16-5 Interference of Waves

When two waves overlap,

PrinCipIe Of SuperPOSition we see the resultant wave,
of waves —  not the individual waves.

Let y,(x, t) and y,(x, t) be the
displacements that the string would
experience if each wave traveled alone.
The displacement of the string when the
waves overlap is then the algebraic sum

Yix, 1) = y(x, 1) + y(x, 1)

This summation of displacements along
the string means that

A%,
Overlapping waves algebraically add to produce a resultant wave (or net wave).
A
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16-5 Interference of Waves
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Two identical sinusoidal waves, y,(x, t) and y,(x, t), travel along a string in
the positive direction of an x axis. They interfere to give a resultant wave
y’(x, t). The resultant wave is what is actually seen on the string. The phase
difference ® between the two interfering waves is (a) O rad or 0°, (b) it rad
or 180°, and (c) 2/3 it rad or 120°. The corresponding resultant waves are
shown in (d), (e), and ( f ). ©201410nn wiley & Sons, inc. All rights

reserved.

Yi(x, 1) = yi(x, 1) + yalx, 1).
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As the waves move through each other, R_ 2 |
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There are two ways a
pulse can reflect from

RGﬂ@Ction at the end of a string.
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Figure 16-19

(a) A pulse incident from the right is reflected at
the left end of the string, which is tied to a wall.
Note that the reflected pulse is inverted from the
incident pulse. (b) Here the left end of the string
is tied to a ring that can slide without friction up
and down the rod. Now the pulse is not inverted
by the reflection.



16-7 Standing Waves and Resonance

Standing Waves

*The interference of two identical sinusoidal waves moving in
opposite directions produces standing waves. For a string with
fixed ends, the standlng wave is given by

Dl%p ement

/(x ) = [2y,, sin kx]cos wt

Magnitude Oscillating
gives term
amplitude
at posmon "
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Richard Megna/Fundamental Photographs

Stroboscopic photographs reveal (imperfect) standing wave patterns on a
string being made to oscillate by an oscillator at the left end. The patterns
occur at certain frequencies ofcoscillatianiey & sons, inc. All rights

reserved.



Standing waves
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16-7 Standing Waves and Resonance

Harmonics

*Standing waves on a string can be set up
by reflection of traveling waves from the
ends of the string. If an end is fixed, it
must be the position of a node. This
limits the frequencies at which standing
waves will occur on a given string. Each
possible frequency is a resonant
frequency, and the corresponding
standing wave pattern is an oscillation
mode. For a stretched string of length L
with fixed ends, the resonant frequencies ) Third harmonic

a r e Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.




Summary

Waves Wave Speed
. Transverse Waves . Angular velocity/ Angular wave
number
. Longitudinal Waves
p= 2 oA L Eq.(16-13)
k T '
Sinusoidal Waves Trave“ng Waves
«  Wave moving in positive « A functional form for traveling
direction (vector) waves
y(x, 1) = y,, sin(kx — wt) Eq. (16-2) y(x, 1) = h(kx = wt) Eq.(16-17)

© 2014 John Wiley & Sons, Inc. All rights reserved.



16 Summary

Powers

. Average Power is given by

Py = sva?y?, Eq.(16-33)

Interference of Waves

. Two sinusoidal waves on the
same string exhibit interference

y'(x,1) = [2y,, cos 3] sin(kx — wt + 5¢).
Eq. (16-51)

Standing Waves

The interference of two identical
sinusoidal waves moving in
opposite directions produces
standing waves.

y'(x, 1) = [2y,, sin kx] cos wt. Eq. (16-60)

Resonance

. For a stretched string of length L
with fixed ends, the resonant
frequencies are

Vv vV
= UETA forn=1,2.3,..
Eq. (16-66)

© 2014 John Wiley & Sons, Inc. All rights reserved.
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Sound waves are longitudinal mechanical waves that can travel
through solids, liquids, or gases.

Point S represents a tiny sound source, called

a point source, that emits sound waves in all Wavefronts
directions. A sound wave travels from a point %

source S through a three-dimensional

medium. The wavefronts (surfaces over S Ray
which the oscillations due to the sound wave

have the same value) form spheres centered

on S; the rays are radial to S. The short, ‘Ray

double-headed arrows indicate that elements

of the medium oscillate parallel to the rays.
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The speed v of a sound wave in a medium having bulk modulus B

and density p is
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V=4 (speed of sound)
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Through direct application of
Newton’s Second law.
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Moving air (fluid element) p+Ap v+ A
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An element of air of width Ax moves toward the
pulse with speed v.

—>Ax}<—

(p+Ap)A

pA

The leading face of the element enters the pulse.
The forces acting on the leading and trailing faces
(due to air pressure) are shown.
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Compression ‘k l%‘
(a) A sound wave, traveling , x _ .

; i K ﬁ" 3 1%
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i L (@) The element oscillates
of a moving, periodic left and right as the wave
pattern of expansions and e s Noves Moughiit
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(b) A horizontally expanded view of a short piece of the tube. As the wave
passes, an air element of thickness Ax oscillates left and right in simple
harmonic motion about its equilibrium position. At the instant shown in (b),
the element happens to be displaced a distance s to the right of its
equilibrium position. Its maximum displacement, either right or left, is s,



Dx

Displacement: A sound wave causes a longitudinal displacement s of a
mass element in a medium as gi

s(x,t) = s, cos(kx — wt).

where s, is the displacement amplitude (maximum displacement) from

equilibrium, k = 2rt/A, and w=2rtf, A and f being the wavelength and
frequency, respectively, of the sound wave.

Pressure: The sound wave also causes a pressure change Ap of the
medium from the equilibrium pressure:

Ap(x,t) = Ap,, sin(kx — wt).

where the pressure amplitu

Apm = (va)sm'
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The interference at P
depends on the difference
in the path lengths to reach P.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Fully
Destructive Interference
(exactly out of phase)

6010

If the difference is equal to,
say, 2.5/, then the waves
arrive exactly out of phase.
This is how transverse
waves would look.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Two point sources S; and S, emit
spherical sound waves in phase. The
rays indicate that the waves pass
through a common point P. The waves
(represented with transverse waves)
arrive at P.

Fully
Constructive Interference
(exactly in phase)

@P
If the difference is equal to,
say, 2.04, then the waves
arrive exactly in phase. This

is how transverse waves
would look.

2014 John Wiley & Sons, Inc. All rights
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e The interference of two sound waves
with identical wavelengths passing

Path Length

Difference through a common point depends on
their phase difference there ¢ . If the
- sound waves were emitted in phase

and are traveling in approximately the
same direction, ¢ is given by

5 The interference at P
depends on the difference AL
in the path lengths to reach P. ¢ = T 21r.

where AL is their path length
difference.

© 2014 John Wiley & Sons, Inc. All rights
reserved.



* Fully constructive interference occurs when ¢ is an integer and
multiple of 2,

¢ = m(2m), form =0,1,2,...,

and, equivalently, when AL is related to wavelength A by

AL
T =0,1,2,... (fullyconstructive interference).
* Fully destructive interference occurs when ¢ is an odd multiple

of m,
é=02m+ 1), form=0,1,2,...,

and, equivalently, when AL is related to wavelength A by

AL
T =(0.5,1.5,25,... (fully destructive interference).

© 2014 John Wiley & Sons, Inc. All rights
reserved.



