14-6 The Equation of Continuity

« Motion of real fluids is complicated and poorly
understood (e.g., turbulence)

« We discuss motion of an ideal fluid

1. Steady flow: Laminar flow, the velocity of the moving
fluid at any fixed point does not change with time

2. Incompressible flow: The ideal fluid density has a
constant, uniform value

3. Nonviscous flow: Viscosity is, roughly, resistance to
flow, fluid analog of friction. No resistive force here

4. Irrotational flow: May flow in a circle, but a dust grain
suspended in the fluid will not rotate about com



14-6 The Equation of Continuity

 Visualize fluid flow by adding a tracer

« Each bit of tracer (see figure 14-13) follows a
Streamline

« A streamline is the path a tiny element of fluid follows

« Velocity is tangent to streamlines, so they can never
intersect (then 1 point would experience 2 velocities)
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Figure 14-13

Courtesy D. H. Peregrine, University of Bristol
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14-7 Bernoulli's Equation

« Figure 14-19 represents a tube |
through which an ideal fluid flows |

« Applying the conservation of T :
energy to the equal volumes of T:'b; C
input and output fluid: (. L

p1+ vl + pgy = pa + 3pv3 + pgyn. @

[E—

[}2 Lz

« The “2pv? term is called the fluid's
kinetic energy density

Eq. (14-28) i
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Figure 14-19 (b)
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W= AK worlz-encray Heorem
AK= LS AV(03-02)




14-7 Bernoulli's Equation

Equivalent to Eq. 14-28, we can write:

p + spv? + pgy = aconstant  Eq. (14-29)

« These are both forms of Bernoulli's Equation

Applying this for a fluid at rest we find Eq. 14-7

Applying this for flow through a horizontal pipe:

1 1

A

"' If the speed of a fluid element increases as the element travels along a horizontal
streamline, the pressure of the fluid must decrease, and conversely.
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14-7 Bernoulli's Equation

‘/( Checkpoint 4

Water flows smoothly through the pipe shown in the figure, descending in the process.
Rank the four numbered sections of pipe according to (a) the volume flow rate Ry
through them, (b) the flow speed v through them, and (c) the water pressure p within
them, greatest first.

Answer: (a) all the same volume flow rate
(b) 1,2&3,4
(c) 4,3,2,1

P1 T ZPVl T pgy1 = pr t+ 2PV2 T pgYs.
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Sample Problem 14.07 Bernoulli principle for a leaky water tank

Bernoulli principle for a leaky water tank
In the old West, a desperado fires a bullet into an open water tank (Fig. 14-20), creating a hole a distance /# below
the water surface. What is the speed v of the water exiting the tank?

P ‘tl

Figure 14-20
Water pours through a hole in a water tank, at a distance h below the water surface. The pressure at the water surface
and at the hole is atmospheric pressure pg.



(1) This situation is essentially that of water moving (downward) with speed v( through a wide pipe (the tank) of cross-sectional area
A and then moving (horizontally) with speed v through a narrow pipe (the hole) of cross-sectional area a. (2) Because the water
flowing through the wide pipe must entirely pass through the narrow pipe, the volume flow rate Ry must be the same in the two
“pipes.” (3) We can also relate v to vg (and to /) through Bernoulli's equation (Eq. 14-28).

Calculations:
From Eq. 14-24,

Ry=av= Avy
and thus

a
Vo= V.

-

Because @ <. A4, we see that V) <<_ V. To apply Bernoulli's equation, we take the level of the hole as our reference level for
measuring elevations (and thus gravitational potential energy). Noting that the pressure at the top of the tank and at the bullet hole is
the atmospheric pressure pg (because both places are exposed to the atmosphere), we write Eq. 14-28 as

o+ 2ovE + pgh=po+ 1pv* + pg(0) . (14-39)

(Here the top of the tank is represented by the left side of the equation and the hole by the right side. The zero on the right indicates
that the hole is at our reference level.) Before we solve Eq. 14-39 for v, we can use our result that Vg << V to simplify it: We assume

that vg, and thus the term % ;n-'(‘; in Eq. 14-39, is negligible relative to the other terms, and we drop it. Solving the remaining

equation for v then yields

v= |/ 2gh . (Answer)

This is the same speed that an object would have when falling a height 4 from rest.
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gssun exerted Ly slower-moving an;r




Starting with the flow pattern observed in -
both theory and experiments, the increased _

flow speed over the upper surface can be
explained in terms of streamtube pinching
and conservation of mass.[25]

Assuming that the air is incompressible, the — T
rate of volume flow (e.g. liters or gallons per -

minute) must be constant within each

Streamlines and streamtubes around an airfoil =
streamtube since matter is not created or generating lift. Note the narrower streamtubes above
destroyed. If a streamtube becomes and the wider streamtubes below.

narrower, the flow speed must increase in the
narrower region to maintain the constant flow rate. This is an application of the principle of
conservation of mass.26!

