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SCOPE 

Our objective is to acquaint the reader with the phe- 
nomenon of drag reduction, in which the skin friction 
caused by turbulent flow of an ordinary liquid is reduced 
by additives. This phenomenon, discovered ahnut 1947, 
has received attention because it suggests practical bene- 
fits, such as increased pipeline capacities and faster ships, 
and is also theoretically stimulating, in the areas of wall 
turbulence and molecular rheology . This review, restricted 
to drag reduction by polymer solutions in pipe flow, has 
three sections: (1) the experimental evidence, (2) correla- 
tion and analysis, and (3) mechanism. Section 1 presents 
experimentally established results showing the flow 
regimes exhibited by polymer solutions, the relationships 

among flow and macromolecular parameters, and the 
changes in mean and turbulent flow structures which 
accompany drag reduction. The conclusions of Section 1 
are documented in Section 2. The latter concerns the 
empirical correlation of experimental results, with analysis 
(and tabulations) of the data used for this purpose. Section 
2 also provides for discussion of evidence not fully enough 
established to be included in Section 1. Finally, in Section 
3 an attempt is made to physically interpret the experi- 
mental results, to infer the nature of the polymer-turbu- 
lence interaction responsible for drag reduction and its 
effect on the energy balances of turbulent pipe flow. 

CONCLUSIONS AND SIGNIFICANCE 

1. Gross Flow. Drag reduction by dilute polymer solu- 
tions in turbulent pipe flow appears bounded between two 
universal asymptotes, namely, the Prandtl-Karman law 
[Equation (2)] for Newtonian turbulent flow and a maxi- 
mum drag reduction asymptote [Equation (4)]. Between 
these limits is a polymeric regime in which the 
observed friction factor relations are approximately 
linear on Prandtl-Karman coordinates and can be 
characterized by two parameters-the wall shear 
stress at the onset of drag reduction and the slope incre- 
ment by which the polymer solution slope exceeds New- 
tonian. For a given polymer species-solvent pair: The 
onset wall shear stress is essentially independent of pipe 
diameter, polymer concentration, and solvent viscosity, 
and varies inversely as the two to three power of polymer 
radius of gyration [Equations (19) and (5 ) ] .  The slope 
increment is essentially independent of pipe diameter, 
varies as the square root of polymer concentration, and 
as the three-halves power of the number of chain links in 
the polymer backbone [Equation (S)], and seems un- 
affected by decreases in polymer excluded volume. 

2. Mean Velocity Profiles. On law of the wall coordi- 
nates, these possess, in general, three zones: from the wall 
outward, there is the usual viscous sublayer, from the 
axis inward is the Newtonian plug region wherein the 
velocity profile is shifted upward from, but parallel to, 
the Newtonian law of the wall, and between these is a 
region, which we call the elastic sublayer, that is char- 
acteristic of drag reduction and across which U +  climbs 
to above Newtonian by an amount S + ,  the effective slip. 
With increasing drag reduction elastic sublayer extent 
increases until, at maximum drag reduction, it pervades 
the entire cross section. Beyond the v i s c o ~  sublayer 

[Equation (7)], therefore, mean velocity profiles are 
bounded by asymptotes, [Equations (8) and (9)], analogous 
to (actually, transforms of) the friction factor asymptotes 
[Equations (2) and (4)]; the maximum drag reduction 
profile has a mixing length constant of 0.085, about a fifth 
of the Newtonian value, 0.40. Between these limits, the 
profiles show both the elastic sublayer and Newtonian 
plug regions, the respective extent of which can be simply 
related to the polymeric regime friction factor relation. 

3. Turbulence Structure. Data, available only in the 
polymeric regime, suggest three radial zones analogous to 
those observed in the mean velocity profiles. In the vis- 
cous sublayer, the Newtonian streaky structure seems to 
remain at least partially intact during drag reduction, 
with the axial intensity gradient at the wall and the aspect 
ratio of transverse macroscales both essentially the same 
as Newtonian. In the elastic sublayer, the turbulence 
structure is significantly different from Newtonian: rela- 
tively, the (nondimensional) axial intensity is higher while 
the radial intensity, turbulent shear stress, and u-2) correla- 
tion coefficient are all lower. The maximum turbulent 
kinetic energy appears to exceed Newtonian by roughly 
the same amount S +  that the maximum mean velocity ex- 
ceeds Newtonian. Finally, the Newtonian plug region has 
turbulence structure the same as Newtonian, based on 
axial and radial intensity measurements. 

4. Physical Interpretations. The polymer-turbulence in- 
teraction responsible for drag reduction appears to com- 
mence in the vicinity y +  N 15 of the plane of peak turbu- 
lent energy production, suggesting that the polymer 
molecules interfere with the turbulent bursting processes. 
At the onset of drag reduction, the duration of a turbulent 
burst is of the order of the relaxation time of a macro. 
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molecule, and after onset, the extent of drag reduction 
correlates with the turbulent strain energy of a dilute 
Polymer solution. These observations suggest that macro- 
molecular extension is involved in the mechanism of drag 
reduction. The random-coiled radius of gyration of the 
macromolecule is significantly smaller than, by about 10 -3 

times, the smallest turbulent burst length scale. The axial 
and radial turbulent flow fields are &coupled in the re- 
gion of interaction, as witnessed by a striking reduction in 

the u-v correlation coefficient, relative to Newtonian. The 
polymer-induced flow field decoupling Seems to retard 
about equally the radial transport of axial momentum and 
of turbulent kinetic energy. The observed drag reduction 
is possibly a consequence of the readjustments, notably 
an increase in kinetic that the inner 
flow makes to maintain the Overall crOSS-SeCtiOnal turbu- 
lent energy balance. 

Experiments, the earliest by Toms (1948) and Mysels 
(1949), have established that the skin friction caused by 
turbulent flow of an ordinary liquid past a solid surface 
can be reduced significantly by the addition of small 
amounts of certain materials to the liquid. This phenome- 
non, commonly termed drag reduction or Toms phenome- 
non, suggests possible practical benefits, such as increased 
pipeline capacities and faster ships, which have motivated 
much research during the past decade. This work is an at- 
tempt to summarize developments in the basic, and cer- 
tainly the most studied, case of drag reduction by dilute 
solutions of linear random-coiling polymers in turbulent 
flow through smooth pipes. A future extension of this work 
is contemplated to consider selected flow and additive re- 
lated topics. Flow-related topics include the effect of wall 
roughness, scalar transport during drag reduction, external 
boundary layer flows, and laminar-to-turbulent transition 
while additive-related topics include the influence of poly- 
mer chain conformation and excluded volume, the effects 
of heterogeneous molecular weight distributions, the kinet- 
ics of polymer degradation, and aspects of drag reduction 
by soaps, fibers, and polyelectrolytes. 

Earlier reviews of the subject are each separately note- 
worthy. Zakin and co-workers (Patterson, Zakin, and Ro- 
driguez, 1969) have contributed many of the available re- 
sults on drag reduction in organic solvents, and their work 
emphasizes this area. Hoyt (1972), a pioneer investigator 
in this field, provides a most comprehensive compilation 
and discussion of the literature. Lumley (1969, 1973) con- 
siders possible mechanisms of drag reduction with his cus- 
tomary penetrating physical insight. Landahl ( 1973) em- 
phasizes the fluid mechanics viewpoint, with a particularly 
cogent discussion of the role of rheology. 

This review is intended to convey some of the experi- 
mental facts and theoretical understanding of drag reduc- 
tion to the reader not necessarily familiar with the subject. 
There are four sections: 

1. The experimental evidence. The main physical fea- 
tures of the drag reduction phenomenon and their depen- 
dencies on flow and polymer related variables are depicted 
in graphical form and described. 

2. Correlation and analysis. The available experimental 
information is summarized by empirical correlations based 
on the elastic sublayer model of drag reduction (Virk, 
1971). Tables containing the primary results of our analysis 
of the literature are presented. There is also some discus- 
sion of experimental evidence, mainly those results either 
peripheral to, or not fully enough established to be in- 
cluded in, Section 1. 

