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ABSTRACT

Examples of coupled irreversible processes like the thermoelectric phenomena, the
transference phenomena in electrolytes and heat conduction in an anisotropic medium
are considered. For certain cases of such interaction reciprocal relations have been
deduced by earlier writers, e,g. , Thomson's theory of thermoelectric phenomena and
Helmholtz' theory for the e.m. f. of electrolytic cells with liquid junction. These earlier
derivations may be classed as quasi-thermodynamic; in fact, Thomson himself pointed
out that his argument was incomplete, and that: his relation ought to be established on
an experimental basis. A general class of such relations will be derived by a new
theoretical treatment from the principle of microscopic reversibility. ()$1-2.) The
analogy with a chemical monomolecular triangle reaction is discussed; in this case a
a simple kinetic consideration assuming microscopic reversibility yields a reciprocal
relation that is not necessary for fulfilling the requirements of thermodynamics ($3).
Reciprocal relations for heat conduction in an anisotropic medium are derived from
the assumption of microscopic reversibility, applied to fluctuations. ($4.) The recip-
rocal relations can be expressed in terms of a potential, the dissipation-function. Lord
Rayleigh's "principle of the least dissipation of energy" is generalized to include the
case of anisotropic heat conduction. A further generalization is announced. ($5.} The
conditions for stationary flow are formulated; the connection with earlier quasi-
thermodynamic theories is discussed. ($6.) The principle of dynamical reversibility
does not apply when (external) magnetic fields or Coriolis forces are present, and the
reciprocal relations break down. ($7.)

I. INTRODUCTION

HEN two or more irreversible transport processes heat conduction,
electrical conduction and diffusion take place simultaneously in a ther-

modynamic system the processes may interfere with each other. Thus an
electric current in a circuit that consists of diAerent metallic conductors will
in general cause evolution or absorption of heat at the junctions (Peltier
e8'ect). Conversely, if the junctions are maintained at diferent temperatures
an electromotive force will usually appear in the circuit, the thermoelectric
force: the How of heat has a tendency to carry the electricity along.

In such cases one may naturally suspect reciprocal relations by analogy
to the reciprocal relations which connect forces and displacements in the equi-
librium theory of mechanics and in thermodynamics. Relations of this type
have been proposed and discussed by many writers. The earliest of them all
is due to W. Thomson it deals with thermoelectric phenomena. We shall
cite Thomson's reciprocal relation in a simple form as a symmetry condition
for the relations which connect the forces with the velocities. The eIectric
current we shall call J~, the heat How J2. The current is driven by the elec-

' %.Thomson (Lord Kelvin), Proc. Roy. Soc. Edinburgh 1854, p. 123; Collected Papers l,
pp. 237-41.
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tromotive force, which we shall call X». In corresponding units the "force"
which drives the How of heat will be:

1
X2 = ——gl'ad T~

where T denotes the absolute temperature (Carnot). If the heat liow and the
current were completely independent we should have relations of the type:

X» R»J»

X2 ——R2J2

where R» is the electrical resistance and R~ a "heat resistance. " However,
since the two processes interfere with each other we must use the more com-
plicated phenomenological relations

X» R»»~» + R»2~2

X2 = R2»J» + R2~J2

Here Thomson's contention is:

(I I)

R»2 —RQ»,

Thomson arrived at this-relation from thermodynamic reasoning, but he
had to make one additional assumption, namely: "The electromotive forces
produced by inequalities of temperature in a circuit of different metals, and the

thermal eflects of electric current circulating in it, are subject to the laws which

would follow from the general principles of the thermodynamic theory of heat if
there were no conduction of heat from one part of the circuit to another "Thom. -

son thought this assumption very plausible. Even so, he cautiously con-
sidered his reciprocal relation (1.2) a conjecture, to be confirmed or refuted

by experiment, since it could not be derived entirely from fundamental prin-
ciples known at that time. At present Thomson's relation is generally ac-
cepted, because it has been con6rmed within the limits of error of the best
measurements. As regards the theory, the same relation has frequently been
found as a by-product of investigations in the electron theory of metals. How-

ever, Thomson's relation has not been derived entirely from recognized funda-
mental principles, nor is it known exactly which general laws of molecular
mechanics might be responsible for the success of Thomson's peculiar hypo-
thesis.

In the following, a general class of reciprocal relations in irreversible pro-
cesses will be derived from the assumption of microscopic reversibility No.
further assumptions will be necessary, except certain theorems borrowed from
the general theory of fluctuations. Among the relations to be derived, many
have been proposed before, but some will be new. An important group among
these relations can be summarized in a variation-principle, which is nothing
but an extension of Lord Rayleigh's "principle of the least dissipation of en

ergy"; we shall retain the name for the extended principle. According to this
theorem the rate of increase of the entropy plays the role of a potential.
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Thomson's hypothesis covers only part of the cases which we are going
to consider, yielding the same results as the more general "principle of the
least dissipation of energy. " This connection will be discussed in f6; here,
however, we shall comment on the natural interpretation of Thomson's hypo-
thesis, because his formulation is somewhat ambiguous: He assumes that
the temperature differences present are bound to cause a certain degradation
of energy by conduction of heat; if another irreversible process (electrical
conduction) takes place simultaneously, this process must cause an additional
degradation of energy, making the total rate of increase of the entropy greater
than it would be by heat conduction alone.

The derivation of such results from the principle of microscopic reversi-
bility will hardly be a surprise to workers who are acquainted with the theory
of irreversible processes. In many familiar cases this principle guarantees an
independent balancing of different classes of molecular processes maintaining
a statistical equilibrium. The writer actually conceived the idea for the new
derivation of reciprocal relations by comparing the relations due to Thomson, '
Helmholtz' and others with the conditions for reversibility in certain chemical
reactions, as presented in )3.

