA configurations presumably have
different energies (Ez, Eu), entropies (Sz, Su),
and volumes (Vz, Vu) for the local region around
the zipped and unzipped states, respectively.
The environment is at temperature T and pres-

sure P . Let L = Lu − Lz be the extra length
of RNA in the unzipped state. Let ρz be the
fraction of the time our molecule is zipped at a
given external force F , and ρu = 1 − ρz be the
unzipped fraction of time.
(b) Of the following statements, which are true,
assuming that the pulled RNA is in equilibrium?
(T) (F) ρz/ρu = exp((Stot

z − Stot
u )/kB), where

Stot
z and Stot

u are the total entropy of the Uni-
verse when the RNA is in the zipped and un-
zipped states, respectively.
(T) (F) ρz/ρu = exp(−(Ez − Eu)/kBT ).
(T) (F) ρz/ρu = exp(−(Gz − Gu)/kBT ), where
Gz = Ez−TSz+PVz and Gu = Eu−TSu+PVu

are the Gibbs energies in the two states.
(T) (F) ρz/ρu = exp(−(Gz − Gu + FL)/kBT ),
where L is the extra length of the unzipped RNA
and F is the applied force.

Fig. 6.13 Telegraph noise in RNA unzipping.
(Reprinted with permission from Liphardt et al. [82],
c©2001 AAAS.) As the force increases, the fraction
of time spent in the zipped state decreases.

(6.5) Laplace.54 (Thermodynamics) ©2
The Laplace transform of a function f(t) is a
function of x:

L{f}(x) =
∫ ∞

0

f(t)e−xt dt. (6.69)

53Like a telegraph key going on and off at different intervals to send dots and dashes, a system showing telegraph noise jumps
between two states at random intervals.
54Pierre-Simon Laplace (1749–1827). See [89, section 4.3].
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Show that the canonical partition function Z(β)
can be written as the Laplace transform of the
microcanonical volume of the energy shell Ω(E).

(6.6) Lagrange.55 (Thermodynamics) ©3
Lagrange multipliers allow one to find the ex-
tremum of a function f(x) given a constraint
g(x) = g0. One sets the derivative of

f(x) + λ(g(x)− g0) (6.70)

with respect to λ and x to zero. The derivatives
with respect to components of x then include
terms involving λ, which act to enforce the con-
straint. Setting the derivative with respect to λ
to zero determines λ.
Let us use Lagrange multipliers to find the max-
imum of the non-equilibrium entropy

S = −kB
∫
ρ(P,Q) log ρ(P,Q)

= −kBTr(ρ log ρ)
= −kB

∑
pi log pi (6.71)

constraining the normalization, energy, and
number. You may use whichever form of the en-
tropy you prefer; the first continuous form will
demand some calculus of variations; the last (dis-
crete) form is the most straightforward.
(a) Microcanonical. Using a Lagrange multiplier
to enforce the normalization

∑
i pi = 1, show

that the probability distribution that extremizes
the entropy is a constant (the microcanonical dis-
tribution).
(b) Canonical. Integrating over all P and Q, use
another Lagrange multiplier to fix the mean en-
ergy 〈E〉 =

∑
i Eipi. Show that the canonical

distribution maximizes the entropy given the con-
straints of normalization and fixed energy.
(c) Grand canonical. Summing over different
numbers of particles N and adding the constraint
that the average number is 〈N〉 =∑iNipi, show
that you get the grand canonical distribution by
maximizing the entropy.

(6.7) Legendre.56 (Thermodynamics) ©3
The Legendre transform of a function f(t) is
given by minimizing f(x) − xp with respect to
x, so that p is the slope (p = ∂f/∂x):

g(p) = min
x
{f(x)− xp}. (6.72)

We saw in the text that in thermodynamics
the Legendre transform of the energy is the
Helmholtz free energy57

A(T,N, V ) = min
E
{E(S, V,N) − TS} . (6.73)

Can we connect this with the statistical me-
chanical relation of Exercise 6.5, which related
Ω = exp(S/kB) to Z = exp(−A/kBT )? Ther-
modynamics, roughly speaking, is statistical me-
chanics without the fluctuations.
Using your Laplace transform of Exercise 6.5,
find an equation for Emax where the integrand
is maximized. Does this energy equal the energy
which minimizes the Legendre transform 6.73?
Approximate Z(β) in your Laplace transform by
the value of the integrand at this maximum (ig-
noring the fluctuations). Does it give the Legen-
dre transform relation 6.73?

(6.8) Euler. (Thermodynamics, Chemistry) ©2
(a) Using the fact that the entropy S(N,V,E) is
extensive for large systems, show that

N
∂S

∂N

∣∣∣∣
V,E

+ V
∂S

∂V

∣∣∣∣
N,E

+ E
∂S

∂E

∣∣∣∣
N,V

= S.

(6.74)
Show from this that in general

S = (E + PV − µN)/T (6.75)

and hence

E = TS − PV + µN. (6.76)

This is Euler’s relation.58

(b) Test this explicitly for the ideal gas. Use the
ideal gas entropy (eqn 3.57)

S(N, V,E) =
5

2
NkB

+NkB log

[
V

Nh3

(
4πmE

3N

)3/2
]
,

(6.77)

55Joseph-Louis Lagrange (1736–1813). See [89, section 12, p. 331].
56Adrien-Marie Legendre (1752–1833).
57Actually, eqn 6.40 in the text had E as the independent variable. As usual in thermodynamics, we can solve S(E,V,N) for
E(S, V,N).
58Leonhard Euler (1707–1783). More specifically, it is one of many fundamental relations named after Euler; other Euler
relations involve the number of faces, edges, and vertices for a polygonalization of a surface and the polar representation of
complex numbers.
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to derive formulæ for T , P , and µ in terms of
E, N , and V , and verify eqn 6.75.

(6.9) Gibbs–Duhem. (Thermodynamics, Chem-
istry) ©2
As a state function, E is supposed to depend
only on S, V , and N . But eqn 6.76 seems to
show explicit dependence on T , P , and µ as well;
how can this be?
Another answer is to consider a small shift of
all six variables. We know that dE = T dS −
P dV + µdN , but if we shift all six variables in
Euler’s equation we get dE = T dS − P dV +
µdN + S dT − V dP + N dµ. This implies the
Gibbs–Duhem relation

0 = S dT − V dP +N dµ. (6.78)

This relation implies that the intensive variables
T , P , and µ are not all independent; the change
in µ is determined given a small change in T and
P .
(a) Write µ as a suitable derivative of the Gibbs
free energy G(T, P,N).
This makes µ a function of the three variables
T , P , and N . The Gibbs–Duhem relation says
it must be independent of N .
(b) Argue that changing the number of particles
in a large system at fixed temperature and pres-
sure should not change the chemical potential.
(Hint: Doubling the number of particles at fixed
T and P doubles the size and energy of the sys-
tem as well.)
The fact that both G(T, P,N) and N are exten-
sive means that G must be proportional to N .
We used this extensivity to prove the Euler re-
lation in Exercise 6.8; we can thus use the Euler
relation to write the formula for G directly.
(c) Use the Euler relation (eqn 6.76) to write a
formula for G = E−TS+PV . Is it indeed pro-
portional to N? What about your formula for µ
from part (a); will it be dependent on N?

(6.10) Clausius–Clapeyron. (Thermodynamics,
Chemistry) ©3
Consider the phase diagram in Fig. 6.14. Along
an equilibrium phase boundary, the tempera-
tures, pressures, and chemical potentials of the
two phases must agree; otherwise a flat interface
between the two phases would transmit heat,
shift sideways, or leak particles, respectively (vi-
olating the assumption of equilibrium).
(a) Apply the Gibbs–Duhem relation 6.78 to both
phases, for a small shift by ∆T along the phase

boundary. Let s1, v1, s2, and v2 be the molecu-
lar entropies and volumes (s = S/N , v = V/N
for each phase); derive the Clausius–Clapeyron
equation for the slope of the coexistence line on
the phase diagram

dP/dT = (s1 − s2)/(v1 − v2). (6.79)
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Fig. 6.14 Generic phase diagram, showing the
coexistence curves for solids, liquids, and gases.

It is hard to experimentally measure the en-
tropies per particle; we do not have an entropy
thermometer. But, as you will remember, the
entropy difference upon a phase transformation
∆S = Q/T is related to the heat flow Q needed
to induce the phase change. Let the latent heat
L be the heat flow per molecule.
(b) Write a formula for dP/dT that does not in-
volve the entropy.

(6.11) Barrier crossing. (Chemistry) ©2
In this exercise, we will derive the Arrhenius law
(eqn 6.60)

Γ = Γ0 exp(−E/kBT ), (6.80)

giving the rate at which chemical reactions cross
energy barriers. The important exponential de-
pendence on the barrier height E is the relative
Boltzmann probability that a particle is near the
top of the barrier (and hence able to escape).
Here we will do a relatively careful job of calcu-
lating the prefactor Γ0.
Consider a system having an energy U(X), with
an energy well with a local minimum at X = X0

having energy U(X0) = 0. Assume there is
an energy barrier of height U(XB) = B across
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which particles can escape.59 Let the tempera-
ture of the system be much smaller than B/kB .
To do our calculation, we will make some ap-
proximations. (1) We assume that the atoms
escaping across the barrier to the right do not
scatter back into the well. (2) We assume that
the atoms deep inside the well are in local equi-
librium. (3) We assume that the particles cross-
ing to the right across the barrier are given by
the equilibrium distribution inside the well.
(a) Let the probability density that a particle
has position X be ρ(X). What is the ratio of
probability densities ρ(XB)/ρ(X0) if the parti-
cles near the top of the barrier are assumed
to be in equilibrium with those deep inside the
well? Related formula: Boltzmann distribution
ρ ∝ exp(−E/kBT ).

Fig. 6.15Well probability distribution. The ap-
proximate probability distribution for the atoms still
trapped inside the well.

If the barrier height B ≫ kBT , then most of the
particles in the well stay near the bottom of the
well. Often, the potential near the bottom is ac-
curately described by a quadratic approximation
U(X) ≈ 1/2Mω2(X −X0)

2, where M is the mass
of our system and ω is the frequency of small
oscillations in the well.
(b) In this approximation, what is the probability
density ρ(X) near the bottom of the well? (See
Fig. 6.15.) What is ρ(X0), the probability den-
sity of being precisely at the bottom of the well?
Related formula: Gaussian probability distribu-
tion (1/

√
2πσ2) exp(−x2/2σ2).

Knowing the answers from (a) and (b), we know
the probability density ρ(XB) at the top of the

barrier.60 We also need to know the proba-
bility that particles near the top of the bar-
rier have velocity V , because the faster-moving
parts of the distribution of velocities contribute
more to the flux of probability over the bar-
rier (see Fig. 6.16). As usual, because the to-
tal energy is the sum of the kinetic energy and
potential energy, the total Boltzmann proba-
bility factors; in equilibrium the particles will
always have a velocity probability distribution
ρ(V ) = 1/

√
2πkBT/M exp(−1/2MV 2/kBT ).

∆v   t

Fig. 6.16 Crossing the barrier. The range of po-
sitions for which atoms moving to the right with ve-
locity v will cross the barrier top in time ∆t.

(c) First give a formula for the decay rate Γ
(the probability per unit time that a given par-
ticle crosses the barrier towards the right), for
an unknown probability density ρ(XB)ρ(V ) as an
integral over the velocity V . Then, using your
formulæ from parts (a) and (b), give your esti-
mate of the decay rate for our system. Related
formula:

∫∞
0
x exp(−x2/2σ2) dx = σ2.

How could we go beyond this one-dimensional
calculation? In the olden days, Kramers stud-
ied other one-dimensional models, changing the
ways in which the system was coupled to the ex-
ternal bath. On the computer, one can avoid a
separate heat bath and directly work with the
full multidimensional configuration space, lead-
ing to transition-state theory. The transition-
state theory formula is very similar to the one
you derived in part (c), except that the prefac-
tor involves the product of all the frequencies
at the bottom of the well and all the positive
frequencies at the saddlepoint at the top of the

59This potential could describe a chemical reaction, with X being a reaction coordinate. At the other extreme, it could describe
the escape of gas from a moon of Jupiter, with X being the distance from the moon in Jupiter’s direction.
60Or rather, we have calculated ρ(XB) in equilibrium, half of which (the right movers) we assume will also be crossing the
barrier in the non-equilibrium reaction.
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barrier (see [55]). Other generalizations arise
when crossing multiple barriers [62] or in non-
equilibrium systems [83].

(6.12) Michaelis–Menten and Hill. (Biology,
Computation) ©3
Biological reaction rates are often saturable; the
cell needs to respond sensitively to the introduc-
tion of a new chemical S, but the response should
not keep growing indefinitely as the new chem-
ical concentration [S] grows.61 Other biologi-
cal reactions act as switches; a switch not only
saturates, but its rate or state changes sharply
from one value to another as the concentration
of a chemical S is varied. These reactions give
tangible examples of how one develops effective
dynamical theories by removing degrees of free-
dom; here, instead of coarse-graining some large
statistical mechanics system, we remove a single
enzyme E from the equations to get an effective
reaction rate.
The rate of a chemical reaction,

NS +B → C, (6.81)

where N substrate molecules S combine with a B
molecule to make a C molecule, will occur with
a reaction rate given by the law of mass-action:

d[C]

dt
= k[S]N [B]. (6.82)

Saturation and the Michaelis–Menten equation.
Saturation is not seen in ordinary chemical reac-
tion kinetics. Notice that the reaction rate goes
as the Nth power of the concentration [S]; far
from saturating, the reaction rate grows linearly
or faster with concentration.
The archetypal example of saturation in biolog-
ical systems is the Michaelis–Menten reaction
form. A reaction of this form converting a chem-
ical S (the substrate) into P (the product) has a
rate given by the formula

d[P ]

dt
=

Vmax[S]

KM + [S]
, (6.83)

where KM is called the Michaelis constant
(Fig. 6.17). This reaction at small concentra-
tions acts like an ordinary chemical reaction with
N = 1 and k = Vmax/KM , but the rate saturates
at Vmax as [S]→∞. The Michaelis constantKM

is the concentration [S] at which the rate is equal
to half of its saturation rate (Fig. 6.17).

0 K
M

, K
H

Substrate concentration [S]

0

V
max

R
at

e 
d[

P
]/

dt

Michaelis-Menten
Hill, n = 4

Fig. 6.17 Michaelis–Menten and Hill equation

forms.

We can derive the Michaelis–Menten form by hy-
pothesizing the existence of a catalyst or enzyme
E, which is in short supply. The enzyme is pre-
sumed to be partly free and available for bind-
ing (concentration [E]) and partly bound to the
substrate (concentration62 [E : S]), helping it to
turn into the product. The total concentration
[E] + [E : S] = Etot is fixed. The reactions are
as follows:

E + S ⇆
k−1

k1
E : S

kcat→ E + P. (6.84)

We must then assume that the supply of sub-
strate is large, so its concentration changes
slowly with time. We can then assume that the
concentration [E : S] is in steady state, and re-
move it as a degree of freedom.
(a) Assume the binding reaction rates in
eqn 6.84 are of traditional chemical kinetics form
(eqn 6.82), with constants k1, k−1, and kcat, and
with N = 1 or N = 0 as appropriate. Write the
equation for d[E : S]/dt, set it to zero, and use it
to eliminate [E] in the equation for dP/dt. What
are Vmax and KM in the Michaelis–Menten form
(eqn 6.83) in terms of the ks and Etot?
We can understand this saturation intuitively:
when all the enzyme is busy and bound to the
substrate, adding more substrate cannot speed
up the reaction.
Cooperativity and sharp switching: the Hill equa-
tion. Hemoglobin is what makes blood red;

61[S] is the concentration of S (number per unit volume). S stands for substrate.
62The colon denotes the bound state of the two, called a dimer.
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this iron-containing protein can bind up to four
molecules of oxygen in the lungs, and carries
them to the tissues of the body where it releases
them. If the binding of all four oxygens were
independent, the [O2] concentration dependence
of the bound oxygen concentration would have
the Michaelis–Menten form; to completely de-
oxygenate the Hemoglobin (Hb) would demand
a very low oxygen concentration in the tissue.
What happens instead is that the Hb binding
of oxygen looks much more sigmoidal—a fairly
sharp transition between nearly four oxygens
bound at high [O2] (lungs) to nearly none bound
at low oxygen concentrations. This arises be-
cause the binding of the oxygens is enhanced by
having other oxygens bound. This is not be-
cause the oxygens somehow stick to one another;
instead, each oxygen deforms the Hb in a non-
local allosteric63 fashion, changing the configura-
tions and affinity of the other binding sites. The
Hill equation was introduced for hemoglobin to
describe this kind of cooperative binding. Like
the Michaelis–Menten form, it is also used to de-
scribe reaction rates, where instead of the carrier
Hb we have an enzyme, or perhaps a series of
transcription binding sites (see Exercise 8.11).
We will derive the Hill equation not in terms of
allosteric binding, but in the context of a sat-
urable reaction involving n molecules binding si-
multaneously. As a reaction rate, the Hill equa-
tion is

d[P ]

dt
=

Vmax[S]
n

Kn
H + [S]n

(6.85)

(see Fig. 6.17). For Hb, the concentration of
the n-fold oxygenated form is given by the right-
hand side of eqn 6.85. In both cases, the transi-
tion becomes much more of a switch, with the re-
action turning on (or the Hb accepting or releas-
ing its oxygen) sharply at a particular concen-
tration (Fig. 6.17). The transition can be made
more or less sharp by increasing or decreasing n.
The Hill equation can be derived using a sim-
plifying assumption that n molecules bind in a
single reaction:

E + nS ⇆ku

kb
E : (nS), (6.86)

where E might stand for hemoglobin and S for
the O2 oxygen molecules. Again, there is a fixed
total amount Etot = [E] + [E : nS].

(b) Assume that the two reactions in eqn 6.86
have the chemical kinetics form (eqn 6.82) with
N = 0 or N = n as appropriate. Write the equi-
librium equation for E : (nS), and eliminate [E]
using the fixed total Etot. What are Vmax and
KH in terms of kb, ku, and Etot?
Usually, and in particular for hemoglobin, this
cooperativity is not so rigid; the states with one,
two, and three O2 molecules bound also compete
with the unbound and fully bound states. This
is treated in an approximate way by using the
Hill equation, but allowing n to vary as a fitting
parameter; for Hb, n ≈ 2.8.
Both Hill and Michaelis–Menten equations are
often used in biological reaction models even
when there are no explicit mechanisms (enzymes,
cooperative binding) known to generate them.

(6.13) Pollen and hard squares. ©3

Q
B b

Fig. 6.18 Square pollen grain in fluid of oriented
square molecules, next to a wall. The thin lines rep-
resents the exclusion region around the pollen grain
and away from the wall.

Objects embedded in a gas will have an effective
attractive force at short distances, when the gas
molecules can no longer fit between the objects.
One can view this as a pressure imbalance (no
collisions from one side) or as an entropic attrac-
tion.
Let us model the entropic attraction between a
pollen grain and a wall using a two-dimensional
ideal gas of classical indistinguishable particles

63Allosteric comes from Allo (other) and steric (structure or space). Allosteric interactions can be cooperative, as in hemoglobin,
or inhibitory.
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as the fluid. For convenience, we imagine that
the pollen grain and the fluid are formed from
square particles lined up with the axes of the
box, of lengths B and b, respectively (Fig. 6.18).
We assume no interaction between the ideal gas
molecules (unlike in Exercise 3.5), but the poten-
tial energy is infinite if the gas molecules overlap
with the pollen grain or with the wall. The con-
tainer as a whole has one pollen grain, N gas
molecules, and total area L× L.
Assume the pollen grain is close to only one wall.
Let the distance from the surface of the wall to
the closest face of the pollen grain be Q. (A
similar square-particle problem with interacting
small molecules is studied in [44].)
(a) What is the area A(Q≫ 0) available for the
gas molecules, in units of (length)2, when the
pollen grain is far from the wall? What is the
overlap of the excluded regions, A(0) − A(∞),
when the pollen grain touches the wall, Q = 0?
Give formulæ for A(Q) as a function of Q for
the two relevant regions, Q < b and Q > b.
(b) What is the configuration-space volume Ω(Q)
for the gas, in units of (length)2N ? What is the
configurational entropy of the ideal gas, S(Q)?
(Write your answers here in terms of A(Q).)
Your answers to part (b) can be viewed as giving
a free energy for the pollen grain after integrat-
ing over the gas degrees of freedom (also known
as a partial trace, or coarse-grained free energy).
(c) What is the resulting coarse-grained free en-
ergy of the pollen grain, F(Q) = E − T S(Q), in
the two regions Q > b and Q < b? Use F(Q) to
calculate the force on the pollen grain for Q < b.
Is the force positive (away from the wall) or neg-
ative? Why?
(d) Directly calculate the force due to the ideal
gas pressure on the far side of the pollen grain,
in terms of A(Q). Compare it to the force from
the partial trace in part (c). Why is there no
balancing force from the other side? Effectively
how ‘long’ is the far side of the pollen grain?

(6.14) Statistical mechanics and statistics.64

(Statistics) ©3
Consider the problem of fitting a theoretical
model to experimentally determined data. Let
our model M predict a time-dependent function
y(M)(t). Let there be N experimentally deter-
mined data points yi at times ti with errors of
standard deviation σ. We assume that the ex-

perimental errors for the data points are inde-
pendent and Gaussian distributed, so that the
probability that a given model produced the ob-
served data points (the probability P (D|M) of
the data given the model) is

P (D|M) =
N∏

i=1

1√
2πσ

e−(y
(M)(ti)−yi)

2
/2σ2

.

(6.87)
(a) True or false: This probability density
corresponds to a Boltzmann distribution with
energy H and temperature T , with H =∑N

i=1(y
(M)(ti)− yi)2/2 and kBT = σ2.

There are two approaches to statistics. Among
a family of models, the frequentists will pick the
model M with the largest value of P (D|M) (the
maximum likelihood estimate); the ensemble of
best-fit models is then deduced from the range
of likely input data (deduced from the error bars
σ). The Bayesians take a different point of view.
They argue that there is no reason to believe a
priori that all models have the same probabil-
ity. (There is no analogue of Liouville’s theorem
(Chapter 4) in model space.) Suppose the prob-
ability of the model (the prior) is P (M). They
use the theorem

P (M |D) = P (D|M)P (M)/P (D). (6.88)

(b) Prove Bayes’ theorem (eqn 6.88) using the
fact that P (A and B) = P (A|B)P (B) (see
note 38 on p. 89).
The Bayesians will often pick the maximum of
P (M |D) as their model for the experimental
data. But, given their perspective, it is even
more natural to consider the entire ensemble of
models, weighted by P (M |D), as the best de-
scription of the data. This ensemble average
then naturally provides error bars as well as pre-
dictions for various quantities.
Consider the problem of fitting a line to two data
points. Suppose the experimental data points
are at t1 = 0, y1 = 1 and t2 = 1, y2 = 2,
where both y-values have uncorrelated Gaussian
errors with standard deviation σ = 1/2, as as-
sumed in eqn 6.87 above. Our model M(m, b)
is y(t) = mt + b. Our Bayesian statistician has
prior knowledge that m and b both lie between
zero and two, and assumes that the probability
density is otherwise uniform; P (m, b) = 1/4 for
0 < m < 2 and 0 < b < 2.

64This exercise was developed with the help of Robert Weiss.
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(c) Which of the contour plots below accurately
represent the probability distribution P (M |D) for
the model, given the observed data? (The spac-
ing between the contour lines is arbitrary.)

(A) b

m

(B) b

m

(C) b

m

(D) b

m

(E) b

m
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Quantum statistical mechanics governs most of solid-state physics (met-
als, semiconductors, and glasses) and parts of molecular physics and
astrophysics (white dwarfs, neutron stars). It spawned the origin of
quantum mechanics (Planck’s theory of the black-body spectrum) and
provides the framework for our understanding of other exotic quantum
phenomena (Bose condensation, superfluids, and superconductors). Ap-
plications of quantum statistical mechanics are significant components of
courses in these various subjects. We condense our treatment of this im-
portant subject into this one chapter in order to avoid overlap with other
physics and chemistry courses, and also in order to keep our treatment
otherwise accessible to those uninitiated into the quantum mysteries.
In this chapter, we assume the reader has some background in quan-

tum mechanics. We will proceed from the abstract to the concrete,
through a series of simplifications. We begin (Section 7.1) by intro-
ducing mixed states for quantum ensembles, and the advanced topic
of density matrices (for non-equilibrium quantum systems which are not
mixtures of energy eigenstates). We illustrate mixed states in Section 7.2
by solving the finite-temperature quantum harmonic oscillator. We dis-
cuss the statistical mechanics of identical particles (Section 7.3). We
then make the vast simplification of presuming that the particles are
non-interacting (Section 7.4), which leads us to the Bose–Einstein and
Fermi distributions for the filling of single-particle eigenstates. We con-
trast Bose, Fermi, and Maxwell–Boltzmann statistics in Section 7.5. We
illustrate how amazingly useful the non-interacting particle picture is for
quantum systems by solving the classic problems of black-body radia-
tion and Bose condensation (Section 7.6), and for the behavior of metals
(Section 7.7).

7.1 Mixed states and density matrices

Classical statistical ensembles are probability distributions ρ(P,Q) in
phase space. How do we generalize them to quantum mechanics? Two
problems immediately arise. First, the Heisenberg uncertainty princi-
ple tells us that one cannot specify both position and momentum for
a quantum system at the same time. The states of our quantum sys-
tem will not be points in phase space. Second, quantum mechanics
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already has probability densities; even for systems in a definite state11Quantum systems with many particles
have wavefunctions that are functions
of all the positions of all the particles
(or, in momentum space, all the mo-
menta of all the particles).

Ψ(Q) the probability is spread among different configurations |Ψ(Q)|2
(or momenta |Ψ̃(P)|2). In statistical mechanics, we need to introduce a
second level of probability, to discuss an ensemble that has probabilities
pn of being in a variety of quantum states Ψn(Q). Ensembles in quan-
tum mechanics are called mixed states; they are not superpositions of
different wavefunctions, but incoherent mixtures.22So, for example, if |V 〉 is a vertically

polarized photon, and |H〉 is a horizon-
tally polarized photon, then the super-
position (1/

√
2) (|V 〉+ |H〉) is a diag-

onally polarized photon, while the un-
polarized photon is a mixture of half
|V 〉 and half |H〉, described by the den-
sity matrix 1/2(|V 〉〈V | + |H〉〈H|). The
superposition is in both states, the mix-
ture is in perhaps one or perhaps the
other (see Exercise 7.5).

Suppose we want to compute the ensemble expectation of an operator
A. In a particular state Ψn, the quantum expectation is

〈A〉pure =
∫

Ψ∗
n(Q)AΨn(Q) d3NQ. (7.1)

So, in the ensemble the expectation is

〈A〉 =
∑

n

pn

∫
Ψ∗

n(Q)AΨn(Q) d3NQ. (7.2)

Except for selected exercises, for the rest of the book we will use mixtures
of states (eqn 7.2). Indeed, for all of the equilibrium ensembles, the
Ψn may be taken to be the energy eigenstates, and the pn either a
constant in a small energy range (for the microcanonical ensemble), or
exp(−βEn)/Z (for the canonical ensemble), or exp (−β(En −Nnµ)) /Ξ
(for the grand canonical ensemble). For most practical purposes you may
stop reading this section here, and proceed to the quantum harmonic
oscillator.

7.1.1 Advanced topic: density matrices.

What do we gain from going beyond mixed states? First, there are lots of
systems that cannot be described as mixtures of energy eigenstates. (For
example, any such mixed state will have time independent properties.)
Second, although one can define a general, time-dependent ensemble in
terms of more general bases Ψn, it is useful to be able to transform
between a variety of bases. Indeed, superfluids and superconductors
show an exotic off-diagonal long-range order when looked at in position
space (Exercise 9.8). Third, we will see that the proper generalization of
Liouville’s theorem demands the more elegant, operator-based approach.
Our goal is to avoid carrying around the particular states Ψn. Instead,

we will write the ensemble average (eqn 7.2) in terms of A and an
operator ρ, the density matrix. For this section, it is convenient to
use Dirac’s bra-ket notation, in which the mixed-state ensemble average
can be written33In Dirac’s notation, 〈Ψ|M|Φ〉 =∫

Ψ∗MΦ. 〈A〉 =
∑

n

pn〈Ψn|A|Ψn〉. (7.3)

Pick any complete orthonormal basis Φα. Then the identity operator is

1 =
∑

α

|Φα〉〈Φα| (7.4)
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and, substituting the identity (eqn 7.4) into eqn 7.3 we find

〈A〉 =
∑

n

pn〈Ψn|
(
∑

α

|Φα〉〈Φα|
)
A|Ψn〉

=
∑

n

pn
∑

α

〈Φα|AΨn〉〈Ψn|Φα〉

=
∑

α

〈ΦαA|
(
∑

n

pn|Ψn〉〈Ψn|
)
|Φα〉

= Tr(Aρ), (7.5)

where4 4The trace of a matrix is the sum of
its diagonal elements, and is indepen-
dent of what basis you write it in. The
same is true of operators; we are sum-
ming the diagonal elements Tr(M) =∑

α〈Φα|M |Φα〉.

ρ =

(
∑

n

pn|Ψn〉〈Ψn|
)

(7.6)

is the density matrix.

There are several properties we can now deduce about the density
matrix.

Sufficiency. In quantum mechanics, all measurement processes involve
expectation values of operators. Our density matrix therefore suffices to
embody everything we need to know about our quantum system.

Pure states. A pure state, with a definite wavefunction Φ, has ρpure =
|Φ〉〈Φ|. In the position basis |Q〉, this pure-state density matrix has
matrix elements ρpure(Q,Q

′) = 〈Q|ρpure|Q′〉 = Φ∗(Q′)Φ(Q). Thus in
particular we can reconstruct5 the wavefunction from a pure-state den- 5In particular, since Φ is normalized

|Φ∗(Q′)|2 =
∫
dQ |ρ(Q,Q′)|2 and thus

Φ(Q) =
ρ(Q,Q′)√∫
dQ̃ |ρ(Q̃,Q′)|2

(7.7)

up to the single phase φ∗(Q′) for any
point Q′.

sity matrix, up to an overall physically unmeasurable phase. Since our
wavefunction is normalized 〈Φ|Φ〉 = 1, we note also that the square of
the density matrix for a pure state equals itself: ρ2

pure = |Φ〉〈Φ||Φ〉〈Φ| =
|Φ〉〈Φ| = ρpure.

Normalization. The trace of a pure-state density matrix Trρpure = 1,
since we can pick an orthonormal basis with our wavefunction Φ as the
first basis element, making the first term in the trace sum one and the
others zero. The trace of a general density matrix is hence also one,
since it is a probability distribution of pure-state density matrices:

Trρ = Tr

(
∑

n

pn|Ψn〉〈Ψn|
)

=
∑

n

pnTr (|Ψn〉〈Ψn|) =
∑

n

pn = 1.

(7.8)
Canonical distribution. The canonical distribution is a mixture of
the energy eigenstates |En〉 with Boltzmann weights exp(−βEn). Hence
the density matrix ρcanon is diagonal in the energy basis:6

6Notice that the states Ψn in a general
mixture need not be eigenstates or even
orthogonal.

ρcanon =
∑

n

exp(−βEn)

Z
|En〉〈En|. (7.9)

We can write the canonical density matrix in a basis-independent form
using the Hamiltonian operatorH. First, the partition function is given7

7What is the exponential of a matrix
M? We can define it in terms of a power
series, exp(M) = 1 + M + M2/2! +
M3/3! + . . . , but it is usually easier to
change basis to diagonalize M . In that
basis, any function f(M) is given by

f(ρ) =




f(ρ11) 0 0 . . .

0 f(ρ22) 0 . . .
. . .



 .

(7.10)
At the end, change back to the origi-
nal basis. This procedure also defines
logM (eqn 7.14).
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by the trace

Z =
∑

n

exp(−βEn) =
∑

n

〈En| exp(−βH)|En〉 = Tr (exp(−βH)) .

(7.11)
Second, the numerator

∑

n

|En〉 exp(−βEn)〈En| = exp(−βH), (7.12)

since H (and thus exp(−βH)) is diagonal in the energy basis. Hence

ρcanon =
exp(−βH)

Tr (exp(−βH))
. (7.13)

Entropy. The entropy for a general density matrix will be

S = −kBTr (ρ logρ) . (7.14)

Time evolution for the density matrix. The time evolution for the
density matrix is determined by the time evolution of the pure states
composing it:88The pn are the probability that one

started in the state Ψn, and thus man-
ifestly do not change with time. ∂ρ

∂t
=
∑

n

pn

(
∂|Ψn〉
∂t

〈Ψn|+ |Ψn〉
∂〈Ψn|
∂t

)
. (7.15)

Now, the time evolution of the ‘ket’ wavefunction |Ψn〉 is given by op-
erating on it with the Hamiltonian:

∂|Ψn〉
∂t

=
1

i~
H|Ψn〉, (7.16)

and the time evolution of the ‘bra’ wavefunction 〈Ψn| is given by the
time evolution of Ψ∗

n(Q):

∂Ψ∗
n

∂t
=

(
∂Ψn

∂t

)∗
=

(
1

i~
HΨn

)∗
= − 1

i~
HΨ∗

n, (7.17)

so since H is Hermitian, we have

∂〈Ψn|
∂t

= − 1

i~
〈Ψn|H. (7.18)

Hence99The commutator of two matrices
[A,B] = AB − BA. Notice that
eqn 7.19 is minus the formula one uses
for the time evolution of operators in
the Heisenberg representation.

∂ρ

∂t
=
∑

n

pn
1

i~

(
H|Ψn〉〈Ψn| − |Ψn〉〈Ψn|H

)
=

1

i~
(Hρ− ρH)

=
1

i~
[H,ρ]. (7.19)

Quantum Liouville theorem. This time evolution law 7.19 is the
quantum version of Liouville’s theorem. We can see this by using the
equations of motion 4.1, q̇α = ∂H/∂pα, and ṗα = −∂H/∂qα and the
definition of Poisson brackets

{A,B}P =
∑

α

∂A

∂qα

∂B

∂pα
− ∂A

∂pα

∂B

∂qα
(7.20)
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to rewrite Liouville’s theorem that the total time derivative is zero
(eqn 4.7) into a statement about the partial time derivative:

0 =
dρ

dt
=
∂ρ

∂t
+
∑

α

∂ρ

∂qα
q̇α +

∂ρ

∂pα
ṗα

=
∂ρ

∂t
+
∑

α

(
∂ρ

∂qα

∂H
∂pα

− ∂ρ

∂pα

∂H
∂qα

)
, (7.21)

so

∂ρ

∂t
= {H,ρ}P . (7.22)

Using the classical↔quantum correspondence between the Poisson brack-
ets and the commutator { }P ↔ (1/i~)[ ] the time evolution law 7.19 is
precisely the analogue of Liouville’s theorem 7.22.

Quantum Liouville and statistical mechanics. The classical ver-
sion of Liouville’s equation is far more compelling an argument for statis-
tical mechanics than is the quantum version. The classical theorem, you
remember, states that dρ/dt = 0; the density following a point on the
trajectory is constant, hence any time-independent density must have
ρ constant along the trajectories. If the trajectory covers the energy
surface (ergodicity), then the probability density has to be constant on
the energy surface, justifying the microcanonical ensemble.
For an isolated quantum system, this argument breaks down. The

condition that an equilibrium state must be time independent is not
very stringent. Indeed, ∂ρ/∂t = [H,ρ] = 0 for any mixture of many-
body energy eigenstates. In principle, isolated quantum systems are
very non-ergodic, and one must couple them to the outside world to
induce transitions between the many-body eigenstates needed for equi-
libration.10

10This may seem less of a concern when
one realizes just how peculiar a many-
body eigenstate of a large system re-
ally is. Consider an atom in an ex-
cited state contained in a large box.
We normally think of the atom as be-
ing in an energy eigenstate, which de-
cays after some time into a ground state
atom plus some photons. Clearly, the
atom was only in an approximate eigen-
state (or it would not decay); it is
in a resonance that is an eigenstate if
we ignore the coupling to the electro-
magnetic field. The true many-body
eigenstates of the system are weird del-
icate superpositions of states with pho-
tons being absorbed by the atom and
the atom emitting photons, carefully
crafted to produce a stationary state.
When one starts including more atoms
and other interactions, the true many-
body eigenstates are usually pretty use-
less (apart from the ground state and
the lowest excitations). Tiny interac-
tions with the outside world disrupt
these many-body eigenstates, and usu-
ally lead efficiently to equilibrium.

7.2 Quantum harmonic oscillator
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Fig. 7.1 The quantum states of the

harmonic oscillator are at equally-
spaced energies.

The harmonic oscillator is a great example of how statistical mechanics
works in quantum systems. Consider an oscillator of frequency ω. The
energy eigenvalues are En = (n + 1/2)~ω (Fig. 7.1). Hence its partition
function is a geometric series

∑
xn, which we can sum to 1/(1− x):

Zqho =

∞∑

n=0

e−βEn =

∞∑

n=0

e−β~ω(n+1/2)

= e−β~ω/2
∞∑

n=0

(
e−β~ω

)n
= e−β~ω/2 1

1− e−β~ω

=
1

eβ~ω/2 − e−β~ω/2
=

1

2 sinh(β~ω/2)
. (7.23)
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The average energy is

〈E〉qho = −∂ logZqho

∂β
=

∂

∂β

[
1

2
β~ω + log

(
1− e−β~ω

)]

= ~ω

(
1

2
+

e−β~ω

1− e−β~ω

)
= ~ω

(
1

2
+

1

eβ~ω − 1

)
, (7.24)

which corresponds to an average excitation level

〈n〉qho =
1

eβ~ω − 1
. (7.25)

The specific heat is thus

0 1k
B
T / hω

0

k
B
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ec
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t c
V

Fig. 7.2 The specific heat for the

quantum harmonic oscillator.

cV =
∂E

∂T
= kB

(
~ω

kBT

)2
e−~ω/kBT

(
1− e−~ω/kBT

)2 (7.26)

(Fig. 7.2). At high temperatures, e−~ω/kBT ≈ 1 − ~ω/kBT , so cV →
kB as we found for the classical harmonic oscillator (and as given by
the equipartition theorem). At low temperatures, e−~ω/kBT becomes
exponentially small, so the specific heat goes rapidly to zero as the energy
asymptotes to the zero-point energy 1/2~ω. More specifically, there is an
energy gap11 ~ω to the first excitation, so the probability of having any

11We call it the energy gap in solid-
state physics; it is the minimum energy
needed to add an excitation to the sys-
tem. In quantum field theory, where
the excitations are particles, we call it
the mass of the particle mc2.

excitation of the system is suppressed by a factor of e−~ω/kBT .

7.3 Bose and Fermi statistics

In quantum mechanics, identical particles are not just hard to tell apart—
their quantum wavefunctions must be the same, up to an overall phase
change,12 when the coordinates are swapped (see Fig. 7.3). In particular,

12In three dimensions, this phase
change must be ±1. In two dimen-
sions one can have any phase change,
so one can have not only fermions and
bosons but anyons. Anyons, with frac-
tional statistics, arise as excitations in
the fractional quantized Hall effect.

for bosons13 the wavefunction is unchanged under a swap, so

13Examples of bosons include mesons,

He4, phonons, photons, gluons, W±

and Z bosons, and (presumably) gravi-
tons. The last four mediate the fun-
damental forces—the electromagnetic,
strong, weak, and gravitational interac-
tions. The spin-statistics theorem (not
discussed here) states that bosons have
integer spins. Ψ(r1, r2, . . . , rN ) = Ψ(r2, r1, . . . , rN ) = Ψ(rP1 , rP2 , . . . , rPN

) (7.27)

for any permutation P of the integers 1, . . . , N . For fermions14
14Most of the common elementary par-
ticles are fermions: electrons, protons,
neutrons, neutrinos, quarks, etc. Fer-
mions have half-integer spins. Particles
made up of even numbers of fermions
are bosons.

Ψ(r1, r2, . . . , rN ) = −Ψ(r2, r1, . . . , rN ) = σ(P )Ψ(rP1 , rP2 , . . . , rPN
),

(7.28)
where σ(P ) is the sign of the permutation P .15

15A permutation {P1, P2, . . . , PN} is
just a reordering of the integers
{1, 2, . . . , N}. The sign σ(P ) of a per-
mutation is +1 if P is an even permu-
tation, and −1 if P is an odd permuta-
tion. Swapping two labels, keeping all
the rest unchanged, is an odd permuta-
tion. One can show that composing two
permutations multiplies their signs, so
odd permutations can be made by odd
numbers of pair swaps, and even per-
mutations are composed of even num-
bers of pair swaps.

The eigenstates for systems of identical fermions and bosons are a sub-
set of the eigenstates of distinguishable particles with the same Hamil-
tonian:

HΨn = EnΨn; (7.29)

in particular, they are given by the distinguishable eigenstates which
obey the proper symmetry properties under permutations. A non-symmetric
eigenstate Φ with energy E may be symmetrized to form a Bose eigen-
state by summing over all possible permutations P :

Ψsym(r1, r2, . . . , rN ) = (normalization)
∑

P

Φ(rP1 , rP2 , . . . , rPN
) (7.30)
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or antisymmetrized to form a fermion eigenstate

Ψasym(r1, r2, . . . , rN ) = (normalization)
∑

P

σ(P )Φ(rP1 , rP2 , . . . , rPN
)

(7.31)
if the symmetrization or antisymmetrization does not make the sum zero.
These remain eigenstates of energy E, because they are combinations of
eigenstates of energy E.

e

e+

γ

γ

γ

γe− e−

e−

e−
−

Fig. 7.3 Feynman diagram: iden-

tical particles. In quantum mechan-
ics, two electrons (or two atoms of the
same isotope) are fundamentally iden-
tical. We can illustrate this with a peek
at an advanced topic mixing quantum
field theory and relativity. Here is a
scattering event of a photon off an elec-
tron, viewed in two reference frames;
time is vertical, a spatial coordinate is
horizontal. On the left we see two ‘dif-
ferent’ electrons, one which is created
along with an anti-electron or positron
e+, and the other which later annihi-
lates the positron. On the right we
see the same event viewed in a differ-
ent reference frame; here there is only
one electron, which scatters two pho-
tons. (The electron is virtual, mov-
ing faster than light, between the col-
lisions; this is allowed in intermediate
states for quantum transitions.) The
two electrons on the left are not only in-
distinguishable, they are the same par-

ticle! The antiparticle is also the elec-
tron, traveling backward in time.

Quantum statistical mechanics for identical particles is given by re-
stricting the ensembles to sum over symmetric wavefunctions for bosons
or antisymmetric wavefunctions for fermions. So, for example, the par-
tition function for the canonical ensemble is still

Z = Tr
(
e−βH

)
=
∑

n

e−βEn , (7.32)

but now the trace is over a complete set of many-body symmetric (or
antisymmetric) states, and the sum is over the symmetric (or antisym-
metric) many-body energy eigenstates.

7.4 Non-interacting bosons and fermions

Many-body quantum statistical mechanics is hard. We now make a huge
approximation: we will assume our quantum particles do not interact
with one another. Just as for the classical ideal gas, this will make our
calculations straightforward.
The non-interacting Hamiltonian is a sum of single-particle quantum

Hamiltonians H :

HNI =

N∑

j=1

H(pj , rj) =

N∑

j=1

~2

2m
∇2

j + V (rj). (7.33)

Let ψk be the single-particle eigenstates of H , then

Hψk(r) = εkψk(r). (7.34)

For distinguishable particles, the many-body eigenstates can be written
as a product of orthonormal single-particle eigenstates:

ΨNI
dist(r1, r2, . . . , rN ) =

N∏

j=1

ψkj
(rj), (7.35)

where particle j is in the single-particle eigenstate kj . The eigenstates for
non-interacting bosons are given by symmetrizing over the coordinates
rj :

ΨNI
boson(r1, r2, . . . , rN ) = (normalization)

∑

P

N∏

j=1

ψkj
(rPj

), (7.36)
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and naturally the fermion eigenstates are given by antisymmetrizing over
all N ! possible permutations, and renormalizing to one,1616This antisymmetrization can be writ-

ten as

1√
N !

∣∣∣∣∣∣∣∣

ψk1
(r1) . . . ψk1

(rN)
ψk2

(r1) . . . ψk2
(rN)

. . . . . .
ψkN

(r1) . . . ψkN
(rN)

∣∣∣∣∣∣∣∣
(7.37)

called the Slater determinant.

ΨNI
fermion(r1, r2, . . . , rN ) =

1√
N !

∑

P

σ(P )

N∏

j=1

ψkj
(rPj

). (7.38)

Let us consider two particles in orthonormal single-particle energy
eigenstates ψk and ψℓ. If the particles are distinguishable, there are two
eigenstates ψk(r1)ψℓ(r2) and ψk(r2)ψℓ(r1). If the particles are bosons,
the eigenstate is (1/

√
2) (ψk(r1)ψℓ(r2) + ψk(r2)ψℓ(r1)). If the particles

are fermions, the eigenstate is (1/
√
2) (ψk(r1)ψℓ(r2)− ψk(r2)ψℓ(r1)).

What if the particles are in the same single-particle eigenstate ψℓ? For
bosons, the eigenstate ψℓ(r1)ψℓ(r2) is already symmetric and normal-
ized.17 For fermions, antisymmetrizing a state where both particles are17Notice that the normalization of the

boson wavefunction depends on how
many single-particle states are multiply
occupied.

in the same state gives zero: ψℓ(r1)ψℓ(r2) − ψℓ(r2)ψℓ(r1) = 0. This is
the Pauli exclusion principle: you cannot have two fermions in the same
quantum state.18

18Because the spin of the electron can
be in two directions ±1/2, this means
that two electrons can be placed into
each single-particle spatial eigenstate.

How do we do statistical mechanics for non-interacting fermions and
bosons? Here it is most convenient to use the grand canonical ensemble
(Section 6.3); in this ensemble we can treat each eigenstate as being
populated independently from the other eigenstates, exchanging parti-
cles directly with the external bath (analogous to Fig. 6.2). The grand
partition function hence factors:

ΞNI =
∏

k

Ξk. (7.39)

The grand canonical ensemble thus allows us to separately solve the case
of non-interacting particles one eigenstate at a time.
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(ε − µ)/k
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Fermi-Dirac

Fig. 7.4 Bose–Einstein, Maxwell–

Boltzmann, and Fermi–Dirac dis-
tributions, 〈n〉(ε). Occupation number
for single-particle eigenstates as a func-
tion of energy ε away from the chemi-
cal potential µ. The Bose–Einstein dis-
tribution diverges as µ approaches ε;
the Fermi–Dirac distribution saturates
at one as µ gets small.

Bosons. For bosons, all fillings nk are allowed. Each particle in
eigenstate ψk contributes energy εk and chemical potential −µ, so

Ξboson
k =

∞∑

nk=0

e−β(εk−µ)nk =

∞∑

nk=0

(
e−β(εk−µ)

)nk

=
1

1− e−β(εk−µ)

(7.40)
and the boson grand partition function is

ΞNI
boson =

∏

k

1

1− e−β(εk−µ)
. (7.41)

The grand free energy (Φ = −kBT logΞ, eqn 6.36) is a sum of single-
state grand free energies:

ΦNI
boson =

∑

k

Φboson
k =

∑

k

kBT log
(
1− e−β(εk−µ)

)
. (7.42)

Because the filling of different states is independent, we can find out the
expected number of particles in state ψk. From eqn 6.38,

〈nk〉 = −∂Φ
boson
k

∂µ
= −kBT

−βe−β(εk−µ)

1− e−β(εk−µ)
=

1

eβ(εk−µ) − 1
. (7.43)
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This is called the Bose–Einstein distribution (Fig. 7.4)

〈n〉BE =
1

eβ(ε−µ) − 1
. (7.44)

The Bose–Einstein distribution describes the filling of single-particle
eigenstates by non-interacting bosons. For states with low occupancies,
where 〈n〉 ≪ 1, 〈n〉BE ≈ e−β(ε−µ), and the boson populations correspond
to what we would guess naively from the Boltzmann distribution.19 The 19We will derive this from Maxwell–

Boltzmann statistics in Section 7.5.condition for low occupancies is εk − µ ≫ kBT , which usually arises at
high temperatures20 (where the particles are distributed among a larger 20This may seem at odds with the for-

mula, but as T gets large µ gets large
and negative even faster. This hap-
pens (at fixed total number of parti-
cles) because more states at high tem-
peratures are available for occupation,
so the pressure µ needed to keep them
filled decreases.

number of states). Notice also that 〈n〉BE → ∞ as µ → εk since the
denominator vanishes (and becomes negative for µ > εk); systems of
non-interacting bosons always have µ less than or equal to the lowest of
the single-particle energy eigenvalues.21

21Chemical potential is like a pressure
pushing atoms into the system. When
the river level gets up to the height of
the fields, your farm gets flooded.

Notice that the average excitation 〈n〉qho of the quantum harmonic
oscillator (eqn 7.25) is given by the Bose–Einstein distribution (eqn 7.44)
with µ = 0. We will use this in Exercise 7.2 to argue that one can treat
excitations inside harmonic oscillators (vibrations) as particles obeying
Bose statistics (phonons).

0 1 2
Energy ε/µ

0

1
f(

ε)

∆ε ∼ k
B
T

T = 0
Small T

Fig. 7.5 The Fermi distribution

f(ε) of eqn 7.48. At low temperatures,
states below µ are occupied, states
above µ are unoccupied, and states
within around kBT of µ are partially
occupied.

Fermions. For fermions, only nk = 0 and nk = 1 are allowed. The
single-state fermion grand partition function is

Ξfermion
k =

1∑

nk=0

e−β(εk−µ)nk = 1 + e−β(εk−µ), (7.45)

so the total fermion grand partition function is

ΞNI
fermion =

∏

k

(
1 + e−β(εk−µ)

)
. (7.46)

For summing over only two states, it is hardly worthwhile to work
through the grand free energy to calculate the expected number of par-
ticles in a state:

〈nk〉 =
∑1

nk=0 nk exp(−β(εk − µ)nk)∑1
nk=0 exp(−β(εk − µ)nk)

=
e−β(εk−µ)

1 + e−β(εk−µ)
=

1

eβ(εk−µ) + 1
,

(7.47)
leading us to the Fermi–Dirac distribution

f(ε) = 〈n〉FD =
1

eβ(ε−µ) + 1
, (7.48)

where f(ε) is also known as the Fermi function (Fig. 7.5). Again, when
the mean occupancy of state ψk is low, it is approximately given by
the Boltzmann probability distribution, e−β(ε−µ). Here the chemical
potential can be either greater than or less than any given eigenenergy
εk. Indeed, at low temperatures the chemical potential µ separates filled
states εk < µ from empty states εk > µ; only states within roughly kBT
of µ are partially filled.
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The chemical potential µ is playing a large role in these calculations.
How do you determine it? You normally know the expected number
of particles N , and must vary µ until you reach that value. Hence µ
directly plays the role of a particle pressure from the outside world,
which is varied until the system is correctly filled.
The amazing utility of non-interacting bosons and fermions.

The classical ideal gas is a great illustration of statistical mechanics, and
does a good job of describing many gases, but nobody would suggest that
it captures the main features of solids and liquids. The non-interacting
approximation in quantum mechanics turns out to be far more powerful,
for quite subtle reasons.
For bosons, the non-interacting approximation is quite accurate in

three important cases: photons, phonons, and the dilute Bose gas.
In Section 7.6 we will study two fundamental problems involving non-
interacting bosons: black-body radiation and Bose condensation. The
behavior of superconductors and superfluids shares some common fea-
tures with that of the Bose gas.
For fermions, the non-interacting approximation would rarely seem

to be useful. Electrons are charged, and the electromagnetic repulsion
between the electrons in an atom, molecule, or material is always a major
contribution to the energy. Neutrons interact via the strong interaction,
so nuclei and neutron stars are also poor candidates for a non-interacting
theory. Neutrinos are hard to pack into a box.22 There are experiments

22Just in case you have not heard, neu-
trinos are quite elusive. A lead wall
that can stop half of the neutrinos
would be light-years thick.

on cold, dilute gases of fermion atoms, but non-interacting fermions
would seem a model with few applications.
The truth is that the non-interacting Fermi gas describes all of these

systems (atoms, metals, insulators, nuclei, and neutron stars) remark-
ably well. Interacting Fermi systems under most common circumstances
behave very much like collections of non-interacting fermions in a mod-
ified potential. The approximation is so powerful that in most circum-
stances we ignore the interactions; whenever we talk about exciting a ‘1S
electron’ in an oxygen atom, or an ‘electron–hole’ pair in a semiconduc-
tor, we are using this effective non-interacting electron approximation.
The explanation for this amazing fact is called Landau Fermi-liquid the-
ory.23

23Landau’s insight was to describe
interacting systems of fermions (e.g.,
electrons) at temperatures low com-
pared to the Fermi energy by start-
ing from the non-interacting Fermi gas
and slowly ‘turning on’ the interaction.
(The Fermi energy εF = µ(T = 0),
see Section 7.7.) Excited states of the
non-interacting gas are electrons ex-
cited into states above the Fermi en-
ergy, leaving holes behind. They evolve
in two ways when the interactions are
turned on. First, the excited elec-
trons and holes push and pull on the
surrounding electron gas, creating a
screening cloud that dresses the bare
excitations into quasiparticles. Second,
these quasiparticles develop lifetimes;
they are no longer eigenstates, but res-

onances. Quasiparticles are useful de-
scriptions so long as the interactions
can be turned on slowly enough for the
screening cloud to form but fast enough
so that the quasiparticles have not yet
decayed; this occurs for electrons and
holes near the Fermi energy, which have
long lifetimes because they can only de-
cay into energy states even closer to
the Fermi energy [9, p. 345]. Later
workers fleshed out Landau’s ideas into
a systematic perturbative calculation,
where the quasiparticles are poles in
a quantum Green’s function (see Ex-
ercise 10.9 for a classical example of
how this works). More recently, re-
searchers have found a renormalization-
group interpretation of Landau’s argu-
ment, whose coarse-graining operation
removes states far from the Fermi en-
ergy, and which flows to an effective
non-interacting Fermi gas (see Chap-
ter 12 and Exercise 12.8).

7.5 Maxwell–Boltzmann ‘quantum’

statistics

In classical statistical mechanics, we treated indistinguishable particles
as distinguishable ones, except that we divided the phase-space volume,
(or the partition function, in the canonical ensemble) by a factor of N !:

ΩMB
N =

1

N !
Ωdist

N ,

ZMB
N =

1

N !
Zdist
N . (7.49)
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This was important to get the entropy to be extensive (Section 5.2.1).
This approximation is also sometimes used in quantum statistical me-
chanics, although we should emphasize that it does not describe either
bosons, fermions, or any physical system. These bogus particles are said
to obey Maxwell–Boltzmann statistics.24 24Sometimes it is said that dis-

tinguishable particles obey Maxwell–
Boltzmann statistics. Many properties
are independent of the N ! in the de-
nominator of eqn 7.49, such as the oc-
cupancy 〈n〉 of non-interacting single-
particle eigenstates (eqn 7.60). But this
factor does matter for other proper-
ties, like the entropy of mixing and the
Helmholtz free energy, so we reserve the
term Maxwell–Boltzmann for undistin-
guished particles (Section 3.5).

What is the canonical partition function for the case of N non-inter-
acting distinguishable quantum particles? If the partition function for
one particle is

Z1 =
∑

k

e−βεk (7.50)

then the partition function for N non-interacting, distinguishable (but
otherwise similar) particles is

ZNI,dist
N =

∑

k1,k2,...,kn

e−β(εk1+εk2+···+εkN ) =
N∏

j=1


∑

kj

e−βεkj


 = Z1

N .

(7.51)
So, the Maxwell–Boltzmann partition function for non-interacting par-
ticles is

ZNI,MB
N = Z1

N/N !. (7.52)

Let us illustrate the relation between these three distributions by con-
sidering the canonical ensemble of two non-interacting particles in three
possible states of energies ε1, ε2, and ε3. The Maxwell–Boltzmann par-
tition function for such a system would be

ZNI,MB
2 =

1

2!

(
e−βε1 + e−βε2 + e−βε3

)2

=
1

2
e−2βε1 +

1

2
e−2βε2 +

1

2
e−2βε3

+ e−β(ε1+ε2) + e−β(ε1+ε3) + e−β(ε2+ε3). (7.53)

The 1/N ! fixes the weights of the singly-occupied states25 nicely; each 25More precisely, we mean those many-
body states where the single-particle
states are all singly occupied or vacant.

has weight one in the Maxwell–Boltzmann partition function. But the
doubly-occupied states, where both particles have the same wavefunc-
tion, have an unintuitive suppression by 1/2 in the sum.
There are basically two ways to fix this. One is to stop discriminating

against multiply-occupied states, and to treat them all democratically.
This gives us non-interacting bosons:

ZNI,boson
2 = e−2βε1+e−2βε2+e−2βε3+e−β(ε1+ε2)+e−β(ε1+ε3)+e−β(ε2+ε3).

(7.54)
The other way is to ‘squelch’ multiple occupancy altogether. This leads
to fermions:

ZNI,fermion
2 = e−β(ε1+ε2) + e−β(ε1+ε3) + e−β(ε2+ε3). (7.55)

Thus the Maxwell–Boltzmann distribution treats multiple occupancy
of states in an unphysical compromise between democratic bosons and
exclusive fermions.
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Here we have been comparing the different distributions within the
canonical ensemble. What about the grand canonical ensemble, which
we actually use for calculations?26 The grand partition function for26See Exercise 7.1 for more details

about the three ensembles and the four
types of statistics.

Maxwell–Boltzmann statistics is

ΞNI,MB =
∑

M

ZNI,MB
M eMβµ =

∑

M

1

M !

(
∑

k

e−βεk

)M

eMβµ

=
∑

M

1

M !

(
∑

k

e−β(εk−µ)

)M

= exp

(
∑

k

e−β(εk−µ)

)

=
∏

k

exp
(
e−β(εk−µ)

)
. (7.56)

The grand free energy is

ΦNI,MB = −kBT log ΞNI,MB =
∑

k

Φk, (7.57)

with the single-particle grand free energy

Φk = −kBT e−β(εk−µ). (7.58)

Finally, the expected27 number of particles in a single-particle eigenstate

27It is amusing to note that non-
interacting particles fill single-particle
energy states according to the same law

〈n〉 = 1

eβ(ε−µ) + c
, (7.59)

with c = −1 for bosons, c = 1 for
fermions, and c = 0 for Maxwell–
Boltzmann statistics. with energy ε is

〈n〉MB = −∂Φ
∂µ

= e−β(ε−µ). (7.60)

This is precisely the Boltzmann factor for filling the state that we expect
for non-interacting distinguishable particles; the indistinguishability fac-
tor N ! does not alter the filling of the non-interacting single-particle
states.

7.6 Black-body radiation and Bose

condensation
Fig. 7.6 Particle in a box. The
quantum states of a particle in a one-
dimensional box with periodic bound-
ary conditions are sine and cosine waves
ψn with n wavelengths in the box, kn =
2πn/L. With a real box (zero boundary
conditions at the walls) one would have
only sine waves, but at half the spac-
ing between wavevectors kn = πn/L,
giving the same net density of states.

7.6.1 Free particles in a box

For this section and the next section on fermions, we shall simplify even
further. We consider particles which are not only non-interacting and
identical, but are also free. That is, they are subject to no external
potential, apart from being confined in a box of volume L3 = V with
periodic boundary conditions.28 The single-particle quantum eigenstates28That is, the value of ψ at the

walls need not be zero (as for an in-
finite square well), but rather must
agree on opposite sides, so ψ(0, y, z) ≡
ψ(L, y, z), ψ(x, 0, z) ≡ ψ(x, L, z), and
ψ(x, y, 0) ≡ ψ(x, y, L). Periodic bound-
ary conditions are not usually seen in
experiments, but are much more natu-
ral to compute with, and the results are
unchanged for large systems.

of such a system are products of sine and cosine waves along the three
directions—for example, for any three non-negative integers ni,

ψ =

(
2

L

)3/2

cos

(
2πn1

L
x

)
cos

(
2πn2

L
y

)
cos

(
2πn3

L
z

)
. (7.61)

There are eight such states with the same energy, substituting sine for
cosine in all possible combinations along the three directions. These are
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more conveniently organized if we use the complex exponential instead
of sine and cosine:

ψk = (1/L)3/2 exp(ik · r), (7.62)

with k = (2π/L)(n1, n2, n3) and the ni can now be any integer.29 The

Fig. 7.7 k-sphere. The allowed k-
space points for periodic boundary con-
ditions form a regular grid. The points
of equal energy lie on a sphere.

29The eight degenerate states are now
given by the choices of sign for the three
integers.

allowed single-particle eigenstates form a regular square grid in the space
of wavevectors k, with an average density (L/2π)3 per unit volume of
k-space:

density of plane waves in k-space = V/8π3. (7.63)

For a large box volume V , the grid is extremely fine, and one can use
a continuum approximation that the number of states falling into a k-
space region is given by its volume times the density (eqn 7.63).30

30Basically, the continuum limit works
because the shape of the box (which af-
fects the arrangements of the allowed k

vectors) is irrelevant to the physics so
long as the box is large. For the same
reason, the energy of the single-particle
eigenstates is independent of direction;
it will be proportional to |k| for mass-
less photons, and proportional to k2 for
massive bosons and electrons (Fig. 7.7).
This makes the calculations in the fol-
lowing sections tractable.

7.6.2 Black-body radiation

Our first application is to electromagnetic radiation. Electromagnetic
radiation has plane-wave modes similar to eqn 7.62. Each plane wave
travels at the speed of light c, so its frequency is ωk = c|k|. There are
two modes per wavevector k, one for each polarization. When one quan-
tizes the electromagnetic field, each mode becomes a quantum harmonic
oscillator.
Before quantummechanics, people could not understand the equilibra-

tion of electromagnetic radiation. The equipartition theorem predicted
that if you could come to equilibrium, each mode would have kBT of en-
ergy. Since there are immensely more wavevectors in the ultraviolet and
X-ray ranges than in the infra-red and visible,31 opening your oven door

31There are a thousand times more
wavevectors with |k| < 10k0 than for
|k| < k0. The optical frequencies and
wavevectors span roughly a factor of
two (an octave for sound), so there are
eight times as many optical modes as
there are radio and infra-red modes.

would theoretically give you a sun-tan or worse (the so-called ultravio-
let catastrophe). Experiments saw a spectrum which looked compatible
with this prediction for small frequencies, but was (fortunately) cut off
at high frequencies.
Let us calculate the equilibrium energy distribution inside our box at

temperature T . The number of single-particle plane-wave eigenstates
g(ω) dω in a small range dω is32

32We are going to be sloppy and use
g(ω) as eigenstates per unit frequency
for photons, and later we will use
g(ε) as single-particle eigenstates per
unit energy. Be warned: gω(ω) dω =
gε(~ω) d ~ω, so gω = ~gε.

g(ω) dω = (4πk2)

(
d|k|
dω

dω

)(
2V

(2π)3

)
, (7.64)

where the first term is the surface area of the sphere of radius k, the
second term is the thickness of the spherical shell for a small dω, and the
last is the density of single-particle plane-wave eigenstate wavevectors
times two (because there are two photon polarizations per wavevector).
Knowing k2 = ω2/c2 and d|k|/dω = 1/c, we find the density of plane-
wave eigenstates per unit frequency:

g(ω) =
V ω2

π2c3
. (7.65)

Now, the number of photons is not fixed; they can be created or de-
stroyed, so their chemical potential µ is zero.33 Their energy εk = ~ωk.

33See Exercise 7.2 to derive this from
the quantum harmonic oscillator.Finally, they are to an excellent approximation identical, non-interacting
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bosons, so the number of photons per eigenstate with frequency ω is
〈n〉 = 1/(e~ω/kBT − 1). This gives us a number of photons:

(# of photons) dω =
g(ω)

e~ω/kBT − 1
dω (7.66)

and an electromagnetic (photon) energy per unit volume u(ω) given by

V u(ω) dω =
~ωg(ω)

e~ω/kBT − 1
dω

=
V ~

π2c3
ω3 dω

e~ω/kBT − 1
(7.67)

(Fig. 7.8). This is Planck’s famous formula for black-body radiation.34
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Fig. 7.8 The Planck black-body ra-

diation power spectrum, with the
Rayleigh–Jeans approximation, valid
for low frequency ω.

34Why is this called black-body radia-
tion? A black surface absorbs all radi-
ation at all frequencies. In equilibrium,
the energy it absorbs at a given fre-
quency must equal the energy it emits,
otherwise it would push the system out
of equilibrium. (This is called detailed

balance, Section 8.2.) Hence, ignoring
the small surface cooling due to radia-
tion, a black body emits a thermal dis-
tribution of photons (see Exercise 7.7).

At low frequencies, we can approximate e~ω/kBT −1 ≈ ~ω/kBT , yielding
the Rayleigh–Jeans formula

V uRJ(ω) dω = V

(
kBT

π2c3

)
ω2 dω

= kBTg(ω), (7.68)

just as one would expect from equipartition: kBT per classical harmonic
oscillator.
For modes with frequencies high compared to kBT/~, equipartition

no longer holds. The energy gap ~ω, just as for the low-temperature
specific heat from Section 7.2, leads to an excitation probability that
is suppressed by the exponential Boltzmann factor e−~ω/kBT (eqn 7.67,
approximating 1 / (e~ω/kBT − 1) ≈ e−~ω/kBT ). Planck’s discovery that
quantizing the energy averted the ultraviolet catastrophe was the origin
of quantum mechanics, and led to his name being given to ~.

7.6.3 Bose condensation

How does our calculation change when the non-interacting free bosons
cannot be created and destroyed? Let us assume that our bosons are
spinless, have mass m, and are non-relativistic, so their energy is ε =
p2/2m = −~2∇2/2m. If we put them in our box with periodic boundary
conditions, we can make the same continuum approximation to the den-
sity of states as we did in the case of black-body radiation. In eqn 7.63,
the number of plane-wave eigenstates per unit volume in k-space is
V/8π3, so the density in momentum space p = ~k is V/(2π~)3. For
our massive particles dε/d|p| = |p|/m =

√
2ε/m, so the number of

plane-wave eigenstates in a small range of energy dε is

g(ε) dε = (4πp2)

(
d|p|
dε

dε

)(
V

(2π~)3

)

= (4π(2mε))

(√
m

2ε
dε

)(
V

(2π~)3

)

=
V m3/2

√
2π2~3

√
εdε, (7.69)



 Copyright Oxford University Press 2006  v1.0                       --  

7.6 Black-body radiation and Bose condensation 149

where the first term is the surface area of the sphere in p-space, the
second is the thickness of the spherical shell, and the third is the density
of plane-wave eigenstates per unit volume in p-space.
Now we fill each of these single-particle plane-wave eigenstates with

an expected number given by the Bose–Einstein distribution at chemical
potential µ, 1/(e(ε−µ)/kBT − 1). The total number of particles N is then
given by

N(µ) =

∫ ∞

0

g(ε)

e(ε−µ)/kBT − 1
dε. (7.70)

We must vary µ in this equation to give us the correct number of
particles N . For bosons, as noted in Section 7.4, µ cannot be larger than
the lowest single-particle eigenenergy (here ε0 = 0), so µ will always be
negative. For larger numbers of particles we raise µ up from below,
forcing more particles into each of the single-particle states. There is a
limit, however, to how hard we can push; when µ = 0 the ground state
gets a diverging number of particles.
For free bosons in three dimensions, the integral for N(µ = 0) con-

verges to a finite value.35 Thus the largest number of particles N cont
max we 35At µ = 0, the denominator of the in-

tegrand in eqn 7.70 is approximately
ε/kBT for small ε, but the numera-
tor goes as

√
ε, so the integral con-

verges at the lower end:
∫X
0 ε−1/2 ∼

(1/2ε1/2)|X0 =
√
X/2.

can fit into our box within our continuum approximation for the density
of states is the value of eqn 7.70 at µ = 0:

N cont
max =

∫
g(ε)

eε/kBT − 1
dε

=
V m3/2

√
2π2~3

∫ ∞

0

dε

√
ε

eε/kBT − 1

= V

(√
2πmkBT

h

)3
2√
π

∫ ∞

0

√
z

ez − 1
dz

=

(
V

λ3

)
ζ(3/2). (7.71)

Here ζ is the Riemann zeta function,36 with ζ(3/2) ≈ 2.612 and λ =

36The Riemann ζ function ζ(s) =

[1/(s − 1)!]
∫∞
0 zs−1/(ez − 1) dz is fa-

mous for many reasons. It is related to
the distribution of prime numbers. It
is the subject of the famous unproven
Riemann hypothesis, that its zeros in
the complex plane, apart from those at
the negative even integers, all have real
part equal to 1/2.

h/
√
2πmkBT is again the thermal de Broglie wavelength (eqn 3.59).

Something new has to happen at a critical density:

N cont
max

V
=
ζ(3/2)

λ3
=

2.612 particles

deBroglie volume
. (7.72)

This has an elegant interpretation: the quantum statistics of the par-
ticles begin to dominate the behavior when they are within around a
thermal de Broglie wavelength of one another. ε

ε µ

1

0

Fig. 7.9 Bose condensation. The
chemical potential µ is here so close to
the ground state energy ε0 that the con-
tinuum approximation to the density of
states breaks down. The ground state is
macroscopically occupied (that is, filled
by a non-zero fraction of the total num-
ber of particles N).

What happens when we try to cram more particles in? Our approx-
imation of the distribution of eigenstates as a continuum breaks down.
Figure 7.9 shows a schematic illustration of the first few single-particle
eigenvalues. When the distance between µ and the bottom level ε0 be-
comes significantly smaller than the distance between the bottom and
the next level ε1, the continuum approximation (which approximates the
filling of ε0 using an integral half-way to ε1) becomes qualitatively wrong.
The low-energy states, viewed as a continuum, cannot accommodate the
extra bosons. Instead, the lowest state absorbs all the extra particles
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added to the system beyond N cont
max .

37 This is called Bose–Einstein con-37The next few states have quantitative
corrections, but the continuum approx-
imation is only off by small factors.

densation.
Usually we do not add particles at fixed temperature, instead we lower

the temperature at fixed density N/V . Bose condensation then occurs
at temperature

kBT
BEC
c =

h2

2πm

(
N

V ζ(3/2)

)2/3

. (7.73)

Bose condensation was first accomplished experimentally in 1995 (see
Exercise 7.14).

Fig. 7.10 The Fermi surface for

lithium, from [29]. The Fermi energy
for lithium is 4.74 eV, with one conduc-
tion electron outside a helium closed
shell. As for most metals, the Fermi
energy in lithium is much larger than
kB times its melting point (4.74 eV =
55 000K, melting point 453K). Hence
it is well described by this T = 0 Fermi
surface, slightly smeared by the Fermi
function (Fig. 7.5).

Bose condensation has also long been considered the underlying prin-
ciple behind superfluidity. Liquid He4 undergoes an unusual transition
at about 2.176K to a state without viscosity; it will swirl round a circu-
lar tube for as long as your refrigeration lasts. The quantitative study
of the superfluid transition involves the interactions between the he-
lium atoms, and uses the scaling methods that we will introduce in
Chapter 12. But it is interesting to note that the Bose condensation
temperature for liquid He4 (with m = 6.65 × 10−24 g and volume per
particle V/N = 27.6 cm3/mole) is 3.13K—quite close to the superfluid
transition temperature.

7.7 Metals and the Fermi gas

We claimed in Section 7.4 that many systems of strongly-interacting
fermions (metals, neutron stars, nuclei) are surprisingly well described
by a model of non-interacting fermions. Let us solve for the properties
of N free non-interacting fermions in a box.
Let our particles be non-relativistic and have spin 1/2. The single-

particle eigenstates are the same as those for bosons except that there
are two states (spin up, spin down) per plane wave. Hence the density
of states is given by twice that of eqn 7.69:

g(ε) =

√
2V m3/2

π2~3
√
ε. (7.74)

The number of fermions at chemical potential µ is given by integrating
g(ε) times the expected number of fermions in a state of energy ε, given
by the Fermi function f(ε) of eqn 7.48:

N(µ) =

∫ ∞

0

g(ε)f(ε) dε =

∫ ∞

0

g(ε)

e(ε−µ)/kBT + 1
dε. (7.75)

What chemical potential will give us N fermions? At non-zero temper-
ature, one must do a self-consistent calculation, but at T = 0 one can find
N by counting the number of states below µ. In the zero-temperature
limit (Fig. 7.5) the Fermi function is a step function f(ε) = Θ(µ − ε);
all states below µ are filled, and all states above µ are empty. The zero-
temperature value of the chemical potential is called the Fermi energy
εF . We can find the number of fermions by integrating up to µ = εF :

38

38Equation 7.77 has an illuminating
derivation in k-space, where we fill all
states with |k| < kF . Here the Fermi
wavevector kF has energy equal to the
Fermi energy, ~k2F /2m = p2F /2m = εF ,
and hence kF =

√
2εFm/~. The result-

ing sphere of occupied states at T = 0 is
called the Fermi sphere. The number of
fermions inside the Fermi sphere is thus
the k-space volume of the Fermi sphere
times the k-space density of states,

N =
(
(4/3)πkF

3
)( 2V

(2π)3

)
=
kF

3

3π2
V,

(7.76)
equivalent to eqn 7.77.
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N =

∫ εF

0

g(ε) dε =

√
2m3/2

π2~3
V

∫ εF

0

√
ε dε =

(2εFm)3/2

3π2~3
V. (7.77)

Fig. 7.11 The Fermi surface for

aluminum, also from [29]. Aluminum
has a Fermi energy of 11.7 eV, with
three conduction electrons outside a Ne
closed shell.

We mentioned earlier that the independent fermion approximation
was startlingly useful even though the interactions are not small. Ignor-
ing the Coulomb repulsion between electrons in a metal, or the strong
interaction between neutrons in a neutron star, gives an excellent de-
scription of their actual behavior. However, our calculation above also
assumed that the electrons are free particles, experiencing no external
potential. This approximation is not particularly accurate in general; the
interactions with the atomic nuclei are important, and is primarily what
makes one material different from another. In particular, the atoms in a
crystal will form a periodic potential for the electrons.39 One can show

39Rather than using the Coulomb po-
tential for the nucleus, a better approx-
imation is given by incorporating the
effects of the inner shell electrons into
the periodic potential, and filling the
Fermi sea with the remaining conduc-

tion electrons.

that the single-particle eigenstates in a periodic potential are periodic
functions times exp(ik ·r), with exactly the same wavevectors k as in the
free fermion case. The filling of the Fermi surface in k-space is changed
only insofar as the energies of these single-particle states are no longer
isotropic. Some metals (particularly the alkali metals, like lithium in
Fig. 7.10) have roughly spherical Fermi surfaces; many (see Fig. 7.11 for
aluminum) are quite intricate, with several pieces to them [9, chapters
9–11].

Exercises

We start with two exercises on the different types of iden-
tical particle statistics: Ensembles and quantum statistics
and Phonons and photons are bosons. We then use quan-
tum mechanics to set the scale of classical statistical me-
chanics in Phase-space units and the zero of entropy, and
ask again Does entropy increase in quantum systems? In
Photon density matrices and Spin density matrix we give
elementary examples of this advanced topic.

Quantum statistical mechanics is the foundation of
many fields. We start with three examples from optics:
Light emission and absorption, Einstein’s A and B, and
Bosons are gregarious: superfluids and lasers. We pro-
vide three prototypical calculations in condensed-matter
physics: Crystal defects, Phonons on a string, and Fer-
mions in semiconductors. We provide two exercises on
Bose condensation: Bose condensation in a band and
Bose condensation: the experiment. Finally, we introduce
two primary applications to astrophysics: The photon-
dominated Universe andWhite dwarfs, neutron stars, and
black holes.

(7.1) Ensembles and quantum statistics.
(Quantum) ©3
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Fig. 7.12 Microcanonical three particles.

A system has two single-particle eigenfunc-
tions, with energies (measured in degrees Kelvin)
E0/kB = −10 and E2/kB = 10. Exper-
iments are performed by adding three non-
interacting particles to these two states, ei-
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ther identical spin-1/2 fermions, identical spin-
less bosons, distinguishable particles, or spinless
identical particles obeying Maxwell–Boltzmann
statistics. Please make a table for this exercise,
giving your answers for the four cases (Fermi,
Bose, Distinguishable, and Maxwell–Boltzmann)
for each of the three parts. Substantive calcula-
tions may be needed.
(a) The system is first held at constant energy.
In Fig. 7.12 which curve represents the entropy
of the fermions as a function of the energy?
Bosons? Distinguishable particles? Maxwell–
Boltzmann particles?
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Fig. 7.13 Canonical three particles.

(b) The system is now held at constant tem-
perature. In Fig. 7.13 which curve represents
the mean energy of the fermions as a function
of temperature? Bosons? Distinguishable parti-
cles? Maxwell–Boltzmann particles?
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Fig. 7.14 Grand canonical three particles.

(c) The system is now held at constant tem-
perature, with chemical potential set to hold the
average number of particles equal to three. In
Fig. 7.14, which curve represents the chemical
potential of the fermions as a function of tem-
perature? Bosons? Distinguishable? Maxwell–
Boltzmann?

(7.2) Phonons and photons are bosons. (Quan-
tum) ©3
Phonons and photons are the elementary, har-
monic excitations of the elastic and electromag-
netic fields. We have seen in Exercise 7.11
that phonons are decoupled harmonic oscillators,
with a distribution of frequencies ω. A similar
analysis shows that the Hamiltonian of the elec-
tromagnetic field can be decomposed into har-
monic normal modes called photons.
This exercise will explain why we think of
phonons and photons as particles, instead of ex-
citations of harmonic modes.
(a) Show that the canonical partition function for
a quantum harmonic oscillator of frequency ω is
the same as the grand canonical partition func-
tion for bosons multiply filling a single state with
energy ~ω, with µ = 0 (apart from a shift in the
arbitrary zero of the total energy of the system).

The Boltzmann filling of a harmonic oscillator is
therefore the same as the Bose–Einstein filling
of bosons into a single quantum state, except for
an extra shift in the energy of ~ω/2. This extra
shift is called the zero-point energy. The exci-
tations within the harmonic oscillator are thus
often considered as particles with Bose statis-
tics: the nth excitation is n bosons occupying
the oscillator’s quantum state.
This particle analogy becomes even more com-
pelling for systems like phonons and photons
where there are many harmonic oscillator states
labeled by a wavevector k (see Exercise 7.11).
Real, massive Bose particles like He4 in free
space have single-particle quantum eigenstates
with a dispersion relation40 εk = ~2k2/2m.
Phonons and photons have one harmonic os-
cillator for every k, with an excitation energy
εk = ~ωk. If we treat them, as in part (a), as
bosons filling these as single-particle states we
find that they are completely analogous to ordi-
nary massive particles. (Photons even have the
dispersion relation of a massless boson. If we

40The dispersion relation is the relationship between energy and wavevector, here εk.
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take the mass to zero of a relativistic particle,
ε =

√
m2c4 − p2c2 → |p|c = ~c|k|.)

(b) Do phonons or photons Bose condense at low
temperatures? Can you see why not? Can you
think of a non-equilibrium Bose condensation of
photons, where a macroscopic occupation of a
single frequency and momentum state occurs?

(7.3) Phase-space units and the zero of entropy.
(Quantum) ©3
In classical mechanics, the entropy S = kB log Ω
goes to minus infinity as the temperature is low-
ered to zero. In quantum mechanics the entropy
per particle goes to zero,41 because states are
quantized and the ground state is the only one
populated. This is Nernst’s theorem, the third
law of thermodynamics.
The classical phase-space shell vol-
ume Ω(E) δE (eqn 3.5) has units of
((momentum)×(distance))3N . It is a little per-
verse to take the logarithm of a quantity with
units. The natural candidate with these dimen-
sions is Planck’s constant h3N ; if we measure
phase-space volume in units of h per dimension,
Ω(E) δE will be dimensionless. Of course, the
correct dimension could be a constant times h,
like ~. . .
(a) Arbitrary zero of the classical entropy. Show
that the width of the energy shell δE in the defini-
tion of Ω(E) does not change the microcanonical
entropy per particle S/N = kB log(Ω(E))/N in
a large system. Show that the choice of units in
phase space does change the classical entropy per
particle.
We want to choose the units of classical phase-
space volume so that the entropy agrees with the
quantum entropy at high temperatures. How
many quantum eigenstates per unit volume of
classical phase space should we expect at high
energies? We will fix these units by matching
the quantum result to the classical one for a par-
ticular system, and then check it using a second
system. Let us start with a free particle.
(b) Phase-space density of states for a particle in
a one-dimensional box. Show, or note, that the
quantum momentum-space density of states for a
free quantum particle in a one-dimensional box
of length L with periodic boundary conditions is

L/h. Draw a picture of the classical phase space
of this box (p, x), and draw a rectangle of length
L for each quantum eigenstate. Is the phase-
space area per eigenstate equal to h, as we as-
sumed in Section 3.5?
This works also for N particles in a three-
dimensional box.
(c) Phase-space density of states for N parti-
cles in a box. Show that the density of states
for N free particles in a cubical box of volume
V with periodic boundary conditions is V N/h3N ,
and hence that the phase-space volume per state
is h3N .
Let us see if this choice of units42 also works for
the harmonic oscillator.
(d) Phase-space density of states for a harmonic
oscillator. Consider a harmonic oscillator with
Hamiltonian H = p2/2m+1/2mω

2q2. Draw a pic-
ture of the energy surface with energy E, and find
the volume (area) of phase space enclosed. (Hint:
The area of an ellipse is πr1r2 where r1 and r2
are the largest and smallest radii, corresponding
to the major and minor axes.) What is the vol-
ume per energy state, the volume between En and
En+1, for the eigenenergies En = (n+ 1/2)~ω?

(7.4) Does entropy increase in quantum sys-
tems? (Mathematics, Quantum) ©3
We saw in Exercise 5.7 that in classical Hamil-
tonian systems the non-equilibrium entropy
Snonequil = −kB

∫
ρ log ρ is constant in a classical

mechanical Hamiltonian system. Here you will
show that in the microscopic evolution of an iso-
lated quantum system, the entropy is also time
independent, even for general, time-dependent
density matrices ρ(t).
Using the evolution law (eqn 7.19) ∂ρ/∂t =
[H, ρ]/(i~), prove that S = Tr (ρ log ρ) is time
independent, where ρ is any density matrix.
(Hint: Go to an orthonormal basis ψi which di-
agonalizes ρ. Show that ψi(t) is also orthonor-
mal, and take the trace in that basis. Use the
cyclic invariance of the trace.)

41If the ground state is degenerate, the entropy does not go to zero, but it typically stays finite as the number of particles N
gets big, so for large N the entropy per particle goes to zero.
42You show here that ideal gases should calculate entropy using phase-space units with h = 1. To argue this directly for inter-
acting systems usually involves semiclassical quantization [70, chapter 48, p. 170] or path integrals [39]. But it must be true.
We could imagine measuring the entropy difference between the interacting system and an ideal gas, by slowly and reversibly
turning off the interactions between the particles, measuring the entropy flow into or out of the system. Thus, setting the zero
of entropy for the ideal gas sets it for all systems.
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(7.5) Photon density matrices. (Quantum) ©3
Write the density matrix for a vertically polar-
ized photon |V 〉 in the basis where |V 〉 =

(
1
0

)

and a horizontal photon |H〉 =
(
0
1

)
. Write the

density matrix for a diagonally polarized photon,
(1/
√
2, 1/
√
2), and the density matrix for unpo-

larized light (note 2 on p. 136). Calculate Tr(ρ),
Tr(ρ2), and S = −kBTr(ρ log ρ). Interpret the
values of the three traces physically. (Hint: One
is a check for pure states, one is a measure of in-
formation, and one is a normalization.)

(7.6) Spin density matrix.43 (Quantum) ©3
Let the Hamiltonian for a spin be

H = −~
2
B · ~σ, (7.78)

where ~σ = (σx, σy , σz) are the three Pauli spin
matrices, and B may be interpreted as a mag-
netic field, in units where the gyromagnetic ratio
is unity. Remember that σiσj − σjσi = 2iǫijkσk.
Show that any 2× 2 density matrix may be writ-
ten in the form

ρ =
1

2
(1+ p · ~σ). (7.79)

Show that the equations of motion for the den-
sity matrix i~∂ρ/∂t = [H,ρ] can be written as
dp/dt = −B× p.

(7.7) Light emission and absorption. (Quan-
tum) ©2
The experiment that Planck was studying did
not directly measure the energy density per unit
frequency (eqn 7.67) inside a box. It measured
the energy radiating out of a small hole, of area
A. Let us assume the hole is on the upper face
of the cavity, perpendicular to the z axis.
What is the photon distribution just inside the
boundary of the hole? Few photons come into
the hole from the outside, so the distribution is
depleted for those photons with vz < 0. How-
ever, the photons with vz > 0 to an excel-
lent approximation should be unaffected by the
hole—since they were emitted from far distant
walls of the cavity, where the existence of the
hole is a negligible perturbation. So, presuming
the relevant photons just inside the hole are dis-
tributed in the same way as in the box as a whole
(eqn 7.67), how many leave in a time dt?

dc   t

Fig. 7.15 Photon emission from a hole. The
photons leaving a cavity in a time dt are those within
vz dt of the hole.

As one can see geometrically (Fig. 7.15), those
photons within vz dt of the boundary will escape
in time dt. The vertical velocity vz = c cos(θ),
where θ is the photon velocity angle with re-
spect to the vertical. The Planck distribution
is isotropic, so the probability that a photon will
be moving at an angle θ is the perimeter of the
θ circle on the sphere divided by the area of the
sphere, 2π sin(θ) dθ/(4π) = 1/2 sin(θ) dθ.
(a) Show that the probability density44 ρ(vz) for
a particular photon to have velocity vz is inde-
pendent of vz in the range (−c, c), and thus is
1/2c. (Hint: ρ(vz)∆vz = ρ(θ)∆θ.)
An upper bound on the energy emitted from a
hole of area A is given by the energy in the box
as a whole (eq. 7.67) times the fraction Acdt/V
of the volume within c dt of the hole.
(b) Show that the actual energy emitted is 1/4
of this upper bound. (Hint: You will need to
integrate

∫ c

0
ρ(vz)vz dvz.)

Hence the power per unit area emitted from the
small hole in equilibrium is

Pblack(ω, T ) =
( c
4

) ~
π2c3

ω3 dω

e~ω/kBT − 1
. (7.80)

Why is this called black-body radiation? Cer-
tainly a small hole in a large (cold) cavity
looks black—any light entering the hole bounces
around inside until it is absorbed by the walls.
Suppose we placed a black object—a material
that absorbed radiation at all frequencies and
angles—capping the hole. This object would ab-
sorb radiation from the cavity, rising in tem-
perature until it came to equilibrium with the
cavity—emitting just as much radiation as it ab-
sorbs. Thus the overall power per unit area emit-
ted by our black object in equilibrium at a given
temperature must equal that of the hole. This
must also be true if we place a selective filter
between the hole and our black body, passing

43Adapted from exam question by Bert Halperin, Harvard University, 1976.
44We are being sloppy again, using the same name ρ for the probability densities per unit velocity and per unit angle.
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through only particular types of photons. Thus
the emission and absorption of our black body
must agree with the hole for every photon mode
individually, an example of the principle of de-
tailed balance we will discuss in more detail in
Section 8.2.
How much power per unit area Pcolored(ω,T ) is
emitted in equilibrium at temperature T by a
red or maroon body? A white body? A mirror?
These objects are different in the fraction of in-
cident light they absorb at different frequencies
and angles a(ω, θ). We can again use the prin-
ciple of detailed balance, by placing our colored
object next to a black body and matching the
power emitted and absorbed for each angle and
frequency:

Pcolored(ω,T, θ) = Pblack(ω, T )a(ω, θ). (7.81)

Finally, we should calculate Qtot(T ), the total
power per unit area emitted from a black body
at temperature T , by integrating eqn 7.80 over
frequency.
(c) Using the fact that

∫∞
0
x3/(ex − 1) dx =

π4/15, show that

Qtot(T ) =

∫ ∞

0

Pblack(ω,T ) dω = σT 4 (7.82)

and give a formula for the Stefan–Boltzmann
constant σ. (σ = 5.67×10−5 erg cm−2 K−4 s−1;
use this to check your answer.)

(7.8) Einstein’s A and B. (Quantum, Optics,
Mathematics) ©3
Einstein used statistical mechanics to deduce ba-
sic truths about the interaction of light with
matter very early in the development of quantum
mechanics. In particular, he established that
stimulated emission was demanded for statistical
mechanical consistency, and found formulæ de-
termining the relative rates of absorption, spon-
taneous emission, and stimulated emission. (See
Feynman [41, I.42–5].)
Consider a system consisting of non-interacting
atoms weakly coupled to photons (electromag-
netic radiation), in equilibrium at temperature
kBT = 1/β. The atoms have two energy eigen-
states E1 and E2 with average populations N1

and N2; the relative population is given as usual
by the Boltzmann distribution

〈
N2

N1

〉
= e−β(E2−E1). (7.83)

The energy density in the electromagnetic field
is given by the Planck distribution (eqn 7.67):

u(ω) =
~

π2c3
ω3

eβ~ω − 1
. (7.84)

An atom in the ground state will absorb electro-
magnetic energy from the photons at a rate that
is proportional to the energy density u(ω) at the
excitation energy ~ω = E2 − E1. Let us define
this absorption rate per atom to be 2πBu(ω).45

An atom in the excited state E2, with no electro-
magnetic stimulation, will decay into the ground
state with a rate A, emitting a photon. Einstein
noted that neither A nor B should depend upon
temperature.
Einstein argued that using just these two rates
would lead to an inconsistency.
(a) Compute the long-time average ratio N2/N1

assuming only absorption and spontaneous emis-
sion. Even in the limit of weak coupling (small A
and B), show that this equation is incompatible
with the statistical distributions 7.83 and 7.84.
(Hint: Write a formula for dN1/dt, and set it
equal to zero. Is the resulting B/A temperature
independent?)
Einstein fixed this by introducing stimulated
emission. Roughly speaking, an atom experienc-
ing an oscillating electromagnetic field is more
likely to emit photons into that mode. Einstein
found that the stimulated emission rate had to
be a constant 2πB′ times the energy density
u(ω).
(b) Write the equation for dN1/dt, including
absorption (a negative term) and spontaneous
and stimulated emission from the population N2.
Assuming equilibrium, use this equation and
eqns 7.83 and 7.84 to solve for B, and B′ in
terms of A. These are generally termed the
Einstein A and B coefficients.
Let us express the stimulated emission rate in
terms of the number of excited photons per mode
(see Exercise 7.9(a) for an alternative deriva-
tion).
(c) Show that the rate of decay of excited atoms
A+2πB′u(ω) is enhanced by a factor of 〈n〉+1
over the zero temperature rate, where 〈n〉 is the
expected number of photons in a mode at fre-
quency ~ω = E2 −E1.