3. Mechanism. The mechanism of drag reduction is con- 
sidered with mention of models proposed in the literature 
and an attempt to physically interpret the experimental 
observations in terms of the basic polymer-turbulence in- 
teraction responsible for drag reduction and its effect on 
the energy balances of turbulent pipe flow. 

SUMMARY 

It was hoped that Section 1 would describe the essen- 
tial physics of drag reduction, Section 2 provide the 
basic documentation, and Section 3 physically interpret 
the experimental results. However, the reader should be 
forewarned about what has finally transpired. Section 1 is 
a deluge of seeming similar semi-log graphs, and we fear 
it will take persistent perusal of data points, captions, and 
text to discern any essential physics within. In Section 2, 
the basic documentation lies in tables and data analysis, 
both decidedly dull reading; yet we entreat the reader to 
plough through because the reservations which must be 
expressed about drag reduction data do tend to exceed the 
information therein. In Section 3, the physical interpreta- 
tion is based on a relatively few facts and regrettabl too 
much conjecture and should, therefore, be read w i d  the 
appropriate skepticism; and, alas, there is no happy end- 
ing, the mechanism of drag reduction remaining obscure. 

1. THE EXPERIMENTAL EVIDENCE 

The experimental evidence is classified into three ech- 
elons of increasing detail, namely, (1) gross flow studies, 
(2) mean velocity profiles, and (3) turbulence structure 
measurements. 
1.1 Gross Flow 

Gross flow studies involve pressure drop versus 00w rate 
measurements, an example of which will introduce the phe- 
nomenon of drag reduction. Figure 1 shows results ob- 
tained in the same pipe, 8.46 mm I.D., for pure solvent 
(hollow circles) and for a polymer solution (solid circles) 
containing 300 weight parts per million of a polyethylene- 
oxide of molecular weight 0.57 x 106 dissolved in distilled 
water. The data are plotted three ways. Figure la, log-log, 
shows directly the measured flow rate versus the corre- 
sponding wall shear stress, the latter simply related to the 
measured pressure gradient. Figure lb, also log-log, shows 
the data on nondimensional coordinates of Fanning fric- 
tion factor versus Reynolds number, while Fi re lc, semi- 

versus log Refs .  Following both sets of data from low to 
high flow rates reveals that in laminar flow, Re < 2000, 
the polymer solution and solvent exhibit identical behavior. 
In turbulent flow, Re > 3000, the polymer solution data 
are identically the same as solvent for 3000 < Re < 12000; 
at Re N 12000 (Tw N 7.0 N/m2, Refs  N 1100), we wit- 
ness a rather distinct onset of drag reduction and, for Re > 
12000, the polymer solution data diverge from solvent in 
the direction of lower friction. The extent of drag reduction 
can be measured either by the ratio of polymer solution 
to solvent wall shear stresses at the same flow rate or by 
the ratio of flow rates at the same wall shear stress. It can 
be seen that, after onset, the drag reduction increases with 
increasing flow rate and at the highest flow rate of polymer 
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Fig. 1. Drag reduction depicted on various gross flow coordinates. Pipe I.D. 8.46 mm, temperature 25 C, solvent distilled water, polymer soh-  
tion PEO, M = 0.57 x lo6, c = 296 wppm. 

solution the shear stress ratio is 0.56 while the flow rate 
ratio is 1.38. Either way, it is evident that the specific 
energy required to sustain turbulent flow of the polymer 
solution can be significantly less than that required for the 
solvent alone. This introduction is completed with brief 
comment on polymer solution characterization, Prandtl- 
Karman (P-K) coordinates, and some drag reduction 
scales. 

The description of polymer solutions follows standard 
practice (see Flory, 1933; Tanford, 1961; and Yamakawa, 
1971). The polyethyleneoxides are a homologous series of 
macromolecules in  which the repeating (CH?/CH;?\O) 
mer units are linked head-to-tail in linear fashion. Figure 1 
was obtained using a commercial polymer sample which 
possessed a rather broad molecular weight distribution, 
with weight to number average ratio M J M ,  e 4 about 
twice the most probable value; its hl, = 0.57 x lo6 cor- 
responds to a degree of polymerization of 1.3 x lo4 so 
that the backbone of the average macromolecule consisted 
of a chain of 3.9 x 104 consecutive covalent C-C and 
C-0 bonds. The number of backbone chain links is a 
parameter of importance in polymer chain statistics and 
the efficacy of a macromolecule in drag reduction too ap- 
pears dependent on it. In distilled water solution PEO 
macromolecules exist as random coils. For our solution, 
vrel = 1.10 corresponding to a nondimensional concentra- 
tion c [ q ]  = 0.10 which latter physically approximates the 
volume fraction of solution occupied by the macromolecu- 
lar random coils. Polymer solutions of vrel < 2.0 might rea- 
sonably be considered dilute, and most of the examples 
which follow will meet this criterion. Based on light scat- 
tering esperimcnts, the radius of gyration of our polymer 
in distilled water was 81 nm; this is a measure of the 
radius of the biggest random coils in a static solution and 
shows also that these arc sign:ficantly expanded, to 1.4 
times their radius in a theta solvent. The contour length 

of the polymer is 6000 nm; this is measured end-to-end 
along the backbone chain, the ratio ( L c / R c )  typically be- 
ing about N”.. The relaxation time of the polymer mole- 
cules in so!ution is not experimentally accessible but can 
be estimated from the theory of Zimm (1956) to be about 

Prandtl-Karman coordinates appear to be the most na- 
tural for depicting drag reduction in pipes and will be 
employed almost exclusively hereafter. These involve the 
use of a friction velocity f f T  = (T,/p) %, formed from the 
wall shear stress, as a scale characteristic of the turbulence; 
near the pipe wall, the corresponding turbulent length and 
time scales are respectively V / U T  and V / U T ~ .  Physically 
therefore the ordinate f - ”  = U a u / d % ~  is a ratio of bulk 
to turbulent velocities while the abscissa Ref”. = v / 2 d U ~ / v  
is a ratio of pipe to turbulence length scales (the awkward 
numerical factors are due to entrenched definitions of f 
and R e ) .  

Some typical drag reduction scales illustrated by the 
example are noted. The very dilute nature of the polymer 
solution, weight fraction polymer 0.0003, volume fraction 
random coils 0.10, suggests that individual macromolecules 
are involved rather than entangled clusters. At the onset 
of drag reduction, the ratio of polymer to turbulence length 
scales is RGUT/V = 0.008, while the ratio of time scales is 
r tuT?/v  = 2.0; that is, the macromolecular random coil has 
static dimensions rather smaller than those of the energy- 
containing turbulent eddies near the pipe wall, but its 
relaxation time about equals wall eddy lifetime. 

1.1.1 Gross Flow Regimes. The general pattern of gross 
flow behavior is somewhat more complex than indicated in 
the preceding example and will now be considered in de- 
tail. In laminar pipe flow, the dilute polymer solutions of 
interest to us here do nothing unusual. The majority obey 
Poiseuille’s law: 

0.3 x 10-3 s. 

f-“ = Reffi/16 (1) 
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Solution viscosities are generally so close to solvent that 
shear thinning, which almost all polymer solutions exhibit 
to some extent at high enough shear rates, has little dis- 
cernible effect on the gross flow. In fully turbulent pipe 
flow, dilute polymer solutions exhibit three distinct regimes 
which are, in order of increasing flow rate: 

1. A regime without drag reduction in which the friction 
factor relation is the same as for solvent, that is, the usual 
Prandtl-Karman (or Blasius) law for Newtonian turbulent 
flow 

f-” = 4.0 logloRef% - 0.4 (2) 

2. A regime with drag reduction in which the friction 
factor relation depends upon the nature of the polymer 
solution. Anticipating later results, an approximate relation 
for this regime is 

f-” = (4.0 + 6) logloRef” - 0.4 - 610glofldWQ 
(3) 

where 8, WQ are polymer solution parameters. 
3. An asymptotic regime of maximum possible drag 

reduction in which the friction factor relation is insensitive 
to the polymer solution employed, being, universally, 

f-” = 19.0 logloRef” - 32.4 (4) 

The foregoing will respectively be termed the Newtonian 
(N) ,  polymeric (P ) ,  and maximum drag reduction ( M )  
regimes, the laminar (L)  regime having been noted first. 
Laminar to turbulent transition is not well detected by 
gross flow studies and therefore only a brief description 
will be given in Section 1.1.6 after the turbulent flow re- 
gimes have been considered. 