The principle of microscopic reversibility is less general than the funda-
mental laws of thermodynamics; the consequent limitations to our reciprocal
relations will be briefly described in f7. It is easy to show that Thomson' s
relation is no thermodynamic necessity. According to (1.2) the rate of pro-
duction of entropy per unit volume of the conductor equals

dS 1= —(X,Jg + X,J,) = —(R»J&' + (R,.+ R»)J,J, + R»J, ') .
dt T T

Thermodynamics requires only:
d5(d7' ) 0

identically, except when J& and J& vanish simultaneously, or, by simple alge-
bra:

Rgg + R;g ( 2(RggR22)"'. (1 3)

This condition (in a somewhat different form) was given by Boltzmann. '
In the present communication only one special case, namely heat conduc-

tion in an anisotropic medium (crystal), will be adequately treated ()4). This
limitation allows a simplified derivation, which nevertheless brings out clearly
the essential ideas of the new theoretical treatment. The derivation of other
reciprocal relations, including Thomson' s, will be reserved for later publica-
tion; here we shall merely enumerate the most important cases.

2. EXAMPLES OF MUTUAL INTERACTION OF IRREVERSIBLE PROCESSES

The formulation (1.1) of the laws of irreversible processes in terms of re-
sistances R», etc. , is well adapted to a comparison with the thermodynamic re-

quirements; but as a rule it is a little easier to see the physical meaning of such

~ H. v. Helmholtz, Wied. Ann. 3, 201 (f876); Wiss. Abh. 1, 840.
' L. Boltzmann, Wien. Her. 90, 1258 (1887).
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laws when they are expressed in terms of conductances Lll, L12 etc. :

where:

Jl L11Xl + L12X2

J2 = L21X1 + L22X2

111 R29/(R11R22 R12R21)

(2. 1)

etc. The reciprocal relation (1.2) takes the form:

(2 2)

So far we have only mentioned the interaction of heat conduction and
electrical conduction. In mixtures of gases and in solutions a third transport
process is possible, namely diffusion. Experience shows that any two possible
transport processes are likely to interfere with each other to some extent.

It is well known that an electric current in a conductor of the second kind
causes transport of matter. Conversely, a concentration gradient between
two identical reversible electrodes causes an electromotive force. The rela-
tions between "forces" and velocities may again be expressed in the form (2.1) .
Jl may again be the electric current, and Xl the e.m. f. ; for J2 we take the
How of solute relative to the solvent, for X2 the gradient —grad y =X2 of the
thermodynamic potential p of the solute. The coefficients Lll L22 are
connected, in a manner which we need not discuss in detail, with the elec-
trical resistance, the diffusion coefficient, the "transference number" and the
e.m. f. caused by a given concentration gradient. Usually the fourth is not
mentioned, since Helmholtz has derived the reciprocal relation.

L12 = L21. (2.2)

His derivation is quite analogous to Thomson's treatment of the thermoelec-
tric phenomena, and it suffers from the same weakness. However, the experi-
ments confirm the result, Nernst' has given a kinetic derivation from assump-
tions that are somewhat specialized, and the theorem is generally accepted.

For the interaction between heat conduction and diffusion a reciprocal
theorem has been derived by Eastman the case is quite analogous to the
preceding. The diffusion caused by a temperature gradient is known as the
Soret effect; the inverse effect has been demonstrated in a qualitative manner
for a mixture of gases. ' Eastman has also discussed thermoelectric forces in
electrolytes. In that case three different transport processes are involved
simultaneously. The phenomenological relations can be expressed in the form

J1 LllX1 + L12X2 + L13X3

J2 L21Xl + L22X2 + L23X3

J3 ——L31X1+L32X2 + L33X3

and we may suspect 3 2/2 = 3 reciprocal relations

L12 L21 j L13 L31 j L23 L32 ~

' W. Nernst, Zeits. f. physik. Chem. 2, 613 (1888).
' E. D. Eastman, J. Am. Chem. Soc, 48, 1482 {1926);50, 283, 292 (1928).
' Dufour, Arch. d. sc. phys. et nat. Genf 45, 9 {1872);Pogg. Ann. 148, 490 (1873).

(2. 3)

(2.4)
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The case of simultaneous diffusion of several substances in the same solu-
tion completes the list nf possibilities for coupling between transport pro-
cesses in isotropic bodies.

Transport processes in anisotropic bodies afford a few interesting exam-
ples of mutual interaction, for instance the conduction of heat in crystals of
low symmetry. In the most general case of a triclinic crystal the phenomenol-
ogical relations can be written in the form (2.3). We chose a cartesian frame
of coordinates x1, x2, x3,' then J1, J2, J3 are the components of the heat flow
along these axes, and the "forces" are X,= —(I/T)BT/dx& etc. In a suitable
frame of reference x1*, x2*, x3* parallel to the main axes of the ellipsoid:

Lllxl + (I 12 +L21) xlx2 + ' ' +I33x3 —Xlxl +Xsxg + )l3x3 ——const. (2 .5)

the equations of heat conduction take the form

Jl ~1X1 + &3X2 &2X3

J2 M3Xl + X2X2 + N1X3

J3* ——(u2X1* —a)1X2* + X3 X3*.

If the reciprocal relations (2.4) are valid, then:

G01 = M2 = G03 = 0

(2.6)

(2. 7)

and the conducting properties of the crystal are entirely determined by the
ellipsoid (2.5); whenever the gradient of the temperature is parallel to one
of the axes x* the heat flows in exactly the same direction. If or&, e2, co3 do not
vanish there may still be three such directions of direct heat flow, in which
case these directions will no longer be perpendicular to each other, or there
may be only one such direction. For instance, for crystals belonging to the
tetragonal or hexagonal systems the inherent symmetry fixes the axes x1*——x1,
x2* ——x2., x3*——x3 and demands certain relations between the coe%cients, so
that (2.3) and (2.6) take the form

J1 = X1X1+ (O3X2

J2 = —~3X1+ X1X2

J3 = X3X3.