45The literature uses ucycles(f) where f = ω/2π is in cycles per second, and has no factor of 2π. Since ucycles(f) df = u(ω) dω,
the absorption rate Bucycles(f) = Bu(ω) dω/df = 2πBu(ω).
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(7.9) Bosons are gregarious: superfluids and
lasers. (Quantum, Optics, Atomic physics) ©3
Adding a particle to a Bose condensate. Sup-
pose we have a non-interacting system of bosonic
atoms in a box with single-particle eigenstates
ψn. Suppose the system begins in a Bose-
condensed state with all N bosons in a state ψ0,
so

Ψ
[0]
N (r1, . . . , rN ) = ψ0(r1) · · ·ψ0(rN ). (7.85)

Suppose a new particle is gently injected into
the system, into an equal superposition of the
M lowest single-particle states.46 That is, if it
were injected into an empty box, it would start
in state

φ(rN+1) =
1√
M

(
ψ0(rN+1) + ψ1(rN+1)

+ . . .+ ψM−1(rN+1)
)
. (7.86)

The state Φ(r1, . . . rN+1) after the particle is in-
serted into the non-interacting Bose condensate
is given by symmetrizing the product function
Ψ

[0]
N (r1, . . . , rN )φ(rN+1) (eqn 7.30).

(a) Calculate the symmetrized initial state of the
system with the injected particle. Show that the
ratio of the probability that the new boson enters
the ground state (ψ0) is enhanced over that of its
entering an empty state (ψm for 0 < m < M) by
a factor N + 1. (Hint: First do it for N = 1.)
So, if a macroscopic number of bosons are in one
single-particle eigenstate, a new particle will be
much more likely to add itself to this state than
to any of the microscopically populated states.
Notice that nothing in your analysis depended
on ψ0 being the lowest energy state. If we
started with a macroscopic number of particles
in a single-particle state with wavevector k (that
is, a superfluid with a supercurrent in direction
k), new added particles, or particles scattered
by inhomogeneities, will preferentially enter into
that state. This is an alternative approach to
understanding the persistence of supercurrents,
complementary to the topological approach (Ex-
ercise 9.7).
Adding a photon to a laser beam. This ‘chummy’
behavior between bosons is also the principle be-
hind lasers.47 A laser has N photons in a par-

ticular mode. An atom in an excited state emits
a photon. The photon it emits will prefer to
join the laser beam than to go off into one of its
other available modes by a factor N+1. Here the
N represents stimulated emission, where the ex-
isting electromagnetic field pulls out the energy
from the excited atom, and the +1 represents
spontaneous emission which occurs even in the
absence of existing photons.
Imagine a single atom in a state with excita-
tion energy energy E and decay rate Γ, in a cu-
bical box of volume V with periodic boundary
conditions for the photons. By the energy-time
uncertainty principle, 〈∆E∆t〉 ≥ ~/2, the en-
ergy of the atom will be uncertain by an amount
∆E ∝ ~Γ. Assume for simplicity that, in a cubi-
cal box without pre-existing photons, the atom
would decay at an equal rate into any mode in
the range E − ~Γ/2 < ~ω < E + ~Γ/2.
(b) Assuming a large box and a small decay rate
Γ, find a formula for the number of modes M per
unit volume V competing for the photon emit-
ted from our atom. Evaluate your formula for a
laser with wavelength λ = 619 nm and the line-
width Γ = 104 rad/s. (Hint: Use the density of
states, eqn 7.65.)
Assume the laser is already in operation, so there
are N photons in the volume V of the lasing ma-
terial, all in one plane-wave state (a single-mode
laser).
(c) Using your result from part (a), give a for-
mula for the number of photons per unit volume
N/V there must be in the lasing mode for the
atom to have 50% likelihood of emitting into that
mode.
The main task in setting up a laser is providing a
population of excited atoms. Amplification can
occur if there is a population inversion, where the
number of excited atoms is larger than the num-
ber of atoms in the lower energy state (definitely
a non-equilibrium condition). This is made pos-
sible by pumping atoms into the excited state by
using one or two other single-particle eigenstates.

46For free particles in a cubical box of volume V , injecting a particle at the origin φ(r) = δ(r) would be a superposition of

all plane-wave states of equal weight, δ(r) = (1/V )
∑

k
eik·x. (In second-quantized notation, a†(x = 0) = (1/V )

∑
k
a†
k
.) We

‘gently’ add a particle at the origin by restricting this sum to low-energy states. This is how quantum tunneling into condensed
states (say, in Josephson junctions or scanning tunneling microscopes) is usually modeled.
47Laser is an acronym for ‘light amplification by the stimulated emission of radiation’.
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(7.10) Crystal defects. (Quantum, Condensed mat-
ter) ©2
A defect in a crystal has one on-center configur-
ation with energy zero, and M off-center config-
urations with energy ǫ, with no significant quan-
tum tunneling between the states. The Hamil-
tonian can be approximated by the (M + 1) ×
(M + 1) matrix

H =



0 0 0 · · ·
0 ǫ 0 · · ·
0 0 ǫ · · ·


 . (7.87)

There are N defects in the crystal, which can
be assumed stuck in position (and hence distin-
guishable) and assumed not to interact with one
another.
Write the canonical partition function Z(T ), the
mean energy E(T ), the fluctuations in the en-
ergy, the entropy S(T ), and the specific heat
C(T ) as a function of temperature. Plot the spe-
cific heat per defect C(T )/N for M = 6; set the
unit of energy equal to ǫ and kB = 1 for your
plot. Derive a simple relation between M and
the change in entropy between zero and infinite
temperature. Check this relation using your for-
mula for S(T ).
The bump in the specific heat for a two-state
system is called a Schottky anomaly.

(7.11) Phonons on a string. (Quantum, Condensed
matter) ©3
A continuum string of length L with mass per
unit length µ under tension τ has a vertical,
transverse displacement u(x, t). The kinetic en-
ergy density is (µ/2)(∂u/∂t)2 and the potential
energy density is (τ/2)(∂u/∂x)2. The string has
fixed boundary conditions at x = 0 and x = L.
Write the kinetic energy and the potential energy
in new variables, changing from u(x, t) to normal
modes qk(t) with u(x, t) =

∑
n qkn(t) sin(knx),

kn = nπ/L. Show in these variables that the sys-
tem is a sum of decoupled harmonic oscillators.
Calculate the density of normal modes per unit
frequency g(ω) for a long string L. Calculate the
specific heat of the string c(T ) per unit length in
the limit L → ∞, treating the oscillators quan-
tum mechanically. What is the specific heat of
the classical string?
Almost the same calculation, in three dimen-
sions, gives the low-temperature specific heat of
crystals.

(7.12) Semiconductors. (Quantum, Condensed
matter) ©3
Let us consider a caricature model of a doped
semiconductor [9, chapter 28]. Consider a crys-
tal of phosphorous-doped silicon, with N − M
atoms of silicon and M atoms of phosphorous.
Each silicon atom contributes one electron to the
system, and has two states at energies ±∆/2,
where ∆ = 1.16 eV is the energy gap. Each phos-
phorous atom contributes two electrons and two
states, one at −∆/2 and the other at ∆/2 − ǫ,
where ǫ = 0.044 eV is much smaller than the
gap.48 (Our model ignores the quantum me-
chanical hopping between atoms that broadens
the levels at ±∆/2 into the conduction band and
the valence band. It also ignores spin and chem-
istry; each silicon really contributes four elec-
trons and four levels, and each phosphorous five
electrons and four levels.) To summarize, our
system has N +M spinless electrons (maximum
of one electron per state), N valence band states
at energy −∆/2, M impurity band states at en-
ergy ∆/2−ǫ, and N−M conduction band states
at energy ∆/2.
(a) Derive a formula for the number of electrons
as a function of temperature T and chemical po-
tential µ for the energy levels of our system.
(b) What is the limiting occupation probability
for the states as T →∞, where entropy is max-
imized and all states are equally likely? Using
this, find a formula for µ(T ) valid at large T ,
not involving ∆ or ǫ.
(c) Draw an energy level diagram showing the
filled and empty states at T = 0. Find a formula
for µ(T ) in the low-temperature limit T → 0,
not involving the variable T . (Hint: Balance
the number of holes in the impurity band with
the number of electrons in the conduction band.
Why can you ignore the valence band?)
(d) In a one centimeter cubed sample, there are
M = 1016 phosphorous atoms; silicon has about
N = 5×1022 atoms per cubic centimeter. Find µ
at room temperature (1/40 eV) from the formula
you derived in part (a). (Probably trying various
µ is easiest; set up a program on your calculator
or computer.) At this temperature, what fraction
of the phosphorous atoms are ionized (have their
upper energy state empty)? What is the density
of holes (empty states at energy −∆/2)?

48The phosphorous atom is neutral when both of its states are filled; the upper state can be thought of as an electron bound
to a phosphorous positive ion. The energy shift ǫ represents the Coulomb attraction of the electron to the phosphorous ion; it
is small because the dielectric constant is large semiconductor [9, chapter 28].
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Phosphorous is an electron donor, and our sam-
ple is doped n-type, since the dominant carriers
are electrons; p-type semiconductors are doped
with holes.

(7.13) Bose condensation in a band. (Atomic
physics, Quantum) ©2
The density of single-particle eigenstates g(E)
of a system of non-interacting bosons forms a
band; the eigenenergies are confined to a range
Emin < E < Emax, so g(E) is non-zero in this
range and zero otherwise. The system is filled
with a finite density of bosons. Which of the
following is necessary for the system to undergo
Bose condensation at low temperatures?
(a) g(E)/(eβ(E−Emin)+1) is finite as E → E−min.
(b) g(E)/(eβ(E−Emin) − 1) is finite as E →
E−min.
(c) Emin ≥ 0.
(d)

∫ E

Emin
g(E′)/(E′ −Emin) dE

′ is a convergent
integral at the lower limit Emin.
(e) Bose condensation cannot occur in a system
whose states are confined to an energy band.

(7.14) Bose condensation: the experiment.
(Quantum, Atomic physics) ©4
Anderson, Ensher, Matthews, Wieman and Cor-
nell in 1995 were able to get a dilute gas of
rubidium-87 atoms to Bose condense [4].
(a) Is rubidium-87 (37 protons and electrons, 50
neutrons) a boson or a fermion?
(b) At their quoted maximum number density of
2.5 × 1012/cm3, at what temperature T predict

c do
you expect the onset of Bose condensation in free
space? They claim that they found Bose conden-
sation starting at a temperature of Tmeasured

c =
170 nK. Is that above or below your estimate?
(Useful constants: h = 6.6262 × 10−27 erg s,
mn ∼ mp = 1.6726 × 10−24 g, kB = 1.3807 ×
10−16 erg/K.)
The trap had an effective potential energy
that was harmonic in the three directions, but
anisotropic with cylindrical symmetry. The fre-
quency along the cylindrical axis was f0 =120Hz
so ω0 ∼ 750Hz, and the two other frequen-
cies were smaller by a factor of

√
8: ω1 ∼

265Hz. The Bose condensation was observed
by abruptly removing the trap potential,49 and
letting the gas atoms spread out; the spreading
cloud was imaged 60ms later by shining a laser
on them and using a CCD to image the shadow.

Fig. 7.16 Bose–Einstein condensation at 400,
200, and 50 nano-Kelvin. The pictures are spatial
distributions 60ms after the potential is removed; the
field of view of each image is 200µm×270 µm. The
left picture is roughly spherically symmetric, and is
taken before Bose condensation; the middle has an el-
liptical Bose condensate superimposed on the spher-
ical thermal background; the right picture is nearly
pure condensate. From [4]. Thanks to the Physics
2000 team for permission to reprint this figure.

For your convenience, the ground state of
a particle of mass m in a one-dimensional
harmonic oscillator with frequency ω is

ψ0(x) = (mω/π~)1/4 e−mωx2/2~, and the
momentum-space wavefunction is ψ̃0(p) =

(1/(πm~ω))1/4 e−p2/2m~ω . In this 3D problem
the solution is a product of the corresponding
Gaussians along the three axes.
(c) Will the momentum distribution be broader
along the high-frequency axis (ω0) or one of the
low-frequency axes (ω1)? Assume that you may
ignore the small width in the initial position dis-
tribution, and that the positions in Fig. 7.16
reflect the velocity distribution times the time
elapsed. Which axis, x or y in Fig. 7.16, corre-
sponds to the high-frequency cylinder axis? What
anisotropy does one expect in the momentum dis-
tribution at high temperatures (classical statisti-
cal mechanics)?
Their Bose condensation is not in free space; the
atoms are in a harmonic oscillator potential. In
the calculation in free space, we approximated
the quantum states as a continuum density of
states g(E). That is only sensible if kBT is large
compared to the level spacing near the ground
state.
(d) Compare ~ω to kBT at the Bose con-

49Actually, they first slowly reduced it by a factor of 75 and then abruptly reduced it from there; let us ignore that complication.
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densation point Tmeasured
c in their experiment.

(~ = 1.05459 × 10−27 erg s; kB = 1.3807 ×
10−16 erg/K.)
For bosons in a one-dimensional harmonic oscil-
lator of frequency ω0, it is clear that g(E) =
1/(~ω0); the number of states in a small range
∆E is the number of ~ω0s it contains.
(e) Compute the density of single-particle eigen-
states

g(E) =

∫ ∞

0

dε1 dε2 dε3 g1(ε1)g2(ε2)g3(ε3)

× δ (E − (ε1 + ε2 + ε3)) (7.88)

for a three-dimensional harmonic oscillator, with
one frequency ω0 and two of frequency ω1. Show
that it is equal to 1/δE times the number of
states in ~ε-space between energies E and E+δE.
Is the thickness of this triangular slab equal to
δE?
Their experiment has N = 2× 104 atoms in the
trap as it condenses.
(f) By working in analogy with the calculation in
free space, find the maximum number of atoms
that can occupy the three-dimensional harmonic
oscillator potential in part (e) without Bose con-
densation at temperature T . (You will want to
know

∫∞
0
z2/(ez−1) dz = 2 ζ(3) = 2.40411.) Ac-

cording to your calculation, at what temperature
THO
c should the real experimental trap have Bose

condensed?

(7.15) The photon-dominated Universe.50 (As-
trophysics) ©3
The Universe is currently not in equilibrium.
However, in the microwave frequency range it is
filled with radiation that is precisely described
by a Planck distribution at 2.725 ± 0.001K
(Fig. 7.17).
The microwave background radiation is a win-
dow back to the decoupling time, about 380 000
years after the Big Bang,51 when the temper-
ature dropped low enough for the protons and
electrons to combine into hydrogen atoms. Light
does not travel far in ionized gases; it accelerates
the charges and scatters from them. Hence, be-
fore this time, our Universe was very close to an
equilibrium soup of electrons, nuclei, and pho-
tons.52 The neutral atoms after this time were

transparent enough that almost all of the pho-
tons traveled for the next 13 billion years directly
into our detectors.
These photons in the meantime have greatly in-
creased in wavelength. This is due to the sub-
sequent expansion of the Universe. The initial
Planck distribution of photons changed both be-
cause of the Doppler effect (a red-shift because
the distant gas that emitted the photon appears
to be moving away from us) and because the
photons are diluted into a larger volume. The
Doppler shift both reduces the photon energy
and squeezes the overall frequency range of the
photons (increasing the number of photons per
unit frequency).

0 20
Frequency (cm

-1
)

0

400

M
Jy

/s
r

Fig. 7.17 Planck microwave background radi-

ation, as measured by the COBE satellite [42]. The
units on the axes are those used in the original paper:
inverse centimeters instead of frequency (related by
the speed of light) on the horizontal axis and Mega-
Janskys/steridian for the vertical axis (1MegaJansky
= 10−20 Wm−2 Hz−1). The curve is the Planck dis-
tribution at 2.725K.

One might ask why the current microwave back-
ground radiation is thermal (Fig. 7.17), and why
it is at such a low temperature . . .
(a) If the side of the box L and the wavelengths
of the photons in the box are all increased by a
factor f , what frequency ω′ will result from a
photon with initial frequency ω? If the original
density of photons is n(ω), what is the density
of photons n′(ω′) after the expansion? Show that
Planck’s form for the number of photons per unit
frequency per unit volume

ω2

π2c3(e~ω/kBT − 1)
(7.89)

50This exercise was developed with the help of Dale Fixsen and Eanna Flanagan.
51Numbers quoted were reasonable estimates when the exercise was written. See also [143] for a history of the early Universe.
52The neutrinos fell out of equilibrium somewhat earlier.
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(from eqn 7.66) is preserved, except for a shift in
temperature. What is the new temperature T ′, in
terms of the original temperature T and the ex-
pansion factor f?
This is as expected; an adiabatic expansion
leaves the system in equilibrium, but at a dif-
ferent temperature.
(b) How many microwave background photons
are there per cubic centimeter? How does this
compare to the average atomic density in the
Universe (nmatter ∼ 2.5 × 10−7 atoms/cm3)?
(Note

∫∞
0
x2/(ex − 1) dx = 2ζ(3) ≈ 2.404. Use-

ful constants: ~ = 1.05 × 10−27 erg s, c = 3 ×
1010 cm/s, and kB = 1.38 × 10−16 erg/K.)
Cosmologists refer to the current Universe as
photon dominated, because there are currently
many more photons than atoms.
We can also roughly estimate the relative contri-
butions of photons and atoms to other properties
of the Universe.
(c) Calculate formulæ for the entropy S, the in-
ternal energy E, and the pressure P for the pho-
ton gas in a volume V and temperature T . For
simplicity, write them in terms of the Stefan–
Boltzmann constant53 σ = π2k4B/60~

3c2. Ig-
nore the zero-point energy in the photon modes54

(which otherwise would make the energy and
pressure infinite, even at zero temperature).
(Hint: You will want to use the grand free en-
ergy Φ for the photons. For your information,∫∞
0
x3/(ex − 1) dx = π4/15 = −3

∫∞
0
x2 log(1 −

e−x) dx, where the last integral can be integrated
by parts to get the first integral.)
(d) Calculate formulæ for the entropy, mass-
energy55 density, and pressure for an ideal gas
of hydrogen atoms at density nmatter and the
same volume and temperature. Can we ignore
quantum mechanics for the atomic gas? As-
semble your results from parts (c) and (d) into
a table comparing photons to atoms, with four
columns giving the two analytical formulæ and
then numerical values for V = 1 cm3, the cur-
rent microwave background temperature, and the
current atom density. Which are dominated
by photons? By atoms? (Hint: You will
want to use the Helmholtz free energy A for

the atoms. More useful constants: σ = 5.67 ×
10−5 erg cm−2 K−4 s−1, and mH ≈ mp = 1.673×
10−24 g.)
Before the decoupling time, the coupled light-
and-matter soup satisfied a wave eqn [60]:

ρ
∂2Θ

∂t2
= B∇2θ. (7.90)

Here Θ represents the local temperature fluctu-
ation ∆T/T . The constant ρ is the sum of three
contributions: the matter density, the photon
energy density E/V divided by c2, and a contri-
bution P/c2 due to the photon pressure P (this
comes in as a component in the stress-energy ten-
sor in general relativity).
(e) Show that the sum of the two photon con-
tributions to the mass density is proportional to
E/(c2V ). What is the constant of proportional-
ity?
The constant B in our wave eqn 7.90 is the bulk
modulus: B = −V (∂P/∂V )|S .56 At decoupling,
the dominant contribution to the pressure (and
to B) comes from the photon gas.
(f) Write P as a function of S and V (eliminat-
ing T and E), and calculate B for the photon
gas. Show that it is proportional to the photon
energy density E/V . What is the constant of
proportionality?
Let R be the ratio of ρmatter to the sum of the
photon contributions to ρ from part (e).
(g) What is the speed of sound in the Universe
before decoupling, as a function of R and c?
(Hint: Compare with eqn 10.78 in Exercise 10.1
as a check for your answer to parts (e)–(g).)
Exercise 10.1 and the ripples-in-fluids animation
at [137] show how this wave equation explains
much of the observed fluctuations in the mi-
crowave background radiation.

(7.16) White dwarfs, neutron stars, and black
holes. (Astrophysics, Quantum) ©3
As the energy sources in large stars are con-
sumed, and the temperature approaches zero,
the final state is determined by the competition
between gravity and the chemical or nuclear en-
ergy needed to compress the material.

53The Stefan–Boltzmann law says that a black body radiates power σT 4 per unit area, where σ is the Stefan–Boltzmann
constant; see Exercise 7.7.
54Treat them as bosons (eqn 7.42) with µ = 0 rather than as harmonic oscillators (eqn 7.23).
55That is, be sure to include the mc2 for the hydrogen atoms into their contribution to the energy density.
56The fact that one must compress adiabatically (constant S) and not isothermally (constant T ) is subtle but important (Isaac
Newton got it wrong). Sound waves happen too fast for the temperature to equilibrate. Indeed, we can assume at reasonably
long wavelengths that there is no heat transport (hence we may use the adiabatic modulus). All this is true both for air and
for early-Universe photon gasses.
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A simplified model of ordinary stellar matter is
a Fermi sea of non-interacting electrons, with
enough nuclei to balance the charge. Let us
model a white dwarf (or black dwarf, since we as-
sume zero temperature) as a uniform density of
He4 nuclei and a compensating uniform density
of electrons. Assume Newtonian gravity. As-
sume the chemical energy is given solely by the
energy of a gas of non-interacting electrons (fill-
ing the levels to the Fermi energy).
(a) Assuming non-relativistic electrons, calculate
the energy of a sphere with N zero-temperature
non-interacting electrons and radius R.57 Cal-
culate the Newtonian gravitational energy of a
sphere of He4 nuclei of equal and opposite charge
density. At what radius is the total energy min-
imized?
A more detailed version of this model was stud-
ied by Chandrasekhar and others as a model
for white dwarf stars. Useful numbers: mp =
1.6726 × 10−24 g, mn = 1.6749 × 10−24 g, me =
9.1095 × 10−28 g, ~ = 1.05459 × 10−27 erg s,
G = 6.672 × 10−8 cm3/(g s2), 1 eV = 1.60219 ×
10−12 erg, kB = 1.3807 × 10−16 erg/K, and c =
3× 1010 cm/s.
(b) Using the non-relativistic model in part (a),
calculate the Fermi energy of the electrons in a
white dwarf star of the mass of the Sun, 2 ×
1033 g, assuming that it is composed of helium.
(i) Compare it to a typical chemical binding en-
ergy of an atom. Are we justified in ignoring
the electron–electron and electron–nuclear inter-
actions (i.e., chemistry)? (ii) Compare it to the
temperature inside the star, say 107 K. Are we
justified in assuming that the electron gas is de-

generate (roughly zero temperature)? (iii) Com-
pare it to the mass of the electron. Are we
roughly justified in using a non-relativistic the-
ory? (iv) Compare it to the mass difference be-
tween a proton and a neutron.
The electrons in large white dwarf stars are rel-
ativistic. This leads to an energy which grows
more slowly with radius, and eventually to an
upper bound on their mass.
(c) Assuming extremely relativistic electrons with
ε = pc, calculate the energy of a sphere of non-
interacting electrons. Notice that this energy
cannot balance against the gravitational energy
of the nuclei except for a special value of the
mass, M0. Calculate M0. How does your M0

compare with the mass of the Sun, above?
A star with mass larger than M0 continues to
shrink as it cools. The electrons (see (iv) in
part (b) above) combine with the protons, stay-
ing at a constant density as the star shrinks into
a ball of almost pure neutrons (a neutron star,
often forming a pulsar because of trapped mag-
netic flux). Recent speculations [107] suggest
that the ‘neutronium’ will further transform into
a kind of quark soup with many strange quarks,
forming a transparent insulating material.
For an even higher mass, the Fermi repulsion
between quarks cannot survive the gravitational
pressure (the quarks become relativistic), and
the star collapses into a black hole. At these
masses, general relativity is important, going be-
yond the purview of this text. But the basic
competition, between degeneracy pressure and
gravity, is the same.

57You may assume that the single-particle eigenstates have the same energies and k-space density in a sphere of volume V as
they do for a cube of volume V ; just like fixed versus periodic boundary conditions, the boundary does not matter to bulk
properties.
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Most statistical mechanical systems cannot be solved explicitly.1 Statis-

1No tidy formula for the equation of
state, entropy, or partition function can
typically be found.

tical mechanics does provide general relationships and organizing princi-
ples (temperature, entropy, free energy, thermodynamic relations) even
when a solution is not available. But there are times when specific an-
swers about specific models or experiments are needed.
There are two basic tools for extracting answers out of statistical me-

chanics for realistic systems. The first is simulation. Sometimes one
simply mimics the microscopic theory. For example, a molecular dy-
namics simulation will move the atoms according to Newton’s laws. We
will not discuss such methods in this chapter.2 If one is not interested 2Often direct simulation methods also

involve sophisticated ideas from statis-
tical mechanics. For example, to emu-
late a microscopic system connected to
a heat bath, one adds friction and noise
to the microscopic theory in the cor-
rect proportions so as to lead to proper
thermal equilibration (the Einstein re-
lation, eqn 2.22; see also Section 10.8
and Exercise 10.7).

in the detailed dynamical trajectories of the system, one can use Monte
Carlo simulation methods to extract the equilibrium properties from a
model. We introduce these methods in Section 8.1 in the context of
the Ising model, the most well-studied of the lattice models in statisti-
cal mechanics. The theory underlying the Monte Carlo method is the
mathematics of Markov chains, which arise in many other applications;
we discuss them in Section 8.2.
The second tool is to use perturbation theory. For a solvable model, one

can calculate the effects of small extra terms; for a complex system one
can extrapolate from a limit (like zero or infinite temperature) where its
properties are known. Section 8.3 briefly discusses perturbation theory,
and the deep connection between its convergence and the existence of
phases.

8.1 The Ising model

Lattice models are a big industry within statistical mechanics. These
models have a variable at each site of a regular grid, and a Hamiltonian
or evolution law for these variables. Critical phenomena and phase tran-
sitions (Chapter 12), lattice QCD3 and quantum field theories, quantum 3QCD, quantum chromodynamics, is

the theory of the strong interaction that
binds the nucleus together.

magnetism and models for high-temperature superconductors, phase di-
agrams for alloys (Section 8.1.2), the behavior of systems with dirt or
disorder, and non-equilibrium systems exhibiting avalanches and crack-
ling noise (Chapter 12) all make important use of lattice models.
In this section, we will introduce the Ising model4 and three physical

4Ising’s name is pronounced ‘Eesing’,
but sadly the model is usually pro-
nounced ‘Eyesing’ with a long I sound.systems (among many) to which it has been applied: magnetism, bi-
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nary alloys, and the liquid–gas transition. The Ising model is the most
extensively studied lattice model in physics. Like the ideal gas in the
previous chapters, the Ising model will provide a tangible application
for many topics to come: Monte Carlo (this section), low- and high-
temperature expansions (Section 8.3, Exercise 8.1), relations between
fluctuations, susceptibility, and dissipation (Exercises 8.2 and 10.6), nu-
cleation of abrupt transitions (Exercise 11.4), coarsening and phase sep-
aration (Section 11.4.1, Exercise 11.6), and self-similarity at continuous
phase transitions (Exercise 12.1).

Fig. 8.1 The 2D square-lattice

Ising model. It is traditional to de-
note the values si = ±1 as up and
down, or as two different colors.

The Ising model has a lattice of N sites i with a single, two-state
degree of freedom si on each site that may take values ±1. We will be
primarily interested in the Ising model on square and cubic lattices (in
2D and 3D, Fig. 8.1). The Hamiltonian for the Ising model is

H = −
∑

〈ij〉
Jsisj −H

∑

i

si. (8.1)

Here the sum 〈ij〉 is over all pairs of nearest-neighbor sites,5 and J is5In simulations of finite systems, we
will avoid special cases at the edges
of the system by implementing peri-

odic boundary conditions, where cor-
responding sites on opposite edges are
also neighbors.

the coupling between these neighboring sites. (For example, there are
four neighbors per site on the square lattice.)

0 2 4 6 8
k

B
T/J

0

1

m
(T

)

Ferromagnetic Paramagnetic

Fig. 8.2 Ising magnetization. The
magnetization m(T ) per spin for the
3D cubic lattice Ising model. At low
temperatures there is a net magneti-
zation, which vanishes at temperatures
T > Tc ≈ 4.5.

8.1.1 Magnetism

The Ising model was originally used to describe magnets. Hence the
degree of freedom si on each site is normally called a spin, H is called
the external field, and the sum M =

∑
i si is termed the magnetization.

The energy of two neighboring spins −Jsisj is −J if the spins are
parallel, and +J if they are antiparallel. Thus if J > 0 (the usual case)
the model favors parallel spins; we say that the interaction is ferromag-
netic.6 At low temperatures, the spins will organize themselves to either

6‘Ferromagnetic’ is named after iron
(Fe), the most common material which
has a spontaneous magnetization.

mostly point up or mostly point down, forming a ferromagnetic phase.
If J < 0 we call the interaction antiferromagnetic; the spins will tend to
align (for our square lattice) in a checkerboard antiferromagnetic phase
at low temperatures. At high temperatures, independent of the sign of
J , we expect entropy to dominate; the spins will fluctuate wildly in a
paramagnetic phase and the magnetization per spin m(T ) =M(T )/N is
zero (see Fig. 8.2).7

7The Ising model parameters are rescaled from the microscopic ones. The Ising spin si = ±1 represents twice the z-component
of a spin-1/2 atom in a crystal, σzi = si/2. The Ising interactions between spins, Jsisj = 4Jσzi σ

z
j , is thus shifted by a factor of

four from the z–z coupling between spins. The coupling of the spin to the external magnetic field is microscopically gµBH ·σzi ,
where g is the gyromagnetic ratio for the spin (close to two for the electron) and µB = e~/2me is the Bohr magneton. Hence
the Ising external field is rescaled from the physical one by gµB/2. Finally, the interaction between spins in most materials
is not so anisotropic as to only involve the z-component of the spin; it is usually better approximated by the dot product
σi · σj = σxi σ

x
j + σyi σ

y
j + σzi σ

z
j , used in the more realistic Heisenberg model. (Unlike the Ising model, where σzi commutes with

H and the spin configurations are the energy eigenstates, the quantum and classical Heisenberg models differ.) Some materials
have anisotropic crystal structures which make the Ising model at least approximately valid.
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8.1.2 Binary alloys

B

A A

A

B

B B B

B A B

A BB

B

A
Fig. 8.3 The Ising model as a bi-

nary alloy. Atoms in crystals natu-
rally sit on a lattice. The atoms in al-
loys are made up of different elements
(here, types A and B) which can ar-
range in many configurations on the
lattice.

The Ising model is quite a convincing model for binary alloys. Imagine
a square lattice of atoms, which can be either of type A or B (Fig. 8.3).
(A realistic alloy might mix roughly half copper and half zinc to make
β-brass. At low temperatures, the copper and zinc atoms each sit on
a cubic lattice, with the zinc sites in the middle of the copper cubes,
together forming an ‘antiferromagnetic’ phase on the body-centered cu-
bic (bcc) lattice. At high temperatures, the zincs and coppers freely
interchange, analogous to the Ising paramagnetic phase.) The transi-
tion temperature is about 733 ◦C [147, section 3.11]. We set the spin
values A = +1 and B = −1. Let the number of the two kinds of atoms
be NA and NB, with NA +NB = N , let the interaction energies (bond
strengths) between two neighboring atoms be EAA, EBB, and EAB ,
and let the total number of nearest-neighbor bonds of the three possible
types be NAA, NBB and NAB. Then the Hamiltonian for our binary
alloy is

Hbinary = −EAANAA − EBBNBB − EABNAB. (8.2)

Since each site interacts only with its nearest neighbors, this must be the
Ising model in disguise. Indeed, one finds8 J = 1/4(EAA +EBB − 2EAB)
and H = EAA − EBB .
To make this a quantitative model, one must include atomic relax-

ation effects. (Surely if one kind of atom is larger than the other, it
will push neighboring atoms off their sites. We simply include this re-
laxation into the energies in our Hamiltonian 8.2.) We must also incor-
porate thermal position fluctuations into the Hamiltonian, making it a
free energy.9 More elaborate Ising models (with three-site and longer-
range interactions, for example) are commonly used to compute realistic
phase diagrams for alloys [149]. Sometimes, though, the interactions in-
troduced by relaxations and thermal fluctuations have important long-
range pieces, which can lead to qualitative changes in the behavior—for
example, they can change the transition from continuous to abrupt.

8Check this yourself. Adding an overall shift −CN to the Ising Hamiltonian, one can see that

HIsing = −J
∑

〈ij〉
sisj −H

∑

i

si − CN = −J (NAA +NBB −NAB)−H (NA −NB) − CN, (8.3)

since NA−NB corresponds to the net magnetization, NAA+NBB is the number of parallel neighbors, and NAB is the number
of antiparallel neighbors. Now, use the facts that on a square lattice there are twice as many bonds as spins (NAA + NBB +
NAB = 2N), and that for every A atom there must be four bonds ending in an A (4NA = 2NAA + NAB , and similarly
4NB = 2NBB +NAB). Solve for and remove N , NA, and NB from the Hamiltonian, and rearrange into the binary alloy form
(eqn 8.2); you should find the values for J and H above and C = 1/2(EAA +EBB + 2EAB).
9To incorporate thermal fluctuations, we must do a partial trace, integrating out the vibrations of the atoms around their
equilibrium positions (as in Section 6.6). This leads to an effective free energy for each pattern of lattice occupancy {si}:

F{si} = −kBT log

(∫
dP

∫

atom ri of type si near site i

dQ
e−H(P,Q)/kBT

h3N

)
= H{si} − TS{si}. (8.4)

The entropy S{si} due to these vibrations will depend upon the particular atomic configuration si, and can often be calculated
explicitly (Exercise 6.11(b)). F{si} can now be used as a lattice Hamiltonian, except with temperature-dependent coefficients;
those atomic configurations with more freedom to vibrate will have larger entropy and will be increasingly favored at higher
temperature.
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8.1.3 Liquids, gases, and the critical point
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point
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Critical

Temperature T

Pr
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Fig. 8.4 P–T phase diagram for
a typical material. The solid–liquid
phase boundary corresponds to a
change in symmetry, and cannot end.
The liquid–gas phase boundary typi-
cally does end; one can go continuously
from the liquid phase to the gas phase
by increasing the pressure above Pc, in-
creasing the temperature above Tc, and
then lowering the pressure again.

The Ising model is also used as a model for the liquid–gas transition. In
this lattice gas interpretation, up-spins (si = +1) count as atoms and
down-spins count as a site without an atom. The gas is the phase with
mostly down-spins (negative ‘magnetization’), with only a few up-spin
atoms in the vapor. The liquid phase is mostly atoms (up-spins), with
a few vacancies.
The Ising model description of the gas phase seems fairly realistic.

The liquid, however, seems much more like a crystal, with atoms sitting
on a regular lattice. Why do we suggest that this model is a good way
of studying transitions between the liquid and gas phase?
Unlike the binary alloy problem, the Ising model is not a good way

to get quantitative phase diagrams for fluids. What it is good for is to
understand the properties near the critical point. As shown in Fig. 8.4,
one can go continuously between the liquid and gas phases; the phase
boundary separating them ends at a critical point Tc, Pc, above which
the two phases blur together seamlessly, with no jump in the density
separating them.
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Fig. 8.5 H–T phase diagram for

the Ising model. Below the critical
temperature Tc, there is an an up-spin
and a down-spin ‘phase’ separated by
a jump in magnetization at H = 0.
Above Tc the behavior is smooth as a
function of H.

The Ising model, interpreted as a lattice gas, also has a line H = 0
along which the density (magnetization) jumps, and a temperature Tc
above which the properties are smooth as a function of H (the param-
agnetic phase). The phase diagram in Fig. 8.5 looks only topologically
like the real liquid–gas coexistence line in Fig. 8.4, but the behavior near
the critical point in the two systems is remarkably similar. Indeed, we
will find in Chapter 12 that in many ways the behavior at the liquid–gas
critical point is described exactly by the three-dimensional Ising model.

8.1.4 How to solve the Ising model

How do we solve for the properties of the Ising model?

(1) Solve the one-dimensional Ising model, as Ising did.10

10This is a typical homework exercise
in a textbook like ours; with a few hints,
you can do it too.

(2) Have an enormous brain. Onsager solved the two-dimensional Ising
model in a bewilderingly complicated way. Since Onsager, many
great minds have found simpler, elegant solutions, but all would
take at least a chapter of rather technical and unilluminating ma-
nipulations to duplicate. Nobody has solved the three-dimensional
Ising model.

(3) Perform the Monte Carlo method on the computer.1111Or do high-temperature expansions,
low-temperature expansions, transfer-
matrix methods, exact diagonalization
of small systems, 1/N expansions in the
number of states per site, 4− ǫ expan-
sions in the dimension of space, . . .

The Monte Carlo12 method involves doing a kind of random walk

12Monte Carlo is a gambling center in
Monaco. Lots of random numbers are
generated there.

through the space of lattice configurations. We will study these methods
in great generality in Section 8.2. For now, let us just outline the heat-
bath Monte Carlo method.

Heat-bath Monte Carlo for the Ising model

• Pick a site i = (x, y) at random.
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• Check how many neighbor spins are pointing up:

mi =
∑

j:〈ij〉
sj =





4 (4 neighbors up),

2 (3 neighbors up),

0 (2 neighbors up),

−2 (1 neighbor up),

−4 (0 neighbors up).

(8.5)

• Calculate E+ = −Jmi −H and E− = +Jmi +H , the energy for
spin i to be +1 or −1 given its current environment.

• Set spin i up with probability e−βE+/(e−βE+ + e−βE−) and down
with probability e−βE−/(e−βE+ + e−βE−).

• Repeat.

The heat-bath algorithm just thermalizes one spin at a time; it sets
the spin up or down with probability given by the thermal distribution
given that its neighbors are fixed. Using it, we can explore statistical
mechanics with the Ising model on the computer, just as we have used
pencil and paper to explore statistical mechanics with the ideal gas.

8.2 Markov chains

The heat-bath Monte Carlo algorithm is not the most efficient (or even
the most common) algorithm for equilibrating the Ising model. Monte
Carlo methods in general are examples of Markov chains. In this section
we develop the mathematics of Markov chains and provide the criteria
needed to guarantee that a given algorithm converges to the equilibrium
state.
Markov chains are an advanced topic which is not necessary for the

rest of this text. Our discussion does introduce the idea of detailed bal-
ance and further illustrates the important concept of ergodicity. Markov
methods play important roles in other topics (in ways we will not pur-
sue here). They provide the mathematical language for studying random
walks and other random evolution laws in discrete and continuum sys-
tems. Also, they have become important in bioinformatics and speech
recognition, where one attempts to deduce the hidden Markov model
which describes the patterns and relations in speech or the genome.
In this chapter, we will consider Markov chains with a finite set of

states {α}, through which the system evolves in a discrete series of steps
n.13 The probabilities of moving to different new states in a Markov 13There are analogues of Markov

chains which have an infinite number
of states, and/or are continuous in time
and/or space.

chain depend only on the current state. In general, systems which lack
memory of their history are called Markovian.
For example, an N -state Ising model has 2N states S = {si}. A

Markov chain for the Ising model has a transition rule, which at each
step shifts the current state S to a state S′ with probability PS′⇐S.

14

14Some texts will order the subscripts
in the opposite direction PS⇒S′ . We use
this convention to make our time evo-
lution correspond to multiplication on
the left by Pαβ (eqn 8.6).

For the heat-bath algorithm, PS′⇐S is equal to zero unless S′ and S are
the same except for at most one spin flip. There are many problems
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outside of mainstream statistical mechanics that can be formulated in
this general way. For example, Exercise 8.4 discusses a model with
1001 states (different numbers α of red bacteria), and transition rates
Pα+1⇐α, Pα−1⇐α, and Pα⇐α.
Let the probabilities of being in various states α at step n be arranged

in a vector ρα(n). Then the rates Pβα for moving from α to β (dropping
the arrow) form a matrix, which when applied to the probability vector
ρ takes it from one time to the next (eqn 8.6).
In general, we want to understand the probability of finding different

states after long times. Under what circumstances will an algorithm,
defined by our matrix P , take our system into thermal equilibrium?
To study this, we need to understand some properties of the transition
matrix P , its eigenvalues, and its eigenvectors. Pβα in general must have
the following properties.

• Time evolution. The probability vector at step n+ 1 is

ρβ(n+ 1) =
∑

α

Pβαρα(n), ρ(n+ 1) = P · ρ(n). (8.6)

• Positivity. The matrix elements are probabilities, so

0 ≤ Pβα ≤ 1. (8.7)

• Conservation of probability. The state α must go somewhere,
so ∑

β

Pβα = 1. (8.8)

• Not symmetric! Typically Pβα 6= Pαβ .

This last point is not a big surprise; it should be much more likely to go
from a high-energy state to a low one than from low to high. However,
this asymmetry means that much of our mathematical intuition and
many of our tools, carefully developed for symmetric and Hermitian
matrices, will not apply to our transition matrix Pαβ . In particular, we
cannot assume in general that we can diagonalize our matrix.
What do we know about the Markov chain and its asymmetric matrix

P? We will outline the relevant mathematics, proving what is convenient
and illuminating and simply asserting other truths.
It is true that our matrix P will have eigenvalues. Also, it is true that

for each distinct eigenvalue there will be at least one right eigenvector:15

15For example, the matrix
(0 1
0 0

)
has

a double eigenvalue of zero, but only
one left eigenvector (0 1) and one right
eigenvector

(1
0

)
with eigenvalue zero.

P · ρλ = λρλ (8.9)

and one left eigenvector:

σλ⊤ · P = λσλ⊤. (8.10)

However, for degenerate eigenvalues there may not be multiple eigenvec-
tors, and the left and right eigenvectors usually will not be equal to one
another.16

16This follows from a more specific the-
orem that we will not prove. A gen-
eral matrix M can be put into Jordan

canonical form by a suitable change of
basis S: M = SJS−1. (No connection
with the canonical ensemble.) The ma-
trix J is block diagonal, with one eigen-
value λ associated with each block (but
perhaps multiple blocks per λ). A sin-
gle block for an eigenvalue λ with mul-
tiplicity three would be



λ 1 0
0 λ 1
0 0 λ


 . (8.11)

The block has only one left and right
eigenvector (proportional to the first
column and last row).
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For the particular case of our transition matrix P , we can go further.
If our Markov chain reaches an equilibrium state ρ∗ at long times, that
state must be unchanged under the time evolution P . That is, P · ρ∗ =
ρ∗, and thus the equilibrium probability density is a right eigenvector
with eigenvalue one. We can show that our Markov chain transition
matrix P has such a right eigenvector.

Theorem 8.1 The matrix P has at least one right eigenvector ρ∗ with
eigenvalue one.

Proof (sneaky) P has a left eigenvector σ∗ with eigenvalue one—the
vector all of whose components are one, σ∗⊤ = (1, 1, 1, . . . , 1):

(σ∗⊤ · P )α =
∑

β

σ∗
βPβα =

∑

β

Pβα = 1 = σ∗
β . (8.12)

Hence P must have an eigenvalue equal to one, and hence it must also
have a right eigenvector with eigenvalue one. ✷

We can also show that all the other eigenvalues have right eigenvectors
that sum to zero, since P conserves probability.17 17One can also view Theorem 8.2 as

saying that all the right eigenvectors ex-
cept ρ∗ are orthogonal to the left eigen-
vector σ∗.

Theorem 8.2 Any right eigenvector ρλ with eigenvalue λ different from
one must have components that sum to zero.

Proof ρλ is a right eigenvector, P · ρλ = λρλ. Hence

λ
∑

β

ρλβ =
∑

β

(
λρλβ

)
=
∑

β

(
∑

α

Pβαρ
λ
α

)
=
∑

α


∑

β

Pβα


 ρλα

=
∑

α

ρλα. (8.13)

This implies that either λ = 1 or
∑

α ρ
λ
α = 0. ✷

Markov chains can have more than one stationary probability distribu-
tion.18 They can have transient states, which the system eventually

18A continuum example of this is given
by the KAM theorem of Exercise 4.4.
There is a probability density confined
to each KAM torus which is time inde-
pendent.

leaves, never to return.19 They can also have cycles, which are prob-

19Transient states are important in dis-
sipative dynamical systems, where they
consist of all states not on the attrac-
tors.

ability distributions which, like a clock 1 → 2 → 3 → · · · → 12 → 1,
shift through a finite number of distinct classes of states before returning
to the original one. All of these are obstacles in our quest for finding the
equilibrium states in statistical mechanics. We can bypass all of them by
studying ergodic Markov chains.20 A finite-state Markov chain is ergodic

20We are compromising here between
the standard Markov chain usage in
physics and in mathematics. Physi-
cists usually ignore cycles, and call al-
gorithms which can reach every state
ergodic. Mathematicians use the term
ergodic to exclude cycles and exclude
probability running to infinity (not im-
portant here, where we have a finite
number of states). However, they al-
low ergodic chains to have transient
states; only the ‘attractor’ need be con-
nected. Our definition of ergodic for
finite Markov chains corresponds to a
transition matrix P for which some
power Pn has all positive (non-zero)
matrix elements; mathematicians call
such matrices regular.

if it does not have cycles and it is irreducible: that is, one can get from
every state α to every other state β in a finite sequence of moves.
We use the following famous theorem, without proving it here.

Theorem 8.3. (Perron–Frobenius theorem) Let A be a matrix with
all non-negative matrix elements such that An has all positive elements.
Then A has a positive eigenvalue λ0, of multiplicity one, whose corre-
sponding right and left eigenvectors have all positive components. Fur-
thermore any other eigenvalue λ of A must be smaller, |λ| < λ0.



 Copyright Oxford University Press 2006  v1.0                       --  

170 Calculation and computation

For an ergodic Markov chain, we can use Theorem 8.2 to see that the
Perron–Frobenius eigenvector with all positive components must have
eigenvalue λ0 = 1. We can rescale this eigenvector to sum to one,
proving that an ergodic Markov chain has a unique time-independent
probability distribution ρ∗.
What is the connection between our definition of ergodic Markov

chains and our earlier definition of ergodic (Section 4.2) involving trajec-
tories in phase space? Ergodic in phase space meant that we eventually
come close to all states on the energy surface. For finite Markov chains,
ergodic is the stronger condition that we have non-zero probability of
getting between any two states in the chain after some finite time.2121Note that any algorithm that has a fi-

nite probability for each state to remain
unchanged (Pαα > 0 for all states)
is automatically free of cycles; clocks
which can lose time will always eventu-
ally get out of synchrony.

It is possible to show that an ergodic Markov chain will take any initial
probability distribution ρ(0) and converge to equilibrium, but the proof
in general is rather involved. We can simplify it by specializing one more
time, to Markov chains that satisfy detailed balance.
A Markov chain satisfies detailed balance if there is some probability

distribution ρ∗ such that2222There is an elegant equivalent def-
inition of detailed balance directly in
terms of P and not involving the equi-
librium probability distribution ρ∗; see
Exercise 8.5.

Pαβρ
∗
β = Pβαρ

∗
α (8.14)

for each state α and β. In words, the probability flux from state α to
β (the rate times the probability of being in α) balances the probability
flux back, in detail (i.e., for every pair of states).
If an isolated physical system is time-reversal invariant (no dissipation,

no magnetic fields), and its states are also invariant under time-reversal
(no states with specified velocities or momenta) then its dynamics auto-
matically satisfy detailed balance. This is true because the equilibrium
state is also the equilibrium state under time reversal, so the probabil-
ity flow from β → α must equal the time-reversed flow from α → β.
Quantum systems undergoing transitions between energy eigenstates in
perturbation theory usually satisfy detailed balance, since the eigen-
states are time-reversal invariant. Many models (like the Ising binary
alloy in Section 8.1.2) have states involving only configurational degrees
of freedom; these models again satisfy detailed balance.
Detailed balance allows us to find a complete set of right eigenvectors

for our transition matrix P . One can see this with a simple transfor-
mation. If we divide both sides of eqn 8.14 by

√
ρ∗βρ

∗
α, we create a

symmetric matrix Qαβ :

Qαβ = Pαβ

√
ρ∗β
ρ∗α

= Pαβ ρ
∗
β

/√
ρ∗αρ

∗
β

= Pβα ρ
∗
α

/√
ρ∗αρ

∗
β = Pβα

√
ρ∗α
ρ∗β

= Qβα. (8.15)

This particular symmetric matrix has eigenvectors Q · τλ = λτλ which
can be turned into right eigenvectors of P when rescaled23 by

√
ρ∗:

23This works in reverse to get the right
eigenvectors of P from Q. One mul-
tiplies τλα by

√
ρ∗α to get ρλα, and di-

vides to get σλα, so if detailed balance

holds, σλα = ρλα

/
ρ∗α. In particular,

σ1 = σ∗ = (1, 1, 1, . . . )⊤, as we saw
in Theorem 8.1. ρλα = τλα

√
ρ∗α; (8.16)
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∑

α

Pβαρ
λ
α =

∑

α

Pβα(τ
λ
α

√
ρ∗α) =

∑

α


Qβα

√
ρ∗β
ρ∗α


 (τλα

√
ρ∗α)

=
∑

α

(
Qβατ

λ
α

)√
ρ∗β = λ

(
τλβ

√
ρ∗β

)
= λρλβ . (8.17)

Now we turn to the main theorem underlying the algorithms for equi-
librating lattice models in statistical mechanics.

Theorem 8.4. (main theorem) A discrete dynamical system with a
finite number of states can be guaranteed to converge to an equilibrium
distribution ρ∗ if the computer algorithm

• is Markovian (has no memory),

• is ergodic (can reach everywhere and is acyclic), and

• satisfies detailed balance.

Proof Let P be the transition matrix for our algorithm. Since the al-
gorithm satisfies detailed balance, P has a complete set of eigenvectors
ρλ. Since our algorithm is ergodic there is only one right eigenvector ρ1

with eigenvalue one, which we can choose to be the stationary distribu-
tion ρ∗; all the other eigenvalues λ have |λ| < 1. Decompose the initial
condition ρ(0) = a1ρ

∗ +
∑

|λ|<1 aλρ
λ. Then24

24The eigenvectors closest to one will
be the slowest to decay. You can get
the slowest characteristic time τ for
a Markov chain by finding the largest
|λmax| < 1 and setting λn = e−n/τ .

ρ(n) = P · ρ(n− 1) = Pn · ρ(0) = a1ρ
∗ +

∑

|λ|<1

aλλ
nρλ. (8.18)

Since the (finite) sum in this equation decays to zero, the density con-
verges to a1ρ

∗. This implies both that a1 = 1 and that our system
converges to ρ∗ as n→ ∞. ✷

Thus, to develop a new equilibration algorithm (Exercises 8.6, 8.8),
one need only ensure that it is Markov, ergodic, and satisfies detailed
balance.

8.3 What is a phase? Perturbation theory
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Fig. 8.6 Bose and Fermi specific

heats. The specific heats for the ideal
Bose and Fermi gases. Notice the cusp
at the Bose condensation temperature
Tc. Notice that the specific heat of the
Fermi gas shows no such transition.

What is a phase? We know some examples. Water is a liquid phase,
which at atmospheric pressure exists between 0 ◦C and 100 ◦C; the equi-
librium density of H2O jumps abruptly downward when the water freezes
or vaporizes. The Ising model is ferromagnetic below Tc and paramag-
netic above Tc. Figure 8.6 plots the specific heat of a non-interacting gas
of fermions and of bosons. There are many differences between fermions
and bosons illustrated in this figure,25 but the fundamental difference

25The specific heat of the Fermi gas
falls as the temperature decreases; at
low temperatures, only those single-
particle eigenstates within a few kBT
of the Fermi energy can be excited.
The specific heat of the Bose gas ini-
tially grows as the temperature de-
creases from infinity. Both the Fermi
and Bose gases have Cv/N → 0 as
T → 0, as is always true (otherwise the
entropy,

∫ T
0
Cv/T dT would diverge).

is that the Bose gas has two different phases. The specific heat has a
cusp at the Bose condensation temperature, which separates the normal
phase and the condensed phase.
How do we determine in general how far a phase extends? Inside

phases the properties do not shift in a singular way; one can smoothly
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Fig. 8.7 Perturbation theory.
(a) Low-temperature expansions for
the cubic Ising model magnetization
(Fig. 8.2) with successively larger
numbers of terms. (b) The high- and
low-temperature expansions for the
Ising and other lattice models are sums
over (Feynman diagram) clusters. At
low T , Ising configurations are small
clusters of up-spins in a background
of down-spins (or vice versa). This
cluster of four sites on the cubic lattice
contributes to the term of order x20 in
eqn 8.19, because flipping the cluster
breaks 20 bonds.
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extrapolate the behavior inside a liquid or magnetic phase under small
changes in external conditions. Perturbation theory works inside phases.
More precisely, inside a phase the properties are analytic (have conver-
gent Taylor expansions) as functions of the external conditions.
Much of statistical mechanics (and indeed of theoretical physics) is

devoted to calculating high-order perturbation theories around special
solvable limits. (We will discuss linear perturbation theory in space and
time in Chapter 10.) Lattice theories at high and low temperatures
T have perturbative expansions in powers of 1/T and T , with Feyn-
man diagrams involving all ways of drawing clusters of lattice points
(Fig. 8.7(b)). Gases at high temperatures and low densities have virial
expansions. Metals at low temperatures have Fermi liquid theory, where
the electron–electron interactions are perturbatively incorporated by
dressing the electrons into quasiparticles. Properties of systems near
continuous phase transitions can be explored by perturbing in the di-
mension of space, giving the ǫ-expansion. Some of these perturbation
series have zero radius of convergence; they are asymptotic series (see
Exercise 1.5).
For example the low-temperature expansion [35, 103] of the magneti-

zation per spin of the cubic-lattice three-dimensional Ising model (Sec-
tion 8.1) starts out [17]

m =1− 2x6 − 12x10 + 14x12 − 90x14 + 192x16 − 792x18 + 2148x20

− 7716x22 + 23262x24 − 79512x26 + 252054x28

− 846628x30 + 2753520x32 − 9205800x34

+ 30371124x36 − 101585544x38 + 338095596x40

− 1133491188x42 + 3794908752x44 − 12758932158x46

+ 42903505303x48 − 144655483440x50

+ 488092130664x52 − 1650000819068x54+ . . . , (8.19)

where x = e−2J/kBT is the probability to break a bond (parallel energy
−J to antiparallel energy +J).26 This series was generated by carefully

26This heroic calculation (27 terms)
was not done to get really accurate low-
temperature magnetizations. Various
clever methods can use these expan-
sions to extrapolate to understand the
subtle phase transition at Tc (Chap-
ter 12). Indeed, the m(T ) curve shown
in both Figs 8.2 and 8.7(a) was not
measured directly, but was generated
using a 9, 10 Padé approximant [34]. considering the probabilities of low-energy spin configurations, formed
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by flipping combinations of clusters of spins (Fig. 8.7(b)). This expan-
sion smoothly predicts the magnetization at low temperatures using the
properties at zero temperature; in Fig. 8.7(a) we see that the magne-
tization is well described by our series for kBT / 3J . Another power
series about T ∼ 3J/kB would converge up to a higher temperature.27

27The radius of convergence of the se-
ries is less than Tc because there is an-
other closer singularity in the complex

temperature plane. This is analogous to
the function 1/(1+x2), which is smooth
on the real axis but whose Taylor series
1 − x2 + x4 − x6 + . . . converges only
for −1 < x < 1; the poles at ±i set the
radius of convergence even though the
function is analytic for all real x.

No finite power series, however, can extrapolate past the temperature
Tc at which the magnetization goes to zero. This is easiest to see in the
opposite direction; m(T ) ≡ 0 above Tc, so any extrapolation below Tc
must continue to have zero magnetization. Much of the glory in pertur-
bation theory involves summing infinite families of terms to extrapolate
through critical points.
Phase boundaries occur at parameter values where the properties are

not smooth—where the continuation of the properties on one side does
not predict the behavior on the other. We could almost define phases
as regions where perturbation theory works—except for the awkward
problem that we do not want liquids and gases to be called part of
the same fluid ‘phase’, even though they are connected by paths going
around the critical point (Fig. 8.4).

Oil

Alcohol

Water

Two−phase mix

Fig. 8.8 Oil, water, and alcohol.
A schematic ternary phase diagram for
mixtures of oil, water, and alcohol.
Each point in the triangle represents
a mixture of percentages of the three,
with the corners being pure water, oil,
and alcohol. The shaded region shows
where phase separation occurs; relative
concentrations in the shaded region will
separate into a two-phase mixture given
by the endpoints of the tie-line pass-
ing through that point. Oil and wa-
ter basically do not dissolve in one an-
other; a mixture of the two will sepa-
rate into the two separate fluids. You
can go smoothly from one to the other,
though, by first adding alcohol.

This leads to an important experimental method. Suppose you have
invented a new exotic liquid crystal. How can you tell if it is in an already
known phase? You look for an experimental path, mixing materials
and changing external conditions, for smoothly changing your phase
to the known one. For example, are oil and water both in the same
(liquid) phase? Can we go from one to the other smoothly, without
passing through a phase transition?28 You cannot mix oil and water,
but you can mix oil and alcohol, and certainly can mix alcohol and water.
Changing the concentrations smoothly starting from oil, going through
pure alcohol, and ending at water demonstrates that these two fluids are
part of the same phase (see Fig. 8.8). This is often used, for example, to
determine to which exotic phase a new liquid crystal should be assigned.
This argument is also the basis for much of theoretical physics. If you
can go smoothly from A (your theory) to B (the experiment) by adding
corrections, then A and B are in the same phase; publish!29

28This process is sometimes called adiabatic continuity [7]. Phases can also be thought of as universality classes for attracting
renormalization-group fixed points; see Chapter 12.
29Some unperturbed theories are better than others, even if they are in the same phase. The correct theory of superconductors
is due to Bardeen, Cooper, and Schrieffer (BCS), despite the fact that earlier theories involving Bose condensation of electron
pairs are not separated from BCS theory by a phase transition. The Cooper pairs in most superconductors are large compared
to their separation, so they overlap many other pairs and make BCS theory almost exact.
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Exercises

The Ising model introduces the continuous and abrupt
phase transitions in the model as temperature and field
are varied. Ising fluctuations and susceptibilities intro-
duces the linear response of the model to external fields,
the connection between fluctuations and response, and
the energy gap and Curie law at low and high tempera-
tures.

Coin flips and Markov chains and Red and green bacte-
ria give examples of non-equilibrium Markov chains. De-
tailed balance derives a formulation of this basic transition
rate relation that does not presume an equilibrium prob-
ability distribution. Metropolis explores the most com-
monly applied Monte Carlo method, and in Implementing
Ising you write your own heat-bath and Metropolis algo-
rithms. Wolff and Implementing Wolff analyze a powerful
and subtle cluster-flip algorithm.

In small systems like biological cells, the numbers of re-
acting molecules can be so small that number fluctuations
can be important; Stochastic cells and The repressilator
develop Monte Carlo methods (the Gillespie algorithm)
for stochastic simulations of chemical reactions in these
systems. In Entropy increases! Markov chains you show
that the coarse-grained description of a system with a
Markov chain does decrease the free energy with time.

In Hysteresis and avalanches we introduce a non-
equilibrium lattice model describing magnets, and in Hys-
teresis algorithms we explore a modern O(N logN) algo-
rithm for evolving the model. Finally, in NP-completeness
and satisfiability, we explore the most challenging class of
problems in computer science, and find a phase transition
at which the truly difficult cases congregate.

(8.1) The Ising model. (Computation) ©1
You will need a two-dimensional square-lattice
Ising model simulation, one of which is avail-
able among the computational exercises section
on the book web site [129]. The Ising Hamilto-
nian is (eqn 8.1):

H = −J
∑

〈ij〉
SiSj −H

∑

i

Si, (8.20)

where Si = ±1 are ‘spins’ on a square lattice,
and the sum

∑
〈ij〉 is over the four nearest-

neighbor bonds (each pair summed once). It is
conventional to set the coupling strength J =
1 and Boltzmann’s constant kB = 1, which
amounts to measuring energies and tempera-
tures in units of J . The constant H is called the

external field, and M =
∑

i Si is called the mag-
netization. Our simulation does not conserve the
number of spins up, so it is not a natural sim-
ulation for a binary alloy. You can think of it
as a grand canonical ensemble, or as a model for
extra atoms on a surface exchanging with the
vapor above.
Play with the simulation. At high temperatures,
the spins should not be strongly correlated. At
low temperatures the spins should align all par-
allel, giving a large magnetization.
Roughly locate Tc, the largest temperature where
distant spins remain parallel on average at T =
0. Explore the behavior by gradually lowering
the temperature from just above Tc to just below
Tc; does the behavior gradually change, or jump
abruptly (like water freezing to ice)? Explore the
behavior at T = 2 (below Tc) as you vary the ex-
ternal field H = ±0.1 up and down through the
‘phase boundary’ at H = 0 (Fig. 8.5). Does the
behavior vary smoothly in that case?

(8.2) Ising fluctuations and susceptibilities.
(Computation) ©3
The partition function for the Ising model is
Z =

∑
n exp(−βEn), where the states n run over

all 2N possible configurations of the Ising spins
(eqn 8.1), and the free energy F = −kT logZ.
(a) Show that the average of the magnetization
M equals −(∂F/∂H)|T . (Hint: Write out the
sum for the partition function and take the
derivative.) Derive the formula for the suscep-
tibility χ0 = (∂M/∂H)|T in terms of 〈(M −
〈M〉)2〉 = 〈M2〉 − 〈M〉2. (Hint: Remember
our derivation of formula 6.13 〈(E − 〈E〉)2〉 =
kBT

2C.)
Download an Ising model simulation from the
computational exercises section of the book web
site [129]. Notice that the program outputs av-
erages of several quantities: 〈|m|〉, 〈(m−〈m〉)2〉,
〈e〉, 〈(e−〈e〉)2〉. In simulations, it is standard to
measure e = E/N and m = M/N per spin (so
that the plots do not depend upon system size);
you will need to rescale properties appropriately
to make comparisons with formulæ written for
the energy and magnetization of the system as
a whole. You can change the system size and
decrease the graphics refresh rate (number of
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sweeps per draw) to speed your averaging. Make
sure to equilibrate before starting to average!
(b) Correlations and susceptibilities: numerical.
Check the formulæ for C and χ from part (a)
at H = 0 and T = 3, by measuring the fluctu-
ations and the averages, and then changing by
∆H = 0.02 or ∆T = 0.1 and measuring the av-
erages again. Check them also for T = 2, where
〈M〉 6= 0.30

There are systematic series expansions for the
Ising model at high and low temperatures, using
Feynman diagrams (see Section 8.3). The first
terms of these expansions are both famous and
illuminating.
Low-temperature expansion for the magnetiza-
tion. At low temperatures we can assume all
spins flip alone, ignoring clusters.
(c) What is the energy for flipping a spin an-
tiparallel to its neighbors? Equilibrate at a rela-
tively low temperature T = 1.0, and measure the
magnetization. Notice that the primary excita-
tions are single spin flips. In the low-temperature
approximation that the flipped spins are dilute
(so we may ignore the possibility that two flipped
spins touch or overlap), write a formula for the
magnetization. (Remember, each flipped spin
changes the magnetization by 2.) Check your
prediction against the simulation. (Hint: See
eqn 8.19.)
The magnetization (and the specific heat) are
exponentially small at low temperatures because
there is an energy gap to spin excitations in the
Ising model,31 just as there is a gap to charge
excitations in a semiconductor or an insulator.
High-temperature expansion for the susceptibil-
ity. At high temperatures, we can ignore the
coupling to the neighboring spins.
(d) Calculate a formula for the susceptibility of
a free spin coupled to an external field. Com-
pare it to the susceptibility you measure at high
temperature T = 100 for the Ising model, say,
∆M/∆H with ∆H = 1. (Why is H = 1 a small

field in this case?)
Your formula for the high-temperature suscep-
tibility is known more generally as Curie’s law.

(8.3) Coin flips and Markov. (Mathematics) ©2
A physicist, testing the laws of chance, flips a
coin repeatedly until it lands tails.
(a) Treat the two states of the physicist (‘still
flipping’ and ‘done’) as states in a Markov
chain. The current probability vector then is

~ρ =

(
ρflipping
ρdone

)
. Write the transition matrix P,

giving the time evolution P·~ρn = ~ρn+1, assuming
that the coin is fair.
(b) Find the eigenvalues and right eigenvectors
of P. Which eigenvector is the steady state ρ∗?
Call the other eigenvector ρ̃. For convenience,
normalize ρ̃ so that its first component equals
one.
(c) Assume an arbitrary initial state is written
ρ0 = Aρ∗ + Bρ̃. What are the conditions on A
and B needed to make ρ0 a valid probability dis-
tribution? Write ρn as a function of A, B, ρ∗,
and ρ̃.

(8.4) Red and green bacteria.32 (Mathematics)©2
A growth medium at time t = 0 has 500 red bac-
teria and 500 green bacteria. Each hour, each
bacterium divides in two. A color-blind preda-
tor eats exactly 1000 bacteria per hour.33

(a) After a very long time, what is the probability
distribution for the number α of red bacteria in
the growth medium?
(b) Roughly how long will it take to reach this
final state? 34

(c) Assume that the predator has a 1% preference
for green bacteria (implemented as you choose).
Roughly how much will this change the final dis-
tribution?

30Be sure to wait until the state is equilibrated before you start! Below Tc this means the state should not have red and black
‘domains’, but be all in one ground state. You may need to apply a weak external field for a while to remove stripes at low
temperatures.
31Not all real magnets have a gap; if there is a spin rotation symmetry, one can have gapless spin waves, which are like sound
waves except twisting the magnetization rather than wiggling the atoms.
32Adapted from author’s graduate preliminary exam, Princeton University, fall 1977.
33This question is purposely open-ended, and rough answers to parts (b) and (c) within a factor of two are perfectly acceptable.
Numerical and analytical methods are both feasible.
34Within the accuracy of this question, you may assume either that one bacterium reproduces and then one is eaten 1000
times per hour, or that at the end of each hour all the bacteria reproduce and then 1000 are consumed. The former method is
more convenient for analytical work finding eigenvectors; the latter can be used to motivate approaches using the diffusion of
probability with an α-dependent diffusion constant.
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(8.5) Detailed balance. ©2
In an equilibrium system, for any two states α
and β with equilibrium probabilities ρ∗α and ρ∗β,
detailed balance states (eqn 8.14) that

Pβ⇐αρ
∗
α = Pα⇐βρ

∗
β, (8.21)

that is, the equilibrium flux of probability from
α to β is the same as the flux backward from
β to α. It is both possible and elegant to refor-
mulate the condition for detailed balance so that
it does not involve the equilibrium probabilities.
Consider three states of the system, α, β, and γ.
(a) Assume that each of the three types of transi-
tions among the three states satisfies detailed bal-
ance. Eliminate the equilibrium probability den-
sities to derive

Pα⇐βPβ⇐γPγ⇐α = Pα⇐γPγ⇐βPβ⇐α. (8.22)

Viewing the three states α, β, and γ as form-
ing a circle, you have derived a relationship be-
tween the rates going clockwise and the rates
going counter-clockwise around the circle.
It is possible to show conversely that if every
triple of states in a Markov chain satisfies the
condition 8.22 then it satisfies detailed balance
(that there is at least one probability density ρ∗

which makes the probability fluxes between all
pairs of states equal), except for complications
arising when some of the rates are zero.
(b) Suppose P is the transition matrix for some
Markov chain satisfying the condition 8.22 for
every triple of states α, β, and γ. Assume that
there is a state α with non-zero transition rates
from all other states δ. Construct a probability
density ρ∗δ that demonstrates that P satisfies de-
tailed balance (eqn 8.21). (Hint: If you assume a
value for ρ∗α, what must ρ∗δ be to ensure detailed
balance for the pair? Show that this candidate
distribution satisfies detailed balance for any two
states.)

(8.6) Metropolis. (Mathematics, Computation) ©1
The heat-bath algorithm described in the text
thermalizes one spin at a time. Another popular
choice is the Metropolis algorithm, which also
flips a single spin at a time:

(1) pick a spin at random;

(2) calculate the energy ∆E for flipping the spin;

(3) if ∆E < 0 flip it; if ∆E > 0, flip it with
probability e−β ∆E.

Show that Metropolis satisfies detailed balance.
Note that it is ergodic and Markovian (no mem-
ory), and hence that it will lead to thermal
equilibrium. Is Metropolis more efficient than
the heat-bath algorithm (fewer random numbers
needed to get to equilibrium)?

(8.7) Implementing Ising. (Computation) ©4
In this exercise, we will implement a simulation
of the two-dimensional Ising model on a square
lattice using the heat-bath and Metropolis algo-
rithms. In the computer exercises portion of the
web site for this book [129], you will find some
hint files and graphic routines to facilitate work-
ing this exercise. The hints file should allow you
to animate random square grids of ±1, giving
you both the graphics interface and an example
of random number generation.
The heat-bath algorithm flips spins one at a
time, putting them into equilibrium with their
neighbors: it is described in detail in Section 8.1.
(a) Implement the heat-bath algorithm for the
Ising model. When the temperature or external
field is set, you should also reset the values in an
array heatBathProbUp[nUp] storing the proba-
bility that a spin will be set to +1 given that nUp
of its neighbors are currently pointing up (equal
to +1). (Calculating these probabilities over and
over again for millions of spin flips is unneces-
sary.) Explore the resulting behavior (say, as in
Exercise 8.1).
The Metropolis algorithm also flips one spin at
a time, but it always flips spins if the net energy
decreases: it is described in detail in Exercise 8.6.
(b) Implement the Metropolis algorithm for the
Ising model. Here you will want to set up an ar-
ray MetropolisProbUp[s,nUp] storing the prob-
ability that a spin which currently has value s

will be set to +1 if nUp of its neighbors are cur-
rently up. Is Metropolis noticeably faster than
the heat-bath algorithm?
The Metropolis algorithm is always faster to
equilibrate than the heat-bath algorithm, but is
never a big improvement. Other algorithms can
be qualitatively faster in certain circumstances
(see Exercises 8.8 and 8.9).

(8.8) Wolff. (Mathematics, Computation) ©3
Near the critical point Tc where the system de-
velops a magnetization, any single-spin-flip dy-
namics becomes very slow (the correlation time
diverges). Wolff [146], improving on ideas of
Swendsen and Wang [135], came up with a clever
method to flip whole clusters of spins.
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Wolff cluster flips

(1) Pick a spin at random, remember its direc-
tion D = ±1, and flip it.

(2) For each of the four neighboring spins, if it
is in the direction D, flip it with probability
p.

(3) For each of the new flipped spins, recursively
flip their neighbors as in (2).

Because with finite probability you can flip any
spin, the Wolff algorithm is ergodic. As a cluster
flip it is Markovian. Let us see that it satisfies
detailed balance, when we pick the right value of
p for the given temperature.
(a) Show for the two configurations in Figs 8.9
and 8.10 that EB − EA = 2(n↑ − n↓)J. Argue
that this will be true for flipping any cluster of
up-spins to down-spins.

Fig. 8.9 Cluster flip: before. The region inside
the dotted line is flipped in one Wolff move. Let this
configuration be A.

The cluster flip can start at any site α in the clus-
ter C. The ratio of rates ΓA→B/ΓB→A depends
upon the number of times the cluster chose not
to grow on the boundary. Let PC

α be the proba-
bility that the cluster grows internally from site
α to the cluster C (ignoring the moves which try
to grow outside the boundary). Then

ΓA→B =
∑

α

PC
α (1− p)n↑ , (8.23)

ΓB→A =
∑

α

PC
α (1− p)n↓ , (8.24)

since the cluster must refuse to grow n↑ times
when starting from the up-state A, and n↓ times
when starting from B.

Fig. 8.10 Cluster flip: after. Let this configura-
tion be B. Let the cluster flipped be C. Notice that
the boundary of C has n ↑= 2, n ↓= 6.

(b) What value of p lets the Wolff algorithm sat-
isfy detailed balance at temperature T?
Unless you plan to implement the Wolff algo-
rithm yourself (Exercise 8.9, download the Wolff
simulation from the computer exercises section
of the text web site [129]. Run at T = 2.3, using
the heat-bath algorithm for a 500×500 system
or larger; watch the slow growth of the charac-
teristic cluster sizes. Now change to the Wolff
algorithm, and see how much faster the equi-
libration is. Also notice that many sweeps al-
most completely rearrange the pattern; the cor-
relation time is much smaller for the Wolff algo-
rithm than for single-spin-flip methods like heat
bath and Metropolis. (See [98, sections 4.2–3]
for more details on the Wolff algorithm.)

(8.9) Implementing Wolff. (Computation) ©4
In this exercise, we will implement the Wolff al-
gorithm of Exercise 8.8. In the computer exer-
cises portion of the web site for this book [129],
you will find some hint files and graphic routines
to facilitate working this exercise.
Near the critical temperature Tc for a magnet,
the equilibration becomes very sluggish: this is
called critical slowing-down. This sluggish be-
havior is faithfully reproduced by the single-spin-
flip heat-bath and Metropolis algorithms. If one
is interested in equilibrium behavior, and not in
dynamics, one can hope to use fancier algorithms
that bypass this sluggishness, saving computer
time.
(a) Run the two-dimensional Ising model (either
from the text web site or from your solution to
Exercise 8.7) near Tc = 2/ log(1 +

√
2) using a

single-spin-flip algorithm. Start in a magnetized
state, and watch the spins rearrange until roughly
half are pointing up. Start at high temperatures,
and watch the up- and down-spin regions grow
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slowly. Run a large enough system that you get
tired of waiting for equilibration.
The Wolff algorithm flips large clusters of spins
at one time, largely bypassing the sluggishness
near Tc. It can only be implemented at zero
external field. It is described in detail in Exer-
cise 8.8.
(b) Implement the Wolff algorithm. A recur-
sive implementation works only for small system
sizes on most computers. Instead, put the spins
that are destined to flip on a list toFlip. You
will also need to keep track of the sign of the
original triggering spin.
While there are are spins toFlip,
if the first spin remains parallel to the original,

flip it, and
for each neighbor of the flipped spin,

if it is parallel to the original spin,
add it to toFlip with probability p.

(c) Estimate visually how many Wolff cluster
flips it takes to reach the equilibrium state at
Tc. Is Wolff faster than the single-spin-flip al-
gorithms? How does it compare at high temper-
atures?
(d) Starting from a random configuration,
change to a low temperature T = 1 and ob-
serve the equilibration using a single-spin flip al-
gorithm. Compare with your Wolff algorithm.
(See also Exercise 12.3.) Which reaches equilib-
rium faster? Is the dynamics changed qualita-
tively, though?

(8.10) Stochastic cells.35 (Biology, Computation)©4
Living cells are amazingly complex mixtures of a
variety of complex molecules (RNA, DNA, pro-
teins, lipids, . . . ) that are constantly undergoing
reactions with one another. This complex of re-
actions has been compared to computation; the
cell gets input from external and internal sen-
sors, and through an intricate series of reactions
produces an appropriate response. Thus, for ex-
ample, receptor cells in the retina ‘listen’ for light
and respond by triggering a nerve impulse.
The kinetics of chemical reactions are usually de-
scribed using differential equations for the con-
centrations of the various chemicals, and rarely
are statistical fluctuations considered important.
In a cell, the numbers of molecules of a given
type can be rather small; indeed, there is (of-
ten) only one copy of the relevant part of DNA
for a given reaction. It is an important question

whether and when we may describe the dynam-
ics inside the cell using continuous concentra-
tion variables, even though the actual numbers
of molecules are always integers.

k

2

2 1

u

D
1b

M

k

Fig. 8.11 Dimerization reaction. A Petri net di-
agram for a dimerization reaction, with dimerization
rate kb and dimer dissociation rate ku.

Consider a dimerization reaction; a molecule M
(called the ‘monomer’) joins up with another
monomer and becomes a dimer D: 2M ←→ D.
Proteins in cells often form dimers; sometimes
(as here) both proteins are the same (homod-
imers) and sometimes they are different proteins
(heterodimers). Suppose the forward reaction
rate is kd and the backward reaction rate is
ku. Figure 8.11 shows this as a Petri net [50]
with each reaction shown as a box, with incom-
ing arrows showing species that are consumed
by the reaction, and outgoing arrows showing
species that are produced by the reaction; the
number consumed or produced (the stoichiom-
etry) is given by a label on each arrow. There
are thus two reactions: the backward unbind-
ing reaction rate per unit volume is ku[D] (each
dimer disassociates with rate ku), and the for-
ward binding reaction rate per unit volume is
kb[M ]2 (since each monomer must wait for a col-
lision with another monomer before binding, the
rate is proportional to the monomer concentra-
tion squared).
The brackets [.] denote concentrations. We as-
sume that the volume per cell is such that one
molecule per cell is 1 nM (10−9 moles per liter).
For convenience, we shall pick nanomoles as our
unit of concentration, so [M ] is also the num-

35This exercise and the associated software were developed in collaboration with Christopher Myers.
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ber of monomers in the cell. Assume kb =
1nM−1s−1 and ku = 2 s−1, and that at t = 0
all N monomers are unbound.
(a) Continuum dimerization. Write the differ-
ential equation for dM/dt treating M and D as
continuous variables. (Hint: Remember that
two M molecules are consumed in each reac-
tion.) What are the equilibrium concentrations
for [M ] and [D] for N = 2 molecules in the
cell, assuming these continuous equations and
the values above for kb and ku? For N = 90
and N = 10 100 molecules? Numerically solve
your differential equation for M(t) for N = 2
and N = 90, and verify that your solution set-
tles down to the equilibrium values you found.
For large numbers of molecules in the cell, we
expect that the continuum equations may work
well, but for just a few molecules there surely
will be relatively large fluctuations. These fluc-
tuations are called shot noise, named in early
studies of electrical noise at low currents due to
individual electrons in a resistor. We can imple-
ment a Monte Carlo algorithm to simulate this
shot noise.36 Suppose the reactions have rates
Γi, with total rate Γtot =

∑
i Γi. The idea is

that the expected time to the next reaction is
1/Γtot, and the probability that the next reac-
tion will be j is Γj/Γtot. To simulate until a
final time tf , the algorithm runs as follows.

(1) Calculate a list of the rates of all reactions
in the system.

(2) Find the total rate Γtot.

(3) Pick a random time twait with probability
distribution ρ(t) = Γtot exp(−Γtot t).

(4) If the current time t plus twait is bigger than
tf , no further reactions will take place; re-
turn.

(5) Otherwise,

– increment t by twait,

– pick a random number r uniformly dis-
tributed in the range [0,Γtot),

– pick the reaction j for which
∑

i<j Γi ≤
r <

∑
i<j+1 Γi (that is, r lands in the

jth interval of the sum forming Γtot),

– execute that reaction, by incrementing
each chemical involved by its stoichiom-
etry.

(6) Repeat.

There is one important additional change:37 the
binding reaction rate for M total monomers
binding is no longer kbM

2 for discrete molecules;
it is kbM(M − 1).38

(b) Stochastic dimerization. Implement this al-
gorithm for the dimerization reaction of part (a).
Simulate for N = 2, N = 90, and N = 10 100
and compare a few stochastic realizations with
the continuum solution. How large a value of
N do you need for the individual reactions to be
well described by the continuum equations (say,
fluctuations less than ±20% at late times)?
Measuring the concentrations in a single cell is
often a challenge. Experiments often average
over many cells. Such experiments will measure
a smooth time evolution even though the indi-
vidual cells are noisy. Let us investigate whether
this ensemble average is well described by the
continuum equations.
(c) Average stochastic dimerization. Find the
average of many realizations of your stochastic
dimerization in part (b), for N = 2 and N = 90,
and compare with your deterministic solution.
How much is the long-term average shifted by
the stochastic noise? How large a value of N do
you need for the ensemble average of M(t) to be
well described by the continuum equations (say,
shifted by less than 5% at late times)?

(8.11) The repressilator.39 (Biology, Computa-
tion) ©4
The ‘central dogma’ of molecular biology is that
the flow of information is from DNA to RNA to
proteins; DNA is transcribed into RNA, which
then is translated into protein.
Now that the genome is sequenced, it is thought
that we have the parts list for the cell. All that
remains is to figure out how they work together!
The proteins, RNA, and DNA form a complex
network of interacting chemical reactions, which
governs metabolism, responses to external stim-
uli, reproduction (proliferation), differentiation

36In the context of chemical simulations, this algorithm is named after Gillespie [45]; the same basic approach was used just a
bit earlier in the Ising model by Bortz, Kalos, and Lebowitz [19], and is called continuous-time Monte Carlo in that context.
37Without this change, if you start with an odd number of cells your concentrations can go negative!
38Again [M ] = M , because we assume one molecule per cell gives a concentration of 1 nM.
39This exercise draws heavily on Elowitz and Leibler [37]; it and the associated software were developed in collaboration with
Christopher Myers.
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into different cell types, and (when the cell per-
ceives itself to be breaking down in dangerous
ways) programmed cell death, or apoptosis.
Our understanding of the structure of these
interacting networks is growing rapidly, but our
understanding of the dynamics is still rather
primitive. Part of the difficulty is that the cel-
lular networks are not neatly separated into dif-
ferent modules; a given protein may participate
in what would seem to be several separate regu-
latory pathways. In this exercise, we will study
a model gene regulatory network, the repressi-
lator. This experimental system involves three
proteins, each of which inhibits the formation
of the next. They were added to the bacterium
E. coli, with hopefully minimal interactions with
the rest of the biological machinery of the cell.
We will implement the stochastic model that the
authors used to describe their experimental sys-
tem [37]. In doing so, we will

• implement in a tangible system an example
both of the central dogma and of transcrip-
tional regulation: the control by proteins of
DNA expression into RNA,

• introduce sophisticated Monte Carlo tech-
niques for simulations of stochastic reactions,

• introduce methods for automatically gener-
ating continuum descriptions from reaction
rates, and

• illustrate the shot noise fluctuations due to
small numbers of molecules and the telegraph
noise fluctuations due to finite rates of binding
and unbinding of the regulating proteins.

Figure 8.12 shows the biologist’s view of the re-
pressilator network. Three proteins (TetR, λCI,
and LacI) each repress the formation of the next.
We shall see that, under appropriate circum-
stances, this can lead to spontaneous oscillations;
each protein peaks in turn, suppressing the sup-
pressor of its suppressor, leading to its own later
decrease.

  CIλ LacI

TetR

Fig. 8.12 Biology repressilator. The biologist’s
view of the repressilator network. The T-shapes
are blunt arrows, signifying that the protein at the
tail (bottom of the T) suppresses the production of
the protein at the head. Thus LacI (pronounced
lack-eye) suppresses TetR (tet-are), which suppresses
λ CI (lambda-see-one). This condensed descrip-
tion summarizes a complex series of interactions (see
Fig. 8.13).

The biologist’s notation summarizes a much
more complex picture. The LacI protein, for
example, can bind to one or both of the tran-
scriptional regulation or operator sites ahead of
the gene that codes for the tetR mRNA.40 When
bound, it largely blocks the translation of DNA
into tetR.41 The level of tetR will gradually de-
crease as it degrades; hence less TetR protein
will be translated from the tetR mRNA. The
resulting network of ten reactions is depicted
in Fig. 8.13, showing one-third of the total re-
pressilator network. The biologist’s shorthand
(Fig. 8.12) does not specify the details of how
one protein represses the production of the next.
The larger diagram, for example, includes two
operator sites for the repressor molecule to bind
to, leading to three states (P0, P1, and P2) of
the promoter region depending upon how many
LacI proteins are bound.
You may retrieve a simulation package for the re-
pressilator from the computational exercises por-
tion of the book web site [129].
(a) Run the simulation for at least 6000 seconds
and plot the protein, RNA, and promoter states
as a function of time. Notice that

• the protein levels do oscillate, as in [37, fig-
ure 1(c)],

• there are significant noisy-looking fluctua-
tions,

• there are many more proteins than RNA.

40Messenger RNA (mRNA) codes for proteins. Other forms of RNA can serve as enzymes or parts of the machinery of the cell.
Proteins in E. coli by convention have the same names as their mRNA, but start with capitals where the mRNA start with
small letters.
41RNA polymerase, the molecular motor responsible for transcribing DNA into RNA, needs to attach to the DNA at a pro-

moter site. By binding to the adjacent operator sites, our repressor protein inhibits this attachment and hence partly blocks
transcription. The residual transcription is called ‘leakiness’.
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Fig. 8.13 Computational repressilator.
The Petri net version [50] of one-third of the repres-
silator network (the LacI repression of TetR). The
biologist’s shorthand (Fig. 8.12) hides a lot of com-
plexity! We have implemented these equations for
you, so studying this figure is optional. The solid
lighter vertical rectangles represent binding reactions
A + B → C, with rate kb[A][B]; the open vertical
rectangles represent unbinding C → A + B, with
rate ku[C]. The horizontal rectangles represent cat-
alyzed synthesis reactions C → C+P , with rate γ[C];
the darker ones represent transcription (formation
of mRNA), and the lighter one represent translation
(formation of protein). The black vertical rectangles
represent degradation reactions, A → nothing with
rate kd[A]. The LacI protein (top) can bind to the
DNA in two promoter sites ahead of the gene cod-
ing for tetR; when bound, it largely blocks the tran-
scription (formation) of tetR mRNA. P0 represents
the promoter without any LacI bound; P1 represents
the promoter with one site blocked, and P2 repre-
sents the doubly-bound promoter. LacI can bind
to one or both of the promoter sites, changing Pi

to Pi+1, or correspondingly unbind. The unbound
P0 state transcribes tetR mRNA quickly, and the
bound states transcribe it slowly (leaky repression).
The tetR mRNA then catalyzes the formation of the
TetR protein.

To see how important the fluctuations are, we
should compare the stochastic simulation to the
solution of the continuum reaction rate equa-
tions (as we did in Exercise 8.10). In [37], the au-
thors write a set of six differential equations giv-
ing a continuum version of the stochastic simula-

tion. These equations are simplified; they both
‘integrate out’ or coarse-grain away the promoter
states from the system, deriving a Hill equation
(Exercise 6.12) for the mRNA production, and
they also rescale their variables in various ways.
Rather than typing in their equations and sort-
ing out these rescalings, it is convenient and illu-
minating to write a routine to generate the con-
tinuum differential equations directly from our
reaction rates.
(b) Write a DeterministicRepressilator,
derived from Repressilator just as
StochasticRepressilator was. Write a rou-
tine dcdt(c,t) that does the following.

• Sets the chemical amounts in the reaction net-
work to the values in the array c.

• Sets a vector dcdt (of length the number of
chemicals) to zero.

• For each reaction:

– compute its rate;

– for each chemical whose stoichiometry is
changed by the reaction, add the stoi-
chiometry change times the rate to the
corresponding entry of dcdt.

Call a routine to integrate the resulting differ-
ential equation (as described in the last part of
Exercise 3.12, for example), and compare your
results to those of the stochastic simulation.
The stochastic simulation has significant fluctu-
ations away from the continuum equation. Part
of these fluctuations are due to the fact that the
numbers of proteins and mRNAs are small; in
particular, the mRNA numbers are significantly
smaller than the protein numbers.
(c) Write a routine that creates a stochastic re-
pressilator network that multiplies the mRNA
concentrations by RNAFactor without otherwise
affecting the continuum equations. (That is,
multiply the initial concentrations and the tran-
scription rates by RNAFactor, and divide the
translation rate by RNAFactor.) Try boosting
the RNAFactor by ten and one hundred. Do
the RNA and protein fluctuations become signif-
icantly smaller? This noise, due to the discrete,
integer values of chemicals in the cell, is analo-
gous to the shot noise seen in electrical circuits
due to the discrete quantum of electric charge.
It scales, as do most fluctuations, as the square
root of the number of molecules.
A continuum description of the binding of the
proteins to the operator sites on the DNA seems
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particularly dubious; a variable that must be
zero or one is replaced by a continuous evolution
between these extremes. (Such noise in other
contexts is called telegraph noise—in analogy to
the telegraph, which is either silent or sending as
the operator taps the key.) The continuum de-
scription is accurate in the limit where the bind-
ing and unbinding rates are fast compared to all
of the other changes in the system; the protein
and mRNA variations then see the average, local
equilibrium concentration. On the other hand,
if the rates are slow compared to the response
of the mRNA and protein, the latter can have a
switching appearance.
(d) Incorporate a telegraphFactor into your
stochastic repressilator routine, that multiplies
the binding and unbinding rates. Run for 1000
seconds with RNAFactor = 10 (to suppress the
shot noise) and telegraphFactor = 0.001. Do
you observe features in the mRNA curves that
appear to switch as the relevant proteins unbind
and bind?

(8.12) Entropy increases! Markov chains.
(Mathematics) ©3
Convexity arguments are a basic tool in for-
mal statistical mechanics. The function f(x) =
−x log x is strictly concave (convex downward)
for x ≥ 0 (Fig. 5.9); this is easily shown by not-
ing that its second derivative is negative in this
region.
(a) Convexity for sums of many terms. If∑

α µα = 1, and if for all α both µα ≥ 0 and
xα ≥ 0, show by induction on the number of
states M that if g(x) is concave for x ≥ 0, then

g

(
M∑

α=1

µαxα

)
≥

M∑

α=1

µαg(xα). (8.25)

This is a generalization of Jensen’s inequal-
ity (eqn 5.27), which was the special case of
equal µα. (Hint: In the definition of concave,
f(λa + (1 − λ)b) ≥ λf(a) + (1 − λ)f(b), take
(1−λ) = µM+1 and b = xM+1. Then a is a sum
of M terms, rescaled from their original values.
Do the coefficients of xα in a sum to one? Can
we apply induction?)
In Exercise 5.7 you noticed that, formally speak-
ing, entropy does not increase in Hamiltonian

systems. Let us show that it does increase for
Markov chains.42

The Markov chain is implicitly exchanging en-
ergy with a heat bath at the temperature T .
Thus to show that the entropy for the world as a
whole increases, we must show that ∆S−∆E/T
increases, where ∆S is the entropy of our sys-
tem and ∆E/T is the entropy flow from the heat
bath. Hence, showing that entropy increases for
our Markov chain is equivalent to showing that
the free energy E − TS decreases.
Let Pαβ be the transition matrix for a Markov
chain, satisfying detailed balance with energy Eα

at temperature T . The current probability of be-
ing in state α is ρα. The free energy

F = E − TS =
∑

α

ραEα + kBT
∑

α

ρα log ρα.

(8.26)
(b) Show that the free energy decreases for a
Markov chain. In particular, using eqn 8.25,
show that the free energy for ρ

(n+1)
β =∑

α Pβαρ
(n)
α is less than or equal to the free en-

ergy for ρ(n). You may use the properties of the
Markov transition matrix P , (0 ≤ Pαβ ≤ 1 and∑

α Pαβ = 1), and detailed balance (Pαβρ
∗
β =

Pβαρ
∗
α, where ρ

∗
α = exp(−Eα/kBT )/Z). (Hint:

You will want to use µα = Pαβ in eqn 8.25, but
the entropy will involve Pβα, which is not the
same. Use detailed balance to convert from one
to the other.)