1.1.2 Polymeric Regime. Aspects of the polymeric re- 
gime are illustrated in Figures 2a to 2d using P-K coordi- 
nates with abscissae Resf%, all based on solvent viscosity. 

The effect of pipe diameter is shown in Figure 2a which 
contains data for solvent (hollow points) and the same 
polymer solution in each of three pipes, of inside diameters 
respectively 2.92, 8.46, and 32.1 mm. Two features merit 
attention. First, the onset of drag reduction in the three 
cases occurs at Re,f”Z* N 400, 1100, and 4000, the ratio 
of which, 0.36: 1.0:3.6, closely approximates the ratio of 
pipe diameters, 0.35: 1.0:3.8. Thus, regardless of pipe size, 
the given polymer solution reduces drag only after a certain 
wall shear stress T,* N 7.0 N/m2 has been exceeded. 
Second, it will be noticed that, after onset, the polymer 
solution data describe approximately straight lines which 
have much the same slope in all pipes. The difference be- 
tween polymer solution and solvent slopes, called the slope 
increment, is in this case 6 = 11 & 2. 

The effect of polymer concentration is shown by Figure 
26 which displays data taken in the same pipe for solu- 
tions of the same polymer ranging in concentration from 
50 to 1000 wppm. For clarity, solvent (distilled water) 
data have been omitted, being replaced by solid lines 
representing the Prandtl-Karman law (2) to which they 
closely adhered; also, ordinates have been shifted upward 
in an obvious way for each successive set of data, and 
straight lines have been drawn through the polymer solu- 
tion points after onset. In each case it can be seen that 
the onset of drag reduction occurs at a rather well defined 
Re,f’/Z’. Further, in all four solutions, spanning a 20-fold 
concentration range, onset occurs at much the same Re,f’/zQ 
= 1150 2 100. Thus, the onset wall shear stress is cssen- 
tially independent of polymer concentration. After onset 
the polymer solution data are quite well approximated by 
the indicated straight lines, the slopes increasing with in- 
creasing concentration such that the slope increment is s 
= (4.3, 6.9, 11.7, 18.5) for c = (44, 100, 300, 940) 
T P m 7  respectively. Scrutiny of these results will reveal 

- --1 
0 0 a Solvent 

- + A Polymer Soln - 

I I I l l l l l  1 , I I l i l l  

that 6 varies approximately as the square root of polymer 
concentration with s / c Y z  = 0.63 2 0.05. 

The effect of polymer molecular weight is illustrated in 
Figure 2c, using data taken in the same pipe with dis- 
tilled water solutions of various homologous PEO polymers 
ranging in molecular weight from 0.1 x lo6 to 8 x lo6. 
It is apparent that, as molecular weight is increased, the 
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Fig. 2b. Aspects of the polymeric regime: Ef- 
fect of concentration. Pipe I.D. 8.46 mm, tem- 
perature 25 C, solvent distilled water, polymer 
PEO, M = 0.57 X lo6, c = 44, 100, 300, 940 

wppm. 
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Fig. 2c. Aspects of the polymeric regime: Effect of molecular weight. 
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water, polymer PEO, (M x 10-6, c wppm) as follows: (8.0, lo), 
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Fig. 2d. Aspects of the polymeric regime: Ef- 
fect of polymer coil size (data from Pruitt, 
Rosen, and Crawford 1966). Pipe I.D. 4.57 mm, 
temperature 22  C, solvents water and 0.6m 
KzS04, polymer PEO, M = 0.8 X lo6, c = 

10, 50,250 wppm. 

onset of drag reduction occurs at lower Resf%", and strik- 
ingly lower concentrations are required to yield a given 
slope increment. Molecular weight thus strongly influences 
the effectiveness of a polymer in reducing drag and, speak- 
ing qualitatively, T," varies inversely and 6 directly as M .  

The effect of polymer random coil size in solution is 
shown in Figure 2d, using data derived from Pruitt, Rosen, 
and Crawford (1966), who studied drag reduction by the 
same PEO polymer in water, a good solvent, and in 0.6m 
K2S04, a poorer solvent. From their reported intrinsic vis- 
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cosities of the polymer in these two solvents, RG is esti- 
mated to be 96 nm in water and 65 nm in 0.6m KzS04. 
In Figure 2d, all of the data shown were obtained in the 
same pipe; the bottom-most solid line represents the 
Prandtl-Karman law, polymer concentrations are distin- 
guished by symbols, water solution data (hollow) are 
faired through by broken lines, and O.6m &SO4 solution 
data (solid) by light continuous lines. It is evident that the 
change in solvent from water to 0.6m &SO4 shifts the onset 
of drag reduction from Resf%' N 500 to Resf%" N 800 
but does not appreciably alter the slopes exhibited by the 
polymer solutions after onset. Thus, a decrease in the di- 
mensions of a macromolecular random-coil in solution in- 
creases the onset wall shear stress but does not much affect 
the slope increment. 

The effect of solvent viscosity on drag reduction is still 
uncertain, fragmentary evidence (Section 2) suggesting 
that T," is independent of viscosity. 

1.1.3 Onset. In summary, the onset of drag reduction oc- 
curs at a rather well-defined onset wall shear stress Two. 
For a given polymer solution, T,' is essentially the same in 
pipes of different diameters. For solutions of a given poly- 
mer-solvent combination, T,' is approximately indepen- 
dent of polymer concentration. And onset depends on the 
polymer random-coil size in solution, with T,' increasing 
as Rc decreases. The onset of drag reduction implies incipi- 
ent interaction betwen the turbulent flow and the polymer 
molecule in solution and, among experimentally accessible 
quantities, T,' and R G  are respectively the flow and poly- 
meric parameters most relevant to onset. The relationship 
observed between T,' and Rc in the pipe flow of PEO 
solutions is indicated in Figure 3, log-log coordinates. Amid 
scatter, T," varies as an inverse 2 to 3 power of Re. The 
solid line in the figure has been drawn with slope -3 and 
represents the data within a factor 2" over a 500-fold 
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Fig. 3. Onset results for polyethyleneoxide solutions. Solid line corre- 
sponds to an onset constant Szr = 4.4 X lo6. Data from Table 2. 
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range of Tw*. This corresponds to an onset correlation of 
the form 

with an average onset constant  IT = 4.4 x 106 (d'  imen- 
sional with RG in nm, T,' in N/m2) for PEO. Onset ob- 
servations obtained with various polymers other than PEO 
are shown in Figure 4 using the same coordinates as Figure 
3. Among the polymers PAM, PDMS, and PIB, for which 
Two data are available over a range of Rc, the observed 
power law slopes are respectively -1.6, -2.4, and -2.3. 
Forcible fitting of the onset correlation ( 5 )  to the PAM 
and PIB data, as indicated by the two solid lines in Figure 
4, yields onset constants & = 13 x lo6 in each case. 
These are rather higher than for PEO, the average line 
for which is shown dashed in Figure 4, indicating that 
&- depends upon polymer species (and possibly solvent 
also). Notice, however, that most of the onset data lie 
between the lines respectively representing PEO and PAM- 
PIB, implying that an order of magnitude i l ~  = 10 X lo6 
prevails for all onset results obtained until now. 