(2 g)

If clockwise and counterclockwise rotations around the axis x3 are equivalent
co3 vanishes for reasons of symmetry, but certain classes of the crystallographic
systems in question do not possess such a symmetry. When co3 does not vanish
the flow of heat in the x1, x2 plane will always form an angle:

arc tan (—&a~/Xi)

with the temperature gradient. If we should take a circular plate of such a
crystal, cut parallel to the base (xi, x, plane), and heat it in the middle,
maintaining cylindrical symmetry, the heat would flow in spirals. Attempts
by Soret and W. Voigt to detect this spiral motion met with negative results,
in spite of a very sensitive method, '

~ Ch. Soret, Arch. de Geneve 29, no. 4 (1893); 32) no. 12 (1894). W. Voigt, Gott. Nachr.
87, (1903).
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The case of electrical conduction in highly anisotropic crystals is quite
analogous to the heat conduction, and the thermoelectric phenomena in crys-
tals afford a variety of possibilitities for reciprocal relations. We need only
mention these two examples; a detailed discussion would not bring out any
new features of the general problem.

3. ANALOGY WITH CHEMICAL REACTIONS

We shall compare (2.3) with the equations for a chemical monomolecular
triangle reaction. Suppose that a certain substance may exist in a homogene-
ous phase in three different forms A, 8, C. Suppose further that any one of
these may spontaneously transform itself directly into either of the others
according to the scheme

A ~~
1l
C~

(3.1)

We shall assume that the reactions obey a simple mass-action law. That is,
the fraction of A molecules which will change into 8 in a given short time
ht is

k~gDt

where k~g is a constant. Then the rates of change of the amounts n~, n~, nq
are given by the equations

dt
= —(kBA + kcA)eA + kABNB + kACIC

dna
kBABA (kAB + kCB)SB + kBCBC

dt

dna,
kCABA + kCBBB (kAC + k'BC)NC ~

dt

(3.2)

If one or several of the coefficients k~g etc. vanish the case becomes trivial;
we shall therefore assume that they are all +&0. This condition is by itself
sufficient to insure finite equilibrium concentrations n&, n&, nz, which are
given by the relations

dna
(kBA + kcA)'+A + kABBB + kAC'6C

dt
(3.3)

together with

nA + nB + ng = ng + ng, + ng = n (3.4)

expressing the conservation of the total amount. If the equilibrium ratios
ng. ng'. ng are known this implies two independent relations between the 6
coefficients kg~, k~g, keg, leaving 4 of them free.

Here, however, the chemists are accustomed to impose a very interesting
additional restriction, namely: when the equilibrium is reached each indi-



viual reaction must balance itself. They require that the transition A —+9
must take place just as frequently as the reverse transition 8—+A etc. Now
if the ratios between H A, nB, and ng are known the condition of detailed bal-
ancing imposes three relations between the k's instead of the two expressed
by (3.3), namely

«BA +A «AB ~B

«gBngg = «Bgng

«AC~C = &CA&A

(3.5)

These reciprocal relations are analogous to (2.4). From (3.5) we can obtain
just one relation between kAB etc. alone, namely

«AC&eB4A = «AB«aa«eA.

This relation is not necessary for fulfilling the thermodynamic requirements;
those are satisfied as soon as an equilibrium exists, and the existence of an
equilibrium is secured by any set of positive values of k» Aped. In terms
of equations: (3.5) is not contained in (3.3).

Suppose that (3.5) were not fu1611ed, how could the equilibrium be main-
tained P Besides a certain number of transitions balancing each other directly
according to the scheme

we should have additional transitions taking place around the cycle

C~ (3.6)

Now the idea of an equilibrium maintained by a mechanism hke (3.6) whether
entirely or only in part, is not in harmony with our notion that molecular
mechanics has much in common with the mechanics of ordinary conservative
dynamical systems. Barring certain exceptional cases' which can readily be
recognized and sorted out, the dynamical laws of familiar conservative sys-
tems are always reversible, that means: if the velocities of all the particles
present are reversed simultaneously the particles will retrace their former
paths, reversing the entire succession of configurations. We like to think that
the dynamical laws which govern the world of atoms are also reversible. The
information that we have about the atoms affords considerable support for
this belief of ours, and we have no serious counter-indications, if any. If the
dynamical laws of an isolated molecular system are reversible the kinetic
theory requires that in the long run every type of motion must occur just
as often as its reverse, because the congruence of the two types of motion
makes them Opriori equivalent. This implies that if we wait a long time so as
to make sure of thermodynamic equilibrium, in the end every type of motion

I Coriolis forces, external magnetic 6elds {and permanent magnets). See $7.
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is just as likely to occur as its reverse. One consequence of this principle of
dynamical reversibility is the condition that when a molecule changes a certain
number of times per second from the configuration A to the configuration 3
the direct reverse transition 8—+A must take place equally often, as expressed
by (3 3).

In order to see the full analogy between the reciprocal relations (3.5) and
2.4) we must find an expression for the change in free energy involved by the
chemical reactions (3.1). Assuming in accordance with the ideal mass-action
formula (3.2) that the molecules A, 8, and &. form an ideal solution we may
express the dependance of the "free energy at constant pressure" Z of nA, ng
and nc in the form

Thus
Z = Z„;„+RT(n» log (n&/n&) + na log (na/na) + nc log (nc/nc)) (3.7)

bZ&p, r, „i = RT(log (n»/n»)bn» + log (na/na)fina + log (nc/nc)inc)

Ke shall introduce the notation

and write
&A nA nA e tc ~

8Z = —XA6xA —XBSXB —Xgbzg.