(8.13) Hysteresis and avalanches.43 (Complexity,
Computation) ©4
A piece of magnetic material exposed to an in-
creasing external field H(t) (Fig. 8.14) will mag-
netize (Fig. 8.15) in a series of sharp jumps, or
avalanches (Fig. 8.16). These avalanches arise
as magnetic domain walls in the material are
pushed by the external field through a rugged
potential energy landscape due to irregularities
and impurities in the magnet. The magnetic sig-
nal resulting from these random avalanches is
called Barkhausen noise.
We model this system with a non-equilibrium
lattice model, the random field Ising model. The
Hamiltonian or energy function for our system is

H = −
∑

〈i,j〉
Jsisj −

∑

i

(
H(t) + hi

)
si, (8.27)

42We know that the Markov chain eventually evolves to the equilibrium state, and we argued that the latter minimizes the free
energy. What we are showing here is that the free energy goes continuously downhill for a Markov chain.
43This exercise is largely drawn from [69]. It and the associated software were developed in collaboration with Christopher
Myers.
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where the spins si = ±1 lie on a square or cubic
lattice with periodic boundary conditions. The
coupling and the external field H are as in the
traditional Ising model (Section 8.1). The dis-
order in the magnet is incorporated using the
random field hi, which is independently chosen
at each lattice site from a Gaussian probability
distribution of standard deviation R:

P (h) =
1√
2πR

e−h2/2R2

. (8.28)

We are not interested in thermal equilibrium;
there would be no hysteresis! We take the op-
posite extreme; we set the temperature to zero.
We start with all spins pointing down, and adi-
abatically (infinitely slowly) increase H(t) from
−∞ to ∞.
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Fig. 8.14 Barkhausen noise experiment. By in-
creasing an external magnetic field H(t) (bar magnet
approaching), the magnetic domains in a slab of iron
flip over to align with the external field. The re-
sulting magnetic field jumps can be turned into an
electrical signal with an inductive coil, and then lis-
tened to with an ordinary loudspeaker. Barkhausen
noise from our computer experiments can be heard
on the Internet [68].

Our rules for evolving the spin configuration are
simple: each spin flips over when doing so would
decrease the energy. This occurs at site i when
the local field at that site

J
∑

j nbr to i

sj + hi +H(t) (8.29)

changes from negative to positive. A spin can
be pushed over in two ways. It can be triggered
when one of its neighbors flips (by participating
in a propagating avalanche) or it can be trig-
gered by the slow increase of the external field
(starting a new avalanche).
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Fig. 8.15 Hysteresis loop with subloops for
our model. As the external field is raised and low-
ered (vertical), the magnetization lags behind—this
is called hysteresis. The magnetization curves here
look macroscopically smooth.

We will provide hints files and graphics routines
for different languages and systems on the com-
puter exercises portion of the book web site [129].

Fig. 8.16 Tiny jumps: Barkhausen noise. Blow-
ing up a small portion of Fig. 8.15, we see that the
magnetization is growing in a series of sharp jumps,
or avalanches.

(a) Set up lattices s[m][n] and h[m][n] on the
computer. (If you do three dimensions, add
an extra index to the arrays.) Fill the former
with down-spins (−1) and the latter with ran-
dom fields (real numbers chosen from the distri-
bution 8.28). Write a routine FlipSpin for the
lattice, which given i and j flips the spin from
s = −1 to s = +1 (complaining if it is already
flipped). Write a routine NeighborsUp which
calculates the number of up-neighbors for the
spin (implementing the periodic boundary con-
ditions).
On the computer, changing the external field in-
finitely slowly is easy. To start a new avalanche
(or the first avalanche), one searches for the un-
flipped spin that is next to flip, jumps the field
H to just enough to flip it, and propagates the
avalanche, as follows.
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Lattice
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Fig. 8.17 Avalanche propagation in the hys-

teresis model. Left: a propagating avalanche. Spin
13 triggered the avalanche. It triggered the first shell
of spins 14, 8, and 12, which then triggered the sec-
ond shell 15, 19, 7, 11, and 17, and finally the third
shell 10, 20, 18, and 6. Right: the first-in–first-out
queue, part way through flipping the second shell.
(The numbers underneath are the triggering spins
for the spins on the queue, for your convenience.)
The spin at the left of this queue is next to flip. No-
tice that spin 20 has been placed on the queue twice
(two neighbors in the previous shell). By placing a
marker at the end of each shell in the queue, we can
measure the number of spins flipping per unit ‘time’
during an avalanche (Fig. 8.18).

Propagating an avalanche

(1) Find the triggering spin i for the next
avalanche, which is the unflipped site with
the largest internal field J

∑
j nbr to i sj +hi

from its random field and neighbors.

(2) Increment the external field H to minus this
internal field, and push the spin onto a first-
in–first-out queue (Fig. 8.17, right).

(3) Pop the top spin off the queue.

(4) If the spin has not been flipped,44 flip it and
push all unflipped neighbors with positive
local fields onto the queue.

(5) While there are spins on the queue, repeat
from step (3).

(6) Repeat from step (1) until all the spins are
flipped.

(b) Write a routine BruteForceNextAvalanche

for step (1), which checks the local fields of all of
the unflipped spins, and returns the location of
the next to flip.
(c) Write a routine PropagateAvalanche that
propagates an avalanche given the triggering
spin, steps (3)–(5), coloring the spins in the dis-
play that are flipped. Run a 300 × 300 system
at R = 1.4, 0.9, and 0.7 (or a 503 system at

R = 4, R = 2.16, and R = 2) and display the
avalanches. If you have a fast machine, you
can run a larger size system, but do not overdo
it; the sorted list algorithm below will dramati-
cally speed up the simulation.
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Fig. 8.18 Avalanche time series. Number of do-
mains flipped per time step for the avalanche shown
in Fig. 12.5. Notice how the avalanche almost stops
several times; if the forcing were slightly smaller com-
pared to the disorder, the avalanche would have sep-
arated into smaller ones. The fact that the disorder
is just small enough to keep the avalanche growing is
the criterion for the phase transition, and the cause
of the self-similarity. At the critical point, a partial
avalanche of size S will on average trigger another
one of size S.

There are lots of properties that one might
wish to measure about this system: avalanche
sizes, avalanche correlation functions, hystere-
sis loop shapes, average pulse shapes during
avalanches, . . . It can get ugly if you put all
of these measurements inside the inner loop of
your code. Instead, we suggest that you try the
subject–observer design pattern: each time a spin
is flipped, and each time an avalanche is finished,
the subject (our simulation) notifies the list of
observers.
(d) Build a MagnetizationObserver, which
stores an internal magnetization starting at −N ,
adding two to it whenever it is notified. Build
an AvalancheSizeObserver, which keeps track
of the growing size of the current avalanche af-
ter each spin flip, and adds the final size to a
histogram of all previous avalanche sizes when
the avalanche ends. Set up NotifySpinFlip and
NotifyAvalancheEnd routines for your simula-

44You need to check if the spin is flipped again after popping it off the queue; spins can be put onto the queue more than once
during an avalanche (Fig. 8.17).



 Copyright Oxford University Press 2006  v1.0                       --  

186 Calculation and computation

tion, and add the two observers appropriately.
Plot the magnetization curve M(H) and the
avalanche size distribution histogram D(S) for
the three systems you ran for part (c).

(8.14) Hysteresis algorithms.45 (Complexity,
Computation) ©4
As computers increase in speed and memory, the
benefits of writing efficient code become greater
and greater. Consider a problem on a system of
size N ; a complex algorithm will typically run
more slowly than a simple one for small N , but
if its time used scales proportional to N and the
simple algorithm scales as N2, the added com-
plexity wins as we can tackle larger, more ambi-
tious questions.
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Fig. 8.19 Using a sorted list to find the next
spin in an avalanche. The shaded cells have already
flipped. In the sorted list, the arrows on the right
indicate the nextPossible[nUp] pointers—the first
spin that would not flip with nUp neighbors at the
current external field. Some pointers point to spins
that have already flipped, meaning that these spins
already have more neighbors up than the correspond-
ing nUp. (In a larger system the unflipped spins will
not all be contiguous in the list.)

In the hysteresis model (Exercise 8.13), the
brute-force algorithm for finding the next
avalanche for a system with N spins takes a
time of order N per avalanche. Since there are
roughly N avalanches (a large fraction of all
avalanches are of size one, especially in three di-
mensions) the time for the brute-force algorithm

scales as N2. Can we find a method which does
not look through the whole lattice every time an
avalanche needs to start?
We can do so using the sorted list algorithm:
we make46 a list of the spins in order of their
random fields (Fig. 8.19). Given a field range
(H,H + ∆) in a lattice with z neighbors per
site, only those spins with random fields in the
range JS + H < −hi < JS + (H + δ) need to
be checked, for the z + 1 possible fields JS =
(−Jz,−J(z−2), . . . , Jz) from the neighbors. We
can keep track of the locations in the sorted list
of the z+1 possible next spins to flip. The spins
can be sorted in time N logN , which is practi-
cally indistinguishable from linear in N , and a
big improvement over the brute-force algorithm.

Sorted list algorithm.

(1) Define an array nextPossible[nUp], which
points to the location in the sorted list
of the next spin that would flip if it had
nUp neighbors. Initially, all the elements of
nextPossible[nUp] point to the spin with
the largest random field hi.

(2) From the z + 1 spins pointed to by
nextPossible, choose the one nUpNext with
the largest internal field in nUp - nDown +

hi = 2 nUp - z+ hi. Do not check values of
nUp for which the pointer has fallen off the
end of the list; use a variable stopNUP.

(3) Move the pointer nextPossible[nUpNext]

to the next spin on the sorted list. If you
have fallen off the end of the list, decrement
stopNUP.47

(4) If the spin nUpNext has exactly the right
number of up-neighbors, flip it, increment
the external field H(t), and start the next
avalanche. Otherwise go back to step (2).

Implement the sorted list algorithm for finding
the next avalanche. Notice the pause at the be-
ginning of the simulation; most of the computer
time ought to be spent sorting the list. Compare

45This exercise is also largely drawn from [69], and was developed with the associated software in collaboration with Christopher
Myers.
46Make sure you use a packaged routine to sort the list; it is the slowest part of the code. It is straightforward to write your
own routine to sort lists of numbers, but not to do it efficiently for large lists.
47Either this spin is flipped (move to the next), or it will start the next avalanche (flip and move to the next), or it has too
few spins to flip (move to the next, flip it when it has more neighbors up).
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the timing with your brute-force algorithm for a
moderate system size, where the brute-force algo-
rithm is slightly painful to run. Run some fairly
large systems48 (20002 at R = (0.7, 0.8, 0.9) or
2003 at R = (2.0, 2.16, 3.0)), and explore the
avalanche shapes and size distribution.
To do really large simulations of billions of spins
without needing gigabytes of memory, there is
yet another algorithm we call bits, which stores
the spins as bits and never generates or stores
the random fields (see [69] for implementation
details).

(8.15) NP-completeness and kSAT.49 (Computer
science, Computation, Mathematics) ©4
In this exercise you will numerically investigate
a phase transition in an ensemble of problems
in mathematical logic, called kSAT [8, 93]. In
particular, you will examine how the computa-
tional difficulty of the problems grows near the
critical point. This exercise ties together a num-
ber of fundamental issues in critical phenomena,
computer science, and mathematical logic.
The kSAT problem we study is one in a class
of problems called NP–complete. In other ex-
ercises, we have explored how the speed of algo-
rithms for solving computational problems de-
pends on the size N of the system. (Sorting a
list of N elements, for example, can be done us-
ing of order N logN size comparisons between
elements.) Computer scientists categorize prob-
lems into complexity classes; for example, a prob-
lem is in P if it can guarantee a solution50 in
a time that grows no faster than a polynomial
in the size N . Sorting lists is in P (the time
grows more slowly than N2, for example, since
N logN < N2 for large N); telling whether an N
digit number is prime has recently been shown
also to be in P. A problem is in NP51 if a
proposed solution can be verified in polynomial

time. For example, factoring an integer with N
digits is not known to be in P (since there is no
known algorithm for finding the factors52 of an
N-digit integer that runs in a time polynomial
in N), but it is in NP.
(a) Given two proposed factors of an N digit in-
teger, argue that the number of computer oper-
ations needed to verify whether their product is
correct is less than a constant times N2.
There are many problems in NP that have no
known polynomial-time solution algorithm. A
large family of them, the NP–complete prob-
lems, have been shown to be maximally difficult,
in the sense that they can be used to efficiently
solve any other problem in NP. Specifically, any
problem in NP can be translated (using an algo-
rithm that runs in time polynomial in the size of
the problem) into any one of the NP–complete
problems, with only a polynomial expansion in
the size N . A polynomial-time algorithm for any
one of the NP–complete problems would allow
one to solve all NP problems in polynomial time.

• The traveling salesman problem is a classic ex-
ample. Given N cities and a cost for travel-
ing between each pair and a budget K, find a
round-trip path (if it exists) that visits each
city with cost < K. The best known algo-
rithm for the traveling salesman problem tests
a number of paths that grows exponentially
with N—faster than any polynomial.

• In statistical mechanics, the problem of find-
ing the lowest-energy configuration of a spin
glass53 is also NP–complete (Section 12.3.4).

• Another NP–complete problem is 3-
colorability (Exercise 1.8). Can the N nodes
of a graph be colored red, green, and blue so
that no two nodes joined by an edge have the

48Warning: You are likely to run out of RAM before you run out of patience. If you hear your disk start swapping (lots of
clicking noise), run a smaller system size.
49This exercise and the associated software were developed in collaboration with Christopher Myers, with help from Bart
Selman and Carla Gomes.
50P and NP–complete are defined for deterministic, single-processor computers. There are polynomial-time algorithms for
solving some problems (like prime factorization) on a quantum computer, if we can figure out how to build one.
51NP does not stand for ‘not polynomial’, but rather for non-deterministic polynomial time. NP problems can be solved in
polynomial time on a hypothetical non-deterministic parallel computer—a machine with an indefinite number of CPUs that
can be each run on a separate sub-case.
52The difficulty of factoring large numbers is the foundation of some of our public-key cryptography methods, used for ensuring
that your credit card number on the web is available to the merchant without being available to anyone else listening to the
traffic. Factoring large numbers is not known to be NP -complete.
53Technically, as in the traveling salesman problem, we should phrase this as a decision problem. Find a state (if it exists) with
energy less than E.
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same color?

One of the key challenges in computer science
is determining whether P is equal to NP—that
is, whether all of these problems can be solved in
polynomial time. It is generally believed that the
answer is negative, that in the worst cases NP–
complete problems require exponential time to
solve.
Proving a new type of problem to be NP–
complete usually involves translating an existing
NP–complete problem into the new type (ex-
panding N at most by a polynomial). In Ex-
ercise 1.8, we introduced the problem of deter-
mining satisfiability (SAT) of Boolean logical ex-
pressions. Briefly, the SAT problem is to find an
assignment of N logical variables (true or false)
that makes a given logical expression true, or
to determine that no such assignment is possi-
ble. A logical expression is made from the vari-
ables using the operations OR (∨), AND (∧),
and NOT (¬). We introduced in Exercise 1.8 a
particular subclass of logical expressions called
3SAT which demand simultaneous satisfaction
of M clauses in N variables each an OR of three
literals (where a literal is a variable or its nega-
tion). For example, a 3SAT expression might
start out

[(¬X27)∨X13∨X3]∧ [(¬X2)∨X43∨(¬X21)] . . . .
(8.30)

We showed in that exercise that 3SAT is NP–
complete by translating a general 3-colorability
problem with N nodes into a 3SAT problem
with 3N variables. As it happens, SAT was the
first problem to be proven to be NP–complete;
any NP problem can be mapped onto SAT in
roughly this way. 3SAT is also known to be
NP–complete, but 2SAT (with clauses of only
two literals) is known to be P, solvable in poly-
nomial time.

Numerics
Just because a problem is NP–complete does
not make a typical instance of the problem nu-
merically challenging. The classification is de-
termined by worst-case scenarios, not by the en-
semble of typical problems. If the difficult prob-
lems are rare, the average time for solution might
be acceptable even though some problems in the
ensemble will take exponentially long times to
run. (Most coloring problems with a few hun-
dred nodes can be either quickly 3-colored or
quickly shown to need four; there exist particular

maps, though, which are fiendishly complicated.)
Statistical mechanics methods are used to study
the average time and distribution of times for
solving these hard problems.
In the remainder of this exercise we will im-
plement algorithms to solve examples of kSAT
problems, and apply them to the ensemble of
random 2SAT and 3SAT problems with M
clauses. We will see that, in the limit of large
numbers of variables N , the fraction of satisfi-
able kSAT problems undergoes a phase transi-
tion as the number M/N of clauses per variable
grows. Each new clause reduces the scope for
possible solutions. The random kSAT problems
with few clauses per variable are almost always
satisfiable, and it is easy to find a solution; the
random kSAT problems with many clauses per
variable are almost always not satisfiable, and it
is easy to find a contradiction. Only near the
critical point where the mean number of solu-
tions vanishes as N → ∞ is determining satisfi-
ability typically a challenge.
A logical expression in conjunctive normal form
with N variables Xm can conveniently be rep-
resented on the computer as a list of sublists
of non-zero integers in the range [−N,N ], with
each integer representing a literal (−m repre-
senting ¬Xm) each sublist representing a dis-
junction (OR) of its literals, and the list as a
whole representing the conjunction (AND) of its
sublists. Thus [[−3, 1, 2], [−2, 3,−1]] would be
the expression ((¬X3) ∨ X1 ∨ X2) ∧ ((¬X2) ∨
X3 ∨ (¬X1)).
Download the hints and animation software from
the computer exercises portion of the text web
site [129].
(b) Do exercise 1.8, part (b). Generate on the
computer the conjunctive normal form for the 3-
colorability of the two graphs in Fig. 1.8. (Hint:
There should be N = 12 variables, three for each
node.)
The DP (Davis–Putnam) algorithm for deter-
mining satisfiability is recursive. Tentatively set
a variable to true, reduce the clauses involving
the variable, and apply DP to the remainder.
If the remainder is satisfiable, return satisfiable.
Otherwise set the variable to false, again reduce
the clauses involving the variable, and return DP
applied to the remainder.
To implementing DP, you will want to introduce
(i) a data structure that connects a variable to
the clauses that contain it, and to the clauses
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that contain its negation, and (ii) a record of
which clauses are already known to be true (be-
cause one of its literals has been tentatively set
true). You will want a reduction routine which
tentatively sets one variable, and returns the
variables and clauses changed. (If we reach a
dead end—a contradiction forcing us to unset
the variable—we’ll need these changes in order
to back up.) The recursive solver which calls the
reduction routine should return not only whether
the network is satisfiable, and the solution if it
exists, but also the number of dead ends that it
reached.

Fig. 8.20 D–P algorithm. A visualization of the
Davis–Putnam algorithm during execution. Black
circles are unset variables, the other shades are true
and false, and bonds denote clauses whose truth is
not established.

(c) Implement the DP algorithm. Apply it to
your 3-colorability expressions from part (b).
Let us now explore how computationally chal-
lenging a typical, random 3SAT problem is, as
the number M/N of clauses per variable grows.
(d) Write a routine, given k, N andM , that gen-
erates M random kSAT clauses using N vari-
ables. Make sure that no variable shows up twice
in the same clause (positive or negative). For
N =5, 10, and 20 measure the fraction of 2SAT
and 3SAT problems that are satisfiable, as a
function of M/N . Does the fraction of unsatis-
fiable clusters change with M/N? Around where

is the transition from mostly satisfiable to mostly
unsatisfiable? Make plots of the time (measured
as number of dead ends) you found for each run,
versus M/N , plotting both mean and standard
deviation, and a scatter plot of the individual
times. Is the algorithm slowest near the tran-
sition?
The DP algorithm can be sped up significantly
with a few refinements. The most important is to
remove singletons (‘length one’ clauses with all
but one variable set to unfavorable values, hence
determining the value of the remaining variable).
(e) When reducing the clauses involving a tenta-
tively set variable, notice at each stage whether
any singletons remain; if so, set them and reduce
again. Try your improved algorithm on larger
problems. Is it faster?

Heavy tails and random restarts. The DP al-
gorithm will eventually return either a solution
or a judgment of unsatisfiability, but the time it
takes to return an answer fluctuates wildly from
one run to another. You probably noticed this
in your scatter plots of the times—a few were
huge, and the others small. You might think
that this is mainly because of the rare, difficult
cases. Not so. The time fluctuates wildly even
with repeated DP runs on the same satisfiability
problem [49].
(f) Run the DP algorithm on a 2SAT problem
many times on a single network with N = 40
variables and M = 40 clauses, randomly shuf-
fling the order in which you select variables to
flip. Estimate the power law ρ(t) ∼ tx giv-
ing the probability of the algorithm finishing af-
ter time t. Sort your variables so that the next
one chosen (to be tentatively set) is the one
most commonly arising (positive or negative) in
the clauses. Does that speed up the algorithm?
Try also reversing the order, choosing always the
least used variable. Does that dramatically slow
down your algorithm?
Given that shuffling the order of which spins you
start with can make such a dramatic difference
in the run time, why persist if you are having
trouble? The discovery of the heavy tails moti-
vates adding appropriate random restarts to the
algorithm [49]; by throwing away the effort spent
exploring the neighborhood of one spin choice,
one can both improve the average behavior and
avoid the heavy tails.
It is known that 2SAT has a continuous phase
transition at M/N = 1, and that 3SAT has an
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abrupt phase transition (albeit with critical fluc-
tuations) nearM/N = 4.25. 3SAT is thought to
have severe critical slowing-down near the phase
transition, whatever algorithm used to solve it.
Away from the phase transition, however, the
fiendishly difficult cases that take exponentially
long for DP to solve are exponentially rare; DP
typically will converge quickly.
(g) Using your best algorithm, plot the fraction
of 2SAT problems that are SAT for values of
N = 25, 50, and 100. Does the phase transition
appear to extrapolate to M/N = 1, as the litera-
ture suggests? For 3SAT, try N = 10, 20, and
30, and larger systems if your computer is fast.
Is your phase transition near M/N ≈ 4.25? Sit-

ting at the phase transition, plot the mean time
(dead ends) versus N in this range. Does it ap-
pear that 2SAT is in P? Does 3SAT seem to
take a time which grows exponentially?

Other algorithms. In the past decade, the meth-
ods for finding satisfaction have improved dra-
matically. WalkSAT [116] starts not by try-
ing to set one variable at a time, but starts
with a random initial state, and does a zero-
temperature Monte Carlo, flipping only those
variables which are in unsatisfied clauses. The
best known algorithm, SP, was developed by
physicists [48, 92] using techniques developed to
study the statistical mechanics of spin-glasses.
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This chapter is slightly modified from
a lecture given at the Santa Fe Insti-
tute [118].

In elementary school, we were taught that there were three states of
matter: solid, liquid, and gas. The ancients thought that there were
four: earth, water, air, and fire, which was considered sheer superstition.
In junior high, the author remembers reading a book as a kid called The
Seven States of Matter [51]. At least one was ‘plasma’, which made up
stars and thus most of the Universe,1 and which sounded rather like fire.

1They had not heard of dark matter.

Fig. 9.1 Quasicrystals. Crystals are
surely the oldest known of the broken-
symmetry phases of matter. In the
past few decades, we have uncovered
an entirely new class of quasicrystals,
here [72] with icosahedral symmetry.
Note the five-fold structures, forbidden
in our old categories.

The original three, by now, have become multitudes. In important
and precise ways, magnets are a distinct form of matter. Metals are
different from insulators. Superconductors and superfluids are striking
new states of matter. The liquid crystal in your wristwatch is one of a
huge family of different liquid crystalline states of matter [33] (nematic,
cholesteric, blue phase I, II, and blue fog, smectic A, B, C, C∗, D, I,
. . . ). There are over 200 qualitatively different types of crystals, not
to mention the quasicrystals (Fig. 9.1). There are disordered states of
matter like spin glasses, and states like the fractional quantum Hall effect
with excitations of charge e/3 like quarks. Particle physicists tell us that
the vacuum we live within has in the past been in quite different states;
in the last vacuum before this one, there were four different kinds of
light [31] (mediated by what is now the photon, the W+, the W−, and
the Z particle).
When there were only three states of matter, we could learn about

each one and then turn back to learning long division. Now that there
are multitudes, though, we have had to develop a system. Our system
is constantly being extended and modified, because we keep finding new
phases which do not fit into the old frameworks. It is amazing how the
500th new state of matter somehow screws up a system which worked
fine for the first 499. Quasicrystals, the fractional quantum hall effect,
and spin glasses all really stretched our minds until (1) we understood
why they behaved the way they did, and (2) we understood how they
fit into the general framework.
In this chapter, we are going to tell you the system. It consists of

four basic steps [91]. First, you must identify the broken symmetry
(Section 9.1). Second, you must define an order parameter (Section 9.2).
Third, you are told to examine the elementary excitations (Section 9.3).
Fourth, you classify the topological defects (Section 9.4). Most of what
we say in this chapter is taken from Mermin [91], Coleman [31], and
deGennes and Prost [33], which are heartily recommended.
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9.1 Identify the broken symmetry(b)(a)

Fig. 9.2 Which is more symmet-

ric? Cube and sphere. (a) The cube
has many symmetries. It can be ro-
tated by 90◦, 180◦, or 270◦ about any
of the three axes passing through the
faces. It can be rotated by 120◦ or 240◦

about the corners and by 180◦ about
an axis passing from the center through
any of the 12 edges. (b) The sphere,
though, can be rotated by any angle.
The sphere respects rotational invari-
ance: all directions are equal. The cube
is an object which breaks rotational
symmetry: once the cube is there, some
directions are more equal than others.

(a) (b)

Ice Water

Fig. 9.3 Which is more symmet-

ric? Ice and water. At first glance,
water seems to have much less symme-
try than ice. (a) The picture of ‘two-
dimensional’ ice clearly breaks the ro-
tational invariance; it can be rotated
only by 120◦ or 240◦. It also breaks
the translational invariance; the crys-
tal can only be shifted by certain spe-
cial distances (whole number of lattice
units). (b) The picture of water has
no symmetry at all; the atoms are jum-
bled together with no long-range pat-
tern at all. However, water as a phase
has a complete rotational and transla-
tional symmetry; the pictures will look
the same if the container is tipped or
shoved.

What is it that distinguishes the hundreds of different states of matter?
Why do we say that water and olive oil are in the same state (the liquid
phase), while we say aluminum and (magnetized) iron are in different
states? Through long experience, we have discovered that most phases
differ in their symmetry.2

2This is not to say that different phases
always differ by symmetries! Liquids
and gases have the same symmetry, and
some fluctuating phases in low dimen-
sions do not break a symmetry. It is
safe to say, though, that if the two ma-
terials have different symmetries, they
are different phases.

Consider Figs 9.2, showing a cube and a sphere. Which is more sym-
metric? Clearly, the sphere has many more symmetries than the cube.
One can rotate the cube by 90◦ in various directions and not change
its appearance, but one can rotate the sphere by any angle and keep it
unchanged.
In Fig. 9.3, we see a two-dimensional schematic representation of ice

and water. Which state is more symmetric here? Naively, the ice looks
much more symmetric; regular arrangements of atoms forming a lat-
tice structure. Ice has a discrete rotational symmetry: one can rotate
Fig. 9.3(a) by multiples of 60◦. It also has a discrete translational sym-
metry: it is easy to tell if the picture is shifted sideways, unless one shifts
by a whole number of lattice units. The water looks irregular and disor-
ganized. On the other hand, if one rotated Fig. 9.3(b) by an arbitrary
angle, it would still look like water! Water is not a snapshot; it is better
to think of it as a combination (or ensemble) of all possible snapshots.
While the snapshot of the water shown in the figure has no symmetries,
water as a phase has complete rotational and translational symmetry.

9.2 Define the order parameter

Particle physics and condensed-matter physics have quite different philo-
sophies. Particle physicists are constantly looking for the building blocks.
Once pions and protons were discovered to be made of quarks, the fo-
cus was on quarks. Now quarks and electrons and photons seem to be
made of strings, and strings are hard to study experimentally (so far).
Condensed-matter physicists, on the other hand, try to understand why
messy combinations of zillions of electrons and nuclei do such interest-
ing simple things. To them, the fundamental question is not discovering
the underlying quantum mechanical laws, but in understanding and ex-
plaining the new laws that emerge when many particles interact.3

As one might guess, we do not always keep track of all the electrons
and protons. We are always looking for the important variables, the
important degrees of freedom. In a crystal, the important variables are
the motions of the atoms away from their lattice positions. In a magnet,
the important variable is the local direction of the magnetization (an
arrow pointing to the ‘north’ end of the local magnet). The local mag-
netization comes from complicated interactions between the electrons,

3The particle physicists use order parameter fields too; their quantum fields also hide lots of details about what their quarks
and gluons are composed of. The main difference is that they do not know what their fields are composed of. It ought to be
reassuring to them that we do not always find our greater knowledge very helpful.



 Copyright Oxford University Press 2006  v1.0                       --  

9.2 Define the order parameter 193

     space

M

x

Physical
  space Order parameter

Fig. 9.4 Magnetic order parame-

ter. For a magnetic material at a given
temperature, the local magnetization
|M| = M0 will be pretty well fixed,
but the energy is often nearly indepen-
dent of the direction M̂ = M/M0 of
the magnetization. Often, the magne-
tization changes directions in different
parts of the material. (That is why not
all pieces of iron are magnetic!) We
take the magnetization as the order pa-
rameter for a magnet; you can think of
it as an arrow pointing to the north end
of each atomic magnet. The current
state of the material is described by an
order parameter field M(x). It can be
viewed either as an arrow at each point
in space. or as a function taking points
in space x into points on the sphere.
This sphere S2 is the order parameter
space for the magnet.

and is partly due to the little magnets attached to each electron and
partly due to the way the electrons dance around in the material; these
details are for many purposes unimportant.
The important variables are combined into an ‘order parameter field’.

In Fig. 9.4, we see the order parameter field for a magnet.4 At each 4Most magnets are crystals, which al-
ready have broken the rotational sym-
metry. For some ‘Heisenberg’ magnets,
the effects of the crystal on the mag-
netism is small. Magnets are really dis-
tinguished by the fact that they break
time-reversal symmetry: if you reverse
the arrow of time, the magnetization
changes sign.

position x = (x, y, z) we have a direction for the local magnetization
M(x). The length of M is pretty much fixed by the material, but the
direction of the magnetization is undetermined. By becoming a magnet,
this material has broken the rotational symmetry. The order parameter
M labels which of the various broken symmetry directions the material
has chosen.
The order parameter is a field; at each point in our magnet, M(x)

tells the local direction of the field near x. Why would the magne-
tization point in different directions in different parts of the magnet?
Usually, the material has lowest energy when the order parameter field
is uniform, when the symmetry is broken in the same way throughout
space. In practice, though, the material often does not break symmetry
uniformly. Most pieces of iron do not appear magnetic, simply because
the local magnetization points in different directions at different places.
The magnetization is already there at the atomic level; to make a mag-
net, you pound the different domains until they line up. We will see in
this chapter that much of the interesting behavior we can study involves
the way the order parameter varies in space.
The order parameter field M(x) can be usefully visualized in two

different ways. On the one hand, one can think of a little vector attached
to each point in space. On the other hand, we can think of it as a
mapping from real space into order parameter space. That is, M is a
function which takes different points in the magnet onto the surface of
a sphere (Fig. 9.4). As we mentioned earlier, mathematicians call the
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Fig. 9.5 Nematic order parame-

ter space. (a) Nematics are made up
of long, thin molecules that prefer to
align with one another. (Liquid crystal
watches are made of nematics.) Since
they do not care much which end is
up, their order parameter is not a vec-
tor n̂ along the axis of the molecules,
but is instead a unit vector up to the
equivalence n̂ ≡ −n̂. (b) The ne-
matic order parameter space is a half-
sphere, with antipodal points on the
equator identified. Thus, for example,
the route shown over the top of the
hemisphere is a closed path; the two in-
tersections with the equator correspond
to the same orientations of the nematic
molecules in space.

n

(a) (b)

sphere S2, because locally it has two dimensions. (They do not care
what dimension the sphere is embedded in.)
Choosing an order parameter is an art. Usually we are studying a new

system which we do not understand yet, and guessing the order param-
eter is a piece of figuring out what is going on. Also, there is often more
than one sensible choice. In magnets, for example, one can treat M as a
fixed-length vector in S2, labeling the different broken symmetry states.
This topological order parameter is the best choice at low temperatures,
where we study the elementary excitations and topological defects. For
studying the transition from low to high temperatures, when the mag-
netization goes to zero, it is better to consider M as a ‘soft-spin’ vector
of varying length (a vector in R3, Exercise 9.5). Finding the simplest
description for your needs is often the key to the problem.
Before varying our order parameter in space, let us develop a few

more examples. The liquid crystals in LCD displays (like those in old
digital watches) are nematics. Nematics are made of long, thin molecules
which tend to line up so that their long axes are parallel. Nematic liquid
crystals, like magnets, break the rotational symmetry. Unlike magnets,
though, the main interaction is not to line up the north poles, but to
line up the axes. (Think of the molecules as American footballs, the
same up and down.) Thus the order parameter is not a vector M but
a headless vector ~n ≡ −~n. The order parameter space is a hemisphere,
with opposing points along the equator identified (Fig. 9.5(b)). This
space is called RP 2 by the mathematicians (the projective plane), for
obscure reasons.

u

0

1 2

u

u

Fig. 9.6 Two-dimensional crystal.
A crystal consists of atoms arranged in
regular, repeating rows and columns.
At high temperatures, or when the
crystal is deformed or defective, the
atoms will be displaced from their lat-
tice positions. The displacement u is
shown for one of the atoms. Even bet-
ter, one can think of u(x) as the lo-
cal translation needed to bring the ideal
lattice into registry with atoms in the
local neighborhood of x.
Also shown is the ambiguity in the def-
inition of u. Which ideal atom should
we identify with a given real one? This
ambiguity makes the order parameter u
equivalent to u +max̂ + naŷ. Instead
of a vector in two dimensions, the order
parameter space is a square with peri-
odic boundary conditions.

For a crystal, the important degrees of freedom are associated with the
broken translational order. Consider a two-dimensional crystal which
has lowest energy when in a square lattice, but which is deformed away
from that configuration (Fig. 9.6). This deformation is described by an
arrow connecting the undeformed ideal lattice points with the actual
positions of the atoms. If we are a bit more careful, we say that u(x)
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Fig. 9.7 Crystal order parameter

space. Here we see that gluing the op-
posite edges of a square together (giv-
ing it periodic boundary conditions)
yields a torus. (A torus is a surface of
a doughnut, inner tube, or bagel, de-
pending on your background.)

is that displacement needed to align the ideal lattice in the local region
onto the real one. By saying it this way, u is also defined between the
lattice positions; there still is a best displacement which locally lines up
the two lattices.
The order parameter u is not really a vector; there is a subtlety. In

general, which ideal atom you associate with a given real one is am-
biguous. As shown in Fig. 9.6, the displacement vector u changes by a
multiple of the lattice constant a when we choose a different reference
atom:

u ≡ u+ ax̂ = u+max̂+ naŷ. (9.1)

The set of distinct order parameters forms a square with periodic bound-
ary conditions. As Fig. 9.7 shows, a square with periodic boundary
conditions has the same topology as a torus, T2.
Finally, let us mention that guessing the order parameter (or the bro-

ken symmetry) is not always so straightforward. For example, it took
many years before anyone figured out that the order parameter for su-
perconductors and superfluid helium 4 is a complex number ψ.5 The

5The order parameter field ψ(x) rep-
resents the ‘condensate wavefunction’,
which (extremely loosely) is a single
quantum state occupied by a large frac-
tion of the Cooper pairs or helium
atoms in the material. The correspond-
ing broken symmetry is closely related
to the number of particles. In ‘sym-
metric’, normal liquid helium, the local
number of atoms is conserved; in super-
fluid helium, the local number of atoms
becomes indeterminate! (This is be-
cause many of the atoms are condensed
into that delocalized wavefunction; see
Exercise 9.8.)

magnitude of the complex number ψ is a fixed function of temperature,
so the topological order parameter space is the set of complex numbers
of magnitude |ψ|. Thus the order parameter space for superconductors
and superfluids is a circle S1.
Now we examine small deformations away from a uniform order pa-

rameter field.
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9.3 Examine the elementary excitations

u(x)
Fig. 9.8 One-dimensional sound

wave. The order parameter field for
a one-dimensional crystal is the local
displacement u(x). Long-wavelength
waves in u(x) have low frequencies, and
cause sound.
Crystals are rigid because of the bro-
ken translational symmetry. (Glasses
are quite rigid, but we fundamentally
do not understand why [130].) Because
they are rigid, they fight displacements.
Because there is an underlying continu-
ous translational symmetry, a uniform
displacement costs no energy. A nearly
uniform displacement, thus, will cost
little energy, and therefore will have
a low frequency. These low-frequency
elementary excitations are the sound
waves in crystals.

It is amazing how slow human beings are. The atoms inside your eyelash
collide with one another a million million times during each time you
blink your eye. It is not surprising, then, that we spend most of our
time in condensed-matter physics studying those things in materials that
happen slowly. Typically only vast conspiracies of immense numbers of
atoms can produce the slow behavior that humans can perceive.
A good example is given by sound waves. We will not talk about

sound waves in air; air does not have any broken symmetries, so it
does not belong in this chapter.6 Consider instead sound in the one-

6We argue here that low-frequency ex-
citations come from spontaneously bro-
ken symmetries. They can also come
from conserved quantities; since air
cannot be created or destroyed, a long-
wavelength density wave cannot relax
quickly.

dimensional crystal shown in Fig. 9.8. We describe the material with
an order parameter field u(x), where here x is the position within the
material and x − u(x) is the position of the reference atom within the
ideal crystal.
Now, there must be an energy cost7 for deforming the ideal crystal.

7At finite temperatures, we mean a free
energy cost.

There will not be any cost, though, for a uniform translation; u(x) ≡ u0
has the same energy as the ideal crystal. (Shoving all the atoms to the
right does not cost any energy.) So, the energy will depend only on
derivatives of the function u(x). The simplest energy that one can write
looks like8

8See Exercises 9.5 and 9.6.

E =

∫
dx

1

2
κ

(
du

dx

)2

. (9.2)

Higher derivatives will not be important for the low frequencies that
humans can hear.9 Now, you may remember Newton’s law F = ma.

9Terms with high derivatives become
small when you look on long length
and time scales; the nth derivative
∂nu/∂xn ∼ 1/Dn for a function with
variations on a length D. (Test this;
take the 400th derivative of u(x) =
cos(2πx/D).) Powers of gradients
(∂u/∂x)n ∼ 1/Dn are also small.

The force here is given by the derivative of the energy F = −(dE/d⊓).
The mass is represented by the density of the material ρ. Working out
the math (a variational derivative and an integration by parts, for those
who are interested) gives us the wave equation

ρü = κ(d2u/dx2). (9.3)

The solutions to this equation

u(x, t) = u0 cos(kx− ωkt) (9.4)

represent phonons or sound waves. The wavelength of the sound waves
is λ = 2π/k, and the frequency is ω in radians per second. Substituting
eqn 9.4 into eqn 9.3 gives us the relation

ω =
√
κ/ρ k. (9.5)

The frequency gets small only when the wavelength gets large. This
is the vast conspiracy: only huge sloshings of many atoms can happen
slowly. Why does the frequency get small? Well, there is no cost to a uni-
form translation, which is what eqn 9.4 looks like for infinite wavelength.
Why is there no energy cost for a uniform displacement? Well, there is
a translational symmetry: moving all the atoms the same amount does
not change their interactions. But have we not broken that symmetry?
That is precisely the point.
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Long after phonons were understood, Jeffrey Goldstone started to
think about broken symmetries and order parameters in the abstract.
He found a rather general argument that, whenever a continuous sym-
metry (rotations, translations, SU(3), . . . ) is broken, long-wavelength
modulations in the symmetry direction should have low frequencies (see
Exercise 10.9). The fact that the lowest energy state has a broken sym-
metry means that the system is stiff; modulating the order parameter
will cost an energy rather like that in eqn 9.2. In crystals, the bro-
ken translational order introduces a rigidity to shear deformations, and
low-frequency phonons (Fig. 9.8). In magnets, the broken rotational
symmetry leads to a magnetic stiffness and spin waves (Fig. 9.9). In
nematic liquid crystals, the broken rotational symmetry introduces an
orientational elastic stiffness (they pour, but resist bending!) and rota-
tional waves (Fig. 9.10).

Fig. 9.9 Magnets: spin waves.
Magnets break the rotational invari-
ance of space. Because they resist
twisting the magnetization locally, but
do not resist a uniform twist, they have
low-energy spin wave excitations.

Fig. 9.10 Nematic liquid crystals:

rotational waves. Nematic liquid
crystals also have low-frequency rota-
tional waves.

In superfluids, an exotic broken gauge symmetry10 leads to a stiffness

10See Exercise 9.8.

which results in the superfluidity. Superfluidity and superconductivity
really are not any more amazing than the rigidity of solids. Is it not
amazing that chairs are rigid? Push on a few atoms on one side and,
109 atoms away, atoms will move in lock-step. In the same way, de-
creasing the flow in a superfluid must involve a cooperative change in
a macroscopic number of atoms, and thus never happens spontaneously
any more than two parts of the chair ever drift apart.
The low-frequency Goldstone modes in superfluids are heat waves!

(Do not be jealous; liquid helium has rather cold heat waves.) This is
often called second sound, but is really a periodic temperature modula-
tion, passing through the material like sound does through a crystal.
Just to round things out, what about superconductors? They have

also got a broken gauge symmetry, and have a stiffness that leads to
superconducting currents. What is the low-energy excitation? It does
not have one. But what about Goldstone’s theorem?
Goldstone of course had conditions on his theorem which excluded

superconductors. (Actually, Goldstone was studying superconductors
when he came up with his theorem.) It is just that everybody forgot
the extra conditions, and just remembered that you always got a low-
frequency mode when you broke a continuous symmetry. We condensed-
matter physicists already knew why there is no Goldstone mode for su-
perconductors; P. W. Anderson had shown that it was related to the
long-range Coulomb interaction, and its absence is related to the Meiss-
ner effect. The high-energy physicists forgot, though, and had to re-
discover it for themselves. Now we all call the loophole in Goldstone’s
theorem the Higgs mechanism, because (to be truthful) Higgs and his
high-energy friends found a simpler and more elegant explanation than
we condensed-matter physicists had.11

11In condensed-matter language, the
Goldstone mode produces a charge-
density wave, whose electric fields are
independent of wavelength. This gives
it a finite frequency (the plasma fre-
quency) even at long wavelength. In
high-energy language the photon eats
the Goldstone boson, and gains a mass.
The Meissner effect is related to the gap
in the order parameter fluctuations (~
times the plasma frequency), which the
high-energy physicists call the mass of
the Higgs boson.

We end this section by bringing up another exception to Goldstone’s
theorem; one we have known about even longer, but which we do not
have a nice explanation for. What about the orientational order in
crystals? Crystals break both the continuous translational order and the
continuous orientational order. The phonons are the Goldstone modes
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for the translations, but there are no orientational Goldstone modes
in crystals.12 Rotational waves analogous to those in liquid crystals
(Fig. 9.10) are basically not allowed in crystals; at long distances they
tear up the lattice. We understand this microscopically in a clunky way,
but do not have an elegant, macroscopic explanation for this basic fact
about solids.

9.4 Classify the topological defects

When the author was in graduate school, the big fashion was topological
defects. Everybody was studying homotopy groups, and finding exotic
systems to write papers about. It was, in the end, a reasonable thing to
do.13 It is true that in a typical application you will be able to figure out13The next fashion, catastrophe theory,

never became particularly important. what the defects are without homotopy theory. You will spend forever
drawing pictures to convince anyone else, though. Most importantly,
homotopy theory helps you to think about defects.

Fig. 9.11 Dislocation in a crystal.
Here is a topological defect in a crys-
tal. We can see that one of the rows of
atoms on the right disappears half-way
through our sample. The place where it
disappears is a defect, because it does
not locally look like a piece of the per-
fect crystal. It is a topological defect
because it cannot be fixed by any local
rearrangement. No reshuffling of atoms
in the middle of the sample can change
the fact that five rows enter from the
right, and only four leave from the left!
The Burger’s vector of a disloca-
tion is the net number of extra rows
and columns, combined into a vector
(columns, rows).

A defect is a tear in the order parameter field. A topological defect
is a tear that cannot be patched. Consider the piece of two-dimensional
crystal shown in Fig. 9.11. Starting in the middle of the region shown,
there is an extra row of atoms. (This is called a dislocation.) Away from
the middle, the crystal locally looks fine; it is a little distorted, but there
is no problem seeing the square grid and defining an order parameter.
Can we rearrange the atoms in a small region around the start of the
extra row, and patch the defect?
No. The problem is that we can tell there is an extra row without

ever coming near to the center. The traditional way of doing this is to
traverse a large loop surrounding the defect, and count the net number
of rows crossed by the loop. For the loop shown in Fig. 9.12, there are
two rows going up and three going down; no matter how far we stay
from the center, there will always be an extra row on the right.
How can we generalize this basic idea to other systems with broken

symmetries? Remember that the order parameter space for the two-
dimensional square crystal is a torus (see Fig. 9.7), and that the order
parameter at a point is that translation which aligns a perfect square grid
to the deformed grid at that point. Now, what is the order parameter far
to the left of the defect (a), compared to the value far to the right (d)?
The lattice to the right is shifted vertically by half a lattice constant;
the order parameter has been shifted half-way around the torus. As

12In two dimensions, crystals provide another loophole in a well-known result, known as the Mermin–Wagner theorem. Hohen-
berg, Mermin, and Wagner, in a series of papers, proved in the 1960s that two-dimensional systems with a continuous symmetry
cannot have a broken symmetry at finite temperature. At least, that is the English phrase everyone quotes when they discuss
the theorem; they actually prove it for several particular systems, including superfluids, superconductors, magnets, and trans-
lational order in crystals. Indeed, crystals in two dimensions do not break the translational symmetry; at finite temperatures,
the atoms wiggle enough so that the atoms do not sit in lock-step over infinite distances (their translational correlations decay
slowly with distance). But the crystals do have a broken orientational symmetry: the crystal axes point in the same directions
throughout space. (Mermin discusses this point in his paper on crystals.) The residual translational correlations (the local
alignment into rows and columns of atoms) introduce long-range forces which force the crystalline axes to align, breaking the
continuous rotational symmetry.
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Fig. 9.12 Loop around the dislo-

cation mapped onto order parameter
space. Consider a closed loop around
the defect. The order parameter field
u changes as we move around the loop.
The positions of the atoms around the
loop with respect to their local ‘ideal’
lattice drift upward continuously as we
traverse the loop. This precisely cor-
responds to a path around the order
parameter space; the path passes once
around the hole of the torus. A path
through the hole corresponds to an ex-
tra column of atoms.
Moving the atoms slightly will deform
the path, but will not change the num-
ber of times the path winds through
or around the hole. Two paths which
traverse the torus the same number of
times through and around are equiva-
lent.

shown in Fig. 9.12, as you progress along the top half of a clockwise loop
the order parameter (position of the atom within the unit cell) moves
upward, and along the bottom half again moves upward. All in all,
the order parameter circles once around the torus. The winding number
around the torus is the net number of times the torus is circumnavigated
when the defect is orbited once.

Fig. 9.13 Hedgehog defect. Mag-
nets have no line defects (you cannot
lasso a basketball), but do have point
defects. Here is shown the hedgehog
defect, M(x) = M0 x̂. You cannot sur-
round a point defect in three dimen-
sions with a loop, but you can enclose
it in a sphere. The order parameter
space, remember, is also a sphere. The
order parameter field takes the enclos-
ing sphere and maps it onto the or-
der parameter space, wrapping it ex-
actly once. The point defects in mag-
nets are categorized by this wrapping

number; the second homotopy group of
the sphere is Z, the integers.

Why do we call dislocations topological defects? Topology is the study
of curves and surfaces where bending and twisting is ignored. An order
parameter field, no matter how contorted, which does not wind around
the torus can always be smoothly bent and twisted back into a uni-
form state. If along any loop, though, the order parameter winds either
around the hole or through it a net number of times, then enclosed in
that loop is a defect which cannot be bent or twisted flat; the winding
number (an integer) cannot change in a smooth and continuous fashion.

How do we categorize the defects for two-dimensional square crystals?
Well, there are two integers: the number of times we go around the cen-
tral hole, and the number of times we pass through it. In the traditional
description, this corresponds precisely to the number of extra rows and
columns of atoms we pass by. This was named the Burger’s vector in
the old days, and nobody needed to learn about tori to understand it.
We now call it the first homotopy group of the torus:

Π1(T
2) = Z× Z, (9.6)

where Z represents the integers. That is, a defect is labeled by two
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integers (m,n), where m represents the number of extra rows of atoms
on the right-hand part of the loop, and n represents the number of extra
columns of atoms on the bottom.
This is where we show the practical importance of topological defects.

Unfortunately for you, we cannot enclose a soft copper tube for you
to play with, the way the author does in lectures.14 They are a few

14Some paper clips also work harden,
but less dramatically (partly because
they have already been bent). After
several bendings, they will stop harden-
ing and start to weaken dramatically;
that is because they are beginning to
break in two.

cents each, and machinists on two continents have been quite happy to
cut them up for demonstrations, but they do not pack well into books.
Anyhow, copper and most metals exhibit what is called work hardening.
It is easy to bend the tube, but it is amazingly tough to bend it back.
The soft original copper is relatively defect free. To bend, the crystal
has to create lots of line dislocations, which move around to produce
the bending15 The line defects get tangled up, and get in the way of

15This again is the mysterious lack of
rotational Goldstone modes in crystals,
(note 12 on p. 198), which would oth-
erwise mediate the bend. See also Ex-
ercise 11.5. any new defects. So, when you try to bend the tube back, the metal

becomes much stiffer. Work hardening has had a noticeable impact on
the popular culture. The magician effortlessly bends the metal bar, and
the strongman cannot straighten it . . . Superman bends the rod into a
pair of handcuffs for the criminals . . .

n

Fig. 9.14 Defect line in a nematic

liquid crystal. You cannot lasso
the sphere, but you can lasso a hemi-
sphere! Here is the defect correspond-
ing to the path shown in Fig. 9.5(b).
As you pass clockwise around the de-
fect line, the order parameter rotates
counter-clockwise by 180◦. This path
on Fig. 9.5(b) would actually have
wrapped around the right-hand side of
the hemisphere. Wrapping around the
left-hand side would have produced a
defect which rotated clockwise by 180◦.
The path in Fig. 9.5(b) is half-way in
between, and illustrates that these two
defects are really not different topolog-
ically (Exercise 9.1).

Before we explain why these paths form a group, let us give some
more examples of topological defects and how they can be classified.
Figure 9.13 shows a ‘hedgehog’ defect for a magnet. The magnetization
simply points straight out from the center in all directions. How can we
tell that there is a defect, always staying far away? Since this is a point
defect in three dimensions, we have to surround it with a sphere. As we
move around on this sphere in ordinary space, the order parameter moves
around the order parameter space (which also happens to be a sphere, of
radius |M|). In fact, the order parameter space is covered exactly once
as we surround the defect. This is called the wrapping number, and does
not change as we wiggle the magnetization in smooth ways. The point
defects of magnets are classified by the wrapping number:

Π2(S
2) = Z. (9.7)

Here, the 2 subscript says that we are studying the second homotopy
group. It represents the fact that we are surrounding the defect with
a two-dimensional spherical surface, rather than the one-dimensional
curve we used in the crystal.16

16The zeroth homotopy group classi-
fies domain walls. The third homo-
topy group, applied to defects in three-
dimensional materials, classifies what
the condensed-matter people call tex-

tures and the particle people sometimes
call skyrmions. The fourth homotopy
group, applied to defects in space–time
path integrals, classifies types of instan-
tons.

You might get the impression that a defect with topological strength
seven is really just seven strength 1 defects, stuffed together. You would
be quite right; occasionally defects do bunch up, but usually big ones
decompose into small ones. This does not mean, though, that adding
two defects always gives a bigger one. In nematic liquid crystals, two
line defects are as good as none! Magnets do not have any line defects;
a loop in real space never surrounds something it cannot smooth out.
Formally, we show this by noting that the first homotopy group of the
sphere is zero; any closed path on a basketball can be contracted to a
point. For a nematic liquid crystal, though, the order parameter space
was a hemisphere. There is a path on the hemisphere in Fig. 9.5(b)
that you cannot get rid of by twisting and stretching. It does not look
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Fig. 9.15 Multiplying two paths.
The product of two paths is given
by starting from their intersection,
traversing the first path, and then
traversing the second. The inverse of
a path is the same path traveled back-
ward; compose the two and one can
shrink them continuously back to noth-
ing. This definition makes the homo-
topy classes into a group.
This multiplication law has a physical
interpretation. If two defect lines co-
alesce, their homotopy class must be
given by the loop enclosing both. This
large loop can be deformed into two lit-
tle loops, so the homotopy class of the
coalesced line defect is the product of
the homotopy classes of the individual
defects.

like a closed path, but you have to remember that the two opposing
points on the equator really represent the same nematic orientation.
The corresponding defect has a director field n which rotates 180◦ as
the defect is orbited; Fig. 9.14 shows one typical configuration (called
an s = −1/2 defect). Now, if you put two of these defects together, they
cancel (Exercise 9.1). Nematic line defects add modulo 2, like ‘clock
arithmetic’ with two hours in a day:17 17In this analogy, we ignore the re-use

of hour names in the afternoon.

Π1(RP
2) = Z2. (9.8)

Two parallel defects can coalesce and heal, even though each one indi-
vidually is stable; each goes half-way around the sphere, and the whole
path can be shrunk to zero.
Finally, why are these defect categories a group? A group is a set

with a multiplication law, not necessarily commutative, and an inverse
for each element. For the first homotopy group, the elements of the group
are equivalence classes of paths; two paths are equivalent if one can be
stretched and twisted onto the other, staying in the order parameter
space at all times.18 For example, any path going through the hole from

18A path is a continuous mapping from
the circle into the order parameter
space: θ → u(θ), 0 ≤ θ < 2π. When
we encircle the defect with a loop, we
get a path in order parameter space as
shown in Fig. 9.4; θ → x(θ) is the loop
in real space, and θ → u(x(θ)) is the
path in order parameter space. Two
paths are equivalent if there is a con-
tinuous one-parameter family of paths
connecting one to the other: u ≡ v if
there exists ut(θ) continuous both in θ
and in 0 ≤ t ≤ 1, with u0 ≡ u and
u1 ≡ v.

the top (as in the top right-hand torus in Fig. 9.15) is equivalent to any
other one. To multiply a path u and a path v, one must first make sure
that they meet at some point (by dragging them together, probably).
Then one defines a new path u ⊗ v by traversing first the path u and
then v.19

19That is, if u and v meet at θ = 0 ≡
2π, we define u ⊗ v(θ) ≡ u(2θ) for 0 ≤
θ ≤ π, and u ⊗ v(θ) ≡ v(2θ) for π ≤
θ ≤ 2π.

The inverse of a path u is just the path which runs along the same path
in the reverse direction. The identity element consists of the equivalence
class of paths which do not enclose a hole; they can all be contracted
smoothly to a point (and thus to one another). Finally, the multipli-
cation law has a direct physical implication: encircling two defect lines
of strength u and v is completely equivalent to encircling one defect of
strength u⊗ v (Fig. 9.15).
This all seems pretty abstract; maybe thinking about order parameter
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spaces and paths helps one think more clearly, but are there any real uses
for talking about the group structure? Let us conclude this chapter with
an amazing, physically interesting consequence of the multiplication laws
we described.

α
β

Fig. 9.16 Two defects: can they

cross? Can a defect line of class α
pass by a line of class β, without getting
topologically entangled?

Can two defect lines cross one another? Figure 9.16 shows two defect
lines, of strength (homotopy type) α and β, which are not parallel.
Suppose there is an external force pulling the α defect past the β one.
Figure 9.17 shows the two line defects as we bend and stretch one to
pass by the other. There is a trail left behind of two parallel defect
lines. α can really leave β behind only if it is topologically possible to
erase the trail. Can the two lines annihilate one another? Only if their
net strength is zero, as measured by the loop in 9.17.
Now, get two wires and some string. Bend the wires into the shape

found in Fig. 9.17. Tie the string into a fairly large loop, surrounding
the doubled portion. Wiggle the string around, and try to get the string
out from around the doubled section. You will find that you cannot
completely remove the string (It is against the rules to pull the string
past the cut ends of the defect lines!), but that you can slide it downward
into the configuration shown in Fig. 9.18.

βαβ α 
−1 −1

Fig. 9.17 Pulling off a loop around

two defects. We see that we can pass
by if we leave a trail; is the connect-
ing double line topologically equal to
the identity (no defect)? Encircle the
double line by a loop. The loop can be
wiggled and twisted off the double line,
but it still circles around the two legs
of the defects α and β.

Now, in this figure we see that each wire is encircled once clockwise
and once counter-clockwise. Do they cancel? Not necessarily! If you
look carefully, the order of traversal is such that the net homotopy class
is βαβ−1α−1, which is only the identity if β and α commute. Thus the
physical entanglement problem for defects is directly connected to the
group structure of the paths; commutative defects can pass through one
another, non-commutative defects entangle.
It would be tidy if we could tell you that the work hardening in cop-

per is due to topological entanglements of defects. It would not be true.
The homotopy group of dislocation lines in fcc copper is commutative.
(It is rather like the two-dimensional square lattice; if α = (m,n) and
β = (o, p) with m,n, o, p the number of extra horizontal and vertical
lines of atoms, then αβ = (m+ o, n+ p) = βα.) The reason dislocation
lines in copper do not pass through one another is energetic, not topo-
logical. The two dislocation lines interact strongly with one another,
and energetically get stuck when they try to cross. Remember at the
beginning of the chapter, we said that there were gaps in the system;
the topological theory can only say when things are impossible to do,
not when they are difficult to do.
It would be nice to tell you that this beautiful connection between

the commutativity of the group and the entanglement of defect lines is
nonetheless important in lots of other contexts. That too would not
be true. There are two types of materials known which are supposed to
suffer from defect lines which topologically entangle. The first are biaxial
nematics, which were thoroughly analyzed theoretically before anyone
found one. The other are the metallic glasses, where David Nelson has a
theory of defect lines needed to relieve the frustration. Nelson’s defects
do not commute, and so cannot cross one another. He originally hoped
to explain the freezing of the metallic glasses into random configurations
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βα Fig. 9.18 Non-commuting defects.
The homotopy class for the loop is pre-
cisely βαβ−1α−1, which is the identity
(no defect) precisely when βα = αβ.
Thus two defect lines can pass by one
another if their homotopy classes com-
mute!

as an entanglement of defect lines. Nobody has ever been able to take
this idea and turn it into a real calculation, though.

Exercises

Topological defects are entertaining and challenging to
visualize and understand. Topological defects in nematic
liquid crystals provides a physical visualization of ho-
motopy theory and an integral form for the topological
charge. Topological defects in the XY model explores
the defect composition law. The energetics and internal
structure of a point defect is studied in Defect energet-
ics and total divergence terms, and a surface defect in
Domain walls in magnets.

The use of symmetry to develop new laws of matter
without microscopic input is explored in Symmetries and
wave equations and Landau theory for the Ising model.
The latter develops the most general free energy density
allowed by symmetry, while the former uses symmetry to
find the equations of motion directly.

Where do the order parameters come from? In simple
liquid crystals and magnets, one has an intuitive feel for
the broken symmetry state. In Superfluid order and vor-
tices and the challenging exercise Superfluids: density ma-
trices and ODLRO we derive in increasing levels of rigor
the complex order parameter and broken gauge symmetry
characteristic of superfluidity.

(9.1) Topological defects in nematic liquid crys-
tals. (Mathematics, Condensed matter) ©3
The winding number S of a defect is θnet/2π,
where θnet is the net angle of rotation that the or-
der parameter makes as you circle the defect. The

winding number is positive if the order parame-
ter rotates in the same direction as the traversal
(Fig. 9.19(a)), and negative if it rotates in the
opposite directions (Fig. 9.19(b)).

= 1/2S S = −1/2

(b)(a)

Fig. 9.19 Defects in nematic liquid crystals.
(a) S = 1/2 disclination line. (b) S = −1/2 disclina-
tion. The dots are not physical, but are a guide to
help you trace the orientations (starting on the left
and moving clockwise); nematic liquid molecules of-
ten have a head and tail, but there is no long-range
correlation in which direction the heads lie.

As you can deduce topologically (Fig. 9.5(b) on
p. 194), the winding number is not a topological
invariant in general. It is for superfluids S1 and
crystals TD, but not for Heisenberg magnets or
nematic liquid crystals (shown). If we treat the
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plane of the figure as the equator of the hemi-
sphere, you can see that the S = 1/2 defect ro-
tates around the sphere around the left half of the
equator, and the S = −1/2 defect rotates around
the right half of the equator. These two paths
can be smoothly deformed into one another; the
path shown on the order parameter space figure
(Fig. 9.5(b)) is about half-way between the two.

Which figure below represents the defect configur-
ation in real space half-way between S = 1/2 and
S = −1/2, corresponding to the intermediate path
shown in Fig. 9.5(b) on p. 194? (The changing
shapes denote rotations into the third dimension.)

(A)

(B)

(C)

(D)

(E)

(9.2) Topological defects in the XY model.
(Mathematics, Condensed matter) ©3
Let the order parameter field m(x, y) of a two-
dimensional XY model be a unit vector field in
the plane (order parameter space S1). The topo-
logical defects are characterized by their winding
number s, since Π1(S1) = Z. The winding number
is the number of counter-clockwise orbits around
the order parameter space for a single counter-
clockwise path around the defect.

C

A B

Fig. 9.20 XY defect pair. Two topological defects,
circumscribed by loops A and B running counter-
clockwise; the pair of defects is circumscribed by a
path C also going counter-clockwise. The path in or-
der parameter space mapped to from C, as a homo-
topy group element, is the group product of the paths
from A and B.

(a) What are the winding numbers of the two de-
fects surrounded by paths A and B in Fig. 9.20?
What should the winding number be around path
C, according to the group multiplication law for
Π1(S1)?
(b) Copy the figure onto a separate sheet of paper,
and fill in the region around A and B past C with
a smooth, non-singular, non-vanishing order pa-
rameter field of unit vectors. (Hint: You can use
your answer for (b) to check your answer for (a).)
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We can find a formula for the winding num-
ber as an integral around the defect in the two-
dimensional XY model. Let D encircle a defect
counter-clockwise once (Fig. 9.21).
(c) Show that the winding number is given by the
line integral around the curve D:

s =
1

2π

∮ 2∑

j=1

(m1∂jm2 −m2∂jm1) dℓj , (9.9)

where the two coordinates are x1 and x2, ∂j =
∂/∂xj, and ℓj is the tangent vector to the con-
tour being integrated around (so the integral is
of the form

∮
v · dℓ). (Hints: Write m =

(cos(φ), sin(φ)); the integral of a directional
derivative ∇f · dℓ is the difference in f between
the two endpoints.)

d

φ

Fig. 9.21 Looping the defect. The curve D encir-
cles the defect once; dℓ is a unit vector tangent to D
running counter-clockwise. Define φ to be the angle
between the unit vector m and the x-axis.

There are other useful formulæ of this kind. For
example, the wrapping number of a vector order
parameter around the sphere Π2(S2) is given by
an integral of the Jacobian of the order parameter
field.20

(9.3) Defect energetics and total divergence
terms. (Condensed matter, Mathematics) ©3

A hypothetical liquid crystal is described by a
unit-vector order parameter n̂, representing the
orientation of the long axis of the molecules.
(Think of it as a nematic liquid crystal where the
heads of the molecules all line up as well.21) The

free energy density is normally written

Fbulk[n̂] =
K11

2
(div n̂)2 +

K22

2
(n̂ · curl n̂)2

+
K33

2
(n̂× curl n̂)2. (9.10)

Assume a spherical droplet of radius R0 contains
a hedgehog defect (Fig. 9.13, p. 199) in its center,
with order parameter field n̂(r) = r̂ = r/|r| =
(x, y, z)/

√
x2 + y2 + z2. The hedgehog is a topo-

logical defect, which wraps around the sphere
once.
(a) Show that curl n̂ = 0 for the hedgehog. Calcu-
late the free energy of the hedgehog, by integrating
F [n̂] over the sphere. Compare the free energy to
the energy in the same volume with n̂ constant
(say, in the x̂ direction).
There are other terms allowed by symmetry that
are usually not considered as part of the free en-
ergy density, because they are total divergence
terms. Any term in the free energy which is a
divergence of a vector field, by Gauss’s theorem,
is equivalent to the flux of the vector field out of
the boundary of the material. For periodic bound-
ary conditions such terms vanish, but our system
has a boundary. For large systems these terms
scale like the surface area, where the other terms
in the free energy can grow proportional to the
volume—but they do not always do so.
(b) Consider the effects of an additional term
Fdiv[n̂] = K0(div n̂), allowed by symmetry, in the
free energy F [n̂]. Calculate its contribution to the
energy of the hedgehog, both by integrating it over
the volume of the sphere and by using Gauss’s the-
orem to calculate it as a surface integral. Com-
pare the total energy

∫
Fbulk + Fdiv d

3r with that
of the uniform state with n̂ = x̂, and with the
anti-hedgehog, n̂(r) = −r̂. Which is lowest, for
large R0? How does the ground state for large R0

depend on the sign of K0?
The term K0 from part (b) is definitely not neg-
ligible! Liquid crystals in many cases appear to
have strong pinning boundary conditions, where
the relative angle of the order parameter and the
surface is fixed by the chemical treatment of the
surface. Some terms like K0 are not included in
the bulk energy because they become too large;
they rigidly constrain the boundary conditions
and become otherwise irrelevant.

20Such formulæ are used, for example, in path integrals to change the weights of different topological sectors.
21The order parameter is the same as the Heisenberg antiferromagnet, but the latter has a symmetry where the order parameter
can rotate independently from the spatial rotations, which is not true of liquid crystals.
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(9.4) Domain walls in magnets. (Condensed mat-
ter) ©3
The free energy density of an Ising magnet below
Tc can be roughly approximated as a double-well
potential (eqn 9.19), with two minima at ±m0:

F = 1/2K(∇m)2 + (µ(T )/2)m2 + (g/4!)m4

(9.11)

= 1/2K(∇m)2 + (g/4!)(m2 −m2
0)

2. (9.12)

This exercise studies the structure of the domain
wall separating a region of positive magnetization
from one of negative magnetization.
Consider a magnetization m(x) varying only
along the x direction, with m(−∞) = −m0 and
m(∞) = m0. In between, it must pass through a
barrier region with m ≈ 0. The stiffness K penal-
izes sharp gradients in the magnetization; g pe-
nalizes regions with magnetization away from the
equilibria at ±m0. In part (a), we give a rough ar-
gument for the width of the domain wall, in terms
of K, m0, and g, by balancing the gradient cost
of a thin wall against the barrier cost of a thick
wall.
The second term in F is a double-wall potential,
with a barrier B separating two wells, with units
energy per unit volume. An interface between
m = −m0 and m = +m0 with width ∆ will have
an energy cost ∼ B ×∆ per unit area due to the
barrier, which wants ∆ to be as small as possi-
ble. The first term in F is a stiffness of the order
parameter against rapid changes in m, adding an
energy per unit area ∼ K∆× (m0/∆)2.
(a) Using these rough estimates find B, minimize
the sum, and give a rough value for the energy per
unit area of the domain wall in terms of K, m0,
and g.
The rest of this exercise will lead you through a
variational calculation of the shape of the domain
wall (see [89, chapter 12] for information about
the calculus of variations).
(b) Find the equation satisfied by that m(x) which
minimizes F =

∫
F dx, given the boundary con-

ditions. (This is the Euler–Lagrange equation
from the calculus of variations.)
(c) Show that the solution m(x) has the property

that the combination

E = (K/2)(∂m/∂x)2 − (g/4!)(m2 −m2
0)

2 (9.13)

is independent of x. (Hint: What is ∂E/∂x?)
E is analogous to the energy of a particle in an
inverted potential well, with x playing the role of
time. The double well becomes a potential with
two hills at ±m0. (‘Energy’ conservation comes
from the symmetry of the system under transla-
tions.) Solving for the minimum m(x) is finding
the classical trajectory in the inverted potential;
it rolls down one hill and rolls back up the second
one.
(d) Argue from the boundary conditions that
E = 0. Using that, find the minimum free en-
ergy path m(x) satisfying the boundary conditions
m(±∞) = ±m0. Was your wall thickness es-
timate of part (a) roughly correct? (Hint: If
you know dy/dx = f(y), you know

∫
dy/f(y) =∫

dx.)

(9.5) Landau theory for the Ising model. (Con-
densed matter) ©3
This chapter has focused on the topological or-
der parameter, which labels the different ground
states of the system when there is a spontaneously
broken symmetry. To study the defect cores, in-
terfaces, and high temperatures near phase tran-
sitions, one would like an order parameter which
can vary in magnitude as well as direction.
In Section 6.7, we explicitly computed a free en-
ergy for the ideal gas as a function of the density.
Can we use symmetry and gradient expansions
to derive free energy densities for more realistic
systems—even systems that we do not understand
microscopically? Lev Landau used the approach
we discuss here to develop theories of magnets, su-
perconductors, and superfluids—before the latter
two were understood in microscopic terms.22 In
this exercise, you will develop a Landau23 theory
for the Ising model.24

Here we outline the general recipe, and ask you
to implement the details for the Ising model.
Along the way, we will point out places where the
assumptions made in Landau theory can break

22Physicists call this Landau theory. Rather similar formalisms have been developed in various other fields of physics and en-
gineering, from liquid crystals to ‘rational mechanics’ treatments of martensites (see Exercises 11.7 and 11.8). The vocabulary
is often different (Frank, Ericksen, and Leslie instead of Landau, constitutive relations rather than free energies, and internal
state variables rather than order parameters) but the basic approach is similar.
23More properly, a Ginsburg–Landau theory, because we include gradient terms in the free energy density, which Landau first
did in collaboration with Ginsburg.
24See also Exercise 12.5 for a more traditional mean-field theory approach.
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down—often precisely in the cases where the the-
ory is most useful.
(1) Pick an order parameter field.
Remember that the Ising model had a high-
temperature paramagnetic phase with zero mag-
netization per spin m, and a low-temperature fer-
romagnetic phase with a net magnetization per
spin ±m(T ) that went to one at T = 0. The Ising
model picks one of the two equilibrium states (up
or down); we say it spontaneously breaks the up–
down symmetry of the Hamiltonian
Hence the natural25 order parameter is the scalar
m(x), the local magnetization averaged over some
volume ∆V . This can be done by averaging the
magnetization per spin in small boxes, as in Sec-
tion 6.7.
(a) What value will m(x) take at temperatures
high compared to the interaction J in the Ising
model? What values will it take at temperatures
very low compared to J?
(2) Write a general local 26 free energy density, for
long wavelengths and translational symmetry.
A local free energy is one which depends on the
order parameter field and its gradients:

F Ising{m,T} = F(x,m, ∂jm,∂j∂km, . . . ).
(9.14)

As in Section 9.3, we Taylor expand in gradi-
ents.27 Keeping terms with up to two gradients
of m (and, for simplicity, no gradients of temper-
ature), we find

F Ising{m,T} =A(m,T ) + Vi(m,T )∂im

+Bij(m,T )∂i∂jm

+ Cij(m,T )(∂im)(∂jm). (9.15)

(b) What symmetry tells us that the unknown
functions A, B, C, and V do not depend on po-
sition x? If the magnetization varies on a large
length scale D, how much smaller would a term
involving three derivatives be than the terms B
and C that we have kept?
(3) Impose the other symmetries of the problem.

The Ising model has an up–down symmetry28 so
the free energy density F Ising{m} = F{−m}.
Hence the coefficients A and C are functions of
m2, and the functions Vi(m,T ) = mvi(m

2, T ) and
Bij(m) = mbij(m

2, T ).
The two-dimensional Ising model on a square lat-
tice is symmetric under 90◦ rotations. This tells
us that vi = 0 because no vector is invariant under
90◦ rotations. Similarly, b and C must commute
with these rotations, and so must be multiples of
the identity matrix.29 Hence we have

F Ising{m,T} = A(m2, T ) +mb(m2, T )∇2m

+ C(m2, T )(∇m)2. (9.16)

Many systems are isotropic: the free energy den-
sity is invariant under all rotations. For isotropic
systems, the material properties (like the func-
tions A, Bij , and Cij in eqn 9.15) must be in-
variant under rotations. All terms in a local free
energy for an isotropic system must be writable in
terms of dot and cross products of the gradients
of the order parameter field.
(c) Would the free energy density of eqn 9.16
change for a magnet that had a continuous ro-
tational symmetry?
(4) Simplify using total divergence terms.
Free energy densities are intrinsically somewhat
arbitrary. If one adds to F a gradient of any
smooth vector function ∇ · ξ(m), the integral will
differ only by a surface term

∫
∇ · ξ(m) dV =∫

ξ(m) · dS.
In many circumstances, surface terms may be
ignored. (i) If the system has periodic boundary
conditions, then the integral

∫
ξ(m) · dS = 0 be-

cause the opposite sides of the box will cancel.
(ii) Large systems will have surface areas which
are small compared to their volumes, so the sur-
face terms can often be ignored,

∫
∇ · ξ(m) dV =∫

ξ(m) · dS ∼ L2 ≪
∫
F dV ∼ L3. (iii) Total

divergence terms can be interchanged for changes
in the surface free energy, which depends upon the

25Landau has a more systematic approach for defining the order parameter, based on group representation theory, which can
be quite useful in more complex systems.
26Long-range Coulomb, gravitational, or elastic fields can be added to the order parameters. For a complete description the
order parameter should incorporate long-range fields, conserved quantities, and all broken symmetries.
27A gradient expansion will not be valid at sharp interfaces and in defect cores where the order parameter varies on microscopic
length scales. Landau theory is often used anyhow, as a solvable if uncontrolled approximation to the real behavior.
28The equilibrium state may not have up–down symmetry, but the model—and hence the free energy density—certainly does.
29Under a 90◦ rotation R =

( 0 1
−1 0

)
, a vector v goes to R · v. For it to be invariant, (v1 v2) = (v1 v2)

( 0 1
−1 0

)
= (−v2, v1), so

v1 = −v2 = −v1 = 0. An invariant symmetric matrix C rotates to RCR−1 =
( 0 1
−1 0

)(C11 C12
C12 C22

)(0−1
1 0

)
=
(C22 −C12
−C12 C11

)
so C11 = C22

and C12 = 0, and hence C is a multiple of the identity.
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orientation of the order parameter with respect to
the boundary of the sample.30

This allows us to integrate terms in the free en-
ergy by parts; by subtracting a total divergence
∇(uv) from the free energy we can exchange a
term u∇v for a term −v∇u. For example, we
can subtract a term −∇ ·

(
mb(m2, T )∇m

)
from

the free energy 9.16:

F Ising{m,T}
= A(m2, T ) +mb(m2, T )∇2m

+C(m2, T )(∇m)2

−∇
(
mb(m2, T ) · ∇m

)

= A(m2, T ) + C(m2, T )(∇m)2

−∇
(
mb(m2, T )

)
· ∇m

= A(m2, T ) + C(m2, T )(∇m)2

−
(
b(m2, T ) + 2m2b′(m2, T )

)
(∇m)2

= A(m2, T )

+
(
C(m2, T )− b(m2, T )

− 2m2b′(m2, T )
)
(∇m)2, (9.17)

replacing
(
mb(m2, T )

)
(∇2m) with the equivalent

term −(∇m)(∇(mb(m2, T )∇m) · ∇m). Thus we
may absorb the b term proportional to ∇2m into
an altered c = C(m2, T )−b(m2, T )−2m2b′(m2, T )
term times (∇m)2:

F Ising{m,T} = A(m2, T ) + c(m2, T )(∇m)2.
(9.18)

(5) (Perhaps) assume the order parameter is
small.31

If we assume m is small, we may Taylor expand
A and c in powers of m2, yielding A(m2, T ) =
f0 +(µ(T )/2)m2+(g/4!)m4 and c(m2, T ) = 1/2K,
leading to the traditional Landau free energy for
the Ising model:

F Ising = 1/2K(∇m)2+f0+(µ(T )/2)m2+(g/4!)m4,
(9.19)

where f0, g, andK can also depend upon T . (The
factors of 1/2 and 1/4! are traditional.)
The free energy density of eqn 9.19 is one of the
most extensively studied models in physics. The

field theorists use φ instead of m for the order
parameter, and call it the φ4 model. Ken Wilson
added fluctuations to this model in developing the
renormalization group (Chapter 12).

-2 -1 0 1 2

Magnetization m per spin

µ > 0
µ = 0
µ < 0

Fig. 9.22 Landau free energy density for the Ising
model 9.19, at positive, zero, and negative values of
the quadratic term µ.

Notice that the Landau free energy density has a
qualitative change at µ = 0. For positive µ it has
a single minimum at m = 0; for negative µ it has
two minima at m = ±

√
−6µ/g. Is this related to

the transition in the Ising model from the param-
agnetic phase (m = 0) to the ferromagnetic phase
at Tc?
The free energy density already incorporates (by
our assumptions) fluctuations in m on length
scales small compared to the coarse-graining
length W . If we ignored fluctuations on scales
larger than W then the free energy of the whole
system32 would be given by the volume times the
free energy density, and the magnetization at a
temperature T would be given by minimizing the
free energy density. The quadratic term µ(T )
would vanish at Tc, and if we expand µ(T ) ∼
a(T − Tc) + . . . we find m = ±

√
6a/g

√
Tc − T

near the critical temperature.

30See Exercise 9.3 and [76]. One must also be wary of total divergence terms for systems with topological defects, which count
as internal surfaces; see [117].
31Notice that this approximation is not valid for abrupt phase transitions, where the order parameter is large until the transition
and zero afterward. Landau theories are often used anyhow for abrupt transitions (see Fig. 11.2(a)), and are illuminating if
not controlled.
32The total free energy is convex (Fig. 11.2(a)). The free energy density F in Fig. 9.22 can have a barrier if a boundary between
the phases is thicker than the coarse-graining length. The total free energy also has singularities at phase transitions. F can
be analytic because it is the free energy of a finite region; thermal phase transitions do not occur in finite systems.
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Fig. 9.23 Fluctuations on all scales. A snapshot
of the Ising model at Tc. Notice that there are fluctu-
ations on all length scales.

This is qualitatively correct, but quantitatively
wrong. The magnetization does vanish at Tc

with a power law m ∼ (Tc − T )β, but the ex-
ponent β is not generally 1/2; in two dimensions
it is β2D = 1/8 and in three dimensions it is
β3D ≈ 0.325. These exponents (particularly the
presumably irrational one in 3D) cannot be fixed
by keeping more or different terms in the analytic
Landau expansion.
(d) Show that the power-law βLandau = 1/2 is not
changed in the limit T → Tc even when one adds
another term (h/6!)m6 into eqn 9.19. (That is,
show that m(T )/(T − Tc)

β goes to a constant as
T → Tc.) (Hint: You should get a quadratic
equation for m2. Keep the root that vanishes at
T = Tc, and expand in powers of h.) Explore also
the alternative phase transition where g ≡ 0 but
h > 0; what is β for that transition?
As we see in Fig. 9.23 there is no length W above
which the Ising model near Tc looks smooth and
uniform. The Landau free energy density gets cor-
rections on all length scales; for the infinite system
the free energy has a singularity at Tc (making
our power-series expansion for F Ising inadequate).
The Landau free energy density is only a starting-
point for studying continuous phase transitions;33

we must use the renormalization-group methods
of Chapter 12 to explain and predict these singu-
larities.

(9.6) Symmetries and wave equations. ©3
We can use symmetries and gradient expansions
not only for deriving new free energies (Exer-
cise 9.5), but also for directly deriving equations
of motion. This approach (sometimes includ-
ing fluctuations) has been successful in a num-
ber of systems that are strongly out of equilib-
rium [58, 65, 139]. In this exercise, you will de-
rive the equation of motion for a scalar order pa-
rameter y(x, t) in a one-dimensional system. Our
order parameter might represent the height of a
string vibrating vertically, or the horizontal dis-
placement of a one-dimensional crystal, or the
density of particles in a one-dimensional gas.

Write the most general possible law. We start
by writing the most general possible evolution
law. Such a law might give the time derivative
∂y/∂t = . . . like the diffusion equation, or the
acceleration ∂2y/∂t2 = . . . like the wave equa-
tion, or something more general. If we take the
left-hand side minus the right-hand side, we can
write any equation of motion in terms of some
(perhaps nonlinear) function G involving various
partial derivatives of the function y(x, t):

G
(
y,
∂y

∂x
,
∂y

∂t
,
∂2y

∂x2
,
∂2y

∂t2
,
∂2y

∂x∂t
, . . . ,

∂7y

∂x3∂t4
, . . .

)
= 0.

(9.20)

Notice that we have already assumed that our sys-
tem is homogeneous and time independent; oth-
erwise G would explicitly depend on x and t as
well.
First, let us get a tangible idea of how a function
G can represent an equation of motion, say the
diffusion equation.
(a) What common equation of motion results from
the choice G(a1, a2, . . . ) = a3−Da4 in eqn 9.20?

Restrict attention to long distances and times:
gradient expansion. We are large and slow crea-
tures. We will perceive only those motions of the
system that have long wavelengths and low fre-
quencies. Every derivative with respect to time
(space) divides our function by a characteristic
time scale (length scale). By specializing our
equations to long length and time scales, let us
drop all terms with more than two derivatives (ev-
erything after the dots in eqn 9.20). We will also

33An important exception to this is superconductivity, where the Cooper pairs are large compared to their separation. Because
they overlap so many neighbors, the fluctuations in the order parameter field are suppressed, and Landau theory is valid even
very close to the phase transition.
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assume that G can be written as a sum of products
of its arguments—that it is an analytic function
of y and its gradients. This implies that

f + g
∂y

∂t
+ h

∂y

∂x
+ i

(
∂y

∂t

)2

+ · · ·+ n
∂2y

∂t∂x
= 0,

(9.21)
where f , g, . . . , n are general analytic functions
of y.
(b) Give the missing terms, multiplying functions
j(y), k(y), . . . , m(y).

Apply the symmetries of the system.
We will assume that our system is like waves on
a string, or one-dimensional phonons, where an
overall shift of the order parameter y → y+∆ is a
symmetry of the system (Fig. 9.24). This implies
that G, and hence f , g, . . . , n, are independent
of y.
Let us also assume that our system is invariant
under flipping the sign of the order parameter
y → −y, and to spatial inversion, taking x→ −x
(Fig. 9.25). More specifically, we will keep all
terms in eqn 9.21 which are odd under flipping
the sign of the order parameter and even under
inversion.34

+ ∆

y(x,t)

∆

y(x,t)

Fig. 9.24 Shift symmetry. We assume our system
is invariant under overall shifts in the order parameter
field. Hence, if y(x, t) is a solution, so is y(x, t) + ∆.

y(−x,t)

y(x,t)

−y(x,t)

y(x,t)

Fig. 9.25 Flips and inversion. We assume our sys-
tem is invariant under flipping (y → −y) and inver-
sion (x → −x). Hence, if y(x, t) is a solution, so are
y(−x, t) and −y(x, t).

(c) Which three terms in eqn 9.21 are left after im-
posing these symmetries? Which one is not part
of the wave equation ∂2y/∂t2 = c2∂2y/∂x2?
This third term would come from a source of fric-
tion. For example, if the vibrating string was em-
bedded in a fluid (like still air), then slow vibra-
tions (low Reynolds numbers) would be damped
by a term like the one allowed by symmetry in
part (c). Systems with time inversion symmetry
cannot have dissipation, and you can check that
your term changes sign as t→ −t, where the other
terms in the wave equation do not.
This third term would not arise if the vibrating
string is in a vacuum. In particular, it is not
Galilean invariant. A system has Galilean invari-
ance if it is unchanged under boosts: for any solu-
tion y(x, t), y(x, t) + vt is also a solution.35 The
surrounding fluid stays at rest when our vibrat-
ing string gets boosted, so the resulting friction is
not Galilean invariant. On the other hand, inter-
nal friction due to bending and flexing the string
is invariant under boosts. This kind of friction
is described by Kelvin damping (which you can
think of as a dashpot in parallel with the springs
holding the material together).
(d) Show that your third term is not invariant un-
der boosts. Show that the Kelvin damping term
∂3y/∂t∂x2 is invariant under boosts and trans-
forms like the terms in the wave equation under
shifts, flips, and inversion.

(9.7) Superfluid order and vortices. (Quantum,
Condensed matter) ©3

Fig. 9.26 Superfluid vortex line. Velocity flow
v(x) around a superfluid vortex line.

34All terms in the equation of motion must have the same dependence on a symmetry of the system. One could concoct
inversion-symmetric physical systems whose equation of motion involved terms odd under inversion.
35This is a non-relativistic version of Lorentz invariance.



 Copyright Oxford University Press 2006  v1.0                       --  

Exercises 211

Superfluidity in helium is closely related to Bose
condensation of an ideal gas; the strong inter-
actions between the helium atoms quantitatively
change things, but many properties are shared.
In particular, we describe the superfluid in terms
of a complex number ψ(r), which we think of as a
wavefunction which is occupied by a large fraction
of all the atoms in the fluid.
(a) If N non-interacting bosons reside in a state
χ(r), write an expression for the net current
density J(r).36 Write the complex field χ(r)
in terms of an amplitude and a phase, χ(r) =
|χ(r)| exp(iφ(r)). We write the superfluid density
as ns = N |χ|2. Give the current J in terms of φ
and ns. What is the resulting superfluid velocity,
v = J/ns? (It should be independent of ns.)
The Landau order parameter in superfluids ψ(r)
is traditionally normalized so that the amplitude
is the square root of the superfluid density; in
part (a), ψ(r) =

√
Nχ(r).

In equilibrium statistical mechanics, the macro-
scopically occupied state is always the ground
state, which is real and hence has no current. We
can form non-equilibrium states, however, which
macroscopically occupy other quantum states.
For example, an experimentalist might cool a con-
tainer filled with helium while it is moving; the
ground state in the moving reference frame has a
current in the unmoving laboratory frame. More
commonly, the helium is prepared in a rotating
state.
(b) Consider a torus filled with an ideal Bose gas
at T = 0 with the hole along the vertical axis; the
superfluid is condensed into a state which is ro-
tating around the hole. Using your formula from
part (a) and the fact that φ+2nπ is indistinguish-
able from φ for any integer n, show that the circu-
lation

∮
v · dr around the hole is quantized. What

is the quantum of circulation?
Superfluid helium cannot swirl except in quan-
tized units! Notice that you have now explained
why superfluids have no viscosity. The velocity
around the torus is quantized, and hence it can-
not decay continuously to zero; if it starts swirling
with non-zero n around the torus, it must swirl
forever.37 This is why we call them superfluids.
In bulk helium this winding number labels line

defects called vortex lines.
(c) Treat φ(r), the phase of the superconducting
wavefunction, as the topological order parameter
of the superfluid. Is the order parameter a closed
loop, S1? Classify the types of vortex lines in a su-
perfluid. (That is, either give the first homotopy
group of the order parameter space, or give the al-
lowed values of the quantized circulation around a
vortex.)

(9.8) Superfluids: density matrices and ODLRO.
(Condensed matter, Quantum) ©5
This exercise develops the quantum theory of the
order parameters for superfluids and supercon-
ductors, following classic presentations by Ander-
son [5, 6]. We introduce the reduced density ma-
trix, off-diagonal long-range order, broken gauge
symmetry, and deduce that a subvolume of a su-
perfluid is best described as a superposition of
states with different numbers of particles. The
exercise is challenging; it assumes more quantum
mechanics than the rest of the text, it involves
technically challenging calculations, and the con-
cepts it introduces are deep and subtle. . .
Density matrices. We saw in Exercise 9.7 that
a Bose-condensed ideal gas can be described in
terms of a complex number ψ(r) representing the
eigenstate which is macroscopically occupied. For
superfluid helium, the atoms are in a strongly-
interacting liquid state when it goes superfluid.
We can define the order parameter ψ(r) even for
an interacting system using the reduced density
matrix.
Suppose our system is in a mixture of many-body
states Ψα with probabilities Pα. The full density
matrix in the position representation, you will re-
member, is

ρ̂(r′1, . . . ,r
′
N , r1, . . . , rN )

=
∑

α

PαΨ
∗(r′1, . . . , r

′
N )Ψ(r1, . . . , rN ).

(9.22)

(Properly speaking, these are the matrix elements
of the density matrix in the position representa-
tion; rows are labeled by {r′i}, columns are labeled
by {rj}.) The reduced density matrix ρ̂(r′, r)
(which I will call the density matrix hereafter) is

36You can use the standard quantum mechanics single-particle expression J = (i~/2m)(ψ∇ψ∗ − ψ∗∇ψ) and multiply by the
number of particles, or you can use the many-particle formula J(r) = (i~/2m)

∫
d3r1 · · · d3rN

∑
ℓ δ(rℓ − r)(Ψ∇ℓΨ

∗ −Ψ∗∇ℓΨ)
and substitute in the condensate wavefunction Ψ(r1, . . . , rN ) =

∏
n χ(rn).

37Or at least until a dramatic event occurs which changes n, like a vortex line passing across the torus, demanding an activation
energy proportional to the width of the torus. See also Exercise 7.9.
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given by setting r′j = rj for all but one of the par-
ticles and integrating over all possible positions,
multiplying by N :

ρ̂2(r
′, r) =

N

∫
d3r2 · · ·d3rN

× ρ̂(r′, r2 . . . , rN , r, r2, . . . , rN ). (9.23)

(For our purposes, the fact that it is called a ma-
trix is not important; think of ρ̂2 as a function of
two variables.)
(a) What does the reduced density matrix ρ2(r

′, r)
look like for a zero-temperature Bose condensate
of non-interacting particles, condensed into a nor-
malized single-particle state χ(r)?
An alternative, elegant formulation for this den-
sity matrix is to use second-quantized creation
and annihilation operators instead of the many-
body wavefunctions. These operators a†(r) and
a(r) add and remove a boson at a specific place
in space. They obey the commutation relations

[a(r), a†(r′)] = δ(r− r′),

[a(r), a(r′)] = [a†(r), a†(r′)] = 0;
(9.24)

since the vacuum has no particles, we also know

a(r)|0〉 = 0,

〈0|a†(r) = 0.
(9.25)

We define the ket wavefunction as

|Ψ〉 = (1/
√
N !)

∫
d3r1 · · ·d3rN

×Ψ(r1, . . . , rN )a†(r1) . . . a
†(rN )|0〉.

(9.26)

(b) Show that the ket is normalized if the sym-
metric Bose wavefunction Ψ is normalized. (Hint:
Use eqn 9.24 to pull the as to the right through the
a†s in eqn 9.26; you should get a sum of N ! terms,
each a product of N δ-functions, setting differ-
ent permutations of r1 · · · rN equal to r′1 · · · r′N .)
Show that 〈Ψ|a†(r′)a(r)|Ψ〉, the overlap of a(r)|Ψ〉
with a(r′)|Ψ〉 for the pure state |Ψ〉 gives the the
reduced density matrix 9.23.
Since this is true of all pure states, it is true of
mixtures of pure states as well; hence the reduced
density matrix is the same as the expectation
value 〈a†(r′)a(r)〉.