1.1.4 Slope Increment. After onset, polymer solutions 
describe nearly straight lines on Prandtl-Karman coordi- 
nates, with their slopes exceeding the solvent slope. For 
a given polymer solution, the slope increment S is es- 
sentially the same in pipes of different diameters. For 
solutions of a given polymer-solvent combination, 6 
increases approximately as the square root of poly- 
mer concentration. Also, 6 depends on polymer molec- 
ular weight but, for solutions of a given polymer, S is 
not appreciably affected by decreased polymer random-coil 
size, The square-root relationship between 6 and c is de- 
picted in Figure 5,  log-log: the solid lines have all been 
drawn with slope 1/2 and can be seen to reasonably repre- 

Rc3Tw' = n~ ( 5 )  
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Fig. 4. Onset results for some linear, random-coiling macromolecules. 
Polymer abbr. as in Table 1, data from Table 2. The dashed line 
represents PEO, from Fi,gure 3; the two solid lines represent PI6 and 

PAM. 
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Fig. 5. The effect of polymer concentration on slope increment in 
(a) aqueous and (b) organic solvents. See Table 2 for experimental 
details. Solid circles in  Figure 5a correspond to data of Figure 2b. 

sent the variation of 6 over concentration ranges of from 
one to three decades. The quantity S/cl/z, which we call 
specific slope increment, would therefore appear to charac- 
terize the drag reducing ability of a polymer-solvent pair 
after onset and the wide separation of the data for different 
polymers on Figure 5 suggests its further dependence on 
polymeric parameters. From 8/c"z, one can obtain II = 
6/ ( c / M )  ''2 which is properly termed an intrinsic (that is, 
per macromolecule) slope increment and seek its relation- 
ship to the number of backbone chain links N which is 
the essential configurational parameter. This leads to Fig- 
ure 6 which disp!ays some of the available drag reduction 
literature on coordinates of II versus N ,  log-log. All poly- 
mers with methylene \C/C\, oxyethylene \O/C\C/, 
and siloxane \Si/O\ backbone, which are structurally 
similar, lie on much the same line 

II = .N3I2 (6) 
with slope modulus K = 70 x for 5 x lo3 < N < 5 
x 105, this intrinsic slope increment correlation being de- 
picted by the solid line in the figure. However, the cellu- 
losic backbone polymers, guargum and hydroxyethylcellu- 
lose, with slope moduli K = (1400 & 200) x lie dis- 
tinctly apart from the polymethylene group. Thus, for a 
given polymer species, the intrinsic slope increment in- 
creases as the three-halves power of the number of back- 
bone chain links per macromolecule with proportionality 
constant apparently dependent upon the species skeletal 
structure. 

1.1.5 Maximum Drag Reduction. The maximum drag 
reduction that can be achieved appears to be limited 
by a rather unique asymptote which is illustrated in 
Figure 7, P-K coordinates. The 450-wppm PEO solu- 
tion in a 32.1-mm I.D. pipe (solid circles) exhibits an 
interesting gross flow trajectory. For 300 < Ref" < 
400, these data lie on the Prandtl-Karman line, slope 4.0; 
at Ref" N 400, there is the onset of drag reduction, and 
for 400 < Ref'/. < 1000 the data describe a curve of aver- 
age slope N 50; then at Ref'/2 'v 1000 there is a perceptible 
change of slope, and for Ref'lz > 1000 the data lie on a 
line of slope 2: 20. Another kind of behavior is exhibited 
by the 110-wppm PAM solution in an 8.46 mm I.D. pipe 
(solid squares). These data obey Poiseuille's law for 60 < 
Ref'/. < 150, then peel away downward from Poiseuille's 
law and for Ref'/. > 300 describe a straight line, slope II 
20, which is essentially the same as that eventually reached 
in the first example. This asymptote of maximum drag re- 
duction is also attained by the remaining three examples 
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Fig. 7. Gross flow trajectories exhibiting maximum drag reduction. 
In al l  cases solvent was distilled water, temperatuie 25 C. (Poly- 
mer, M X c wppm, d mm) as follows: (PEO, 0.76, 1000, 2.921, 
(PEO, 5.2, 30, 4.571, (PEO, 6.1, 450, 32.11, (PAM, 12.5, 40, 9.53), 

(PAM, 12.5, 110, 8.46). 

shown in Figure 7, despite differences among their trajec- 
tories at the lower Ref%. Perusal of the experimental de- 
tails associated with the data of Figure 7 will show that, 
besides being independent of pipe diameter, the asymptotic 
maximum drag reduction is strikingly insensitive to poly- 
mer species, molecular weight, and concentration, which 
contrasts with the pronounced dependence of drag reduc- 
tion on these polymeric parameters witnessed in the pre- 
ceding polymeric regime. The maximum drag reduction 
asymptote has been widely observed and seems to be a 
fundamental feature of the drag reduction phenomenon. 
Some recent results are presented in Figure 8, P-K coordi- 
nates, in which the solid line labeled mdr asymptote cor- 
responds with Equation (4) of the text. The magnitudes 
of maximum drag reduction are worth noting. At Ref’/. = 
(300, 1000, 3000), the respective fractional flow enhance- 
ments relative to Newtonian are SF = (0.54, 1.12, 1.49); 
at the corresponding Re = (4.4 x lo3, 2.5 x lo4, lo5), 
the respective fractional drag reductions relative to New- 
tonian are R F  = (0.52, 0.73, 0.80). 

1.1.6 Transition. The transition from laminar to turbu- 
lent flow with dilute polymer solutions can be appre- 
ciated by observing first some of the gross flow trajec- 
tories depicted in Figures 1 and 7. In Figure 1, the 
polymer solution shows the laminar, Newtonian, and 
polymeric regimes, an LNP trajectory, while in Fig- 
ure 7 we observe two LPM trajectories, for the 38 
wppm PAM solution (hollow squares) and for the 1000 
wppm PEO solution (hollow diamonds), and two LM 
trajectories, for the 300 wppm PEO solution (triangles) 
and the 100 wppm PAM solution (solid squares). Evi- 
dently, the existence of one laminar and three turbulent 
flow regimes makes for three possible laminar-to-turbulent 
transitions, which we designate L + N ,  L P, L + M, 
respectively. These seem to have the following character- 
istics: 

1. L + N. The transition with polymer solution is pre- 
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Fig. 9. Mean velocity profiles during drag reduction. See Table 5 
for experimental details. 

cisely the same as in the usual Newtonian case (Rotta, 
1956). There is a critical Reynolds number Ret, which 
marks the beginning of a regime of intermittent laminar 
and turbulent slugs that finally terminates in fully turbu- 
lent flow. 

2. L + P .  This transition is very similar to Newtonian, 
with much the same critical Reynolds number, turbulent 
slug lengths, and growth rates. However, the turbulent 
slug formation frequency seems to be greater than New- 
tonian and increases with the drag-reducing ability of 
the polymer solution. 

3. L + M .  In this transition, exhibited by very strongly 
drag-reducing solutions, velocity fluctuations are apparent 
at Re N 1500, decidedly lower than the Newtonian Retr 
= 2000, but intermittency cannot be readily discerned. 