The upper stream tubes constrict as they flow up and around the airfoil. Conservation of mass says
that the flow speed must increase as the stream tube area decreases.[2%! Similarly, the lower
stream tubes expand and the flow slows down.

From Bernoulli's principle, the pressure on the upper surface where the flow is moving faster is
lower than the pressure on the lower surface where it is moving slower. This pressure difference
creates a net aerodynamic force, pointing upward.



14 Summary

Density Fluid Pressure

m o A substance that can flow
p = Eq. (14-2)
. Can exert a force

perpendicular to its surface

—iE 14-4
p—A q. (14-4)

Pressure Variation with Pascal's Principle
Height and Depth

. A change in pressure applied
. T to an enclosed fluid is
P = Po T P8 transmitted undiminished to
_ every portion of the fluid and
Ea. (14-8) to the walls of the containing
vessel
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14 Summary

Archimedes' Principle Flow of Ideal Fluids

F, = mgg  (buoyant force), Ry = Av = aconstant

Eq. (14-16) Eq. (14-24)
weight,,, = weight — F, R,, = pRy = pAv = aconstant
Eq. (14-19) Eq. (14-25)

Bernoulli's Equation
p + ipv® + pgy = a constant

Eq. (14-29)
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Oscillations
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X(H+T)=X(++ & ) = Xm COS(WT+2m+ ¢)

15-1 Simple Harmonic Motion

. The frequency of an oscillation is the number of times
per second that it completes a full oscillation (cycle)

« Unit of hertz: 1 Hz = 1 oscillation per second

« The time in seconds for one full cycle is the period
1

T = —. Eq.(15-2)

« Any motion that repeats regularly is called periodic

. Simple harmonic motion is periodic motion that is a
Sinusoidal fiinrtinn Af timaoe

x(t) = x,,cos(wt + @d)  Eq. (15-3)
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15-1 Simple Harmonic Motion

« The value written x_ is how far the particle moves in
either direction: the amplitude

« The argument of the cosine is the phase

. The constant ¢ is called the phase angle or phase
ConStant Displacement

at time ¢

« It adjusts for the initial conditions of FZ Phasej

motion att=0 W) = x,, cos(@+0)

. The angular frequency is written w — T./ /

Amplitude
Angular Phase
frequency constant
or phase
angle

L]
Figure 15-3
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15-1 Simple Harmonic Motion

« The angular frequency has the value:

27

= —— = 2. ;
@ T 7f. Eq. (15-5)

The amplitudes are different, The amplitudes are the
but the frequency and same, but the frequencies
period are the same. . and periods are different.
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This negative value
x shifts the cosine

curve rightward.
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g X $=-1
=
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g X [~ g=0

This zero gives a
(0) regular cosine curve.
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X(H = Xm Cos (WF+ )
O (+)= %a—wxmsm(cﬁ+¢)

0-("')"—- .‘Lz:: —bJ?Km COS(NT-H#)
= a(f)= —w x(t)
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15-1 Simple Harmonic Motion

. We can apply Newton's second law

F = ma = m(—w’x) = —(mw?)x. Eq.(159)

o Relating this to Hooke's law we see the similarity

." Simple harmonic motion is the motion of a particle when the force acting on it is
proportional to the particle’s displacement but in the opposite direction.

. Linear simple harmonic oscillation (F is proportional
to x to the first power) gives:

| k
1) — ? (angular frequency). Eq. (15-12)
T = 2, /% (period). Eq. (15-13)
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15-2 Energy in Simple Harmonic Motion

Learning Objectives

15.19 For a spring-block
oscillator, calculate the
Kinetic energy and elastic

potential energy at any given

time.

15.20 Apply the conservation
of energy to relate the total

energy of a spring-block
oscillator at one instant to
the total energy at another
instant.

15.21 Sketch a graph of the

Kinetic energy, potential
energy, and total energy of a
spring-block oscillator, first
as a function of time and
then as a function of the
oscillator's position.

15.22 For a spring-block

oscillator, determine the
block's position when the
total energy is entirely kinetic
energy and when it is
entirely potential energy.
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Uxl-L x*= Lk X cos™(WT+9)
K= LMU> ;3= —0 K Shalisbeh)
2
K= 4 mw*Xe's (4 )
Qﬁé?‘— \
K_|_ U_-: 'EL_ QQKM‘ZQCOS?-FS;VI} = E
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15-2 Energy in Simple Harmonic Motion

Write the functions for kinetic and potential energy:

U(t) = 3 kx* = 2kx2, cos’(wt + o). AWA
Eq. (15-18)

1 1 . K()

K(t) = smv* = skx;, sin*(wt + ¢). =

(@ As time changes, the

U(t)

Energy

Eq (1 5_20) energy shifts between
the t\{vo types, but the
Their sum is defined by: e
A — l 2 ‘ U(x
) K(%)
Eq. (15-21)

v As position changes, the

energy shifts between

Flgu re 1 5-8 the two types, but the

total is constant.
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