(3.8)

In order to obtain proportionality between the "forces" I and the displace-
ments x we must limit ourselves to the consideration of cases where the sys-
tem is nearly in equilibrium, i,e.

xA & & nA etc.
Then we have

RT
X~ ———RT log (n»/n~) ~ — x~

(3 9)

RT

Observing (3.3) and 3.8) the Eqs. (3.2) may be written in form

(ESCA

&» = —= —(4» + &c»)*»+ 4aua+ 4c&c
dt

or, finally, with the aid of (3.9)

nA kABnB kAgng
*» = (4» + 7»cA) &» — &a — Xc

RT RT RT

kBA nA nB kBcng—-'4+ (4a+ &ca) &a — &c
RT RT RT

kgAHA kgBnB
Xa+ (4c+ &ac) &c.

RT RT RT

(3.10)
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Comparing (3.10) with (2.3) the complete analogy between (3.5) and (2.4) is

apparent. '
This comparison suggests that reciprocal relations of the type (2.4) can

be derived from the principle of microscopic reversibility. It is true that in

the above derivation of (3.5) we started out from a special picture; but we
saw at least that this picture was not by itself sufficient to yield the reciprocal
relations (3.5). The feature that simplified the consideration so much was
the assumed mechanism of elementary transitions, which permitted us to ap-
ply the condition of reversibility, or "detailed balancing, " to each type of
transitions separately. We can already recognize the essential elements in the
derivation of (1.2) (which is only another form of (2.4)) from the electron
theory of metals. In those deductions it was assumed that the rates of trans-
port processes were limited by collisions between particles whose velocities
were distributed according to Maxwell's law. Now the collision is in effect
a kind of transition leading from a state characterized by one pair of veloci-
ties (v&', v, ') to another state (v,", v,"). The requirement of microscopic
reversibility enters through the condition that the transitions:

(vq', vs') —+(v,", v,") and (—vq", —vs") ~(—v, ', —v2')

must occur equally often when the system has reached thermodynamic equi-
librium.

For a general derivation of reciprocal relations like (2.4) we should like to
make no reference whatsoever to any particular type of mechanism. We
understand already that any mechanism representing an irreversible process
as the net resultant of many independent elementary transitions is liable to
yield the expected relations; but we have to deal with many cases where no
such mechanism can reasonably be assumed. For that reason we want to
consider only the integral changes that are involved by the irreversible pro-
cess. At the same time we want to apply our basic assumption of microscopic
reversibility. There is just one possible way: We must consider the gnctua
tions in a system which has been left isolated for a length of time that is
normally sufhcient to secure thermodynamic equilibrium.

4. HEAT CONDUCTION AND FLUCTUATIONS OF THE DISTRIBUTION

OF ENERGY IN A CRYSTAL

We shall show in a simple concrete example how the principle of micro-
scopic reversibility demands reciprocal relations in transport processes. The

~ Strictly speaking, one may object that there is a difference between the two cases inas-

much as x&, xz, and xt. are subject to the restriction:

xg+xg+xt. =0
x~+x~+x~ =0

(because of (3.3) and (3.8)); so that (3.10) actually contains only two independent variables.
However, this only means that (3.10) is analogous to a set of equations of the type (2.3) written
out for two variables J&, J& instead of three, i.e., (2.1), with only one reciprocal relation (2.2).
This statement may be verified by eliminating one of the variables x, say xg, in the equations
(3.7) etc. The whole complication is quite trivial, and we shall spare ourselves the trouble of

going through the details of the calculation here.
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consideration of fluctuations will enable us to treat the stationary thermo-
dynamic equilibrium as the average result of transitions in different directions
without any explicit assumption regarding elementary transitions. We must
of course connect the fluctuations with the macroscopic laws of thermody-
namics and irreversible processes by reasonable general assumptions. The
principles involved are not new; they are classical theorems of statistical me-

chanics. To begin with, let us contrast the thermodynamic to the statistical
point of view.

In thermodynamics we assume that when a system has been left isolated
for a sufficient length of time it will reach a state of equilibrium, where all
the visible properties of the system remain constant. The approach to equi-
librium is irreversible.

The kinetic theory allows only a statistical interpretation of the second
law of thermodynamics; the reversible fundamental laws of dynamics are not
compatible with absolutely irreversible processes. For instance, we take the
point of view that the uniform distribution of a gas within an enclosure is a
stable equilibrium state simply because any other distribution is much less
probable. We recognize the possibility that a gas may by some freak occur-
rence compress itself without external aid into one-half of the available
volume, although we do not expect ever to observe such an event; the proba-
bility is exceedingly small, namely: 2 ~, where X is the total number of mole-
cules present. While such large deviations from tne normal are exceedingly
rare smaller deviations will occur much more frequently, and the common
deviations from the average number of molecules in either half of the vessel
will be of the order of magnitude (Ã) '*.

In connection with the theory of heat conduction we shall naturally study
the fluctuating deviations from the thermal equilibrium. For instance, we
may follow the variations in the position of the center of gravity of the en-

ergy. " According to thermodynamics this point will remain at rest after
thermal equilibrium has been reached. According to statistical mechanics we

may expect a succession of slightly asymmetrical distributions of energy.
Then the motion of the center of gravity of the distribution is a legitimate ob-
ject of study.