The kind of transition observed apparently depends 
upon whether or not the onset of drag reduction occurs in 
the turbulent slugs which appear for Re > Retr. Also, 
Retr in polymer solutions appears always to be equal to 
or less than Retr in solvent; in no case do the polymer 
solutions delay transition. It should be pointed out that the 
preceding summarize our data for triggered (that is, high 
inlet disturbance) transition in pipes (Ohara, 1968) and 
agree substantially with the conclusions of Paterson and 
Abernathy (1972), but are contrary to those of Castro 
and Squire (1967), Giles and Pettit (1967) , and White 
and McEligot (1970). 
1.2 Mean Velocity Profiles 

1.2.1 Law of the Wall. Representative mean velocity 
data are shown in Figure 9, a law of the wall plot with 
nondimensional coordinates of U+ versus log y+.  On 
the figure, fractional flow enhancement SF is used to 
denote the drag reduction. Other experimental details 
corresponding to the data shown in Figure 9 are con- 
tained in Table 5 of Section 2, casual perusal of which 
will indicate the various pipe sizes, polymers, and con- 
centrations used. The three heavy solid lines in Figure 9 
respectively represent the viscous sublayer 

u+ = y +  (7) 

(8) 

(9) 

the Newtonian law of the wall 

U+ = 2.5 In y+ + 5.5 

U+ = 11.7 In y+ - 17.0 
and the ultimate profile 

the last arising from the maximum drag reduction asymp- 
tote as explained later. Turning to the data, it is seen that, 

at zero drag reduction (Virk SF = 0), the polymer solution 
profile adheres to the Newtonian wall law. At low drag 
reduction (Patterson S F  = 0.27, Virk SF = 0.29), the 
polymer solution profiles are shifted upward from but 
parallel to the Newtonian wall law. The arallel upward 
shift, called (after Oldroyd, 1948) the elective slip S+, 
increases with increasing drag reduction (Goren SF = 0.64, 
Rollin SF = 0.70, Elata SF = 0.74). At still higher drag 
reductions (Goren SF = 0.94, Rudd SF = l . O ) ,  an upward 
shifted region of roughly Newtonian slope is still discerni- 
ble, but at the lower y+, toward the wall, the profiles ex- 
hibit a slope significantly greater than Newtonian. Finally, 
at maximum drag reduction conditions (Rollin SF = 1.59) , 
the entire profile is approximately semilogarithmic with a 
slope -N 12, about five times that of the Newtonian wall 
law. 

1.2.2 Velocity Defects. A portion of the mean velocity 
data considered in Figure 9 are shown again in a velocity- 
defect plot, Figure 10, on arithmetic coordinates of the 
velocity defect Ul+ - U+ versus radius-normalized dis- 
tance from the wall 5. This is the conventional, and 
sensitive, method of displaying mean velocity profiles 
relative to the mean velocity on the pipe axis, the 
arithmetic abscissa emphasizing the central region of 
the pipe. The solid line represents the Newtonian ve- 
locity defect law including a small, but significant, wake 
correction as given by Hinze ( 1959) ; solvent data reported 
by the investigators quoted in Figure 10 were all in close 
agreement with this line but are omitted for clarity. Of the 
results with polymer solutions, those at the lower, but 
nevertheless considerable, drag reduction (Virk S F  = 0.29, 
Goren SF = 0.64, Rollin SF = 0.70) show velocity defect 
profiles identically the same as Newtonian for 1.0 > 5' > 
0.05. As drag reduction is increased (Goren SF = 0.94), 
the velocity defect remains Newtonian toward the axis 1.0 
> 6 > 0.2 but is greater than Newtonian toward the wall 
f < 0.2. At maximum drag reduction (Rollin SF = 1.59), 
the velocity defect exceeds Newtonian over the entire pipe 
cross section. Evidently, the mean velocity profiles retain 
a Newtonian velocity defect structure over a region, 1 > 
> &, which we will call the Newtonian phg, the inner 
(wall-ward) boundary of which te moves progressively 
toward the pipe axis 5 = 1 with increasing drag reduction. 
Too, the Newtonian defect structure is retained despite 
absolute velocities significantly, and by various amounts, 
higher than Newtonian as already seen in the parallel up- 
ward shifts exhibited by these profiles in Figure 9. 

1.2.3 Velocity Profile Zones. The characteristic feature 
of mean velocity profiles during drag reduction seems 
to be the appearance of a region, lying somewhere 
between the viscous sublayer and the outer Newtonian 
plug, in which the mean velocity increases to above 
Newtonian by an amount S + .  While such a region, 
which we will call the elastic subZayer, can actually 
be seen in the data of Rudd (1969), roughly 15 < y +  < 
60 in Figure 9, other profiles at lower drag reduction do 
not extend close enough to the wall to make it visible. 
However, from the pipe axis inward, these profiles are 
observed to be parallel-shifted upward from Newtonian 
by S+, and from the wall outward we have the conviction 
that, in polymer solutions as in Newtonian fluids, the pro- 
files must start out along a viscous sublayer and, hence, 
between the viscous sublayer and the Newtonian plug 
must be a region, characteristic of drag reduction, across 
which the effective slip occurs. Mean velocity profiles 
during drag reduction have thus three zones from the wall 
outward: (1) a viscous sublayer, (2) an elastic sublayer, 
characteristic of drag reduction, across which the effective 
slip S+ occurs, and (3)  a Newtonian plug which retains 
the Newtonian defect structure though absolute velocities 
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in it uniformly exceed Newtonian by S+. With increasing 
drag reduction, as Figure 10 showed, there is a progressive 
shrinkage of the Newtonian plug region, its inner boundary 
retreating toward the pipe axis until, at maximum drag 
reduction, the region vanishes. This implies a correspond- 
ing increase in elastic sublayer extent, advancing outward 
from the wall until, at maximum drag reduction, it per- 
vades the entire cross section. In  Figure 9, notice that the 
elastic sublayer portion of Rudd’s profile almost coincides 
with the maximum drag reduction profile of Rollin. 

1.2.4 Relation to Gross Flow. Finally, we should like 
to relate the observed velocity profiles to the gross flow 
results considered earlier. It can be shown that a semi- 
logarithmic velocity profile of the form 

U + = A l n y + + B  (10) 

(11) 

leads, upon integration, to a friction factor relation 
A A 

f - ’h = A loglo Refs  + B 
where 

[;I = [ 0J315 O. ] [ t ]  (12) 1.562 1.414 

In this way, the Prandtl-Karman law (2) was originally 
derived from the Newtonian law of the wall (8); the 
reverse procedure (Virk, Mickley, and Smith, 1970) was 
used to infer the ultimate mean velocity profile (9) at 
maximum drag reduction from the asymptote (4 ) .  Notice 
that the ultimate profile has a mixing length constant X ,  = 
0.085 about a fifth of the Newtonian X ,  = 0.4. Between 
the limits of zero and maximum drag reduction, at a given 
Ref’’2 or R+ , a parallel upward shift of S + above the New- 
tonian wall law corresponds to a value of f-” shifted by 
S + /fi above the Prandtl-Karman law, provided the New- 
tonian plug portion of the resultant profile still occupies 
most of the pipe cross section. A linear P-K friction factor 
relation with slope, after onset, exceeding solvent by S thus 
corresponds to mean velocity profiles with effective slip S +  
increasing as S In ( uT/uT* ) ; this leads to the polymeric 
regime gross flow relation (3) .  

1.3 Turbulence Structure Measurements  
1.3.1 Turbulence Intensity. Axial and radial turbulence 

intensity profiles measured in a square pipe by Logan 
(1972) are shown in Figure l l a  and b, the polymer 
solution data at SF = 0.4. Both parts of Figure 11 
have the same ordinate of turbulent intensity which 
is here the root mean square turbulent velocity nor- 
malized by friction velocity; the abscissae are y +  in 
Figure l l a  and E in Figure l l b ,  as appropriate for the 
wall and core regions of the pipe, respectively. Of the 
data in Figure 11, the solvent (that is, Newtonian) u’+ 
and d+ profiles are in reasonable accord, as to both magni- 
tudes and shapes, with the classical results of Laufer 
(1954) and Klebanoff (1955) in air. In the polymer solu- 
tion, the wall-region plot shows the axial intensity increases 
in the region y +  < 30, reaches a maximum u’+ 5: 4.3 at 
y +  ’v 35 and then decreases, at first rapidly and then 
more slowly, with increasing y +  for y +  > 40. The polymer 
solution data in the region 20 < y +  < 30 of increasing 
u’+ lie close to an extension of the straight line, through 
the origin, which represents the solvent data in the region 
10 < y +  < 20, suggesting that the slope of the axial in- 
tensity profile at the wall, called a+, during drag reduc- 
tion is much the same as Newtonian. Considering u’+ 
magnitudes relative to solvent, for 0 < y +  < 20, u‘+ in 
polymer solution is, by inference from the slopes, the 
same as in solvent; for 20 < y +  < 100, it can be seen that 
u’+ in polymer solution is significantjy higher than in sol- 
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Fig. 10. Velocity defects during drag reduction. See Table 5 for 
experimental details; solid line is the Newtonian velocity defect law 

from Hinze (1959). 