In a non-degenerate Bose gas, in a system with
Maxwell–Boltzmann statistics, or in a Fermi sys-
tem, one can calculate ρ̂2(r

′, r) and show that it
rapidly goes to zero as |r′ − r| → ∞. This makes
sense; in a big system, a(r)|Ψ(r)〉 leaves a state
with a missing particle localized around r, which
will have no overlap with a(r′)|Ψ〉 which has a
missing particle at the distant place r′.
ODLRO and the superfluid order parameter. This
is no longer true in superfluids; just as in the con-
densed Bose gas of part (a), interacting, finite-
temperature superfluids have a reduced den-
sity matrix with off-diagonal long-range order
(ODLRO);

ρ̂2(r
′, r)→ ψ∗(r′)ψ(r) as |r′ − r| → ∞. (9.27)

It is called long-range order because there are cor-
relations between distant points; it is called off-
diagonal because the diagonal of this density ma-
trix in position space is r = r′. The order pa-
rameter for the superfluid is ψ(r), describing the
long-range piece of this correlation.
(c) What is ψ(r) for the non-interacting Bose con-
densate of part (a), in terms of the condensate
wavefunction χ(r)?
This reduced density matrix is analogous in many
ways to the density–density correlation function
for gases C(r′, r) = 〈ρ(r′)ρ(r)〉 and the correlation
function for magnetization 〈M(r′)M(r)〉 (Chap-
ter 10). The fact that ρ̂2 is long range is anal-
ogous to the fact that 〈M(r′)M(r)〉 ∼ 〈M〉2 as
r′ − r→∞; the long-range order in the direction
of magnetization is the analog of the long-range
phase relationship in superfluids.
Number conservation and ψ. Figure 9.27 illus-
trates the fact that the local number of particles
in a subvolume of a superfluid is indeterminate.
Our ground state locally violates conservation of
particle number.38 If the number of particles in
a local region is not well defined, perhaps we can
think of the local state as some kind of super-
position of states with different particle number?
Then we could imagine factoring the off-diagonal
long-range order 〈a†(r′)a(r)〉 ∼ ψ∗(r′)ψ(r) into
〈a†(r′)〉〈a(r)〉, with ψ(r) = 〈a〉. (This is zero in a
closed system, since a(r) changes the total num-
ber of particles.) The immediate question is how
to set the relative phases of the parts of the wave-
function with differing numbers of particles. Let
us consider a region small enough that we can ig-

38This is not just the difference between canonical and grand canonical ensembles. Grand canonical ensembles are probability
mixtures between states of different numbers of particles; superfluids have a coherent superposition of wavefunctions with
different numbers of particles.
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nore the spatial variations.

II
a (r’)

I

a(r)

N bosons

Fig. 9.27 Delocalization and ODLRO. Particles
in superfluids are delocalized: the number of particles
in a subvolume is not well defined. Annihilating a bo-
son at r in region I, insofar as the boson comes out
of the condensate, is equivalent to annihilating it at
r′. The probability overlap between these two states
is precisely ρ̂2(r′, r) = ψ∗(r′)ψ(r).

(d) Consider a zero-temperature Bose conden-
sate of N non-interacting particles in a local re-
gion. Let the state into which the bosons con-
dense, χ(r) = χ = |χ| exp(iφ), be spatially uni-
form. What is the phase of the N-particle Bose-
condensed state?
The phase exp(iφ(r)) is the relative phase be-
tween the components of the local Bose conden-
sates with N and N − 1 particles. The superfluid
state is a coherent superposition of states with dif-
ferent numbers of particles in local regions. How
odd!
Momentum conservation comes from transla-
tional symmetry; energy conservation comes from
time translational symmetry; angular momen-
tum conservation comes from rotational symme-
try. What symmetry leads to number conserva-
tion?
(e) Consider the Hamiltonian H for a system that
conserves the total number of particles, written in
second quantized form (in terms of creation and
annihilation operators). Argue that the Hamilto-
nian is invariant under a global symmetry which
multiplies all of the creation operators by exp(iζ)
and the annihilation operators by exp(−iζ). (This
amounts to changing the phases of the N-particle
parts of the wavefunction by exp(iNζ). Hint:
Note that all terms in H have an equal number of
creation and annihilation operators.)

The magnitude |ψ(r)|2 describes the superfluid
density ns. As we saw above, ns is the whole den-
sity for a zero-temperature non-interacting Bose
gas; it is about one per cent of the density for
superfluid helium, and about 10−8 for supercon-
ductors. If we write ψ(r) =

√
ns(r) exp(iφ(r)),

then the phase φ(r) labels which of the broken-
symmetry ground states we reside in.39

Broken gauge invariance. We can draw a deep
connection with quantum electromagnetism by
promoting this global symmetry into a local sym-
metry. Consider the effects of shifting ψ by a
spatially-dependent phase ζ(x). It will not change
the potential energy terms, but will change the
kinetic energy terms because they involve gra-
dients. Consider the case of a single-particle
pure state. Our wavefunction χ(x) changes
into χ̃ = exp(iζ(x))χ(x), and [p2/2m] χ̃ =
[((~/i)∇)2 /2m] χ̃ now includes terms involving
∇ζ.
(f) Show that this single-particle Hamiltonian is
invariant under a transformation which changes
the phase of the wavefunction by exp(iζ(x)) and
simultaneously replaces p with p− ~∇ζ.
This invariance under multiplication by a phase
is closely related to gauge invariance in electro-
magnetism. Remember in classical electromag-
netism the vector potential A is arbitrary up
to adding a gradient of an arbitrary function Λ:
changing A → A+∇Λ leaves the magnetic field
unchanged, and hence does not change anything
physical. There choosing a particular Λ is called
choosing a gauge, and this arbitrariness is called
gauge invariance. Also remember how we incor-
porate electromagnetism into the Hamiltonian for
charged particles: we change the kinetic energy
for each particle of charge q to (p− (q/c)A)2/2m,
using the ‘covariant derivative’ (~/i)∇− (q/c)A.
In quantum electrodynamics, particle number is
not conserved, but charge is conserved. Our lo-
cal symmetry, stemming from number conserva-
tion, is analogous to the symmetry of electrody-
namics when we multiply the wavefunction by
exp(i(q/c)ζ(x)), where q = −e is the charge on
an electron.
(g) Consider the Hamiltonian for a charged par-
ticle in a vector potential H = ((~/i)∇ −
(q/c)A)2/2m+V (x). Show that this Hamiltonian
is preserved under a transformation which mul-
tiplies the wavefunction by exp(i(q/e)ζ(x)) and

39ψ(r) is the Landau order parameter; the phase φ(r) is the topological order parameter.
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performs a suitable gauge transformation on A.
What is the required gauge transformation?
To summarize, we found that superconductivity
leads to a state with a local indeterminacy in the
number of particles. We saw that it is natural to
describe local regions of superfluids as coherent
superpositions of states with different numbers of
particles. The order parameter ψ(r) = 〈a(r)〉
has amplitude given by the square root of the
superfluid density, and a phase exp(iφ(r)) giving
the relative quantum phase between states with
different numbers of particles. We saw that the
Hamiltonian is symmetric under uniform changes
of φ; the superfluid ground state breaks this

symmetry just as a magnet might break rota-
tional symmetry. Finally, we saw that promot-
ing this global symmetry to a local one demanded
changes in the Hamiltonian completely analogous
to gauge transformations in electromagnetism;
number conservation comes from a gauge symme-
try. Superfluids spontaneously break gauge sym-
metry!
In [5, 6] you can find more along these lines. In
particular, number N and phase φ turn out to
be conjugate variables. The implied equation
i~Ṅ = [H, N ] = i∂H/∂φ gives the Josephson cur-
rent, and is also related to the the equation for
the superfluid velocity we derived in Exercise 9.7.
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In this chapter, we study how systems wiggle, and how they yield and
dissipate energy when kicked.1

1More information on these topics can
be found in the classical context in [27,
chapter 8], and for quantum systems
in [43, 88].

A material in thermal equilibrium may be macroscopically homoge-
neous and static, but it wiggles on the microscale from thermal fluctu-
ations. We measure how systems wiggle and evolve in space and time
using correlation functions. In Section 10.1 we introduce correlation
functions, and in Section 10.2 we note that scattering experiments (of
X-rays, neutrons, and electrons) directly measure correlation functions.
In Section 10.3 we use statistical mechanics to calculate equal-time cor-
relation functions using the ideal gas as an example. In Section 10.4 we
use Onsager’s regression hypothesis to derive the time-dependent corre-
lation function.
We often want to know how a system behaves when kicked in various

fashions. Linear response theory is a broad, systematic method devel-
oped for equilibrium systems in the limit of gentle kicks. We can use
statistical mechanics to calculate the response when a system is kicked
by elastic stress, electric fields, magnetic fields, acoustic waves, or light.
The space–time-dependent linear response to the space–time dependent
influence is described in each case by a susceptibility (Section 10.5).
There are powerful relationships between the wiggling, yielding,2 and

2We use ‘yielding’ informally for the in-
phase, reactive response (Section 10.6),
for which there appears not to be a
standard term.

dissipation in an equilibrium system. In Section 10.6 we show that
yielding and dissipation are precisely the real and imaginary parts of
the susceptibility. In Section 10.7 we show that the static susceptibility
is proportional to the equal-time correlation function. In Section 10.8 we
derive the fluctuation-dissipation theorem, giving the dynamic suscepti-
bility in terms of the time-dependent correlation function. Finally, in
Section 10.9 we use causality (the fact that the response cannot precede
the perturbation) to derive the Kramers–Krönig relation, relating the
real and imaginary parts of the susceptibility (yielding and dissipation).

10.1 Correlation functions: motivation

We have learned how to derive the laws giving the equilibrium states of
a system and the evolution laws of systems as they approach equilibrium
(Figs 10.1 and 10.2). How, though, do we characterize the resulting be-
havior? How do we extract from our ensemble of systems some testable
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numbers or functions (measuring the patterns in space and time) that
we can use to compare experiment and theory?

Fig. 10.1 Phase separation in
an Ising model, quenched (abruptly
cooled) from high temperatures to zero
temperature [124]. The model quickly
separates into local blobs of up- and
down-spins, which grow and merge,
coarsening to larger blob sizes (Sec-
tion 11.4.1).

Fig. 10.2 Surface annealing. An
STM image of a surface, created by
bombarding a close-packed gold sur-
face with noble-gas atoms, and then
allowing the irregular surface to ther-
mally relax (Tatjana Curcic and Bar-
bara H. Cooper [32]). The figure shows
individual atomic-height steps; the ar-
rows each show a single step pit inside
another pit. The characteristic sizes of
the pits and islands grow as the surface
evolves and flattens.

Figure 10.1 is the Ising model at low temperature, showing the spin
S(x, t) at position x and time t; the up-spin and down-spin regions
are competing [124] to determine which will take over as the broken-
symmetry ground state. Figure 10.2 is a gold surface that is thermally
flattening from an irregular initial shape [32], showing the height h(x, t).
These visual images incorporate a full, rich description of individual
members of the ensemble of models—but it is hard to quantify whether
experiments and theory agree by comparing snapshots of a random envi-
ronment. In these two evolving systems, we might quantify the evolution
with a measure of the typical feature size as a function of time. Fig-
ure 10.3 shows the Ising model at Tc, where fluctuations occur on all
length and time scales. In this equilibrium system we might want a
function that describes how likely a black region will extend a distance
r, or survive for a time τ .
We typically measure the space and time coherence in a system using

correlation functions. Consider the alignment of two Ising spins S(x, t)
and S(x + r, t) in the coarsening figure (Fig. 10.1); spins at the same
time t, but separated by a distance r. If |r| is much larger than a typical
blob size L(t), the spins will have a 50/50 chance of being aligned or
misaligned, so their average product will be near zero. If |r| is much
smaller than a typical blob size L, the spins will typically be aligned
parallel to one another (both +1 or both −1), so their average product
will be near one. The equal-time spin-spin correlation function

Ccoar
t (r) = 〈S(x, t)S(x + r, t)〉 (10.1)

will go from one at r = 0 to zero at |r| ≫ L(t), and will cross 1/2 at a
characteristic blob size L(t). In non-equilibrium problems like this one,
the system is evolving in time, so the equal-time correlation function
also evolves.3

3We will discuss coarsening in more de-
tail in Section 11.4.1.

The correlation function in general contains more information than
just the typical blob size. Consider the equilibrium correlation function,
say for the Ising model

C(r, τ) = 〈S(x, t)S(x+ r, t+ τ)〉. (10.2)

The equal-time correlation function C(r, 0) contains information about
how much a spin influences its distant neighbors. Even at high tempera-
tures, if a spin is up its immediate neighbors are more likely to point up
than down. As the temperature approaches the ferromagnetic transition
temperature Tc, this preference extends to further neighbors (Fig. 10.4).
Below Tc we have long-range order; even very distant neighbors will tend
to align with our spin, since the two broken-symmetry equilibrium states
each have net magnetization per spin m.Above Tc the equal-time corre-
lation function goes to zero at long distances r; below Tc it goes to m2,
since the fluctuations of two distant spins about the mean magnetization
become uncorrelated:

C(∞, 0) = lim
r→∞

〈S(x, t)S(x+r, t)〉 = 〈S(x, t)〉〈S(x+r, t)〉 = m2. (10.3)
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Fig. 10.3 Critical fluctuations. The
two-dimensional square-lattice Ising
model near the critical temperature Tc.
Here the ‘islands’ come in all sizes, and
the equilibrium fluctuations happen on
all time scales; see Chapter 12.
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Fig. 10.4 Equal-time correlation

function. A schematic equal-time cor-
relation function C(r, τ = 0) at a tem-
perature just above and just below the
critical temperature Tc. At r = 0 the
correlation function is 〈S2〉 = 1. (The
distance ξ(T ) after which the correla-
tion function decays exponentially to
its long-distance value (zero or m2) is
the correlation length. At Tc the corre-
lation length diverges, leading to fluc-
tuations on all scales, Chapter 12).

What happens at the critical temperature? At Tc the equal-time
correlation function decays as a power law C(r, 0) ∼ r−(d−2+η) at long
distances (Fig. 10.5), representing the fact that there are correlations at
all length scales (a compromise between short- and infinite-range order).
Similarly, the (equal-position) spin-spin correlation function C(0, τ) =
〈s(t)s(t+ τ)〉 at long times τ goes to zero for T > Tc, to m

2 for T < Tc,
and at Tc decays as a power law with a different exponent C(0, τ) ∼
τ−(d−2+η)/z. We will see how to explain these power laws in Chapter 12,
when we study continuous phase transitions.
In other systems, one might study the atomic density–density corre-

lation functions C(r, τ) = 〈ρ(x + r, t + τ)ρ(x, t)〉,4 or the height–height

4Here ρ(x, t) =
∑

j δ(x−xj) measures
the positions of the atoms.

correlation function for a surface (Fig. 10.2), or the phase–phase corre-
lations of the superfluid order parameter, . . .

10.2 Experimental probes of correlations

Many scattering experiments directly measure correlation functions. X-
rays measure the electron density–density correlation function, neutrons
can measure spin-spin correlation functions, and so on. Elastic scattering
gives the equal-time correlation functions, while inelastic scattering can
give the time-dependent correlation functions.
Let us briefly summarize how this works for X-ray elastic scattering.

In X-ray diffraction5 (Fig. 10.6) a plane-wave beam of wavevector k0

5Medical X-rays and CAT scans mea-
sure the penetration of X-rays, not
their diffraction.

scatters off of the sample, with the emitted radiation along wavevector
k0+k proportional to ρ̃e(k), the Fourier transform of the electron density
ρe(x) in the sample. The intensity of the scattered beam |ρ̃e(k)|2 can be
measured, for example, by exposing photographic film. But this inten-
sity is given by the Fourier transform of the equal-time electron6 density–

6Since the electrons are mostly tied
to atomic nuclei, Cee(r) is writable in
terms of atom-atom correlation func-
tions (Exercise 10.2). This is done us-
ing form factors [9, chapter 6].

density correlation function Cee(r) = 〈ρe(x + r, t)ρe(x, t)〉 (eqn A.21):

|ρ̃(k)|2 = ρ̃(k)∗ρ̃(k) =

∫
dx′ eik·x

′

ρ(x′)

∫
dx e−ik·xρ(x)

=

∫
dx dx′ e−ik·(x−x′)ρ(x′)ρ(x)

=

∫
dr e−ik·r

∫
dx′ ρ(x′)ρ(x′ + r)

=

∫
dr e−ik·rV 〈ρ(x)ρ(x + r)〉 = V

∫
dr e−ik·rC(r)

= V C̃(k). (10.4)

In the same way, other scattering experiments also measure two-point
correlation functions, averaged over the entire illuminated sample.
Real-space microscopy experiments and k-space diffraction experi-

ments provide complementary information about a system. The real-
space images are direct and easily appreciated and comprehended by the
human mind. They are invaluable for studying unusual events (which
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would be swamped in a bulk average), distributions of local geometries
(individual ensemble elements rather than averages over the ensemble),
and physical dynamical mechanisms. The k-space methods, on the other
hand, by averaging over the entire sample, can provide great precision,
and have close ties with calculational and analytical methods (as pre-
sented in this chapter). Indeed, often one will computationally Fourier
transformmeasured real-space data in order to generate correlation func-
tions (Exercise 10.1).
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Fig. 10.5 Power-law correlations.
The schematic correlation function of
figure 10.4 on a log–log plot, both at Tc
(straight line, representing the power
law C ∼ r−(d−2+η)) and above Tc
(where the dependence shifts to C ∼
e−r/ξ(T ) at distances beyond the cor-
relation length ξ(T )). See Chapter 12.

k

k
0

0k + k

Fig. 10.6 X-ray scattering. A beam
of wavevector k0 scatters off a density
variation ρ(x) with wavevector k to a
final wavevector k0 + k; the intensity
of the scattered beam is proportional
to |ρ̃(k)|2 [9, chapter 6].

10.3 Equal-time correlations in the ideal

gas

For the rest of this chapter we will consider systems which are in equi-
librium and close to equilibrium. In these cases, we shall be able to
find surprisingly tight relations between the correlations, response, and
dissipation. We focus on the ideal gas, which is both the simplest and
the most difficult case. In the exercises, you can calculate correlation
functions that are algebraically more challenging (Exercise 10.8) but the
ideal gas case is both conceptually subtle and fundamental. Let us start
by calculating the equal-time correlation function C ideal(r, 0).
The Helmholtz free energy density of the ideal gas is

F ideal(ρ(x), T ) = ρ(x)kBT
[
log(ρ(x)λ3)− 1

]
(10.5)

(eqn 6.62). The probability P{ρ(x)} of finding a particular density
profile ρ(x) as a fluctuation is proportional to

P{ρ(x)} ∝ e−β
∫
F(ρ(x)) dx. (10.6)

Let us assume the fluctuations are small, and expand about 〈ρ〉 = ρ0:

F(ρ(x)) = F0 +
δF
δρ

∣∣∣∣
ρ0

(ρ− ρ0) +
1

2

δ2F
δρ2

∣∣∣∣
ρ0

(ρ− ρ0)
2

= F0 + µ0(ρ− ρ0) +
1

2
α(ρ− ρ0)

2, (10.7)

where7 µ0 = (δF/δρ)|ρ0
is the chemical potential and the coefficient of7δF/δρ is a variational derivative. F

is a mapping taking functions to other
functions; under a small change δρ in
its argument, F{ρ + δρ} − F{ρ} =∫
(δF/δρ) δρ dx. The integral can be

viewed as a kind of dot product of δρ
with δF/δρ (see Section A.3 for inner
products in function space), so the vari-
ational derivative is just like a gradient
of a function, where f(x+ δ) = ∇f · δ.

the quadratic term is

α =
∂2F
∂ρ2

∣∣∣∣
ρ0

= kBT/ρ0 = P0/ρ
2
0 (10.8)

(since the pressure P0 = NkBT/V = ρ0kBT ). Only the integral of the
free energy matters, so
∫

F(ρ(x)) dx = V F0 + µ0✘✘✘✘✘✘✘
∫
(ρ− ρ0) dx+

∫
1/2α(ρ − ρ0)

2 dx, (10.9)

where µ0 drops out because the average of ρ equals ρ0. We can also drop
F0 because it changes the free energy of all configurations by a constant,
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and does not change their relative probabilities.8 So the effective free 8Each Boltzmann factor shifts by

e−βVF0 , so Z shifts by the same fac-
tor, and so the ratio e−βVF0/Z giving
the probability is independent of F0.

energy of the ideal gas, for small density fluctuations, is

F(ρ) =
1

2
α(ρ− ρ0)

2, (10.10)

and the probability of finding a density fluctuation is

P{ρ(x)} ∝ e−β
∫

1
2α(ρ−ρ0)

2 dx. (10.11)

We can now calculate the expectation value of the equal-time density–
density correlation function:

C ideal(r, 0) = 〈ρ(x, t)ρ(x+ r, t)〉 − ρ20 = 〈(ρ(x, t)− ρ0)(ρ(x+ r, t)− ρ0)〉.
(10.12)

Here we subtract off the square of the average density, so that we mea-
sure the correlations between the fluctuations of the order parameter
about its mean value. (Subtracting the means gives us the connected
correlation function.) If we break up the ideal gas into tiny boxes of size
∆V , the probability of having density ρ(xj) in volume j is

Pj(ρ) ∝ exp

(
−

1/2α(ρ− ρ0)
2∆V

kBT

)
= exp

(
− (ρ− ρ0)

2

2/(βα∆V )

)
. (10.13)

This is a Gaussian of root-mean-square width σ =
√
1/(βα∆V ), so the

mean square fluctuations inside a single box is

〈(ρ− ρ0)
2〉 = 1

βα∆V
. (10.14)

The density fluctuations in different boxes are uncorrelated. This means
C ideal(r, 0) = 0 for r reaching between two boxes, and C ideal(0, 0) =
1/(βα∆V ) within one box.9

9Thus the correlation length ξ for the
ideal gas is zero (Fig. 10.4).

What does it mean for C ideal to depend on the box size ∆V ? The fluc-
tuations become stronger as the box gets smaller. We are familiar with
this; we saw earlier using the microcanonical ensemble (Section 3.2.1
and eqn 3.67) that the square of the number fluctuations in a small
subvolume of ideal gas was equal to the expected number of particles
〈(N − 〈N〉)2〉 = N ,10 so the fractional fluctuations 1/

√
N get larger as

10Do the two calculations agree? Using
eqn 10.8 and the ideal gas law P0V =
NkBT = N/β, the density fluctuations

〈(ρ− ρ0)
2〉 = (N − 〈N〉)2

(∆V )2

=
N

(∆V )2
=

ρ0

∆V

=
1

(ρ0/P0)(P0/ρ20)∆V

=
1

(N/P0V )α∆V

=
1

βα∆V
(10.15)

are just as we computed from F ideal.

the volume gets smaller.
How do we write the correlation function, though, in the limit ∆V →

0? It must be infinite at r = 0, and zero for all non-zero r. More
precisely, it is proportional the Dirac δ-function, this time in three di-
mensions δ(r) = δ(rx)δ(ry)δ(rz). The equal-time connected correlation
function for the ideal gas is

C ideal(r, 0) =
1

βα
δ(r). (10.16)

The correlation function of an uncorrelated system is white noise.11

11White light is a mixture of all fre-
quencies of light with equal amplitude
and random phases (Exercise A.8). Our
noise has the same property. The
Fourier transform of C(r, 0), C̃(k, t =
0) = (1/V )|ρ̃(k)|2 (as in eqn 10.4), is
constant, independent of the wavevec-
tor k. Hence all modes have equal
weight. To show that the phases are
random, we can express the free energy
(eqn 10.9) in Fourier space, where it is
a sum over uncoupled harmonic modes;
hence in equilibrium they have random
relative phases (see Exercise 10.8).
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We can see that the constant outside is indeed 1/βα, by using C ideal

to calculate the mean square fluctuations of the integral of ρ inside the
box of volume ∆V :

〈(ρ− ρ0)
2〉box =

〈(
1

∆V

∫

∆V

(ρ(x) − ρ0) dx

)2
〉

=
1

(∆V )2

∫

∆V

dx

∫

∆V

dx′ 〈(ρ(x) − ρ0)(ρ(x
′)− ρ0)〉

=
1

(∆V )2

∫

∆V

dx

∫

∆V

dx′ 1

βα
δ(x− x′)

=
1

βα(∆V )2

∫

∆V

dx =
1

βα∆V
, (10.17)

in agreement with our earlier calculation (eqn 10.14).

10.4 Onsager’s regression hypothesis and

time correlations

t = 0
t = τ

Fig. 10.7 Noisy decay of a fluctu-

ation. An unusual fluctuation at t = 0
will slowly decay to a more typical ther-
mal configuration at a later time τ .

t = 0
t = τ

Fig. 10.8 Deterministic decay of

an initial state. An initial condition
with the same density will slowly decay
to zero.

Equilibrium statistical mechanics does not determine the dynamics. Air
and perfume are both good ideal gases, but density fluctuations in air
lead to sound waves, while they lead to diffusion in perfume (which scat-
ters off the air molecules). We need to supplement statistical mechanics
with more information in order to calculate time correlations. There are
two basic choices. We could work with the microscopic laws; indeed,
most treatments of this topic start from quantum mechanics [43]. In-
stead, here we will rely on the macroscopic evolution laws to specify our
dynamics.
How are the density fluctuations in an ideal gas of perfume correlated

in time? In particular, suppose at t = 0 there is a rare fluctuation,
increasing the density of perfume at one point (Fig. 10.7). How will it
decay to a more typical density profile as time passes?
Macroscopically our perfume obeys the diffusion equation of Chap-

ter 2. There we derived the evolution laws for imposed initial non-
equilibrium density profiles, and ignored the spontaneous thermal fluc-
tuations. A macro-scale initial condition (Fig. 10.8) will evolve according
to the diffusion equation ∂ρ/∂t = D∇2ρ. The confusing point about the
microscopic density (Fig. 10.7) is that it introduces new spontaneous
thermal fluctuations while it flattens old ones.
In this text, we have been rather casual in denoting averages, using

the same symbol 〈·〉 for time averages, spatial averages, and averages
over microcanonical, canonical, and grand canonical ensembles. In this
section we will be doing several different kinds of averages, and we need
to distinguish between them. Our microcanonical, canonical, and grand
canonical ensemble averages cannot be used to calculate quantities de-
pending on more than one time (because the equilibrium ensembles are
independent of dynamics). Let us write 〈·〉eq for these equal-time equi-
librium averages. The time–time correlation functions are defined by an
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equilibrium ensemble of time evolutions, which may include noise from
the environment. Let us denote these averages by 〈·〉ev. Thus 〈·〉ev gen-
eralizes 〈·〉eq to work on quantities that depend on more than one time.
Finally, let us write [·]ρi

for the noisy evolution average fixing the initial
condition ρ(x, 0) = ρi(x) at time zero. This averages over all the new
spontaneous density fluctuations, allowing us to examine the decay of
an initial spontaneous density fluctuation, or perhaps an initial imposed
density profile.
We will assume that this last average fixing the initial condition obeys

the same diffusion equation that governs the macroscopic time evolution
(Figs 10.7 and 10.8). For our diffusion of perfume, this means

∂

∂t
[ρ(x, t)]ρi

= D∇2 [ρ(x, t)]ρi
. (10.18)

This assumption is precisely Onsager’s regression hypothesis [102],

. . . we may assume that a spontaneous deviation from the
equilibrium decays according to the same laws as one that
has been produced artificially.

Let us calculate the correlation function 〈ρ(r+ r′, t+ t′)ρ(r′, t′)〉ev by
taking our evolution ensemble for fixed initial condition [ρ(x, t)]ρi

and
then taking a thermal average over initial conditions ρ(x, 0) = ρi(x). We
may use the fact that our system is homogeneous and time independent
to measure our correlation function starting at the origin:

C(r, τ) = 〈(ρ(x + r, t+ τ) − ρ0)(ρ(x, t) − ρ0)〉ev
= 〈(ρ(r, τ) − ρ0)(ρ(0, 0)− ρ0)〉ev
=
〈
([ρ(r, τ)]ρi

− ρ0)(ρi(0)− ρ0)
〉
eq
. (10.19)

In words, averaging over both initial conditions and noise 〈·〉ev is the
same as first averaging over noise [·]

i
and then over initial conditions

〈·〉eq. We know from Onsager’s regression hypothesis that

∂C ideal

∂t
=

〈
∂

∂t
[ρ(r, t)]ρi

(ρi(0)− ρ0)

〉

eq

=
〈
D∇2 [ρ(r, t)]ρi

(ρi(0)− ρ0)
〉
eq

= D∇2
〈
[ρ(r, t)]ρi

(ρi(0)− ρ0)
〉
eq

= D∇2 〈(ρ(r, t)− ρ0)(ρ(0, 0)− ρ0)〉ev
= D∇2C ideal(r, t). (10.20)

The correlation function C obeys the same equation as the decays of
imposed initial conditions. This is true in general.12

12We can use Onsager’s regression hy-
pothesis to calculate the correlation
function C for a general order param-
eter s(x, t). Suppose that the macro-
scopic time evolution of s(x, t), to linear
order in deviations away from its aver-
age value s̄, is given by some Green’s
function (Section 2.4.2):

smacro(x, t)

= s̄−
∫

dx′G(x− x′, t)

× (smacro(x
′, 0)− s̄).

(10.21)

For convenience, let us set s̄ = 0.
This convolution simplifies if we Fourier
transform in position x but not in time
t, using the convolution theorem for
Fourier transforms (eqn A.23):

ŝmacro(k, t) = Ĝ(k, t)ŝ(k, 0), (10.22)

where we use a hat to denote the
Fourier transform confined to position
space. Onsager’s regression hypothesis
says that a spontaneous initial thermal
fluctuation si will evolve according to
the same law,

[ŝ(k, t)]ŝi = Ĝ(k, t)ŝi(k)

= Ĝ(k, t)ŝ(k, t = 0),
(10.23)

so the connected correlation function

C(r, t) = 〈s(r, t)s(0, 0)〉ev
=
〈
[s(r, t)]si si(0)

〉

eq
(10.24)

evolves by

Ĉ(k, t) =
〈
[ŝ(k, t)]si si(0)

〉

eq

=
〈
Ĝ(k, t)ŝ(k, 0)si(0)

〉

eq

= Ĝ(k, t)Ĉ(k, 0). (10.25)

Again, the correlation function obeys
the same evolution law as the decay of
an imposed initial condition.

Thus to solve in a general system for the correlation function C, we
must calculate as the initial condition the instantaneous correlations
C(x, 0) using equilibrium statistical mechanics, and evolve it according
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to the macroscopic evolution law. In the case of the ideal perfume gas,
the equal-time correlations (eqn 10.16) are C ideal(r, 0) = 1/(βα) δ(r),
and the evolution law is given by the diffusion equation. We know how
an initial δ-function distribution evolves under the diffusion equation:1313Notice that Onsager’s regression hy-

pothesis allows us to evolve C(τ) for-
ward in time using the Green’s func-
tion. For negative times, we note that
for a time-translation-invariant system
C(τ) ∼ 〈ρ(t + τ)ρ(t)〉 = 〈ρ(t′)ρ(t′ −
τ)〉 = C(−τ), hence the absolute value
of τ in eqn 10.26. In linear response
theory, this can be handled formally
by introducing retarded and advanced

Green’s functions.

it is given by the Green’s function (Section 2.4.2). The Green’s func-
tion for the diffusion equation in one dimension (eqn 2.32) is G(x, t) =
(1/

√
4πDt) e−x2/4Dt. In three dimensions we take the product along x,

y, and z to get G, and then divide by βα, to get the correlation function

C ideal(r, τ) =
1

βα
G(r, τ) =

1

βα

(
1√

4πDτ

)3

e−r2/4D|τ |. (10.26)

This is the correlation function for an ideal gas satisfying the diffusion
equation.

10.5 Susceptibility and linear response

How will our system yield when we kick it? The susceptibility χ(r, τ)
gives the response at a distance r and time τ from a (gentle) kick. Let
us formulate susceptibility for a general order parameter s(x, t), kicked
by an external field f(x, t). That is, we assume that f appears in the
free energy functional

F = F0 + Ff (10.27)

as a term

Ff (t) = −
∫

dx f(x, t)s(x, t). (10.28)

You can think of f as a force density pulling s upward. If s is the particle
density ρ, then f is minus an external potential −V (x) for the particles;
if s is the magnetization M of an Ising model, then f is the external
field H ; if s is the polarization P of a dielectric material, then f is an
externally applied vector electric field E(x, t). For convenience, we will
assume in this section that s̄ = 0.14

14Or rather, we can define s to be the
deviation from the average value of the
order parameter in the absence of a
field.

How will the order parameter field s respond to the force f? If the
force is a weak perturbation, we can presume a linear response, but
perhaps one which is non-local in space and time. So, s(x, t) will depend
upon f(x′, t′) at all earlier times t′ < t:

s(x, t) =

∫
dx′

∫ t

−∞
dt′ χ(x− x′, t− t′)f(x′, t′). (10.29)

This non-local relation becomes much simpler if we Fourier trans-
form15 s, f , and χ in space and time. The AC susceptibility16 χ̃(k, ω)

15We will use a tilde Ã(k, ω) to repre-
sent the Fourier transform of the func-
tion A(x, t) with respect to both space
and time. We will also use a tilde B̃(k)
to represent the Fourier transform of
the static function B(x) with respect
to space. But we will use a hat Â(k, t)
to represent the Fourier transform of
A(x, t) in space x alone.

16AC stands for ‘alternating current’,
the kind of electricity that is used in
most buildings; the voltage fluctuates
periodically in time. The current from
batteries is DC or direct current, which
does not vary in time. Somehow we
have started using AC for all frequency-
dependent systems.

satisfies
s̃(k, ω) = χ̃(k, ω)f̃(k, ω), (10.30)

since as usual the Fourier transform of the convolution is the product
of the Fourier transforms (eqn A.23). The function χ is the suscepti-
bility of the order parameter s to the external field f . For example,
the polarization versus field is defined in terms of the polarizability α:17

17In electromagnetism, one usually
uses the dielectric permittivity ǫ rather
than the polarizability α. In SI/MKSA
units, α = ǫ − ǫ0, subtracting off the
‘permittivity of the vacuum’ ǫ0; the
dielectric constant is ǫ/ǫ0. In Gaus-
sian CGS units, α = (ǫ − 1)/4π, (and
the dielectric constant is also ǫ). Note
also α and ǫ are tensors (matrices) in
anisotropic materials, and P need not
be parallel to E.

P̃(k, ω) = α̃(k, ω)Ẽ(k, ω), the magnetization from an external field is

M̃(k, ω) = χ̃(k, ω)H̃(k, ω), and so on.
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10.6 Dissipation and the imaginary part

The real-space susceptibility χ(x, t) is real, but the AC susceptibility

χ̃(k, ω) =

∫
dxdt eiωte−ik·xχ(x, t) = χ′(k, ω) + iχ′′(k, ω) (10.31)

has a real part χ′ = Re[χ̃] and an imaginary part χ′′ = Im[χ̃].18 It is 18Some use the complex conjugate of
our formulæ for the Fourier transform
(see Section A.1), substituting −i for
i in the time Fourier transforms. Their
χ′′ is the same as ours, because they de-
fine it to be minus the imaginary part
of their Fourier-transformed suscepti-
bility.

clear from the definition that χ̃(−k,−ω) = χ̃∗(k, ω); for a system with
inversion symmetry x ↔ −x we see further that χ(x, t) = χ(−x, t) and
hence χ̃(k,−ω) = χ̃∗(k, ω), so χ′ is even in ω and χ′′ is odd. χ′ gives
the in-phase response to a sinusoidal force, and χ′′ gives the response
that lags in phase.19

19If we apply f(t) = cos(ω0t) =

1/2π
∫
f̃(ω) exp(−iωt)dt (eqn A.7), so

f̃(ω) = π(δ(ω − ω0) + δ(ω + ω0)), then
the response is s̃(ω) = χ̃(ω)f̃(ω), so

s(t) =
1

2π

∫
e−iωts̃(ω) dω

= 1/2
(
e−iω0tχ(ω0) + eiω0tχ(−ω0)

)

= 1/2
(
e−iω0t(χ′(ω0) + iχ′′(ω0))

+ eiω0t(χ′(ω0) − iχ′′(ω0))
)

=
(
χ′(ω0) cos(ω0t)

+ χ′′(ω0) sin(ω0t)
)
.

(10.32)

Hence χ′ gives the immediate in-phase
response, and χ′′ gives the out-of-phase
delayed response.

The imaginary part χ′′ in general gives the amount of dissipation
induced by the external field.20 The dissipation can be measured directly

20The real part is sometimes called the
reactive response, whereas the imagi-
nary part is the dissipative response.

(for example, by measuring the resistance as a function of frequency of
a wire) or by looking at the decay of waves in the medium (optical
and ultrasonic attenuation and such). We know that ‘energy’ is the
integral of ‘force’ f times ‘distance’ ∂s, or force times velocity ∂s/∂t
integrated over time. Ignoring the spatial dependence for simplicity, the
time average of the power p dissipated per unit volume is

p = lim
T→∞

1

T

∫ T

0

f(t)
∂s

∂t
dt = lim

T→∞

1

T

∫ T

0

−s(t)∂f
∂t

dt, (10.33)

where we have averaged over a time T and integrated by parts, assuming
the boundary terms are negligible for T → ∞. Assuming an AC force
f(t) = Re[fωe

−iωt] = 1/2(fωe
−iωt + f∗

ωe
iωt), we have

p(ω) = lim
T→∞

1

T

∫ T

0

s(t)
iω

2
(fωe

−iωt − f∗
ωe

iωt) dt, (10.34)

where the motion s(t) is in turn due to the forcing at earlier times:

s(t) =

∫ ∞

−∞
dt′ χ(t− t′)f(t′)

=

∫ ∞

−∞
dτ χ(τ)f(t− τ)

=

∫ ∞

−∞
dτ

χ(τ)

2
(fωe

−iω(t−τ) + f∗
ωe

iω(t−τ)). (10.35)

Substituting eqn 10.35 into eqn 10.34, we get

p(ω) = lim
T→∞

1

T

∫ T

0

dt

∫ ∞

−∞
dτ

iωχ(τ)

4

× (fωe
−iω(t−τ) + f∗

ωe
iω(t−τ))(fωe

−iωt − f∗
ωe

iωt)

=

∫ ∞

−∞
dτ

iωχ(τ)

4
lim

T→∞

1

T

∫ T

0

dt

×
[
f2
ωe

−iω(2t−τ) − f∗
ω
2eiω(2t−τ) + |fω|2(e−iωτ − eiωτ )

]
.

(10.36)
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The first and second terms are zero, and the third gives a sine,21 so21In particular,

i(e−iωτ − eiωτ ) = 2 sin(ωτ),

lim
T→∞

(1/T )

∫ T

0
dt e±2iωt = 0, and

lim
T→∞

(1/T )

∫ T

0
dt e0iωt = 1.

p(ω) =
ω|fω|2

2

∫ ∞

−∞
dτ χ(τ) sin(ωτ) =

ω|fω|2
2

Im[χ̃(ω)]

=
ω|fω|2

2
χ′′(ω). (10.37)

Since the power dissipated must be positive, we find ωχ′′(ω) is positive.2222We knew already (beginning of this
section) that χ′′ was odd; now we know
also that it is positive for ω > 0. Let us interpret this formula in the familiar case of electrical power

dissipation in a wire. Under a (reasonably low-frequency) AC volt-
age V (t) = Vω cos(ωt), a wire of resistance R dissipates average power
〈P 〉 = 〈V 2/R〉 = V 2

ω 〈cos2(ωt)〉/R = 1/2V
2
ω /R by Ohm’s law. A wire

of length L and cross-section A has electric field Eω cosωt with Eω =
Vω/L, and it has resistance R = L/(σA), where σ is the conductiv-
ity of the metal. So the average dissipated power per unit volume
p(ω) = 〈P 〉/(LA) = 1/2((EωL)

2/(L/σA)) (1/LA) = 1/2σE
2
ω . Remem-

bering that Eω is the force fω and the polarizability α(ω) is the suscep-
tibility χ(ω), eqn 10.37 tells us that the DC conductivity is related to the
limit of the AC polarizability at zero frequency: σ = limω→0 ω α

′′(ω).

10.7 Static susceptibility

In many cases, we are interested in how a system responds to a static
external force—rather than kicking a system, we lean on it. Under
a point-like force, the dimple formed in the order parameter field is
described by the static susceptibility χ0(r).
If the external force is time independent (so f(x′, t′) = f(x′)) the

system will reach a perturbed equilibrium, and we may use equilibrium
statistical mechanics to find the resulting static change in the average
order parameter field s(x). The non-local relation between s and a small
field f is given by the static susceptibility, χ0:

s(x) =

∫
dx′ χ0(x − x′)f(x′). (10.38)

If we take the Fourier series of s and f , we may represent this relation
in terms of the Fourier transform of χ0 (eqn A.23):

s̃k = χ̃0(k)f̃k. (10.39)
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As an example,23 the free energy density for the ideal gas, in the
linearized approximation of Section 10.3, is F = 1/2α(ρ − ρ0)

2. For a
spatially-varying static external potential f(x) = −V (x), this is mini-
mized by ρ(x) = ρ0 + f(x)/α, so (comparing with eqn 10.38) we find
the static susceptibility is

χideal
0 (r) = δ(r)/α, (10.43)

and in Fourier space it is χ̃0(k) = 1/α. Here χ0 is the ‘spring constant’
giving the response to a constant external force.
Notice for the ideal gas that the static susceptibility χideal

0 (r) and the
equal-time correlation function C ideal(r, 0) = δ(r)/(βα) are proportional
to one another: χideal

0 (r) = βC ideal(r, 0). This can be shown to be true
in general for equilibrium systems (note 23):

χ0(r) = βC(r, 0). (10.44)

That is, the ω = 0 static susceptibility χ0 is given by dividing the
instantaneous correlation function C by kBT—both in real space and
also in Fourier space:

χ̃0(k) = βĈ(k, 0). (10.45)

This fluctuation-response relation should be intuitively reasonable; a
system or mode which is easy to perturb will also have big fluctuations.

23We can derive eqn 10.45 in general, by a (somewhat abstract) calculation. We find the expectation value 〈s̃k〉eq for a given

f̃k, and then take the derivative with respect to f̃k to get χ̃0(k). The interaction term in the free energy eqn 10.28 reduces in
the case of a static force to

Ff = −
∫

dx f(x)s(x) = −V
∑

k′

f̃k′ s̃−k′ , (10.40)

where V is the volume (periodic boundary conditions) and the sum over k′ is the sum over allowed wavevectors in the box
(Appendix A). (We use Fourier series here instead of Fourier transforms because it makes the calculations more intuitive; we
get factors of the volume rather than δ-functions and infinities.) The expectation value of the order parameter in the field is

〈s̃k〉eq = Tr

[
s̃ke
−β

(
F0−V

∑
k′ f̃

k′ s̃−k′

)]/
Tr

[
e
−β

(
F0−V

∑
k′ f̃

k′ s̃−k′

)]
=

1

βV

∂ logZ

∂f−k′

, (10.41)

where Tr integrates over all order parameter configurations s (formally a path integral over function space). The susceptibility
is given by differentiating eqn 10.41:

χ̃0(k) =
∂ 〈s̃k〉eq
∂f̃k

∣∣∣∣∣
f=0

=

Tr

[
s̃k(βV s̃−k)e

−β
(
F0−V

∑
k′ f̃

k′ s̃−k′

)]

Tr

[
e
−β

(
F0−V

∑
k′ f̃

k′ s̃−k′

)]

∣∣∣∣∣∣∣∣
f=0

−
Tr

[
s̃ke
−β

(
F0−V

∑
k′ f̃

k′ s̃−k′

)]
Tr

[
(βV s̃−k)e

−β
(
F0−V

∑
k′ f̃

k′ s̃−k′

)]

Tr

[
e
−β

(
F0−V

∑
k′ f̃

k′ s̃−k′

)]2

∣∣∣∣∣∣∣∣∣
f=0

= βV (〈s̃ks̃−k〉 − 〈s̃k〉〈s̃−k〉) = βV
〈
(s̃k − 〈s̃k〉)2

〉
= βĈ(k, 0), (10.42)

where the last equation is the Fourier equality of the correlation function to the absolute square of the fluctuation (eqn A.21,
except (i) because we are using Fourier series instead of Fourier transforms there are two extra factors of V , and (ii) the 〈sk〉
subtraction gives us the connected correlation function, with s̄ subtracted off).
Note that everything again is calculated by taking derivatives of the partition function; in eqn 10.41 〈s̃k〉 = (1/β) ∂ logZ/∂f−k

and in eqn 10.42 Ĉ(k, 0) = (1/β2) ∂2logZ/∂fk∂f−k. The higher connected correlation functions can be obtained in turn by
taking higher derivatives of logZ. This is a common theoretical technique; to calculate correlations in an ensemble, add a force
coupled to the corresponding field and take derivatives.
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How is the static susceptibility χ0(r) related to our earlier dynamic
susceptibility χ(r, t)? We can use the dynamic susceptibility (eqn 10.29)
in the special case of a time-independent force

s(x, t) =

∫
dx′

∫ t

−∞
dt′ χ(x− x′, t− t′)f(x′)

=

∫
dx′

∫ ∞

0

dτ χ(x− x′, τ)f(x′), (10.46)

to derive a formula for χ0:

χ0(r) =

∫ ∞

0

dt χ(r, t) =

∫ ∞

−∞
dt χ(r, t). (10.47)

Here we use the fact that the physical world obeys causality (effects can-

-10 -5 0 5 10
Time t

0.5

χ(
0,

t)

Fig. 10.9 The susceptibility χ(r =
0, t) for a hypothetical system with two
characteristic relaxation times. Here
χ(r, t) gives the response to an impulse
at a time t in the past; causality re-
quires that there be no response pre-

ceding the impulse, so χ(r, t) = 0 for
t < 0.

not precede their cause) to set χ(r, t) = 0 for t < 0 (see Fig. 10.9). The
integral over time in eqn 10.47 extracts the ω = 0 Fourier component, so
the k-dependent static susceptibility is the zero-frequency limit of the
AC susceptibility:

χ̃0(k) = χ̃(k, ω = 0). (10.48)

Often, one discusses the uniform susceptibility of a system—the re-
sponse to an external field uniform not only in time but also in space.
The specific heat of Section 6.1 is the uniform k = 0 value of the static
susceptibility to a change in temperature, as the magnetic susceptibility
of Exercise 8.1 is the susceptibility to a uniform change in field. For
the uniform static susceptibility, s =

∫
dx′ χ0(x − x′)f = χ̃0(k = 0)f ,

so the uniform susceptibility is given by χ̃0(k) at k = 0. Knowing
χ̃0(k) = βĈ(k, t = 0) (eqn 10.45), we can relate the uniform susceptibil-
ity to the k = 0 component of the equal-time correlation function. But
at k = 0, the correlation function is given by the mean square of the
spatially-averaged order parameter 〈s〉space = (1/V )

∫
s(x) dx:2424Remember that the susceptibility

and the correlated fluctuations are with
respect to the average properties of
the phase. So in eqn 10.49, if the
average magnetization 〈s〉 is not zero
(in a ferromagnet or in an external
field), one must use the correlation
function for the fluctuations about the
mean Ĉ(k, t = 0) =

∫
dr〈(s(r + x) −

〈s〉)(s(x)−〈s〉)〉. This is called the con-

nected correlation function. This does
not usually affect the susceptibility ex-
cept at k = 0.

kBT χ̃0(k = 0) = Ĉ(k = 0, t = 0) =

∫
dr 〈s(r+ x)s(x)〉

=

∫
dr

1

V

〈∫
dx s(r+ x)s(x)

〉

= V

〈
1

V

∫
dr′ s(r′)

1

V

∫
dx s(x)

〉

= V
〈
〈s〉2space

〉
. (10.49)

We have thus connected a uniform linear response to the fluctuations
of the whole system. We have done this in special cases twice before,
in Exercise 8.1(b) where the fluctuations in magnetization gave the sus-
ceptibility in the Ising model, and eqn 6.13 where the energy fluctua-
tions were related to the specific heat. Equation 10.49 shows in general
that fluctuations in spatially-averaged quantities vanish in the thermo-
dynamic limit V → ∞:

〈
〈s〉2space

〉
=
kBT χ̃0(0)

V
(10.50)

so long as the uniform susceptibility stays finite.
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10.8 The fluctuation-dissipation theorem

Now we turn to computing the dynamic susceptibility. It too is related
to the correlation function, via the fluctuation-dissipation theorem.
How can we compute χ(r, t), the space–time evolution after we kick

the system at r = t = 0? We know the time evolution starting from an
imposed initial condition is given by the Green’s function G(r, t). We can
impose an initial condition using a static force f(x, t) = f(x) for t < 0,
and release it at t = 0 so f(x, t) = 0 for t > 0. We can then match25

the Green’s function time evolution s(x, t) =
∫
dx′ G(x − x′, t)s(x′, 0)

with that given by the susceptibility s(x, t) =
∫ 0

−∞ dt′
∫
dx′ f(x′)χ(x−

x′, t− t′).
Let us work it out for the ideal gas, where χ0(r) = δ(r)/α (eqn 10.43),

so ρ(x, 0) = f(x)/α. The subsequent time evolution is given by the
Green’s function G(x, t), which we have seen for the ideal gas gives the
correlation function C ideal(x, t) = G(x, t)/(βα) by Onsager’s regression
hypothesis (eqn 10.26):

ρ(x, t) =

∫
dx′ ρ(x′, 0)G(x− x′, t) =

∫
dx′ f(x

′)

α
G(x− x′, t)

=

∫
dx′ f(x′)βC ideal(x− x′, t). (10.56)

We match against ρ(x, t) written using the dynamical susceptibility.
Since f(x, t) = 0 for t > 0 the formula involves integrals up to time

25We can do this for a general order parameter field s(x, t). We start with an initial condition defined by a static external
field f(x), which is given by ŝ(k, t = 0) = χ̃0(k)f̃(k). The subsequent time evolution is given by convolving with the Green’s
function G(x, t) (eqn 2.34), which is the same as multiplying by Ĝ(k, t):

ŝ(k, t) = χ̃0(k)f̃(k)Ĝ(k, t). (10.51)

We can also find an equation for ŝ(k, t) by using the dynamic susceptibility, eqn 10.29, and the fact that f(t′) = 0 for t′ > 0:

s(x, t) =

∫
dx′

∫ t

−∞
dt′ χ(x−x′, t−t′)f(x′, t′) =

∫
dx′

∫ 0

−∞
dt′ χ(x−x′, t−t′)f(x′) =

∫
dx′

∫ ∞

t
dτ χ(x−x′, τ)f(x′), (10.52)

so

ŝ(k, t) =

∫ ∞

t
dτ χ̂(k, τ)f̃(k). (10.53)

This is true for any f̃(k), so with eqn 10.51, we find
∫∞
t dτ χ̂(k, τ) = χ̃0(k)Ĝ(k, t). Now from the last section, eqn 10.45, we

know χ̃0(k) = βĈ(k, 0). From the Onsager regression hypothesis, the Green’s function Ĝ(k, t) for s has the same evolution law
as is obeyed by the correlation function C (eqn 10.25), so Ĉ(k, 0)Ĝ(k, t) = Ĉ(k, t). Hence

∫ ∞

t
dτ χ̂(k, τ) = βĈ(k, 0)Ĝ(k, t) = βĈ(k, t). (10.54)

Differentiating both sides with respect to time yields the fluctuation-dissipation theorem in k-space:

χ̂(k, t) = −β ∂Ĉ(k, t)

∂t
. (10.55)
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zero; we change variables to τ = t− t′:

ρ(x, t) =

∫
dx′

∫ 0

−∞
dt′ f(x′)χ(x − x′, t− t′)

=

∫
dx′f(x′)

∫ ∞

t

dτ χ(x− x′, τ). (10.57)

Comparing these two formulæ, we see that

βC ideal(r, t) =

∫ ∞

t

dτ χ(r, τ). (10.58)

Taking the derivative of both sides, we derive one form of the fluctuation-
dissipation theorem:

χideal(r, t) = −β ∂C
ideal

∂t
(t > 0). (10.59)

The fluctuation-dissipation theorem in this form is true in general for
the linear response of classical equilibrium systems (see note 25). The
linear dynamic susceptibility χ of a general order parameter field s(x, t)
with correlation function C(x, t) is given by

χ(x, t) = −β ∂C(x, t)
∂t

(t > 0). (10.60)
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Fig. 10.10 Time–time correlation

function. The time–time correlation
function C(r = 0, τ) for the same hy-
pothetical system whose susceptibility
was shown in Fig. 10.9.

What happens for t < 0? The correlation function must be symmetric
in time (Fig. 10.10) since the equilibrium state is invariant under time-
reversal symmetry:

C(r, τ) = 〈s(x, t)s(x + r, t+ τ)〉
= 〈s(x, t)s(x + r, t− τ)〉 = C(r,−τ). (10.61)

But χ must be zero for t < 0 (Fig. 10.9) by causality:

χ(r, t) = 0 (t < 0). (10.62)

We can see why it is called the fluctuation-dissipation theorem by
looking at the AC version of the law. Again, for convenience, we ig-
nore the spatial degrees of freedom. Using eqns 10.60 and 10.62, and
integrating by parts, we find

χ̃(ω) =

∫ ∞

−∞
dt χ(t)eiωt = −β

∫ ∞

0

dt
∂C

∂t
eiωt

= − βC(t)eiωt
∣∣∞
0

+ iωβ

∫ ∞

0

dt C(t)eiωt. (10.63)

Now, the first term is real and C(t) = C(−t), so we may write the
imaginary part of the susceptibility as

χ′′(ω) = Im[χ̃(ω)] = βω

∫ ∞

0

dt C(t) cos(ωt)

=
βω

2

∫ ∞

−∞
dt C(t)eiωt =

βω

2
C̃(ω). (10.64)
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This is the AC version of the (classical) fluctuation-dissipation theorem,
which we state again:

χ′′(ω) =
βω

2
C̃(ω). (10.65)

Using this result and eqn 10.37 relating the power dissipated p(ω) to χ′′,
we find

p(ω) =
ω|fω|2

2
χ′′(ω) =

ω|fω|2
2

βω

2
C̃(ω)

=
βω2|fω|2

4
C̃(ω). (10.66)

This tells us that the power dissipated p(ω) under an external forcing
fω is given in terms of the correlation function of the spontaneous fluc-
tuations C̃(ω); hence the name fluctuation-dissipation theorem.
Notice that the fluctuation-dissipation theorem applies only to equilib-

rium systems. (There are several interesting but much more speculative
attempts to generalize it to non-equilibrium systems.) Also notice that
we have ignored quantum mechanics in our derivation.26 Indeed there 26One can also derive the fluctuation-

dissipation theorem quantum mechani-
cally, and then use it to derive the On-
sager regression hypothesis [43].

are quantum-mechanical corrections; the fully quantum version of the
fluctuation-dissipation theorem is

χ′′(k, ω) = Im[χ̃(k, ω)] =
1

2~
(1− e−β~ω)C̃(k, ω). (10.67)

At high temperatures, 1 − e−β~ω ∼ β~ω and we regain our classical
result, eqn 10.65.

10.9 Causality and Kramers–Krönig

The susceptibility χ(t) (again, dropping the positions for simplicity) is
a real-valued function on the half-line t > 0. The frequency-dependent
susceptibility is composed of two real-valued functions χ′(ω) and χ′′(ω)
on the entire line. We can use the symmetries χ̃(−ω) = χ̃∗(ω) to reduce
this to two real-valued functions on the half-line ω > 0, but it still seems
like χ̃(ω) contains twice the information of χ(t). It makes it plausible
that χ′ and χ′′ might be related somehow. Suppose we measure the
frequency-dependent absorption of the material, and deduce χ′′(k, ω).
Can we find the real part of the susceptibility χ′(k, ω)?
It is a remarkable fact that we can find a formula for χ′(ω) in terms

of χ′′(ω). This relation is called the Kramers–Krönig relation, and it
follows from causality. For this argument, you will need to know some
complex analysis.27 27If you have not heard of Cauchy’s

theorem, read on—you will be getting
a preview of the key result in complex
analysis.

We know that χ(t) = 0 for t < 0, because the laws of nature are
causal; the response cannot precede the perturbation. What does this
imply about χ(ω) =

∫
dt χ(t)eiωt? Consider the function χ as a function

of a complex frequency ω = u+ iv:

χ(u + iv) =

∫ ∞

0

dt χ(t)eiute−vt. (10.68)
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It converges nicely for v > 0, but looks dubious for v < 0. In the
complex ω plane, the fast convergence for v > 0 implies that χ(ω) is
analytic in the upper half-plane.28 Also, it seems likely that there will28Analytic means that Taylor series ex-

pansions converge. It is amazing how
many functions in physics are analytic;
it seems we almost always can assume
power series make sense. We have
discussed in Section 8.3 that material
properties are analytic functions of the
parameters inside phases; we have dis-
cussed in Exercise 9.5 that the free en-
ergy for finite systems (and for finite
coarse-grainings) is an analytic func-
tion of the order parameter and its gra-
dients. Here we find yet another excuse
for finding analytic functions: causal-
ity!

be singularities (e.g., poles) in χ̃(ω) in the lower half-plane (v < 0).

z
2

B

A

C

z
Im

[ 
 ]

zRe[  ]

z
1

Fig. 10.11 Cauchy’s theorem. For
f(z) to have a well-defined complex in-
tegral from z1 to z2, the contour inte-
gral over any two paths A and B con-
necting the points must agree. Hence
the integral along a closed curve C
formed by traversing A forward and B
backward must be zero. Cauchy’s the-
orem is thus the condition for the com-
plex integral to be well defined, inde-
pendent of the path from z1 to z2.

We now apply a deep theorem of complex analysis. If C is a closed
curve (or contour) in the complex z plane, and f(z) is analytic every-
where in a region that encloses the contour, Cauchy’s theorem states
that the line integral of f(z) around C is zero:

∮

C

f(z′) dz′ = 0. (10.69)

Cauchy’s theorem (which we shall not prove) is amazing, but it has a
simple interpretation: it is the condition for the integral of f(z) to exist
as a complex function (Fig. 10.11).
Now consider the integral

∮

Cω

χ̃(ω′)

ω′ − ω
dω′ = 0 (10.70)

along the contour Cω of Fig. 10.12. The integral is zero because χ̃(ω′)
is analytic in the upper half-plane, and thus so also is χ̃(ω′)/(ω′ − ω),
except at the point ω′ = ω which is dodged by the small semicircle
(of radius ǫ). The contribution of the large semicircle to this contour
integral can be shown to vanish as its radius R → ∞. The contribution
of the small clockwise semicircle ω′ = ω + ǫ exp(iθ), π > θ > 0, is
∫

small
semicircle

χ̃(ω′)

ω′ − ω
dω′ ≈ χ̃(ω)

∫

small
semicircle

1

ω′ − ω
dω′

= χ̃(ω) log(ω′ − ω)
∣∣∣
ω′=ω+ǫ exp(i0)

ω′=ω+ǫ exp(iπ)

= χ̃(ω)[log ǫ− (log ǫ+ iπ)] = −iπχ̃(ω). (10.71)

The two horizontal segments, as R → ∞ and ǫ → 0, converge to the
integral over the whole real axis:

lim
ǫ→0

[∫ ω′−ǫ

−∞
+

∫ ∞

ω′+ǫ

]
χ̃(ω′)

ω′ − ω
dω′ = PV

∫ ∞

−∞

χ̃(ω′)

ω′ − ω
dω′, (10.72)

where the left-hand side is the definition of the principal value (PV), the
limit as the pole is approached symmetrically from either side.
Since the contribution of the semicircles and the horizontal segments

sum to zero by Cauchy’s theorem, eqn 10.71 must equal minus eqn 10.72,
so2929Many will recognize this as being

related to Cauchy’s integral formula,
which states that
∮

C

f(z′)

z′ − z
dz′ = 2πif(z)N, (10.73)

where N is the winding number of the
path (the number of times it encir-
cles z counter-clockwise). A counter-
clockwise loop plowing straight through
z is the special case with N = 1/2.

χ̃(ω) =
1

πi

∫ ∞

−∞

χ̃(ω′)

ω′ − ω
dω′, (10.74)

where the right-hand side is understood as the principal value.
Notice the i in the denominator. This implies that the real part of the

integral gives the imaginary part of χ̃ and vice versa. In particular,

χ′(ω) = Re[χ̃(ω)] =
1

π

∫ ∞

−∞

Im[χ̃(ω′)]

ω′ − ω
dω′ =

1

π

∫ ∞

−∞

χ′′(ω′)

ω′ − ω
dω′.

(10.75)
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It is traditional to simplify it a bit more, by noticing that χ′′(ω) =
−χ′′(−ω), so

χ′(ω) =
1

π

∫ ∞

0

χ′′(ω′)

(
1

ω′ − ω
− 1

−ω′ − ω

)
dω′

=
2

π

∫ ∞

0

χ′′(ω′)
ω′

ω′2 − ω2
dω′. (10.76)

Hence in principle one can measure the imaginary, dissipative part of a
frequency-dependent susceptibility and do a simple integral to get the
real, reactive part. Conversely,

χ′′(ω) = −2ω

π

∫ ∞

0

χ′(ω′)
1

ω′2 − ω2
dω′. (10.77)

ω
Fig. 10.12 Kramers–Krönig con-

tour. A contour Cω in the complex ω′

plane. The horizontal axis is Re[ω′] and
the vertical axis is Im[ω′]. The inte-
gration contour runs along the real axis
from −∞ to ∞ with a tiny semicircu-
lar detour near a pole at ω. The con-
tour is closed with a semicircle back at
infinity, where χ(ω′) vanishes rapidly.
The contour encloses no singularities,
so Cauchy’s theorem tells us the inte-
gral around it is zero.

These are the Kramers–Krönig relations. In practice they are a chal-
lenge to use; to deduce the real part, one must measure (or approximate)
the dissipative imaginary part at all frequencies, from deep infra-red to
X-ray.

Exercises

In Microwave background radiation, we study the first of
all correlation functions, left to us from the Big Bang.
In Pair distributions and molecular dynamics, we explore
the spatial atom-atom pair distribution function in molec-
ular dynamics simulations of liquids and gases.

The next five exercises focus on purely temporal fluc-
tuations and evolution. In Damped oscillator and Spin
we explore the various relations between correlation, re-
sponse, and dissipation in the two most commonly ob-
served and studied systems. Telegraph noise in nano-
junctions ties correlation functions to Markov chains
and detailed balance in a modern experimental context.
Fluctuation-dissipation: Ising verifies our main theorem
in a numerical simulation. Noise and Langevin equations
explores the thermal fluctuations from the heat bath, and
how they return the energy to the system that is with-
drawn by dissipation. This last exercise provides the theo-
retical justification for one type of heat bath for molecular
dynamics simulations.

We conclude with two systems fluctuating and respond-
ing both in space and in time. (This doubles the number
of Fourier transforms, but conceptually these cases are
no more difficult.) Magnet dynamics guides us through
a complete calculation of the correlation and susceptibil-

ity for an order parameter field with stiffness to gradi-
ents (unlike the ideal gas). Finally, Quasiparticle poles
and Goldstone’s theorem models ultrasonic attenuation
in gases, and shows how ‘eigenmodes’ with lifetimes are
given formal credibility as complex-frequency singulari-
ties in the susceptibility.

(10.1) Microwave background radiation.30 (As-
trophysics) ©3
In Exercise 7.15, we studied the the microwave
background radiation. This radiation was emit-
ted about 380 000 years after the Big Bang, when
the electrically charged electrons and protons
combined into neutral atoms and hence almost
completely stopped scattering the photons [143].
We saw there that the spectrum is almost per-
fectly a black-body spectrum, indicating that the
photons at the decoupling time were in thermal
equilibrium.
The Universe was not only in local thermal
equilibrium at that time, but seemed to have
reached precisely the same temperature in all di-
rections (a global equilibrium). Apart from our
galaxy (which emits microwaves) and a few other

30This exercise was developed with assistance from Ira Wasserman, Eanna Flanagan, Rachel Bean, and Dale Fixsen.



 Copyright Oxford University Press 2006  v1.0                       --  

232 Correlations, response, and dissipation

non-cosmological point sources, the early exper-
iments could not detect any angular fluctuations
in the microwave temperature. This uniformity
lends support to a model called inflation. In the
inflationary scenario, space–time goes through a
period of rapid expansion, leaving the observable
Universe with a uniform density.
More discriminating experiments next detected
an overall Doppler shift of the temperature field,
which they used to measure the absolute veloc-
ity of the Sun.31 The Sun has a net velocity of
about a million miles per hour in the direction
of the constellation Leo.

Fig. 10.13 Map of the microwave back-

ground radiation, from the NASA/WMAP Sci-
ence Team [137]. Variation in temperature of the
microwave background radiation, after the constant
term, dipole term, and the radiation from our galaxy
are subtracted out, from WMAP, the Wilkinson Mi-
crowave Anisotropy Probe. The satellite is at the
center of the sphere, looking outward. The fluctua-
tions are about one part in 100 000.

Subsequent experiments finally saw more inter-
esting variations in the microwave background
radiation, shown in Fig. 10.13. We interpret
these fluctuations as the ripples in the tempera-

ture, evolving according to a wave equation32

(1 +R)
∂2Θ

∂t2
=
c2

3
∇2Θ, (10.78)

where c is the speed of light in a vacuum, Θ is
the temperature fluctuation ∆T/T , t is the time,
and R is due to the contribution of matter to the
total density (see Exercise 7.15 and [60]).

Fig. 10.14 Correlation function of microwave

radiation in Fourier space, from the NASA/WMAP
Science Team [137]. Temperature variations of the
microwave background radiation, written in spherical
harmonics (roughly an angular Fourier transform).
You can think of l for the multipole moment as
roughly corresponding to wavevector kl = 2πl/L.33

The curve through the data is a more complete the-
oretical fit, similar in spirit to this exercise.

What kind of initial correlations in the fluctua-
tions does the inflationary scenario predict? The
inflation theory predicts that at very early times
the Universe was left in a state which we can
think of as having tiny, random variations in
temperature and density, and with zero initial
velocities. These initial variations were not un-
correlated (white noise). Instead, inflation leaves

31Einstein’s theory states that all motion is relative: the laws of physics do not depend on how fast the Sun is moving with
respect to the distant galaxies. The Big Bang, through the microwave background radiation, establishes a preferred reference
frame. We noted in Section 5.1 that the Big Bang is also responsible for the arrow of time; it (dramatically) broke time-reversal
invariance and (subtly) breaks Lorentz invariance.
32This equation is for ‘co-moving time-orthogonal gauge’, I am told.
33The first peak is at l ∼ 220; they estimate the second peak to be at l = 546 ± 10. Note that the horizontal axis in this plot
is neither linear nor logarithmic.
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the Universe in a state with scale-invariant ini-
tial velocity fields, starting with a power law

Ĉ(k, t = 0) = |Θ̂(k, t = 0)|2/V = Akns−3,
(10.79)

with ns ≈ 1 for most inflation theories. (Re-
member that the absolute square of the trans-
form is the transform of the correlation function,
|Θ̂(k, t)|2 ∝ Ĉ(k, t), eqn A.21.)
Let us model the Universe as a one-dimensional
box with length L and periodic boundary condi-
tions. Let us solve for the time evolution of the
equal-time correlation function34 C(x − x′, t) =
〈Θ(x, t)Θ(x′, t)〉 at t = 380 000 years given ini-
tial conditions (∂Θ/∂t)|t=0 = 0 and Θ(x, t =
0) random but with scale-invariant correlations
(eqn 10.79). We can then evolve each Fourier
component, and calculate the correlation func-
tion in k-space at the decoupling time.
(a) Given an initial Θ̂(k, t = 0) and assum-
ing (∂Θ̂/∂t)|t=0 = 0, calculate Θ̂(k, t) from

eqn 10.78. Calculate Ĉ(k, t) =
〈
|Θ̂(k, t)|2

〉
in

terms of A, c, and R given ns = 1. For what
value of L (in light years and in centimeters) will
k220 be the first peak35 of k2Ĉ(k, t) at the decou-
pling time, if R = 0.7? (Hint: c = 3×1010cm/s,
t = 380 000 years, and there happen to be about
π × 107 seconds in a year.)
L can be interpreted as roughly the ‘circumfer-
ence’ of that part of the Universe visible in the
cosmic background radiation at the time of de-
coupling.
(b) Plot l(l + 1)Ĉ(kl, t) at the decoupling time,
for R = 0.7 and A = 1, from l = 40 to l = 1500.
Compare with Fig. 10.14.
Your correlation function should look much less
structured than the actual one. We have ignored
many important phenomena in this exercise. At
wavelengths long compared to the speed of sound
times the age of the Universe (l < 160, roughly
up to the first peak) the wave equation has not
had time to start working. At shorter wave-
lengths (l > 1100) the waves become damped
because the photon mean-free path among the
baryons gets large. A calculation much like the

one you solved, but including these effects and
others (like gravity), shifts the higher peak po-
sitions and changes their amplitudes resulting
in the curve in Fig. 10.14. For further details,
see [60,137].

(10.2) Pair distributions and molecular dynam-
ics.36 (Computation) ©3
Many scattering experiments measure the cor-
relations between atomic positions. Let our sys-
tem haveN particles in a volume V .37 The mean
density in a system with atoms at positions xi

ρ(x) =
〈∑

i

δ(x− xi)
〉
, (10.80)

and the density–density correlation function38

C(x,x′) =
〈 ∑

i, j 6=i

δ(x− xi)δ(x
′ − xj)

〉
(10.81)

are used to define the pair correlation function
g(x,x′):

g(x,x′) =
C(x,x′)

ρ(x)ρ(x′)
=
C(x− x′)

(N/V )2
. (10.82)

Here the last equality is valid for homogeneous
systems like liquids and gases.39

(a) Show analytically from equation 10.80 that
ρ(x) for a homogeneous system is the indeed
the average density N/V . Show that g(x,x′) =
g(x− x′) = g(r), where

g(r) =

〈
V

N2

∑

i, j 6=i

δ(r− rij)

〉
(10.83)

and rij = xi − xj is the vector separating the
positions of atoms i and j. If the system is ho-
mogeneous and the atoms are uncorrelated (i.e.,
an ideal gas), show that g(r) ≡ 1. If the poten-
tial energy is the sum of pair interactions with
potential E(rij), write the potential energy as an
integral over three-dimensional space r involving
N , V , g(r), and E(r).
Usually g(r)→ 1 as r →∞; the correlations die
away as the separation grows.

34Time here is not the time lag between the two measurements, but rather the time evolved since the Universe stopped inflating
(similar to the coarsening correlation function Ccoar(x, t) in Section 10.1).
35We multiply by k2 to correspond roughly to the vertical axis l(l+ 1)Cl of Fig. 10.14.
36This exercise was developed in collaboration with Neil W. Ashcroft and Christopher R. Myers.
37We will use periodic boundary conditions, so the edges of the container do not break the translational symmetry.
38Warning: In the theory of liquids, C is used for another function, the Ornstein–Zernike direct correlation function.
39The pair correlation function represents the degree to which atomic positions fluctuate together, beyond the clumping implied
by the possibly inhomogeneous average density. For example, three-dimensional crystals have a long-range broken translational
symmetry; ρ(x) will have peaks at the lattice sites even after averaging over thermal vibrations.
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Liquids and gases are also isotropic; the pair
correlation function g must be rotation invari-
ant, and hence can only depend on the distance
r = |r|. A typical molecular dynamics code will
have a fast NeighborLocator routine, which will
return the HalfNeighbor pairs of atoms j < i
with |rij | less than a given cut-off. A histogram
of the distances between these nearby points,
suitably rescaled, is a convenient way of numer-
ically estimating the pair correlation function.
Let the histogram h(rn) give the number of such
pairs in our system with rn < r < rn +∆r.
(b) For an isotropic, homogeneous system in
three dimensions, show

g(r) =
2V

N2

h(r)

4πr2 ∆r
. (10.84)

What is the corresponding formula in two dimen-
sions?
Download our molecular dynamics software [10]
from the text web site [129]. In our simulation,
we use the Lennard–Jones potential, in which
all pairs of atoms interact with an energy with a
short-range repulsion ∼ 1/r12 and a long-range
(van der Waals) attraction ∼ 1/r6:

Epair(r) = 4ǫ

((σ
r

)12
−
(σ
r

)6)
. (10.85)

Lennard–Jones is a reasonable approximation for
the interatomic forces between noble gas atoms
like argon. In our simulation, we choose the
length scale σ and the energy scale ǫ both equal
to one.
(c) Plot the Lennard–Jones pair potential as a
function of r, choosing a vertical scale so that the
attractive well is visible. Where is the minimum-
energy spacing between two atoms? Can you see
why the repulsion is called ‘hard core’?

Gas. We start with a simulated gas, fairly near
the vapor pressure.
(d) Simulate a two-dimensional gas of Lennard–
Jones atoms, at a temperature T = 0.5ǫ and a
density ρ = 0.05/σ2. Calculate the pair distribu-
tion function for the gas for 0 < r < 4σ. Note
the absence of pairs at close distances. Can you
observe the effects of the attractive well in the po-
tential, both visually and in the pair correlation
function?
In a low-density, high-temperature gas the cor-
relations between atoms primarily involve only
two atoms at once. The interaction energy of a
pair of atoms in our system is Epair(r), so in this

limit

gtheory(r) ∝ exp(−E(r)/kBT ). (10.86)

Since E(r) → 0 and g(r) → 1 as r → ∞, the
constant of proportionality should be one.
(e) Compare g(r) from part (d) with gtheory for a
system with density ρ = 0.05/σ2. Do they agree
well? Do they agree even better at higher tem-
peratures or lower densities, where multi-particle
interactions are less important?
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Fig. 10.15 Pair distribution function g(r) for a
two-dimensional Lennard–Jones liquid.

Liquid. We now turn to a liquid, at the same
temperature as our gas but at a higher density.
(f) Simulate a liquid, at ρ = 0.75/σ2 and T =
0.5. Note from the animation that each atom
in the two-dimensional simulation has around
six nearest-neighbors, at nearly the minimum-
energy distance. Calculate the pair distribution
function. Can you explain the features you see
in terms of nearest-neighbors and second-nearest
neighbors?
(g) If we define the coordination number of a liq-
uid atom as all those with distances less than
the position of the dip between nearest and next-
nearest neighbors in g(r), what is the mean num-
ber of near neighbors for your two-dimensional
liquid?
In most (three-dimensional) simple elemental
liquids, the coordination number defined by this
criterion is between 11 and 11.5. (The close-
packed crystals have twelve nearest neighbors).
The main exceptions are the group IV ele-
ments (carbon, silicon, germanium, . . . ) where
the bonding is strongly angle dependent and
the number of liquid near neighbors is smaller,
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around 5.5; their crystalline phases have three or
four covalently-bonded neighbors.

Crystal. In a three-dimensional crystal, the
atoms vibrate around their equilibrium lattice
positions (with only rare hops between lattice
sites as atoms exchange with one another or va-
cancies move through the crystal). If these vi-
brations become large compared to the lattice
constant, then surely the crystal will melt. The
Lindemann criterion notes that for simple crys-
tals, melting usually occurs when the thermal
vibrations away from the lattice positions are
about 10% of the interatomic spacing.
(Note how weird this is. A three-dimensional
crystal, billions of atoms across, thermally vi-
brating almost enough to melt, still holds its
atoms in rigid registry within fractions of an
Angstrom.)
This is not true in two dimensions, where the
lattice is not as stiff and thermal fluctuations
are more severe.40 The Lindemann criterion
of course also implies that the typical variation
in the nearest-neighbor separations for three-
dimensional crystals stays much smaller than the
lattice constant at the melting point. Is this
version of the Lindemann criterion true of two-
dimensional crystals?
(h) Simulate a crystal, at T = 0.1 starting
from a hexagonal crystal with interatomic spac-
ing approximating the minimum of the pair po-
tential. Calculate the isotropic spatial average of
the pair correlation function.41 By what percent-
age does the nearest-neighbor separation fluctu-
ate? Are they small compared to the lattice con-
stant? Also, can you identify which neighbors on
the hexagonal lattice correspond to the second-
nearest-neighbor and the third-nearest-neighbor
peaks in g(r)?

(10.3) Damped oscillator. ©3
Let us explore further the fluctuating mass-on-a-
spring (Section 6.5). The coupling of the macro-
scopic motion to the internal degrees of free-
dom eventually damps any initial macroscopic
oscillation; the remaining motions are micro-
scopic thermal fluctuations. These fluctuations
can be important, however, for nanomechanical
and biological systems. In addition, the damped
harmonic oscillator is a classic model for many

atomic-scale physical processes, such as dielec-
tric loss in insulators. (See [88] for a treatment
by an originator of this subject.)
Consider a damped, simple harmonic oscillator,
forced with an external force f , obeying the
equation of motion

d2θ

dt2
= −ω2

0θ − γ
dθ

dt
+
f(t)

m
. (10.87)

(a) Susceptibility. Find the AC susceptibility
χ̃(ω) for the oscillator. Plot χ′ and χ′′ for
ω0 = m = 1 and γ = 0.2, 2, and 5. (Hint:
Fourier transform the equation of motion, and
solve for θ̃ in terms of f̃ .)
(b) Causality and critical damping. Check, for
positive damping γ, that your χ(ω) is causal
(χ(t) = 0 for t < 0), by examining the singular-
ities in the complex ω plane (Section 10.9). At
what value of γ do the poles begin to sit on the
imaginary axis? The system is overdamped,
and the oscillations disappear, when the poles
are on the imaginary axis.
At this point, it would be natural to ask you to
verify the Kramers–Krönig relation (eqn 10.76),
and show explicitly that you can write χ′ in
terms of χ′′. That turns out to be tricky both
analytically and numerically. If you are ambi-
tious, try it.
(c) Dissipation and susceptibility. Given a forc-
ing f(t) = A cos(ωt), solve the equation and cal-
culate θ(t). Calculate the average power dissi-
pated by integrating your resulting formula for
f dθ/dt. Do your answers for the power and χ′′

agree with the general formula for power dissipa-
tion, eqn 10.37?
(d) Correlations and thermal equilibrium. Use
the fluctuation-dissipation theorem to calculate
the correlation function C̃(ω) from χ′′(ω) (see
eqn 10.65), where

C(t− t′) = 〈θ(t)θ(t′)〉. (10.88)

Find the equal-time correlation function C(0) =
〈θ2〉, and show that it satisfies the equipartition
theorem. (Hints: Our oscillator is in a potential
well V (θ) = 1/2mω

2
0θ

2. Also, (ω2
0−ω2)2+C2ω2 =

(ω2
0 − ω2 + ıCω)(ω2

0 − ω2 − ıCω); do contour in-
tegration.)

40The theory of two-dimensional crystals and how they melt has spawned many beautiful theoretical and experimental studies;
look for works on the Kosterlitz–Thouless–Halperin–Nelson–Young transition.
41That is, use the routines you’ve developed for liquids and gases, ignoring the spatially dependent ρ(x) in equation 10.82 and
discussed in note 39. This average still gives the correct potential energy.
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(10.4) Spin.42 (Condensed matter) ©3
A spin in a solid has two states, sz = ±1/2
with magnetizations M = gµBsz, where gµB is
a constant.43 Due to fluctuations in its environ-
ment, the spin can flip back and forth thermally
between these two orientations. In an external
magnetic field H , the spin has energy −M · H .
Let M(t) be the magnetization of the spin at
time t. Given a time-dependent small external
field H(t) along z, the expectation value of M
satisfies

d [M(t)]Mi
/dt = −Γ [M(t)]Mi

+ Γχ0H(t),
(10.89)

where Γ is the spin equilibration rate, χ0 is the
static magnetic susceptibility, and the averaging
[·]Mi

is over the noise provided by the environ-
ment, fixing the initial condition Mi = M(0).
(a) In the case that the field H is time indepen-
dent, use equilibrium statistical mechanics to de-
termine M(H). Using this formula for small H,
determine χ0 (which should be independent of H
but dependent on temperature).
(b) Use the Onsager regression hypothesis to
compute C(t) = 〈M(t)M(0)〉ev at zero external
field H = 0. What should it be for times t < 0?
What is C̃(ω), the Fourier transform of C(t)?
(c) Assuming the classical fluctuation-
dissipation theorem, derive the frequency-
dependent susceptibility χ(t) and χ̃(ω).
(d) Compute the energy dissipated by the os-
cillator for an external magnetic field H(t) =
H0 cos(ωt).

(10.5) Telegraph noise in nanojunctions. (Con-
densed matter) ©3

TimeR
es
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nc
e

Fig. 10.16 Telegraph noise in a metallic nano-

junction. Resistance versus time R(t) for a copper
constriction, from [109]. We label α the state with
low resistance Rα, and β the state with high resis-
tance Rβ . The two states probably represent a local
shift of an atom or a small group of atoms in the
constriction from one metastable state to another.

Many systems in physics exhibit telegraph noise,
hopping between two states at random intervals
(like a telegraph key going on and then off at
different intervals for dots and dashes). The
nanojunction in Fig. 10.16 has two states, α and
β. It makes transitions at random, with rate
Pβ←α = Pβα from α to β and rate Pαβ from β
to α.
Master equation. Consider an ensemble of many
identical copies of this system. Let the state
of this ensemble at time t be given by ~ρ(t) =
(ρα, ρβ), a vector of probabilities that the sys-
tem is in the two states. This vector thus evolves
according to the master equation

d~ρ/dt =M · ~ρ. (10.90)

(a) What is the 2× 2 matrix M for our system,
in terms of Pαβ? At long times, what fraction
of the time will our system be in the α state,
〈ρα〉 = limt→∞ ρα(t)? (Notice that, unlike
the Markov chains in Section 8.2, we now evolve
continuously in time. Remember also that Pαβ

increases ρα and decreases ρβ.)
(b) Find the eigenvalue-eigenvector pairs for
M .44 Which corresponds to the stationary state
~ρ(∞) from part (a)? Suppose that at t = 0 the
system is known to be in the α state, ~ρ(0) =
(1, 0). Write this initial condition in the basis
of eigenvectors, and hence give a formula for the
subsequent time evolution ρα(t). What is the rate
of decay to the stationary state?
Let us call your answer for ρα(t) = Pαα(t) to
emphasize the fact that it is the probability of
being in the α state at time t′ + t, given that it
is in the α state at time t′. You may wish to
check that Pαα(0) = 1, and that Pαα(t) → 〈ρα〉
as t→∞.
(c) Correlation function. Let R(t) be the re-
sistance as a function of time, hopping between
Rα and Rβ , as shown in Fig. 10.16, and let R̄
be the time average of the resistance. Write a
formula for the connected correlation function
C(t) = 〈(R(t′) − R̄)(R(t′ + t) − R̄)〉 in terms
of Pαα(t). You need not substitute in your
answer for Pαα from part (b). (Hint: What is
〈(R(t′)−Rβ)(R(t

′+t)−Rβ)〉 in terms of Pαα(t)?
What is it in terms of C(t)?)

42Adapted from exam question by Bert Halperin, Harvard University, 1976.
43Here g is the gyromagnetic ratio for the spin, and µB = e~/2me is the Bohr magneton.
44More specifically, the right eigenvectors M · ~ρλ = λ~ρλ.
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You may wish to check that your C(t) → 0
as t → ∞, and that C(0) = 〈ρα〉(Rα − R̄)2 +
〈ρβ〉(Rβ − R̄)2.
Nanojunctions, especially at higher tempera-
tures, often show more than two metastable
states in the experimental bandwidth.45 Usu-
ally these form independent two-level fluctua-
tors (atomic rearrangements too far apart to in-
teract substantially), but sometimes more com-
plex behavior is seen. Figure 10.17 shows three
resistance states, which we label α, β, and γ
from lowest resistance to highest. We notice
from Fig. 10.17 that the rates Pγβ and Pβγ

are the highest, followed by the rates Pαγ and
Pγα. There are no transitions seen going be-
tween states α and β.
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Fig. 10.17 Telegraph noise with three meta-

stable states, from [108].

There is a large current flowing through the
nanojunction, allowing the resistance to be mea-
sured. Whether these transitions are equilibrium
fluctuations, perhaps with a field-dependent ef-
fective temperature, or whether they are non-
equilibrium transitions mostly induced by the
external current, could be tested if these last two
rates could be measured. If detailed balance is
violated, the system is out of equilibrium.
(d) Detailed balance. Assuming that the system
satisfies detailed balance, what is the ratio be-
tween the two unmeasured rates Pαβ and Pβα in
terms of the other four rates? (Hint: See Exer-
cise 8.5.)

(10.6) Fluctuation-dissipation: Ising. (Con-
densed matter) ©3
This exercise again needs a simulation of the
Ising model; you can use one we provide in
the computer exercises portion of the text web
site [129].
Let us consider the Ising Hamiltonian in a time-

dependent external field H(t),

H = −J
∑

〈ij〉
SiSj −H(t)

∑

i

Si, (10.91)

and look at the fluctuations and response
of the time-dependent magnetization M(t) =∑

i Si(t). The Ising model simulation should
output both the time-dependent magnetization
per spin m(t) = (1/N)

∑
i Si and the time–

time correlation function of the magnetization
per spin,

c(t) =
〈
(m(0)− 〈m〉eq)(m(t)− 〈m〉eq)

〉
ev
.

(10.92)
We will be working above Tc, so 〈m〉eq = 0.46

The time–time correlation function will start
non-zero, and should die to zero over time. Sup-
pose we start with a non-zero small external
field, and turn it off at t = 0, so H(t) =
H0Θ(−t).47 The magnetization m(t) will be
non-zero at t = 0, but will decrease to zero
over time. By the Onsager regression hypoth-
esis, m(t) and c(t) should decay with the same
law.
Run the Ising model, changing the size to 200×
200. Equilibrate at T = 3 and H = 0, then do
a good measurement of the time–time autocor-
relation function and store the resulting graph.
(Rescale it to focus on the short times before
it equilibrates.) Now equilibrate at T = 3,
H = 0.05, set H = 0, and run for a short time,
measuring m(t).
(a) Does the shape and the time scale of the mag-
netization decay look the same as that of the au-
tocorrelation function? Measure c(0) and m(0)
and deduce the system-scale C(0) and M(0).

Response functions and the fluctuation-
dissipation theorem. The response function χ(t)
gives the change in magnetization due to an in-
finitesimal impulse in the external field H . By
superposition, we can use χ(t) to generate the
linear response to any external perturbation. If
we impose a small time-dependent external field
H(t), the average magnetization is

M(t)−〈M〉eq =

∫ t

−∞
dt′ χ(t−t′)H(t′), (10.93)

where 〈M〉eq is the equilibrium magnetization

the bandwidth if it fluctuates either too fast or too slowly to measure with the experimental set-up.
46Note that the formulæ in the text are in terms of the total magnetization M = Nm and its correlation function C = N2c.
47Here Θ is the Heaviside function: Θ(t) = 0 for t < 0, and Θ(t) = 1 for t > 0.
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without the extra field H(t) (zero for us, above
Tc).
(b) Using eqn 10.93, write M(t) for the step
down H(t) = H0Θ(−t), in terms of χ(t).
The fluctuation-dissipation theorem states

χ(t) = −β dC(t)/dt, (10.94)

where C(t) = 〈(M(0)−〈M〉eq)(M(t)−〈M〉eq)〉ev.
(c) Use eqn 10.94 and your answer to part (b)
to predict the relationship between the demagne-
tization M(t) and the correlation C(t) you mea-
sured in part (a). How does your analytical ratio
compare with the t = 0 ratio you noted down in
part (a)?

(10.7) Noise and Langevin equations. ©3
We have never explicitly discussed how the en-
ergy removed from a system by damping is re-
turned to the system to maintain thermal equi-
librium. This energy input is through the ther-
mal fluctuation noise introduced through the
coupling to the heat bath. In this exercise we will
derive a Langevin equation incorporating both
noise and dissipation (see also [27, section 8.8]).
We start with a system with phase-space co-
ordinates P,Q and an internal potential energy
V (Q), coupled linearly to a heat bath through
some coupling term Q · F:

H =
P2

2m
+ V (Q) +Hbath(y1, y2, y3, . . . )

−Q · F(y1, . . . ). (10.95)

In the absence of the coupling to our system, as-
sume that the bath would contribute an external
noise Fb(t) with mean zero. In the presence of
the coupling to the system, the mean value of the
force will develop a non-zero expectation value

〈F(t)〉 =
∫ t

−∞
dt′ χb(t− t′)Q(t′), (10.96)

where χb(t− t′) is the susceptibility of the bath
to the motion of the system Q(t). Our system
then has an equation of motion with a random
noise F and a time-retarded interaction due to
χb:

mQ̈ = −∂V
∂Q

+ Fb +

∫ t

−∞
dt′ χb(t− t′)Q(t′).

(10.97)
We can write this susceptibility in terms of the
correlation function of the noise in the absence
of the system:

Cb(t− t′) = 〈Fb(t)Fb(t
′)〉 (10.98)

using the fluctuation-dissipation theorem

χb(t− t′) = −β
∂Cb

∂t
, t > t′. (10.99)

(a) Integrating by parts and keeping the bound-
ary terms, show that the equation of motion has
the form

mQ̈ = −∂V̄
∂Q

+ Fb − β
∫ t

−∞
dt′ Cb(t− t′)Q̇(t′).

(10.100)
What is the ‘potential of mean force’ V̄ , in terms
of V and Cb?
(b) If the correlations in the bath are short-lived
compared to the time scales of the system, we can
approximate Q̇(t′) ≈ Q̇(t) in eqn 10.100, lead-
ing to a viscous friction force −γQ̇. What is the
formula for γ? Conversely, for a model system
with a perfect viscous friction law −γQ̇ at tem-
perature T , argue that the noise must be white
Cb(t − t′) ∝ δ(t − t′). What is the coefficient
of the δ-function? Notice that viscous friction
implies a memoryless, Markovian heat bath, and
vice versa.
Langevin equations are useful both in analytic
calculations, and as one method for maintaining
a constant temperature in molecular dynamics
simulations.

(10.8) Magnetic dynamics. (Condensed matter) ©3

A one-dimensional classical magnet above its
critical point is described by a free energy den-
sity

F [M ] = (C/2)(∇M)2 + (B/2)M2, (10.101)

where M(x) is the variation of the magnetiza-
tion with position along the single coordinate
x. The average magnetization is zero, and the
total free energy of the configuration M(x) is
F [M ] =

∫
F [M ] dx.

The methods we used to find the correlation
functions and susceptibilities for the diffusion
equation can be applied with small modifications
to this (mathematically more challenging) mag-
netic system.
Assume for simplicity that the magnet is of
length L, and that it has periodic boundary con-
ditions. We can then write M(x) in a Fourier
series (eqn A.4)

M(x) =
∞∑

n=−∞
M̃n exp(iknx), (10.102)
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with kn = 2πn/L and (eqn A.3)

M̃n = (1/L)

∫ L

0

M(x) exp(−iknx). (10.103)

As always, for linear systems with translation in-
variance (Section A.4) the free energy F [M ] de-
composes into independent terms, one for each
kn.