The ordinary macroscopic laws of heat conduction relate the flow of heat
to the temperature gradient at any given time, so that the distribution of
energy at any one time determines all subsequent distributions. From the
point of view of the kinetic theory this pre-determination cannot be inter-
preted as absolute; for instance, we do not expect to find an ultimate motion-
less and completely uniform distribution as required by the macroscopic laws.
Still these laws will have a quite definite meaning in the kinetic theory as
well. Suppose that we reproduce the same distribution of energy many times
independently. Then the subsequent distributions will not be exactly the
same in all cases, nor will the rates of change agree exactly with the macro-
scopic laws in each individual case; but the average rates for a large number

'4 Coordinates (~=a~/E; g~=u~/E, a~ and ag being defined by (4.3). We must of course
make an arbitrary convention about the total content of energy E.



of cases will follow definite laws, and these laws will agree exactly with the
macroscopic laws for the conduction of heat.

We also expect that an asymmetric distribution of energy will be exactly
the same whether it has arisen accidentally from Ructuations or has been pro-
duced purposely by means of suitable external heating and cooli'ng. Once
a given distribution of energy is present its history is immaterial, but, as we
have pointed out above, the distribution that is present at any given time
determines an average expectancy for the rates of the subsequent changes.
In all instances this average expectancy for the rate of transport of heat is
related to the momentary distribution by the ordinary macroscopic laws for
the conduction of heat.

We shall consider the simplest case that is not trivial, namely: a crystal
with a 3-, 4- or 6- counting axis of symmetry (x3)

x, + ix 2+(x, + fx2)e'~'"~" (e = 3, 4 or 6) (4. 1)

(m=1, 2 )

and no other elements of symmetry except possibly a plane of symmetry
perpendicular to x3 (x3—& —x3) and a center of symmetry (xq, x2, xq~ —xq, —x2,
—x3). The equations for the conduction of heat take the form (2.8), or

TJy = XyBT/ISxy + 4tgBT/rf x2

Tj2 = —6)38T/Jxg + XyBT/dx2

—TJI ——XgBT/dxs.

(4 2)

Since clockwise and counterclockwise rotations are not equivalent, and &3~0
and the spiral motion of hea, t which we mentioned in )2 are allowed by the
symmetry of the crystal. However, if we may rely on the principle of micro-
scopic reversibility, then a state of motion in any direction is equivalent to a
state of motion in the opposite direction, and for that reason e3 must vanish.
Argument and statements are admittedly incomplete. We could not reason
in such a simple manner if the case were not so symmetrical, nor would the
results be quite as simple. However, let us undertake a more detailed analysis.

We shall study the Ructuations of the distribution of energy in an isolated
crystal. In order to take full advantage of the rotational symmetry expressed
by (4.1) and (4.2) we gimme the external shape of the crystal rotational sym-
metry about the x3 axis. The origin of our frame of reference may be at the
center of gravity of the crystal; the orientation of the axes is already deter-
mined by the symmetry. We shall consider displacements of heat in the direc-
tions x& and x2. We measure the asymmetry of a given distribution of heat
by the moments

ui = e xidV

pg = jf'6 xg(EV

(4 3)
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where c = e (x&, x2, x3) is the local density of energy, "and the integration is
extended over the, total volume U of the crystal. The displacements 0.& and
0.2 will differ a little from zero most of the time because of Ructuations; their
averages will vanish

Ay = cx2 = 0.

For reasons of symmetry the average squares of n& and 0.2 must be equal, and
displacements in the directions x~ and x2 will be independent

0!& = A2 &
0,'&%2 = 0.2 = 2 ~ (4 4)

The same displacement (n„n2) of energy may be produced by different dis-
tributions of energy, and, accordingly, of temperature. However, to each
value of n~, there will correspond a certain average temperature gradient

BT/dxp = —T Xg(ng)

in the x~ direction, the averaging to be extended over all cases where nq takes
the same value, and in each case over all volume elements of the crystal.
This average gradient will be proportional to 0.~

..

BT/dxpi = —T X&(n&) = TC~&.

In a similar manner

BT/dx, ~~ = —T X2(n2) = TCcx2

and if we consider a displacement (n&, n2) in an arbitrary direction:

TXg(ag, 0'2) = TCag

TX2(CX1, A2) = TCQ'e
(4.5)

The factor C can be calculated on the basis of the general theory of fluctua-
tions. " In this particular case we shall be content to know that 0.~ causes no
temperature gradient in the x2 direction, and vice versa, in spite of the fact
that rotations in opposite directions in the x&, x2 plane are not equivalent. The
reason is that in questions regarding the distribution the anisotropy of the
crystal is immaterial anyway, and only the external boundary of the crystal
is important, because all the volume elements of a homogeneous crystal are
equivalent irrespective of location or mutual connections. The anisotropy
becomes important as soon as one considers the rate of exchange of energy.

The temperature gradient determines the average rate of transport of
heat according to (4.2)

+1(~1~ cl'2) = XgXg(Rg& Q!2) + (osXn(txy& tx2) = XgCO!r coICcKg

~2(alp &2) &3X1(~1) &2) + X1X2(%1) Ol2) = MSCal X1CA2.
(4.6)

' Strictly speaking, one may identify heat with energy only when the crystal has no ther-
m» expansion in any direction. In general heat must be defined as energy less work of deforma-
tion and expansion. This complicates the discussion slightly without changing the results; the
symmetry conditions (4.4) and (4.5) remain valid,"Einstein, Ann. d. Physik 33, 1275 (&9&0).
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Finally, if Vis the volume, then V J» is the total rate of transport of heat in
the x» direction:

itni/&tt = VJ1

and we obtain

dni/dt = —X1VCai —223VCn2

dn2/dt ~3VCal 111VCa2 ~

(4.7)