vent, by 55% at y +  = 50 for example, but the difference 
decreases with increasing distance from the wall; and, for 
y +  > 150, u‘+ in the polymer solution is essentially the 
same as in solvent. The radial intensity v’+ in the polymer 
solution increases essentialy monotonically from u’+ N 0.3 
at y +  N 20 to u’+ = 1.1 at y +  = 100, and in the interven- 
ing region u‘+ in polymer solution appears to be slightly 
lower than in solvent, by about 10% at y+ = 50; for y +  
> 100, I)’+ in the polymer solution is constant and approxi- 
mately equal to ti’+ in solvent. Seen from the pipe axis 
inward, Figure l l b ,  both axial and radial turbulence in- 
tensities in the polymer solution are identically the same 
as in solvent (Newtonian) in the central core region, but 
toward the wall u‘+ is higher than in solvent for 6 < 0.4 
while u’+ is lower than in solvent for ,$ < 0.2. 

Other available axial turbulent intensity data, not shown 
in Figure 11 because of their high scatter, are in general 
agreement with Logan’s results. In the wall region, the 
data of Rudd (1969) yield an axial intensity profile during 
drag reduction which is analogous in every respect to that 
shown in Figure l l a  while, in the pipe core, from the axis 
inward, regions where u’+ during drag reduction is the 
same as in solvent can be detected in the data of both 
Rudd ( 1969) and Chung and Graebel (1972). In regard 
to radial turbulent intensity, dye dispersion data of Taylor 
and hliddleman (1974), S F  ‘v 0.25, indicate d+ identi- 
cally the same as in solvent in the core region, which 
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Fig. 11. Axial and radial turbulent intensity profiles during drag 
reduction in (a) the wall region, and (b) the core region. Data of 

L q a n  (1972); see Table 6 for experimental details. 
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agrees with Logan’s results (Figure l l b ) .  Concerning the 
variation of turbulent intensity profi!es with drag reduc- 
tion, the data of Logan ( S F  N 0.4) and Rudd ( S F  N 1.0) 
respectively yield a ratio of maximum axial intensity in 
polymer solution to that in solvent ( Urnax,; + /Urnax,n’+ ) of 
1.3 and 1.8, while in the pipe core the regions where ur+ 
is the same as in solvent are 1.0 > f > 0.4 and 1.0 > 5 
> 0.6, respectively. At (or near) maximum drag reduc- 
tion, there is only uncertain information from streak pho- 
tography (Seyer and Metzner, 1969; Arunachalam, Hum- 
mel, and Smith, 1972), which suggests that 
urnax,d+) is 2.0 to 2.5. 

1.3.2 Reynolds Stress and Correlation Coeficient. Reyn- 
olds stress data reported by Logan (1972) and u-0 cor- 
relation coefficients calculated therefrom are shown in 
parts a and b, respectively, of Figure 12, using a common 
wall-region abscissa y+. In  Figure 12a the ordinate is the 
ratio of Reynolds to total shear stress, 4 = <uu>/ 
U T ~ (  1 - f ) ,  which is, of course, the ratio of turbulent to 
total (viscous plus turbulent) axial momentum transport 
in the radial direction; too, in the wall region under con- 
sideration, ( is small so the total shear stress is close to 
T,. The solvent d, profile is indicated by the broken line, 
but unfortunately Logan reported no solvent Reynolds 
stress data closer to the wall than y+  = 65 so the region 
10 < y +  < 65 is based on results of Laufer (1954) and 
Bremhorst and Walker (1973) at comparable R + .  I n  poly- 
mer solution, the data scatter considerably and therefore 
average values over various y +  extents have been indicated 
by steps on the figure. For 10 < y +  < 80, $ in the polymer 
solution is less than in solvent, whereas for y+ > 80 it is 
much the same as in solvent. In Figure 12b, the ordinate 
is the u-u correlation coefficient C,, with values computed 
from the experimental Reynolds stress data of Figure 12a 
and the axial and radial intensity data of Figure l l a .  The 
broken line represents solvent, and the polymer solution 
data have been averaged as in Figure 12a. I t  will be 
noticed that for 20 < y +  < 80 the value of C,, ‘v 0.2 
in the polymer solution is very significantly less than that 
in solvent, C,, Y 0.44, whereas for y +  > 80 values of 
C,, = 0.4 t 0.1 in the polymer solution are much the 
same as in solvent. The observed decrease in C,, in the 
wall region during drag reduction suggests that the poly- 
mer molecules reduce turbulent transport by decoupling 
the axial and radial velocity components rather than by 
suppressing the intensity of turbulence. 

I I I I I I I I I ;  I 
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Fig. 12. W a l l  region profiles of (a) the ratio of Reynolds to total 
shear stress and (b) the u-v correlation of coefficient during drag 

reduction. Data of Logan (1972). 

1.3.3 Turbulence Structure Zones. The axial intensity 
profile, for which the most information exists, has three 
zones: 

1. A region 0 < y+ < y u + ,  say, in which a+ and the 
magnitudes of u‘+ are essentially the same as Newtonian. 

2. A region yv+ < y + < y e + ,  say, which is characteris- 
tic of drag reduction and in which u’+ differs from New- 
tonian, being higher. This region further consists of a 
relatively thin portion, y,+ < y +  < ymax+,  in which ur+ 
increases to a maximum value and the remaining major 
portion ymax+ < y +  < y e +  in which ur+ decreases from 
the maximum to a value close to Newtonian. 

3. A region y f  > ye+ or 1 > 5 > te in which ur+ is 
the same as Newtonian. 

The radial intensity, Reynolds stress, and correlation co- 
efficient profi!es do not yield information on the very near 
wall region (1) but do show clearly the region (2) ,  to- 
ward the wall, which differs from Newtonian (d+, $, C,, 
are all relatively lower) and region (3) ,  toward the axis, 
which is much the same as Newtonian. 

There is evidently a striking analogy between the above 
turbulence structure zones and the ( 1 )  viscous sublayer, 
( 2 )  elastic sublayer, ( 3 )  Newtonian plug zones of the 
mean velocity profiles considered earlier. 

2. CORRELATION AND ANALYSIS 

The object of this section is to correlate drag reduction 
data, using the elastic sublayer model (Virk, 1971) as a 
framework. The model is briefly described and then em- 
pirically related to experimental gross Bow, mean velocity, 
and turbulence measurements with analysis and discussion 
of the data used for this purpose, including a section on 
polymer characterization. The empirical developments are, 
of course, substantially model independent. 

2.1 The Elastic Sublayer M c d e l  
The essential physical notion is that the stimulation of 

polymer molecules by a turbulent shear flow creates a zone, 
called the elastic sublayer, which is characteristic of the 
drag reduction phenomenon. The elastic sublayer origi- 
notes at onset, it then grows with increasing drag reduc- 
tion and eventually occupies the entire pipe cross section 
at maximum drag reduction. By hypothesis, all drag re- 
duction observations can be related to the properties and 
extent of the elastic sublayer. 