48

(a) Calculate this decomposition of F : show that
each term is quadratic. (Hint: The only sub-

tle case is M̃2
n; break it into real and imaginary

parts.) What is
〈
|M̃n|2

〉
eq
, by equipartition?

Argue that

〈
M̃−mM̃n

〉
eq

=
kBT

L(Ck2n +B)
δmn. (10.104)

(b) Calculate the equilibrium equal-time correla-
tion function for the magnetization, C(x, 0) =
〈M(x, 0)M(0, 0)〉eq . (First, find the formula for
the magnet of length L, in terms of a sum
over n. Then convert the sum to an integral:∫
dk ↔ ∑

k δk = 2π/L
∑

k.) You will want to
know the integral
∫ ∞

−∞
eiuv/(1 + a2u2) du = (π/a) exp(−|v|/a).

(10.105)
Assume the magnetic order parameter is not con-
served, and is overdamped, so the time deriva-
tive of [M ]Mi

is given by a constant η times the
variational derivative of the free energy:

∂ [M ]Mi

∂t
= −η δF

δM
. (10.106)

M evolves in the direction of the total force on
it.49 The term δF/δM is the variational deriva-
tive:50

δF = F [M + δM ]− F [M ]

=

∫
(F [M + δM ]− F [M ]) dx

=

∫
(δF/δM)δM dx. (10.107)

(c) Calculate δF/δM . As in the derivation of
the Euler–Lagrange equations [89, section 12.1]
you will need to integrate one term by parts to
factor out the δM .

(d) From your answer to part (c), calculate the
Green’s function for G(x, t) for [M ]Mi

, giving the
time evolution of a δ-function initial condition
Mi(x) = M(x, 0) = G(x, 0) = δ(x). (Hint: You
can solve this with Fourier transforms.)
The Onsager regression hypothesis tells us that
the time evolution of a spontaneous fluctuation
(like those giving C(x, 0) in part (b)) is given by
the same formula as the evolution of an imposed
initial condition (given by the Green’s function
of part (d)):

C(x, t) = 〈M(x, t)M(0, 0)〉ev
=
〈
[M(x, t)]Mi

M(0, 0)
〉
eq

=

〈∫ ∞

−∞
M(x′, 0)G(x− x′, t)dx′M(0, 0)

〉

eq

=

∫ ∞

−∞
C(x′, 0)G(x− x′, t) dx′.

(10.108)

(e) Using the Onsager regression hypothesis
calculate the space–time correlation function
C(x, t) = 〈M(x, t)M(0, 0)〉ev. (This part is
a challenge; your answer will involve the er-
ror function.) If it is convenient, plot it for
short times and for long times; does it look
like exp(−|y|) in one limit and exp(−y2) in an-
other?
The fluctuation-dissipation theorem can be used
to relate the susceptibility χ(x, t) to the time-
dependent impulse to the correlation function
C(x, t) (eqn 10.60). Let χ(x, t) represent the
usual response ofM to an external field H(x′, t′)
(eqn 10.29) with the interaction energy being
given by

∫
M(x)H(x) dx.

(f) Calculate the susceptibility χ(x, t) from
C(x, t). Start by giving the abstract formula, and
then substitute in your answer from part (e).

(10.9) Quasiparticle poles and Goldstone’s theo-
rem. ©3
Sound waves are the fundamental excitations (or
Goldstone modes) associated with translational
symmetry. If a system is invariant under shifts
sideways by a constant displacement u, they
must have low-frequency excitations associated
with long-wavelength displacement fields u(x, t)
(Section 9.3).

48Notice that this independence implies that in equilibrium the phases of the different modes are uncorrelated.
49Remember that the average [M ]Mi

is over all future evolutions given the initial condition Mi(x) =M(x, 0).
50This formula is analogous to taking the gradient of a scalar function of a vector, f(~y + ~δ) − f(~y) ≈ ∇f · ~δ, with the dot
product for vector gradient replaced by the integral over x for derivative in function space.
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Sound waves have a slight damping or dissipa-
tion, called ultrasonic attenuation. If our system
is also Galilean invariant51 this dissipation be-
comes small as the wavelength goes to infinity.
We illustrate this fact by calculating this dissipa-
tion for a particular model of sound propagation.
Let our material have speed of sound c and den-
sity ρ. Suppose we subject it to an external force
f(x, t). We model the dissipation of energy into
heat using Kelvin damping, with damping con-
stant d2:

∂2u

∂t2
= c2

∂2u

∂x2
+ d2

∂

∂t

∂2u

∂x2
+
f(x, t)

ρ
. (10.109)

We noted in Exercise 9.6 that Kelvin damping is
the dissipative term with fewest derivatives al-
lowed by Galilean invariance.
In the absence of dissipation and forcing d =
0 = f(x, t), the wave equation has plane-wave
solutions u(x, t) = exp (i(kx− ωkt)), with the
dispersion relation ωk = ±ck. The damping
causes these plane-wave solutions to decay with
time, giving the frequency an imaginary part
ωk → ωk − iΓ. Define the quality factor Qk to
be 2π times the number of periods of oscillation
needed for the energy in the wave (proportional
to u2) to decay by a factor of 1/e.
(a) Show that eqn 10.109 with no forcing (f = 0)
has solutions in the form of damped plane waves,

u(x, t) = exp (i(kx− ωkt)) exp(−Γkt)

= exp (i(kx− Ωkt)) , (10.110)

with complex frequency Ωk = ωk − iΓk. Solve
for Ωk (quadratic formula). What is the new
dispersion relation ωk? What is the damping
Γk? Show at long wavelengths that the frequency
ωk ≈ ±ck. With what power of k does the quality
factor diverge as k → 0? Thus the lower the fre-
quency, the smaller the damping per oscillation.
The Goldstone modes become dissipationless as
ω → 0.
(b) At what wavelength does the real part of the
frequency ωk vanish? (This is where the sound
wave begins to be overdamped; at shorter wave-
lengths displacements relax diffusively, without
oscillations.)

This trick, looking for damped waves as solu-
tions, is rather special to linear equations. A
much more general approach is to study the sus-
ceptibility to external perturbations. If we force
the undamped system with a forcing f(x, t) =
cos(kx) cos(ckt) that matches the wavevector
and frequency ω = ck of one of the phonons, the
amplitude of that mode of vibration will grow
without limit; the susceptibility diverges. Let us
try it with damping.
(c) What is the susceptibility χ̃(k, ω) for our
damped system (eqn 10.109)? (Hint: Change
to Fourier variables k and ω, and the exercise
should reduce to simple algebra.) Check that
your answer without dissipation (d = 0) has
poles52 at ωk = ±ck for each wavevector k;
the susceptibility diverges when excited on res-
onance. Check that these poles move to Ωk =
ωk − iΓk (from part (a)) when dissipation is in-
cluded.
(d) Check that the poles in the susceptibility are
all in the lower half-plane, as required by causal-
ity (Section 10.9).
Neutron scattering can be used to measure the
Fourier transform of the correlation function,
C̃(k, ω) in a material. Suppose in our material

c = 1000m/s, d = 10−3 m/s
1/2 , ρ = 1g/cm3,

and T = 300K; for your convenience, kB =
1.3807 × 10−23 J/K.
(e) Use the fluctuation-dissipation theorem

χ′′(k, ω) =
βω

2
C̃(k, ω) (10.111)

(see eqn 10.65) to calculate C̃(k, ω), the corre-
lation function for our material. Plot C̃(k, ω)
at ω = 108 (about 16MHz), for k from zero to
2 × 105. Does it appear difficult to estimate the
dispersion relation ωk from the correlation func-
tion?
In strongly-interacting systems, the elementary
excitations are quasiparticles: dressed electrons,
photons, or vibrational modes which are not
many-body eigenstates because they eventually
decay (note 23 on p. 144). These quasiparticles
are defined in terms of poles in the propagator
or quantum Green’s function, closely related to
our classical correlation function C̃(k, ω).

51A Galilean transformation is a boost by a velocity v: u(x, t) → u(x, t) + vt (a non-relativistic Lorentz boost). A Galilean-
invariant system does not notice whether it is moving with a steady velocity.
52A function ψ(z) has a pole at z0 if it diverges at z0 like a constant times z − z0. The poles are easy to find if ψ is a ratio of
two functions which themselves do not go to infinity; the poles are the zeros of the denominator.
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Most phase transitions are abrupt. At the transition, the system has
discontinuities in most physical properties; the density, compressibility,
viscosity, specific heat, dielectric constant, and thermal conductivity all
jump to new values. Furthermore, in most cases these transitions happen
with no precursors, no hint that a change is about to occur; pure water
does not first turn to slush and then to ice,1 and water vapor at 101 ◦C

1Water with impurities like salt or
sugar will form slush. The slush is ice
that is mostly pure H2O surrounded by
rather salty water. The salt lowers the
freezing point; as the ice freezes it ex-
pels the salt, lowering the freezing point
of the remaining liquid.

has no little droplets of water inside.2

2More precisely, there are only expo-
nentially rare microscopic droplet fluc-
tuations, which will be important for
nucleation, see Section 11.3.

In Section 11.1, we explore the phase diagrams and free energies
near abrupt phase transitions. In Section 11.2, we learn about the
Maxwell construction, used to determine the coexistence point between
two phases. In Section 11.3, we calculate how quickly the new phase
nucleates at an abrupt transition. Finally, in Section 11.4, we intro-
duce three kinds of microstructures associated with abrupt transitions—
coarsening, martensites, and dendrites.

11.1 Stable and metastable phases

Water remains liquid as it is cooled, until at 0 ◦C it abruptly freezes
into ice. Water remains liquid as it is heated, until at 100 ◦C it abruptly
turns to vapor.
There is nothing abrupt, however, in boiling away a pan of water.3

3The latent heat is the change in en-
thalpy E + PV at a phase transi-
tion. For boiling water it is 2500 J/g
= 600 calories/g. Hence, at a constant
energy input from your stove, it takes
six times as long to boil away the water
as it takes to raise it from freezing to
boiling ((1 cal/g ◦C) × 100 ◦C).

This is because one is not controlling the temperature directly, but rather
is adding energy at a constant rate. Consider an insulated, flexible
container of H2O at fixed pressure, as we slowly add energy to it. When
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Fig. 11.1 P–T and T–V phase dia-

grams for a typical material. (a) The
liquid–gas line gives the vapor pressure
Pv(T ) or the boiling point Tv(P ). For
H2O the solid–liquid boundary would
slope up and to the left, since ice
is (atypically) less dense than water.
(b) T–V liquid–gas phase diagram at
fixed N , showing the two-phase region.
(See also Figs 8.8 and 12.6(a)). The
horizontal tie-lines represent phase sep-
aration; a system in this region will sep-
arate into domains of liquid and gas at
the two endpoints of the corresponding
tie-line. A P–V phase diagram would
look similar.
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Fig. 11.2 Stable and metastable

states. (a) Helmholtz free energy as
a function of volume. The dashed
line represents metastable and unsta-
ble states (see Fig. 11.3(a)). In this
range of volumes, the equilibrium state
is non-uniform, a mixture of liquid and
gas as shown by the dark straight line.
(A mixture λN of stable gas and (1 −
λ)N stable liquid will interpolate lin-
early on this plot: V = λV uniform

gas +(1−
λ)V uniform

liq , andA = λAgas+(1−λ)Aliq

plus an interfacial free energy which is
negligible for large systems.) (b) Gibbs
free energy for the liquid and gas phases
along an isobar (constant pressure, hor-
izontal dashed line in Fig. 11.1(a)). The
phase transition occurs when the two
curves cross.
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the system first reaches the liquid–gas transition, a small bubble of gas
will form at the top; this bubble will gradually grow, inflating and filling
the container over a range of energies. The transition from liquid to gas
at fixed pressure passes through an intermediate two-phase region; the
temperature of the system stays constant until the last liquid is gone.
Alternatively, one can do the experiment fixing the temperature and
varying the volume V of the container. The resulting phase diagram is
shown in Fig. 11.1(b); the two-phase region results here from minimizing
the Helmholtz free energy A(T, V,N) as discussed in Fig. 11.2(a).44The straightness of the free energy in

the two phase region says that the pres-
sure P = −(∂A/∂V )|T,N is constant
as the volume increases and the liq-
uid turns to gas, just as the temper-
ature stays constant as the liquid boils
at fixed pressure. The free energy of a
stable uniform state must always lie be-
low any mixed state with the same total
volume, number, and energy: equilib-
rium free energies are convex functions.

To avoid these two-phase mixtures, we choose to work in the variables
P and T , so we use the Gibbs free energy5

5We could also avoid the two-phase
mixtures by using the grand free en-
ergy, Φ(T, V, µ) = E − TS − µN . The
grand partition function allows the to-
tal number of particles to vary, so when
the liquid turns to gas the molecules in
the extra volume are simply removed.

G(T, P,N) = E − TS + PV. (11.1)

As usual (Section 6.5), whichever state minimizes G wins.6 The Euler

6Minimizing G for the system maxi-
mizes the entropy for the Universe as
a whole (the system plus the bath with
which it exchanges energy and volume).

relation E = TS−PV +µN tells us that G = µN (Exercise 6.9). So, the
state with the lower chemical potential will be favored, and the phase
transition will occur when µliq = µgas. That makes sense; at a liquid–
vapor boundary, one can exchange energy, volume, or particles. Energy
will exchange until the temperatures are equal, volume will exchange
until the pressures are equal, and then particles will move from liquid
to gas until the chemical potentials are equal.
Remembering the shorthand thermodynamic relation dE = T dS −

P dV + µ dN , and applying it to eqn 11.1, we find dG = −S dT +
V dP +µ dN . Varying the temperature at fixed pressure and number of
particles, we thus learn that

∂G

∂T

∣∣∣∣
P,N

= −S. (11.2)

Figure 11.2(b) shows the Gibbs free energy versus temperature for the
liquid and gas. At the phase boundary, the two free energies agree.
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The difference in slopes of the two lines is given by the difference in
entropies between the liquid and the gas (eqn 11.2). The thermodynamic
definition of the entropy S = dQ/T (Section 5.1) tells us that the entropy
difference is given by the latent heat per particle L times the number of
particles N over the transition temperature Tv,

∆S = LN/Tv. (11.3)

The fact that the Gibbs free energy has a kink at the phase transition
reflects the jump in the entropy between liquid and gas; abrupt phase
transitions will have jumps in the first derivatives of their free energies.
This led early workers in the field to term these transitions first-order
transitions.7 7We avoid using this term, and the

analogous term second order for con-
tinuous phase transitions. This is not
only because their origin is obscure, but
also because in the latter case it is mis-
leading: the thermodynamic functions
at a continuous phase transition have
power-law singularities or essential sin-
gularities, not plain discontinuities in
the second derivative (Chapter 12).

Notice that we continue to draw the free energy curves for the liquid
and vapor on the ‘wrong’ sides of the phase boundary. It is a common ex-
perimental fact that one can supercool vapors significantly beyond their
condensation point.8 With careful experiments on clean systems, one can

8That is precisely what occurs when
the relative humidity goes beyond
100%.

also significantly superheat the liquid phase. Theoretically the issue is
subtle. Some theories of these transitions have well-defined metastable
phases (dashed lines in Fig. 11.2(a)). However, there certainly is no
equilibrium vapor state below Tv. More sophisticated approaches (not
discussed here) give an imaginary part to the free energy density of the
metastable phase.9

9Just as the lifetime of a resonance in
quantum mechanics is related to the
imaginary part of its energy E + i~Γ,
so similarly is the rate per unit volume
of nucleation of the new phase (Sec-
tion 11.3) related to the imaginary part
of the free energy density. We will not
explain this here, nor will we discuss
the corresponding essential singularity
in the free energy (but see [21, 73]).

11.2 Maxwell construction

Figure 11.3(a) shows the pressure versus volume as we expand our mate-
rial at constant temperature. The liquid turns metastable as the volume
increases, when the pressure reaches the vapor pressure for that temper-
ature. The gas becomes metastable at that same pressure when the
volume decreases. The metastable states are well defined only near the
vapor pressure, where nucleation is slow (Section 11.3) and lifetimes are
reasonably large. The dashed line shows a region which is completely
unstable; a mixture of molecules prepared uniformly in space in this
region will spontaneously separate into finely inter-tangled networks of
the two phases10 (Section 11.4.1). 10This spontaneous separation is

termed spinodal decomposition. In
the past, the endpoints of the dashed
curve were called spinodal points, but
there is reason to doubt that there is
any clear transition between nucleation
and spontaneous separation, except in
mean-field theories.

How did we know to draw the coexistence line at the pressure we
chose in Fig. 11.3(a)? How can we find the vapor pressure at which
the liquid and gas coexist at this temperature? We know from the last
section that the coexistence line occurs when their Gibbs free energies
agree Gliq = Ggas. Again, dG = −S dT + V dP + µ dN , so at constant
temperature and number (∂G/∂P )|T,N = V . Hence, we know that

∆G =

∫ Pgas

Pliq

V (P ) dP = 0. (11.4)

Now this integral may seem zero by definition, because the limits of
integration are both equal to the vapor pressure, Pliq = Pgas = Pv(T ).
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Fig. 11.3 Maxwell equal-area con-

struction. (a) Pressure versus volume
curve along an isotherm (dashed ver-
tical line at constant temperature in
Fig. 11.1(a)). At low volumes the mate-
rial is liquid; as the volume crosses into
the two-phase region in Fig. 11.1(b) the
liquid becomes metastable. At high
volumes the gas phase is stable, and
again the metastable gas phase extends
into the two-phase region. The dots
represent the coexistence point where
the pressures and chemical potentials
of the two phases are equal. (b) The
Gibbs free energy difference between
two points at equal pressures is given
by the difference in areas scooped out
in the P–V curves shown (upward di-
agonal area minus downward diagonal
area).
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This formula instead represents the sum of four pieces (Fig. 11.3(b)):

∆G =

∫ Pmin

Pliq

V (P ) dP +

∫ Punst

Pmin

V (P ) dP

+

∫ Pmax

Punst

V (P ) dP +

∫ Pgas

Pmax

V (P ) dP, (11.5)

where the unstable point corresponds to the barrier top in Fig. 11.2(a)
and Pliq = Punst = Pgas at coexistence. Notice that the first and last
terms are negative, since Pliq > Pmin and Pmax > Pgas. These four
integrals have a nice graphical interpretation, shown in Fig. 11.3(b): the
first two subtract to give the area with stripes solely up and to the right
and the last two subtract to give minus the area with stripes solely down
and to the right. These two areas must be equal at the vapor pressure.
This is the Maxwell equal-area construction.11

11The Maxwell construction only
makes sense, one must remember, for
theories like mean-field theories where
one has an unstable branch for the
P (V ) curve (Fig. 11.2(a)).

11.3 Nucleation: critical droplet theory
liq

ρ

R

Surface tension σ

Fig. 11.4 Vapor bubble. The nucle-
ation of a new phase happens through
a rare thermal fluctuation, where a
droplet of the new phase forms of suffi-
cient size to get it over the free energy
barrier of Fig. 11.5.

On a humid night, as the temperature drops, the air may become su-
persaturated with water vapor. How does this metastable vapor turn
into drops of dew, or into the tiny water droplets that make up clouds
or fog?
We have seen (Fig. 11.2(b)) that the Gibbs free energy difference be-

tween the gas and the liquid grows as the temperature decreases below
Tv. We can estimate the chemical potential difference driving the for-
mation of drops; we know ∂G/∂T = −S (eqn 11.2), and ∆S = LN/Tv



 Copyright Oxford University Press 2006  v1.0                       --  

11.3 Nucleation: critical droplet theory 245

(eqn 11.3), so if we supercool by ∆T = Tv − T ,

∆µ = (Ggas −Gliq)/N =

(
∂(Ggas −Gliq)

∂T

∣∣∣∣
P,N

(T − Tv)

)/
N

= ∆S∆T/N = (LN/Tv)(∆T/N) = L∆T/Tv. (11.6)

What is the obstacle impeding the formation of the droplets? It is
the surface tension σ between the liquid and the gas phase. The surface
tension is the Gibbs free energy per unit area of the interface between
liquid and gas. Like tension in a rope, the interface between two phases
can exert a force, pulling inward to minimize its area.12 12How do we define the surface ten-

sion? Theoretically, we measure liq-
uid and gas Gibbs free energies Gℓℓ

and Ggg at the coexistence point, by
placing them into two tall cylindrical
constant-pressure containers with sur-
faces that each prefer one phase over
the other (e.g., in the real world wax
prefers gas). We then make a new con-
tainer from the top half of one and the
bottom of the other, glued at their mid-
point. This forces an interface to form
of area A equal to the cross-section
of the containers. We then measure
the Gibbs free energy with the inter-
face Gℓg, and define the surface tension
σ = [Gℓg − 1/2(Gℓℓ +Ggg)]/A. We need
to do something this complicated in or-
der to be sure to cancel out the inter-
action free energies with the side-walls.
Note that defining the surface tension
for curved interfaces away from coexis-
tence is more subtle [71, chapter XV].

To make a large droplet you must grow it from zero radius (Fig. 11.4).
Since the surface tension cost grows as the area A and the bulk free
energy gain grows as the volume V , tiny droplets will cost the system
more than they gain. Consider the energy of a spherical droplet of radius
R. The surface Gibbs free energy is σA. If the liquid has ρliq particles
per unit volume, and each particle provides a Gibbs free energy gain of
∆µ = L∆T/Tv, the bulk free energy gain is V ρliq∆µ. Hence

2σT
c
/ρL∆T

B

G
dr

op
le

t(R
)

16πσ3
T

c

2
/3ρ2

L
2∆T

2

~R
2

~-R
3

R
c

Fig. 11.5 Free energy barrier for
droplet formation.

Gdroplet(R) = σA− V ρliq∆µ = 4πR2σ − (4/3πR
3)ρliq(L∆T/Tv). (11.7)

This free energy is plotted in Fig. 11.5. Notice that at small R where
surface tension dominates it rises quadratically, and at large R where
the bulk chemical potential difference dominates it drops as the cube of
R. The gas will stay a gas until a rare thermal fluctuation pays the free
energy cost to reach the top of the barrier, making a critical droplet.
The critical droplet radius Rc and the free energy barrier B are found
by finding the maximum of G(R):

∂Gdroplet

∂R

∣∣∣∣
Rc

= 8πσRc − 4πρliq(L∆T/Tv)R
2
c = 0, (11.8)

Rc =
2σTv

ρliqL∆T
, (11.9)

B =
16πσ3T 2

v

3ρ2liqL
2

1

(∆T )2
. (11.10)

The probability of finding a critical droplet per unit volume is given by
exp(−B/kBT ) times a prefactor. The nucleation rate per unit volume
is the net flux of droplets passing by Rc, which is the velocity over the
barrier times a correction for droplets re-crossing, times this probability
of being on top of the barrier.13 The prefactors are important for detailed

13See Exercise 6.11 for the similar
problem of calculating chemical reac-
tion rates.

theories, but the main experimental dependence is the exponentially
small probability for having a critical droplet. Our net droplet nucleation
rate per unit volume Γ thus has the form

Γ = (prefactors)e−B/kBT . (11.11)



 Copyright Oxford University Press 2006  v1.0                       --  

246 Abrupt phase transitions

Notice the following.1414In previous chapters, we used sta-
tistical mechanics to compute aver-
age properties of a phase, and typical
(Gaussian) fluctuations near the aver-
age. Critical droplet theory (and in-
stantons, the quantum version) allows
us to calculate rare fluctuations, far
in the tail of the distribution—by ask-
ing for the typical fluctuations near
the transition between two phases. In
Chapter 12, we will calculate rare, large
events far in the tail of the distribution,
by turning them into typical fluctua-
tions for a coarse-grained system.

• The critical droplet radius Rc ∝ 1/∆T . If you undercool the gas only
a tiny amount, you need a big droplet to overcome the surface tension.

• The barrier height B ∝ 1/(∆T )2. The energy barrier for nucleation
diverges at Tv.

• The droplet nucleation rate Γ ∝ exp(−C/(∆T )2). It can be tiny for
small undercoolings.15

15The droplet nucleation rate has an
essential singularity at Tv; it is zero
to all orders in perturbation theory
in ∆T . In some ways, this is why
one can study the metastable states—
perturbation theory naturally ignores
the fact that they are unstable.

The rates we have calculated are for homogeneous nucleation: the rate
of forming the new phase in a perfectly clean system without boundaries.
In practice, homogeneous nucleation rarely dominates. Because nucle-
ation is so strongly suppressed by the surface tension, the system goes
to great lengths to bypass at least part of the energy barrier. That is
why dewdrops form on grass (or your windshield), rather than always
forming in the air and dropping to the ground; the surface tension be-
tween water and grass is much lower than that between water and air,
so a roughly hemispherical droplet can form—dividing the free energy
barrier B in two. In cloud formation, nucleation occurs on small dust
particles—again, lowering the interfacial area needed to get a droplet of
a given curvature.1616Actually, in many clouds the temper-

ature is low enough that ice crystals nu-
cleate, rather than water droplets. Cer-
tain plant pathogens (Pseudomonas sy-

ringae) make proteins that are designed
to efficiently nucleate ice crystals; the
bacteria use the frost damage on the
plants to invade. Humans use these
proteins in snow-making machines at
ski resorts.

Finally, we should mention that the nucleation of crystalline phases
will not proceed with precisely spherical droplets. Because crystals have
anisotropic surface tension, the maximum number of particles for a given
surface energy is given not by a sphere, but by the equilibrium crystal
shape (the same shape that a crystal will form in equilibrium at a con-
stant number of particles, Fig. 11.6).

11.4 Morphology of abrupt transitions

What happens after the phase transition is nucleated (or when the un-
dercooling is so large that the transition occurs immediately)? This
question leads us into a gigantic, rich subject that mostly belongs to
geology, engineering, and materials science rather than to statistical me-
chanics. We will give a brief introduction, with emphasis on topics where
statistical mechanics is useful.

11.4.1 Coarsening

What do salad dressing, cast iron, and rocks have in common? Coars-
ening is crucial to all three. When you shake up oil and vinegar, they
get jumbled together in small droplets. When you stop shaking, the
tiny droplets merge into bigger ones, gradually making for a coarser and
coarser mixture until all the oil is on the top.
Molten iron, before it is cast, has a fair percentage of carbon dissolved

in it. As it cools, this dissolved carbon precipitates out (with many nuclei
forming as in Section 11.3 and then growing until the carbon runs out),
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staying dispersed through the iron in particles whose size and number
depend on the cooling schedule. The hardness and brittleness of cast iron
depends on the properties of these carbon particles, and thus depends
on how the iron is cooled.

Fig. 11.6 Equilibrium crys-

tal shape of lead at about
300 ◦C [111, 119]. Notice the flat
facets, which correspond to low-energy
high-symmetry surfaces. There are
three interesting statistical mechanics
problems associated with these facets
that we will not discuss in detail.
(1) The crystalline orientations with
flat facets are in a different phase than
the rounded regions; they are below
their roughening transition. (2) The
equilibrium crystal shape, which
minimizes the free energy, can be
viewed as a Legendre transform of that
free energy (the Wulff construction).
(3) At lower temperatures, for some
interactions, the entire equilibrium
crystal shape can be faceted (below the
edge and corner rounding transitions);
we predict that the coarsening length
will grow only logarithmically in time
in this phase (Fig. 11.10).

Rocks often have lots of tiny grains of different materials: quartz, al-
kali feldspar, and plagioclase in granite; plagioclase feldspar and calcium-
rich pyroxene in basalt, . . . Different rocks have different sizes of these
grains.
Rocks formed from the lava of erupting volcanoes have very fine

grains; rocks deep underground cooled from magma over eons form large
grains. For a particular grain to grow, the constituent atoms must dif-
fuse through neighboring grains of other materials—a process that gets
very slow as the grains get larger. Polycrystals also form from cooling
single materials; different liquid regions will nucleate crystalline grains
in different orientations, which then will grow and mush together. Here
the grains can grow by stealing one another’s molecules, rather than
waiting for their brand of molecules to come from afar.
One can also see coarsening on the computer. Figure 11.7 shows two

snapshots of the Ising model, quenched to zero temperature, at times
differing by roughly a factor of ten. Notice that the patterns of up-
and down-spins look statistically similar in the two figures, except that
the overall length scale L(t) has grown larger at later times. This is
the characteristic feature that underlies all theories of coarsening: the
system is statistically similar to itself at a later time, except for a time-
dependent length scale L(t).
The basic results about coarsening can be derived by arguments that

are almost simplistic. Consider a snapshot (Fig. 11.8) of a coarsening
system. In this snapshot, most features observed have a characteristic
length scale R ∼ L(t). The coarsening process involves the smaller
features shrinking to zero, so as to leave behind only features on larger
scales. Thus we need to understand how long it takes for spheres and
protrusions on a scale R to vanish, to derive how the size L(t) of the
remaining features grows with time. L(t) is the size R0 of the smallest
original feature that has not yet shrunk to zero.
The driving force behind coarsening is surface tension: the system can

lower its free energy by lowering the interfacial area between the different

(b)(a)

Fig. 11.7 Coarsening. The spin con-
figuration of the Ising model at T =
0 with non-conserved dynamics, after
a time of (a) roughly twenty sweeps
through the lattice, and (b) roughly
200 sweeps. Notice that the character-
istic morphologies look similar, except
that the later picture has a length scale
roughly three times larger (

√
10 ≈ 3).
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domains. We will focus on the evolution of a sphere as a solvable case.
The surface tension energy for a sphere of radius R is Fsurface = 4πR2σ,
so there is an inward force per unit area, (or traction) τ :

R

τ

R

τ

Fig. 11.8 Curvature-driven inter-

face motion. The surface tension σ at
the interface produces a traction (force
per unit area) τ = 2σκ that is propor-
tional to the local mean curvature of
the surface κ at that point. The coars-
ening morphology has a characteristic
length R, so it has a characteristic mean
curvature κ ∼ 1/R. For non-conserved
order parameters, these forces will lead
to a length scale L(t) ∼ t1/2.

Surface

Hydrodynamic
flow

Bulk
diffusion

diffusion

RR

Fig. 11.9 Coarsening for conserved

order parameter. Differences in lo-
cal mean curvature drives the growth
in the case of a conserved order param-
eter. Atoms will diffuse from regions
of high positive curvature to regions of
low or negative curvature. Bulk dif-
fusion dominates on long length scales
(L(t) ∼ t1/3); surface diffusion can be
important when the scales are small
(L(t) ∼ t1/4). For liquids, hydrody-
namic flow makes things more compli-
cated [134].

τ =
∂Fsurface

∂R

/
(4πR2) = 2σ/R. (11.12)

A general surface has two radii of curvature R1 and R2 which can be pos-
itive or negative; the traction τ is perpendicular to the surface and given
by the same formula 11.12 with 1/R replaced with the mean curvature
1/2 [1/R1 + 1/R2].
There are two broad classes of coarsening problems: ones with con-

served and non-conserved order parameters. Oil and vinegar, cast iron,
and granite have conserved order parameters; to grow a domain one
must pull molecules through the other materials. The single-component
polycrystals and the Ising model shown in Fig. 11.7 are non-conserved;
spins are free to flip from one orientation to the other, and molecules
are free to shift from one grain orientation to another.
For a non-conserved order parameter, the interface will generally move

with a velocity proportional to the traction and an interface mobility η:

dR

dt
= −ητ = −η 2σ

R
. (11.13)

We can solve for the time tf it takes for the sphere to disappear, and
hence find out how L(t) grows for the non-conserved case:

∫ 0

R0

R dR =

∫ tf

0

−2ση dt,

R2
0/2 = 2σηtf , (11.14)

L(t) ∼ R0 =
√
4σηt ∝

√
t.

More complex geometries with protrusions and necks and such are not
possible to solve explicitly, but in general features with a length scale
R evolve on a time scale t ∝ R2, so the typical length scales grow as
L(t) ∼ tβ with β = 1/2.
The argument for the case of a conserved order parameter is quite

similar in spirit (Fig. 11.9). Here the curvature sets up a gradient in the
chemical potential ∂µ/∂x which causes molecules to diffuse from regions
of high positive curvature to regions of low or negative curvature. The
velocity of a particle will be given by the particle mobility γ = D/kBT
(Einstein’s relation) times the gradient of the chemical potential,

v = γ∇µ⇒ J = ρv = ργ∇µ (11.15)

where J is the current per unit area and ρ is the particle density. The
chemical potential change for moving a molecule from our sphere of
radius R to some flat interface is just the free energy change for removing
one particle; since the number of particles in our sphere is N = 4/3πR

3ρ,

∆µ =
dFsurface

dR

/dN

dR
= (8πσR)/(4πR2ρ) =

2σ

Rρ
. (11.16)
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The distance ∆R from the surface of our sphere to another flatter surface
of the same phase is (by our assumption of only one characteristic length
scale) also of order R, so

J ∼ ργ
∆µ

∆R
∼ 2γσ

R2
. (11.17)

The rate of change of volume of the droplet is number flux per unit area
J times the surface area, divided by the number per unit volume ρ:

dVdroplet
dt

=
4

3
π

(
3R2dR

dt

)

=− AdropletJ

ρ
= −(4πR2)

2γσ

ρR2
= −8πγσ

ρ
,

dR

dt
=− 2γσ

ρ

1

R2
, (11.18)

∫ 0

R0

R2 dR =

∫ tf

0

−2γσ

ρ
dt,

R3
0

3
=

2γσ

ρ
tf ,

and so

L(t) ∼ R0 =

(
6γσ

ρ
t

)1/3

∝ t1/3. (11.19)

This crude calculation—almost dimensional analysis—leads us to the
correct conclusion that conserved order parameters should coarsen with
L(t) ∼ tβ with β = 1/3, if bulk diffusion dominates the transport.
The subject of coarsening has many further wrinkles.

• Surface diffusion. Often the surface diffusion rate is much higher
than the bulk diffusion rate: the activation energy to hop across a
surface is much lower than to remove a molecule completely. The
current in surface diffusion goes as J times a perimeter (single power
of R) instead of JA; repeating the analysis above gives L(t) ∼ t1/4.
In principle, surface diffusion will always be less important than bulk
diffusion as t → ∞, but often it will dominate in the experimental
range of interest.

• Hydrodynamics. In fluids, there are other important mechanisms
for coarsening. For example, in binary liquid mixtures (oil and water)
near 50/50, the two phases form continuous interpenetrating networks.
Different regions of the network can have different curvatures and
pressures, leading to coarsening via hydrodynamic flow [134].

Fig. 11.10 Logarithmic growth of

an interface. A simplified model of
an interface perpendicular to a body
diagonal in a frustrated next-neighbor
Ising model with barriers to coarsening
that diverge with length [132]. Notice
that the interface is lowering its energy
by poking out into facets along the cu-
bic directions (a kind of facet coarsen-
ing). This process gets much slower as
the faces get longer, because the en-
ergy barrier needed to flip a face grows
linearly with its length. This slow-
down happens below the corner round-

ing transition described in the caption
to Fig. 11.6.

• Glassy logarithmic coarsening. A hidden assumption in much of
the coarsening theory is that the barriers to rearrangements involve
only a few degrees of freedom. If instead you need to remove a whole
layer at a time to reach a lower free energy, the dynamics may slow
down dramatically as the sizes of the layers grow. This is precisely
what happens in the three-dimensional Ising model with antiferromag-
netic next-neighbor bonds mentioned above (Fig. 11.10, [132]). The
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energy barrier needed to flip a layer of spins grows proportionally to
L, leading to a logarithmic growth law L(t) ∼ log(t). Some speculate
that similar growing barriers are responsible for the slow relaxation in
glass-forming liquids (Section 12.3.4).

• Non-universality. Much of the motivation for studying coarsen-
ing by physicists has been the close analogies with the scaling and
power laws seen in continuous phase transitions (Chapter 12 and Ex-
ercise 12.3). However, there are important differences. The power
laws in coarsening are simpler and in a way more universal—the 1/2
and 1/3 power laws we derived above are independent of the dimension
of space, for example. On the other hand, for coarsening in crystals
the scaling behavior and morphology is not universal; it will depend
upon the anisotropic free energies and mobilities of the interfaces [112].
Basically each combination of materials and temperatures will have
different scaling functions at late times. In retrospect this is reassur-
ing; there is such a bewildering variety of microstructures in materials
science and mineralogy that it made no sense for one scaling function
to rule them all.

11.4.2 Martensites

Fig. 11.11 Martensite. A partic-
ularly nice example of a martensitic
structure, from Chu [30]. The light
and dark stripes represent two differ-
ent martensitic variants—that is, the
crystal going through the phase tran-
sition can stretch in different direc-
tions, and the two colors indicate that
the local lattice is stretching along two
different axes. The tilted square re-
gion occupying most of the photograph
could not change its overall shape with-
out putting incompatible strains on
the neighboring domains. By making
this striped pattern, or laminate, the
martensite can form an average of the
different stretching directions that gives
zero net strain.

Many crystals will undergo abrupt structural rearrangements as they are
cooled—phase transitions between different crystal structures. A good
example might be a cubic crystal stretching along one axis and shrinking
along the other two. These transitions are often problematic; when part
of the sample has transformed and the rest has not, the tearing stress
at the interface often shatters the crystal.
In many materials (such as17 iron) the crystalline shape transition by-

17Steel thus has both the complica-
tions of carbon particle coarsening and
martensitic domain structure, both of
which are important for its structural
properties and both of which depend in
detail on the heating and beating it un-
dergoes during its manufacture.

passes large-scale stress build-up in the crystal by developing intricate
layered structures. Figure 11.11 shows a picture of a martensite, show-
ing how it forms a patterned microstructure in order to stretch locally
without an overall net strain.
The tool used to study martensites is not statistical mechanics, but

mathematics.18 The basic goal, however, is the same: to minimize the

18The pathological functions you
find in real analysis—continuous but
nowhere differentiable functions—are
practical tools for studying marten-
sites.

(non-convex) free energy for fixed boundary conditions (see Exercises 9.5,
11.7, and 11.8).

11.4.3 Dendritic growth

Why do snowflakes form [81]? New ice crystals up in the atmosphere
initially nucleate as roughly spherical crystals of ice. As the ice crystals
continue to grow, however, an instability develops. The tips of the ice
crystals that extend furthest into the surrounding supersaturated vapor
will grow fastest, both because they see the highest concentration of
water vapor and because the heat released by freezing diffuses away
fastest at the tips (Exercise 11.9). The characteristic six-fold patterns
arise because each snowflake is a single crystal with six-fold symmetry,
and different crystal surface orientations grow at different rates. The
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Fig. 11.12 Dendrites. Growing crys-
tals will typically form branched struc-
tures (dendrites), because the tips grow
faster than the grooves. Here are shown
some dendrites growing into a melt, in
a thin film being pulled through a tem-
perature gradient (Bodenschatz, Utter,
Ragnarson [18]).

immense variety of snowflake shapes reflects the different thermal and
humidity variations experienced by each snowflake as it grows.
The same kind of branched patterns, called dendrites,19 also form in 19Dendron is Greek for tree.

other growing crystals, for precisely the same reasons. Frost on your
window is one obvious example; Fig. 11.12 shows another example, a
solvent crystal growing into a mixture of solvent and polymer. Here,
instead of heat being trapped in the grooves, the slowly-diffusing poly-
mer is being trapped and slowing down the solidification process. Many
practical metals and alloys used in manufacturing are composed micro-
scopically of tiny dendritic structures packed together.

Exercises

The first three exercises, Maxwell and van der Waals, The
van der Waals critical point, and Interfaces and van der
Waals use an early, classic model for the liquid–gas phase
transition to illustrate general features of abrupt phase
transitions. The next two exercises, Nucleation in the
Ising model and Nucleation of dislocation pairs, explore
analogues of the critical nucleus in magnetic systems (nu-
merically) and in plastic deformation (analytically).

We then illustrate the morphological structure and evo-
lution developed during first-order phase transitions in
four exercises. Coarsening in the Ising model numerically
explores the standard model used to study the growing
correlations after rapid cooling. Origami microstructure
and Minimizing sequences and microstructure introduce

us to the remarkable methods used by mathematicians
and engineers to study martensites and other boundary-
condition-induced microstructure. Finally, Snowflakes
and linear stability introduces both a model for dendrite
formation and the tool of linear stability analysis.

(11.1) Maxwell and van der Waals. (Chemistry)©3

The van der Waals (vdW) equation

(P +N2a/V 2)(V −Nb) = NkBT (11.20)

is often applied as an approximate equation
of state for real liquids and gases. The term
V −Nb arises from short-range repulsion between

20These corrections are to leading orders in the density; they are small for dilute gases.
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molecules (Exercise 3.5); the term N2a/V 2 in-
corporates the leading effects20 of long-range at-
traction between molecules.
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Fig. 11.13 P–V plot: van der Waals.
Van der Waals (vdW) approximation (eqn 11.20)
to H2O, with a = 0.55 Jm3/mol2 (a =
1.52 × 10−35 erg cm3/molecule), and b = 3.04 ×
10−5 m3/mol (b = 5.05 × 10−23 cm3/molecule), fit
to the critical temperature and pressure for water.

Figure 11.13 shows the vdW pressure versus vol-
ume curves for one mole of H2O. Trace over
the figure, or download a version from the book
web site [126]. By hand, roughly implement the
Maxwell construction for each curve, and sketch
the region in the P–V plane where liquid and gas
can coexist.

(11.2) The van der Waals critical point. (Chem-
istry) ©3
The top of the coexistence curve in Fig. 11.13 is
the pressure, density, and temperature at which
the distinction between liquid and gas disap-
pears. It is the focus of much study, as the prime
example of a critical point, with self-similar fluc-
tuations and scaling behavior.
(a) Identify this point on a sketch of Fig. 11.13.
The vdW constants are fit to the critical tem-

perature Tc = 647.3K and pressure Pc =
22.09MPa = 220.9 × 106 dyne/cm2; check that
your estimate for the critical point roughly agrees
with the values quoted. I have found few refer-
ences that quote the critical volume per mole,
and the two I have found disagree; one says
around 50 cm3/mol and one says around 55. Plot
the true critical point on your sketch. Is the lo-
cation of the critical density of water predicted
well by the vdW equation of state?
(b) Your sketch from Exercise 11.1 may not be
precise enough to tell this, but the vdW phase
boundaries meet at the critical point with a
quadratic maximum: 1/ρℓ− 1/ρg ∼ (P −Pc)

1/2,
where ρℓ and ρg are the densities on the coexis-
tence boundary (moles per volume) at the pres-
sure P . Similarly, one can show that the vdW
equation of state implies that

ρℓ − ρg ∼ (Tc − T )1/2 ∼ (−t)1/2. (11.21)

Compare this latter prediction with Fig. 12.6(a).
What critical exponent β does the van der Waals
equation predict, assuming eqn 11.21?

(11.3) Interfaces and van der Waals. (Chem-
istry) ©3
The chemical potential per particle for the vdW
equation of state is

µ[ρ] =− kBT + P/ρ − aρ+ kBT log(λ3ρ)

− kBT log(1− bρ), (11.22)

where ρ = N/V is the density.
(a) Show that µ is minimized when ρ satisfies the
vdW equation of state.
(b) According to the caption to Fig. 11.14, what
is the vdW approximation to the vapor pressure
at 373K = 100 ◦C? How close is the vdW ap-
proximation to the true vapor pressure of water?
(Hint: Atmospheric pressure is around one bar
= 0.1MPa = 106 dynes/cm2. What happens
when the vapor pressure hits atmospheric pres-
sure?)
We can view Fig. 11.14 as a kind of free energy
barrier for the formation of a liquid–gas inter-
face. If µ0 is the common chemical potential
shared by the water and the vapor at this tem-
perature, the extra Gibbs free energy for a den-
sity fluctuation ρ(x) is

∆G =

∫
ρ(x) (µ[ρ(x)]− µ0) d

3x (11.23)

since ρ(x) d3x is the number of particles that suf-
fer the chemical potential rise µ[ρ(x)] in the vol-
ume d3x.
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Fig. 11.14 Chemical potential: van der Waals.
Chemical potential µ[ρ] of water fit with the van der
Waals equation, at the boiling temperature of wa-
ter T = 373K and the corresponding van der Waals
coexistence pressure P = 1.5× 107 dynes/cm2.

(c) At room temperature, the interface between
water and water vapor is very sharp: perhaps a
molecule thick. This makes the whole idea of us-
ing a coarse-grained free energy problematical.
Nonetheless, assuming an interfacial width of
two or three Ångstroms, use the vdW model for
the chemical potential (Fig. 11.14) and eqn 11.23
to roughly estimate the surface tension of wa-
ter (the extra Gibbs free energy per unit area,
roughly the barrier height times thickness). How
does your answer compare with the measured
value at the boiling point, 59 dynes/cm? (One
mole = 6.023 × 1023 molecules.)

(11.4) Nucleation in the Ising model. ©3
The Ising model (Section 8.1) is not only our
archetype for a continuous phase transition; it
is also our best model for nucleation (this exer-
cise) and for the dynamics of phase separation
(Exercise 11.6).
The Ising model can be used to study the nu-
cleation of one phase inside another. Supercool-
ing water and waiting for an ice crystal nucleus
to form can be shown to be quite analogous to
changing a magnet from external field Hext > 0
to Hext < 0 at a temperature T < Tc. The anal-
ogy with changing the temperature or pressure
of H20 gas and waiting for a raindrop is even
better.
Start up the Ising model simulation, available
in the computer exercises portion of the book

web site [129]. Run at T = 1.5 (below Tc) at
size 40 × 40, initialized with all spins up. Set
Hext = −0.3 and watch the spins. They should
eventually flop over to point down, with the new
phase starting in a small, roughly circular cluster
of spins, which then grows to fill the system.21

(a) Using the graph of magnetization versus
time, measure the average time it takes to cross
zero (which we will call the time to nucleate the
down phase), averaging over ten measurements.
(You may want to reduce the graphics refresh
rate to speed up the simulation.) Similarly mea-
sure the average time to nucleate the down phase
for Hext = −0.2. Since the nucleation center can
be located at any site on the lattice, the nucle-
ation rate scales with the number of spins in the
system. Calculate, for both fields, the nucleation
rate per spin Γexp(H).
We can use critical droplet theory (Section 11.3)
to estimate the nucleation rate. Small droplets
of the stable phase will shrink due to surface
tension σ; large ones grow due to the free en-
ergy difference per unit area Hext∆M(T ), where
∆M is the magnetization difference between the
two states. Presuming that the temperature is
high and the droplet large and the times long (so
that continuum theories are applicable), one can
estimate the critical radius Rc for nucleation.
(b) Give the formula for the free energy of a
flipped cluster of radius R as a function of σ,
H, and ∆M . Give formulæ for Rc (the critical
droplet size where the free energy is a local maxi-
mum), the resulting barrier B to nucleation, and
the predicted rate Γtheory = exp(−B/T ) (assum-
ing a prefactor of roughly one attempt per sweep
per spin). At low temperatures, σ ∼ 2J ≡ 2 and
∆M ≈ 2, since the system is almost fully mag-
netized and σ is the number of broken bonds (2J
each) per unit length of interface. Make a table
with rows for the two fields you simulated and
with columns for H, Rc, B, Γtheory, and Γexp

from (a).
This should work pretty badly. Is the predicted
droplet size large enough (several lattice con-
stants) so that the continuum theory should be
valid?
We can test these ideas better by starting with
droplets of down-spins (white) in an up back-
ground. Use a small system (40×40). You
can make such a droplet by setting the spins

21The system has periodic boundary conditions, so a cluster which starts near a boundary or corner may falsely look like more
than one simultaneous nucleation event.
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up and then flipping a circular cluster of spins
in the center. After making the circle, store it
for re-use. You will want to refresh the display
each sweep, since the droplet will grow or shrink
rather quickly.
(c) Start with H = −0.2, T = 1.5 and a down-
spin droplet of radius five (diameter of ten), and
run ten times. Does it grow more often than
it shrinks, or vice versa? (Testing this should
be fast.) On the magnetization curve, count the
shrinking fraction f . Make a table of the values
of H and f you measure. Vary the field H until
the probabilities roughly match; find the field for
Rc = 5 to within 0.1. For what field is the theo-
retical critical droplet radius Rc = 5 at T = 1.5?
In part (b) we found that critical droplet the-
ory worked badly for predicting the nucleation
rate. In part (c) we found that it worked rather
well (within a factor of two) at predicting the re-
lationship between the critical droplet size and
the external field. This is mostly because the nu-
cleation rate depends exponentially on the bar-
rier, so a small error in the barrier (or critical
droplet radius) makes a big error in the nucle-
ation rate. You will notice that theory papers
rarely try to predict rates of reactions. They
will almost always instead compare theoretical
and experimental barrier heights (or here, crit-
ical droplet radii). This avoids embarrassment.

This free energy barrier to nucleation is what al-
lows supercooled liquids and supersaturated va-
por to be stable for long periods.

(11.5) Nucleation of dislocation pairs. (Engineer-
ing) ©3
Consider a two-dimensional crystal under shear
shown in Fig. 11.15.22 The external force is be-
ing relieved by the motion of the upper half of
the crystal to the left with respect to the bottom
half of the crystal by one atomic spacing a. If the
crystal is of length L, the energy released by this
shuffle when it is complete will be |F |a = σxyLa.
This shuffling has only partially been completed;
only the span R between the two edge disloca-
tions has been shifted (the dislocations are de-
noted by the conventional ‘tee’ representing the
end of the extra column of atoms). Thus the
strain energy released by the dislocations so far
is

|F |aR/L = σxyRa. (11.24)

This energy is analogous to the bulk free energy
gained for a liquid droplet in a supercooled gas.

xy

σ
xy

σ

x

y

F/L = 

F/L = 

R

b

b

Fig. 11.15 Dislocation pair in a 2D hexagonal
crystal. A loop around the defect on the right shows
an extra row of atoms coming in from the bottom.
By the conventions used in materials physics (assum-
ing here that the dislocation ‘points’ up out of the
paper, see [57, Figure 1.20, p. 23]) this edge dislo-

cation has Burgers vector b = ax̂, where a is the
distance between neighboring atoms. Similarly, the
defect on the left has an extra row of atoms coming in
from the bottom, and has b = −ax̂. The defects are
centered at the same height, separated by a distance
R. The crystal is under a shear stress σxy = F/L,
where the force F = ±σxyLŷ is applied to the top
and bottom as shown (and the crystal is kept from
rotating). (Figure by Nicholas Bailey.)

The dislocations, however, cost energy (analo-
gous to the surface tension of the vapor droplet).
They have a fixed core energy C that depends on
the details of the interatomic interaction, and a
long-range interaction energy which, for the ge-
ometry shown in Fig. 11.15, is

µ

2π(1− ν)a
2 log(R/a). (11.25)

22A similar problem, for superfluids, was studied in [2, 3], see also [136]. The complete solution is made more complex by the
effects of other dislocation pairs renormalizing the elastic constants at high temperatures.
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Here µ is the 2D shear elastic constant23 and ν
is Poisson’s ratio. For this exercise, assume the
temperature is low (so that the energies given
by eqns 11.24 and 11.25 are good approxima-
tions for the appropriate free energies). By sub-
tracting the energy gained from the dislocation
from the energy cost, one finds in analogy to
other critical droplet problems a critical radius
Rc and a barrier height for thermally nucleated
dislocation formation B.
Of the following statements, which are true?
(T) (F) The critical radius Rc is proportional to
1/σxy.
(T) (F) The energy barrier to thermal nucleation
is proportional to 1/σ2

xy.
(T) (F) The rate Γ of thermal nucleation of dis-
locations predicted by our critical droplet calcu-
lation is of the form Γ = Γ0(T ) (σxy/µ)

D/kBT ,
for a suitable material-dependent function Γ0(T )
and constant D.
Dislocations mediate plastic shear. For a small
sample, each pair of dislocations nucleated will
travel to opposite boundaries of the system and
lead to a net shear of one lattice constant. Thus,
at any non-zero temperature and external stress,
a (two-dimensional) crystal will shear at a non-
zero rate. How is the crystal, then, different in
its response from a liquid?
(T) (F) According to our calculation, the re-
sponse of a two-dimensional crystal under stress
is indistinguishable from that of a liquid; even at
low temperatures, the strain rate due to an ex-
ternal shear force is proportional to the stress.

(11.6) Coarsening in the Ising model. ©3
Coarsening is the process by which phases sepa-
rate from one another; the surface tension drives
tiny fingers and droplets to shrink, leading to a
characteristic length scale that grows with time.
Start up the Ising model again (computer exer-
cises portion of the book web site [129]). Run
with a fairly large system, demagnetize the sys-
tem to a random initial state (T = ∞), and
set T = 1.5 (below Tc) and run one sweep at
a time. (As the pattern coarsens, you may wish
to reduce the graphics refresh rate.) The pattern

looks statistically the same at different times, ex-
cept for a typical coarsening length that is grow-
ing. How can we define and measure the typical
length scale L(t) of this pattern?
(a) Argue that at zero temperature the total en-
ergy above the ground-state energy is propor-
tional to the perimeter separating up-spin and
down-spin regions.24 Argue that the inverse of
the perimeter per unit area is a reasonable defi-
nition for the length scale of the pattern.
(b) With a random initial state, set temperature
and external field to zero, run for one sweep,
and measure the mean energy per unit area 〈E〉.
Measure the mean energy as a function of time
for t = 2, 4, 8, . . . , and 1024 sweeps, resetting
the averaging in between each doubling.25 Make
a table with columns for t, 〈E(t)〉, and L(t) ∝
1/(〈E〉 + 2). Make a log–log plot of your esti-
mate of the coarsening length L(t) ∝ 1/(〈E〉+2)
versus time. What power law does it grow with?
What power law did we expect?

(11.7) Origami microstructure.26 (Mathematics,
Engineering) ©3
Figure 11.11 shows the domain structure in a
thin sheet of material that has undergone a
martensitic phase transition. These phase tran-
sitions change the shape of the crystalline unit
cell; for example, the high-temperature phase
might be cubic, and the low-temperature phase
might be stretched along one of the three axes
and contracted along the other two. These three
possibilities are called variants. A large single
crystal at high temperatures thus can transform
locally into any one of the three variants at low
temperatures.
The order parameter for the martensitic transi-
tion is a deformation field y(x), representing the
final position y in the martensite of an original
position x in the undeformed, unrotated austen-
ite. The variants differ by their deformation gra-
dients ∇y representing the stretch, shear, and
rotation of the unit cells during the crystalline
shape transition.
In this exercise, we develop an analogy between
martensites and paper folding. Consider a piece
of graph paper, white on one side and gray on the

23The 2D elastic constants µ and ν can be related to their 3D values; in our notation µ has units of energy per unit area.
24At finite temperatures, there is a contribution from thermally flipped spins, which should not really count as perimeter for
coarsening.
25You are measuring the average perimeter length over the last half of the time interval, but that scales in the same way as
the perimeter does.
26This exercise was developed in collaboration with Richard D. James.
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other, lying flat on a table. This piece of paper
has two distinct low-energy states, one variant
with white side up and one variant with gray
side up.

PSO(2) SO(2)

wθ
l

θc θ

Fig. 11.16 Paper order parameter space. The
allowed zero-energy deformation gradients for a piece
of paper lying flat on a table. Let θ be the angle be-
tween the x axis of the graph paper and the near
edge of the table. The paper can be rotated by any
angle θℓ (so the deformation gradient is a pure ro-
tation in the group27 SO(2)). Or, it can be flipped
over horizontally ((x, y) → (x,−y), multiplying by
P =

( 1 0
0−1

)
) and then rotated by θw (deformation

gradient in the set SO(2)·P ). Our two variants are
hence given by the identity rotation I and the reflec-
tion P ; the ground states rotate the two variants.
An interface between two of these ground states is a
straight crease at angle θc (Fig. 11.17).

The (free) energy density for the paper is in-
dependent of rotations, but grows quickly when
the paper is stretched or sheared. The paper,
like martensites, can be represented as a defor-
mation field y(x), representing the final position
y of a point x of the paper placed horizontally on
the table with the gray side up. Naturally y(x)
must be a continuous function to avoid ripping
the paper. Since the energy is independent of an
overall translation of the paper on the table, it
can depend only on gradients of the deformation
field. To lowest order,28 the energy density can
be written in terms of the deformation gradient

∇y = ∂jyi:

F = α|(∇y)⊤∇y − I|2 = α(∂iyj∂iyk − δjk)2.
(11.26)

The constant α is large, since paper is hard to
stretch. In this problem, we will be interested in
the zero-energy ground states for the free energy.
(a) Show that the zero-energy ground states of
the paper free energy density (eqn 11.26) in-
clude the two variants and rotations thereof, as
shown in Fig. 11.16. Specifically, show (1) that
any rotation yi(xj) = Rijxj of the gray-side-
up position is a ground state, where Rij =(
cos θℓ −sin θℓ
sin θℓ cos θℓ

)
, and (2) that flipping the paper to

the white-side-up and then rotating, yi(xj) =
RikPkjxj =

(
cos θw −sin θw
sin θw cos θw

)(
1 0
0−1

)(
x
y

)
also gives a

ground state. Hence our two variants are the
rotations I =

(
1 0
0 1

)
and P =

(
1 0
0−1

)
.

In the real martensite, there are definite rules
(or compatibility conditions for boundaries be-
tween variants: given one variant, only certain
special orientations are allowed for the bound-
ary and the other variant. A boundary in our
piece of paper between a gray-up and white-up
variant lying flat on the table is simply a crease
(Fig. 11.17).

θc

θw

Fig. 11.17 Paper crease. An interface between
two ground states θℓ = 0 and θw for our paper on
the table is a straight crease with angle θc.

(b) Place a piece of paper long-edge downward on
the table. Holding the left end fixed θℓ = 0, try
folding it along crease lines at different angles θc.
Find a definite relation between the crease angle

27A matrix M is a rotation matrix if M⊤M = I, which means that the columns of M (the images of the coordinate axes)
are orthonormal. Such a matrix is called orthogonal. The set of all n × n orthogonal matrices forms a group, O(n). Since
det(AB) = det(A) det(B), and det(M⊤) = det(M), orthogonal matricesM either have det(M) = 1 (so-called special orthogonal

matrices, in the group SO(n)) or det(M) = −1 (in which case they are the product of a special orthogonal matrix times the
reflection P ). Thus O(n) as a set or manifold always comes in two distinct components. Hence in part (a) you are showing
that all elements of O(2) are ground states for the paper.
28Including higher derivatives of the deformation field into the energy density would lead to an energy per unit length for the
creases.
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θc and the angle θw of the right-hand portion of
the paper.
Suppose the crease is along an axis ĉ. We can
derive the compatibility condition governing a
crease by noting that y along the crease must
agree for the white and the gray faces, so the di-
rectional derivative Dy ·c = (ĉ ·∇)y must agree.
(c) Given the relation you deduced for the geom-
etry in part (b), show that the difference in the
directional derivatives (Dyℓ−Dyw) is zero along
c, (Dyℓ−Dyw)·c = (∂jy

ℓ
i−∂jywi )cj = 0. (Hints:

Dyℓ is the identity. cos(2θ) = cos2 θ − sin2 θ,
sin(2θ) = 2 sin θ cos θ.)
In general, two variants with deformation gradi-
ents A and B of a martensite can be connected
together along a flat boundary perpendicular to
n if there are rotation matrices R(1) and R(2)

such that29

R(1)B −R(2)A = a⊗ n,
∑

k

R
(1)
ik Bkj −

∑

k

R
(2)
ik Akj = ainj ,

(11.27)

where a ⊗ n is the outer product of a and n.
This compatibility condition ensures that the di-
rectional derivatives of y along a boundary di-
rection c (perpendicular to n) will be the same
for the two variants, (Dy1 −Dy2)c = (R(1)B −
R(2)A)c = a(n · c) = 0 and hence that the de-
formation field is continuous at the boundary.
For our folded paper, Dy is either RI or RP for
some proper rotation R, and hence eqn 11.27 is
just what you proved in part (c).
As can be seen in Fig. 11.11, the real martensite
did not transform by stretching uniformly along
one axis. Instead, it formed multiple thin layers
of two of the variants. It can do so for a mod-
est energy cost because the surface energy of the
boundary between two variants is low.
The martensite is driven to this laminated struc-
ture to satisfy boundary conditions. Steels go
through a martensitic transition; as the black-
smith cools the horseshoe, local crystalline re-
gions of the iron stretch along one of several
possible axes. The red-hot horseshoe does not
change shape overall as it is plunged into the wa-
ter, though. This is for two reasons. First, if part
of the horseshoe started stretching before the
rest, there would be big stresses at the boundary

between the transformed and untransformed re-
gions. Second, a horseshoe is made up of many
different crystalline grains, and the stretching is
along different axes in different grains. Instead,
the horseshoe, to a good approximation, picks a
local mixture between the different variants that
overall produces no net average stretch.

Fig. 11.18 Origami microstructure. Two-
dimensional origami example of microstructure for-
mation, by Richard D. James.

This is done by creating finely-divided struc-
tures, like the laminated structure seen in
Fig. 11.11.30 At the boundaries of the square
region, the martensite must not stretch, so it
produces a fine laminated structure where the
stretching in one domain cancels the contraction
for its neighbors.
Our paper folding example forms a similar mi-
crostructure when we insist that the boundary
lie along a curve other than the natural one.

29That is, the difference is a rank one matrix, with zero eigenvalues along all directions perpendicular to n.
30The laminated microstructure of the real martensite is mathematically even more strange than that of the paper. The
martensite, in the limit where the boundary energy is ignored, has a deformation gradient which is discontinuous everywhere
in the region; our folded paper has a deformation gradient which is discontinuous only everywhere along the boundary. See
Exercise 11.8.
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(d) Go to the book web site [126] and print out
a full-sized simplified version of Fig. 11.18. Cut
out the hexagon, and fold along the edges. Where
does the boundary go?31

The mathematicians and engineers who study
these problems take the convenient limit where
the energy of the boundaries between the vari-
ants (the crease energy in our exercise) goes to
zero. In that limit, the microstructures can be-
come infinitely fine, and only quantities like the
relative mixtures between variants are well de-
fined. It is a wonderful example where the patho-
logical functions of real analysis describe impor-
tant physical phenomena.

(11.8) Minimizing sequences and microstruc-
ture.32 (Mathematics, Engineering) ©3

1

Fig. 11.19 Function with no minimum. The

function g(x) =

{
x2, x 6= 0,
1, x = 0

has a minimum value

g = 0, but never attains that minimum.

The martensitic morphology seen in Fig. 11.11
is a finely-divided mixture between two different
crystal variants. This layered structure (or lam-
inate) is produced by the material to minimize
the strain energy needed to glue the different do-
mains together. If the interfacial energy needed
to produce the boundaries between the domains
were zero, the layering could become infinitely
fine, leading to a mathematically strange func-
tion. The displacement field y(x) in this limit
would be continuous, and at each point33 x it
would have a gradient which agrees with one of

the ground states. However, the gradient would
be discontinuous everywhere, jumping from one
variant to the next each time a boundary be-
tween domains is crossed.
It is in this weird limit that the theory of marten-
sites becomes elegant and comprehensible. If you
are thinking that no such function y(x) exists,
you are correct; one can approach zero strain en-
ergy with finer and finer laminates, but no func-
tion y(x) can actually have zero energy. Just as
for the function in Fig. 11.19, the greatest lower
bound of the martensitic energy exists, but is not
attained.
A minimizing sequence for a function g(x) with
lower bound g0 is a sequence of arguments
x1, x2, . . . for which g(xn) > g(xn+1) and
lim g(xn) = g0.
(a) Find a minimizing sequence for the somewhat
silly function g in Fig. 11.19.
This kind of microstructure often arises in sys-
tems with non-convex free energy densities. Con-
sider a problem where the energy of a function
y(x) is given by

F [y] =
∫ 1

0

[(y′2 − 1)2 + y2] dx, (11.28)

with boundary conditions y(0) = y(1) = 0. This
energy is low if y(x) stays near zero and the slope
dy/dx = y′(x) stays near ±1. The latter is why
it is non-convex: there are two values of the slope
which have low energy density, but intermedi-
ate values of the slope have higher energy den-
sity.34 This free energy is similar to that for
two-dimensional paper folding (Exercise 11.7);
you could think of it as the folding of a one-
dimensional sheet of paper (y′ = ±1 represent-
ing face-up and face-down states) in a potential
y2 pulling all points to the origin, forcing the
paper to crumple into a small ball.

Microstructure Theorem 1. F [y] of
eqn 11.28 does not attain its minimum.
(b) Prove Microstructure Theorem 1.

• Show that zero is a lower bound for the energy
F.

31 Deducing the final shape of the boundary can be done by considering how the triangles along the edge overlap after being
folded. Note that the full structure of Fig. 11.18 can’t be folded in three dimensions, because the paper must pass through
itself (Chen Wang, private communication, see [126]). The analogous problem does not arise in martensites.
32This exercise was developed in collaboration with Richard D. James.
33Except on the boundaries between domains, which although dense still technically have measure zero.
34A function f [x] is convex if f [λa+(1−λ)b] ≤ λf [a]+(1−λ)f [b]; graphically, the straight line segment between the two points
(a, f [a]) and (b, f [b]) lies above f if f is convex. The free energy F in eqn 11.28 is non-convex as a function of the slope y′.
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• Construct a minimizing sequence of functions
yn(x) for which limF [yn] = 0.

• Show that the second term of F [y] is zero only
for y(x) = 0, which does not minimize F.

(Advanced) Young measures. It is intuitively
clear that any minimizing sequence for the free
energy of eqn 11.28 must have slopes that ap-
proach y′ ≈ ±1, and yet have values that ap-
proach y ≈ 0. Mathematically, we introduce
a probability distribution (the Young measure)
νx(S) giving the probability of having slope S =
y′(x+ ǫ) for points x+ ǫ near x.
(c) Argue that the Young measure which de-
scribes minimizing sequences for the free energy
in eqn 11.28 is νx(S) =

1/2δ(S − 1) + 1/2δ(S + 1).
Hint: The free energy is the sum of two squares.
Use the first term to argue that the Young mea-
sure is of the form νx(S) = a(x)δ(S − 1) + (1−
a(x))δ(S + 1). Then write 〈y(x)〉 as an integral
involving a(x), and use the second term in the
free energy to show a(x) = 1/2.

(11.9) Snowflakes and linear stability. (Con-
densed matter) ©3
Consider a rather ‘clunky’ two-dimensional
model for the nucleation and growth of an ice
crystal, or more generally a crystal growing in
a supercooled liquid. As in coarsening with
conserved order parameters, the driving force is
given by the supercooling, and the bottle-neck
to motion is diffusion. For ice crystal formation
in the atmosphere, the growing ice crystal con-
sumes all of the water vapor near the interface;
new atoms must diffuse in from afar. In other
systems the bottle-neck might be diffusion of la-
tent heat away from the interface, or diffusion of
impurity atoms (like salt) that prefer the liquid
phase.
The current shape of the crystal is given by a
curve x(λ, t) giving the current solid–liquid in-
terface, parameterized by λ.35 If n̂ is the local
unit normal pointing outward from crystal into
liquid, and S(κ) is the local growth speed of the
crystal as a function of the local curvature κ of
the interface, then36

n̂ · ∂x
∂t

= S(κ) = A+Bκ− Cκ|κ|. (11.29)

Equation 11.29 has been chosen to reproduce the
physics of nucleation and coarsening of circular
droplets of radius R(t) and curvature κ = 1/R.

n

(  )
R

θ

λx

Fig. 11.20 Crystal shape coordinates A crys-
talline nucleus with six incipient fingers (see
Fig. 11.12 for a fully-formed dendrite). We describe
the crystal–liquid interface in two dimensions either
with a parameterized curve x(λ) or, more specifically,
with the radius R(θ).

(a) Generalize the coarsening law for conserved-
order parameters (eqn 11.18) and the calculation
for the critical nucleus size (eqn 11.9) to two-
dimensional droplets. Setting A = B = 0 in
eqn 11.29, what value of C reproduces the coars-
ening law in 2D? What value for A then yields
the correct critical nucleus radius?
Hence A represents the effects of undercooling
(favoring crystal over vapor) and C represents
the effects of surface tension.
(b) Consider an interface with regions of
both positive and negative curvature (as in
Fig. 11.21). What direction should the surface
tension push the fingertip regions of positive cur-
vature κ? What direction should the surface ten-
sion push the interface in the channels (negative
κ)? Would an analytic term Cκ2 in eqn 11.29
have given the correct behavior?
The term Bκ speeds up regions of positive curva-
ture (crystalline fingers) and slows down regions
of negative curvature (channels left behind). It
crudely mimics the diffusion of heat or impurities
away from the interface (Fig. 11.21): the growing
ice tips probe colder, more humid regions.

35We are free to choose any parameterization λ we wish. Typical choices for λ might be the angle θ in polar coordinates or the
arc length around the interface. The curvature κ, and more generally the equations of motion 11.29, must be gauge invariant:
carefully written to be independent of how we measure (gauge) the position λ around the curve.
36The component of ∂x/∂t parallel to the interface does not affect the growth; it only affects the time-dependent parameteri-
zation of the curve.
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Our model is ‘clunky’ because it tries to model
the non-local effects of the diffusion [74] into a lo-
cal theory [20]. More microscopic models include
an explicit thermal boundary layer [11, 12].37

The basic physical picture, however, nicely mim-
ics the more realistic treatments.

liquid or gas
Metastable

Colder

Crystal Warmer

v

Fig. 11.21 Diffusion field ahead of a grow-

ing interface. Contours of temperature, water va-
por concentration, or salt concentration in the liquid
ahead of a growing crystal (dark curve). Notice that
the gradients are low in the troughs and high at the
tips of the fingers; this allows the tips to grow faster.
We do not plot the contours in the crystal.

We will take the growing circular droplet so-
lution, and look to see if a small oscillation of
the interface will grow or shrink with time. We
can parameterize a nearly circular droplet with a
curve R(θ, t). In these coordinates the curvature
is given by

κ =
R2 + 2 (∂R/∂θ)2 −R(∂2R/∂θ2)

(
R2 + (∂R/∂θ)2

)3/2 . (11.30)

Check that κ = 1/R for a perfect circle.
(c) Write n̂ · ∂x/∂t, the left-hand side of
eqn 11.29, in terms of ∂R/∂t, R, and ∂R/∂θ.
(Hints: n̂ is the unit vector perpendicu-
lar to the local tangent to the interface
[∂(R cos θ)/∂θ, ∂(R sin θ)/∂θ], pointing out-
ward. Here ∂x/∂t points along r̂, because we
chose θ as our parameterization.38 Your answer
should not have an explicit dependence on θ.)

Small ice crystals shrink, larger ones grow.
Even larger ones grow fingers, or dendrites
(Fig. 11.12). We can use linear stability anal-
ysis to find the size at which the circular droplet
starts growing fingers. Linear stability analysis
takes an exact solution and sees whether it is
stable to small perturbations.
Expand R(θ, t) =

∑∞
m=−∞ rm(t) exp(imθ). We

want to know, for each number of fingers m, at
what average radius39 r0 the fingers will start to
grow.

Fig. 11.22 Snowflake. ( c© Ken Libbrecht, from
snowcrystals.com [80, 81].)

(d) Assume rm(t) is small for m 6= 0, and ex-
pand eqn 11.29 (written in polar coordinates as
in eqn 11.30 and part (c)) to linear order in rm
and its derivatives. Write the evolution law for
∂rm/∂t in terms of rm and r0 (but not rn for
other integers n). In terms of A, B, and C,
give the radius r0 at which the fingers will start
to grow. (Hint: After linearizing, multiply
by e−imθ and integrate over θ; then use the or-
thogonality properties of the Fourier transform,

37In particular, this is why we need a non-analytic term κ|κ|. Also, our growth rate A for a flat interface is not realistic. For
∆T < L/c, for example, the latent heat is too large to be absorbed by the undercooling; the final state is a mixture of ice and
water, so only fingered interfaces can grow (and never close).
38The coordinate θ does not change as we evolve t, because the parameterization θ varies to keep it fixed, if that helps.
39That is, rm for m = 0.
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eqn A.27.)
Whenever you find a simple exact solution to a
problem, you can test the stability using linear
stability analysis as we did here. Add a small
perturbation, linearize, and see whether all of
the different Fourier modes decay.

The six-fold structure of snowflakes is due to the
six-fold molecular crystal structure of ice; the
growth rate of the surface depends on angle, an-
other effect that we have ignored in our model.
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Fig. 12.1 The Ising model at Tc,
the critical temperature separating the
magnetized phase T < Tc from the
zero-magnetization phase T > Tc. The
white and black regions represent pos-
itive and negative magnetizations s =
±1. Unlike the abrupt transitions stud-
ied in Chapter 11, here the magnetiza-
tion goes to zero continuously as T →
Tc from below.

Continuous phase transitions are fascinating. As we raise the tempera-
ture of a magnet, the magnetization will vanish continuously at a critical
temperature Tc. At Tc we observe large fluctuations in the magnetiza-
tion (Fig. 12.1); instead of picking one of the up-spin, down-spin, or
zero-magnetization states, this model magnet at Tc is a kind of fractal1

1The term fractal was coined to de-
scribe sets which have characteris-
tic dimensions that are not integers;
it roughly corresponds to non-integer
Hausdorff dimensions in mathematics.
The term has entered the popular cul-
ture, and is associated with strange,
rugged sets like those depicted in the
figures here.

blend of all three. This fascinating behavior is not confined to equi-
librium thermal phase transitions. Figure 12.2 shows the percolation
transition. An early paper which started the widespread study of this
topic [78] described punching holes at random places in a conducting
sheet of paper and measuring the conductance. Their measurement fell
to a very small value as the number of holes approached the critical
concentration, because the conducting paths were few and tortuous just
before the sheet fell apart. Thus this model too shows a continuous tran-
sition: a qualitative change in behavior at a point where the properties
are singular but continuous.
Many physical systems involve events of a wide range of sizes, the

largest of which are often catastrophic. Figure 12.3(a) shows the en-
ergy released in earthquakes versus time during 1995. The Earth’s crust
responds to the slow motion of the tectonic plates in continental drift
through a series of sharp, impulsive earthquakes. The same kind of
crackling noise arises in many other systems, from crumpled paper [59]

to Rice Krispies
TM

[68], to magnets [128]. The number of these impul-
sive avalanches for a given size often forms a power law D(s) ∼ s−τ

over many decades of sizes (Fig. 12.3(b)). In the last few decades, it has
been recognized that many of these systems can also be studied as criti-
cal points—continuous transitions between qualitatively different states.
We can understand most of the properties of large avalanches in these
systems using the same tools developed for studying equilibrium phase
transitions.
The renormalization-group and scaling methods we use to study these

critical points are deep and powerful. Much of the history and practice in
the field revolves around complex schemes to implement these methods
for various specific systems. In this chapter, we will focus on the key
ideas most useful in exploring experimental systems and new theoretical
models, and will not cover the methods for calculating critical exponents.
In Section 12.1 we will examine the striking phenomenon of universal-

ity: two systems, microscopically completely different, can exhibit pre-
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Fig. 12.2 Percolation transition.
A percolation model on the computer,
where bonds between grid points are
removed rather than circular holes.
Let the probability of removing a
bond be 1−p; then for p near one (no
holes) the conductivity is large, but
decreases as p decreases. After enough
holes are punched (at pc = 1/2 for
this model), the biggest cluster just
barely hangs together, with holes on
all length scales. At larger proba-
bilities of retaining bonds p = 0.51,
the largest cluster is intact with only
small holes (bottom left); at smaller
p = 0.49 the sheet falls into small frag-
ments (bottom right; shadings denote
clusters). Percolation has a phase
transition at pc, separating a con-
nected phase from a fragmented phase
(Exercises 2.13 and 12.12).
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Fig. 12.3 Earthquake sizes.
(a) Earthquake energy release in
1995 versus time. This time series,
when sped up, sounds like crackling
noise [68]. (b) Histogram of the
number of earthquakes in 1995 as
a function of their size S. Notice
the logarithmic scales; the smallest
earthquakes shown are a million times
smaller and a thousand times more
probable than the largest earthquakes.
The fact that this distribution is
well described by a power law is the
Gutenberg–Richter law ∼ S−2/3.

cisely the same critical behavior near their phase transitions. We will
provide a theoretical rationale for universality in terms of a renormaliza-
tion-group flow in a space of all possible systems.

Fig. 12.4 The Burridge–Knopoff

model of earthquakes, with the
earthquake fault modeled by blocks
pulled from above and sliding with fric-
tion on a surface below. It was later re-
alized by Carlson and Langer [26] that
this model evolves into a state with a
large range of earthquake sizes even for
regular arrays of identical blocks.

In Section 12.2 we will explore the characteristic self-similar structures
found at continuous transitions. Self-similarity is the explanation for
the fractal-like structures seen at critical points: a system at its critical
point looks the same when rescaled in length (and time). We will show
that power laws and scaling functions are simply explained from the
assumption of self-similarity.
Finally, in Section 12.3 we will give an overview of the wide variety of

types of systems that are being understood using renormalization-group
and scaling methods.

12.1 Universality

Quantitative theories of physics are possible because macroscale phe-
nomena are often independent of microscopic details. We saw in Chap-
ter 2 that the diffusion equation was largely independent of the un-
derlying random collision processes. Fluid mechanics relies upon the
emergence of simple laws—the Navier-Stokes equations—from complex
underlying microscopic interactions; if the macroscopic fluid motions de-
pended in great detail on the shapes and interactions of the constituent
molecules, we could not write simple continuum laws. Ordinary quan-
tum mechanics relies on the fact that the behavior of electrons, nuclei,
and photons are largely independent of the details of how the nucleus
is assembled—non-relativistic quantum mechanics is an effective theory
which emerges out of more complicated unified theories at low energies.
High-energy particle theorists developed the original notions of renor-
malization in order to understand how these effective theories emerge in
relativistic quantum systems. Lattice quantum chromodynamics (simu-
lating the strong interaction which assembles the nucleus) is useful only
because a lattice simulation which breaks translational, rotational, and
Lorentz symmetries can lead on long length scales to a behavior that
nonetheless exhibits these symmetries. In each of these fields of physics,
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many different microscopic models lead to the same low-energy, long-
wavelength theory.

Fig. 12.5 A medium-sized

avalanche (flipping 282 785 do-
mains) in a model of avalanches and
hysteresis in magnets [128] (see Exer-
cises 8.13, 12.13 and Fig. 12.11). The
shading depicts the time evolution: the
avalanche started in the dark region
in the back, and the last spins to flip
are in the upper, front region. The
sharp changes in shading are real, and
represent sub-avalanches separated
by times where the avalanche almost
stops (see Fig. 8.18).

The behavior near continuous transitions is unusually independent of
the microscopic details of the system—so much so that we give a new
name to it, universality. Figure 12.6(a) shows that the liquid and gas
densities ρℓ(T ) and ρg(T ) for a variety of atoms and small molecules
appear quite similar when rescaled to the same critical density and tem-
perature. This similarity is partly for mundane reasons: the interactions
between the molecules is roughly the same in the different systems up to
overall scales of energy and distance. Hence argon and carbon monoxide
satisfy

ρCO(T ) = AρAr(BT ) (12.1)

for some overall changes of scale A, B. However, Fig. 12.6(b) shows
a completely different physical system—interacting electronic spins in
manganese fluoride, going through a ferromagnetic transition. The mag-
netic and liquid–gas theory curves through the data are the same if we
allow ourselves to not only rescale T and the order parameter (ρ andM ,
respectively), but also allow ourselves to use a more general coordinate
change

ρAr(T ) = A(M(BT ), T ) (12.2)

which untilts the axis.2 Nature does not anticipate our choice of ρ and

2Here B = TM
c /T ℓg

c is as usual
the rescaling of temperature and
A(M,T ) = a1M + a2 + a3T =
(ρcρ0/M0)M + ρc(1 + s)− (ρcs/T

ℓg
c )T

is a simple shear coordinate transfor-
mation from (ρ, T ℓg) to (M,TM ). As
it happens, there is another correction
proportional to (Tc − T )1−α, where
α ∼ 0.1 is the specific heat expo-
nent. It can also be seen as a kind
of tilt, from a pressure-dependent ef-
fective Ising-model coupling strength.
It is small for the simple molecules in
Fig. 12.6(a), but significant for liquid
metals [47]. Both the tilt and this 1−α
correction are subdominant, meaning
that they vanish faster as we approach
Tc than the order parameter (Tc−T )β .

T for variables. At the liquid–gas critical point the natural measure
of density is temperature dependent, and A(M,T ) is the coordinate
change to the natural coordinates. Apart from this choice of variables,
this magnet and these liquid–gas transitions all behave the same at their
critical points.
This would perhaps not be a surprise if these two phase diagrams

had parabolic tops; the local maximum of an analytic curve generically3

3The term generic is a mathematical
term which roughly translates as ‘ex-
cept for accidents of zero probability’,
like finding a function with zero second
derivative at the maximum.

looks parabolic. But the jumps in magnetization and density near Tc
both vary as (Tc − T )β with the same exponent β ≈ 0.325, distinctly
different from the square-root singularity β = 1/2 of a generic analytic
function.
Also, there are many other properties (susceptibility, specific heat,

correlation lengths) which have power-law singularities at the critical
point, and all of the exponents of these power laws for the liquid–gas
systems agree with the corresponding exponents for the magnets. This
is universality. When two different systems have the same singular prop-
erties at their critical points, we say they are in the same universality
class. Importantly, the theoretical Ising model (despite its drastic sim-
plification of the interactions and morphology) is also in the same univer-
sality class as these experimental uniaxial ferromagnets and liquid–gas
systems—allowing theoretical physics to be directly predictive in real
experiments.
To get a more clear feeling about how universality arises, consider

site and bond percolation in Fig. 12.7. Here we see two microscopically
different systems (left) from which basically the same behavior emerges
(right) on long length scales. Just as the systems approach the threshold
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Fig. 12.6 Universality. (a) Uni-
versality at the liquid–gas critical
point. The liquid–gas coexistence lines
(ρ(T )/ρc versus T/Tc) for a variety of
atoms and small molecules, near their
critical points (Tc, ρc) [54]. The curve is
a fit to the argon data, ρ/ρc = 1+s(1−
T/Tc) ± ρ0(1 − T/Tc)β with s = 0.75,
ρ0 = 1.75, and β = 1/3 [54]. (b) Uni-
versality: ferromagnetic–paramagnetic
critical point. Magnetization versus
temperature for a uniaxial antiferro-
magnet MnF2 [56]. We have shown
both branches ±M(T ) and swapped
the axes so as to make the analogy with
the liquid–gas critical point (above) ap-
parent. Notice that both the magnet
and the liquid–gas critical point have
order parameters that vary as (1 −
T/Tc)β with β ≈ 1/3. (The liquid–
gas coexistence curves are tilted; the
two theory curves would align if we
defined an effective magnetization for
the liquid–gas critical point ρeff = ρ −
0.75ρc(1−T/Tc) (thin midline, above).
This is not an accident; both are in
the same universality class, along with
the three-dimensional Ising model, with
the current estimate for β = 0.325 ±
0.005 [148, chapter 28].

of falling apart, they become similar to one another! In particular, all
signs of the original lattice structure and microscopic rules have disap-
peared.4 4Notice in particular the emergent

symmetries in the problem. The large
percolation clusters at pc are statis-
tically both translation invariant and
rotation invariant, independent of the
grids that underly them. In addition,
we will see that there is an emergent
scale invariance—a kind of symmetry
connecting different length scales (as we
also saw for random walks, Fig. 2.2).

Thus we observe in these cases that different microscopic systems look
the same near critical points, if we ignore the microscopic details and
confine our attention to long length scales. To study this systematically,
we need a method to take a kind of continuum limit, but in systems
which remain inhomogeneous and fluctuating even on the largest scales.
This systematic method is called the renormalization group.5

The renormalization group starts with a remarkable abstraction: it

5The word renormalization grew out of quantum electrodynamics, where the effective charge on the electron changes size
(norm) as a function of length scale. The word group is usually thought to refer to the family of coarse-graining operations
that underly the method (with the group product being repeated coarse-graining). However, there is no inverse operation to
coarse-graining, so the renormalization group does not satisfy the definition of a mathematical group.
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Fig. 12.7 Universality in percola-

tion. Universality suggests that the en-
tire morphology of the percolation clus-
ter at pc should be independent of mi-
croscopic details. On the top, we have
bond percolation, where the bonds con-
necting nodes on a square lattice are
occupied at random with probability p;
the top right shows the infinite cluster
on a 1024 × 1024 lattice at pc = 0.5.
On the bottom, we have site percola-
tion on a triangular lattice, where it is
the hexagonal sites that are occupied
with probability p = pc = 0.5. Even
though the microscopic lattices and oc-
cupation rules are completely different,
the resulting clusters look statistically
identical. (One should note that the
site percolation cluster is slightly less
dark. Universality holds up to overall
scale changes, here up to a change in
the density.)

works in an enormous ‘system space’. Different points in system space
represent different materials under different experimental conditions,
and different physical models of these materials with different interac-
tions and evolution rules. So, for example, in Fig. 12.8 we can consider
the space of all possible models for hysteresis and avalanches in three-
dimensional systems. There is a different dimension in this system space
for each possible parameter in a theoretical model (disorder, coupling,
next-neighbor coupling, dipole fields, . . . ) and also for each parameter
in an experiment (chemical composition, temperature, annealing time,
. . . ). A given experiment or theoretical model will traverse a line in
system space as a parameter is varied; the line at the top of the figure
might represent an avalanche model (Exercise 8.13) as the strength of
the disorder R is varied.
The renormalization group studies the way in which system space

maps into itself under coarse-graining. The coarse-graining operation
shrinks the system and removes microscopic degrees of freedom. Ig-
noring the microscopic degrees of freedom yields a new physical sys-
tem with identical long-wavelength physics, but with different (renor-
malized) values of the parameters. As an example, Fig. 12.9 shows a
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Fig. 12.8 The renormalization

group defines a mapping from the
space of physical systems into itself us-
ing a coarse-graining procedure. Con-
sider the system space of all possible
models of avalanches in hysteresis [128].
Each model can be coarse-grained into
a new model, removing some fraction
of the microscopic degrees of freedom
and introducing new rules so that the
remaining domains still flip at the same
external fields. A fixed-point S∗ under
this coarse-graining mapping will be
self-similar (Fig. 12.11) because it maps
into itself under a change in length
scale. Points like Rc that flow into S∗

will also show the same self-similar be-
havior (except on short length scales
that are coarse-grained away during the
flow to S∗). Models at Rc and S∗ share
the same universality class. Systems
near to their critical point coarse-grain
away from S∗ along the unstable curve
U ; hence they share universal proper-
ties too (Fig. 12.12).

real-space renormalization-group ‘majority rule’ coarse-graining proce-
dure applied to the Ising model.6 Several detailed mathematical tech- 6We will not discuss the methods used

to generate effective interactions be-
tween the coarse-grained spins.

niques have been developed to implement this coarse-graining opera-
tion: not only real-space renormalization groups, but momentum-space
ǫ-expansions, Monte Carlo renormalization groups, etc. These imple-
mentations are both approximate and technically challenging; we will
not pursue them in this chapter (but see Exercises 12.9 and 12.11).
Under coarse-graining, we often find a fixed-point S∗ for this mapping

in system space. All the systems that flow into this fixed point under
coarse-graining will share the same long-wavelength properties, and will
hence be in the same universality class.
Figure 12.8 depicts the flows in system space. It is a two-dimensional

picture of an infinite-dimensional space. You can think of it as a planar
cross-section in system space, which we have chosen to include the line
for our model and the fixed-point S∗; in this interpretation the arrows
and flows denote projections, since the real flows will point somewhat
out of the plane. Alternatively, you can think of it as the curved surface
swept out by our model in system space as it coarse-grains, in which
case you should ignore the parts of the figure below the curve U .7 7The unstable manifold of the fixed-

point.Figure 12.8 shows the case of a fixed-point S∗ that has one unstable
direction, leading outward along U . Points deviating from S∗ in that
direction will not flow to it under coarse-graining, but rather will flow
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Fig. 12.9 Ising model at Tc:

coarse-graining. Coarse-graining of
a snapshot of the two-dimensional Ising
model at its critical point. Each coarse-
graining operation changes the length
scale by a factor B = 3. Each coarse-
grained spin points in the direction
given by the majority of the nine fine-
grained spins it replaces. This type of
coarse-graining is the basic operation of
the real-space renormalization group.
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Fig. 12.10 Generic and self-

organized criticality. (a) Often
there will be fixed-points that attract
in all directions. These fixed-points de-
scribe phases rather than phase transi-
tions. Most phases are rather simple,
with fluctuations that die away on long
length scales. When fluctuations re-
main important, they will exhibit self-
similarity and power laws called generic

scale invariance. (b) The critical man-
ifold C in this earthquake model sep-
arates a phase of stuck faults from a
phase of sliding faults, with the transi-
tion due to the external stress F across
the fault. Only along C does one find
self-similar behavior and a broad spec-
trum of earthquakes. (c) The veloc-
ity of the fault will vary as a power
law v ∼ (F − Fc)β near the critical
force Fc. The motion of the continen-
tal plates, however, drives the fault at
a constant, very slow velocity vs, auto-
matically setting F to Fc and yielding
earthquakes of all sizes; the model ex-
hibits self-organized criticality.

away from it. Fixed-points with unstable directions correspond to con-
tinuous transitions between qualitatively different states. In the case of
hysteresis and avalanches, there is a phase consisting of models where
all the avalanches remain small, and another phase consisting of models
where one large avalanche sweeps through the system, flipping most of
the domains. The surface C which flows into S∗ represents systems at
their critical points; hence our model exhibits avalanches of all scales at
Rc where it crosses C.8 8Because S∗ has only one unstable di-

rection, C has one less dimension than
system space (mathematically we say C
has co-dimension one) and hence can
divide system space into two phases.
Here C is the stable manifold for S∗.

Cases like the liquid–gas transition with two tuning parameters (Tc, Pc)
determining the critical point will have fixed points with two unstable
directions in system space. What happens when we have no unstable
directions? The fixed-point S∗

a in Fig. 12.10 represents an entire region
of system space that shares long-wavelength properties; it represents a
phase of the system. Usually phases do not show fluctuations on all
scales. Fluctuations arise near transitions because the system does not
know which of the available neighboring phases to prefer. However,
there are cases where the fluctuations persist even inside phases, leading
to generic scale invariance. A good example is the case of the ran-
dom walk9 where a broad range of microscopic rules lead to the same 9See Section 2.1 and Exercises 12.10

and 12.11.long-wavelength random walks, and fluctuations remain important on
all scales without tuning any parameters.
Sometimes the external conditions acting on a system naturally drive

it to stay near or at a critical point, allowing one to spontaneously ob-
serve fluctuations on all scales. A good example is provided by cer-
tain models of earthquake fault dynamics. Fig. 12.10(b) shows the
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renormalization-group flows for these earthquake models. The horizon-
tal axis represents the external stress on the earthquake fault. For small
external stresses, the faults remain stuck, and there are no earthquakes.
For strong external stresses, the faults slide with an average velocity v,
with some irregularities but no large events. The earthquake fixed-point
S∗
eq describes the transition between the stuck and sliding phases, and

shows earthquakes of all scales. The Earth, however, does not apply
a constant stress to the fault; rather, continental drift applies a con-
stant, extremely small velocity vs (of the order of centimeters per year).
Fig. 12.10(c) shows the velocity versus external force for this transition,
and illustrates how forcing at a small external velocity naturally sets the
earthquake model at its critical point—allowing spontaneous generation
of critical fluctuations, called self-organized criticality.