Suppose now that we watch our crystal for a great length of time. Whenever
the displacement of energy in the x» direction happens to be n» ——n»' we note
down the displacement n2 in the x2 direction At seconds later. The average
of a great number of such observations we shall denote by

a2(ht, ni ).
For reasons of symmetry

n2(0, ni') = 0

because this average does not depend on the rate of transport, but only on the
relative probabilities of different distributions of energy (simultaneous values
of ni and n2) The. average change of n2 in a time ht subsequent to distribu-
tions for which n» ——-0.»' is therefore

n2(ht, n1') —a2(0, ai') = n2(tit, ni') .
If Dt is sufFiciently small we can calculate this change from (4.7):

n2(d4, ni') = n2(dent, n1') —a2(0, a1') = da2/dt At = 1d3VCa, 'tit (4.8)

Now we can calculate the average product

ni(t) n2(t + &t) = lim —, t ai(t) a2(t + &t)dt
t"~ n2 ~ ~ t=t'

Obviously:

ni(t)n2(t + t1t) = n, 'n2(dt, ni') = &23VCa2212.t (4.9a)

In a similar manner, or directly from (4.9a) by taking into account the rota-
tional symmetry (4.1) of the crystal we obtain:

a2(t)a1(t + At) = —(o VCa'&it = —(o3VCa'ht (4.9b)

A = A» 2

The principle of microscopic reversibility demands that a displacement
u»=n»' of energy in the x» direction, followed 7 seconds later by a displace-
ment a2 ——n2" in the x~ direction, must occur just as often as n2 ——0.'2", followed
~ seconds later by n» ——n»'. Consequently

a1(t)a2(t + r) = n2(t)al(t + T) (4. 10)
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where r may have any value, for example r =At. Comparing with (4.9a, b)
we have

G)3=0 (4. 11)

in accordance with Voigt's experimental result, ' the simplest example of a
reciprocal relation in irreversible processes.

Here we have taken a little more out of the principle of microscopic re-
versibility than we did in section 3 with the assertion that transitions between
two (classes of) configurations A and 8 should take place equally often in the
directions A —&8 and 8—+A in a given time v. Above we have discussed tran-
sitions between different distributions of energy. We must expect that the
energy will depend not only on the configuration of elementary particles, but
also on their velocities; we do not know exactly how. However, assuming
microscopic reversibility, the energy must depend on the velocities in such a
manner that every type of motion has the same energy as its reverse; other-
wise a "reverse" energy would exist, different from the ordinary energy but
with similar properties of conservation, and we should not know the energy as
a unique function. of the state of the system. If the energy can be localized
so that we can speak about distributions of energy in space, the distribution
of energy must be the same for corresponding phases of direct and reverse
motion, or similar discrepancies would arise. Since, by hypothesis, direct and
reverse motion of every conceivable type occur pairwise equally often, if A
and 8 be two distributions of energy, the transitions A~8 and 8 +A (in-
time intervals of a given length r) must occur equally often.

We shall comment on another question regarding the premises of the
derivation, although the substance of a satisfactory answer is known from a
famous discussion between Loschmidt and Boltzmann. " We have assumed
microscopic reversibility, and at the same time we have assumed that the
average decay of Huctuations will obey the ordinary laws of heat conduction.
Already an apparent contradiction occurs when we consider the simpler case
of heat conduction in one dimension. Let n be a displacement of heat, then:

ri = da/dt = —En

Microscopic reversibility requires

n(r, n') = a( —r, n').

Clearly

(4. 12)

(4.13)

and:

n(0, n') = —n(0, n') = 0.

According to the ordinary laws for conduction of heat a decreases for positive
r (if n')0). According to (4.13), then, a increases for negative r (average
growth of fluctuations), and n = 0 for r = 0. It may appear somewhat startling

"See P. and T. Ehrenfest. F~~. t~ ITl~th. Miss, IV, 32.
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that we apply (4.12) to fluctuations only for r)0, and not for r ~0. Yet in
this there is no logical contradiction —we have stated bluntly and honestly
that h has a discontinuity for 7 = 0—but such a statement disappoints our
expectation of continuity in nature. However, the objection is removed when
we recognize that (4.12) is only an approximate description of the process of
conduction, neglecting the time needed for acceleration of the heat flow. This
time 7 p is probably rather small, e.g. in gases it ought to be of the same order
of magnitude as the average time spent by a molecule between two collisions.
For practical purposes the time-lag can be neglected in all cases of heat con-
duction that are likely to be studied, and this approximation is always in-
volved in the formulation of laws like (4.12), (4.7) and (4.2). Even the dif-
ferential form (e.g. (4.8)) of these equations is justified; because we can usu-

ally choose a time Dt such that:

1 » Kat » KT, .

Then following t=7.p, which is practically the same as i =0, we have a time
interval At»rp in which (by (4.12)) o. and therefore drz/dt are sensibly con-
stant. We may also recall that the time needed for equalization of tempera-
ture in a body is proportional to the square of its linear dimensions l, i.e. :

X I/t2

In gases Xr3 should be of the order I2/A2, where A is the mean free path. The
ordinary laws for conduction of heat are therefore asymptotic laws for l»A.

The preceding considerations leading to (4.11) are easily extended to the
more general case of heat conduction in a crystal of arbitrary symmetry. The
phenomenological equations have the form

~l L11X1+ L12X2 + L13X3

J2 L21X1 + L22X2 + L23X3

J3 L31X1 + L32X2 + L33X3

(2 3)

where

TX3 ———BT/dx2, TX2 ———BT/dip, TX3 = —BT/dip. (4.14)

We shall derive the reciprocal relations:

L12 L21 j L23 L32j L31, L1.3 ~ (2.4)

We chose the external shape of our crystal spherical. Since the anisotropy of
the crystal has nothing to do with the distribution of heat the arguments
leading to (4.4) and (4.5) apply equally well in this case, and we obtain

~1 ~2 ~3 j ~1~2 23 3~12 2 2. n (4. 15)

X3(322q 322) 323)

X2(Alq 322) 333)

X3(323g (Xpg C33)

Cn1

Co.2

Cn3.
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Instead of (4.6) and (4.7) we find

Ji(ni, np, n3) = —I iiCni -- I.i2Cn2 —LigCn3, etc.

dni(dt = —I iiV. Cni —I i2VCn, —L»VCn, , etc.