The mean flow model is shown schematically in Fig- 
ure 13, which defines all terminology. The general profile 
ABCD, consists of three zones: (1) a viscous sublayer AB, 
y +  y u + ;  ( 2 )  an elastic sublayer BC, yo+ < y +  < ye+; 
(3) a Newtonian plug CD, ye+ 4 y +  R + ,  each with 
the indicated mixing length constant and U + - y +  relation- 
ship. The inner edge B of the elastic sublayer stays fixed 
at y.+ = 11.6, which is the trisection of Equations ( 7 ) ,  
( 8 ) ,  and (9) ,  while its outer edge C moves along the ulti- 
mate profile BM from yu+ at zero drag reduction to R +  
at maximum drag reduction. Comparison of Figure 9 with 
Figure 13 shows that the model reproduces the essential 
features of the experimentally observed mean velocity 
profiles. The effective slip is related to elastic sublayer 
thickness by 

Integration of the profile ABCD by segments yields the 
friction factor relations: 

Ua,+ = An In R +  + B, - 1.5 An (14a) 

= A, In R+ + B, - 1.5 An 

S+ = (Am - An) In ( y e + / y u + )  (13) 

; ye+ +- 

+ ( A ,  - A,) In ( y e + / y u + ) ;  yo+  < ye+ < Rf (14b) 

= Am In R +  -+ B, - 1.5 Am (14C) ; ye+ + Rf 
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respectively representing the Newtonian, polymeric, and 
maximum drag reduction regimes. We now postulate a 
dependence of elastic sublayer thickness on flow and poly- 
meric parameters which is physically motivated by the 
observation that two kinds of factors appear to influence 
drag reduction in the polymeric regime. One factor, re- 
flected by onset and the affine, linear P-K plots obtained 
thereafter, seems to concern the excitation of the macro- 
molecule by the turbulent flow while a second factor, re- 
flected by the P-K slopes, apparently involves the amount 
of polymer present. In the expressions 

ln(y,+/yu+) = 0 ; (R+/R+O) < 1  (15a) 

= + I n  (R+/R+O); (15b) 

= I n  ( R + / y u + )  ; (R+/R+*) 
> (R+O/Y,+)*'(""-~) (15c) 

the operational member (15b) contains these factors, + 
and In ( R + / R + ' ) ,  in separable form while the auxiliary 
relations (15a and c)  respectively ensure the proper cross- 
overs to the Newtonian and maximum drag reduction 
asymptotes. Substitution of (15b) into (14b) yields 

Uau+ = (An + +(Am - An)) l n R +  + Bn 

- 1.5 A, - $(Am - A,) In R+ O (16) 

which is synonymous with the polymeric regime relation 
( 3 ) ,  the P-K slope increment being 6 = 1.626 +(A, - An) 
while the onset wave number is W" = (2R+5/d) = 
(T, " /p)  *'z/v. Thus, the elastic sublayer thickness, (15b), 
is uniquely related to the parameters T," and 6, both of 
which are directly accessible from gross flow experiments, 
and our task is to seek their respective dependencies upon 
macromolecular properties. 

2.2 Polymer Character izat ion 
Table 1 presents characterization information for some 

of the polymers which have been used in drag reduction 
studies. The molecular weight per backbone chain link, 
the unperturbed effective bond length per backbone chain 
link, and the chain conformation factor for each species are 
given in columns 3 to 5, respectively. Columns 7 to 9 sum- 
marize Mark-Houwink relationships 

[TI = K M C  (17) 
between intrinsic viscosity and molecular weight. The 
quantity H in column 10 of Table 1 is a heterogeneity 
index, derived from light-scattering experiments on the 
commercial polymer samples named in column 11. Its 
definition 

arises from Flory's (1953) viscosity relation. The numeri- 
cal constant in (18) is (0.8)63/2a, with @ = 2.66 x 1023 
(Pyun and Fixman, 1966) and the factor 0.8 to account 
(Yaniakawa, 1971) for the use of good (rather than 
theta) solvents in most drag reduction studies. Values 
of RG and M ,  obtained by light-scattering are, respec- 
tively, 'z' and 'weight' averages (see, for example, McIn- 
tyre and Gornick, 1964) while [.I] is essentially a weight- 
averaged quantity, that is, H is a ratio of third to second 
moments of the same distribution, and hence we can 
ascribe H > 1 to polymer sample heterogeneity. In princi- 
ple, H can be computed from a known molecular weight 
distribution; for example, the most probable distribution 
(Flory, 1953) yields H N 2.0 which should be an approxi- 
mate lower bound for all unfractionated polymers. By 
the converse, the value of H ,  computed by (18) from a 
triad of experimental RG, M,, and [v] measurements on 
a polymer sample, is an empirical index of its unknown 

H = 31 X 10% R G ~ / M , [ ~ ]  (18) 

AlChE Journal (Vol. 21, No. 4) 

L n  y' - 
Fig. 13. Schematic of the mean velocity profile during drag reduction 

according to elastic sublayer model. 

c 
10 106 1 0  ' 

M W  

Fig. 14. Polymer characterization by viscosity and light-scattering. 
(a) PEO-Water (Shin, 1965); (b) PIB-Cyclohexane (Shin, 1965; 

Cottrell, 1968). 

molecular weight distribution. The latter implicit con- 
nection nurtures the hope that a given commercial polymer 
family might possess characteristic H values. 

The derivation of H from experimental data is illus- 
trated in Figure 14, abscissa M,, ordinates either [v] or 
RG, all logarithmic. Consider first the lower portion, right- 
hand ordinate, for the PIB-cyclohexane system (Shin, 
1965; Cottrell, 1968). The hollow squares represent ( [TI, 
M,) pairs, and the solid line fitted to them corresponds to 
the Mark-Houwink relationship given in Table 1, entry 7; 
it is worth noting that these data agree well with estab- 
lished results (Flory, 1953) for the same system. The 
dashed line represents the calculated RG versus M, for 
H = 1, obtained from (17) and (18) ,  and it can be seen 
that the experimental ( R G ,  M,) pairs, solid squares, all 
lie above the dashed line. The solid line fitted to the ex- 
perimental R G  - M ,  data is parallel to but a factor of 3 
higher than the dashed line, that is, H = 3 for all five 
members of the PIB family studied. The upper portion 
of Figure 14, left-hand ordinate, refers to the PEO-water 
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system (Shin, 1965). The [q] - M ,  data, hollow circles, 
for all of the PEO polymer samples are fitted by the solid 
line, which corresponds with the Mark-Houwink constants 
given in Table 1, entry 1; these data are in fair agreement 
with earlier results for the PEO-water system (Bailey and 
Callard, 1959). The RG - M ,  data, solid circles, seem 
to separate into three distinct families, entries 1, 2, 3, re- 
spectively, in Table 1, of strikingly different heterogene- 
ities. The solid lines fitted to each R G  - M ,  family have 
all been drawn with the same slope and can be seen to 
well represent the two higher molecular weight families. 

Of the cellulosic polymers, the only available data for 
GGM in water appear to be those of Deb and Mukherjee 
(1963) on a single commercial sample; in Table 1, entry 
11 gives their reported M ,  and an RG calculated from 
their dissymmetry data. Some results from a detailed study 
of the guarantriacetate-acetonitrile system (Koleske and 
Kurath, 1964) are given in entries 12 and 13, the differ- 
ent Mark-Houwink constants apparently reflecting a 
change in the GTA random-coil from partially free-drain- 
ing for N < 1900 to nonfree-draining for N > 1900. In- 
terestingly, when RG is plotted against N ,  Deb and 
Mukherjee's (1963) point for GGM-water accords well 
with Koleske and Kurath's (1964) data for GTA-aceto- 
nitrile. Table 1, entry 14, lists the results obtained by 
Brown, Henley, and Ohman (1963) for fractionated sam- 
ples of HEC in water. Scrutiny of these and earlier 
(Brown, 1961) data on a Stockmayer-Fixman plot (Yama- 
kawa, 1971) suggests that the HEC random-coil also prob- 
ably undergoes a change in drainage characteristics at 
N N 1500. For N > 1500, the estimated nonfree-draining 
Mark-Houwink constants given in entry 15 are recom- 
mended; also, entry 15 provides a value of H for a com- 
mercial HEC, estimated from the fractionation and light- 
scattering data of Brown (1961), but this is possibly too 
low owing to loss of some of the highest molecular weight 
fractions. 