12.2 Scale invariance

The other striking feature of continuous phase transitions is the common
occurrence of self-similarity, or scale invariance. We can see this vividly
in the snapshots of the critical point in the Ising model (Fig. 12.1), perco-
lation (Fig. 12.2), and the avalanche in the hysteresis model (Fig. 12.5).
Each shows roughness, irregularities, and holes on all scales at the crit-
ical point. This roughness and fractal-looking structure stems at root
from a hidden symmetry in the problem: these systems are (statistically)
invariant under a change in length scale.
Consider Figs 2.2 and 12.11, depicting the self-similarity in a ran-

dom walk and a cross-section of the avalanches in the hysteresis model.
In each set, the upper-left figure shows a large system, and each suc-
ceeding picture zooms in by another factor of two. In the hystere-
sis model, all the figures show a large avalanche spanning the system
(black), with a variety of smaller avalanches of various sizes, each with
the same kind of irregular boundary (Fig. 12.5). If you blur your eyes
a bit, the figures should look roughly alike. This rescaling and eye-
blurring process is the renormalization-group coarse-graining transfor-
mation. Figure 12.9 shows one tangible rule sometimes used to imple-
ment this coarse-graining operation, applied repeatedly to a snapshot
of the Ising model at Tc. Again, the correlations and fluctuations look
the same after coarse-graining; the Ising model at Tc is statistically self-
similar.
This scale invariance can be thought of as an emergent symmetry

under changes of length scale. In a system invariant under translations,
the expectation of any function of two positions x1, x2 can be written in
terms of the separation between the two points 〈g(x1, x2)〉 = G(x2−x1).
In just the same way, scale invariance will allow us to write functions of
N variables in terms of scaling functions of N−1 variables—except that
these scaling functions are typically multiplied by power laws in one of
the variables.
Let us begin with the case of functions of one variable. Consider the
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Fig. 12.11 Avalanches: scale in-

variance. Magnifications of a cross-
section of all the avalanches in a run
of our hysteresis model (Exercises 8.13
and 12.13) each one the lower right-
hand quarter of the previous. The
system started with a billion domains
(10003). Each avalanche is shown in a
different shade. Again, the larger scales
look statistically the same.
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avalanche size distribution D(S) for a model, say the real earthquakes in
Fig. 12.3(a), or our model for hysteresis, at the critical point. Imagine
taking the same system, but increasing the units of length with which
we measure the system—stepping back, blurring our eyes, and looking
at the system on a coarse-grained level. Imagine that we multiply the
spacing between markings on our rulers by a small amount B = 1 + ǫ.
After coarsening, any length scales in the problem (like the correlation
length ξ) will be divided by B. The avalanche sizes S after coarse-
graining will also be smaller by some factor10 C = 1 + cǫ. Finally, the10If the size of the avalanche were the

cube of its length, then c would equal 3
since (1+ǫ)3 = 1+3ǫ+O(ǫ2). Here c is
the fractal dimension of the avalanche.

overall scale of D(S) after coarse-graining will be rescaled by some factor
A = 1 + aǫ.11 Hence under the coarse-graining we have

11The same avalanches occur inde-
pendent of your measuring instru-
ment, but the probability density D(S)
changes, because the fraction of large
avalanches depends upon how many
small avalanches you measure, and be-
cause the fraction per unit S changes as
the scale of S changes.

ξ′ = ξ/B = ξ/(1 + ǫ),

S′ = S/C = S/(1 + cǫ), (12.3)

D′ = AD = D(1 + aǫ).

Now the probability that the coarse-grained system has an avalanche of
size S′ is given by the rescaled probability that the original system had
an avalanche of size S = (1 + cǫ)S′:

D′(S′) = AD(S) = AD(CS′) = (1 + aǫ)D
(
(1 + cǫ)S′). (12.4)

Here D′(S′) is the distribution measured with the new ruler: a smaller
avalanche with a larger probability density. Because we are at a self-
similar critical point, the coarse-grained distributionD′(S′) should equal
D(S′). Making ǫ infinitesimal leads us to a differential equation:

D(S′) = D′(S′) = (1 + aǫ)D
(
(1 + cǫ)S′),

0 = aǫD + cǫS′dD

dS
,

dD

dS
= −aD

cS
, (12.5)

which has the general solution1212Since
∫
dD/D = −a/c

∫
dS/S,

logD = K − (a/c) logS for some in-
tegration constant K = logD0. D = D0S

−a/c. (12.6)

Because the properties shared in a universality class only hold up to
overall scales, the constant D0 is system dependent. However, the ex-
ponents a, c, and a/c are universal—independent of experiment (with
the universality class). Some of these exponents have standard names:
the exponent c giving the fractal dimension of the avalanche is usually
called df or 1/σν. The exponent a/c giving the size distribution law is
called τ in percolation and in most models of avalanches in magnets13

13Except ours, where we used τ to de-
note the avalanche size law at the crit-
ical field and disorder; integrated over
the hysteresis loop Dint ∝ S−τ̄ with
τ̄ = τ + σβδ.

and is related to the Gutenberg–Richter exponent for earthquakes14
14We must not pretend that we have
found the final explanation for the
Gutenberg–Richter law. There are
many different models that give expo-
nents ≈ 2/3, but it remains controver-
sial which of these, if any, are correct
for real-world earthquakes.

(Fig. 12.3(b)).
Most measured quantities depending on one variable will have sim-

ilar power-law singularities at the critical point. Thus the correlation
function of the Ising model at Tc (Fig. 10.4) decays with distance x in
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Fig. 12.12 Scaling near critical-

ity. If two points in system space
flow towards one another under coarse-
graining, their behavior must be sim-
ilar on long length scales. Here we
measure a function f(x) for our system
(top line) at two different temperatures,
Tc − t and Tc −Et. The dots represent
successive coarse-grainings by a factor
B; under this renormalization group
f → f ′ → f ′′ → f [3] . . . . Here f(Tc −
t, x) after four coarse-grainings maps
to nearly the same system as f(Tc −
Et, x) after three coarse-grainings. We
thus know, on long length scales, that
f ′(Tc − t, x) must agree with f(Tc −
Et, x); the system is similar to itself
at a different set of external parame-

ters. In particular, each coarse-graining
step changes x by a factor B and f
by some factor A, so f ′(Tc − t, y) =
Af(Tc− t, By) = f(Tc−Et, y) for large
distances y.

dimension d as C(x) ∝ x−(d−2+η) and the distance versus time for ran-
dom walks (Section 2.1) grows as t1/2, both because these systems are
self-similar.15 15This is because power laws are the

only self-similar function. If f(x) =
x−α, then on a new scale multiplying
x by B, f(Bx) = B−αx−α ∝ f(x).
(See [97] for more on power laws.)

Self-similarity is also expected near to the critical point. Here as one
coarsens the length scale a system will be statistically similar to itself at a
different set of parameters. Thus a system undergoing phase separation
(Section 11.4.1, Exercise 12.3), when coarsened, is similar to itself at an
earlier time (when the domains were smaller), and a percolation cluster
just above pc (Fig. 12.2 (bottom left)) when coarsened is similar to one
generated further from pc (hence with smaller holes).
For a magnet slightly below16 Tc, a system coarsened by a factor 16Thus increasing the distance t to Tc

decreases the temperature T .B = 1 + ǫ will be similar to one farther from Tc by a factor E = 1+ eǫ.
Here the standard Greek letter for the length rescaling exponent is ν =
1/e (Fig. 12.12). Similar to the case of the avalanche size distribution,
the coarsened system must have its magnetization rescaled upward by
F = (1 + fǫ) (with f = β/ν) to match that of the lower-temperature
original magnet (Fig. 12.12):

M ′(Tc − t) = FM(Tc − t) =M(Tc − Et),

(1 + fǫ)M(Tc − t) = M
(
Tc − t(1 + eǫ)

)
.

(12.7)

Again, taking ǫ infinitesimal leads us to the conclusion thatM ∝ tf/e =
tβ, providing a rationale for the power laws we saw in magnetism and
the liquid–gas transition (Fig. 12.6). Similarly, the specific heat, corre-
lation length, correlation time, susceptibility, and surface tension of an
equilibrium system will have power-law divergences (T − Tc)

−X , where
by definition X is α, ν, zν, γ, and −2ν, respectively. One can also
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Fig. 12.13 Avalanche size distri-

bution. The distribution of avalanche
sizes in our model for hysteresis. No-
tice the logarithmic scales. (We can
measure a D(S) value of 10−14 by run-
ning billions of spins and binning over
ranges ∆S ∼ 105.) (i) Although only
at Rc ≈ 2.16 do we get a pure power
law (dashed line, D(S) ∝ S−τ̄ ), we
have large avalanches with hundreds of
spins even a factor of two away from
the critical point. (ii) The curves have
the wrong slope except very close to the
critical point; be warned that a power
law over two decades (although often
publishable [84]) may not yield a reli-
able exponent. (iii) The scaling curves
(thin lines) work well even far from
Rc. Inset: We plot D(S)/S−τ̄ versus
Sσ(R−Rc)/R to extract the universal
scaling curve D(X) (eqn 12.14). Vary-
ing the critical exponents and Rc to
get a good collapse allows us to mea-
sure the exponents far from Rc, where
power-law fits are still unreliable (Ex-
ercise 12.12(g)).
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vary the field H away from the critical point and measure the resulting
magnetization, which varies as H1/δ.
To specialists in critical phenomena, these exponents are central; whole

conversations often rotate around various combinations of Greek letters.
We know how to calculate critical exponents from the various analytical
approaches,17 and they are simple to measure (although hard to measure17They can be derived from the eigen-

values of the linearization of the
renormalization-group flow around the
fixed-point S∗ in Fig. 12.8 (see Exer-
cises 12.7 and 12.11).

well, [84]).
Critical exponents are not everything, however. Many other scaling

predictions are easily extracted from numerical simulations. Universal-
ity should extend even to those properties that we have not been able to
write formulæ for. In particular, there are an abundance of functions of
two and more variables that one can measure. Figure 12.13 shows the
distribution of avalanche sizesDint(S,R) in our model of hysteresis, inte-
grated over the hysteresis loop (Fig. 8.15), at various disorders R above
Rc (Exercise 8.13). Notice that only at Rc ≈ 2.16 do we get a power-law
distribution of avalanche sizes; at larger disorders there are extra small
avalanches, and a strong decrease in the number of avalanches beyond
a certain size Smax(R).
Let us derive the scaling form forDint(S,R). By using scale invariance,

we will be able to write this function of two variables as a power of one
of the variables times a universal, one-variable function of a combined
scaling variable. From our treatment at Rc (eqns 12.3) we know that

S′ = S
/
(1 + cǫ) ,

D′ = D (1 + aǫ) .
(12.8)
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A system at R = Rc+ r after coarse-graining will be similar to a system
further from the critical disorder, at R = Rc + Er = Rc + (1 + eǫ)r, so

D(S′, Rc + Er) = D′(S′, Rc + r) = AD(CS′, Rc + r),

D(S′, Rc + (1 + eǫ)r) = (1 + aǫ)D ((1 + cǫ)S′, Rc + r) .
(12.9)

To facilitate deriving the scaling form for multiparameter functions,
it is helpful to change coordinates to the scaling variables. Consider the
combination X = Se/cr. After coarse-graining S′ = S/C and shifting to
the higher disorder r′ = Er this combination is unchanged:

X ′ = S′e/cr′ = (S/C)e/c(Er) = (S/ (1 + cǫ))
e/c

((1 + eǫ)r)

= Se/cr

(
1 + eǫ

(1 + cǫ)e/c

)
= Se/cr +O(ǫ2) = X +O(ǫ2).

(12.10)

Let D̄(S,X) = D(S,R) be the size distribution as a function of S and
X . Then D̄ coarse-grains much like a function of one variable, since X
stays fixed. Equation 12.9 now becomes

D̄(S′, X ′) = D̄(S′, X) = (1 + aǫ) D̄ ((1 + cǫ)S′, X) , (12.11)

so

aD̄ = −cS′ ∂D̄

∂S′ (12.12)

and hence
D̄(S,X) = S−a/cD(X) = S−τ̄D(X) (12.13)

for some scaling function D(X). This function corresponds to the (non-
universal) constant D0 in eqn 12.6, except here the scaling function is
another universal prediction of the theory (up to an overall choice of
units for X and D). Rewriting things in terms of the original variables
and the traditional Greek names for the scaling exponents (c = 1/σν,
a = τ̄/σν, and e = 1/ν), we find the scaling form for the avalanche size
distribution:

D(S,R) ∝ S−τ̄D(Sσ(R−Rc)). (12.14)

We can use a scaling collapse of the experimental or numerical data to
extract this universal function, by plotting D/S−τ̄ against X = Sσ(R−
Rc); the inset of Fig. 12.13 shows this scaling collapse.
Similar universal scaling functions appear in many contexts. Consid-

ering just the equilibrium Ising model, there are scaling functions for
the magnetizationM(H,T ) = (Tc−T )βM

(
H/(Tc − T )βδ

)
, for the cor-

relation function C(x, t, T ) = x−(d−2+η)C (x/|T − Tc|−ν , t/|T − Tc|−zν),
and for finite-size effects M(T, L) = (Tc − T )βM (L/(Tc − T )−ν) in a
system confined to a box of size Ld.

12.3 Examples of critical points

Ideas from statistical mechanics have found broad applicability in sci-
ences and intellectual endeavors far from their roots in equilibrium ther-
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mal systems. The scaling and renormalization-group methods intro-
duced in this chapter have seen a particularly broad range of applica-
tions; we will touch upon a few in this conclusion to our text.

12.3.1 Equilibrium criticality: energy versus

entropy

0.0001 0.001 0.01
t = 1-T/T

c

1.5

2.5

(ρ
s / 

ρ)
 t-2

/3

0.05 bar
7.27 bar
12.13 bar
18.06 bar
24.10 bar
29.09 bar

Fig. 12.14 Superfluid density in

helium: scaling plot. This classic
experiment [1,53] in 1980 measured the
superfluid density ρs(T ) in helium to
great precision. Notice the logarithmic
scale on the horizontal axis; the low-
est pressure data (saturated vapor pres-
sure ≈ 0.0504 bar) spans three decades
of temperature shift from Tc. This plot
emphasizes the deviations from the ex-
pected power law.

Scaling and renormalization-groupmethods have their roots in the study
of continuous phase transitions in equilibrium systems. Ising models,
Potts models,18 Heisenberg models, phase transitions in liquid crys-

18Potts models are Ising-like models
with N states per site rather than two.

tals, wetting transitions, equilibrium crystal shapes (Fig. 11.6), two-
dimensional melting—these are the grindstones on which our renormali-
zation-group tools were sharpened.
The transition in all of these systems represents the competition be-

tween energy and entropy, with energy favoring order at low temper-
atures and entropy destroying it at high temperatures. Figure 12.14
shows the results of a classic, amazing experiment—the analysis of the
superfluid transition in helium (the same order parameter, and also the
same universality class, as the XY model). The superfluid density is
expected to have the form

ρs ∝ (Tc − T )β(1 + d(Tc − T )x), (12.15)

where x is a universal, subdominant correction to scaling. Since β ≈ 2/3,
they plot ρs/(T − Tc)

2/3 so that deviations from the simple expectation
are highlighted. The slope in the top, roughly straight curve reflects the
difference between their measured value of β = 0.6749±0.0007 and their
multiplier 2/3. The other curves show the effects of the subdominant cor-
rection, whose magnitude d increases with increasing pressure. Recent
experiments improving on these results were done on the space station,
in order to reduce the effects of gravity.

12.3.2 Quantum criticality: zero-point fluctuations

versus energy

Thermal fluctuations do not exist at zero temperature, but there are
many well-studied quantum phase transitions which arise from the com-
petition of potential energy and quantum fluctuations. Many of the
earliest studies focused on the metal–insulator transition and the phe-
nomenon of localization, where disorder can lead to insulators even when
there are states at the Fermi surface. Scaling and renormalization-group
methods played a central role in this early work; for example, the states
near the mobility edge (separating localized from extended states) are
self-similar and fractal. Other milestones include the Kondo effect,
macroscopic quantum coherence (testing the fundamentals of quantum
measurement theory), transitions between quantum Hall plateaus, and
superconductor–normal metal transitions. Figure 12.15 show a recent
experiment studying a transition directly from a superconductor to an
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Fig. 12.15 The superconductor–

insulator transition. (a) Thin films
of amorphous bismuth are insulators
(resistance grows to infinity at zero
temperature), while films above about
12 Å are superconducting (resistance
goes to zero at a temperature above
zero). (b) Scaling collapse. Resis-
tance plotted against the scaled thick-
ness for the superconductor–insulator
transition, with each thickness rescaled
by an independent factor t to get a good
collapse. The top scaling curve F− is
for the insulators d < dc, and the bot-
tom one F+ is for the superconductors
d > dc. The inset shows t ∼ T−1/νz ,
with νz ∼ 1.2. (From [87].)

insulator, as the thickness of a film is varied. The resistance is expected
to have the scaling form

R(d, T ) = RcF±
(
(d− dc)T

−1/νz
)
; (12.16)

the authors plot R(d, T ) versus t(d−dc), vary t until the curves collapse
(main part of Fig. 12.15(b)), and read off 1/νz from the plot of t versus T
(inset). While it is clear that scaling and renormalization-group ideas
are applicable to this problem, we should note that as of the time this
text was written, no theory yet convincingly explains these particular
observations.

12.3.3 Dynamical systems and the onset of chaos

µ

µ

2

1

x*(  )µ

µ

Fig. 12.16 Self-similarity at the

onset of chaos. The attractor as a
function of µ for the Feigenbaum lo-
gistic map f(x) = 4µx(1 − x). For
small µ < µ1, repeatedly iterating f
converges to a fixed-point x∗(µ). As
µ is raised past µ1, the map converges
into a two-cycle; then a four-cycle
at µ2, an eight-cycle at µ3. . . These
period-doubling bifurcations converge
geometrically: µ∞ − µn ∝ δ−n where
δ = 4.669201609102990 . . . is a univer-
sal constant. At µ∞ the system goes
chaotic. (Exercise 12.9).

Much of statistical mechanics focuses on systems with large numbers of
particles, or systems connected to a large external environment. Contin-
uous transitions also arise in isolated or simply driven systems with only
a few important degrees of freedom, where they are called bifurcations.
A bifurcation is a qualitative change in behavior which arises when a pa-
rameter in a set of differential equations passes through a critical value.
The study of these bifurcations is the theory of normal forms (Exer-
cise 12.4). Bifurcation theory contains analogies to universality classes,
critical exponents, and analytic corrections to scaling.
Dynamical systems, even when they contain only a few degrees of free-

dom, can exhibit immensely complex, chaotic behavior. The mathemati-
cal trajectories formed by chaotic systems at late times—the attractors—
are often fractal in structure, and many concepts and methods from
statistical mechanics are useful in studying these sets.19

19For example, statistical mechanical
ensembles become invariant measures

(Exercise 4.3), and the attractors are
characterized using concepts related to
entropy (Exercise 5.16).

It is in the study of the onset of chaos where renormalization-group
methods have had a spectacular impact. Figure 12.16 shows a sim-
ple dynamical system undergoing a series of bifurcations leading to a
chaotic state. Feigenbaum (Exercise 12.9) analyzed the series using a
renormalization group, coarse-graining not in space but in time. Again,
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this behavior is universal—exactly the same series of bifurcations (up
to smooth coordinate changes) arise in other maps and in real physical
systems. Other renormalization-group calculations have been important
for the study of the transition to chaos from quasiperiodic motion, and
for the breakdown of the last non-chaotic region in Hamiltonian systems
(see Exercise 4.4).

12.3.4 Glassy systems: random but frozen

Let us conclude with a common continuous transition for which our
understanding remains incomplete: glass transitions.
Glasses are out of equilibrium; their relaxation times diverge as they

are cooled, and they stop rearranging at a typical temperature known
as the glass transition temperature. Many other disordered systems
also appear to be glassy, in that their relaxation times get very slow as
they are cooled, and they freeze into disordered configurations.20 This

20Glasses are different from disordered
systems. The randomness in disordered
systems is fixed, and occurs in both
the high- and low-temperature phases;
the disorder in the traditional config-

urational glasses freezes in as it cools.
See also Section 5.2.2.

freezing process is sometimes described as developing long-range order
in time, or as a broken ergodicity (see Section 4.2).

F

F

A

Fig. 12.17 Frustration. A spin glass
has a collection of magnetic ions with
interactions of random sign. Here we
see a triangle of Ising ±1 spins with
one antiferromagnetic bond—one of the
three bonds must be unsatisfied in any
spin configuration. Hence the system is
said to be frustrated.

The basic reason that many of the glassy systems freeze into ran-
dom states is frustration. Frustration was defined first for spin glasses,
which are formed by randomly substituting magnetic atoms into a non-
magnetic host. The magnetic spins are coupled to one another at ran-
dom; some pairs prefer to be parallel (ferromagnetic couplings) and some
antiparallel (antiferromagnetic). Whenever strongly-interacting spins
form a loop with an odd number of antiferromagnetic bonds (Fig. 12.17)
they are frustrated; one of the bonds will have to be left in an unhappy
state, since there must be an even number of spin inversions around the
loop (Fig. 12.17). It is believed in many cases that frustration is also
important for configurational glasses (Fig. 12.18).
The study of disordered magnetic systems is mathematically and com-

putationally sophisticated. The equilibrium ground state for the three-
dimensional random-field Ising model,21 for example, has been rigorously

21Our model for hysteresis and
avalanches (Figs 8.18, 12.5, 12.11,
and 12.13; Exercises 8.13, 8.14,
and 12.13) is this same random-field
Ising model, but in a growing external
field and out of equilibrium.

proven to be ferromagnetic (boring); nonetheless, when cooled in zero ex-
ternal field we understand why it freezes into a disordered state, because
the coarsening process develops diverging free energy barriers to relax-
ation. Methods developed to study the spin glass transition have seen
important applications in neural networks (which show a forgetting tran-
sition as the memory becomes overloaded) and more recently in guiding
algorithms for solving computationally hard (NP–complete) problems
(see Exercises 1.8 and 8.15). Some basic conceptual questions, however,
remain unanswered. For example, we still do not know whether spin
glasses have a finite or infinite number of equilibrium states—whether,
upon infinitely slow cooling, one still has many glassy configurations.2222There are ‘cluster’ theories which as-

sume two (spin-flipped) ground states,
competing with ‘replica’ and ‘cavity’
methods applied to infinite-range mod-
els which suggest many competing
ground states. Some rigorous results
are known.

In real configurational glasses the viscosity and relaxation times grow
by ten to fifteen orders of magnitude in a relatively small temperature
range, until the cooling rate out-paces the equilibration. We funda-
mentally do not know why the viscosity diverges so rapidly in so many
materials. There are at least three competing pictures for the glass tran-
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(b)(a)

Fig. 12.18 Frustration and curva-

ture. One kind of frustration arises
when the energetically favorable local
packing of atoms or molecules is in-
compatible with the demands of build-
ing large structures. Here we show two
artistic renditions (courtesy of Pamela
Davis Kivelson [67]). (a) The classic
problem faced by map-makers: the peel
of an orange (or the crust of the Earth)
cannot be mapped smoothly onto a flat
space without stretching and tearing
it. (b) The analogous problem faced in
many metallic glasses, whose atoms lo-
cally prefer to form nice compact tetra-
hedra: twenty tetrahedra cannot be
glued together to form an icosahedron.
Just as the orange peel segments can
be nicely fit together on the sphere,
the metallic glasses are unfrustrated in
curved space [117].

sition. (1) It reflects an underlying equilibrium transition to an ideal,
zero-entropy glass state, which would be formed under infinitely slow
cooling. (2) It is a purely dynamical transition (where the atoms or
molecules jam together). (3) It is not a transition at all, but just a
cross-over where the liquid viscosity jumps rapidly (say, because of the
formation of semipermanent covalent bonds).

12.3.5 Perspectives

Many of the physicists who read this text will spend their careers out-
side of traditional physics. Physicists continue to play significant roles
in the financial world (econophysics, computational finance, derivative
trading), in biology (bioinformatics, models of ecology and evolution),
computer science (traffic models, algorithms for solving hard problems),
and to some extent in social science modeling (models of voting be-
havior and consensus building). The tools and methods of statistical
mechanics (particularly the scaling methods used to study continuous
transitions) are perhaps the most useful tools that we bring to these
disparate subjects. Conversely, I hope that this text will prove useful as
an introduction of these tools and methods to computer scientists, biol-
ogists, engineers, and finance professionals, as they continue to broaden
and fertilize the field of statistical mechanics.
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Exercises

We start by re-emphasizing the phenomena and conven-
tions used in studying continuous phase transitions in
Ising self-similarity, Scaling functions, and Scaling and
coarsening. We study solvable critical points in Bifur-
cation theory, Mean-field theory and The onset of lasing.
We illustrate how the renormalization-group flows deter-
mine the critical behavior in Renormalization-group tra-
jectories and Superconductivity and the renormalization
group; the latter explains schematically the fundamental
basis for Fermi liquid theory. Period doubling and the
two versions of The renormalization-group and the cen-
tral limit theorem provide important applications where
the reader may implement the renormalization group ex-
plicitly and completely. We conclude with two numerical
exercises, Percolation and universality and Hysteresis and
avalanches: scaling, which mimic the entire experimental
analysis from data collection to critical exponents and
scaling functions.

(12.1) Ising self-similarity. ©1
Start up the Ising model (computer exercises
portion of the book web site [129]). Run a large
system at zero external field and T = Tc =
2/ log(1 +

√
2) ≈ 2.26919. Set the refresh rate

low enough that graphics is not the bottle-neck,
and run for at least a few hundred sweeps to
equilibrate. You should see a fairly self-similar
structure, with fractal-looking up-spin clusters
inside larger down-spin structures inside . . .
Can you find a nested chain of three clusters?
Four?

(12.2) Scaling and corrections to scaling. (Con-
densed matter) ©2
Near critical points, the self-similarity under
rescaling leads to characteristic power-law sin-
gularities. These dependences may be dis-
guised, however, by less-singular corrections to
scaling.
An experiment measures the susceptibility
χ(T ) in a magnet for temperatures T slightly
above the ferromagnetic transition temperature
Tc. They find their data is fit well by the form

χ(T ) = A(T − Tc)
−1.25 +B + C(T − Tc)

+D(T − Tc)
1.77. (12.17)

(a) Assuming this is the correct dependence
near Tc, what is the critical exponent γ?
When measuring functions of two variables near
critical points, one finds universal scaling func-
tions. The whole function is a prediction of the
theory.
The pair correlation function C(r, T ) =
〈S(x)S(x + r)〉 is measured in another, three-
dimensional system just above Tc. It is found
to be spherically symmetric, and of the form

C(r, T ) = r−1.026C(r(T − Tc)
0.65), (12.18)

where the function C(x) is found to be roughly
exp(−x).
(b) What is the critical exponent ν? The expo-
nent η?

(12.3) Scaling and coarsening. (Condensed mat-
ter) ©3
During coarsening, we found that the system
changed with time, with a length scale that
grows as a power of time: L(t) ∼ t1/2 for a non-
conserved order parameter, and L(t) ∼ t1/3 for
a conserved order parameter. These exponents,
unlike critical exponents, are simple rational
numbers that can be derived from arguments
akin to dimensional analysis (Section 11.4.1).
Associated with these diverging length scales
there are scaling functions. Coarsening does
not lead to a system which is self-similar to it-
self at equal times, but it does lead to a system
which at two different times looks the same—
apart from a shift of length scales.
An Ising model with non-conserved magnetiza-
tion is quenched to a temperature T well below
Tc. After a long time t0, the correlation func-
tion looks like Ccoar

t0 (r, T ) = c(r).
Assume that the correlation function at short
distances Ccoar

t (0, T, t) will be time indepen-
dent, and that the correlation function at later
times will have the same functional form apart
from a rescaling of the length. Write the corre-
lation function at time twice t0, C

coar
2t0 (r, T ), in

terms of c(r). Write a scaling form

Ccoar
t (r, T ) = t−ωC(r/tρ, T ). (12.19)

Use the time independence of Ccoar
t (0, T ) and

the fact that the order parameter is not con-
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served (Section 11.4.1) to predict the numerical
values of the exponents ω and ρ.
It was only recently made clear that the scal-
ing function C for coarsening does depend on
temperature (and is, in particular, anisotropic
for low temperature, with domain walls lin-
ing up with lattice planes). Low-temperature
coarsening is not as ‘universal’ as continuous
phase transitions are (Section 11.4.1); even in
one model, different temperatures have differ-
ent scaling functions.

(12.4) Bifurcation theory. (Mathematics) ©3
Dynamical systems theory is the study of the
time evolution given by systems of differential
equations. Let x(t) be a vector of variables
evolving in time t, let λ be a vector of parame-
ters governing the differential equation, and let
Fλ(x) be the differential equations

ẋ ≡ ∂x

∂t
= Fλ(x). (12.20)

The typical focus of the theory is not to solve
the differential equations for general initial con-
ditions, but to study the qualitative behavior.
In general, they focus on bifurcations—special
values of the parameters λ where the behavior
of the system changes qualitatively.
(a) Consider the differential equation in one
variable x(t) with one parameter µ:

ẋ = µx− x3. (12.21)

Show that there is a bifurcation at µc = 0, by
showing that an initial condition with small,
non-zero x(0) will evolve qualitatively differ-
ently at late times for µ > 0 versus for µ < 0.
Hint: Although you can solve this differential
equation explicitly, we recommend instead that
you argue this qualitatively from the bifurca-
tion diagram in Fig. 12.19; a few words should
suffice.
Dynamical systems theory has much in com-
mon with equilibrium statistical mechanics of
phases and phase transitions. The liquid–gas
transition is characterized by external param-
eters λ = (P, T,N), and has a current state
described by x = (V,E, µ). Equilibrium phases
correspond to fixed-points (x∗(µ) with ẋ∗ = 0)
in the dynamics, and phase transitions cor-
respond to bifurcations.23 For example, the

power laws we find near continuous phase tran-
sitions have simpler analogues in the dynamical
systems.

µ

x*
(µ

)

Fig. 12.19 Pitchfork bifurcation diagram.
The flow diagram for the pitchfork bifurcation
(eqn 12.21). The dashed line represents unstable
fixed-points, and the solid thick lines represent sta-
ble fixed-points. The thin lines and arrows repre-
sent the dynamical evolution directions. It is called
a pitchfork because of the three tines on the right
emerging from the handle on the left.

(b) Find the critical exponent β for the pitch-
fork bifurcation, defined by x∗(µ) ∝ (µ − µc)

β

as µ→ µc.
Bifurcation theory also predicts universal be-
havior; all pitchfork bifurcations have the same
scaling behavior near the transition.
(c) At what value λc does the differential equa-
tion

ṁ = tanh (λm)−m (12.22)

have a bifurcation? Does the fixed-point value
m∗(λ) behave as a power law m∗ ∼ |λ − λc|β
near λc (up to corrections with higher powers
of λ− λc)? Does the value of β agree with that
of the pitchfork bifurcation in eqn 12.21?
Just as there are different universality classes
for continuous phase transitions with different
renormalization-group fixed points, there are
different classes of bifurcations each with its
own normal form. Some of the other important
normal forms include the saddle-node bifurca-
tion,

ẋ = µ− x2, (12.23)

transcritical exchange of stability,

ẋ = µx− x2, (12.24)

23In Section 8.3, we noted that inside a phase all properties are analytic in the parameters. Similarly, bifurcations are values
of λ where non-analyticities in the long-time dynamics are observed.
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and the Hopf bifurcation,

ẋ = (µ− (x2 + y2))x− y,
ẏ = (µ− (x2 + y2))y + x.

(12.25)

(12.5) Mean-field theory. (Condensed matter) ©3
In Chapter 11 and Exercise 9.5, we make ref-
erence to mean-field theories, a term which is
often loosely used for any theory which absorbs
the fluctuations of the order parameter field
into a single degree of freedom in an effective
free energy. The original mean-field theory ac-
tually used the mean value of the field on neigh-
boring sites to approximate their effects.
In the Ising model on a square lattice, this
amounts to assuming each spin sj = ±1 has
four neighbors which are magnetized with the
average magnetization m = 〈sj〉, leading to a
one-spin mean-field Hamiltonian

H = −4Jmsj . (12.26)

(a) At temperature kBT , what is the value for
〈sj〉 in eqn 12.26, given m? At what temper-
ature Tc is the phase transition, in mean field
theory? (Hint: At what temperature is a non-
zero m = 〈s〉 self-consistent?) Argue as in Ex-
ercise 12.4 part (c) that m ∝ (Tc−T )β near Tc.
Is this value for the critical exponent β correct
for the Ising model in either two dimensions
(β = 1/8) or three dimensions (β ≈ 0.325)?

(b) Show that the mean-field solution you found
in part (a) is the minimum in an effective
temperature-dependent free energy

V (m) = kBT
(m2

2

− log (cosh(4Jm/kBT ))
kBT

4J

)
.

(12.27)

On a single graph, plot V (m) for 1/(kBT ) =
0.1, 0.25, and 0.5, for −2 < m < 2, show-
ing the continuous phase transition. Compare
with Fig. 9.22.
(c) What would the mean-field Hamiltonian be
for the square-lattice Ising model in an external

field H? Show that the mean-field magnetiza-
tion is given by the minima in24

V (m) = kBT
(m2

2

− log (cosh((H + 4Jm)/kBT ))
kBT

4J

)
.

(12.28)

On a single graph, plot V (m,H) for β = 0.5
and H = 0, 0.5, 1.0, and 1.5, showing metasta-
bility and an abrupt transition. At what value of
H does the metastable state become completely
unstable? Compare with Fig. 11.2(a).

(12.6) The onset of lasing.25 (Quantum, Optics,
Mathematics) ©3
Lasers represent a stationary, condensed state.
It is different from a phase of matter not only
because it is made up out of energy, but also be-
cause it is intrinsically a non-equilibrium state.
In a laser entropy is not maximized, free ener-
gies are not minimized—and yet the state has a
robustness and integrity reminiscent of phases
in equilibrium systems.
In this exercise, we will study a system of ex-
cited atoms coupled to a photon mode just be-
fore it begins to lase. We will see that it exhibits
the diverging fluctuations and scaling that we
have studied near critical points.
Let us consider a system of atoms weakly cou-
pled to a photon mode. We assume that N1

atoms are in a state with energy E1, N2 atoms
are in a higher energy E2, and that these atoms
are strongly coupled to some environment that
keeps these populations fixed.26 Below the on-
set of lasing, the probability ρn(t) that the pho-
ton mode is occupied by n photons obeys

dρn
dt

= a
(
nρn−1N2 − nρnN1 − (n+ 1)ρnN2

+ (n+ 1)ρn+1N1

)
. (12.29)

The first term on the right-hand side represents
the rate at which one of the N2 excited atoms
experiencing n− 1 photons will emit a photon;
the second term represents the rate at which
one of the N1 lower-energy atoms will absorb
one of n photons; the third term represents
emission in an environment with n photons, and

24One must admit that it is a bit weird to have the external field H inside the effective potential, rather than coupled linearly
to m outside.
25This exercise was developed with the help of Alex Gaeta and Al Sievers.
26That is, we assume that the atoms are being pumped into state N2 to compensate for both decays into our photon mode
and decays into other channels. This usually involves exciting atoms into additional atomic levels.
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the last represents absorption with n + 1 pho-
tons. The fact that absorption in the presence
of m photons is proportional to m and emission
is proportional to m+1 is a property of bosons
(Exercises 7.8(c) and 7.9). The constant a > 0
depends on the lifetime of the transition, and
is related to the Einstein A coefficient (Exer-
cise 7.8).
(a) Find a simple expression for d〈n〉/dt, where
〈n〉 = ∑∞m=0mρm is the mean number of pho-
tons in the mode. (Hint: Collect all terms in-
volving ρm.) Show for N2 > N1 that this mean
number grows indefinitely with time, leading to
a macroscopic occupation of photons into this
single state—a laser.27

Now, let us consider our system just before it
begins to lase. Let ǫ = (N2 − N1)/N1 be our
measure of how close we are to the lasing insta-
bility. We might expect the value of 〈n〉 to di-
verge as ǫ→ 0 like ǫ−ν for small ǫ. Near a phase
transition, one also normally observes critical
slowing-down: to equilibrate, the phase must
communicate information over large distances
of the order of the correlation length, which
takes a time which diverges as the correlation
length diverges. Let us define a critical-slowing-
down exponent ζ for our lasing system, where
the typical relaxation time is proportional to
|ǫ|−ζ as ǫ→ 0.
(b) For ǫ < 0, below the instability, solve your
equation from part (a) for the long-time sta-
tionary value of 〈n〉. What is ν for our sys-
tem? For a general initial condition for the
mean number of photons, solve for the time evo-
lution. It should decay to the long-time value
exponentially. Does the relaxation time diverge
as ǫ→ 0? What is ζ?
(c) Solve for the stationary state ρ∗ for N2 <
N1. (Your formula for ρ∗n should not involve
ρ∗.) If N2/N1 is given by a Boltzmann proba-
bility at temperature T , is ρ∗ the thermal equi-
librium distribution for the quantum harmonic
oscillator at that temperature? Warning: The
number of bosons in a phonon mode is given by
the Bose–Einstein distribution, but the prob-
ability of different occupations in a quantum
harmonic oscillator is given by the Boltzmann
distribution (see Section 7.2 and Exercise 7.2).
We might expect that near the instability the
probability of getting n photons might have a

scaling form

ρ∗n(ǫ) ∼ n−τD(n|ǫ|ν). (12.30)

(d) Show for small ǫ that there is a scaling
form for ρ∗, with corrections that go to zero
as ǫ→ 0, using your answer to part (c). What
is τ? What is the function D(x)? (Hint: In
deriving the form of D, ǫ is small, but nǫν is of
order one. If you were an experimentalist doing
scaling collapses, you would plot nτρn versus
x = n|ǫ|−ν ; try changing variables in nτρn to
replace ǫ by x, and choose τ to eliminate n for
small ǫ.)

(12.7) Renormalization-group trajectories. ©3
An Ising model near its critical temperature Tc

is described by two variables: the distance to
the critical temperature t = (T − Tc)/Tc, and
the external field h = H/J . Under a coarse-
graining of length x′ = (1 − ǫ)x, the system
is observed to be similar to itself at a shifted
temperature t′ = (1 + aǫ) t and a shifted exter-
nal field h′ = (1 + bǫ)h, with b > a > 0 (so
there are two relevant eigendirections, with the
external field more strongly relevant than the
temperature).
(a) Which diagram below has curves consistent
with this flow, for b > a > 0?

(A)

t

h

(B)

t

h

27The number of photons will eventually stop growing when they begin to pull energy out of the N2 excited atoms faster than
the pumping can replace them—invalidating our equations.
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(C)

t

h

(D)

t

h

(E)

t

h

The magnetization M(t, h) is observed to
rescale under this same coarse-graining
operation to M ′ = (1 + cǫ)M , so
M ((1 + aǫ) t, (1 + bǫ)h) = (1 + cǫ)M(t, h).
(b) Suppose M(t, h) is known at t = t1, the
line of filled circles in the various figures in
part (a). Give a formula for M(2t1, h) (open
circles) in terms of M(t1, h

′). (Hint: Find
the scaling variable in terms of t and h which is
constant along the renormalization-group tra-
jectories shown in (a). Write a scaling form for
M(t, h) in terms of this scaling variable, and
find the critical exponents in terms of a, b, and
c. Then calculating M(t, h) at t = 2t1 should
be possible, given the values at t = t1.)

(12.8) Superconductivity and the renormaliza-
tion group. (Condensed matter) ©3
Ordinary superconductivity happens at a
rather low temperature; in contrast to phonon
energies (hundreds of degrees Kelvin times kB)
or electronic energies (tens of thousands of de-

grees Kelvin), phonon-mediated superconduc-
tivity in most materials happens below a few
Kelvin. This is largely explained by the BCS
theory of superconductivity, which predicts
that the transition temperature for weakly-
coupled superconductors is

Tc = 1.764 ~ωD exp (−1/V g(εF )) , (12.31)

where ωD is a characteristic phonon frequency,
V is an attraction between electron pairs me-
diated by the phonons, and g(εF ) is the
density of states (DOS) of the electron gas
(eqn 7.74) at the Fermi energy. If V is small,
exp (−1/V g(εF )) can be exponentially small,
explaining why materials often have to be so
cold to go superconducting.
Superconductivity was discovered decades be-
fore it was explained. Many looked for expla-
nations which would involve interactions with
phonons, but there was a serious obstacle. Peo-
ple had studied the interactions of phonons
with electrons, and had shown that the system
stays metallic (no superconductivity) to all or-
ders in perturbation theory.
(a) Taylor expand Tc (eqn 12.31) about V =
0+ (about infinitesimal positive V ). Guess the
value of all the terms in the Taylor series. Can
we expect to explain superconductivity at pos-
itive temperatures by perturbing in powers of
V ?
There are two messages here.

• Proving something to all orders in perturba-
tion theory does not make it true.

• Since phases are regions in which perturba-
tion theory converges (see Section 8.3), the
theorem is not a surprise. It is a condition
for a metallic phase with a Fermi surface to
exist at all.

In recent times, people have developed a
renormalization-group description of the Fermi
liquid state and its instabilities28 (see note 23
on p. 144). Discussing Fermi liquid theory,
the BCS theory of superconductivity, or this
renormalization-group description would take
us far into rather technical subjects. However,
we can illustrate all three by analyzing a rather
unusual renormalization-group flow.
Roughly speaking, the renormalization-group
treatment of Fermi liquids says that the Fermi

28There are also other instabilities of Fermi liquids. Charge-density waves, for example, also have the characteristic exp(−1/aV )
dependence on the coupling V .
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surface is a fixed-point of a coarse-graining in
energy. That is, they start with a system
space consisting of a partially-filled band of
electrons with an energy widthW , including all
kinds of possible electron–electron repulsions
and attractions. They coarse-grain by pertur-
batively eliminating (integrating out) the elec-
tronic states near the edges of the band,

W ′ = (1− δ)W, (12.32)

incorporating their interactions and effects into
altered interaction strengths among the remain-
ing electrons. These altered interactions give
the renormalization-group flow in the system
space. The equation for W gives the change
under one iteration (n = 1); we can pretend n
is a continuous variable and take δn → 0, so
(W ′ −W )/δ→ dW/dn, and hence

dW/dn = −W. (12.33)

When they do this calculation, they find the
following.

• The non-interacting Fermi gas we studied in
Section 7.7 is a fixed point of the renormali-
zation group. All interactions are zero at this
fixed-point. Let V represent one of these in-
teractions.29

• The fixed-point is unstable to an attractive
interaction V > 0, but is stable to a repul-
sive interaction V < 0.

• Attractive forces between electrons grow un-
der coarse-graining and lead to new phases,
but repulsive forces shrink under coarse-
graining, leading back to the metallic free
Fermi gas.

This is quite different from our renormalization-
group treatment of phase transitions, where rel-
evant directions like the temperature and field
were unstable under coarse-graining, whether
shifted up or down from the fixed-point, and
other directions were irrelevant and stable
(Fig. 12.8). For example, the temperature of
our Fermi gas is a relevant variable, which
rescales under coarse-graining like

T ′ = (1 + aδ)T,

dT/dn = aT.
(12.34)

Here a > 0, so the effective temperature be-
comes larger as the system is coarse-grained.

How can they get a variable V which grows for
V > 0 and shrinks for V < 0?

• When they do the coarse-graining, they find
that the interaction V is marginal: to linear
order it neither increases nor decreases.

The next allowed term in the Taylor series
near the fixed-point gives us the coarse-grained
equation for the interaction:

V ′ = (1 + bδV )V,

dV/dn = bV 2.
(12.35)

• They find b > 0.

-1 0 1
g V, coupling strength times DOS
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Fig. 12.20 Fermi liquid theory renormali-

zation-group flows. The renormalization flows
defined by eqns 12.34 and 12.35. The temperature
T is relevant at the free Fermi gas fixed-point; the
coupling V is marginal. The distinguished curve
represents a phase transition boundary Tc(V ). Be-
low Tc, for example, the system is superconducting;
above Tc it is a (finite-temperature) metal.

(b) True or false? (See Fig. 12.20.)
(T) (F) For V > 0 (attractive interactions), the
interactions get stronger with coarse-graining.
(T) (F) For V < 0 (repulsive interactions),
coarse-graining leads us back to the free Fermi
gas, explaining why the Fermi gas describes
metals (Section 7.7).
(T) (F) Temperature is an irrelevant variable,
but dangerous.

29V will be the pairing between opposite-spin electrons near the Fermi surface for superconductors.
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(T) (F) The scaling variable

x = TV 1/βδ (12.36)

is unchanged by the coarse-graining (second
equations in 12.34 and 12.35), where β and δ
are universal critical exponents;30 hence x la-
bels the progress along the curves in Fig. 12.20
(increasing in the direction of the arrows).
(T) (F) The scaling variable

y = T exp (a/(bV )) (12.37)

is unchanged by the coarse-graining, so each
curve in Fig. 12.20 has a fixed value for y.
Now, without knowing anything about super-
conductivity, let us presume that our sys-
tem goes superconducting at some tempera-
ture Tc(V ) when the interactions are attrac-
tive. When we coarse-grain a system that is
at the superconducting transition temperature,
we must get another system that is at its su-
perconducting transition temperature.
(c) What value for a/b must they calculate
in order to get the BCS transition temper-
ature (eqn 12.31) from this renormalization
group? What is the value of the scaling vari-
able (whichever you found in part (b)) along
Tc(V )?
Thus the form of the BCS transition tempera-
ture at small V , eqn 12.31, can be explained by
studying the Fermi gas without reference to the
superconducting phase!

(12.9) Period doubling.31 (Mathematics, Com-
plexity) ©4
In this exercise, we use renormalization-
group and scaling methods to study the on-
set of chaos. There are several routes by
which a dynamical system can start exhibiting
chaotic motion; this exercise studies the period-
doubling cascade, first extensively investigated
by Feigenbaum.
Chaos is often associated with dynamics which
stretch and fold; when a batch of taffy is be-
ing pulled, the motion of a speck in the taffy
depends sensitively on the initial conditions. A
simple representation of this physics is provided
by the map32

f(x) = 4µx(1− x) (12.38)

restricted to the domain (0, 1). It takes f(0) =
f(1) = 0, and f(1/2) = µ. Thus, for µ = 1
it precisely folds the unit interval in half, and
stretches it to cover the original domain.

0 1x
0

1

f(
x)

Fig. 12.21 Period-eight cycle. Iterating around
the attractor of the Feigenbaum map at µ = 0.89.

The study of dynamical systems (e.g., differen-
tial equations and maps like eqn 12.38) often
focuses on the behavior after long times, where
the trajectory moves along the attractor. We
can study the onset and behavior of chaos in
our system by observing the evolution of the
attractor as we change µ. For small enough µ,
all points shrink to the origin; the origin is a
stable fixed-point which attracts the entire in-
terval x ∈ (0, 1). For larger µ, we first get a
stable fixed-point inside the interval, and then
period doubling.
(a) Iteration: Set µ = 0.2; iterate f for some
initial points x0 of your choosing, and convince
yourself that they all are attracted to zero. Plot
f and the diagonal y = x on the same plot. Are
there any fixed-points other than x = 0? Repeat
for µ = 0.3, µ = 0.7, and 0.8. What happens?
On the same graph, plot f , the diago-
nal y = x, and the segments {x0, x0},
{x0, f(x0)}, {f(x0), f(x0)}, {f(x0), f(f(x0))},
. . . (representing the convergence of the trajec-
tory to the attractor; see Fig. 12.21). See how
µ = 0.7 and 0.8 differ. Try other values of µ.
By iterating the map many times, find a point
a0 on the attractor. As above, then plot the

30Note that here δ is not the infinitesimal change in parameter.
31This exercise and the associated software were developed in collaboration with Christopher Myers.
32We also study this map in Exercises 4.3, 5.9, and 5.16; parts (a) and (b) below overlap somewhat with Exercise 4.3.
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successive iterates of a0 for µ = 0.7, 0.8, 0.88,
0.89, 0.9, and 1.0.
You can see at higher µ that the system no
longer settles into a stationary state at long
times. The fixed-point where f(x) = x ex-
ists for all µ > 1/4, but for larger µ it is
no longer stable. If x∗ is a fixed-point (so
f(x∗) = x∗) we can add a small perturbation
f(x∗+ ǫ) ≈ f(x∗)+ f ′(x∗)ǫ = x∗+ f ′(x∗)ǫ; the
fixed-point is stable (perturbations die away) if
|f ′(x∗)| < 1.33

In this particular case, once the fixed-point goes
unstable the motion after many iterations be-
comes periodic, repeating itself after two iter-
ations of the map—so f(f(x)) has two new
fixed-points. This is called period doubling.
Notice that by the chain rule d f(f(x))/dx =
f ′(x)f ′(f(x)), and indeed

d f [n]

dx
=

d f(f(. . . f(x) . . . ))

dx
(12.39)

= f ′(x)f ′(f(x)) . . . f ′(f(. . . f(x) . . . )),

so the stability of a period-N orbit is deter-
mined by the product of the derivatives of f at
each point along the orbit.
(b) Analytics: Find the fixed-point x∗(µ) of the
map 12.38, and show that it exists and is sta-
ble for 1/4 < µ < 3/4. If you are ambitious
or have a computer algebra program, show that
the period-two cycle is stable for 3/4 < µ <
(1 +

√
6)/4.

(c) Bifurcation diagram: Plot the attractor as
a function of µ, for 0 < µ < 1; compare
with Fig. 12.16. (Pick regularly-spaced δµ, run
ntransient steps, record ncycles steps, and plot.
After the routine is working, you should be able
to push ntransient and ncycles both larger than
100, and δµ < 0.01.) Also plot the attractor for
another one-humped map

fsin(x) = B sin(πx), (12.40)

for 0 < B < 1. Do the bifurcation diagrams
appear similar to one another?

δ

α

Fig. 12.22 Self-similarity in period-doubling

bifurcations. The period doublings occur at
geometrically-spaced values of the control param-
eter µ∞ − µn ∝ δ−n, and the attractor during the
period-2n cycle is similar to one-half of the attractor
during the 2n+1-cycle, except inverted and larger,
rescaling x by a factor of α and µ by a factor of δ.
The boxes shown in the diagram illustrate this self-
similarity; each box looks like the next, except ex-
panded by δ along the horizontal µ axis and flipped
and expanded by α along the vertical axis.

Notice the complex, structured, chaotic region
for large µ (which we study in Exercise 4.3).
How do we get from a stable fixed-point µ < 3/4
to chaos? The onset of chaos in this sys-
tem occurs through a cascade of period dou-
blings. There is the sequence of bifurcations
as µ increases—the period-two cycle starting at
µ1 = 3/4, followed by a period-four cycle start-
ing at µ2, period-eight at µ3—a whole period-
doubling cascade. The convergence appears ge-
ometrical, to a fixed-point µ∞:

µn ≈ µ∞ − Aδ−n, (12.41)

so

δ = lim
n→∞

(µn−1 − µn−2)/(µn − µn−1) (12.42)

and there is a similar geometrical self-similarity
along the x axis, with a (negative) scale factor α
relating each generation of the tree (Fig. 12.22).
In Exercise 4.3, we explained the boundaries in
the chaotic region as images of x = 1/2. These
special points are also convenient for studying
period-doubling. Since x = 1/2 is the maximum
in the curve, f ′(1/2) = 0. If it were a fixed-
point (as it is for µ = 1/2), it would not only

olution, perturbations die away if the Jacobian of the derivative at the fixed-point has all negative eigen-
erturbations die away if all eigenvalues of the Jacobian have magnitude less than one.
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be stable, but unusually so: a shift by ǫ away
from the fixed point converges after one step of
the map to a distance ǫf ′(1/2) + ǫ2/2f ′′(1/2) =
O(ǫ2). We say that such a fixed-point is su-
perstable. If we have a period-N orbit that
passes through x = 1/2, so that the Nth iter-
ate fN (1/2) ≡ f(. . . f(1/2) . . . ) =

1/2, then the or-
bit is also superstable, since (by eqn 12.39) the
derivative of the iterated map is the product
of the derivatives along the orbit, and hence is
also zero.
These superstable points happen roughly half-
way between the period-doubling bifurcations,
and are easier to locate, since we know that
x = 1/2 is on the orbit. Let us use them to in-
vestigate the geometrical convergence and self-
similarity of the period-doubling bifurcation di-
agram from part (d). For this part and part (h),
you will need a routine that finds the roots
G(y) = 0 for functions G of one variable y.
(d) The Feigenbaum numbers and universality:
Numerically, find the values of µs

n at which the
2n-cycle is superstable, for the first few val-
ues of n. (Hint: Define a function G(µ) =

f
[2n]
µ (1/2) − 1/2, and find the root as a function
of µ. In searching for µs

n+1, you will want to
search in a range (µs

n + ǫ, µs
n + (µs

n − µs
n−1)/A)

where A ∼ 3 works pretty well. Calculate
µ0 and µ1 by hand.) Calculate the ratios
(µs

n−1 − µs
n−2)/(µ

s
n − µs

n−1); do they appear
to converge to the Feigenbaum number δ =
4.6692016091029909 . . . ? Extrapolate the series
to µ∞ by using your last two reliable values
of µs

n and eqn 12.42. In the superstable orbit
with 2n points, the nearest point to x = 1/2 is

f [2n−1](1/2).
34 Calculate the ratios of the am-

plitudes f [2n−1](1/2) − 1/2 at successive values of
n; do they appear to converge to the univer-
sal value α = −2.50290787509589284 . . . ? Cal-
culate the same ratios for the map f2(x) =
B sin(πx); do α and δ appear to be universal
(independent of the mapping)?
The limits α and δ are independent of the map,
so long as it folds (one hump) with a quadratic
maximum. They are the same, also, for ex-
perimental systems with many degrees of free-
dom which undergo the period-doubling cas-
cade. This self-similarity and universality sug-
gests that we should look for a renormalization-
group explanation.

0 1x0

1

f (
f (

x)
) 

=
 f 

[2
] (x

)

Fig. 12.23 Renormalization-group transfor-

mation. The renormalization-group transforma-
tion takes g(g(x)) in the small window with upper
corner x∗ and inverts and stretches it to fill the
whole initial domain and range (0, 1) × (0, 1).

(e) Coarse-graining in time. Plot f(f(x)) vs. x
for µ = 0.8, together with the line y = x (or see
Fig. 12.23). Notice that the period-two cycle of
f becomes a pair of stable fixed-points for f [2].
(We are coarse-graining in time—removing ev-
ery other point in the time series, by study-
ing f(f(x)) rather than f .) Compare the plot
with that for f(x) vs. x for µ = 0.5. Notice
that the region zoomed in around x = 1/2 for
f [2] = f(f(x)) looks quite a bit like the en-
tire map f at the smaller value µ = 0.5. Plot
f [4](x) at µ = 0.875; notice again the small one-
humped map near x = 1/2.
The fact that the one-humped map reappears
in smaller form just after the period-doubling
bifurcation is the basic reason that succeeding
bifurcations so often follow one another. The
fact that many things are universal is due to
the fact that the little one-humped maps have
a shape which becomes independent of the orig-
inal map after several period-doublings.
Let us define this renormalization-group trans-
formation T , taking function space into itself.
Roughly speaking, T will take the small upside-
down hump in f(f(x)) (Fig. 12.23), invert it,
and stretch it to cover the interval from (0, 1).
Notice in your graphs for part (g) that the
line y = x crosses the plot f(f(x)) not only
at the two points on the period-two attrac-
tor, but also (naturally) at the old fixed-point

34This is true because, at the previous superstable orbit, 2n−1 iterates returned us to the original point x = 1/2.
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x∗[f ] for f(x). This unstable fixed-point plays
the role for f [2] that the origin played for f ;
our renormalization-group rescaling must map
(x∗[f ], f(x∗)) = (x∗, x∗) to the origin. The cor-
ner of the window that maps to (1, 0) is conve-
niently located at 1−x∗, since our map happens
to be symmetric35 about x = 1/2. For a general
one-humped map g(x) with fixed-point x∗[g]
the side of the window is thus of length 2(x∗[g]−
1/2). To invert and stretch, we must thus rescale
by a factor α[g] = −1/(2(x∗[g] − 1/2)). Our
renormalization-group transformation is thus a
mapping T [g] taking function space into itself,
where

T [g](x) = α[g] (g (g(x/α[g] + x∗[g]))− x∗[g]) .
(12.43)

(This is just rescaling x to squeeze into the win-
dow, applying g twice, shifting the corner of the
window to the origin, and then rescaling by α
to fill the original range (0, 1)× (0, 1).)
(f) Scaling and the renormalization group:
Write routines that calculate x∗[g] and α[g],
and define the renormalization-group transfor-
mation T [g]. Plot T [f ], T [T [f ]],. . . and com-
pare them. Are we approaching a fixed-point f∗

in function space?
This explains the self-similarity; in particular,
the value of α[g] as g iterates to f∗ becomes the
Feigenbaum number α = −2.5029 . . .
(g) Universality and the renormalization group:
Using the sine function of eqn 12.40, compare
T [T [fsin]] to T [T [f ]] at their onsets of chaos.
Are they approaching the same fixed-point?
By using this rapid convergence in function
space, one can prove both that there will (of-
ten) be an infinite geometrical series of period-
doubling bifurcations leading to chaos, and that
this series will share universal features (expo-
nents α and δ and features) that are indepen-
dent of the original dynamics.

(12.10) The renormalization group and the cen-
tral limit theorem: short. (Mathemat-
ics) ©4
If you are familiar with the renormalization
group and Fourier transforms, this problem can
be stated very quickly. If not, you are prob-
ably better off doing the long version (Exer-
cise 12.11).

Write a renormalization-group transformation
T taking the space of probability distributions
into itself, that takes two random variables,
adds them, and rescales the width by the square
root of two [28]. Show that the Gaussian of
width σ is a fixed-point. Find the eigenfunc-
tions fn and eigenvectors λn of the lineariza-
tion of T at the fixed-point. (Hint: It is easier
in Fourier space.) Describe physically what the
relevant and marginal eigenfunctions represent.
By subtracting the fixed-point distribution from
a binomial distribution, find the leading correc-
tion to scaling, as a function of x. Which eigen-
function does it represent? Why is the leading
irrelevant eigenvalue not dominant here?

(12.11) The renormalization group and the cen-
tral limit theorem: long. (Mathematics)©4

In this exercise, we will develop a renormal-
ization group in function space to derive the
central limit theorem [28]. We will be using
maps (like our renormalization transformation
T ) that take a function ρ of x into another func-
tion of x; we will write T [ρ] as the new func-
tion, and T [ρ](x) as the function evaluated at x.
We will also make use of the Fourier transform
(eqn A.6)

F [ρ](k) =
∫ ∞

−∞
e−ikxρ(x) dx; (12.44)

F maps functions of x into functions of k.
When convenient, we will also use the tilde no-
tation: ρ̃ = F [ρ], so for example (eqn A.7)

ρ(x) =
1

2π

∫ ∞

−∞
eikxρ̃(k) dk. (12.45)

The central limit theorem states that the sum
of many independent random variables tends to
a Gaussian, whatever the original distribution
might have looked like. That is, the Gaussian
distribution is the fixed-point function for large
sums. When summing many random numbers,
the details of the distributions of the individual
random variables becomes unimportant; sim-
ple behavior emerges. We will study this using
the renormalization group, giving an example
where we can explicitly implement the coarse-
graining transformation. Here our system space
is the space of probability distributions ρ(x).
There are four steps in the procedure.

35For asymmetric maps, we would need to locate this other corner f(f(xc)) = x∗ numerically. As it happens, breaking this
symmetry is irrelevant at the fixed-point.
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1. Coarse-grain. Remove some fraction (usually
half) of the degrees of freedom. Here, we will
add pairs of random variables; the probability
distribution for sums of N independent random
variables of distribution f is the same as the dis-
tribution for sums of N/2 random variables of
distribution f ∗f , where ∗ denotes convolution.
(a) Argue that if ρ(x) is the probability that a
random variable has value x, then the probabil-
ity distribution of the sum of two random vari-
ables drawn from this distribution is the convo-
lution

C[ρ](x) = (ρ ∗ ρ)(x) =
∫ ∞

−∞
ρ(x− y)ρ(y) dy.

(12.46)
Remember (eqn A.23) the Fourier transform
of the convolution is the product of the Fourier
transforms, so

F [C[ρ]](k) = (ρ̃(k))2 . (12.47)

2. Rescale. The behavior at larger lengths will
typically be similar to that of smaller lengths,
but some of the constants will shift (or renor-
malize). Here the mean and width of the dis-
tributions will increase as we coarse-grain. We
confine our main attention to distributions of
zero mean. Remember that the width (stan-
dard deviation) of the sum of two random vari-
ables drawn from ρ will be

√
2 times the width

of one variable drawn from ρ, and that the over-
all height will have to shrink by

√
2 to stay nor-

malized. We define a rescaling operator S√2

which reverses this spreading of the probability
distribution:

S√2[ρ](x) =
√
2ρ(
√
2x). (12.48)

(b) Show that if ρ is normalized (integrates to
one), so is S√2[ρ]. Show that the Fourier trans-
form is

F [S√2[ρ]](k) = ρ̃(k/
√
2). (12.49)

Our renormalization-group transformation is
the composition of these two operations,

T [ρ](x) = S√2[C[ρ]](x)

=
√
2

∫ ∞

−∞
ρ(
√
2x− y)ρ(y) dy.

(12.50)

Adding two Gaussian random variables (con-
volving their distributions) and rescaling the
width back should give the original Gaussian
distribution; the Gaussian should be a fixed-
point.
(c) Show that the Gaussian distribution

ρ∗(x) = (1/
√
2πσ) exp(−x2/2σ2) (12.51)

is indeed a fixed-point in function space under
the operation T . You can do this either by direct
integration, or by using the known properties of
the Gaussian under convolution.
(d) Use eqns 12.47 and 12.49 to show that

F [T [ρ]](k) = T̃ [ρ̃](k) = ρ̃(k/
√
2)2. (12.52)

Calculate the Fourier transform of the fixed-
point ρ̃∗(k) (or see Exercise A.4). Using
eqn 12.52, show that ρ̃∗(k) is a fixed-point in
Fourier space under our coarse-graining opera-
tor T̃ .36

These properties of T and ρ∗ should allow you
to do most of the rest of the exercise without
any messy integrals.
The central limit theorem tells us that sums
of random variables have probability distri-
butions that approach Gaussians. In our
renormalization-group framework, to prove this
we might try to show that our Gaussian fixed-
point is attracting: that all nearby probability
distributions flow under iterations of T to ρ∗.
3. Linearize about the fixed point. Consider a
function near the fixed point: ρ(x) = ρ∗(x) +
ǫf(x). In Fourier space, ρ̃(k) = ρ̃∗(k) + ǫf̃(k).
We want to find the eigenvalues λn and eigen-
functions fn of the derivative of the mapping
T . That is, they must satisfy

T [ρ∗ + ǫfn] = ρ∗ + λnǫfn +O(ǫ2),

T̃ [ρ̃∗ + ǫf̃n] = ρ̃∗ + λnǫf̃n +O(ǫ2).
(12.53)

(e) Show using eqns 12.52 and 12.53 that the
transforms of the eigenfunctions satisfy

f̃n(k) = (2/λn)ρ̃∗(k/
√
2)f̃n(k/

√
2). (12.54)

4. Find the eigenvalues and calculate the uni-
versal critical exponents.
(f) Show that

f̃n(k) = (ik)nρ̃∗(k) (12.55)

36To be explicit, the operator T̃ = F ◦ T ◦ F−1 is a renormalization-group transformation that maps Fourier space into itself.
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is the Fourier transform of an eigenfunction
(i.e., that it satisfies eqn 12.54.) What is the
eigenvalue λn?
Our fixed-point actually does not attract all dis-
tributions near it. The directions with eigen-
values greater than one are called relevant;
they are dangerous, corresponding to devia-
tions from our fixed-point that grow under
coarse-graining. The directions with eigenval-
ues equal to one are calledmarginal; they do not
get smaller (to linear order) and are thus also
potentially dangerous. When you find relevant
and marginal operators, you always need to un-
derstand each of them on physical grounds.
(g) The eigenfunction f0(x) with the biggest
eigenvalue corresponds to an unphysical pertur-
bation; why? (Hint: Probability distributions
must be normalized to one.) The next two
eigenfunctions f1 and f2 have important physi-
cal interpretations. Show that ρ∗+ǫf1 to lowest
order is equivalent to a shift in the mean of ρ,
and ρ∗+ ǫf2 is a shift in the standard deviation
σ of ρ∗.
In this case, the relevant perturbations do not
take us to qualitatively new phases—just to
other Gaussians with different means and vari-
ances. All other eigenfunctions should have
eigenvalues λn less than one. This means that a
perturbation in that direction will shrink under
the renormalization-group transformation:

TN(ρ∗ + ǫfn)− ρ∗ ∼ λN
n ǫfn. (12.56)

Corrections to scaling and coin flips. Does any-
thing really new come from all this analysis?
One nice thing that comes out is the leading
corrections to scaling. The fixed-point of the
renormalization group explains the Gaussian
shape of the distribution of N coin flips in the
limit N → ∞, but the linearization about the
fixed-point gives a systematic understanding of
the corrections to the Gaussian distribution for
large but not infinite N .
Usually, the largest eigenvalues are the ones
which dominate. In our problem, consider
adding a small perturbation to the fixed-point
f∗ along the two leading irrelevant directions
f3 and f4:

ρ(x) = ρ∗(x) + ǫ3f3(x) + ǫ4f4(x). (12.57)

These two eigenfunctions can be inverse-
transformed from their k-space form

(eqn 12.55):

f3(x) ∝ ρ∗(x)(3x/σ − x3/σ3),

f4(x) ∝ ρ∗(x)(3− 6x2/σ2 + x4/σ4).
(12.58)

What happens to these perturbations under
multiple applications of our renormalization-
group transformation T ? After ℓ applications
(corresponding to adding together 2ℓ of our ran-
dom variables), the new distribution should be
given by

T ℓ(ρ)(x) ∼ ρ∗(x) + λℓ
3ǫ3f3(x) + λℓ

4ǫ4f4(x).
(12.59)

Since 1 > λ3 > λ4 . . . , the leading correction
should be dominated by the perturbation with
the largest eigenvalue.
(h) Plot the difference between the binomial dis-
tribution giving the probability of m heads in N
coin flips, and a Gaussian of the same mean
and width, for N = 10 and N = 20. (The
Gaussian has mean of N/2 and standard devi-
ation

√
N/2, as you can extrapolate from the

case N = 1.) Does it approach one of the eigen-
functions f3 or f4 (eqns 12.58)?
(i) Why did a perturbation along f3(x) not dom-
inate the asymptotics? What symmetry forced
ǫ3 = 0? Should flips of a biased coin break this
symmetry?
Using the renormalization group to demon-
strate the central limit theorem might not be
the most efficient route to the theorem, but
it provides quantitative insights into how and
why the probability distributions approach the
asymptotic Gaussian form.

(12.12) Percolation and universality.37 (Complex-
ity) ©4
Cluster size distribution: power laws at pc. A
system at its percolation threshold pc is self-
similar. When looked at on a longer length
scale (say, with a ruler with notches spaced
1+ ǫ farther apart, for infinitesimal ǫ), the sta-
tistical behavior of the large percolation clus-
ters should be unchanged, if we simultaneously
rescale various measured properties according
to certain rules. Let x be the length and S

37This exercise and the associated software were developed in collaboration with Christopher Myers.
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be the size (number of nodes) in a percolation
cluster, and let n(S) be the probability that
a given cluster will be of size S at pc.

38 The
cluster measured with the new ruler will have a
length x′ = x/ (1− ǫ), a size S′ = S/ (1 + cǫ),
and will occur with probability n′ = (1 + aǫ)n.
(a) In precise analogy to our analysis of the
avalanche size distribution (eqns 12.3–12.6),
show that the probability is a power law, n(S) ∝
S−τ . What is τ , in terms of a and c?
In two dimensions, there are exact results
known for many properties of percolation. In
particular, it is known that39 τ = 187/91. You
can test this numerically, either with the code
you developed for Exercise 2.13, or by using the
software at our web site [129].
(b) Calculate the cluster size distribution n(S),
both for bond percolation on the square lattice
and for site percolation on the triangular lat-
tice, for a large system size (perhaps L × L
with L = 400) at p = pc.

40 At some moderate
size S you will begin occasionally to not have
any avalanches; plot log(n(S)) versus log(S)
for both bond and site percolation, together with
the power law n(S) ∝ S−187/91 predicted by the
exact result. To make better use of the data, one
should bin the avalanches into larger groups, es-
pecially for larger sizes where the data is sparse.
It is a bit tricky to do this nicely, and you can
get software to do this at our web site [129]. Do
the plots again, now with all the data included,
using bins that start at size ranges 1 ≤ S < 2
and grow by a factor of 1.2 for each bin. You
should see clear evidence that the distribution
of clusters does look like a power law (a straight
line on your log–log plot), and fairly convincing
evidence that the power law is converging to the
exact result at large S and large system sizes.

The size of the infinite cluster: power laws near
pc. Much of the physics of percolation above pc
revolves around the connected piece left after
the small clusters fall out, often called the per-
colation cluster. For p > pc this largest cluster
occupies a fraction of the whole system, often
called P (p).41 The fraction of nodes in this

largest cluster for p > pc is closely analogous
to the T < Tc magnetization M(T ) in mag-
nets (Fig. 12.6(b)) and the density difference
ρl(T )− ρg(T ) near the liquid–gas critical point
(Fig. 12.6(a)). In particular, the value P (p)
goes to zero continuously as p→ pc.
Systems that are not at pc are not self-similar.
However, there is a scaling relation between sys-
tems at differing values of p − pc: a system
coarsened by a factor 1 + ǫ will be similar to
one farther from pc by a factor 1 + ǫ/ν, except
that the percolation cluster fraction P must be
rescaled upward by 1+βǫ/ν.42 This last rescal-
ing reflects the fact that the percolation cluster
becomes more dense as you coarse-grain, filling
in or blurring away the smaller holes. You may
check, just as for the magnetization (eqn 12.7),
that

P (p) ∼ (pc − p)β. (12.60)

In two dimensions, β = 5/36 and ν = 4/3.
(c) Calculate the fraction of nodes P (p) in the
largest cluster, for both bond and site percola-
tion, at a series of points p = pc + 2−n for as
large a percolation lattice as is convenient, and
a good range of n. (Once you get your method
debugged, n = 10 on an L × L lattice with
L = 200 should be numerically feasible.) Do
a log–log plot of P (p) versus p − pc, and com-
pare along with the theory prediction, eqn 12.60
with β = 5/36.
You should find that the numerics in part (c)
are not compelling, even for rather large sys-
tem sizes. The two curves look a bit like power
laws, but the slopes βeff on the log–log plot do
not agree with one another or with the theory.
Worse, as you get close to pc the curves, al-
though noisy, definitely are not going to zero.
This is natural; there will always be a largest
cluster, and it is only as the system size L→∞
that the largest cluster can vanish as a fraction
of the system size.
Finite-size scaling (advanced). We can extract
better values for β from small simulations by

38Hence the probability that a given node is in a cluster of size S is proportional to Sn(S).
39A non-obvious result!
40Conveniently, the critical probability pc = 1/2 for both these systems, see Exercise 2.13, part(c). This enormously simplifies
the scaling analysis, since we do not need to estimate pc as well as the critical exponents.
41For p < pc, there will still be a largest cluster, but it will not grow much bigger as the system size grows and the fraction
P (p) → 0 for p < pc as the system length L → ∞.
42We again assure the reader that these particular combinations of Greek letters are just chosen to give the conventional names
for the critical exponents.
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explicitly including the length L into our analy-
sis. Let P (p,L) be the mean fraction of nodes43

in the largest cluster for a system of size L.
(d) On a single graph, plot P (p,L) versus p for
bond percolation L = 5, 10, 20, 50, and 100,
focusing on the region around p = pc where
they differ from one another. (At L = 10 you
will want p to range from 0.25 to 0.75; for
L = 50 the range should be from 0.45 to 0.55
or so.) Five or ten points will be fine. You
will discover that the sample-to-sample varia-
tions are large (another finite-size effect), so
average each curve over perhaps ten or twenty
realizations.
Each curve P (p,L) is rounded near pc, as the
characteristic cluster lengths reach the system
box length L. Thus this rounding is itself a
symptom of the universal long-distance behav-
ior, and we can study the dependence of the
rounding on L to extract better values of the
critical exponent β. We will do this using a scal-
ing collapse, rescaling the horizontal and verti-
cal axes so as to make all the curves fall onto a
single scaling function.
First, we must derive the scaling function for
P (p, L). We know that

L′ = L/(1 + ǫ),

(pc − p)′ = (1 + ǫ/ν)(pc − p),
(12.61)

since the system box length L rescales like any
other length. It is convenient to change vari-
ables from p to X = (pc−p)L1/ν ; let P (p,L) =
P̄ (L, (pc − p)L1/ν).
(e) Show that X is unchanged under coarse-
graining (eqn 12.61). (You can either show
X ′ = X up to terms of order ǫ2, or you can
show dX/dǫ = 0.)
The combination X = (pc − p)L1/ν is an-
other scaling variable. The combination ξ =
|p − pc|−ν is the way in which lengths diverge
at the critical point, and is called the corre-
lation length. Two systems of different lengths
and different values of p should be similar if the
lengths are the same when measured in units
of ξ. L in units of ξ is L/ξ = Xν , so differ-
ent systems with the same value of the scal-
ing variable X are statistically similar. We can
turn this verbal assertion into a mathematical

scaling form by studying how P̄ (L,X) coarse-
grains.
(f) Using eqns 12.61 and the fact that P rescales
upward by (1 + βǫ/ν) under coarse-graining,
write the similarity relationship for P̄ corre-
sponding to eqn 12.11 for D̄(S,R). Follow-
ing our derivation of the scaling form for the
avalanche size distribution (through eqn 12.14),
show that P̄ (L,X) = L−β/νP(X) for some
function P(X), and hence

P (p,L) ∝ L−β/νP((p− pc)L1/ν). (12.62)

Presuming that P(X) goes to a finite value as
X → 0, derive the power law giving the per-
colation cluster size L2P (pc, L) as a function
of L. Derive the power-law variation of P(X)
as X → ∞ using the fact that P (p,∞) ∝
(p− pc)β.
Now, we can use eqn 12.62 to deduce how to
rescale our data. We can find the finite-sized
scaling function P by plotting Lβ/νP (p,L) ver-
sus X = (p − pc)L1/ν , again with ν = 4/3 and
β = 5/36.
(g) Plot Lβ/νP (p,L) versus X for X ∈
[−0.8,+0.8], plotting perhaps five points for
each curve, for both site percolation and bond
percolation. Use system sizes L = 5, 10, 20,
and 50. Average over many clusters for the
smaller sizes (perhaps 400 for L = 5), and over
at least ten even for the largest.
Your curves should collapse onto two scaling
curves, one for bond percolation and one for
site percolation.44 Notice here that the finite-
sized scaling curves collapse well for small L,
while we would need to go to much larger L to
see good power laws in P (p) directly (part (c)).
Notice also that both site percolation and bond
percolation collapse for the same value of β,
even though the rough power laws from part (c)
seemed to differ. In an experiment (or a theory
for which exact results were not available), one
can use these scaling collapses to estimate pc,
β, and ν.

43You can take a microcanonical-style ensemble over all systems with exactly L2p sites or 2L2p bonds, but it is simpler just to
do an ensemble average over random number seeds.
44These two curves should also have collapsed onto one another, given a suitable rescaling of the horizontal and vertical axes,
had we done the triangular lattice in a square box instead of a rectangular box (which we got from shearing an L× L lattice).
The finite-size scaling function will in general depend on the boundary condition, and in particular on the shape of the box.
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(12.13) Hysteresis and avalanches: scaling.
(Complexity) ©3
For this exercise, either download Matt Kuntz’s
hysteresis simulation code from the book web
site [129], or make use of the software you de-
veloped in Exercise 8.13 or 8.14.
Run the simulation in two dimensions on a
1000 × 1000 lattice with disorder R = 0.9, or
a three-dimensional simulation on a 1003 lat-
tice at R = 2.16.45 The simulation is a sim-
plified model of magnetic hysteresis, described
in [128]; see also [127]. The spins si begin all
pointing down, and flip upward as the external
field H grows from minus infinity, depending on
the spins of their neighbors and a local random
field hi. The flipped spins are colored as they
flip, with spins in the same avalanche sharing
the same color. An avalanche is a collection of
spins which flip together, all triggered from the
same original spin. The disorder is the ratio
R of the root-mean-square width

√
〈h2

i 〉 to the
ferromagnetic coupling J between spins:

R =
√
〈h2〉/J. (12.63)

Examine the M(H) curve for our model and
the dM/dH curve. The individual avalanches
should be visible on the first graph as jumps,
and on the second graph as spikes. This kind
of time series (a set of spikes or pulses with a
broad range of sizes) we hear as crackling noise.
You can go to our site [68] to hear the noise
resulting from our model, as well as crackling
noise we have assembled from crumpling paper,
from fires and Rice KrispiesTM, and from the
Earth (earthquakes in 1995, sped up to audio
frequencies).
Examine the avalanche size distribution. The
(unlabeled) vertical axis on the log–log plot
gives the number of avalanches D(S,R); the
horizontal axis gives the size S (with S = 1 on
the left-hand side). Equivalently,D(S,R) is the
probability distribution that a given avalanche
during the simulation will have size S. The
graph is created as a histogram, and the curve
changes color after the first bin with zero en-
tries (after which the data becomes much less
useful, and should be ignored).
If available, examine the spin–spin correlation
function C(x,R). It shows a log–log plot of the

probability (vertical axis) that an avalanche ini-
tiated at a point x0 will extend to include a spin
x1 a distance x =

√
(x1 − x0)2 away.

Two dimensions is fun to watch, but the scal-
ing behavior is not yet understood. In three
dimensions we have good evidence for scaling
and criticality at a phase transition in the dy-
namical evolution. There is a phase transition
in the dynamics at Rc ∼ 2.16 on the three-
dimensional cubic lattice. Well below Rc one
large avalanche flips most of the spins. Well
above Rc all avalanches are fairly small; at very
high disorder each spin flips individually. The
critical disorder is the point, as L→∞, where
one first finds spanning avalanches, which ex-
tend from one side of the simulation to the
other.
Simulate a 3D system at R = Rc = 2.16 with
L = 100 (one million spins, or larger, if you
have a fast machine). It will be fastest if you use
the sorted list algorithm (Exercise 8.14). The
display will show an L× L cross-section of the
3D avalanches. Notice that there are many tiny
avalanches, and a few large ones. Below Rc

you will find one large colored region forming
the background for the others; this is the span-
ning, or infinite avalanche. Look at the M(H)
curve (the bottom half of the hysteresis loop).
It has many small vertical jumps (avalanches),
and one large one (corresponding to the span-
ning avalanche).
(a) What fraction of the system is flipped by
the one largest avalanche, in your simulation?
Compare this with the hysteresis curve at R =
2.4 > Rc. Does it have a similar big jump, or
is it continuous?
Below Rc we get a big jump; above Rc all
avalanches are small compared to the system
size. If the system size were large enough, we
believe the fraction of spins flipped by the span-
ning avalanche at Rc would go to zero. The
largest avalanche would nonetheless span the
system—just like the percolation cluster at pc
spans the system but occupies zero volume in
the limit of large systems.
The other avalanches form a nice power-law size
distribution; let us measure it carefully. Do a

45If you are using the brute-force algorithm, you are likely to need to run all of the three-dimensional simulations at a smaller
system size, perhaps 503. If you have a fast computer, you may wish to run at a larger size, but make sure it is not tedious to
watch.
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set of 10 runs (# Runs 10) at L = 100 and
R = Rc = 2.16.46

Watch the avalanches. Notice that sometimes
the second-largest avalanche in the view (the
largest being the ‘background color’) is some-
times pretty small; this is often because the
cross-section we view missed it. Look at the
avalanche size distribution. (You can watch it
as it averages over simulations.) Print it out
when the simulations finish. Notice that at Rc

you find a pretty good power-law distribution
(a straight line on the log–log plot). We denote
this critical exponent τ̄ = τ + σβδ:

D(S,Rc) ∼ S−τ̄ = S−(τ+σβδ). (12.64)

(b) From your plot, measure this exponent com-
bination from your simulation. It should be
close to two. Is your estimate larger or smaller
than two?
This power-law distribution is to magnets what
the Gutenberg–Richter law (Fig. 12.3(b)) is to
earthquakes. The power law stems naturally
from the self-similarity.
We want to explore how the avalanche size dis-
tribution changes as we move above Rc. We
will do a series of three or four runs at different
values of R, and then graph the avalanche size
distributions after various transformations.
Do a run at R = 6 and R = 4 with L = 100,
and make sure your data files are properly out-
put. Do runs at R = 3, R = 2.5, and R = 2.16
at L = 200.
(c) Copy and edit your avalanche size distribu-
tion files, removing the data after the first bin
with zero avalanches in it. Start up a graphics
program, and plot the curves on a log–log plot;
they should look like power laws for small S,

and cut off exponentially at larger S. Enclose
a copy of your plot.
We expect the avalanche size distribution to
have the scaling form

D(S,R) = S−(τ+σβδ)D(S(R−Rc)
1/σ) (12.65)

sufficiently close to Rc. This reflects the sim-
ilarity of the system to itself at a different
set of parameters; a system at 2(R − Rc) has
the same distribution as a system at R − Rc

except for an overall change A in probability
and B in the size scale of the avalanches, so
D(S,R −Rc) ≈ AD(BS, 2(R −Rc)).
(d) What are A and B in this equation for the
scaling form given by eqn 12.65?
At R = 4 and 6 we should expect substantial
corrections! Let us see how well the collapse
works anyhow.
(e) Multiply the vertical axis of each curve by
Sτ+σβδ. This then should give four curves
D(S(R −Rc)

1/σ) which are (on a log–log plot)
roughly the same shape, just shifted sideways
horizontally (rescaled in S by the typical largest
avalanche size, proportional to 1/(R−Rc)

1/σ).
Measure the peak of each curve. Make a ta-
ble with columns R, Speak, and R − Rc (with
Rc ∼ 2.16). Do a log–log plot of R−Rc versus
Speak, and estimate σ in the expected power law
Speak ∼ (R −Rc)

−1/σ.
(f) Do a scaling collapse: plot Sτ+σβδD(S,R)
versus (R−Rc)

1/σ S for the avalanche size dis-
tributions with R > Rc. How well do they col-
lapse onto a single curve?
The collapses become compelling only near Rc,
where you need very large systems to get good
curves.

46If your machine is slow, do fewer. If your machine is fast, use a larger system. Make sure you do not run out of RAM,
though (lots of noise from your hard disk swapping); if you do, shift to the bits algorithm if its available. Bits will use much
less memory for large simulations, and will start up faster than sorted list, but it will take a long time searching for the last
few spins. Both are much faster than the brute-force method.



 Copyright Oxford University Press 2006  v1.0                       --  



 Copyright Oxford University Press 2006  v1.0                       --  

Appendix: Fourier methods A
A.1 Fourier conventions 299

A.2 Derivatives, convolutions,

and correlations 302

A.3 Fourier methods and function

space 303

A.4 Fourier and translational

symmetry 305

Why are Fourier methods important? Why is it so useful for us to
transform functions of time and space y(x, t) into functions of frequency
and wavevector ỹ(k, ω)?

• Humans hear frequencies. The human ear analyzes pressure varia-
tions in the air into different frequencies. Large frequencies ω are
perceived as high pitches; small frequencies are low pitches. The ear,
very roughly, does a Fourier transform of the pressure P (t) and trans-
mits |P̃ (ω)|2 to the brain.1 1Actually, this is how the ear seems to

work, but not how it does work. First,
the signal to the brain is time depen-
dent, with the tonal information chang-
ing as a word or tune progresses; it is
more like a wavelet transform, giving
the frequency content in various time
slices. Second, the phase information
in P̃ is not completely lost; power and
pitch are the primary signal, but the
relative phases of different pitches are
also perceptible. Third, experiments
have shown that the human ear is very
nonlinear in its mechanical response.

• Diffraction experiments measure Fourier components. Many experi-
mental methods diffract waves (light, X-rays, electrons, or neutrons)
off of materials (Section 10.2). These experiments typically probe the
absolute square of the Fourier amplitude of whatever is scattering the
incoming beam.

• Common mathematical operations become simpler in Fourier space.
Derivatives, correlation functions, and convolutions can be written as
simple products when the functions are Fourier transformed. This has
been important to us when calculating correlation functions (eqn 10.4),
summing random variables (Exercises 1.2 and 12.11), and calculating
susceptibilities (eqns 10.30, 10.39, and 10.53, and Exercise 10.9). In
each case, we turn a calculus calculation into algebra.

• Linear differential equations in translationally-invariant systems have
solutions in Fourier space.2 We have used Fourier methods for solving 2Translation invariance in Hamiltonian

systems implies momentum conserva-
tion. This is why in quantum mechan-
ics Fourier transforms convert position-
space wavefunctions into momentum-
space wavefunctions—even for systems
which are not translation invariant.

the diffusion equation (Section 2.4.1), and more broadly to solve for
correlation functions and susceptibilities (Chapter 10).

In Section A.1 we introduce the conventions typically used in physics
for the Fourier series, Fourier transform, and fast Fourier transform. In
Section A.2 we derive their integral and differential properties. In Sec-
tion A.3, we interpret the Fourier transform as an orthonormal change-
of-basis in function space. And finally, in Section A.4 we explain why
Fourier methods are so useful for solving differential equations by ex-
ploring their connection to translational symmetry.

A.1 Fourier conventions

Here we define the Fourier series, the Fourier transform, and the fast
Fourier transform, as they are commonly defined in physics and as they
are used in this text.
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The Fourier series for functions of time, periodic with period T , is

ỹm =
1

T

∫ T

0

y(t) exp(iωmt) dt, (A.1)

where ωm = 2πm/T , with integer m. The Fourier series can be re-
summed to retrieve the original function using the inverse Fourier se-
ries:

y(t) =

∞∑

m=−∞
ỹm exp(−iωmt). (A.2)

Fourier series of functions in space are defined with the opposite sign
convention3 in the complex exponentials. Thus in a three-dimensional3This inconsistent convention allows

waves of positive frequency to propa-
gate forward rather than backward. A
single component of the inverse trans-
form, eik·xe−iωt = ei(k·x−ωt) propa-
gates in the +k direction with speed
ω/|k|; had we used a +i for Fourier
transforms in both space and time
ei(k·x+ωt) would move backward (along
−k) for ω > 0.

box of volume V = L×L×L with periodic boundary conditions, these
formulæ become

ỹk =
1

V

∫
y(x) exp(−ik · x) dV, (A.3)

and
y(x) =

∑

k

ỹk exp(ik · x), (A.4)

where the k run over a lattice of wavevectors

k(m,n,o) = [2πm/L, 2πn/L, 2πo/L] (A.5)

in the box.
The Fourier transform is defined for functions on the entire infinite

line:

ỹ(ω) =

∫ ∞

−∞
y(t) exp(iωt) dt, (A.6)

where now ω takes on all values.4 We regain the original function by

4Why do we divide by T or L for the
series and not for the transform? Imag-
ine a system in an extremely large box.
Fourier series are used for functions
which extend over the entire box; hence
we divide by the box size to keep them
finite as L → ∞. Fourier transforms
are usually used for functions which
vanish quickly, so they remain finite as
the box size gets large.

ωωω ω ω ω ω ωωω −4 −3 −2 −1 0 1 2 3 4−5

y
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ω
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Fig. A.1 Approximating the in-

tegral as a sum. By approximat-
ing the integral

∫
ỹ(ω) exp(iωt) dω as a

sum over the equally-spaced points ωm,∑
m ỹ(ω) exp(iωmt)∆ω, we can con-

nect the formula for the Fourier trans-
form to the formula for the Fourier
series, explaining the factor 1/2π in
eqn A.7.

doing the inverse Fourier transform:

y(t) =
1

2π

∫ ∞

−∞
ỹ(ω) exp(−iωt) dω. (A.7)

This is related to the inverse Fourier series by a continuum limit (Fig.
A.1):

1

2π

∫
dω ≈ 1

2π

∑

ω

∆ω =
1

2π

∑

ω

2π

T
=

1

T

∑

ω

, (A.8)

where the 1/T here compensates for the factor of T in the definitions
of the forward Fourier series. In three dimensions the Fourier transform
formula A.6 is largely unchanged,

ỹ(k) =

∫
y(x) exp(−ik · x) dV, (A.9)

while the inverse Fourier transform gets the cube of the prefactor:

y(x) =
1

(2π)3

∫ ∞

−∞
ỹ(k) exp(ik · x) dk. (A.10)
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The fast Fourier transform (FFT) starts with N equally-spaced data
points yℓ, and returns a new set of complex numbers ỹFFTm :

ỹFFTm =

N−1∑

ℓ=0

yℓ exp(i2πmℓ/N), (A.11)

with m = 0, . . . , N − 1. The inverse of the FFT is given by

yℓ =
1

N

N−1∑

m=0

ỹFFTm exp(−i2πmℓ/N). (A.12)

The FFT essentially samples the function y(t) at equally-spaced points
tℓ = ℓT/N for ℓ = 0, . . . , N − 1:

ỹFFTm =

N−1∑

ℓ=0

yℓ exp(iωmtℓ). (A.13)

It is clear from eqn A.11 that ỹFFTm+N = ỹFFTm , so the fast Fourier trans-
form is periodic with period ωN = 2πN/T . The inverse transform can
also be written

yℓ =
1

N

N/2∑

m=−N/2+1

ỹFFTm exp(−iωmtℓ), (A.14)

where we have centered5 the sum ωm at ω = 0 by using the periodicity.6

5If N is odd, to center the FFT the sum
should be taken over −(N−1)/2 ≤ m ≤
(N − 1)/2.

6Notice that the FFT returns the neg-
ative ω Fourier coefficients as the last
half of the array, m = N/2 + 1, N/2 +
2, . . . . (This works because −N/2 + j
and N/2+j differ by N , the periodicity
of the FFT.) One must be careful about
this when using Fourier transforms
to solve calculus problems numeri-
cally. For example, to evolve a density
ρ(x) under the diffusion equation (Sec-
tion 2.4.1) one must multiply the first
half of the array ρ̃m by exp(−Dk2mt) =
exp(−D[m(2π/L)]2t) but multiply the
second half by exp(−D(K − km)2t) =
exp(−D[(N −m)(2π/L)]2t).