The analogy of (4.8) becomes

np(At( ni ) dn2tdt"'At = —L'iiI Cni

and we have in the place of (4.9)

ni(t)n2(t + At) = n, 'n, (At, n, ') = —L„VCnPAt

Likewise

(4. 16a)

n, (t)n, (t + at) = —L»VCn, 'At

Microscopic reversibility (4.10) requires

(4. 16b)

n, (t)np(t + At) = n2(t)ni(t + At).

Comparison with (4.16a, b) and (4.15) yields the generalization of (4.11)

The other two equations in (2.4) are obviously derived in the same way.

5. THE PRINCIPLE OF TEIE LEAST DISSIPATION OF ENERGY

Like the reciprocal relations of mechanics and thermodynamics the rela-
tions (2.4) can be expressed in terms of a potential, and permit the formula-
tion of a variation principle. As a preliminary we re-write (2.3) and (4.14)
expressing the "forces" X by the "velocities" J:

BT
X1 ~11~1 + ~12J2 + ~13J3

dX1

1' BT
X2 ~~21j1 + ~22J2 + ~23~3

T

1 BZ = X3 = ~3J1+ ~3212 + ~33~3

(5 1)

where R» . R» are connected with Lii L33 in (2.3) by the well known
relations

QR'I- a=&'i= qt0 (i+(k)

and the reciprocal relations (2.4) are equivalent to:

Here, if we write:

~12 ~21 j ~13 ~31 j ~23 ~32 ~

1
2$(J, J) —= —QR„ij';Ji

s, jt:

(5.2)

(5.3)
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the relations (5.1) may be written:

(5.4)

V~e also observe that:

2T&(J, J) =—QJtTf}(ts/dJ), = JtXt + JeXe + JiX, (5.5)

The function d)(J, J) we shall call the dissiPution functi-on It is. a direct
generalization of a function which was introduced by Lord Rayleigh'4 and
applied to mutual interaction of frictional forces; it plays the part of a po-
tential for such forces. Actually Lord Rayleigh used the function F(J, J)
= T$(J, J) and called F the dissipation-function; for our purposes we shall
6nd the function g more generally useful. As we shall see immediately, 2P(J,
J) equals the rate of production of entropy due to heat flow across a volume
element (of unit size), so that 2' =2F equals the rate of "dissipation ' of
free energy.

The rate of local accumulation of heat equals

Tds/df = —div j = —c}Ji/dzt —r}Jr/dec —c}J()/dze (5.6)

writing s for the local entropy density, and the total rate of increase of the
entropy 5 equals

By Green's theorem:

where the double integral on the left is extended over the boundary Q of the
body in question, and J„ is the normal component of the heat flow at the
boundary. If we write

for the entropy given off to the surroundings, and

(5.8)

'4 Lord Raylelgh, Proc. Math. Soc. London 4, 357, [363J, {1873}.Theory of Sound, (Lon-
Llon, MacMillan Co., 1st ed. 1877), Vol. I, p. 78; (2d ed. 1894), Vol. I, p. 102.



for the entropy change of the system proper, we have:

1 B 1
S(J) + S~(J ) =—jl j, grad —dV —=

~ QJg —dV
T 4 g, dry T

p|
QJi+idV

i's

(5 9)

(observing (4.14)). Now, by (5.4) and (5.5)

B 1 l' By(J, J)
J) QJi, —dV = I QJi; dV = [2$(J, J)dV.

d&k ~ a

Inserting this in (5.9) we find

2C (J, J) =—2 J[ y(J, J)d V = S(J) + S'(J.). (5.10)

Now we shall show that the relations (5.4) are equivalent to the variation

Pr~nc~Ple

S(J) + S*(J ) —C(J, J) = maximum (5.11)

with the conventions that the temperature distribution T(xi, xu, x3) is pre-
scribed, the How J(xi, xi, x3) is varied, and the functions 8, S*and 4 are de-
fined by (5.7), (5.8) and (5.10), respectively (reading (—=), but not (=): "i-
dentical in J"). Observing (5.9) we have

8 —y(J, J) dV
dms T

8 j. 8= J[ Q —— p(J, J) BJidV
ding T dJg

so that (5.4) is clearly equivalent to

Here, since 5 and 5 are linear functionals of J, and 4 is a homogeneous
quadratic functional, the expression in the brackets can have only one ex-
tremum. This extremum is a maximum because 4(J, J) must be positive-
definite (otherwise (5.10) would not agree with the second law of thermo-
dynamics).

If the boundary is isolated the restriction

(5.12)
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enters, and, since then S*(J„)vanishes

S(J) —C(J, J) = maximum. (5.13)

Thus the vector field J of the heat flow is described by the condition that the
rate of increase of the entropy, less the dissipation-function, be a maximum.

In applications the difference between the formulations (5.11) and (5.13)
is trivial. From a fundamental point of view (5.13) has some merit of greater
simplicity because it applies to an isolated system, and is thus more directly
connected with the theory of fluctuations. Above we have demonstrated
(5.13) for anisotropic heat conduction. A more general theorem applying to
all transport processes (conduction of electricity and heat, and diffusion) can
be derived in a similar manner, only it is then necessary to make full use of
the general theory of fluctuations, involving Boltzmann's classical relation
between entropy 5 and probability TV

S = k log 8'+ const.

This general development will be deferred to a following communication.