Often the values y(t) (or the data points yℓ) are real. In this case,
eqns A.1 and A.6 show that the negative Fourier amplitudes are the
complex conjugates of the positive ones: ỹ(ω) = ỹ∗(−ω). Hence for real
functions the real part of the Fourier amplitude will be even and the
imaginary part will be odd.7

7This allows one to write slightly faster
FFTs specialized for real functions.
One pays for the higher speed by an
extra programming step unpacking the
resulting Fourier spectrum.

The reader may wonder why there are so many versions of roughly
the same Fourier operation.

(1) The function y(t) can be defined on a finite interval with periodic
boundary conditions on (0, T ) (series, FFT) or defined in all space
(transform). In the periodic case, the Fourier coefficients are defined
only at discrete wavevectors ωm = 2πm/T consistent with the pe-
riodicity of the function; in the infinite system the coefficients are
defined at all ω.

(2) The function y(t) can be defined at a discrete set of N points tn =
n∆t = nT/N (FFT), or at all points t in the range (series, trans-
form). If the function is defined only at discrete points, the Fourier
coefficients are periodic with period ωN = 2π/∆t = 2πN/T .8

8There is one more logical possibility: a
discrete set of points that fill all space;
the atomic displacements in an infi-
nite crystal is the classic example. In
Fourier space, such a system has con-
tinuous k, but periodic boundary con-
ditions at ±K/2 = ±π/a (the edges of
the Brillouin zone).

There are several arbitrary choices made in defining these Fourier
methods, that vary from one field to another.

• Some use the notation j =
√
−1 instead of i.
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• More substantively, some use the complex conjugate of our formulæ,
substituting −i for i in the time or space transform formulæ. This
alternative convention makes no change for any real quantity.99The real world is invariant under the

transformation i ↔ −i, but complex
quantities will get conjugated. Swap-
ping i for −i in the time series formulæ,
for example, would make χ′′(ω) =
−Im[χ(ω)] in eqn 10.31 and would
make χ analytic in the lower half-plane
in Fig. 10.12.

• Some use a 1/
√
T and 1/

√
2π factor symmetrically on the Fourier and

inverse Fourier operations.

• Some use frequency and wavelength (f = 2πω and λ = 2π/k) instead
of angular frequency ω and wavevector k. This makes the transform
and inverse transform more symmetric, and avoids some of the pref-
actors.

Our Fourier conventions are those most commonly used in physics.

A.2 Derivatives, convolutions, and

correlations

The important differential and integral operations become multiplica-
tions in Fourier space. A calculus problem in t or x thus becomes an
algebra exercise in ω or k.
Integrals and derivatives. Because (d/dt) e−iωt = −iωeiωt, the

Fourier coefficient of the derivative of a function y(t) is −iω times the
Fourier coefficient of the function:

dy/dt =
∑

ỹm (−iωm exp(−iωmt)) =
∑

(−iωmỹm) exp(−iωmt),

(A.15)
so

d̃y

dt

∣∣∣∣∣
ω

= −iωỹω. (A.16)

This holds also for the Fourier transform and the fast Fourier transform.
Since the derivative of the integral gives back the original function, the
Fourier series for the indefinite integral of a function y is thus given by
dividing by −iω:

˜∫
y(t) dt =

ỹω
−iω

= i
ỹω
ω

(A.17)

except at ω = 0.10
10Either the mean ỹ(ω = 0) is zero or it
is non-zero. If the mean of the function
is zero, then ỹ(ω)/ω = 0/0 is undefined
at ω = 0. This makes sense; the indef-
inite integral has an arbitrary integra-
tion constant, which gives its Fourier
series an arbitrary value at ω = 0. If
the mean of the function ȳ is not zero,
then the integral of the function will
have a term ȳ(t − t0). Hence the inte-
gral is not periodic and has no Fourier
series. (On the infinite interval the in-
tegral has no Fourier transform because
it is not in L2.)

These relations are invaluable in the solution of many linear partial
differential equations. For example, we saw in Section 2.4.1 that the
diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2
(A.18)

becomes manageable when we Fourier transform x to k:

∂ρ̃k
∂t

= −Dk2ρ̃, (A.19)

ρ̃k(t) = ρk(0) exp(−Dk2t). (A.20)

Correlation functions and convolutions. The absolute square of
the Fourier transform11 |ỹ(ω)|2 is given by the Fourier transform of the

11The absolute square of the Fourier
transform of a time signal is called the
power spectrum.
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correlation function C(τ) = 〈y(t)y(t+ τ)〉:

|ỹ(ω)|2 = ỹ(ω)∗ỹ(ω) =

∫
dt′ e−iωt′y(t′)

∫
dt eiωty(t)

=

∫
dt dt′ eiω(t−t′)y(t′)y(t) =

∫
dτ eiωτ

∫
dt′ y(t′)y(t′ + τ)

=

∫
dτ eiωτT 〈y(t)y(t+ τ)〉 = T

∫
dτ eiωτC(τ)

= T C̃(ω), (A.21)

where T is the total time t during which the Fourier spectrum is being
measured. Thus diffraction experiments, by measuring the square of the
k-space Fourier transform, give us the spatial correlation function for
the system (Section 10.2).
The convolution12 h(z) of two functions f(x) and g(y) is defined as 12Convolutions show up in sums and

Green’s functions. The sum z = x + y

of two random vector quantities with
probability distributions f(x) and g(y)
has a probability distribution given by
the convolution of f and g (Exer-
cise 1.2). An initial condition f(x, t0)
propagated in time to t0 + τ is given
by convolving with a Green’s function
g(y, τ) (Section 2.4.2).

h(z) =

∫
f(x)g(z − x) dx. (A.22)

The Fourier transform of the convolution is the product of the Fourier
transforms. In three dimensions,13

13The convolution and correlation the-
orems are closely related; we do convo-
lutions in time and correlations in space
to illustrate both the one-dimensional
and vector versions of the calculation.

f̃(k)g̃(k) =

∫
e−ik·xf(x) dx

∫
e−ik·yg(y) dy

=

∫
e−ik·(x+y)f(x)g(y) dxdy =

∫
e−ik·z dz

∫
f(x)g(z− x) dx

=

∫
e−ik·zh(z) dz = h̃(k). (A.23)

A.3 Fourier methods and function space

There is a nice analogy between the space of vectors r in three dimensions
and the space of functions y(t) periodic with period T , which provides
a simple way of thinking about Fourier series. It is natural to define our
function space to including all complex functions y(t). (After all, we
want the complex Fourier plane-waves e−iωmt to be in our space.) Let
us list the following common features of these two spaces.

• Vector space. A vector r = (r1, r2, r3) in R3 can be thought of as a
real-valued function on the set {1, 2, 3}. Conversely, the function y(t)
can be thought of as a vector with one complex component for each
t ∈ [0, T ).
Mathematically, this is an evil analogy. Most functions which have
independent random values for each point t are undefinable, unin-
tegrable, and generally pathological. The space becomes well de-
fined if we confine ourselves to functions y(t) whose absolute squares
|y(t)|2 = y(t)y∗(t) can be integrated. This vector space of functions
is called L2.14

14More specifically, the Fourier trans-

form is usually defined on L2[R], and
the Fourier series is defined on L2[0, T ].
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• Inner product. The analogy to the dot product of two three-dimen-
sional vectors r · s = r1s1 + r2s2 + r3s3 is an inner product between
two functions y and z:

y · z = 1

T

∫ T

0

y(t)z∗(t) dt. (A.24)

You can think of this inner product as adding up all the products ytz
∗
t

over all points t, except that we weight each point by dt/T .

• Norm. The distance between two three-dimensional vectors r and s
is given by the norm of the difference |r − s|. The norm of a vector
is the square root of the dot product of the vector with itself, so
|r− s| =

√
(r− s) · (r− s). To make this inner product norm work in

function space, we need to know that the inner product of a function
with itself is never negative. This is why, in our definition A.24, we
took the complex conjugate of z(t). This norm on function space is
called the L2 norm:

||y||2 =

√
1

T

∫ T

0

|y(t)|2 dt. (A.25)

Thus our restriction to square-integrable functions makes the norm of
all functions in our space finite.1515Another important property is that

the only vector whose norm is zero is
the zero vector. There are many func-
tions whose absolute squares have in-
tegral zero, like the function which is
zero except at T/2, where it is one, and
the function which is zero on irrationals
and one on rationals. Mathematicians
finesse this difficulty by defining the
vectors in L2 not to be functions, but
rather to be equivalence classes of func-
tions whose relative distance is zero.
Hence the zero vector in L2 includes all
functions with norm zero.

• Basis. A natural basis for R3 is given by the three unit vectors x̂1, x̂2,
x̂3. A natural basis for our space of functions is given by the functions
f̂m = e−iωmt, with ωm = 2πm/T to keep them periodic with period T .

• Orthonormality. The basis in R3 is orthonormal, with x̂i · x̂j equal-
ing one if i = j and zero otherwise. Is this also true of the vectors in
our basis of plane waves? They are normalized:

||f̂m||22 =
1

T

∫ T

0

|e−iωmt|2 dt = 1. (A.26)

They are also orthogonal, with

f̂m · f̂n =
1

T

∫ T

0

e−iωmteiωnt dt =
1

T

∫ T

0

e−i(ωm−ωn)t dt

=
1

−i(ωm − ωn)T
e−i(ωm−ωn)t

∣∣∣
T

0
= 0 (A.27)

(unless m = n) since e−i(ωm−ωn)T = e−i2π(m−n) = 1 = e−i0.

• Coefficients. The coefficients of a three-dimensional vector are given
by taking dot products with the basis vectors: rn = r·x̂n. The analogy
in function space gives us the definition of the Fourier coefficients,
eqn A.1:

ỹm = y · f̂m =
1

T

∫ T

0

y(t) exp(iωmt) dt. (A.28)

• Completeness. We can write an arbitrary three-dimensional vector
r by summing the basis vectors weighted by the coefficients: r =
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∑
rnx̂n. The analogy in function space gives us the formula A.2 for

the inverse Fourier series:

y =

∞∑

m=−∞
ỹmf̂m,

y(t) =
∞∑

m=−∞
ỹm exp(−iωmt).

(A.29)

One can show that any function in L2 can be expanded in our basis
f̂m; eqn A.29 converges.

Our coefficient eqn A.28 follows from our completeness eqn A.29 and
orthonormality:

ỹℓ
?
= y · f̂ℓ =

(
∑

m

ỹmf̂m

)
· f̂ℓ

=
∑

m

ỹm

(
f̂m · f̂ℓ

)
= ỹℓ (A.30)

or, writing things out,

ỹℓ
?
=

1

T

∫ T

0

y(t)eiωℓt dt

=
1

T

∫ T

0

(
∑

m

ỹme−iωmt

)
eiωℓt dt

=
∑

m

ỹm

(
1

T

∫ T

0

e−iωmteiωℓt dt

)
= ỹℓ. (A.31)

Our function space, together with our inner product (eqn A.24), is a
Hilbert space (a complete inner product space).

A.4 Fourier and translational symmetry

Fig. A.2 The mapping T∆ takes
function space into function space,
shifting the function to the right by
a distance ∆. For a physical system
that is translation invariant, a solution
translated to the right is still a solution.

Why are Fourier methods so useful? In particular, why are the solutions
to linear differential equations so often given by plane waves: sines and
cosines and eikx?16 Most of our basic equations are derived for systems

16It is true, we are making a big deal
about what is usually called the separa-
tion of variables method. But why does
separation of variables so often work,
and why do the separated variables so
often form sinusoids and exponentials?

with a translational symmetry. Time-translational invariance holds for
any system without an explicit external time-dependent force; invariance
under spatial translations holds for all homogeneous systems.
Why are plane waves special for systems with translational invariance?

Plane waves are the eigenfunctions of the translation operator. Define
T∆, an operator which takes function space into itself, and acts to shift
the function a distance ∆ to the right:17

17That is, if g = T∆{f}, then g(x) =
f(x −∆), so g is f shifted to the right
by ∆.

T∆{f}(x) = f(x−∆). (A.32)

Any solution f(x, t) to a translation-invariant equation will be mapped
by T∆ onto another solution. Moreover, T∆ is a linear operator (trans-
lating the sum is the sum of the translated functions). If we think of the
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translation operator as a big matrix acting on function space, we can
ask for its eigenvalues18 and eigenvectors (or eigenfunctions) fk:

18You are familiar with eigenvectors of
3 × 3 symmetric matrices M , which
transform into multiples of themselves
when multiplied by M , M · en = λnen.
The translation T∆ is a linear operator
on function space just as M is a linear
operator on R3.

T∆{fk}(x) = fk(x−∆) = λkfk(x). (A.33)

This equation is solved by our complex plane waves fk(x) = eikx, with
λk = e−ik∆.19

19The real exponential eAx is also an

eigenstate, with eigenvalue e−A∆. This
is also allowed. Indeed, the diffusion
equation is time-translation invariant,
and it has solutions which decay ex-
ponentially in time (e−ωkteikx, with
ωk = Dk2). Exponentially decaying
solutions in space also arise in some
translation-invariant problems, such as
quantum tunneling and the penetration
of electromagnetic radiation into met-
als.

Why are these eigenfunctions useful? The time evolution of an eigen-
function must have the same eigenvalue λ! The argument is something
of a tongue-twister: translating the time-evolved eigenfunction gives the
same answer as time evolving the translated eigenfunction, which is time
evolving λ times the eigenfunction, which is λ times the time-evolved
eigenfunction.20

20Written out in equations, this sim-
ple idea is even more obscure. Let Ut

be the time-evolution operator for a
translationally-invariant equation (like
the diffusion equation of Section 2.2).
That is, Ut{ρ} evolves the function
ρ(x, τ) into ρ(x, τ + t). (Ut is not trans-
lation in time, but evolution in time.)
Because our system is translation in-
variant, translated solutions are also
solutions for translated initial condi-
tions: T∆{Ut{ρ}} = Ut{T∆{ρ}}. Now,
if ρk(x, 0) is an eigenstate of T∆ with
eigenvalue λk, is ρk(x, t) = Ut{ρk}(x)
an eigenstate with the same eigenvalue?
Yes indeed:

T∆{ρk(x, t)} = T∆{Ut{ρk(x, 0)}}
= Ut{T∆{ρk(x, 0)}}
= Ut{λkρk(x, 0)}
= λkUt{ρk(x, 0)}

= λkρk(x, t) (A.34)

because the evolution law Ut is linear.

The fact that the different eigenvalues do not mix under time evolu-
tion is precisely what made our calculation work; time evolving A0e

ikx

had to give a multiple A(t)eikx since there is only one eigenfunction of
translations with the given eigenvalue. Once we have reduced the par-
tial differential equation to an ordinary differential equation for a few
eigenstate amplitudes, the calculation becomes feasible.
Quantum physicists will recognize the tongue-twister above as a state-

ment about simultaneously diagonalizing commuting operators: since
translations commute with time evolution, one can find a complete set
of translation eigenstates which are also time-evolution solutions. Math-
ematicians will recognize it from group representation theory: the solu-
tions to a translation-invariant linear differential equation form a repre-
sentation of the translation group, and hence they can be decomposed
into irreducible representations of that group. These approaches are ba-
sically equivalent, and very powerful. One can also use these approaches
for systems with other symmetries. For example, just as the invariance
of homogeneous systems under translations leads to plane-wave solutions
with definite wavevector k, it is true that:

• the invariance of isotropic systems (like the hydrogen atom) under the
rotation group leads naturally to solutions involving spherical harmon-
ics with definite angular momenta ℓ and m;

• the invariance of the strong interaction under SU(3) leads naturally
to the ‘8-fold way’ families of mesons and baryons; and

• the invariance of the Universe under the Poincaré group of space–
time symmetries (translations, rotations, and Lorentz boosts) leads
naturally to particles with definite mass and spin!
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Exercises

We begin with three Fourier series exercises, Sound wave,
Fourier cosines (numerical), and Double sinusoids. We
then explore Fourier transforms with Fourier Gaussians
(numerical) and Uncertainty, focusing on the effects of
translating and scaling the width of the function to be
transformed. Fourier relationships analyzes the normal-
ization needed to go from the FFT to the Fourier se-
ries, and Aliasing and windowing explores two common
numerical inaccuracies associated with the FFT. White
noise explores the behavior of Fourier methods on ran-
dom functions. Fourier matching is a quick, visual test of
one’s understanding of Fourier methods. Finally, Gibbs
phenomenon explores what happens when you torture a
Fourier series by insisting that smooth sinusoids add up
to a function with a jump discontinuity.

(A.1) Sound wave. ©1
A musical instrument playing a note of fre-
quency ω1 generates a pressure wave P (t) pe-
riodic with period 2π/ω1: P (t) = P (t +
2π/ω1). The complex Fourier series of this wave
(eqn A.2) is zero except form = ±1 and±2, cor-
responding to the fundamental ω1 and the first
overtone. At m = 1, the Fourier amplitude is
2− i, at m = −1 it is 2 + i, and at m = ±2 it is
3. What is the pressure P (t):
(A) exp ((2 + i)ω1t) + 2 exp (3ω1t),
(B) exp (2ω1t) exp (iω1t)× 2 exp (3ω1t),
(C) cos 2ω1t− sinω1t+ 2 cos 3ω1t,
(D) 4 cosω1t− 2 sinω1t+ 6 cos 2ω1t,
(E) 4 cosω1t+ 2 sinω1t+ 6 cos 2ω1t?

(A.2) Fourier cosines. (Computation) ©2
In this exercise, we will use the computer to il-
lustrate features of Fourier series and discrete
fast Fourier transforms using sinusoidal waves.
Download the Fourier software, or the relevant
hints files, from the computer exercises section
of the book web site [129].21

First, we will take the Fourier series of periodic
functions y(x) = y(x + L) with L = 20. We
will sample the function at N = 32 points, and
use a FFT to approximate the Fourier series.
The Fourier series will be plotted as functions

of k, at −kN/2, . . . , kN/2−2, kN/2−1. (Remem-
ber that the negative m points are given by the
last half of the FFT.)
(a) Analytically (that is, with paper and pencil)
derive the Fourier series ỹm in this interval for
cos(k1x) and sin(k1x). Hint: They are zero ex-
cept at the two values m = ±1. Use the spatial
transform (eqn A.3).
(b) What spacing δk between k-points km do you
expect to find? What is kN/2? Evaluate each an-
alytically as a function of L and numerically for
L = 20.
Numerically (on the computer) choose a cosine
wave A cos(k(x − x0)), evaluated at 32 points
from x = 0 to 20 as described above, with
k = k1 = 2π/L, A = 1, and x0 = 0. Exam-
ine its Fourier series.
(c) Check your predictions from part (a) for the
Fourier series for cos(k1x) and sin(k1x). Check
your predictions from part (b) for δk and for
kN/2.
Decrease k to increase the number of wave-
lengths, keeping the number of data points
fixed. Notice that the Fourier series looks fine,
but that the real-space curves quickly begin
to vary in amplitude, much like the patterns
formed by beating (superimposing two waves of
different frequencies). By increasing the num-
ber of data points, you can see that the beat-
ing effect is due to the small number of points
we sample. Even for large numbers of sampled
points N , though, beating will still happen at
very small wavelengths (when we get close to
kN/2). Try various numbers of waves m up to
and past m = N/2.

(A.3) Double sinusoid. ©2
Which picture represents the spatial Fourier
series (eqn A.4) associated with the function
f(x) = 3 sin(x) + cos(2x)? (The solid line is
the real part, the dashed line is the imaginary
part.)

21If this exercise is part of a computer lab, one could assign the analytical portions as a pre-lab exercise.
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(A.4) Fourier Gaussians. (Computation) ©2
In this exercise, we will use the computer to il-
lustrate features of Fourier transforms, focusing
on the particular case of Gaussian functions, but
illustrating general properties. Download the
Fourier software or the relevant hints files from
the computer exercises portion of the text web
site [129].22

The Gaussian distribution (also known as the
normal distribution) has the form

G(x) =
1√
2πσ

exp
(
−(x− x0)

2/2σ2
)
, (A.35)

where σ is the standard deviation and x0 is the
center. Let

G0(x) =
1√
2π

exp
(
−x2/2

)
(A.36)

be the Gaussian of mean zero and σ = 1. The
Fourier transform of G0 is another Gaussian, of
standard deviation one, but no normalization
factor:23

G̃0(k) = exp(−k2/2). (A.38)

In this exercise, we study how the Fourier trans-
form of G(x) varies as we change σ and x0.
Widths. As we make the Gaussian narrower
(smaller σ), it becomes more pointy. Shorter
lengths mean higher wavevectors, so we expect
that its Fourier transform will get wider.
(a) Starting with the Gaussian with σ = 1, nu-
merically measure the width of its Fourier trans-
form at some convenient height. (The full width
at half maximum, FWHM, is a sensible choice.)
Change σ to 2 and to 0.1, and measure the
widths, to verify that the Fourier space width
goes inversely with the real width.
(b) Analytically show that this rule is true in
general. Change variables in eqn A.6 to show
that if z(x) = y(Ax) then z̃(k) = ỹ(k/A)/A.
Using eqn A.36 and this general rule, write a
formula for the Fourier transform of a Gaussian
centered at zero with arbitrary width σ.
(c) Analytically compute the product ∆x∆k of
the FWHM of the Gaussians in real and Fourier
space. (Your answer should be independent of

22If this exercise is taught as a computer lab, one could assign the analytical portions as a pre-lab exercise.
23Here is an elementary-looking derivation. We complete the square inside the exponent, and change from x to y = x+ ik:

1√
2π

∫ ∞

−∞
e−ikx exp(−x2/2) dx =

1√
2π

∫ ∞

−∞
exp(−(x+ik)2/2) dx exp((ik)2/2) =

[∫ ∞+ik

−∞+ik

1√
2π

exp(−y2/2) dy
]
exp(−k2/2).

(A.37)

The term in brackets is one (giving us e−k2/2) but to show it we need to shift the integration contour from Im[y] = k to
Im[y] = 0, which demands Cauchy’s theorem (Fig. 10.11).
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the width σ.) This is related to the Heisen-
berg uncertainty principle, ∆x∆p ∼ ~, which
you learn about in quantum mechanics.
Translations. Notice that a narrow Gaussian
centered at some large distance x0 is a reason-
able approximation to a δ-function. We thus
expect that its Fourier transform will be similar
to the plane wave G̃(k) ∼ exp(−ikx0) we would
get from δ(x− x0).
(d) Numerically change the center of the Gaus-
sian. How does the Fourier transform change?
Convince yourself that it is being multiplied by
the factor exp(−ikx0). How does the power spec-
trum |G̃(ω)|2 change as we change x0?
(e) Analytically show that this rule is also true
in general. Change variables in eqn A.6 to
show that if z(x) = y(x − x0) then z̃(k) =
exp(−ikx0)ỹ(k). Using this general rule, extend
your answer from part (b) to write the formula
for the Fourier transform of a Gaussian of width
σ and center x0.

(A.5) Uncertainty. ©2
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Fig. A.3 Real-space Gaussians.

The dashed line in Fig. A.3 shows

G0(x) = 1/
√
2π exp(−x2/2). (A.39)

The dark line shows another function G(x). The
areas under the two curves G(x) and G0(x) are
the same. The dashed lines in the choices be-
low represent the Fourier transform G̃0(k) =
exp(−k2/2). Which has a solid curve that rep-
resents the Fourier transform of G?
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(A.6) Fourier relationships. ©2
In this exercise, we explore the relationships be-
tween the Fourier series and the fast Fourier
transform. The first is continuous and periodic
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in real space, and discrete and unbounded in
Fourier space; the second is discrete and peri-
odic both in real and in Fourier space. Thus,
we must again convert integrals into sums (as
in Fig. A.1).
As we take the number of points N in our
FFT to ∞ the spacing between the points gets
smaller and smaller, and the approximation of
the integral as a sum gets better and better.
Let yℓ = y(tℓ) where tℓ = ℓ(T/N) =
ℓ(∆t). Approximate the Fourier series
integral A.1 above as a sum over yℓ,
(1/T )

∑N−1
ℓ=0 y(tℓ) exp(−iωmtℓ)∆t. For small

positive m, give the constant relating ỹFFT
m to

the Fourier series coefficient ỹm.

(A.7) Aliasing and windowing. (Computation) ©3

In this exercise, we will use the computer
to illustrate numerical challenges in using the
fast Fourier transform. Download the Fourier
software, or the relevant hints files, from the
computer exercises section of the book web
site [129].24

The Fourier series ỹm runs over all integers
m. The fast Fourier transform runs only over
0 ≤ m < N . There are three ways to under-
stand this difference: function-space dimension,
wavelengths, and aliasing.
Function-space dimension. The space of peri-
odic functions y(t) on 0 ≤ t < T is infinite, but
we are sampling them only at N points. The
space of possible fast Fourier series must also
have N dimensions. Now, each coefficient of the
FFT is complex (two dimensions), but the neg-
ative frequencies are complex conjugate to their
positive partners (giving two net dimensions for
the two frequencies ωm and ω−m ≡ ωN−m). If
you are fussy, ỹ0 has no partner, but is real (only
one dimension), and if N is even ỹ−N/2 also is
partnerless, but is real. So N k-points are gen-
erated by N real points.
Wavelength. The points at which we sample the
function are spaced ∆ = T/N apart. It makes
sense that the fast Fourier transform would stop
when the wavelength becomes close to ∆; we
cannot resolve wiggles shorter than our sample
spacing.
(a) If the number of points N is even, show that
the fast Fourier transform stops when the wave-
length becomes twice ∆. (Hint: Which m has

the shortest wavelength? Show that this wave
alternates between ±C in time.) Show that this
component of ỹ in Fourier space is partnerless.
If y(t) is real, show that this component is real
as well.
So, the FFT returns Fourier components only
until ωN/2 when there is one point per bump
(half-period) in the cosine wave.
Aliasing. Suppose our function really does have
wiggles with shorter distances than our sam-
pling time ∆. Then its fast Fourier transform
will have contributions to the long-wavelength
coefficients ỹFFT

m from these shorter wavelength
wiggles; specifically ỹm±N , ỹm±2N , etc.
(b) On our sampled points tℓ, analytically show
that exp(iωm±N tℓ) = exp(iωmtℓ). Show that the
FFT ỹm can be written in terms of the Fourier
series ỹm, up to an overall constant factor, as

ỹFFT
m ∝

∞∑

n=−∞
ỹm+nN

(Hint: the ‘comb’ function
∑∞

j=−∞ δ(t− j∆) =

(1/∆)
∑∞

n=−∞ e2πınt/∆.) Which term is the de-
sired answer? Thus show that the fast Fourier
transform has bogus contributions from all fre-
quencies outside its cutoff, folded in (or aliased
into) the low frequency window.
If you sample a function at N points with
Fourier components beyond ωN/2, their con-
tributions get added to Fourier components at
smaller frequencies. This is called aliasing, and
is an important source of error in Fourier meth-
ods. We always strive to sample enough points
to avoid it.
(c) Form a 32-point wave packet y(t) =
1/(
√
2πσ) exp(−t2/2σ2). Change the width σ

of the packet to make it thinner, until the packet
begins to look ratty (almost as thin as the spac-
ing between the sample points tℓ). Plot the func-
tion and its FFT. Notice how the Fourier series
aliases as it hits the edges and overlaps.
(d) Windowing. One often needs to take Fourier
series of functions which are not periodic in
the interval. Set the number of data points
N to 256 (powers of two are faster) and plot
y(t) = cosωmt for m = 20 with an ‘illegal’ non-
integer value m = 20.5. Note that the plot of
the real-space function y(t) is not periodic in the
interval [0, T ) for m = 20.5. Plot its Fourier se-
ries. Note that each of the two peaks has broad-

24If this exercise is taught as a computer lab, one could assign the analytical portions as a pre-lab exercise.
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ened into a whole staircase. Try looking at the
power spectrum (which is proportional to |ỹ|2),
and again compare m = 20 with m = 20.5. This
is a numerical problem known as windowing,
and there are various schemes to minimize its
effects as well.

(A.8) White noise. (Computation) ©2
White light is a mixture of light of all frequen-
cies. White noise is a mixture of all sound fre-
quencies, with constant average power per unit
frequency. The hissing noise you hear on radio
and TV between stations is approximately white
noise; there are a lot more high frequencies than
low ones, so it sounds high-pitched.
Download the Fourier software or the relevant
hints files from the computer exercises portion
of the text web site [129].
What kind of time signal would generate white
noise? Select White Noise, or generate inde-
pendent random numbers yℓ = y(ℓL/N) cho-
sen from a Gaussian25 distribution ρ(y) =
(1/
√
2π) exp(−y2/2σ). You should see a

jagged, random function. Set the number of
data points to, say, 1024.
Examine the Fourier transform of the noise sig-
nal. The Fourier transform of the white noise
looks amazingly similar to the original signal.
It is different, however, in two important ways.
First, it is complex: there is a real part and an
imaginary part. The second is for you to dis-
cover.
Examine the region near k = 0 on the Fourier
plot, and describe how the Fourier transform of
the noisy signal is different from a random func-
tion. In particular, what symmetry do the real
and imaginary parts have? Can you show that
this is true for any real function y(x)?
Now examine the power spectrum |ỹ|2.26 Check
that the power is noisy, but on average is
crudely independent of frequency. (You can
check this best by varying the random number
seed.) White noise is usually due to random,
uncorrelated fluctuations in time.

(A.9) Fourier matching. ©2
The top three plots (a)–(c) in Fig. A.4 are func-
tions y(x) of position. For each, pick out which
of the six plots (1)–(6) are the corresponding
function ỹ) in Fourier space? (Dark line is
real part, lighter dotted line is imaginary part.)
(This exercise should be fairly straightforward
after doing Exercises A.2, A.4, and A.8.)

(A.10) Gibbs phenomenon. (Mathematics) ©3
In this exercise, we will look at the Fourier series
for the step function and the triangle function.
They are challenging because of the sharp cor-
ners, which are hard for sine waves to mimic.
Consider a function y(x) which is A in the
range 0 < x < L/2 and −A in the range
L/2 < x < L (shown above). It is a kind of
step function, since it takes a step downward at
L/2 (Fig. A.5).27

(a) As a crude approximation, the step func-
tion looks a bit like a chunky version of a sine
wave, A sin(2πx/L). In this crude approxima-
tion, what would the complex Fourier series be
(eqn A.4)?
(b) Show that the odd coefficients for the com-
plex Fourier series of the step function are ỹm =
−2Ai/(mπ) (m odd). What are the even ones?
Check that the coefficients ỹm with m = ±1 are
close to those you guessed in part (a).
(c) Setting A = 2 and L = 10, plot the par-
tial sum of the Fourier series (eqn A.1) for
m = −n,−n + 1, . . . , n with n = 1, 3, and 5.
(You are likely to need to combine the coeffi-
cients ỹm and ỹ−m into sines or cosines, unless
your plotting package knows about complex expo-
nentials.) Does it converge to the step function?
If it is not too inconvenient, plot the partial sum
up to n = 100, and concentrate especially on the
overshoot near the jumps in the function at 0,
L/2, and L. This overshoot is called the Gibbs
phenomenon, and occurs when you try to ap-
proximate functions y(x) which have disconti-
nuities.
One of the great features of Fourier series is that
it makes taking derivatives and integrals easier.
What does the integral of our step function look

25We choose the numbers with probability given by the Gaussian distribution, but it would look about the same if we took
numbers with a uniform probability in, say, the range (−1, 1).
26For a time signal f(t), the average power at a certain frequency is proportional to |f̃(ω)|2; ignoring the proportionality
constant, the latter is often termed the power spectrum. This name is sometimes also used for the square of the amplitude of
spatial Fourier transforms as well.
27It can be written in terms of the standard Heaviside step function Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0, as
y(x) = A (1− 2Θ(x− L/2)).
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like? Let us sum the Fourier series for it!
(d) Calculate the Fourier series of the integral
of the step function, using your complex Fourier
series from part (b) and the formula A.17 for the
Fourier series of the integral. Plot your results,
doing partial sums up to ±m = n, with n = 1,
3, and 5, again with A = 2 and L = 10. Would
the derivative of this function look like the step
function? If it is convenient, do n = 100, and
notice there are no overshoots.
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Fig. A.5 Step function.
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[24] Carathéodory, C. (1976). Untersuchungen über die Grundlagen
der Thermodynamyk (English translation). In The second law of
thermodynamics, by J. Kestin, pp. 229–56. Dowden, Hutchinson
and Ross, Inc., Stroudsberg, Pennsylvania. 21

[25] Cardy, J. (1996). Scaling and renormalization in statistical physics.
Cambridge University Press. 44

[26] Carlson, J. M. and Langer, J. S. (1989). Properties of earthquakes
generated by fault dynamics. Physical Review Letters , 62, 2632.
12.4

[27] Chandler, D. (1987). Introduction to modern statistical mechanics.
Oxford University Press. 1, 10.7

[28] Chayes, J. T., Chayes, L., Sethna, J. P., and Thouless, D. J.
(1986). A mean-field spin glass with short-range interactions.
Communications in Mathematical Physics , 106, 41. 12.10, 12.11

[29] Choy, T.-S., Naset, J., Chen, J., Hershfield, S., and
Stanton, C. (2000). The Fermi surface database.
http://www.phys.ufl.edu/fermisurface/. 7.10, 7.11

[30] Chu, C. (1993). Hysteresis and microstructures: a study of biax-
ial loading on compound twins of copper–aluminum–nickel single
crystals. Ph. D. thesis, Aerospace Engineering, University of Min-
nesota. 11.11

[31] Coleman, S. (1985). Secret symmetry: an introduction to sponta-
neous symmetry breakdown and gauge fields. In Aspects of sym-

http://www.aip.org/pt/jan00/berg.htm
http://www.milou.ccmr.cornell.edu/solidification.html
http://www.phys.ufl.edu/fermisurface/


 Copyright Oxford University Press 2006  v1.0                       --  

315

metry, selected Erice lectures, pp. 113–84. Cambridge University
Press. 9.1

[32] Curcic, T. and Cooper, B. H. (1995). STM images
of nanoscale pit decay. http://www.lassp.cornell.edu/cooper
nanoscale/nanofeatures.html. 10.2

[33] deGennes, P. G. and Prost, J. (1993). The physics of liquid crys-
tals, 2nd edition. Clarendon Press, Oxford. 9.1

[34] Domb, C. (1974). Ising model. In Phase transitions and critical
phenomena, Vol. 3, pp. 357–478. Academic Press, New York. 26

[35] Domb, C. and Guttman, A. J. (1970). Low-temperature series for
the Ising model. Journal of Physics C , 8, 1652–60. 25

[36] Dyson, F. J. (1979). Time without end: Physics and biology in an
open universe. Reviews of Modern Physics , 51, 447. 5.1

[37] Elowitz, M. B. and Leibler, S. (2000). A synthetic oscillatory
network of transcriptional regulators. Nature, 403, 335–8. 39,
8.11, 8.11, 8.11

[38] Fermi, E., Pasta, J., and Ulam, S. (1965). Studies of nonlinear
problems. I. In E. Fermi, collected papers, Vol. II, pp. 978. Uni-
versity of Chicago Press, Chicago. (Reprinted from Los Alamos
report LA-1940, 1955.). 20

[39] Feynman, R. P. (1972). Statistical mechanics, a set of lectures.
Addison-Wesley, Menlo Park, CA. 42

[40] Feynman, R. P. (1996). Feynman lectures on computation. West-
view, Boulder, CO. 5.2, 5.3, 5.3

[41] Feynman, R. P., Leighton, R. B., and Sands, M. (1963). The
Feynman lectures on physics. Addison-Wesley, Menlo Park, CA.
2.3, 6.1, 7.8

[42] Fixsen, D. J., Cheng, E. S., Gales, J. M., Mather, J. C., Shafer,
R. A., and Wright, E. L. (1996). The cosmic microwave back-
ground spectrum from the full COBE FIRAS data set. The As-
trophysical Journal , 473, 576–87. 7.17

[43] Forster, D. (1975). Hydrodynamic fluctuations, broken symmetry,
and correlation functions. Benjamin–Cummings, Reading, MA. 1,
10.8, 26

[44] Frenkel, D. and Louis, A. A. (1992). Phase separation in a binary
hard-core mixture. An exact result. Physical Review Letters , 68,
3363. 6.13

[45] Gillespie, D. T. (1976). Exact simulation of coupled chemical re-
actions. Journal of Computational Physics , 22, 403–34. 36

[46] Girvan, M. and Newman, M. E. J. (2002). Community struc-
ture in social and biological networks. Proceedings of the National
Academy of Sciences , 12, 7821–6. 1.7

[47] Goldstein, R. E. and Ashcroft, N. W. (1985). Origin of the sin-
gular diameter in coexistence curve of a metal. Physical Review
Letters , 55, 2164–7. 2

[48] Gomes, C. P. and Selman, B. (2002). Satisfied with physics. Sci-
ence, 297, 784–5. 8.15

[49] Gomes, C. P., Selman, B., Crato, N., and Kautz, H. (2000). Heavy-

http://www.lassp.cornell.edu/cooper_nanoscale/nanofeatures.html


 Copyright Oxford University Press 2006  v1.0                       --  

316 References

tailed phenomena in satisfiability and constraint satisfaction prob-
lems. Journal of Automated Reasoning, 24, 67–100. 8.15

[50] Goss, P. J. E. and Peccoud, J. (1998). Quantitative modeling of
stochastic systems in molecular biology by using stochastic Petri
nets. Proceedings of the National Academy of Sciences , 95, 6750–5.
8.10, 8.13

[51] Gottlieb, M. (1966). Seven states of matter. Walker & Company.
2

[52] Greiner, W., Neise, L., and Stöcker, H. (1995). Thermodynamics
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Index entry format examples:

• Figure captions: f5.6 84 would be in Fig. 5.6 on p. 84.

• Exercises: e5.15 102 would be in Exercise 5.15 on p. 102.

• Notes and footnotes: n31 88 would be in note 31 on p. 88.

2SAT, see Logical satisfiability
3SAT, see Logical satisfiability

Abrupt phase transitions, 241–61
3SAT, e8.15 189
critical droplet, see Critical droplet
discontinuity in properties, 241
double-well free energy density,

f11.2 242
droplet fluctuation precursors, n2 241
equal-area construction, f11.3 244,

243–4
makes sense only in mean field,

n11 244
Ising model, e8.1 174, e11.4 253
jumps in first derivatives of free

energies, 243
latent heat, n3 241

related to entropy change, 243
no precursors, 241
nucleation, see Nucleation
often called first order, 243
phase coexistence, constant volume,

energy, 241
Absorption

balance with emission, e7.7 155
of light, Einstein coefficient, e7.8 155

AC, frequency dependent, from
‘alternating current’, n15 222

Accuracy of numerical solution to
dynamical system, e3.12 59

Adiabatic
addition of particle, and chemical

potential, 112
avoiding entropy increase, 49, 51
avoiding fast motions which generate

entropy, 49, 78
bulk modulus, and sound, n56 160
definition, 49
expansion of Universe and microwave

background radiation,
e7.15 160

no heat exchange, 49
pressure measurement, 50
steps in Carnot cycle, f5.3 79
usage just excluding heat flow, n22 115

Adiabatic continuity, n28 173
and phases, 171–3
basis for theoretical physics, 173
experimental method to determine

phase, 173
not definition of phase, but almost,

173
not the only criterion for good

theories, n29 173
water to oil through alcohol, f8.8 173

Air, as ideal gas with conserved
momentum, sound, 220

Algorithm
avalanche propagation, e8.13 184
bits, for magnetic hysteresis, e8.14 186
brute-force, for magnetic hysteresis,

e8.13 184
cluster flip, e8.8 177, e8.9 177
cluster-flip

implementation, e8.9 177
Davis–Putnam, for logical

satisfiability, e8.15 187
equilibration guaranteed if Markov,

ergodic and detailed balance,
171

Euler method, solving PDE not ODE,
e3.12 59

general-purpose, for solving ODE,
e3.12 60

implicit, for solving stiff ODE, e3.12 60
Monte Carlo

as Markov chain, 167
Bortz–Kalos–Lebowitz, n36 179
continuous-time, n36 179
gambling center in Monaco, n12 166
Gillespie, chemical reactions,

e8.10 179, e8.11 180
heat bath, 166, e8.7 176

Ising model, 166
Metropolis, e8.6 176, e8.7 176
renormalization group, 269
Swendsen-Wang, e8.8 177
Wolff, e8.8 177, e8.9 177

order N bits per spin, hysteresis
model, e8.14 186

order N logN vs. N2, hysteresis
model, e8.14 185

sort
order N logN , e8.14 185
use package, n46 185

sorted-list, for magnetic hysteresis,
e8.14 185

Verlet: conserves symplectic form,
n61 59

Allosteric, definition, n63 132
Alloy phase diagram, from lattice

simulations, 165
Ammonia synthesis, Haber–Bosch

process, n29 118
Analyticity

and phases, 171–3
breakdown at superconducting Tc,

e12.8 286
fails at phase transitions, n32 208
free energy density, vs. free energy,

n32 208
free energy, for finite systems, n32 208
from causality, 230
three origins of, n27 230

Anharmonic localized modes, breakdown
of ergodicity, 68

Anharmonic phonons (Fermi, Pasta,
Ulam), breakdown of
ergodicity, 68

Antiferromagnet, 164
Antimatter beings and entropy increase,

n8 80
Antiparticles, as backward in time,

f7.3 141
Anyon statistics, n12 140
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Apoptosis: programmed cell death,
e8.11 180

Arbitrage (free money to be made),
e2.12 33

Arnol’d
cat map, e5.8 95, f5.16 96
diffusion, n33 75

Arrhenius law
as origin of slow processes, n37 121
deriving prefactor, e6.11 129
for nucleation rate, 245
for reaction rate, 120

Arrow of time, and entropy increase, 80
Astrophysics exercises, e2.2 26, e4.4 72,

e5.1 91, e5.4 93, e7.15 159,
e7.16 161, e10.1 231

Asymptotic series, e1.5 7
and perturbation theory, 172
quantum electrodynamics, and

Hooke’s law, e1.5 8
Atmosphere

thins exponentially, 22
thins non-exponentially in outer

space, e3.3 54
Atomic physics exercises, e7.9 156,

e7.13 158, e7.14 158
ATPase as Maxwell’s demon, f5.6 83
Attractor, e12.9 288

fixed-point, e4.2 70, e4.3 71
not in Hamiltonian systems, 65
periodic, e12.9 288
strange

dimensions, e5.16 101
for Feigenbaum map at µc, e5.16 101

Avalanche, f12.5 266
and hysteresis

scale invariance at Rc, f12.11 273
as jump in M(H) curve, f8.16 183
hysteresis, e8.13 182

Barkhausen noise, e8.13 182
propagation algorithm, e8.13 184,

f8.17 184
size distribution, e12.13 296

scaling form, e12.13 297
scaling function, 276–7
scaling function at Rc, 272–4
scaling function away from Rc,

f12.13 276
time series during, f8.18 184

Avalanches and hysteresis, e8.14 185,
e12.13 296

bits algorithm, e8.14 186
sorted-list algorithm, e8.14 185

Average, ensemble
denoted by angle brackets 〈·〉, n2 16,

220
equal-time denoted 〈·〉eq, 220
evolving denoted by 〈·〉ev, 220
of evolution from fixed initial

condition [·]ρi , 220

Avogadro’s number, n15 40
Axiomatic thermodynamics, 115

β-brass, as binary alloy, 165
Bacteria, red and green, Markov chain,

e8.4 175
Bandwidth, definition, n44 237
Bardeen–Cooper–Schrieffer theory, see

BCS theory, of
superconductors

Barkhausen noise, magnetic, e8.13 182,
f8.14 183

scale invariance at Rc, f12.11 273
Baryons, mesons, 8-fold way, from group

representation theory, 306
Bayes’ theorem, e6.14 133
Bayesian statistics, e6.14 133
BCS theory, of superconductors

and the renormalization group,
e12.8 286

quantitative, not just adiabatic,
n29 173

Bekenstein and black-hole
thermodynamics, e5.4 94

Biaxial nematic, defect entanglement
theory, 202

Bifurcation
Hopf, e12.4 284
non-analyticity in attractor evolution,

n23 283
period-doubling, and onset of chaos,

e12.9 288
pitchfork, e12.4 283, f12.19 283
saddle-node, e12.4 283
theory, and phase transition, 279–80,

e12.4 283, e12.9 288
transcritical exchange of stability,

e12.4 283
Big Bang, and microwave background

radiation, e7.15 159, e10.1 231
Billiards, entropy increase and arrow of

time, 80
Binary alloy, f8.3 165, 165

atomic relaxation, 165
β-brass, 165
explicit mapping to Ising Hamiltonian,

n8 165
Hamiltonian, 165
Ising model in disguise, 165
thermal position fluctuations, n9 165
three-site, long-range interactions, 165

Binomial coefficient
(p
q

)
= p!/(q!(p− q)!),

n16 40, e3.9 57
Biology exercises, e2.3 26, e6.4 126,

e6.12 131, e8.10 178, e8.11 179
Black hole

negative specific heat, e5.4 94
neutron star collapse into, e7.16 161
thermodyanmics, e5.4 93

Black–Scholes model of derivative
pricing, e2.12 32

Black-body radiation, f7.8 148, 147–8
and stimulated emission, e7.8 155
and the cosmic microwave

background, f7.17 159,
e10.1 231

emission from hole, e7.7 154
energy gap, 148
equipartition theorem wrong for, 148
ultraviolet catastrophe, 147
why black?, n34 148, e7.7 154

Bloch’s theorem, 151
Blood pressure, salt, and osmotic

pressure, f5.6 83
Boltzmann distribution, 44

canonical ensemble, 106
derived using ideal gas law, e6.1 124
grand canonical ensemble, 112
ideal gas momenta, 44

Boltzmann equation
and diffusion equation under gravity,

n20 22
Boltzmann’s constant kB, unit

conversion, n25 44, n34 45,
e3.1 54

Boltzmann’s ergodic hypothesis, 65
violated by planetary motion, e4.4 74

Boltzmann’s ergodic theorem, see
Boltzmann’s ergodic
hypothesis

Bond percolation, e2.13 33, f2.12 33
pc and near pc, f12.2 264

Bond vs. site percolation, e2.13 35,
f12.7 268

Bortz–Kalos–Lebowitz algorithm,
n36 179

Bose condensation, 148–50
analogy with superfluid, 150, e9.7 210
first experiment, Wieman and Cornell,

1995, e7.14 158
flood when chemical potential ‘river’

rises above field, n21 143
harmonic external potential, e7.14 159
low-energy continuum states cannot

absorb extra bosons, 150,
e7.13 158

macroscopically occupied quantum
state, e9.7 211

order parameter ψ(r), e9.7 211
specific heat cusp at Tc, f8.6 171
superposition of different particle

numbers, n38 212
temperature near superfluid transition

in He4, 150
temperature near theory estimate for

Rb gas, e7.14 158
Bose statistics, 140–1

democratic, 145
Maxwell–Boltzmann at low

occupancy, high T , 143
symmetric wavefunctions, 140
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Bose–Einstein condensation, see Bose
condensation

Bose–Einstein distribution, occupation
of non-interacting states,
f7.4 142, 143

Boson
free, 146–50
gregarious, e7.9 156
integer spin, n13 140
meson, He4, photon, phonon, gluon,

W±, Z, graviton, n13 140
more likely to join multiply occupied

states, e7.9 156
non-interacting, 142–3

grand canonical ensemble, 142
grand free energy, 142
grand partition function, 142
occupation, 143
utility, 144

one per excitation of harmonic
oscillator, e7.2 152

phonon, photon, n13 140, 143, e7.2 152
Breadth-first search, e2.13 34
Breathing

chemical potential of CO2 in blood,
n42 48

oxygen depletion on mountain tops,
22, e6.1 124

Brillouin zone, and Fourier analysis,
n8 301

Broken symmetry, 192
and Landau theory, e9.5 206
gauge invariance, in superconductors,

197
gauge invariance, in superfluids, 197
Ising model, e9.5 208
not definition of phase, but almost,

n2 192
not in 2D (Mermin–Wagner theorem),

n12 198
orientational

crystal, 69, 192
Heisenberg magnet, f9.9 197
liquid crystal, f9.10 197

quasicrystalline, f9.1 191
time-reversal invariance in magnets,

n4 193
translational

crystal, 69, 192, n38 233
implies sound waves, 196
none for two-dimensional crystal,

n39 235
2D crystal orientations, n12 198
violates ergodicity, 68

Brute-force algorithm, magnetic
hysteresis, e8.13 184

Burger’s vector
counts circumnavigations

through/around order
parameter space, 200

counts extra rows and columns of
atoms, 198

hexagonal crystal, f11.15 254
topological, 198, 199

Burridge–Knopoff model of earthquakes,
f12.4 265

Butterfly effect, e5.9 96

Calcium ATPase as Maxwell’s demon,
f5.6 83

Call option, e2.12 32
American vs. European style, n38 32

Canonical ensemble, f6.1 106, 106–11
as partial trace, n5 107
Boltzmann distribution, 106
comparing Bose, Fermi,

Maxwell–Boltzmann,
distinguishable, 145, e7.1 152

definition, 107
entropy, 108
equivalent to microcanonical, 108,

e6.3 126
for non-interacting systems, 109–11
free energies add for uncoupled

systems, 109
harmonic oscillator

classical, 111
quantum, 139

Helmholtz free energy, 108
ideal gas, 110
internal energy, 107
Lagrange multiplier, e6.6 128
more convenient than microcanonical,

109
no negative temperature, e6.3 125
partition function, 106
quantum, ρ = e−βH/(Tr e−βH), 137
specific heat, 107
uncoupled systems figure, f6.2 109
velocity distribution, classical, 111

Canonical, Oxford English dictionary
definition, n1 105

Capacity dimension, fractal, e5.16 101
Carathéodory and axiomatic

thermodynamics, 115
Card shuffling, entropy increase, e5.13 99
Carlson–Langer model of earthquakes,

f12.4 265
Carnot cycle, 78–80

and perpetual motion machines,
f5.1 78

avoiding irreversible processes, 78
four steps, 78
P–V diagram, f5.3 79
refrigerator efficiency bound, e5.6 95
reversible engines all equivalent, 79

Cast iron, and coarsening, 246
carbon precipitates, 246

Cat map, Arnol’d, e5.8 95, f5.16 96
Catalyst, definition, n29 118

Cauchy’s integral formula, n28 230
Cauchy’s theorem, f10.11 230∮

C
f(z′) dz′ = 0, 230

needed to Fourier transform Gaussian,
n25 24

Causality
Kramers–Krönig relation, 229–31
response after kick, 229
susceptibility zero for t < 0, 226
ties real and imaginary susceptibility,

229–31
Central dogma of biology, e8.11 179
Central limit theorem, f1.1 2, f2.6 24,

e2.5 28, e12.11 291
and Green’s function for diffusion

equation, 25
renormalization-group derivation,

e12.11 291
stocks disobey, heavy tails, e2.11 31

Chaos, 279
and planetary dynamics, e4.4 72
Hamiltonian systems, vs. KAM tori,

f4.3 66
justifies microcanonical average, 38
necessitates ensemble methods, 38
onset of, e12.9 288
scrambles trajectory to equilibrium,

n7 38
sensitive dependence on initial

conditions, 38, e5.9 96
stretching and folding, 65, e5.9 97

Arnol’d cat map, e5.8 95
logistic map, e5.9 96, e12.9 288

three-body problem, e4.4 75
Chemical concentrations, denoted by [·],

118, e8.10 178
Chemical equilibrium, 118–20

constant thermally activated, 120
mass-action law, 118

naive motivation, 118
Chemical potential

and Bose condensation, f7.9 149, 150
and osmotic pressure, 48
as ‘force’ on particle number, 48
as Lagrange multiplier, e6.6 128
as variational derivative δF/δρ, 219
bosons, never larger than ε0, 143, 149
CO2, blood, and breathing, n42 48
convenient for quantum

non-interacting systems, 142
decreases with T , so occupancy

usually falls as T rises,
n20 143

energy change for adding particle
(∂E/∂N)|S,V , 48, 112

equal at phase coexistence, e6.10 129,
242, e11.3 252

equal when number shifts to maximize
entropy, 47, f3.3 47
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from entropy, µ = −T (∂S/∂N)|E,V ,
47

gradient as force on particle, 122
grand canonical ensemble, 112
intensive variable, 46, e6.9 129
microcanonical, 47–8
non-interacting fermions, separates

filled from empty at low T ,
143

number pressure for particles, 122,
n21 143, 144

occupation of non-interacting Bose,
Fermi states, f7.4 142

semiconductors, e7.12 157
unfamiliar to most, 48
van der Waals, e11.3 252
varied to fix total number N , 143,

150, e7.1 152
zero for harmonic oscillator as boson,

147, e7.2 152
Chemical reaction, f6.6 118, 118–21

dimerization, e8.10 178
Haber–Bosch process, n29 118
network

biologist’s view, f8.12 180
computational view, f8.13 181
dimerization reaction, f8.11 178

number fluctuations in small volume
of cell, e8.10 178

reaction coordinate, 120
stochastic

compared to continuous, e8.10 179,
e8.11 181

Gillespie algorithm, e8.10 179,
e8.11 180

transition state, 120
Chemical reaction rates, 120–1

dynamical corrections, n35 120
thermally activated, 120

Chemistry exercises, e6.8 128, e6.9 129,
e6.10 129, e6.11 129, e11.1 251,
e11.2 252, e11.3 252

Chemotaxis, and random walks, 25
Choose p from q,

(p
q

)
= p!/(q!(p− q)!),

n16 40, e3.9 57
Circulation, of superfluid, quantized,

e9.7 211
Clausius–Clapeyron equation

dP/dT = (s1 − s2)/(v1 − v2),
e6.10 129

Cloud
droplet nucleation, 244
seeding, with ice-nucleating bacteria,

n16 246
Cluster, percolation, e2.13 34

infinite, e12.12 294
size distribution, e12.12 293

Cluster-flip algorithm, e8.8 177
implementation, e8.9 177

Co-dimension, n8 271

Coarse-graining, 268
and fractal dimension, n10 274
blurring of eyes, 272
energy, for Fermi liquids and

superconductors, e12.8 286
free energy, 105, 121–3
ideal gas, 121, f6.8 121, f6.9 122
Ising model decimation, f12.9 270
pairwise sums and central limit

theorem, e12.11 291
removing intermediates from chemical

reaction pathways, e6.12 131
time, and onset of chaos, 279,

e12.9 288, e12.9 290
Coarsening, f10.1 216, 246–50

and spinodal decomposition, n10 243
conserved order parameter, f11.9 248

interface velocity ∝ ∂µ/∂x ∝ 1/R2,
248

L(t) ∝ t1/3, 249
salad dressing, cast iron, rocks, 248

correlation function scaling, e12.3 282
driven by surface tension, 247
exponents more universal, 250
hydrodynamic flow, 249
ice crystal, snowflake model, e11.9 259
Ising model, 247, f11.7 247, e11.6 255
length scale L(t)

diverges with time, 247
measured by interfacial area,

energy, e11.6 255
smallest original feature not yet

gone, 247
logarithmic, from diverging barriers,

249, f11.10 249
non-conserved order parameter,

f11.8 248
interface velocity ∝ traction, 248
Ising, 248, e11.6 255
L(t) ∝ t1/2, 248, e11.6 255
single-phase polycrystal, 248

non-universal, 250
non-universal scaling, e12.3 282
polycrystals, 247
salad dressing, cast iron, rocks, 246
surfacediffusion,L(t) ∝ t1/4, 249
surface morphology, f10.2 216
theory simplistic, 247

COBE Planck distribution, of cosmic
microwave background
radiation, f7.17 159

Coin flips, 15–16
Markov chain, e8.3 175
waiting for Godot, e8.3 175

Cold rock, cannot extract useful work
from, 78

Colorability, graph, e1.8 12
Colored object, radiation from, e7.7 155
Communications theory and entropy, 87,

e5.15 100

Compatibility condition, martensitic,
e11.7 256

Complexity exercises, e1.7 9, e2.13 33,
e4.3 70, e5.9 96, e5.14 100,
e5.16 101, e8.13 182, e8.14 185,
e12.9 288, e12.12 293,
e12.13 296

Compression, data, and entropy,
e5.14 100, e5.15 100

Computation exercises, e1.7 9, e1.8 12,
e2.4 27, e2.5 28, e2.10 30,
e2.11 31, e2.13 33, e3.4 54,
e3.12 58, e4.1 69, e6.1 124,
e6.12 131, e8.1 174, e8.2 174,
e8.6 176, e8.7 176, e8.8 177,
e8.9 177, e8.10 178, e8.11 179,
e8.13 182, e8.14 185, e8.15 186,
e10.2 233, eA.2 307, eA.4 308,
eA.7 310, eA.8 311

Computation, no minimum cost for,
e5.3 93

Computational complexity, e8.15 186
non-deterministic polynomial time NP

factoring integers, e8.15 186
NP-complete, e8.15 186

logical satisfiability (SAT), e1.8 12,
e8.15 187

traveling salesman, graph coloring,
spin-glass ground state,
3SAT, e8.15 186

P = NP?, e8.15 187
polynomial time P

sorting lists, 2SAT, e8.15 186
testing if number is prime, e8.15 186

sorting N logN , e8.15 186
Computational statistical mechanics,

163–89
Computer science exercises, e1.8 12,

e5.2 91, e5.3 93, e5.14 100,
e5.15 100, e8.15 186

Condensed matter exercises, e2.10 30,
e5.11 97, e5.12 98, e7.10 157,
e7.11 157, e7.12 157, e9.1 203,
e9.2 204, e9.3 205, e9.4 206,
e9.5 206, e9.7 210, e9.8 211,
e10.4 236, e10.5 236, e10.6 237,
e10.8 238, e11.9 259, e12.2 282,
e12.3 282, e12.5 284, e12.8 286

Conditional probability, n38 89
and entropy, 90, e5.17 102

Conduction band, n39 151, e7.12 157
Conductivity, DC, related to

polarizability
σ = limω→0 ω α′′(ω), 224

Configuration space, n5 37
Conjunctive normal form, and logical

satisfiability, e1.8 13
Connected correlation function, 219
Conservation of energy, 77

and the Carnot cycle, 79
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microcanonical ensemble, 38
Conservation of particle number, locally

violated by superfluids,
superconductors, n5 195,
e9.8 212

Conservation, local, and currents, 20
Conserved order parameter

and current, 20, 64, 122, 248
always use to derive laws, n18 21

Constitutive relations vs. free energy
densities, n22 206

Continuity equation, f2.5 21, f4.1 64
Continuous phase transition, 263–82

2SAT, e8.15 189
crackling noise, 263
often called second order, 243
percolation, 263
singularities not usually jumps in

second derivative of free
energy, n7 243

Continuous-time Monte Carlo, n36 179
Controlled-not gate, and reversible

computation, e5.3 93
Convexity, n34 258

and Jensen’s inequality, n36 88
entropy, downward, n37 46, f5.9 88,

e8.12 182
free energy

Landau theory ignores, f9.22 208
mean-field theory ignores, e12.5 284
not for martensites, 250, e11.8 258
vs. metastability, f11.2 242

Convolution
and product of Fourier transform, 303
closely related to correlation function,

n13 303
Green’s functions, 25, n12 303
sums of random variables, e1.2 6,

e12.11 292, n12 303
Cooling

rubber band when stretched, e5.12 99
Corner rounding transition, equilibrium

crystal shape, f11.6 247,
f11.10 249

Correction to scaling, n2 266, 278,
e12.2 282, e12.11 293

Correlation function, 215–22
and power spectrum, 303
avalanche, e12.13 296
closely related to convolution, n13 303
connected, 219, e10.5 236
equal-time, 216, f10.4 217, f10.5 218,

218–20
ideal gas is white noise, 219
one-dimensional magnet, e10.8 239
proportional to static susceptibility

χ̃0(k) = βĈ(k, 0), 225
equilibrium, 218–22, 224–9

relations to response, dissipation,
218

even under time reversal, 228
experimental probes, 217–18
extracts characteristic length, time,

216
measure of morphology, 216
measures influence on distant

neighbors, 216
measures long-range order, 216
motivation, 215–17
pair distribution function, n6 217,

e10.2 233
reduced

analogous to superfluid density
matrix, e9.8 212

related to susceptibility,
fluctuation-dissipation
theorem

(classical) χ′′(ω) = (βω/2) C̃(ω),
228

(quantum) χ′′(k, ω) =
(1/2~)(1 − e−β~ω)C̃(k, ω),
229

same evolution law as initial
condition, 221

scaling form, 277
coarsening, e12.3 282

scattering, 217
space–time, one-dimensional magnet,

e10.8 239
telegraph noise, e10.5 236
time dependent

general case, n12 221
ideal gas is Gaussian, 221
Ising model, e10.6 237
Onsager’s regression hypothesis,

220–2
transform of absolute square of

transform, 217, n22 225,
e10.1 233, 303

two-state spin, e10.4 236
Correlation length, f10.4 217

diverges at continuous phase
transition, f10.4 217

exponential decay beyond, f10.5 218
power-law singularity at critical point,

266, 275
zero for white noise, n9 219

Correlation time, see Critical
slowing-down

Correlation time, power-law singularity
at critical point, 275

Cosmic microwave background
radiation, e7.15 159, e10.1 231

and absolute velocity of Sun, e10.1 232
correlation function, f10.14 232
fluctuation map, f10.13 232

CPT invariance
and entropy increase, n8 80

Crackling noise
at continuous transition, 263

crumpled paper, Rice Krispies
TM

,
263, e12.13 296

earthquakes, 263, f12.3 265, e12.13 296
magnets, e8.13 182, e12.13 296
random-field Ising model, e12.13 296
size distribution power law, 263

Critical droplet, f11.4 244, 244–6
and equilibrium crystal shape, 246
balances surface tension vs.

undercooling force, 245
barrier to nucleation, 245
dislocations under shear, e11.5 255
energy diverges at transition, 246,

e11.5 255
ice crystal, snowflake model, e11.9 259
nucleation rate, 245, e11.4 253
radius diverges at transition, 246,

e11.5 255
unstable state, 245

Critical droplet theory
calculates rare fluctuations, in tail,

n14 246
Critical exponent

−2ν, surface tension, 275
1/(σν), fractal dimension, 274
α

Feigenbaum, e12.9 290
specific heat, 275

β
generic, mean-field 1/2, e9.5 208, 266,

e12.5 284
Ising 2D 1/8, e9.5 209
Ising, magnet, liquid–gas 0.325,

e9.5 209, f12.6 267, e12.5 284
magnetization, 275
percolation, 2D is 5/36, e12.12 294
pitchfork bifurcation, e12.4 283
van der Waals, 1/2, e11.2 252

δ
Feigenbaum, e12.9 290
magnetization in field, 276

η, correlation function, 275, e12.2 282
γ, susceptibility, 275
ν, correlation length, 275, e12.2 282

percolation, 2D is 4/3, e12.12 295
random walk 1/2, 19
self-avoiding random walk 3D 0.59,

2D 3/4, 19, e2.10 31
σ, cut-off in size distribution, 277,

e12.13 297
τ , size distribution, 274, e12.12 294

percolation, 2D is 187/91,
e12.12 294

τ̄ = τ + σβδ, avalanche sizes, n13 274,
e12.13 297

ζ = zν, correlation time, 275,
e12.6 285

critical slowing-down, e12.6 285
from eigenvalues at fixed point,

n17 276
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from eigenvalues at fixed-point,
e12.7 286, e12.11 292

irrational, at critical points in 3D, 266
not the main predictions near critical

points, 276
rational, often in 2D, 266
simple to measure, hard to measure

well, 276, f12.13 276
specialists talk in Greek letters, 276
universal, 274
wrong from Landau theory, e9.5 209
wrong in mean-field theory, e12.5 284

Critical point, 263–82
circling

from liquid to gas, f6.14 129, f8.4 166
from up-spin to down-spin, f8.5 166

dynamical systems, 279–80, e12.4 283
emergent scale invariance

avalanche Rc, f12.11 273
Ising Tc, f12.1 263
percolation pc, n4 267

glass, theories of, 280–1
liquid–gas transition, 166

described exactly by Ising model,
166, 266

onset of chaos, e12.9 288
onset of lasing, e12.6 284
quantum, 278–9
van der Waals, e11.2 252

Critical region, large near some
transitions, f12.13 276

Critical slowing-down, 275
cluster-flips bypass (Wolff algorithm),

e8.8 177, e8.9 177
Ising model, e8.8 177, e8.9 177, 217
NP-complete problems, e8.15 188, 189
onset of lasing, e12.6 285

Criticality, self-organized, f12.10 271, 272
Crystal

coarsening and polycrystal grain size,
247

dislocation
Burger’s vector, f11.15 254
extra half-layer of atoms, 198
mediates bending, n15 200, e11.5 255
nucleation under stress, e11.5 254
topological defect, f9.11 198

flows like a liquid, but not in linear
response, e11.5 255

no less amazing than superconductor,
superfluid, 197

order parameter space is torus
u(r) ∈ Td, f9.6 194, 195

Curie’s law, e8.2 175
Current

and local conservation, 20, 64, 122,
248

always use to derive laws, n18 21
quantum, from gradient of

wavefunction, n36 211

Curvature, and frustration in glassy
systems, f12.18 281

Dark energy, may lead to lonely
Universe, e5.1 91

Data compression, and entropy, 87,
e5.14 100, e5.15 100

Davis–Putnam algorithm, for logical
satisfiability, e8.15 187

de Broglie wavelength, quantum
related to thermal, n51 53

de Broglie wavelength, thermal
and Bose condensation, 149
ideal gas entropy, 111
ideal gas Helmholtz free energy, 119,

121
ideal gas partition function, 110
microcanonical, 53
microcanonical entropy, 53
related to quantum, n51 53

Decimation, Ising model, f12.9 270
Decoupling time, after Big Bang,

e7.15 159, e10.1 231
Defect entanglement: glasses and biaxial

nematics, 202
δ-function, Dirac, n11 19, 24, e3.6 56

correlation for white noise, 219
derivative of step, n10 38
not a function, n4 6
three-dimensional, 219

Demon, Maxwell’s
as biological ion pump, f5.6 83
entropic limits to, 83, e5.2 92

Dendritic growth, f11.12 251, 250–1,
e11.9 259

crystalline anisotropy, e11.9 261
linear stability analysis, e11.9 260
metals and alloys, 251
tips grow fastest; less salty, humid,

hot, 250, f11.21 260
Density matrix, 136–9

and constant microscopic entropy,
e7.4 153

basis-independent, 136
canonical distribution

ρ = e−βH/(Tr e−βH), 137
entropy S = −kBTr(ρ log ρ), 138
needed for time-dependent ensembles,

136
no ODLRO for Fermi and

non-degenerate Bose, e9.8 212
ODLRO for superfluids and

superconductors, 136
ODLRO for superfluids, Bose

condensates, e9.8 212
photon polarization, e7.5 154
pure states, 137
reduced

analogous to correlation functions,
e9.8 212

Bose condensate, superfluid,
e9.8 211

spin, time evolution, e7.6 154
sufficiency, 137
superfluid, 〈a†(r′)a(r)〉, e9.8 212
time evolution, 138

as quantum Liouville’s theorem, 138
minus Heisenberg evolution, n9 138

time independent for any mixture of
energy eigenstates, 139

Density of states
independent of boundary conditions,

large system, n30 147
sloppy notation, g(ω) vs. g(ε), n32 147

Derivative
high-order, small when lengths are

long, n9 196
variational, n41 122, 196, e9.4 206,

n7 218, e10.8 239
Derivative (stock), e2.12 32

Black–Scholes model, e2.12 32
pricing, e2.12 32

Detailed balance, e8.12 182
defined, 170
defined without using equilibrium

density, e8.5 176
from time-reversal invariance, 170
in nanojunctions, e10.5 237
Metropolis algorithm, e8.6 176
radiation from colored objects,

e7.7 155
why black-body radiation is black,

n34 148, e7.7 155
Wolff algorithm, e8.8 177

Dew, and nucleation, 244
Diatomic molecules

Earth’s atmosphere, n13 39
free energy, n31 119
rotations and vibrations, n27 44,

n54 56
Dielectric permittivity ǫ(ω)

vs. dielectric constant, n16 222
vs. polarizability α(ω), n16 222

Differential forms
and thermodynamics, n23 116
inexact, exact, and closed, n23 116
mathematical meaning of dE, n56 58,

n23 116
Differentiation: cellular specialization,

e8.11 180
Diffraction experiments, f10.6 218

and Fourier transforms, 217, 299
complementary to real-space

microscopy, 217
form factors, n6 217
measure correlation function, 217
precision, ties with theory, 218

Diffusion
constant, sign explained, n14 20
photons in Sun, e2.2 26
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Diffusion equation, 19–25
and central limit theorem, 25
and Onsager’s regression hypothesis,

220
as approach to equilibrium, 22
as case of general evolution law,

e9.6 209
as continuum random walk, f1.1 2,

19–22, f2.6 24
Black–Scholes model for derivative

pricing, e2.12 33
chemotaxis, 25
constant rain solution, n19 22
decay of initial fluctuation, f10.7 220
decay of initial state, f10.8 220
Einstein relation D/γ = kBT , n20 22,

123
exponential atmosphere, 22
Fourier methods solve, 23
from free energy density, 123
Green’s function, 23–5
ignores spontaneous fluctuations, 220
imaginary D gives Schrödinger’s

equation, n23 23
macroscopic law describing

micro-correlations, 221
sinusoidal initial state ‘squelched’,

e2.6 28, e2.7 29, e2.8 30
smears density sideways, 25
solving, 22–5
‘squelches’ short wavelengths, 23
thermal conductivity, n4 16, e2.8 30

frying pan, e2.9 30
with external force or drift, 21

Digital memory tape, f5.10 92
frugal, one atom per bit, e5.2 91

Dimension, fractal
capacity vs. information, e5.16 101
definition, n6 17
for random walk, f2.2 18

Dimerization reaction, e8.10 178
Dirac δ-function, n11 19, 24, e3.6 56

correlation for white noise, 219
derivative of step, n10 38
not a function, n4 6
three-dimensional, 219

Disclination, e9.1 203
nematic, f9.14 200

clock arithmetic, 201
own antiparticle, 201

Dislocation, f9.11 198
Burger’s vector, f11.15 254
classified by homotopy theory,

f9.12 199
energy released, motion under stress,

e11.5 254
entanglement not topological, 202
extra half-layer of atoms, 198
long-range interaction, e11.5 254
mediates bending

crystal, n15 200
crystals and superfluids in two

dimensions, n22 254
mediates bending of crystal, e11.5 255
no plasticity in linear response,

e11.5 255
nucleation under stress, e11.5 254
represented by ‘tee’, e11.5 254

Disorder and entropy, 81–5
Disordered system

phase transition, 280
replica vs. cluster models, n22 280
vs. glass, n20 280

Dispersion relation
definition, n40 152
massive Bose particles, e7.2 152
phonons, e10.9 240
photons, e7.2 153
relativistic particles, e7.2 153

Dissipation, 223–4
and fluctuations, theorem, 227–9
and ultrasonic attenuation, 223,

e10.9 240
balanced by thermal noise, e10.7 238
friction and mechanics, 117, 227,

e10.3 235, e10.7 238
imaginary part of susceptibility χ′′(ω),

223, e10.3 235
related to correlation,

fluctuation-dissipation
theorem

(classical) χ′′(ω) = (βω/2) C̃(ω),
228

(quantum) χ′′(k, ω) =
(1/2~)(1 − e−β~ω)C̃(k, ω),
229

related to real susceptibility by
Kramers–Krönig, 229–31

resistance, 223
two-state spin, e10.4 236
vanishes as ω → 0 for Goldstone

modes, e10.9 240
Distinguishable particles

partition function, 145
vs. undistinguished particles, n24 145

Diversification, risk, and random walks,
e2.11 32

DNA
configuration as random walk, e2.10 30
persistence length, e2.10 30

Doppler shift, and microwave
background Planck spectrum,
e7.15 159

Double well, e6.2 125
model for glass, 84
potential, f5.7 84
vs. convexity, f9.22 208, f11.2 242,

e12.5 284
Droplet fluctuations, abrupt phase

transition, n2 241

Drunkard’s walk, 16–17, f2.1 17
Dynamical corrections to transition state

theory, e6.11 130
Dynamical corrections to transition-state

theory, n35 120
Dynamics

bifurcation theory, as phase transition,
279–80, e12.4 283, e12.9 288

chaotic, 279
butterfly effect, e5.9 96

earthquake fault, 271
ergodic, 65–9
glassy, n22 84, 280
Hamiltonian, 63

general, n4 64
implications from Liouville, 65
no attractors, 65
phase-space flow incompressible, 65
preserves symplectic form, n6 64

jamming, as theory of glass transition,
281

not determined from statistical
mechanics, 220

Onsager’s regression hypothesis, 220
quantum mechanics, 220

of maps, related to continuous, n50 97
one-dimensional magnet, e10.8 238
planetary, vs. ergodicity, e4.4 72
slow

arise from conspiracy, 196
arise in three ways, n37 121

Dyson, Freeman, life and heat death of
Universe, 81, e5.1 91

Earthquake, 263
Burridge–Knopoff / Carlson–Langer

model, f12.4 265
energy release vs. time, f12.3 265
models, self-organized critical, 271

Edge rounding transition, equilibrium
crystal shape, f11.6 247

Efficiency
limit

data compression, n33 87, e5.14 100,
e5.15 100

heat engine, 78
Maxwell’s demon, 83, e5.2 92
none on electrical motors, 77
refrigerator, e5.6 95

molecular motors, e2.3 27
Eigenvector, left and right, for

asymmetric matrix (Markov
chain), 168, e10.5 236

Eight-fold way from group
representation theory, 306

Einstein
A, B coefficients

and lasing, e12.6 285
stimulated and spontaneous

emission, absorption, e7.8 155
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relation D/γ = kBT , n20 22
from free energy density, 123

theory of relativity, vs. cosmic
microwave background
radiation, n30 232

Elastic scattering, and equal-time
correlation function, 217

Electrical conductivity
diffusion equation, n4 16
related to AC polarizability

σ = limω→0 ω α′′(ω), 224
Elementary excitation, 196–8

not at low frequency in
superconductor, 197

orientational
none for crystal, 197

rotational wave in liquid crystal,
f9.10 197

second sound (heat wave) in
superfluid, 197

sound in crystal, f9.8 196
spin wave in magnet, f9.9 197

Emergent
fractal scale invariance

Ising Tc, f12.1 263
percolation pc, n4 267
random walk, 17

law, 15
field theory, particle physics, 265
fluid mechanics, quantum

mechanics, 265
fundamental versus specific, n1 15
gravitation as an, n1 15

mathematical effectiveness,
unreasonable, n1 15

properties, studied by
condensed-matter physics,
192

symmetry
rotation, translation invariance,

n4 267
rotational, in random walks, e2.5 28
translational, rotational, Lorentz, in

lattice quantum
chromodynamics, 265

Emission
of light from small hole, e7.7 154
spontaneous vs. stimulated, e7.9 156

Einstein coefficient, e7.8 155
Endothermic reaction, definition,

n32 120
Energy

analogue, conserved in domain wall
structure, e9.4 206

dE = T dS − P dV + µdN , 116
eigenstates, many-body, peculiar,

n10 139
extensive variable, 46
fluctuations

and specific heat, e3.8 56, 108,
e8.2 174

Gaussian, n37 46, e3.7 56
kinetic energy measures specific

heat, e3.8 56
tiny for large system, n37 46,

e3.7 56, e3.8 56, 108
from canonical partition function, 107
no minimum cost for computation,

e5.3 93
no minimum cost for measurement,

e5.2 91
quantum harmonic oscillator

canonical, 139
vs. dirt in disordered system

transition, 280
vs. entropy at thermal phase

transition, 278
vs. zero-point fluctuations at quantum

phase transition, 278
Energy conservation, 77

and the Carnot cycle, 79
Energy gap

as particle mass in field theory,
n11 140, n11 197

black-body radiation, 148
Ising model, e8.2 175
quantum harmonic oscillator, 140
superconductor, 136

Energy shell, 38
average 〈O〉E , 38

(1/Ω)
∫
dPdQ O δ(E −H), 39

dawdling regions thicker, f3.1 38, 67
ideal gas, f3.2 42
stirred, but relative weights

maintained, 65
volume Ω(E), 38

Gibbs factor 1/N !, 52
grows rapidly with E, e3.7 56∫
dP dQ δ(E −H), 39

not surface area, n23 42
so large that multiplying by

constant is irrelevant, n47 51
volume Ω(E), divided by h3N , 52

general argument, n42 153
Nernst’s theorem, e7.3 153
quantum state counting, e7.3 153
semiclassical and path-integral

arguments, n42 153
Energy surface, as thin energy shell,

n2 63
Engineering exercises, e11.5 254,

e11.7 255, e11.8 258
Engines

electrical, 77
heat, 77–80

entropic limit to efficiency, 78
P–V diagram, e5.5 94

perpetual motion, f5.1 78
steam, 77

Ensemble
canonical, see Canonical ensemble
comparing microcanonical, canonical,

grand canonical for Bose,
Fermi, Maxwell–Boltzmann,
distinguishable, e7.1 151

en masse solutions, 37
equilibrium, cannot determine

dynamics, 220
grand canonical, see Grand canonical

ensemble
microcanonical, see Microcanonical

ensemble
multiple choices for, 115
transforming between different, with

Legendre transformation, 115
Ensemble average

denoted by angle brackets 〈·〉, n2 16,
220

equal-time denoted 〈·〉eq, 220
evolving denoted by 〈·〉ev, 220
of evolution from fixed initial

condition [·]ρi , 220
Enthalpy H

dH = T dS + V dP + µdN , 116
E + PV , 116

Entropic force
ideal gas, 123
pollen, e6.13 132
rubber band, e5.12 98

Entropy, 77–103
additive for uncorrelated systems, 90
always increases, n3 77
and chemical potential,

µ = −T (∂S/∂N)|E,V , 47
and information dimension, e5.16 101
and pressure, P = T (∂S/∂V )|E,N , 47
and telephone frequency range,

e5.15 100
as disorder, 81–5
as ignorance, 85–90
as irreversibility, 77–81
as measure of knowledge about

system, 86
black hole, e5.4 94
burning information, e5.2 92
card shuffling, e5.13 99
Carnot cycle, 78–80
change

and heat flow ∆S =
∫
dQ/T , 84

and heat flow ∆S = Q/T , 80
for conditional probabilities, 89
upon greater knowledge, 89

change upon forgetting a bit, e5.2 92
classical non-equilibrium

S = −kB
∫
ρ log ρ, 86

communications theory, 82, 87,
e5.15 100

connotations of the word, n1 77
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constant during adiabatic changes, 49,
51

convex downward, n37 46, f5.9 88,
e8.12 182

counting, 82
currency paid for energy bought from

world, 46
data compression, e5.14 100, e5.15 100
decrease preceding rare fluctuation

into ordered state, n10 81
defines the future, 80
definition, microcanonical

S = kB logΩ, 45
density matrix, 86, 138
discrete S = −kB

∑
p log p, 86

dS = (1/T ) dE+(P/T ) dV −(µ/T ) dN ,
n40 47

equivalence of thermodynamic and
statistical, n6 80, 84

extensive variable, 46, 90
from canonical partition function, 108
from Helmholtz free energy, 108
Gibbs paradox, n16 83
glasses, 83–5, e5.11 97

if configuration were known, 86
hard sphere gas, e3.5 55
heat death of Universe, 81, e5.1 91
human desegregation, negligible,

n13 82
ideal gas

canonical, 111
crude, 51
microcanonical, 53

ignorance function, 87, e5.17 102
information
S = −kS

∑
p log p, 87–90

information and work, 83, e5.2 91
Jensen’s inequality, n36 88
kS instead of kB, 87
losing one’s keys, 87
lossless data compression, n33 87
lossy data compression, n33 87
maximized in equilibrium, n36 46
maximum for equal probabilities, 88
measure of uncertainty, n26 85
measuring of states not chosen, 84
messy rooms, 81
microcanonical

almost extensive, n35 46
ideal gas, 53
ideal gas, crude, 51

microscopic, does not increase, 87,
e5.7 95, e7.4 153

classical derivation, e5.7 95
quantum derivation, e7.4 153

minus slope of Gibbs free energy with
respect to T , 242

mixing, 82
mixed diagram, f5.5 82
segregated diagram, f5.4 82

mixing identical particles
avoided by Gibbs factor 1/N !, 83
microscopic change, n15 83
no change, 83

no minimum change during
computation, e5.3 93

non-decreasing, n3 77
non-equilibrium, 86, e5.17 102
not extensive for gravitational

systems, n35 46
not the only measure of disorder,

n12 81
not zero at T = 0, but density S/N is,

n20 115, n41 153
of photons and matter in Universe,

e7.15 160
osmotic pressure, n17 83
partial information, 86
per bit, 82, n32 87
quantum S = −kBTr(ρ log ρ), 86, 138
redundancy in English, e5.15 100
reversible computation, e5.3 93
roads not taken, 83, f5.8 85
rubber band, e5.12 98
scrambling an egg, 82
Shannon, 87–90, e5.15 100
S = −kS

∑
p log p, 87

surface in (S,E, V ) space, f3.4 48
the arrow of time, 80
thermodynamic

and glasses, e5.11 97
definition ∆S = Q/T , 80

three interpretations, 77
three key properties specify form, 87,

e5.17 102
time-reversal invariance, 80, 87,

e5.7 95, e7.4 153
unaffected by zero probability states,

88
unchanged by reversible process, 80
upper and lower bounds, measured

non-equilibrium, e5.11 98
vs. energy at thermal phase transition,

278
written works of human history,

compared to gas, n27 85
zero set by quantum mechanics, 52,

115, e7.3 153
Entropy, increase

(perversely) at some ordering
transitions, n12 81

and CPT invariance, n8 80
and electromagnetic wave emission,

n9 80
and Lyapunov exponents, e5.9 96
as emergent property, 90, e5.7 95
C. P. Snow and Shakespeare, n19 115
card shuffling, e5.13 99
cat map, e5.8 95
diffusion equation, e5.10 97

during billiards or pool, 80
for antimatter beings, n8 80
Markov chains, e8.12 182

Entropy, limits on, 90
computation, e5.3 93
data compression, 87, e5.14 100,

e5.15 100
density, e5.4 94
heat engine efficiency, 78
Maxwell’s demon, e5.2 92
measurement, e5.2 91
memory, e5.4 94
refrigerator efficiency, e5.6 95
thought, e5.1 91

Enzyme, definition, n29 118
ǫ-expansion, renormalization-group, 172,

269
Equal-area construction, Maxwell,

f11.3 244, 243–4
makes sense only in mean field,

n11 244
van der Waals, e11.1 251

Equal-time correlation function,
f10.4 217, f10.5 218, 218–20

one-dimensional magnet, e10.8 239
Equation of state, 52

ideal gas, 52
rarely closed form, n48 52

Equilibration
and diffusion equation, 22
as regression to the mean, 65
Hamiltonian and dissipative different

mechanisms, 65, e4.3 71
regression to the mean, 39
time, in molecular dynamics, e4.1 69

Equilibrium, see also Chemical
equilibrium

average over phase space, 37
connotations of the word, n1 77
defined, 37
falling out of, 85
fluctuates for small system, n3 37
independent of external world, except

for T , P , µ, 46, e3.9 57
not fluctuations, e3.9 57

independent of initial conditions, 37
no dynamics

needs Onsager’s regression
hypothesis, 220

needs quantum mechanics, 220
testing, with detailed balance,

e10.5 237
Universe, nearly perfect after Big

Bang, e7.15 159, e10.1 231
Equilibrium crystal shape, f11.6 247,

f11.10 249
Equipartition theorem

and diffusion equation, n20 22
and ultraviolet catastrophe, 147
black-body radiation, wrong for, 148
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classical harmonic oscillator, 111
for classical momentum, 44
quantum harmonic oscillator at high

T , 140
yielding magnetization fluctuations,

e10.8 239
Ergodic, 65–9

component, 66
definition

dynamical vs. Markov, 170
no components which do not

intermingle, 66
physics vs. mathematics, n20 169
trajectory passes near every point,

66
geodesics on negatively curved

surface, 67
hard spheres, 67
hypothesis, 65
Markov chain, 169
mathematicians allow transient states,

n20 169
theorem, see Ergodic hypothesis
thoroughly stirred, 65
time average equals microcanonical

average, 66
usually not possible to prove

not a concern, 69
vs. KAM tori, 68
vs. mixing, n9 66
Wolff algorithm, e8.8 177

Ergodicity
breakdown

at glass transition, 69
with anharmonic localized modes,

68
breakdown at broken symmetries, 68
broken at glass transition, 280
Feigenbaum map, µ = 1, e4.3 71
not for planetary motion, e4.4 74
usually not possible to prove for

microscopic dynamics, 67
vs. Fermi, Pasta, Ulam, and KdV, 68
vs. KAM tori, f4.3 66
why is Earth not interstellar?, e4.4 73

Ericksen–Leslie liquid crystal free
energies, n22 206

Euler method, solving PDE not ODE,
e3.12 59

Euler relation E = TS − PV + µN ,
e6.8 128

implies µ equal at phase coexistence,
242

Evaporation
does not change momentum

distribution, e6.1 125
Exclusive OR gate, and irreversible

computation, e5.3 93
Exercises

difficulty rating scheme, vi

Exercises, by difficulty

©1 inspection, e3.1 54, e3.2 54, e6.2 125,
e8.1 174, e8.6 176, e12.1 282,
eA.1 307

©2 basic, e1.1 4, e1.2 5, e1.4 7, e2.1 25,
e2.2 26, e2.3 26, e2.4 27,
e2.6 28, e2.7 29, e2.8 30,
e2.9 30, e2.11 31, e2.12 32,
e3.3 54, e3.4 54, e3.5 55,
e3.8 56, e3.9 57, e4.1 69,
e4.2 70, e5.1 91, e5.5 94,
e5.6 95, e5.12 98, e5.14 100,
e6.1 124, e6.4 126, e6.5 127,
e6.8 128, e6.9 129, e6.11 129,
e7.7 154, e7.10 157, e7.13 158,
e8.3 175, e8.4 175, e8.5 176,
e12.2 282, eA.2 307, eA.3 307,
eA.4 308, eA.5 309, eA.6 309,
eA.8 311, eA.9 311

©3 challenging, e1.3 6, e1.5 7, e1.6 8,
e1.8 12, e2.5 28, e2.10 30,
e3.6 55, e3.7 56, e3.10 58,
e3.11 58, e4.4 72, e5.2 91,
e5.3 93, e5.4 93, e5.7 95,
e5.8 95, e5.9 96, e5.10 97,
e5.11 97, e5.13 99, e5.15 100,
e5.17 102, e6.3 125, e6.6 128,
e6.7 128, e6.10 129, e6.12 131,
e6.13 132, e6.14 133, e7.1 151,
e7.2 152, e7.3 153, e7.4 153,
e7.5 154, e7.6 154, e7.8 155,
e7.9 156, e7.11 157, e7.12 157,
e7.15 159, e7.16 161, e8.2 174,
e8.8 177, e8.12 182, e9.1 203,
e9.2 204, e9.3 205, e9.4 206,
e9.5 206, e9.6 209, e9.7 210,
e10.1 231, e10.2 233, e10.3 235,
e10.4 236, e10.5 236, e10.6 237,
e10.7 238, e10.8 238, e10.9 239,
e11.1 251, e11.2 252, e11.3 252,
e11.4 253, e11.5 254, e11.6 255,
e11.7 255, e11.8 258, e11.9 259,
e12.3 282, e12.4 283, e12.5 284,
e12.6 284, e12.7 285, e12.8 286,
e12.13 296, eA.7 310,
eA.10 311

©4 project, e1.7 9, e2.13 33, e3.12 58,
e4.3 70, e5.16 101, e7.14 158,
e8.7 176, e8.9 177, e8.10 178,
e8.11 179, e8.13 182, e8.14 185,
e8.15 186, e12.9 288,
e12.10 291, e12.11 291,
e12.12 293

©5 advanced, e9.8 211

Exercises, by subject

Astrophysics, e2.2 26, e4.4 72, e5.1 91,
e5.4 93, e7.15 159, e7.16 161,
e10.1 231

Atomic physics, e7.9 156, e7.13 158,
e7.14 158

Biology, e2.3 26, e6.4 126, e6.12 131,
e8.10 178, e8.11 179

Chemistry, e6.8 128, e6.9 129,
e6.10 129, e6.11 129, e11.1 251,
e11.2 252, e11.3 252

Complexity, e1.7 9, e2.13 33, e4.3 70,
e5.9 96, e5.14 100, e5.16 101,
e8.13 182, e8.14 185, e12.9 288,
e12.12 293, e12.13 296

Computation, e1.7 9, e1.8 12, e2.4 27,
e2.5 28, e2.10 30, e2.11 31,
e2.13 33, e3.4 54, e3.12 58,
e4.1 69, e6.1 124, e6.12 131,
e8.1 174, e8.2 174, e8.6 176,
e8.7 176, e8.8 177, e8.9 177,
e8.10 178, e8.11 179, e8.13 182,
e8.14 185, e8.15 186, e10.2 233,
eA.2 307, eA.4 308, eA.7 310,
eA.8 311

Computer science, e1.8 12, e5.2 91,
e5.3 93, e5.14 100, e5.15 100,
e8.15 186

Condensed matter, e2.10 30, e5.11 97,
e5.12 98, e7.10 157, e7.11 157,
e7.12 157, e9.1 203, e9.2 204,
e9.3 205, e9.4 206, e9.5 206,
e9.7 210, e9.8 211, e10.4 236,
e10.5 236, e10.6 237, e10.8 238,
e11.9 259, e12.2 282, e12.3 282,
e12.5 284, e12.8 286

Engineering, e11.5 254, e11.7 255,
e11.8 258

Finance, e2.11 31, e2.12 32

Mathematics, e1.3 6, e1.4 7, e1.5 7,
e1.6 8, e1.8 12, e3.10 58,
e3.11 58, e4.2 70, e4.3 70,
e4.4 72, e5.7 95, e5.8 95,
e5.9 96, e5.13 99, e5.14 100,
e5.16 101, e5.17 102, e7.4 153,
e7.8 155, e8.3 175, e8.4 175,
e8.6 176, e8.8 177, e8.12 182,
e8.15 186, e9.1 203, e9.2 204,
e9.3 205, e11.7 255, e11.8 258,
e12.4 283, e12.6 284, e12.9 288,
e12.10 291, e12.11 291,
eA.10 311

Optics, e7.8 155, e7.9 156, e12.6 284

Quantum, e1.1 4, e1.6 8, e7.1 151,
e7.2 152, e7.3 153, e7.4 153,
e7.5 154, e7.6 154, e7.7 154,
e7.8 155, e7.9 156, e7.10 157,
e7.11 157, e7.12 157, e7.13 158,
e7.14 158, e7.16 161, e9.7 210,
e9.8 211, e12.6 284

Statistics, e6.14 133

Thermodynamics, e3.10 58, e3.11 58,
e5.5 94, e5.6 95, e6.5 127,
e6.6 128, e6.7 128, e6.8 128,
e6.9 129, e6.10 129

Exothermic reaction, definition, n32 120
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Extensive variable, definition, 46
Extensivity

and Euler relation, e6.8 128
and Gibbs–Duhem relation, e6.9 129
and large numbers, e3.2 54
Helmholtz free energy, 109
of entropy, 90

Eye blink
atoms collide a million, million times

during, 196
entropy larger than human

desegregation, n13 82

Faceting, on equilibrium crystal shape,
f11.6 247, f11.10 249

Fast Fourier transform (FFT)
aliasing, eA.7 310
centered plots, 301, n6 301
counting modes, eA.7 310
definition, 301
windowing, eA.7 310

Feigenbaum map
boundaries, e4.3 72
fractal dimension at µc, e5.16 101
invariant measure, e4.3 70
Lyapunov exponents, e5.9 96
period-doubling cascade,

renormalization group,
e12.9 288

Feigenbaum numbers, α, δ, e12.9 290
Fermi energy, 150
Fermi gas, free, 150–1

fixed point of renormalization group,
e12.8 287

not accurate for metals, 151
Fermi liquid theory, n23 144

perturbed from free Fermi gas, 172
renormalization group, n23 144,

e12.8 286
flow diagram, f12.20 287

Fermi sphere, f7.7 147, n38 150
Fermi statistics, 140–1

antisymmetric wavefunctions, 140
exclusive, 145
Maxwell–Boltzmann at low

occupancy, high T , 143
Fermi surface, 151

aluminum, f7.11 151
lithium, f7.10 150

Fermi, Pasta, Ulam, and KdV
ergodicity breakdown, 68

Fermi–Dirac distribution
occupation of non-interacting states,

f7.4 142, 143, f7.5 143
Fermion

electron, proton, neutron, neutrino,
quark, n14 140

free, 150–1
grand partition function, 143
half-integer spin, n14 140

non-interacting, 143
amazing utility, 144
and Fermi liquid theory, n23 144
occupation, 143

Ferromagnet, 164
Feynman diagram

antiparticles, as backward in time,
f7.3 141

low-temperature expansion, cluster,
f8.7 172

Feynman diagrams
sum not convergent, e1.5 8

FFT, see Fast Fourier transform
Fidelity, of numerical solution to

Hamiltonian system, e3.12 59
Finance exercises, e2.11 31, e2.12 32
Finite-size scaling, 277, e12.12 294
Finite-size scaling function, 277
First homotopy group, see Homotopy

group, first
First law of thermodynamics:

conservation of energy, 77,
114

First-order phase transitions, see also

Abrupt phase transitions
avoid using term, n7 243
jumps in first derivatives of free

energies, 243
Fixed point

renormalization-group, 269
stability, n24 71, n33 289
stable, antithesis of Liouville, e4.3 71

Fluctuation-dissipation theorem, 227–9
classical
χ′′(ω) = (βω/2) C̃(ω), 228

dissipated power proportional to
fluctuation correlations, 229

general, n24 227
harmonic oscillator, e10.3 235
ideal gas, 228
Ising model, e10.6 237
quantum
χ′′(k, ω) =

(1/2~)(1 − e−β~ω)C̃(k, ω),
229

sound waves, e10.9 240
speculative applications out of

equilibrium, 229
time, χ(x, t) = −β∂C(x, t)/∂t (t >

0), 228
Fluctuation-response relation

easy to perturb, big fluctuations, 225
general, χ̃0(k) = βĈ(k, 0), 225
general, uniform, 226
specific heat and energy fluctuations,

e3.8 56, 108, e8.2 174
susceptibility and magnetization,

e8.2 174
Fluctuations

average, not measured as mean
absolute size (non-analytic),
n3 16

density, probability from free energy
density, 219, 220

droplet, near abrupt phase transition,
n2 241

energy, and specific heat, e3.8 56, 108,
e8.2 174

exam score, e2.1 25
friction and mechanics, 117, 227,

e10.3 235, e10.7 238
ignored by Landau theory, e9.5 209
Ising model

and susceptibility, e8.2 174
self-similar, at Tc, f1.2 3, f9.23 209,

263
microwave background radiation,

f10.13 232
correlation function, f10.14 232

number, 40, e3.9 57
Gaussian, e3.9 57
grand canonical ensemble, 113
molecules in cells, ignored by

reaction rate theory,
e8.10 178, e8.11 181

probability from free energy density,
220

rare
critical droplet theory and

instantons, n14 246
into ordered state, decreasing

entropy, n10 81
related to susceptibility,

fluctuation-response relation,
225

shot noise, e8.10 179, e8.11 181
telegraph noise, e8.11 181
thermal wiggling, 215
tiny for large system, 41, n37 46, 226

energy, n37 46, e3.7 56, e3.8 56, 108,
e6.3 126

number, 41
zero-point, vs. energy at quantum

transition, 278
Fog, and nucleation, 244
Force balancing and minimization of free

energy, 117
Forgetting, entropy change per bit,

e5.2 92
Form factors, and X-ray diffraction,

n6 217
Four-color theorem, n15 12
Fourier, 299–312

aliasing in FFT, eA.7 310
and momentum space in quantum

mechanics, n2 299
as group representation theory, 306
as superpositions of plane waves, 23
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change of basis in function space,
303–5

conventions, 299–302
counting modes in FFT, eA.7 310
derivative multiplies by −iω, 302
diffraction experiments measure, 217,

299
diffusion equation, e2.6 28, e2.7 29, 302
discrete but infinite (Brillouin zone),

n8 301
ear as effective transform, 299

caveats, n1 299
fast transform (FFT)

centered plots, 301, n6 301
definition, 301
wonderfully effective, 22

Gibbs phenomenon, eA.10 311
inconsistent convention, space −ik

and time iω, 300
wave propagation rationale, n3 300

integral divides by −iω, 302
inverse transform, 300
makes calculus, correlations,

convolutions into algebra,
299, 302–3

many conventions different fields, 301
normalization, rationale for series and

transform, n4 300
of convolution is product, n12 221,

222, 224, e12.11 292, 303
of correlation function is power

spectrum, 217, n22 225,
e10.1 233, 303

of power spectrum is correlation
function, 303

of product is convolution, 303
of real y, ỹ(ω) = ỹ∗(−ω), 301
series and inverse series, definition,

299
series as coefficients of expansion in

plane-wave basis, 304
series related to FFT, eA.6 309
series related to transform, fA.1 300
solves diffusion equation, 23
solves linear translation-invariant

systems, 23
solves translation-invariant linear

systems, 299, 305–6
tilde Ã(k, ω) vs. hat Â(k, t), n14 222
transform, 300

of Gaussian, bogus derivation,
n25 24, n24 308

of Gaussian, is Gaussian, n24 24,
eA.4 308

translating function multiplies by
plane wave, eA.4 309

uncertainty principle, eA.4 308
white noise, eA.8 311
why many versions, 301

widening function narrows transform,
eA.4 308

windowing, eA.7 310
Fourth homotopy group, classifies

instantons, n16 200
Fractal

avalanche time series, f8.18 184
Ising model Tc, 263, e12.1 282
multifractal dimensions, e5.16 102
non-integer Hausdorff dimension,

n1 263
random walk, 17
strange, rugged sets, n1 263
structure emerging at critical point,

272
Fractal dimension

and coarse-graining, n10 274
capacity vs. information, e5.16 101
definition, n6 17
is critical exponent 1/σν, 274
random walk, f2.2 18

Frank liquid crystal free energies,
n22 206

Free body diagrams and minimization of
free energy, 117

Free energy, 105–34
analogous to energy in Boltzmann

weight, 109
as thermodynamic potential, n39 47
binary alloy, absorbing position

fluctuations, n9 165
complex for metastable state, n9 243
convex, vs. Landau theory, n32 208
decrease, Markov chains, e8.12 182
for molecular motor on DNA, f2.8 26
from coarse-graining, 105, 121–3
ignoring external world, 105–13
ignoring internal degrees of freedom,

105, 117–21
minimum not attained in martensites,

e11.8 258
surface terms and total divergences,

e9.3 205
why called free?, 109

Free energy density
for order parameter fields, 105, 121–3
gradient terms, 123
ideal gas, 121–3
one-dimensional crystal, 196
paper folding, e11.7 256

Free particle in box, 146–7
eigenstates, f7.6 146

Friction
and fluctuations, 117, 227, e10.3 235,

e10.7 238
and waste heat, 78
damped wave equation, e9.6 210
Galilean invariance and Kelvin

damping, e9.6 210, e10.9 240
not in Carnot cycle, 78

viscous, from memoryless heat bath,
e10.7 238

Frustration, 280
and curvature in glassy systems,

f12.18 281
spin glasses, f12.17 280

Frying pan
thermal diffusion in handle, e2.9 30

Functional, as in free energy density,
definition, n38 121

Future, defined by entropy increase, 80

g(ω) and g(ε), sloppy notation for
density of states, n32 147

Galilean invariance, n50 240
and Kelvin damping, e9.6 210,

e10.9 240
broken by Big Bang, n30 232

Gauge invariance
a→ ae−iζ , e9.8 213
broken in superfluids and

superconductors, e9.8 213
electromagnetism, e9.8 213
leads to number conservation, e9.8 213
reparameterization invariance, n35 259

Gaussian
also known as normal distribution,

n24 24, eA.4 308
Fourier transform

bogus derivation, n25 24, n24 308
is Gaussian, n24 24, eA.4 308

Green’s function for diffusion
equation, 24

probability distribution, e1.2 5
renormalization-group fixed point for

sums, e12.11 291
Generic scale invariance, 271, f12.10 271

random walk, 271
Gibbs ensemble, f6.4 116
Gibbs factor, n50 52

quantum Maxwell–Boltzmann
statistics, 145

Gibbs free energy G
and Maxwell construction, 243
avoids phase coexistence, 242
crossing determines abrupt phase

transition, f11.2 242
dG = −S dT + V dP + µdN , 116, 242
E − TS + PV , 116, e6.4 127, 242
equals µN , 242
minimizing maximizes entropy, n6 242
per unit area gives surface tension,

245, e11.3 253
slope with respect to T gives entropy,

242
Gibbs paradox
N ! correction to avoid, 52
and entropy of mixing, n16 83

Gibbs phenomenon, Fourier series,
eA.10 311
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Gibbs–Duhem relation
0 = S dT − V dP +N dµ,
e6.9 129

Gillespie algorithm, for stochastic
chemical reactions, e8.10 179,
e8.11 180

Ginsburg–Landau theory, n23 206
Glass

boiled sweets, n20 84
broken ergodicity, 69, 280
definition, 84
fall from equilibrium, 280
hard candy, 84
heat leak from internal relaxation,

e5.11 97
ideal, 281
long-range order in time, 280
low-temperature behavior, n22 84
metallic, 84

defect entanglement theory, 202
frustrated, f12.18 281

not in equilibrium, e5.11 97
number of microstates, 84, e5.11 98
residual entropy, 83–5, e5.11 98

magnitude, 84
specific heat on heating and cooling,

f5.18 98
spin, and frustration, f12.17 280
vs. disordered system, n20 280
window, 84

Glass transition, n22 84, 280–1
as fall from equilibrium, 280
competing theories, 281
cross-over, 281
diverging viscosity, 280
jamming, 281
slow relaxation from diverging

barriers, 250
Godot, waiting for, as Markov chain,

e8.3 175
Goldstone mode, 196–8, e10.9 239

as origin of slow processes, n37 121
dissipation vanishes as ω → 0,

e10.9 240
not for orientations in crystals, 197

dislocations mediate rotations,
n15 200

not in superconductors, 197
second sound (heat wave) in

superfluid, 197
sound waves, spin waves, heat waves,

197
Good irrational, n30 74
Googol and googolplex, e3.2 54
Gradient expansion

high-order terms small when lengths
are long, n9 196

in diffusion equation, and square
symmetry, n32 28

Landau theory, e9.5 207

wave equation, e9.6 209
Grand canonical ensemble, f6.3 112,

112–13
and number fluctuations, 113
avoids phase coexistence, n5 242
Boltzmann distribution, 112
chemical potential, 112
comparing Bose, Fermi,

Maxwell–Boltzmann,
distinguishable, e7.1 152

different from superfluid number
indeterminacy, n38 212

grand free energy Φ, 112
grand partition function Ξ, 112
Lagrange multiplier, e6.6 128
non-interacting bosons, 142–3
non-interacting fermions, 143
non-interacting undistinguished

particles, 146
quantum non-interacting systems

convenient, 142
solves each eigenstate separately,

142
Grand free energy Φ, 112

−kBT log(Ξ), 112
dΦ = −S dT − P dV −N dµ, 116
E − TS − µN , 112

Grand partition function Ξ, 112
Graph colorability, e1.8 12
Gravitation, as emergent law, n1 15
Green’s function, 23–5

applied to diffusion, e2.6 28, e2.7 29
diffusion equation, 24

and central limit theorem, 25
in quantum field theory vs. linear

PDEs, n21 22
one-dimensional magnet, e10.8 239

Group representation theory
and Landau theory, n25 207
from Fourier analysis, 306
spherical harmonics, 8-fold way, mass

and spin, 306
Gutenberg–Richter law, earthquake

sizes, f12.3 265
explanation still controversial, n14 274
power law, 274

Haber–Bosch process, ammonia
synthesis, n29 118

Hairpin fold in RNA, f6.12 127
Hamilton’s equations, 63
Hamiltonian

binary alloy, and Ising, 165
general, for hinges and rigid bodies, 64
Ising model, 164
non-interacting particles, 141
of normal modes, uncoupled

oscillators, n11 111
random-field Ising model, e8.13 182
spin, e7.6 154

standard, n11 39, 63
time dependent,

dH(V (t))/dt = ∂H/∂V dV/dt,
50

uncoupled, and canonical ensemble,
109

Hamiltonian system
all states created equal, 65
and area-preserving maps, n47 95
chaotic, e5.9 97
different from dissipative, 64
entropy non-increasing

classical, e5.7 95
quantum, e7.4 153

fidelity of numerical solution to,
e3.12 59

higher-order symplectic algorithms
less stable, e3.12 60

KAM theorem, 68
Liouville’s theorem, 63, 64
many invariants, 64
microcanonical ensemble time

independent, 65
no attractors, 65
phase-space flow incompressible, 65
symplectic algorithm, e3.12 59
symplectic form, n61 59, n6 64
Verlet methods faithful, n61 59

Hard sphere gas, e3.5 55, f3.5 55
and van der Waals, e11.1 252
entropy, e3.5 55
pressure, e3.5 55

Hard square gas, e6.13 132, f6.18 132
Harmonic oscillator

canonical partition function
classical, 111
quantum, 139

eigenstates, f7.1 139
energy gap for kBT ≪ ~ω, 140
excitations are bosons, e7.2 152
internal energy canonical

classical, 111
specific heat classical for kBT ≫ ~ω,

140
uncoupled family describing small

oscillations, n11 111
Hausdorff dimension, fractal, e5.16 101,

n1 263
Hawking and black-hole

thermodynamics, e5.4 94
Heat and particle exchange, grand

canonical ensemble figure,
f6.3 112

Heat bath, 105
all equivalent, apart from T , P , µ, 46,

e3.9 57
as rest of world, 46
fluctuations not equivalent, e3.9 57
source and sink for heat, fixes T , 46

Heat death of Universe, 81
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life and thought during, 81, e5.1 91
Heat engines, 77–80

and life at heat death of Universe,
e5.1 91

entropic limit to efficiency, 78
piston diagram, f5.2 78
P–V diagram, e5.5 94, f5.15 94
refrigerator in reverse, 78

Heat exchange, canonical ensemble
figure, f6.1 106

Heat flow
determined by temperature difference,

44
equalizes probability of states of total

system, 44
Heat flow and entropy change, 80
Heat wave, superfluid (rather cold), 197
Heat, waste, 77, 78
Heat-bath Monte Carlo, 166

as Ising model, 167
implementation, e8.7 176
thermalizes one site at a time, 167

Heaviside step function Θ(x), n10 38,
n46 237, n28 311

Heavy tails
computer time for NP-complete

problems, e8.15 188
critical droplet theory and instantons,

n14 246
probability distribution, e8.15 188
stock price fluctuations, e2.11 31

Hedgehog defect, f9.13 199
free energy, e9.3 205
surface free energy

and bulk total divergence terms,
e9.3 205

dominates bulk, e9.3 205
wrapping number, 200

Heisenberg model, n7 164
order parameter, n4 193

Heisenberg uncertainty
and Fourier transform, eA.4 308
vs. phase space, 135

Helmholtz and heat death of Universe,
81

Helmholtz free energy A
additive for uncoupled systems, 109
dA = −S dT − P dV + µ dN , 116
E − TS, 108, 115
extensivity, 109
−kBT logZ, 108

Hemoglobin, and cooperative oxygen
binding, e6.12 132

Higgs mechanism
no Goldstone mode in superconductor,

197
High-temperature expansion, 172

Ising model, e8.2 175
Hill equation, for cooperative chemical

reactions, e6.12 131, e8.11 181

Homotopy group
counts circumnavigations

through/around order
parameter space, 200

dislocation lines, commutative, 202
equivalence class of paths, 201
first, classifies line defects, 200
fourth, classifies instantons, n16 200
group inverse, 201
group product as coalescence of

defects, f9.15 201
integral formula, e9.2 204
nematic, Π1(RP 2) = Z2, 201
non-commutative, and defect

entanglement, f9.17 202,
201–3

only two examples, 202
paths on order parameter space, 199
second

classifies point defects, 200
magnet, Π2(S2) = Z, 200
spheres onto order parameter space,

200
superfluid, superconductor,

Π1(S2) = Z, e9.7 211
third, classifies textures, skyrmions,

n16 200
2D crystal, Π1(T2) = Z× Z, 199
why a group?, 201
zeroth, classifies walls, n16 200

Homotopy theory, 198–203
and path integrals, n16 200, n20 205
escape into third dimension, e9.1 204
fashionable in early 1980s, 198
order parameter space path through

holes, f9.12 199
real-space loop around defect,

f9.12 199
systematic theory of defects, 198

Hopf bifurcation, e12.4 284
H–T phase diagram, Ising model /

magnet, f8.5 166, e8.1 174
Humans

large and slow, e9.6 209
slow, compared to atoms, 196

Hysteresis and avalanches, e8.13 182,
e8.14 185, e12.13 296

avalanche figure, f12.5 266
avalanche time series, f8.18 184
Barkhausen noise, e8.13 182
bits algorithm, e8.14 186
scale invariance at Rc, f12.11 273
sorted-list algorithm, e8.14 185
subloops, f8.15 183

Icosahedron, frustrated, and metallic
glasses, f12.18 281

Ideal gas
and Euler relation, e6.8 128
canonical partition function, 110

configurations
all equally likely, 39
distinguishable density ρ = 1/V N ,

40
correlation function

equal-time, 218–20
time dependent, 220–2

entropy
canonical, 111
crude, 51
microcanonical, 53

equation of state, 52
equilibration, limit of weak

interactions and long times,
n14 39

free energy density functional, 121–3,
218

linearized, 218
Helmholtz free energy, 110
internal energy, canonical, 110
Maxwell relations, e3.11 58
microcanonical ensemble, 39–44
momentum distribution

canonical, 111
microcanonical, 42–4

number fluctuations, 40
tiny, 41

pressure, 52
temperature, 52
time–time correlation function,

Gaussian, 221
uncorrelated at equal times, 219

Identical particles, utterly the same, 52
antiparticles as backward in time,

f7.3 141
vs. undistinguished particles, 52

Ignorance
and entropy, 85–90
function, deriving Shannon entropy

from, 87, e5.17 102
Inclusive OR, ∨, n17 13
Incompressible flow, f4.2 65
Indistinguishable particles

Gibbs factor 1/N ! for phase-space
volume, 52

non-interacting, 144–6
vs. undistinguished particles, 52

Inelastic scattering, and time-dependent
correlation function, 217

Inflation, and isotropy of the microwave
background radiation,
e10.1 232

Information
burning to do work, 83, e5.2 92
dimension, fractal, and entropy,

e5.16 102
disposing of in black hole, e5.4 94
limit to density, e5.4 94

Information entropy, 87–90
S = −kS

∑
p log p, 87
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Instability of numerical solution to
dynamical system, e3.12 60

Instantons
calculates rare fluctuations, in tail,

n14 246
classified by fourth homotopy group,

n16 200
quantum analogue of critical droplet

theory, n14 246
Integral formula, Cauchy’s, 230
Integrate out degrees of freedom, see

Partial trace
Intensive variable

chemical potential, e6.9 129
definition, 46
T , P , N not independent, e6.9 129

Interfacial free energy
Landau theory, e9.4 206
rough calculation, e9.4 206, e11.3 253
van der Waals, e11.3 252

Invariant measure
as ensemble for time averages, e4.3 72
logistic map, e4.3 70

Inverse Fourier transform, series, and
FFT, see Fourier

Inversion symmetry, f9.25 210
Ion pump as Maxwell’s demon, f5.6 83
Irrational

good, n30 74
most irrational number, (1 +

√
5)/2,

n30 74
Irrelevant perturbation, renormalization

group, e12.8 287
self-avoidance for random walks in

d > 4, n9 19
Irreversibility

and entropy, 77–81
hot and cold to warm, 78

Ising model, 163–7, e8.1 174
antiferromagnetic, 164
as binary alloy, f8.3 165
at Tc, f1.2 3, f9.23 209, 263, f12.1 263
binary alloy, 165

atomic relaxation, 165
β-brass, 165
Hamiltonian, 165
thermal position fluctuations, n9 165

coarse-graining at Tc, f12.9 270
coarsening, 216, f10.1 216, f11.7 247,

e11.6 255
scaling, e12.3 282

critical droplet, e11.4 253
critical point fluctuations, 216,

f10.3 217
Curie’s law, e8.2 175
energy gap, e8.2 175
explicit mapping to binary alloy

Hamiltonian, n8 165
extensively studied, 164
ferromagnetic, 164

fluctuation-dissipation theorem,
e10.6 237

fluctuation-response relation, e8.2 174
frustrated next-neighbor, facets, log

coarsening, 249, f11.10 249
Hamiltonian, 164
high-temperature expansion, e8.2 175
Ising solution in one dimension, 166
Landau theory, e9.5 206

domain wall energy, e9.4 206
lattice gas, 166
less realistic than Heisenberg model,

n7 164
liquid–gas transition, 166

exact at critical point, 166, 266
not quantitative away from critical,

166
low-temperature expansion, 172,

f8.7 172, e8.2 175
M(T ) plot, f8.2 164
magnet, 164

spins either quantum or classical,
n7 164

mean-field theory, e12.5 284
Monte Carlo, 166

Bortz–Kalos–Lebowitz algorithm,
n36 179

continuous-time, n36 179
heat-bath algorithm, 166, e8.7 176
Metropolis algorithm, e8.6 176,

e8.7 176
Wolff algorithm, e8.8 177, e8.9 177

no analytic solution in three
dimensions, 166

non-conserved order parameter
(usually), 248

nucleation, e11.4 253
Onsager solution in two dimensions,

166
paramagnetic phase, 164
phase diagram, H–T , f8.5 166, e8.1 174
phase diagram, M–T , f8.2 164

with low-temperature series, f8.7 172
phase separation, f10.1 216, f11.7 247
pronunciation, 163
random field

and hysteresis, e8.13 182, e8.14 185,
e12.13 296

equilibrium glassy behavior, 280
self-similarity, e12.1 282
three-site, long-range interact-ons, 165
transfer matrix, exact diagonalization,

1/N , 4− ǫ, 166
Isolated system, 37
Isothermal

steps in Carnot cycle, f5.3 79
Isothermal bulk modulus, not for sound,

n56 160

Jensen’s inequality, n36 88

generalization, e8.12 182
Jordan canonical form, and Markov

chain, n16 168
Jupiter, and the three-body problem,

e4.4 72

k-space experiments, see Diffraction
experiments

KAM
good irrational, n30 74
theorem, 68, e4.4 74

and chaos, 68
winding number, e4.4 74

tori, f4.3 66, f4.7 73, e4.4 74
and ergodicity breakdown, 68

KdV equation and ergodicity, 68
Kelvin damping and Galilean invariance,

e9.6 210, e10.9 240
Kick, linear response to, 215
Kolmogorov, Arnol’d, Moser, see KAM
Korteweg–de Vries equation, and

ergodicity breakdown, 68
Kosterlitz–Thouless–Halperin–Nelson–

Young theory of
two-dimensional melting.,
n39 235

Kramers theory of chemical reaction
rates, e6.11 130

Kramers–Krönig relation, 229–31
formula for reactive χ′(ω) in terms of

dissipation χ′′(ω), vice versa,
229

from i in Cauchy’s integral formula,
230

from causality, 229
tricky to verify, e10.3 235

kSAT, see Logical satisfiability

Lagrange multipliers, e6.6 128
Landau Fermi liquid theory, n23 144

renormalization group, n23 144,
e12.8 286

Landau theory, e9.5 206
accurate for superconductors, n33 209
and mean-field theory, e12.5 284
domain wall energy, e9.4 206
gives incorrect critical exponents,

e9.5 209
ignores fluctuations, e9.5 209
Ising model, e9.4 206
non-convex free energy, n32 208
not quantitative for interfaces or

defect cores, n27 207
Langevin equation, e10.7 238

as heat bath for molecular dynamics,
e10.7 238

dissipation balanced by noise,
e10.7 238

Laplace transform, e6.5 127
Large numbers, e3.2 54
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multiplying energy-shell volume by
constant irrelevant, n47 51

Large, humans compared to atoms,
e9.6 209

Laser
acronym definition, n47 156
analogy to superflow, e9.7 211
and gregarious photons, e7.9 156
as Bose condensate, e7.2 153, e7.9 156
as phase, e12.6 284
macroscopically occupied quantum

state, e9.7 211
negative temperature, e6.3 125
onset, as phase transition, with

scaling, e12.6 285
population inversion, e7.9 156,

e12.6 284
tweezer and molecular motor, f2.9 27,

f6.11 126
Lasso

basketball, cannot, f9.13 199
hemisphere, can, f9.14 200

Latent heat
abrupt phase transition, n3 241
boiling water, 600 cal/g, n3 241
related to entropy change at

transition, 243
Lattice gas, 166
Lattice models, 163
Lattice quantum chromodynamics

emergent translational, rotational,
Lorentz symmetry, 265

Law of mass action, see Mass-action law,
chemical reactions

Legendre transform, 116, e6.7 128
and Wulff construction, equilibrium

crystal shape, f11.6 247
Lennard–Jones interatomic potential,

e10.2 234
Leslie–Ericksen liquid crystal free

energies, n22 206
Levy flights, 25
Life

at heat death of Universe, 81, e5.1 91
intercepting entropy flows, e5.1 91

Lindemann criterion of melting,
e10.2 235

Linear response, n43 122, 222–31
equilibrium relations to correlations,

218
to gentle kick, 215

Linear stability analysis, dendritic
growth, e11.9 260

Liouville numbers, nearly rational,
e4.4 75

Liouville’s theorem, 63–5
and area conservation in maps, n47 95
and constant microscopic entropy,

e5.7 95

microcanonical ensemble time
independent, 65

no analogue in statistics, e6.14 133
no attractors, 65
not obeyed in dissipative systems

Feigenbaum map, e4.3 70
pendulum, e4.2 70

phase-space flow incompressible, 65,
f4.2 65

quantum, 138
not as useful as classical, 139

Liquid
coordination number, e10.2 234
pair distribution function, e10.2 234
symmetric ensemble of disordered

snapshots, 192
Liquid crystal

many phases, 191
nematic, f9.5 194

as American footballs, 194
LCD display, 194
order parameter space hemisphere,

f9.5 194
Liquid–gas transition, 166

avoiding, circling critical point,
f6.14 129, f8.4 166

critical point, 166
Ising critical point, 166, 266
phase diagram, T–ρ, f12.6 267
liquid–gas transition, P–T , f8.4 166
phase diagram, P–T , f6.14 129
phase diagram, T–V , f11.1 241

Local conservation, and current, 20, 64,
122, 248

always use current to derive dynamics,
n18 21

Localization, 278
Logical satisfiability, e1.8 12, e8.15 187

conjunctive normal form, e1.8 13
Davis–Putnam algorithm, e8.15 187
WalkSAT, SP algorithms, e8.15 189

Logistic map
boundaries, e4.3 72
fractal dimension at µc, e5.16 101
invariant measure, e4.3 70
Lyapunov exponents, e5.9 96
period-doubling cascade,

renormalization group,
e12.9 288

Long-range order
in magnets, analogous to superfluids,

e9.8 212
in time, glass, 280
measured by correlation function, 216
off-diagonal, in superfluids and

superconductors, 136, e9.8 212
orientational, in nematics, f9.19 203

Lorentz invariance
broken by Big Bang, n30 232

emergent, lattice quantum
chromodynamics, 265

yields mass and spin quantum
numbers, 306

Losing keys, and entropy, 87
Lossless data compression and entropy,

n33 87, e5.15 100
Lossy data compression and entropy,

n33 87, e5.14 100
Low-temperature expansion

Feynman diagram cluster, f8.7 172
Ising model, 172, f8.7 172, e8.2 175

Lyapunov exponents, e5.9 96

Macroscopically occupied quantum
state, superfluids and lasers,
e9.7 211

Magnet
breaks time-reversal invariance, n4 193
Curie’s law, e8.2 175
Heisenberg, order parameter

M(r) ∈ S2, 193
phase diagram, H–T , f8.5 166, e8.1 174
phase diagramM–T , f12.6 267
phase diagram, M–T , f8.2 164

with low-temperature series, f8.7 172
Magnetization

fluctuations, and susceptibility,
e8.2 174

scaling function, 277
Many-body energy eigenstates, peculiar,

n10 139
Map

Arnol’d cat, e5.8 95, f5.16 96
Feigenbaum

boundaries, e4.3 72
fractal dimension at µc, e5.16 101
invariant measure, e4.3 70
Lyapunov exponents, e5.9 96
period-doubling cascade,

renormalization group,
e12.9 288

Poincaré first return, e4.4 72, f4.8 74
related to continuous dynamics, n50 97

Marginal operator, renormalization
group, e12.8 287, e12.11 293

Markov chain, 167–71
and Jordan canonical form, n16 168
asymptotic states, e8.4 175
coin flips, e8.3 175
continuous time or space, n13 167,

e10.5 236
cycles, 169
detailed balance, 170, e8.5 176
equilibrates, if ergodic and detailed

balance, 171
equilibrium state, 169
ergodic, 169
has no memory, 167
Ising model, heat-bath, 167
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mathematicians call ‘regular’, n20 169
non-unique stationary states, 169
Perron–Frobenius theorem, 169
probabilistic transition rule, 167
red, green bacteria, 168, e8.4 175
transient states, 169
transition matrix

decay time from second-largest
eigenvalue, e8.4 175, e10.5 236

left and right eigenvectors, 168,
e10.5 236

not symmetric Pαβ 6= Pβα, 168
waiting for Godot, e8.3 175
Wolff algorithm, e8.8 177

implementation, e8.9 177
Markovian heat bath, leads to viscous

friction, e10.7 238
Markovian: no memory, 167
Martensite, 250

and origami, e11.7 255
as minimizing sequence, e11.8 258
boundary conditions induce

microstructure, 250, e11.7 257
compatibility condition, e11.7 256
crystal shape transition, 250
deformation field, e11.7 255
free energy minimum not attained,

e11.8 258
layered laminate structure, 250,

e11.8 258
variants, f11.11 250, e11.7 255
Young measure, e11.8 259

Mass, spin, from group representation
theory, 306

Mass-action law, chemical reactions,
118–20

naive motivation, 118
Mass-energy, of photons and matter in

Universe, e7.15 160
Master equation, e10.5 236
Mathematics exercises, e1.3 6, e1.4 7,

e1.5 7, e1.6 8, e1.8 12, e3.10 58,
e3.11 58, e4.2 70, e4.3 70,
e4.4 72, e5.7 95, e5.8 95,
e5.9 96, e5.13 99, e5.14 100,
e5.16 101, e5.17 102, e7.4 153,
e7.8 155, e8.3 175, e8.4 175,
e8.6 176, e8.8 177, e8.12 182,
e8.15 186, e9.1 203, e9.2 204,
e9.3 205, e11.7 255, e11.8 258,
e12.4 283, e12.6 284, e12.9 288,
e12.10 291, e12.11 291,
eA.10 311

Mathematics, unreasonable effectiveness
of, emergent, n1 15

Maxwell equal-area construction,
f11.3 244, 243–4

makes sense only in mean field,
n11 244

van der Waals, e11.1 251

Maxwell relations, e3.11 58
Maxwell’s demon

as biological ion pump, f5.6 83
entropic limits to, 83, e5.2 92

Maxwell–Boltzmann
compromise, democratic bosons vs.

exclusive fermions, 145
distribution, occupation of

non-interacting states,
f7.4 142, 146

non-interacting
grand free energy, 146
grand partition function, 146

partition function, 145
quantum statistics

bogus, 145
vs. distinguishable particles, n24 145

statistics, 53
Maxwellian velocity distribution, e1.2 6,

44, 111
Mean-field theory, e12.5 284

and Landau theory, e12.5 284
Mechanics, friction, and fluctuations,

117, 227, e10.3 235, e10.7 238
Meissner effect

related to no Goldstone mode in
superconductor, 197

Melting
Lindemann criterion of, e10.2 235

Memory tape, frugal, one atom per bit,
e5.2 91

Mermin–Wagner theorem
no 2D continuous broken symmetries,

n12 198
not for 2D crystal orientations,

n12 198
Metallic glass, 84

defect entanglement theory, 202
frustration, f12.18 281

Metals, 150–1
surprisingly, as non-interacting

fermions, 144
Metastable state, 243

imaginary part of free energy gives
nucleation rate, n9 243

mean-field theory, e12.5 284
perturbatively defined because

nucleation rate has essential
singularity, n15 246

supercooled vapor
110% humidity, n8 243

superheated liquid, 243
well defined when nucleation slow, 243

Metropolis Monte Carlo, e8.6 176
implementation, e8.7 176
slightly faster than heat-bath,

e8.6 176, e8.7 176
Michaelis–Menten chemical reaction

rate, e6.12 131
Microcanonical ensemble, 37–9

all states created equal, 39, 65
and Lagrange multiplier, e6.6 128
assumes ergodic: time average equals

microcanonical average, 66
chaos justification, 38
chemical potential, 47–8
comparing Bose, Fermi,

Maxwell–Boltzmann,
distinguishable, e7.1 152

conserved energy, 38
energy shell, 38

thickness for quantum, n9 38
equivalent to canonical, 108, e6.3 126
ideal gas, 39–44
ignorance justification, 38, 63
isolated system, 37
less convenient than canonical, 109
Liouville’s theorem, 63–5
momentum distribution, 42–4
negative temperature, e6.3 125
pressure, 47–51
probability density δ(E −H)/Ω,

n10 38
regression to the mean, 39, 65
subsystems compete for energy,

n35 46, 109
time independent, from Liouville, 65
velocity distribution, classical, 44,

e4.1 70
weakly-coupled systems

all states equal with fixed Etot, 45
Ω(E) =

∫
dE1 Ω1(E1)Ω2(E −E1),

n31 45, e3.6 55
ρ(s1) ∝ Ω2(E −E1), 45

Microstructure
bewildering variety, non-universal, 250
dendritic, 250–1
martensitic, 250

and origami, e11.7 255
of phases, 246–51

Microwave background radiation,
e7.15 159, e10.1 231

and absolute velocity of Sun, e10.1 232
correlation function, f10.14 232
fluctuation map, f10.13 232
temperature, e5.1 91

Minimizing sequence, and martensites,
e11.8 258

Mixed state, 135–9
operator expectation value, 136
photon, n2 136
photon polarization, e7.5 154
spin, time evolution, e7.6 154

Mixing, entropy of, 82
Mobility, in diffusion equation, 21, 122

dilute limit, 21
hydrodynamic limit, 21
sign, explained, 22

Molecular dynamics
equilibration time, e4.1 69
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exponential atmosphere, e6.1 124
Langevin as heat bath, e10.7 238
often uses Verlet algorithm, e3.12 59
pair distribution function, e10.2 233
pressure and wall collisions, e3.4 54
random walk, e2.4 27
stability often bottle-neck, e3.12 60
velocities Maxwellian, n28 44

Molecular motor, f2.7 26
free energy, e6.4 126
random walk of, e2.3 26

Molecular rotations, vibrations, and free
energy, n54 56, n31 119

Moment, of probability distribution,
definition, n12 20

Momentum distribution
canonical, 111
classical, independent of potential

energy, 111, e6.1 125
microcanonical, 42–4

Momentum space, n5 37
Monte Carlo

as Markov chain, 167
Bortz–Kalos–Lebowitz algorithm,

n36 179
cluster-flip algorithm, e8.8 177,

e8.9 177
continuous-time algorithm, n36 179
gambling center in Monaco, n12 166
Gillespie algorithm, chemical

reactions, e8.10 179, e8.11 180
heat-bath algorithm, 166, e8.7 176

thermalizes one site at a time, 167
Ising model, 166
Metropolis algorithm, e8.6 176,

e8.7 176
slightly faster than heat-bath,

e8.6 176, e8.7 176
renormalization group, 269
Swendsen-Wang algorithm, e8.8 177
Wolff algorithm, e8.8 177

bypasses critical slowing-down,
e8.8 177, e8.9 177

implementation, e8.9 177
much faster than heat-bath,

Metropolis near Tc, e8.8 177,
e8.9 177

Morphology
bewildering variety, non-universal, 250
coarsening, 246–50
dendritic, 250–1
martensitic, 250

and origami, e11.7 255
of phases, 246–51

Most general
evolution equation, e9.6 209
free energy density, e9.5 207

mRNA, messenger RNA, n40 180
M–T phase diagram, f12.6 267

Ising model, f8.2 164

with low-temperature series, f8.7 172
Multifractals, e5.16 102

Na+/K+-ATPase as Maxwell’s demon,
f5.6 83

Negative
specific heat, black hole, e5.4 94
temperature, e6.3 125

Nematic, f9.5 194
as American footballs, 194
biaxial, defect entanglement theory,

202
disclination, e9.1 203

own antiparticle, 200, e9.1 203
topological defect, f9.14 200

LCD display, 194
order parameter n(r) ∈ RP 2, 194
order parameter space hemisphere,

f9.5 194
Nernst’s theorem, 115, e7.3 153
Network

bond percolation, f2.12 33
pc and near pc, f12.2 264

dimerization reaction, f8.11 178
repressilator, f8.13 181
site percolation, f2.13 35
small world, f1.5 10

Neutrinos
and electrons, hard materials to build

life from, n46 94
decoupling after Big Bang, n52 159
hard to confine, n22 144

Neutron star
as Fermi gas of neutrons, e7.16 161
stellar collapse into, e7.16 161
stellar collapse of, e7.16 161
surprisingly, as free Fermi gas, 144

Newton, Isaac, used wrong bulk
modulus for sound, n56 160

Noise, see also Fluctuations
Barkhausen, in magnets, e8.13 182,

f8.14 183
telegraph, e10.5 236

definition, n53 127
in nanojunctions, f10.16 236
in RNA unzipping, f6.13 127

thermal, and Langevin equation,
e10.7 238

Non-adiabatic, fast motions which
generate entropy, 49, 78

Non-convex free energy
Landau theory, f9.22 208, n32 208
martensites, 250

yields laminate microstructure,
e11.8 258

mean-field theory, e12.5 284
one-dimensional staircase model,

e11.8 258
Non-equilibrium entropy, 86
Non-interacting

amazing utility of approximation, 144
bosons, see Boson, non-interacting
fermions, see Fermion, non-interacting
particles, 141–51
planet approximation, KAM theorem,

e4.4 73
undistinguished particles, see

Undistinguished particles,
non-interacting

Normal distribution, see Gaussian
Normal form and scaling functions,

e12.4 283
NP-complete problems, n16 12, e8.15 186

3SAT, e8.15 187
demonstrating new, e8.15 187
hard in worst case, e8.15 187
logical satisfiability (SAT), e1.8 12,

e8.15 187
statistical mechanics for typical

difficulty, e8.15 187
traveling salesman, graph coloring,

spin-glass, e8.15 186
Nucleation, 244–6

carbon precipitates in cast iron, 246
cloud seeding, ice-nucleating bacteria,

n16 246
critical droplet as barrier, 245
dew, fog, clouds, 244
dislocation pair, e11.5 254
driving force from undercooling, 245
free energy barrier, f11.5 245

diverges at transition, 246, e11.5 255
homogeneous, rarely dominant, 246
ice crystal, snowflake model, e11.9 259
Ising model, field reversal, e11.4 253
rare fluctuations, in tail, n14 246
rate, 245

dominated by dust, interfaces, 246
essential singularity at Tv; allows

metastable state theory,
n15 246

exponentially small near transition,
246

given by imaginary part of free
energy, n9 243

Ising model, e11.4 253
power-law dependence for 2D

dislocations, e11.5 255
predict barrier instead, e11.4 254
prefactors not as important as

barrier, 245
vs. spinodal decomposition, n10 243

Number conservation, Hamiltonian
invariance a→ ae−iζ , e9.8 213

Number fluctuations, 40, e3.9 57
Gaussian, e3.9 57
grand canonical ensemble, 113
in small volume of cell, e8.10 178
tiny for large system, 41
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Number indeterminacy in superfluids,
not just grand canonical
ensemble, n38 212

ODLRO, 197
Bose condensate, e9.8 212
breaks particle number conservation,

n5 195, e9.8 212
broken gauge invariance, e9.8 213
superfluids and superconductors, 136,

e9.8 211
Off-diagonal long-range order, see

ODLRO
Oil, water, and alcohol; ternary phase

diagram, f8.8 173
Onsager

solution of two-dimensional Ising
model, 166

Onsager’s regression hypothesis, 220–2
applied to one-dimensional magnet,

e10.8 239
derive from quantum mechanics,

n25 229
determines dynamics, 220
same decay, fluctuations and

perturbations, 221
testing in Ising model, e10.6 237

Onset of chaos, 279, e12.9 288
Operator sites, regulating transcription

DNA to RNA, e8.11 180
Optics exercises, e7.8 155, e7.9 156,

e12.6 284
Option, call, e2.12 32

European vs. American style, n38 32
OR

gate, exclusive, and irreversible
computation, e5.3 93

inclusive ∨, and logical satisfiability,
n17 13

Orange peel carpet, and frustration,
f12.18 281

Order parameter, f9.4 193
as field, 193
as mapping from real to order

parameter space, 194
Bose condensate ψ(r), e9.7 211
choice as art, 194
field, 121

ideal gas, f6.8 121, f6.9 122
‘hard-spin’, 194
important variables for system, 192
Landau, for Ising model, e9.5 207
Landau, near transitions and defect

cores, 194
magnet, 192
martensite, deformation field,

e11.7 255
quantum field as, n3 192
‘soft-spin’, 194
superfluids and superconductors ψ(r),

e9.7 211

expectation of annihilation operator
〈a〉, e9.8 212

from ODLRO, e9.8 212
topological, low temperature, 194
variation in space, 193

Order parameter space, f9.4 193
S2 for magnet, 193
crystal is torus, f9.6 194
folded paper, f11.16 256
RP 2 for nematic, 194
S1 for Bose condensate, superfluid,

superconductors, 195, e9.7 211
S1 for XY model, e9.2 204
Td for crystal in d dimensions, 195

Order, of phase transition; use abrupt or
continuous, n7 243

Orientational symmetry, see Rotational
symmetry

Origami, and martensites, e11.7 255,
f11.18 257

Osmotic pressure
and chemical potential, 48
and entropy, n17 83
salt, and blood pressure, f5.6 83

Overdamped oscillations, at short
wavelengths, e10.9 240

P = NP?, e8.15 187
Padé approximant, f8.2 164, f8.7 172,

n26 172
Pair distribution function

and form factors, n6 217
liquids, gases, and crystals, e10.2 233

Paramagnet, 164
Partial trace

and chemical equilibrium, 120
canonical ensemble, n5 107
definition, n14 112
grand canonical as, of canonical

ensembles, 112
integrating over internal variables,

n15 112
leaving discrete system, n33 120
pollen effective potentials, e6.13 132
thermal position fluctuations in binary

alloy, n9 165
Particle accelerators and area-conserving

maps, n47 95
Particle and heat exchange, grand

canonical ensemble figure,
f6.3 112

Partition function Z, 106
as normalization factor, 107
entropy, 108
factors for uncoupled systems, 109
harmonic oscillator

classical, 111
quantum, 139

Helmholtz free energy, 108
ideal gas, 110

internal energy, 107
specific heat, 107

Path integral
and homotopy theory, n20 205
and instantons, n16 200
and order parameter field

configurations, n22 225
Pauli exclusion principle, 142, 145
Pendulum

as Hamiltonian system, numerical,
e3.12 58

damped, vs. Liouville’s theorem,
e4.2 70

Percolation, e2.13 33, 263, 266–7,
e12.12 293

bond, f2.12 33
connectivity transition, e2.13 34
continuous transition, 263
does not demand equilibrium

statistical mechanics, e2.13 34
but is one-state Potts model, n43 34

duality, e2.13 34
ensemble of hole punch patterns,

e2.13 33, 263
pc and near pc, f12.2 264
site, f2.13 35
site vs. bond, f12.7 268

Perfume
as ideal gas without conserved

momentum, 122, 220
as random walk, 16, e2.4 27
constant rain solution, n19 22
diffusion equation, 19, 220

final state uniform, 22
in gravity final state exponentially

decays, 22
primarily transported by convection,

n4 16
Period doubling

cascade, onset of chaos, e12.9 289
renormalization group, e12.9 288

Periodic boundary conditions, n28 146
Ising model, n5 164
molecular dynamics, n30 27
wrapping a torus, f9.7 195

Permutation, sign, even and odd,
n15 140

Perpetual motion machine, 78, f5.1 78
Perron–Frobenius theorem, and Markov

chains, 169
Perturbation theory, 171–3

asymptotic series, e1.5 7, 172
breakdown at superconducting Tc,

e12.8 286
cannot converge past phase boundary,

173
convergence defining phase, almost,

173
ǫ-expansion, 172, 269
fails for three-body problem, e4.4 73
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Fermi liquid theory, 172
high-order, 172

heroic, n26 172
high-temperature expansion, 172,

e8.2 175
infinite-order, to change phases, 173
low-temperature expansion, f8.7 172,

e8.2 175
cluster, f8.7 172
Ising model, 172

Padé approximant, f8.2 164, f8.7 172,
n26 172

true to all orders inside phase,
e12.8 286

true to all orders is not necessarily
true, e12.8 286

virial expansion, 172
works inside phases, 171

Petri net
for dimerization reaction, f8.11 178
for part of repressilator, f8.13 181

Phase
almost defined as perturbative region,

171–3
almost defined by broken symmetry,

n2 192
as renormalization-group fixed point,

271
examples: ice/water/vapor, Ising

ferromagnet/paramagnet,
Bose condensation, 171

multitudes, 191
solid, liquid, gas, 191
vacuum in early Universe, 191

Phase coexistence, 242
avoided by grand canonical ensemble,

n5 242
avoided using Gibbs free energy, 242
line, Clausius–Clapeyron equation,

e6.10 129
Maxwell construction, 243
temperature, pressure, µ equal, 242

Phase diagram
alloy, from lattice simulations, 165
Ising model, H–T , f8.5 166, e8.1 174
Ising model, M–T , f8.2 164

with low-temperature series, f8.7 172
liquid–gas transition, T–ρ, f12.6 267
liquid–gas transition P–T , f6.14 129
liquid–gas transition, P–T , f8.4 166,

f11.1 241
liquid–gas transition, T–V , f11.1 241
magnet, H–T , f8.5 166
magnet, M–T , f8.2 164, f12.6 267
ternary, for oil, water, and alcohol,

f8.8 173
Phase separation, f10.1 216

called spinodal decomposition, n10 243
Ising model, f11.7 247, e11.6 255

Phase space, n5 37

Heisenberg uncertainty invalidates,
135

Phase-space volume
and very large numbers, e3.2 54
divided by h3N , 52

general argument, n42 153
Nernst’s theorem, e7.3 153
quantum state counting, e7.3 153
semiclassical and path-integral

arguments, n42 153
Gibbs factor 1/N !, 52

Phase transition
abrupt, see Abrupt phase transitions
continuous, 263–82
disordered systems, 280
dynamical systems, 279–80, e12.4 283,

e12.9 288
glass, theories of, 280–1
onset of chaos, e12.9 288
onset of lasing, e12.6 284
order, see abrupt or continuous phase

transition, n7 243
perturbation theory fails, 173
properties not smooth, 173
quantum, 278–9

φ4 model, e9.5 208
Phonon, 196

as Goldstone mode, 196
boson, e7.2 152
on a string, e7.11 157

Photon
black-body radiation, 147–8
boson, e7.2 152
decoupling after Big Bang, e7.15 159
dominated Universe, e7.15 160
emission from small hole, e7.7 154
four kinds in early Universe, 191
random walk in Sun, e2.2 26
unpolarized, as mixed state, n2 136,

e7.5 154
Piston

and heat engine, f5.2 78
exchanging volume between

subsystems, f3.3 47
fast moving, generating entropy, 49, 78
resetting bits on digital tape, e5.2 92

Pit and island evolution, surface,
f10.2 216

Pitchfork bifurcation, e12.4 283
Planck black-body radiation, see

Black-body radiation
Planck distribution

and stimulated emission, e7.8 155
cosmic microwave background

radiation, f7.17 159, e10.1 231
emission from black body, 148
emission from small hole, e7.7 154

Planetary dynamics, vs. ergodicity,
e4.4 72

Plasma frequency, and Higgs mechanism
for superconductor, n11 197

Plasticity, dislocation mediated, 2D
superfluids and crystals,
n22 254

Poincaré group invariance, yields mass
and spin quantum numbers,
306

Poincaré section, e4.4 74, f4.8 74
relates continuous dynamics to maps,

n50 97
three-body problem, f4.3 66

Poisson probability distribution, e3.9 57
Polarizability α(ω)

related to conductivity
σ = limω→0 ω α′′(ω), 224

tensor for anisotropic materials,
n16 222

vs. dielectric permittivity ǫ(ω),
n16 222

Poles, in susceptibility, as damped
modes, e10.9 240

Polyatomic molecules, free energy,
n31 119

Polycrystal, coarsening rate and grain
size, 247

Polymer
as self-avoiding random walk, 19,

e2.10 30
some compact, not random walk, n8 19

Pool game, entropy increase and arrow
of time, 80

Population inversion
and lasing, e7.9 156, e12.6 284
and negative temperature, e6.3 125

Potts model, n18 278
Power law

as heavy-tailed distribution, e8.15 188
avalanche size distribution, Rc, 272–4
correlation function decay, 217,

f10.5 218
earthquake sizes (Gutenberg–Richter),

f12.3 265, 274
length of random walk, 19
only self-similar function, n15 275
singularity in susceptibility, specific

heat, correlation length at
critical point, 266

Power spectrum
and correlation function, 303
definition, n11 302

Prefactor, for chemical reaction rates,
transition state theory,
e6.11 129

Pressure
defined for adiabatic volume change,

50
equal at phase coexistence, e6.10 129,

242
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equal when volume shifts to maximize
entropy, 47, f3.3 47

from energy, P = −(∂E/∂V )|S,N , 48
from entropy, P = T (∂S/∂V )|E,N , 47
from wall collisions, e3.4 54
hard sphere gas, e3.5 55
ideal gas, 52
intensive variable, 46
microcanonical, 47–51
of photons and matter in Universe,

e7.15 160
relation to mechanics P = −∆E/∆V

microscopic derivation, 48
Pressure–volume diagram, see P–V

diagram
Prior, use in Bayesian statistics, vs.

Liouville’s theorem, e6.14 133
Probability density

confused with probability, 40
evolution has conserved current, 64
sloppy notation, name ρ used

everywhere, n24 42, n32 45,
n44 154

Probability distribution, e1.2 5
discrete as δ-functions, n11 19
exponential, e1.2 5
Gaussian, e1.2 5
heavy tails, e8.15 188
Maxwellian, e1.2 6
mean, e1.2 5
moment, n12 20
multidimensional, e1.2 6
normalization, e1.2 5
of sum of random variables, e1.2 6
Poisson, e3.9 57
standard deviation, e1.2 5
uniform, e1.2 5
velocity, e1.2 6

Projective plane
hemisphere, f9.5 194
order parameter space for nematic,

194
Proliferation: cellular reproduction,

e8.11 180
Proton decay, and life at heat death of

Universe, e5.1 91
Pseudomonas syringae, ice-nucleating

bacteria, n16 246
P–T phase diagram, liquid–gas

transition, f6.14 129, f8.4 166,
f11.1 241

Pulsar, see Neutron star
Pure state, density matrix, 137
P–V diagram

and Carnot cycle, f5.3 79
and heat engine, e5.5 94
area related to work done, 79

Quality factor, for decaying oscillations,
e10.9 240

Quantum
canonical ensemble

ρ = e−βH/(Tr e−βH), 137
computation, no minimum cost for,

e5.3 93
density matrix, see Density matrix
Heisenberg uncertainty

vs. classical phase space, 135
Liouville’s theorem, 138

not as useful as classical, 139
mechanics, not needed for statistical

mechanics, v
mixed state, 135–9

operator expectation value, 136
photon, n2 136
photon polarization, e7.5 154
spin, time evolution, e7.6 154

of circulation, in superfluids, e9.7 211
particle in box, 146

eigenstates, f7.6 146
statistics, 140–1

comparing Bose, Fermi,
Maxwell–Boltzmann,
distinguishable, e7.1 151

Maxwell–Boltzmann at low
occupancy, high T , 143

wavefunction symmetrization,
antisymmetrization, 140

two kinds of probability, 135
Quantum chromodynamics, lattice:

emergent translational,
rotational, Lorentz symmetry,
265

Quantum criticality, 278–9
Kondo effect, macroscopic quantum

coherence, quantum Hall
transitions, 278

localization and mobility edge, 278
superconductor–insulator transition,

f12.15 279
scaling collapse, f12.15 279
unexplained, 279

zero-point fluctuations vs. energy, 278
Quantum exercises, e1.1 4, e1.6 8,

e7.1 151, e7.2 152, e7.3 153,
e7.4 153, e7.5 154, e7.6 154,
e7.7 154, e7.8 155, e7.9 156,
e7.10 157, e7.11 157, e7.12 157,
e7.13 158, e7.14 158, e7.16 161,
e9.7 210, e9.8 211, e12.6 284

Quantum field, as order parameter,
n3 192

Quantum mechanics
determines dynamics in statistical

mechanics, 220
microcanonical energy shell thickness,

n9 38
not needed for statistical mechanics,

135
sets zero of entropy, 52, 115, e7.3 153

Quantum statistical mechanics, 135–61
governs solid-state, molecular,

astrophysics, 135
restrict ensemble to wavefunctions

with proper Bose, Fermi
symmetry, 141

spawned quantum mechanics, 135
Quantum tunneling, as origin of slow

processes, n37 121
Quasicrystal, 191, f9.1 191
Quasiparticles

and Fermi liquid theory, n23 144
and poles in susceptibility, e10.9 240

RP 2, order parameter space for nematic,
194

Radius of convergence
distance to nearest complex

singularity, e1.5 7, 173
Ising model low-temperature

expansion, f8.7 172, 173
of Taylor expansions, 173
zero

for asymptotic series, e1.5 7
for some perturbation series, 172
quantum electrodynamics, and

Hooke’s law, e1.5 8
Random walk, 15–19, e2.5 28

central limit theorem, f1.1 2, f2.6 24,
e2.5 28

chemotaxis, 25
coin flips, 15–16
critical exponent ν, 19
distance

measured as root-mean-square, 16
not mean displacement 〈x〉 (= 0), 16
not measured as mean absolute

distance (non-analytic), n3 16
scales as

√
N , 16

drunkard’s walk, 16–17
ensemble yields diffusion equation,

f1.1 2, f2.6 24
fractal dimension, n6 17, f2.2 18
generic scale invariance, 271
grade space, e2.1 25
heavy tails, e2.11 31
Levy flights, 25
molecular motor, e2.3 26
perfume molecule, 16, e2.4 27
persistence length, e2.10 30
scale invariance, f2.2 18
self-avoiding, 19, e2.10 30
solar photon, e2.2 26
stock price, f2.3 19, e2.11 31
sum of random variables, 15

Random-field Ising model
equilibrium glassy behavior, 280
equilibrium vs. hysteretic, n21 280
hysteretic, e8.13 182, e8.14 185,

e12.13 296
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Rare fluctuations
critical droplet theory and instantons,

n14 246
into ordered state, decreasing entropy,

n10 81
Ratchet and pawl, and molecular

motors, e2.3 27
Ratio test, and asymptotic series, e1.5 7
Rayleigh–Jeans black-body radiation

formula, 148, f7.8 148
Reaction coordinate, 120
Reaction rates, see Chemical reactions
Reactions, see Chemical reaction
Real-space microscopy

complementary to k-space diffraction,
217

Fourier analyzed into correlation
functions, 218

local geometries, mechanisms, 218
Rectilinear diameter, law of, f12.6 267

singular corrections to, n2 266
Red and green bacteria, Markov chain,

e8.4 175
Reduced density matrix, Bose

condensate, superfluid,
e9.8 211

Refrigerator
efficiency estimate, e5.6 95
heat engine in reverse, 78
P–V diagram, f5.15 94

Regression hypothesis, Onsager’s, 220–2
derive from quantum mechanics,

n25 229
determines dynamics, 220
same decay, fluctuations and

perturbations, 221
Regression to the mean, and

equilibration, 39, 65
Relativistic particle, dispersion relation,

e7.2 153, e7.16 161
Relevant perturbation, renormalization

group, e12.8 287, e12.11 293
self-avoidance for random walks, n9 19

Renormalization
of parameters on coarse-graining,

e12.11 292
of parameters, on coarse-graining, 268
origin of term in quantum

electrodynamics, n5 267
Renormalization group, 267–72

and superconductivity, e12.8 286
continuum limit with fluctuations, 267
correction to scaling, e12.11 293
critical surface, n8 271
fixed point, 269, f12.8 269
flow, f12.8 269

and scaling function, e12.7 285
for central limit theorem, e12.11 291
generic scale invariance, 271,

f12.10 271

irrelevant operator, e12.8 287
leading irrelevant operator, e12.11 293
marginal operator, e12.8 287,

e12.11 293
momentum-space, ǫ-expansion, Monte

Carlo, 269
near critical point, f12.12 275, 275–6
not a group, n5 267
onset of chaos, e12.9 290, f12.23 290

coarse-graining in time, 279
real-space, 269, f12.9 270
relevant operator, e12.8 287, e12.11 293
scaling variables, 277
self-organized criticality, f12.10 271,

272
stable manifold, n8 271
system space, axes for all parameters,

267
unstable manifold, n7 269

Repressilator, e8.11 179
chemical reaction network, f8.13 181

Repression, of transcription by proteins,
e8.11 180

Response, see Linear response
Restricted three-body problem, e4.4 72
Reversible

computation, no minimum cost for,
e5.3 93

engines, 78
all equivalent, 79

RG, see Renormalization group
ρ, as sloppy notation for any probability

density, n24 42, n32 45,
n44 154

Rigidity
crystal, f9.8 196

amazing, 197
orientational

liquid crystal, f9.10 197
phase gradients, in superconductors,

197
phase gradients, in superfluids, 197

Risk, financial
avoiding with derivatives, e2.12 32
avoiding with diversification, e2.11 32

RMS (Root-mean-square) distance, 16
RNA

hairpin, f6.12 127
messenger, n40 180

RNA polymerase
laser tweezer experiment, f2.9 27,

f6.11 126
regulated by operator sites, n41 180

Roads not taken by cooling glass, 83,
f5.8 85

Rocks
coarsening, 246
cold, cannot extract useful work from,

78
polyphase polycrystals, 247

quench rate and grain size, 247
Root-mean-square (RMS) distance, 16
Rotational symmetry

and angular momentum quantization,
306

broken by crystal, 192
broken by cube, 192
emergent, in lattice quantum

chromodynamics, 265
emergent, in random walks, e2.5 28
implies matrices constant and vectors

zero, n29 207
liquid, 192
sphere, 192

Rotational wave, liquid crystal, f9.10 197
Rotations, molecular, and free energy,

n54 56, n31 119
Roughening transition, and equilibrium

crystal shape, f11.6 247
Rubber band, entropy, e5.12 98

S2, order parameter space for magnet,
193

S1, order parameter space for Bose
condensate, superfluid,
superconductor, 195, e9.7 211

Saddle-node bifurcation, e12.4 283
Salad dressing, and coarsening, 246
Salt

and dendrites, e11.9 259
lowering freezing point of water,

n1 241, e11.9 259
osmotic pressure and high blood

pressure, f5.6 83
SAT, see Logical satisfiability
Satisfiability, logical, see Logical

satisfiability
Scale invariance, 272–7

avalanche model Rc, f12.11 273
Ising model Tc, f12.1 263, f12.9 270,

e12.1 282
leads to scaling functions, 272
only power laws have, n15 275
percolation pc, n4 267
period-doubling, f12.22 289
predicted by inflation for microwave

background radiation,
e10.1 232

random walk, 17, f2.2 18
symmetry under change of length, 272

Scaling
avalanche size distribution, Rc, 272–4
correction to, n2 266, 278, e12.2 282,

e12.11 293
for functions of multiple variables,

276–7
for functions of one variable, power

laws, 272–6
Scaling collapse, 277

avalanche size distribution, f12.13 276,
277, e12.13 297
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liquid–gas transition, 266
percolation finite-size scaling,

e12.12 295
small-world network separations,

e1.7 11
superconductor–insulator transition,

f12.15 279
Scaling function

avalanche size distribution, f12.13 276,
276–7, e12.13 297

correlation function, 277
coarsening, e12.3 282

finite-size, 277, e12.12 295
from scale invariance, 272
magnetization, 277, e12.2 282
normal form for bifurcations, e12.4 283
photon number near lasing onset,

e12.6 285
superconductor–insulator transition,

f12.15 279
useful far from critical point,

f12.13 276
Scaling variable, invariant under

renormalization group, 277,
e12.12 295

Scattering experiments, see Diffraction
experiments

Schottky anomaly, e7.10 157
Second homotopy group, see Homotopy

group, second
Second law of thermodynamics: entropy

increases
Carathéodory’s equivalent version of,

115
definition, 115
equivalent to no perpetual motion,

n5 78
Shakespeare, and C. P. Snow, n19 115

Second sound, superfluid, 197
Second-order phase transitions, see also

Continuous phase transition
avoid using term, n7 243
singularities not usually jumps in

second derivative, n7 243
Self-avoiding random walk, 19, e2.10 30
Self-organized criticality, f12.10 271, 272
Self-similarity, see Scale invariance
Semiconductor, e7.12 157
Sensitive dependence on initial

conditions, e5.9 96
Shakespeare, C. P. Snow, and the second

law of thermodynamics,
n19 115

Shannon entropy, 87–90, e5.15 100
communications theory, e5.15 100
data compression, e5.14 100, e5.15 100
kS instead of kB, 87
S = −kS

∑
p log p, 87

three key properties specify form,
e5.17 102

vs. connotations of the word ‘entropy’,
n1 77

Shot noise, of chemical concentrations in
cells, e8.10 179, e8.11 181

Shuffling, of playing cards and entropy
increase, e5.13 99

Site percolation, f2.13 35
Site vs. bond percolation, e2.13 35,

f12.7 268
Skyrmions, classified by third homotopy

group, n16 200
Slater determinant, n16 142
Sloppy notation
g(ω) and g(ε) for density of states,

n32 147
ρ, as any probability density, n24 42,

n32 45, n44 154
Slow humans, compared to atoms, 196,

e9.6 209
Slow processes

arise in three ways, n37 121
from conspiracy, 196

Slush, formed by salt concentrating in
water, n1 241, e11.9 259

Snowflake, e11.9 259
as dendrite, 250
growth equation, e11.9 259
linear stability analysis, e11.9 260
nucleation, e11.9 259
picture, f11.22 260
tips grow fastest; less salty, humid,

hot, 250, f11.21 260
Sodium

and high blood pressure, f5.6 83
-potassium pump as Maxwell’s demon,

f5.6 83
Solar photons, random walk, e2.2 26
Solitons and ergodicity breakdown, 68
Sorted-list algorithm, hysteresis model,

e8.14 185
Sound

air, not due to broken symmetry,
n6 196

as Goldstone mode, 196, e10.9 239
crystal, from broken translation

invariance, f9.8 196
free energy density, 196
second, in superfluid, 197

Sound wave, 196
Specific heat

and energy fluctuations, e3.8 56, 108,
e8.2 174

Bose, Fermi gases, f8.6 171
crystal, e7.11 157
cusp at Bose condensation Tc, f8.6 171
from canonical partition function, 107
glass, on heating and cooling, f5.18 98
infinite for classical continuum string,

e7.11 157
iron, e2.9 30

negative, black hole, e5.4 94
power-law singularity at critical point,

266, 275
string, e7.11 157
uniform susceptibility of energy to

temperature, 226
Sphere

S0 is ±1, n21 41
S1 is circle, n21 41
S2 is surface of basketball, n21 41
order parameter space for magnet, 193
unit in d dimensions called Sd−1,

n21 41
volume inside Sℓ−1 is πℓ/2Rℓ/(ℓ/2)!,

41
Spherical harmonics from group

representation theory, 306
Spin

correlation, susceptibility, dissipation,
e10.4 236

density matrix, time evolution,
e7.6 154

Spin glass
and logical satisfiability algorithms,

e8.15 189
finding ground state NP-complete,

e8.15 186
frustration, f12.17 280
replica vs. cluster models, n22 280

Spin wave, magnetic, from broken
rotational invariance, f9.9 197

Spin-statistics theorem, n13 140
Spinodal decomposition, spontaneous

phase separation, see
Coarsening

Spinodal line
not in real systems, n10 243

Spontaneous emission, e7.9 156
Einstein coefficient, e7.8 155

Spontaneous symmetry breaking, see
Broken symmetry

Stability
fixed-point, n24 71
of numerical solution to dynamical

system, e3.12 60
Stable fixed point, antithesis of

Liouville, e4.3 71
Stable manifold, of renormalization

group, n8 271
Standard deviation, of probability

distribution, e1.2 5
States of matter

earth, water, air, fire, 191
multitudes, 191
quasicrystalline, f9.1 191
solid, liquid, gas, 191
vacuum states in early Universe, 191

Static susceptibility, see Susceptibility,
static

Statistical mechanics
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equilibrium, no dynamics
needs Onsager’s regression

hypothesis, 220
needs quantum mechanics, 220

tool for deriving emergent laws, 15
Statistics, e6.14 133

anyon, n12 140
Bose, Fermi, 140–1
Maxwell–Boltzmann, 53

Statistics exercises, e6.14 133
Statistics, overlap with statistical

mechanics, 124
Steady state, contrasted with

equilibrium, n2 37
Stefan–Boltzmann law and constant,

e7.7 155, e7.15 160
Step function, Heaviside Θ(x), n10 38,

n28 311
Stiff differential equations, e3.12 60
Stimulated emission, e7.9 156

Einstein coefficient, e7.8 155
Stirling’s formula, 4, 53, e3.9 57, 83,

e5.12 99, 110, e6.3 125
as asymptotic series, e1.5 7
average number in product, n17 40
derivation, e1.4 7
more and less accurate forms, 40

STM image, surface pit and island
evolution, f10.2 216

Stochastic chemical reactions
compared to continuous, e8.10 179,

e8.11 181
dimerization, e8.10 179
ensemble average, e8.10 179
Gillespie algorithm, e8.10 179,

e8.11 180
repressilator, e8.11 180

Stock price
and September 11, e2.11 31
arbitrage, e2.12 33
as random walk, f2.3 19, e2.11 31
Black–Scholes model, e2.12 32
derivative, e2.12 32
diversification and risk, e2.11 32
fluctuations have heavy tails, e2.11 31
option, e2.12 32
volatility, definition, e2.11 32

Stoichiometry, of chemical reaction,
n28 118, e8.10 178, e8.11 181

Strange attractor
dimensions, e5.16 101
for Feigenbaum map at µc, e5.16 101

String theory and black-hole
thermodynamics, e5.4 94

Strong pinning boundary conditions,
e9.3 205

Subdominant correction to scaling,
n2 266, 278, e12.2 282,
e12.11 293

Subject-observer design pattern,
e8.13 184

Sugar, lowering freezing point of water,
n1 241

Sun
photon random walk inside, e2.2 26
velocity of, from microwave

background radiation,
e10.1 232

Sun-tan, predicted classically from oven
radiation, 147

Superconductor
and the renormalization group,

e12.8 286
BCS theory, quantitative, not just

adiabatic, n29 173
broken gauge invariance, e9.8 213
impossible to all orders, e12.8 286
Landau mean-field theory accurate

for, n33 209
no Goldstone mode, 197
no more amazing than crystal, 197
ODLRO, 136, e9.8 211
why transition so cold, e12.8 286

Superconductor–insulator transition,
quantum critical properties,
f12.15 279

scaling collapse, f12.15 279
Supercooled vapor

110% humidity, n8 243
and dew, 244

Superfluid
ψ Landau order parameter, φ

topological, n39 213
analogy to laser, e9.7 211
analogy to XY model, 278
analogy with Bose condensate, 150,

e9.7 210
and gregarious photons, e7.9 156
as superposition of states with

different particle number,
e9.8 213

Bose condensate ψ(r), e9.7 211
broken gauge invariance, e9.8 213
circulation quantized, e9.7 211
coherent superposition of different

number eigenstates, e9.8 213
density, 1% for He4, 10−8 for

superconductor, e9.8 213
Josephson current, e9.8 214
macroscopically occupied quantum

state, e9.7 211
no more amazing than crystal, 197
number and phase as conjugate

variables, e9.8 214
ODLRO, 136, e9.8 211
one-particle density matrix

〈a†(r′)a(r)〉, e9.8 212
order parameter ψ(r), 195, e9.7 211,

e9.8 211

as condensate wavefunction,
e9.7 211

from ODLRO, e9.8 212
superflow explained

Bose particles scatter into
condensate, e7.9 156

winding number cannot change by
one, e9.7 211

superposition of different particle
numbers, n38 212

topological order parameter φ(r)
in S1, 195, e9.7 211
relative phase of particle number

superposition, e9.8 213
transition in He4

critical properties, f12.14 278
near Bose condensation

temperature, 150
2D, nonlinear decay of superflow,

n22 254
velocity, e9.7 211, e9.8 214
vortex line, topological defect, e9.7 211

Superheated liquid, 243
Superman, and work hardening, 200
Supersaturated vapor, see Supercooled

vapor
Surface of state S(E,V ), f3.4 48
Surface pit and island evolution,

f10.2 216
Surface tension

careful definition, n12 245
Gibbs free energy per unit area, 245,

e11.3 253
Landau theory, e9.4 206
obstacle to nucleation, 245
power-law singularity at critical point,

275
rough calculation, e9.4 206, e11.3 253
subtle for curved surfaces, n12 245
traction from mean curvature

τ = 2σκ, 248
van der Waals, e11.3 252

Surface terms in free energy, e9.3 205,
e9.5 207

Susceptibility, 222–31
analytic in upper half-plane, 230,

e10.9 240
and fluctuations, e8.2 174
χ(t) half a function, χ̃(ω) two

functions, 229
damped harmonic oscillator, e10.3 235
equilibrium relations to correlations,

218
Fourier simplifies, 222
imaginary χ′′(ω)

out of phase, dissipative, 223
positive for ω > 0, 224

linear, 222
polarizability, related to conductivity

σ = limω→0 ω α′′(ω), 224
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poles, representing damped
oscillations, e10.9 240

power-law singularity at critical point,
266, 275

real and imaginary related by
Kramers–Krönig, 229–31

real part χ′(ω), in-phase, reactive, 223
related to correlation,

fluctuation-dissipation
theorem

(classical) χ′′(ω) = (βω/2) C̃(ω),
228

(quantum) χ′′(k, ω) =
(1/2~)(1 − e−β~ω)C̃(k, ω),
229

response to external magnetic,
electric, potential, 222

sound waves, e10.9 240
space–time response to gentle kick,

215, 222
space–time, one-dimensional magnet,

e10.8 239
static, 224–6

determined from equilibrium
statistical mechanics, 224

dimple from leaning, 224
proportional to equal-time

correlation χ̃0(k) = βĈ(k, 0),
225

related to dynamic
χ0(r) =

∫∞
−∞ dt χ(r, t),

χ̃0(k) = χ̃(k, ω = 0), 225
two-state spin, e10.4 236

two-state spin, e10.4 236
uniform, 226
zero for t < 0 (causality), 226, 229

Swendsen-Wang algorithm, e8.8 177
Symmetry

and Landau theory, e9.5 206
broken, see Broken symmetry
crystal vs. liquid, 192
cube vs. sphere, 192
Galilean invariance, e9.6 210
inversion, f9.25 210
restrictions on evolution laws, e9.6 210
restrictions on free energy density,

e9.5 207
rotational, see Rotational symmetry
to derive wave equation, e9.6 209
translational, see Translational

symmetry
Symmetry breaking, spontaneous, see

Broken symmetry
Symplectic algorithm, e3.12 59
Symplectic form, n6 64

conserved by Verlet algorithm, n61 59
System space, dimensions for all

parameters, and
renormalization group, 267

T2, order parameter space for
two-dimensional crystal, 195

T3, order parameter space for
three-dimensional crystal, 195

T–ρ phase diagram, liquid–gas
transition, f12.6 267

Tails, heavy
computer time for NP-complete

problems, e8.15 188
critical droplet theory and instantons,

n14 246
probability distribution, e8.15 188
stock price fluctuations, e2.11 31

Taylor expansions
and causality, n27 230
and Landau theory, e9.5 208
converge to nearest complex

singularity, e1.5 7, 173
convergent inside phases, 171

Telegraph noise, e10.5 236
chemical concentrations in cells,

e8.11 181
definition, n53 127
in nanojunctions, f10.16 236
in RNA unzipping, f6.13 127

Temperature, 44–6
as Lagrange multiplier, e6.6 128
cost of buying energy from world, 46
determines direction of heat flow, 44
equal at phase coexistence, e6.10 129,

242
equal when energy shifts to maximize

entropy, 46, f3.3 47
ideal gas, 43, 52
intensive variable, 46
melting, lowered by salt or sugar,

n1 241, e11.9 259
negative, e6.3 125

Ternary phase diagram, for oil, water,
and alcohol, f8.8 173

Textures, classified by third homotopy
group, n16 200

Thermal activation
and chemical equilibrium constant,

120
and reaction rates, 120
as origin of slow processes, n37 121

Thermal conductivity
and refrigerator efficiency, e5.6 95
diffusion equation, n4 16, e2.8 30

frying pan, e2.9 30
iron, e2.9 30

Thermal de Broglie wavelength, see de
Broglie wavelength, thermal

Thermodynamic entropy
and glasses, e5.11 97
definition, 80
glass, measuring residual, 84

Thermodynamic limit, n16 114
Thermodynamic potential, 47

and free energy, n39 47
Thermodynamics, 113–17

as zoo, 115–17
axiomatic formulations of, 115
black hole, e5.4 93
can’t win and can’t break even,

n21 115
emerges for large systems, 114
first law: conservation of energy, 77,

114
ignores fluctuations, 114, e6.7 128
Legendre transformation, 116
Nernst’s theorem, 115, e7.3 153
no longer key in physics, v
not widely applicable outside physics,

v
Oxford English dictionary definition,

114
second law: entropy increases, 115

Carathéodory’s equivalent version
of, 115

equivalent to no perpetual motion,
n5 78

than statistical mechanics, not really
trickier, 117

third law: entropy density zero at zero
T , 115, e7.3 153

three laws, 114–15
tricky relations, 116
zeroth law: transitivity of equilibria,

114
Thermodynamics exercises, e3.10 58,

e3.11 58, e5.5 94, e5.6 95,
e6.5 127, e6.6 128, e6.7 128,
e6.8 128, e6.9 129, e6.10 129

Third homotopy group, classifies
textures, skyrmions, n16 200

Third law of thermodynamics: entropy
density zero at zero T , 115,
e7.3 153

Thought
at heat death of Universe, 81, e5.1 91
cost for complex, only to record

answer, n39 91, e5.3 93
Three-body problem, e4.4 72

KAM tori, f4.3 66
not equilibrating, 68
not ergodic, 68
perturbation theory fails, e4.4 73
Poincaré section, f4.3 66
vs. Newton’s two-body problem,

n19 68
why is Earth not interstellar?, 68,

e4.4 73
Three-degree cosmic background

radiation, e7.15 159, e10.1 231
Time Machine (Wells, H. G.) and heat

death of Universe, 81
Time, arrow of, and entropy, 80
Time–time correlation function
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general case, n12 221
ideal gas, Gaussian, 221
Onsager’s regression hypothesis, 222

Time-reversal invariance
and detailed balance, 170
broken by Big Bang, n30 232
broken in magnets, n4 193
correlation function, 228
of microscopic theory, implying

constant entropy, 87, 90,
e5.7 95, e7.4 153

vs. increasing entropy, 80
Time–time correlation function

Ising model, e10.6 237
Onsager’s regression hypothesis, 220

Topological defect, 198–203
crystal dislocation, f9.11 198
entanglement, f9.16 202, 201–3

only two examples, 202
integral formula for strength, e9.2 204
nematic disclination, f9.14 200,

e9.1 203
pair, and homotopy group

multiplication, 200, e9.2 204
unpatchable tear in order parameter

field, 198
Topology, bending and twisting ignored,

199
Torus

KAM, f4.7 73
order parameter space for crystal, 195
periodic boundary conditions, f9.7 195
three-body problem, f4.7 73
topologically surface of donut or coffee

cup, e4.4 73
winding number around, through is

Burger’s vector, 199
Total derivative, 65
Total divergence terms in free energy,

n38 121, e9.3 205, e9.5 207
Transcription, from DNA into RNA,

e2.3 26, n52 126
regulation by proteins, e8.11 179

Transient
dissipative systems, related to

equilibration, 65
Hamiltonian systems, as unusual

states, 65
Transition state, 120

dividing surface, n35 120
theory, e6.11 129

Translation, from RNA into protein,
e2.3 26

regulating transcription, e8.11 179
Translational symmetry

and Fourier methods, 299, 305–6
broken by crystal, 192, n38 233
broken, implies sound waves, 196
emergent, in lattice quantum

chromodynamics, 265

implies conserved ‘energy’ for domain
wall structure, e9.4 206

liquid, 192
not broken by two-dimensional

crystal, n39 235
to right by ∆ shifts x→ x−∆, n22 23

Triple-product relation, f3.4 48, e3.10 58
(∂x/∂y)|f (∂y/∂f)|x(∂f/∂x)|y = −1,

47
negative of canceling fractions, n41 47

T–V phase diagram, liquid–gas
transition, f11.1 241

Two-dimensional melting, n39 235
Two-phase mixture, 242

avoided by grand canonical ensemble,
n5 242

avoided using Gibbs free energy, 242
interpolates between free energies;

convexity, f11.2 242
Maxwell construction, 243
temperature, pressure, µ equal, 242

Two-state system, e6.2 125
and negative temperature, e6.3 125
from RNA unfolding, e6.4 127
in nanojunction, e10.5 236
model for glass, 84
potential, f5.7 84

Ultrasonic attenuation, 223, e10.9 240
Ultraviolet catastrophe, and

equipartition theorem, 147
Uncertainty and entropy, n26 85
Uncertainty principle, and Fourier

transform, eA.4 308
Uncorrelated variables, mean product is

product of means, n5 17
Uncoupled systems, canonical ensemble,

f6.2 109, 109–11
Undistinguished particles

Gibbs factor 1/N ! for phase-space
volume, 52

Hamiltonian and measurements treat
same, 52

non-interacting, 144–6
vs. indistinguishable particles, 52

Unit sphere in d dimensions called Sd−1,
n21 41

Universality, 265–72
class, 266

polymer not same as random walk,
19, e2.10 30

coarsening
exponents dimension independent,

250
not for scaling functions, 250

correction to scaling, n2 266, 278,
e12.2 282, e12.11 293

critical exponents, see Critical
exponents

independence of microscopic details,
267

liquid–gas transition, 266
magnetism and liquid–gas, 266
near critical point, f12.12 275, 275–6
not for coarsening, e12.3 282
percolation, site vs. bond, e2.13 35,

f12.7 268
period-doubling transition, 279,

e12.9 290
pitchfork bifurcation, e12.4 283
predicts much more than critical

exponents, 276
random walk, 17–19

explicit vs. renormalization-group
explanation, 19

scaling functions, n44 295
several shared exponents, 266
up to overall scales, f12.7 268

Universe
dominated by photons, e7.15 160
heat death, 81

and life, e5.1 91
visible, circumference at decoupling,

e10.1 233
Unreasonable effectiveness of

mathematics, emergent, n1 15
Unstable manifold, of

renormalization-group fixed
point, n7 269

Vacuum states in early Universe, 191
Valence band, e7.12 157
van der Waals

and hard sphere gas, e11.1 252
chemical potential, e11.3 252

water, f11.14 253
critical density, e11.2 252
equation of state, e11.1 251
fit to water, f11.13 252
Maxwell construction, e11.1 251
not quantitative for surface energy,

e11.3 253
perturbative in density, n20 251
surface tension, interfacial free energy,

e11.3 252
vapor pressure, e11.3 252
wrong critical exponent β = 1/2,

e11.2 252
Variational derivative, n41 122, 196,

e9.4 206, n7 218, e10.8 239
Velocity distribution, classical, e1.2 6

canonical ensemble, 111
independent of potential energy, 44,

e4.1 70, 111
microcanonical ensemble, 44, e4.1 70
vs. magnetic fields, relativity,

quantum, n28 44
Verlet algorithm: conserves symplectic

form, n61 59
Very large numbers, e3.2 54
Vibrations, molecular, frozen out,

n54 56, n31 119
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Virial expansion, 172
van der Waals, n20 251

Volatility
of index fund, smaller than stock

price, e2.11 32
of stock price, e2.11 32

Waiting for Godot, as Markov chain,
e8.3 175

Walls, classified by zeroth homotopy
group, n16 200

Warning
name ρ used everywhere for

probability density, n32 45
use conserved currents to derive laws,

n18 21
Waste heat, 77
Wave equation, 196

derived from symmetry, e9.6 209
for photon gas in early Universe,

e7.15 160
quantized, e7.11 157

Weakly-coupled systems
canonical ensemble, 106, f6.2 109
energy of one independent of state of

other, 44
energy shell volume multiplies, e3.6 56
entropies add, n35 46
microcanonical ensemble

all states equal with fixed Etot, 45
ρ(s1) ∝ Ω2(E − E1), 45

mixture of ideal gases, e3.7 56
Ω(E) =

∫
dE1 Ω1(E1)Ω2(E − E1)

δ-function derivation, e3.6 55
energy-shell derivation, n31 45

partition function factors, 109
positions and momenta, n29 45
surface area vs. volume, n29 45

temperature, 44
Weirdness of high-dimensional spaces

configuration space 50/50 right-hand
side, 40

equator has most of surface area, 43
natural in statistical mechanics, 43

Wells, H. G., and heat death of
Universe, 81

White dwarf
as Fermi gas of electrons, e7.16 161
stellar collapse, e7.16 161

White noise, n11 219, eA.8 311
δ-function correlation, 219
ideal gas equal-time correlation

function, 219
zero correlation length, n9 219

Wilkinson microwave anisotropy probe
(WMAP), of cosmic
microwave background
radiation, f10.14 232

Winding number
counts defects in XY model, e9.2 204
escape into third dimension, e9.1 204
integer, cannot change smoothly to

zero, 199
integral formula, e9.2 204
KAM theorem, e4.4 74
nematic disclination ±1/2, e9.1 203
not topological for nematic, e9.1 203
quantized circulation around

superfluid vortex, e9.7 211
Wolff algorithm, e8.8 177

bypasses critical slowing-down,
e8.8 177, e8.9 177

changes coarsening dynamics, e8.9 178
detailed balance, e8.8 177
ergodic, Markov, e8.8 177

implementation, e8.9 177
much faster than heat-bath,

Metropolis near Tc, e8.8 177,
e8.9 177

Work hardening
and topological defects, 200
magician and Superman bend bars

irreversibly, 200
P–V diagram

and Carnot cycle, f5.3 79
Work, P–V diagram, e5.5 94

area enclosed, 79
Wrapping number, f9.13 199

counts hedgehogs, 200, e9.3 205
integral formula, e9.2 205

Written works of human history, entropy
of, n27 85

Wulff construction, equilibrium crystal
shape, f11.6 247

X-ray diffraction, 217, f10.6 218
different from medical X-rays and

CAT scans, n5 217
XOR gate, and irreversible computation,

e5.3 93
XY model

analogy to superfluid, 278
order parameter, defects, winding

number, e9.2 204

Young measure, martensite, e11.8 259

Zero-point energy, e7.2 152, e7.15 160
Zeroth homotopy group

classifies walls, n16 200
Zeroth law of thermodynamics:

transitivity of equilibria, 114
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Random walks & diffusion
Random walk: L =

√
Na ∼ Nν , ν = 1/2, dfractal = 2.

Self-avoiding walk: ν2d = 3/4, ν3d ∼ 0.59.
Diffusion equation:

∂ρ

∂t
= −∇ · J = −∇ (−D∇ρ+ γFρ)

= D∇2ρ− γF · ∇ρ (D, F constant)

Einstein relation: D/γ = kBT
Fourier solution: ρ̃k(t) = ρ̃k(0) exp(−Dk2t)
Green’s function: G(x, t) = 1/(4πDt)

d/2 exp[−(x2/4Dt)]

Ideal Gas
Thermal deBroglie wavelength: λ =

√
2π~2/mkBT

Classical: A = NkBT [log
(
ρλ3
)
− 1],

S = NkB
(
5/2− log(ρλ3)

)
,

Diffusive correlation function:
C(r, τ ) = 1

βα
e−r

2/4Dτ/(4πDτ )
3/2

Bose–Einstein: ΦNI =
∑

k kBT log
(
1− e−β(εk−µ)

)
,

〈nk〉 = 1/(eβ(εk−µ) − 1)

Fermi–Dirac: ΞNI =
∏

k

(
1 + e−β(εk−µ)

)
,

〈nk〉 = 1/(eβ(εk−µ) + 1)

Entropy

Thermodynamic: ∆S = Q/T =
∫
dQ/T =

∫
c
T
dT + L

Tc

Statistical: S = kB log Ω Equilibrium
= kB log(#configs) Mixing
= −kB

∑
pi log pi Non-equilib

= −kBTr(ρ log ρ) Quantum
= −kS

∑
pi log pi Shannon

Ensembles
Microcanonical (3.54): Ω(E)δE =

∫
E<H<E+δE

dP dQ
h3NN!

Canonical (6.5): Z =
∑

n e−En/kBT = Tr e−βH

Helmholtz free energy (6.17): A = −kBT logZ

Grand canonical (6.35): Ξ =
∑

m e−(Em−µNm)/kBT

Grand free energy (6.36): Φ = −kBT log Ξ

〈O〉 =∑m Ome−βEm/Z =
∑

mOme−β(Em−µNm)/Ξ

Thermodynamics (Section 6.4)

Entropy S(E, V,N) S = E/T + PV/T − µN/T dS = dE/T + P dV/T − µdN/T
[Also known as]

Energy E(S,V,N) E = TS − PV + µN dE = T dS − P dV + µdN U
Helmholtz A(T, V,N) A = E − TS = −PV + µN dA = −S dT − P dV + µdN F
Grand Φ(T, V, µ) Φ = A− µN = −PV dΦ = −S dT − P dV −N dµ Ω, F

Gibbs G(T, P,N) G = A+ PV = µN dG = −S dT + V dP + µdN Φ
Enthalpy H(S,P,N) H = E + PV = TS + µN dH = T dS + V dP + µdN W

(e.g., dS = 1
T
dE + P

T
dV − µ

T
dN means (∂S/∂E)|V,N = 1

T
, (∂S/∂V )|E,N = P

T
, and (∂S/∂N)|E,V = − µ

T
)

A Maxwell relation (3.70): (∂T/∂V )|S,N = ∂(∂E/∂S)/∂V = ∂(∂E/∂V )/∂S = −(∂P/∂S)|V,N

A triple product relation (3.35): −1 = (∂S/∂E)|V,N (∂E/∂V )|S,N (∂V /∂S)|E,N = (1/T ) (−P ) (T/P )

Gibbs–Duhem relation (6.78): S dT − V dP +N dµ = 0

Clausius–Clapeyron equation (6.79), for phase coexistence line P (T ): dP/dT = (s1 − s2)/(v1 − v2)

Harmonic oscillator

Classical: A = kBT log (~ω/kBT ), equipartition theorem 1/2kBT per degree of freedom
Quantum: Z = 1/ [exp(β~ω/2) − exp(−β~ω/2)]
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Order parameters, topological defects (Chapter 9)

System Order parameter Defect Homotopy

Crystal Torus Td Dislocation Π1(Td) = Zd

Magnet Sphere S2 Hedgehog Π2(S2) = Z

Nematic Hemisphere RP 2 Disclination Π1(RP2) = Z2

Superfluid/conductor
φ

Circle S1 Vortex Line Π1(S1) = Z

Correlation, response, dissipation (Chapter 10)

Correlation function: C(r, τ ) = 〈s(x, t)s(x+ r, t+ τ )〉
Scattering experiments: C̃(k, 0) ∝ |s̃(k)|2
Onsager’s regression hypothesis: (Green’s function G):
Ĉ(k, τ ) = Ĝ(k, τ )Ĉ(k, 0)

Susceptibility to force field f(x, t):
s(x, t) =

∫
dx′

∫ t

−∞ dt′ χ(x− x′, t− t′)f(x′, t′)
s̃(k, ω) = χ̃(k, ω)f̃(k, ω) = (χ′(k, ω) + iχ′′(k, ω)) f̃(k, ω)

Power dissipated: p(ω) =
(
ω|f̃(ω)|2/2

)
χ′′(ω)

Static susceptibility: χ0(r) =
∫∞
−∞ dt χ(r, t)

Causality: χ(t) = 0, t < 0

Fluctuation-response theorem: χ0(r) = βC(r, 0)
Macroscopic fluctuations vanish:
〈〈s〉2space〉 = kBTχ0(0)/V → 0 as V →∞.

Fluctuation-dissipation theorem:
(classical) χ(x, t) = −β ∂C(x, t)/∂t (t > 0),

χ′′(k, ω) = (βω/2)C̃(ω)
(quantum) χ′′(k, ω) = (1/2~)

(
1− eβ~ω

)
C̃(ω)

Dissipated power: p(ω) = (βω2/4)|f̃ω |2C̃(k, ω)
Kramers–Krönig (causality):
χ̃(ω) = (1/πi)

∫
dω′ χ̃(ω′)/(ω′ − ω)

χ′(ω) = (2/π)
∫∞
0

dω′ ω′χ′′(ω′)/(ω′2 − ω2)
χ′′(ω) = −(2ω/π)

∫∞
0

dω′ χ′(ω′)/(ω′2 − ω2)

Abrupt phase transitions (Chapter 11)
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Continuous phase transitions (Chapter 12)
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Coarse-graining, scaling
Renormalization group

Universal critical exponents β, ν, . . .
Scaling functions D,M, C, . . .
D(S,R) ∼ S−τD(Sσ(R −Rc))

=⇒
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