6. STATIONARY FLOW AND QUASI-THERMODYNAMICS

A brief discussion of the conditions for stationary flow of heat through an
anisotropic body will bring out an interesting simple consequence of (5.11)
and throw light on the connection with previous quasi-thermodynamic deri-
vations of reciprocal relations in irreversible processes.

The condition for stationary flow of heat is

dIv j= BA/dx~ + BJg/dx~ + BJ3/dx3 ——0 (6.1)

for the interior of the body under consideration. No heat is accumulated in
the interior, so that S(J) =0. Thus (5.11) becomes:

S~(J ) —C(J, J) = maximum (6.2)

Eqs. (6.1) and (6.2) determine the field of flow J as well as the temperatures
in the interior when the temperatures at the boundary are prescribed. (An
eventual dependence of P(J, J) on the temperature should be ignored in
carrying out the variation: 8$(J, J) =Z(BQ/dJ&)BJ&). In this case, where

S(J) =0, (5.10) becomes

S*(J„)= 24 (J, J)
and we have

2(S*(J-) —C(J, J)) = S'(J.).
We may therefore state (6.2) in the alternative form

(6.3)

S*(J ) = maximum (6.4)

with the restrictions (6.1) and (6.3).
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Now let us consider the effect of obstacles to the heat flow, like cracks in
the crystal, introducing restrictions of the type:

J„'=0
for the changed heat flow J' at certain interior surfaces. Since the field J of
the original heat flow made S (J„) a maximum under restrictions that are
also imposed on J', we must have

S*(J„)~ S*(J„')

Restrictions can only decrease the rate of production of entropy, or cause no
change.

Asszzrnptions of the type (6.5) are involved in all quasi-thermodynamic
derivations proposed by earlier writers for reciprocal relations in irreversible
processes. As good an example as any is Thomson's case (1.1), where Jz is
the electrical current and Jz the heat flow (in the same direction). We main-
tain a constant temperature gradient —TX2, while X1 may be varied. The
restriction: J1= 0 may be imposed by breaking the electric circuit. The rate
of production of entropy equals

S(J) + S*(J„)= (V/T)(X,Jz + XzJz)

(cf. (5.9)). With the aid of (1.1) we transform this relation into:

T(S(J) + S*(J„))= (V/R„) IX,'+ (Rzz Rzl)XzJz+ (R„R„—R„R„)Jz'].

Here, if we assume that the restriction

J1=0
makes S+S*a minimum for given Xz (cf. (6.5)), we find

~12 ~21 (1.2)

In conclusion, let us describe the case which has given name to the "prin-
ciple of the least dissipation of energy. " The flow of heat J„across all sec-
tions of the boundary 0 is prescribed, and the condition

J
J„d& = 0

is fulfille. Then S (J„) in (6.2) is prescribed, and the condition for station-
ary flow reduces to

C(J, J) = minimum (6.6)

subject to the restrictions:
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J„prescribed

div J=0.
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(6.7)

(6 1)

These conditions determine J, and the temperatures are determined every-
where if known at one point.

7. NON-REVERSIBLE SYSTEMS

A dynamical system is reversible as long as the (mechanical) forces de-
pend only on the coordinates or, if they depend on the velocities as well, are
even functions of these. We know conservative systems which do not fulfill
this condition. (i) An electric charge moving in a magnetic field is deflected
by a force proportional to the product of charge and velocity. (ii) Relative
to a rotating frame of reference a free particle moves as if it were subject to a
transverse force proportional to the product of mass and velocity (Coriolis
force) besides the centrifugal force.

When magnetic forces and Coriolis forces destroy the reversibility of
macroscopic motion we must expect that the microscopic motion will fare no
better. The reciprocal relations (2.4) and their equivalent, the principle of the
least dissipation of energy (5.11) are derived from the assumption of micro-
scopic reversibility. We may expect that these relations will break down in
cases where magnetic or Coriolis forces are acting, and they do. The influ-
ence of Coriolis forces on heat conduction is presumably small and not easily
studied; but magnetic fields are known to modify the relation between heat
flow and temperature gradient in metals. In an isotropic body, the simplest
case, the temperature gradient has the same direction as the heat flow as long
as no magnetic field is present. However, if a transverse magnetic field is
applied the temperature gradient will have a component in the third direction
perpendicular to flow and field. The direction of the temperature gradient is
rotated with respect to the heat flow, about an axis parallel to the magnetic
field. This phenomenon is known as the Righi-Leduc effect. If a circular
metal plate is placed perpendicular to the magnetic field, heated in the middle
and cooled at the edge, the heat will flow outward in spirals. The equations of
the heat flow take the form (2.8), or rather

Jg ——XXg + coX2

J2 = —coXg + XX2

J3 = )X3

where a& is proportional to the intensity of the magnetic field (for weak fields);
the field is thought parallel to the x3 direction. The principle of the least dis-
sipation of energy is no longer valid; radial cracks in the plate will increase
the rate of radial transport of heat for a given temperature gradient.

More familiar than the Righi-Leduc effect is perhaps the Hall effect.
When a constant current is flowing through a metallic conductor a transverse
magnetic field causes an e.m.f. perpendicular to both. Eqs. (7.1) describe the
isotropic case if J~, J2, J3, denote the components of the current and X~, X~,
X3 the components of the electric field.



In the presence of a magnetic field the principle of microscopic reversi-
bility may be applied in a modified form: The entire motion may be reversed
by reversing the magnetic field together with the velocities of all the particles
composing a dynamical system. Eqs. (7.1) are in accord with this require-
ment.

An analogous effect of Coriolis forces is known in hydrodynamics. The
principle of the least dissipation of energy applies to the motion of very vis-
cous fluids (Stokes' limiting case) as long as the motion is not referred to a ro-
tating frame of reference.