2.3 Gross Flow Correlations 
2.3.1 Polymeric Regime. Table 2 summarizes some data 

for drag reduction in the polymeric regime. Columns 3 
to 7 contain characterization information consisting of the 
polymer used, the solvent, and [?I, from which, in most 
cases, M and then RG have been obtained via Table 1. 
Column 8 gives the pipe inside diameter. Columns 9, 10, 
and 11, respectively, give the number of gross flow runs 
with polymer solutions and the limits of the concentration 
range examined. Columns 12 and 13 respectively contain 
the drag reduction parameters Two and Wc'h derived from 
the data along with their approximate error limits. Experi- 
mentally, both Two and Wc'h are found to depend only 
weakly on polymer concentration so that a set of these 
parameters is representative of all dilute solutions of a 
given polymer-solvent pair and pipe. 

Items in Table 2 requiring explanation are noted. For 
all entries using polymers PMMA, PCIP, and PDMS, RG 
have been obtained by assuming H = 3.0, and in entries 
12 to 17 it is assumed that both kerosene and crude oil 
are theta solvents for PIB. The GGM-water data showed 
a rather remarkable consistency, with Two = 4 f 2 and 
6/c1/z = 0.60 0.15 representing entries 79 to 88, which 
suggests the use of very similar polymers, and we have 
therefore assigned the (M,, R G )  of Table 1, entry 11, to 
all cases; the assignment differs from an earlier M = 0.2 
x lo6 based on manufacturer's estimates. Where the same 
polymer sample was used in two solvents, i and /, for ex- 
ample, the entry pairs ( 5 , 6 ) ,  (35,36), (71,72), M i  and 
RG,i were calculated from Table 1 and in the second sol- 
vent, we set Mj = M i  and obtained R G , ~  = RG.i ( [ ~ ] j /  

[ ~ / ] i ) ' . ~ ,  assuming aV3 = a ~ ~ . ~  (Yamakawa, 1971). Atten- 

tion is drawn to the use of recirculating flow systems by a 
trailing R in column 8 because these are more prone to 
polymer degradation effects than once-through flow sys- 
tems. In these cases, it is likely that the experimentally ob- 
tained T," are higher and 6 / c V z  lower than appropriate for 
the quoted polymer characterizations which represent the 
original, undegraded polymer samples. For the majority of 
entries, Two and 6/cs were derived from the same gross 
flow runs so that columns 9 to 11 apply to both parameters, 
but there are trivial exceptions: for example, in entry 57, 
Two was derived from data of 10 solutions, 50 < c< 2000, 
as listed, but 6/c1h was obtained from 13 solutions, 10 < 
c < 3000. There are two major sources of uncertainty 
in the experimental determinations of Two and 6. The 
statistical uncertainty, for example 

u(Two) = 100 

[var (Two)]'~/Tw", can be estimated by assuming that 
pressure drop and flow rate measurements are respectively 
accurate to within & 1% and k 0.5%, as in the very best 
data. Error analysis then shows that, for polymer solutions 
exhibiting slope increments 6 = (1, 2, 5, 10, 20), respec- 
tively, the corresponding € ( T w o )  = (70, 40, 20, 13, 9)  % 
and ~ ( 6 )  = (35, 18, 8, 4, 2) %: that is, on statistical 
grounds alone, T," can at best be known to within f 10% 
and uncertainties of order t 100% are possible for feebly 
drag-reducing solutions. For Tw" (and for 6 )  to qualify as 
a flow scale, the turbulent flow should be well developed 
at the onset. An obvious minimum requirement is that lam- 
inar-to-turbulent transition be complete at, say, 200 diam- 
eters from the pipe inlet. Thus, for Ref%" < 300 (Re" < 
3000), the corresponding Two is always unreliable and 
the few such in Table 2 are put in parentheses. For Ref"" 
> 500, T,' is expected to be free of transitional flow un- 
certainties (unless special precautions have been taken to 
eliminate inlet disturbances in which case, of course, 
laminar pipe flow can persist to indefinitely high R e ) .  For 
300 < Refs" < 500, inlet flow conditions must be known 
to assess Two; we assume that Two is acceptable when 
Refs" > 300 for triggered inlets, and when Refs" > 400 
for square cut-off pipe inlets. I t  should be noted that a 
proper criterion of turbulent flow development, that is, 
the existence of a region of inner-outer flow overlap which 
requires y +  N 50 at 4 0.15, or Refs" > 1000, is met 
by few entries. 

Table 2 coalesces and brings up to date our previous 
tabulations (Virk et al., 1966, 1967; Virk and Merrill, 
1969; Virk, 1971) on the present subject. It is believed to 
be somewhat of an improvement on the earlier works by 
virtue of better polymer characterization and, in the major- 
ity of entries, determination of self-consistent onset and 
slope increment values from the same P-K plot of the 
original data. Among recent literature incorporated, the 
following are noteworthy. Paterson and Abernathy ( 1970) 
and Hansen and Little (1971) present further, precise 
data for PEO-water, Clarke's ( 1971) investigation using 
PAMH is the first with control over the polyelectrolyte 
conformation, and Wang (1972) presents some of the &st 
results with characterized cellulosic polymers. 

2.3.2 Onset Constants. We examine the onset data in 
Table 2 to obtain the dependence of Two on pipe diame- 
ter, polymer concentration, solvent viscosity, and polymer 
radius of gyration, respectively, thus leading to an onset 
correlation. Two methods have commonly been used to 
define onset. The visual method simply adjudges the onset 
point as that where polymer solution gross flow data depart 
from solvent on, say, a plot like Figure 1, whereas the 
slope method requires a fitting of both polymer solution 
and solvent data to appropriate straight lines, the inter- 
section of which is considered the onset point. Values of 
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Two obtained by the visual method tend to be somewhat 
lower than those obtained by the slope method, but these 
differences are usually small compared with the statistical 
uncertainty inherent in T,". 

The effect of pipe diameter on onset was earlier illus- 
trated in Figure 2a. Table 2 contains several additional ex- 
amples, for example, the sets of entries ( 6 , 7 , 8 ) ,  (23,24, 
2 5 ) ,  (51,52),  and (79,80,81) which show that T," is 
essentially independent of pipe diameter. 

The effect of polymer concentration on Two,  introduced 
in Figure 2b, merits further discussion based on entries 
50, 51, 52, 59, 66, and 73 of Table 2, which represent 
some of the more precise experimental results. These are 
displayed in Figure 15, a doubly logarithmic plot of T," 
versus c. The results of Paterson and Abernathy (1970) 
and of Hansen and Little (1971) both show T," decreas- 
ing with increasing polymer concentration, roughly as in- 
dicated by the lines of slope -1/4 drawn through each of 
these data sets (the power-law form is arbitrary). In the 
former authors' results, the observed variation of Two with 
c exceeds experimental uncertahties but the latter authors' 
data, although of high measurement precision, are equivo- 
cal because the lowest Two, upon which any presumed 
concentration dependence hinges, corresponds to Ref ' /aQ 

= 340 which is very likely in the transitional flow region 
for their pipe, The results of Clarke (1971) and Virk 
(1966) show Two independent of polymer concentration, 
as indicated by the horizontal lines drawn through each 
of these data sets. Of these, the solid circles are visual 
onsets, yielding T," N 8.0 N/m2, constant, 20 < c < 
1000: the hollow circles are slope onsets but differ from 
the usual in that they were derived by fitting data rather 
remote from onset, 40 < T ,  < 160. Although values of 
T," N 14 N/m2 are higher in the latter case, reflecting 
the curvature of the experimental Q versus T ,  plot, the 
insensitivity to polymer concentration over the range 10 < 
c < 2000 is again evident; for 0.5 < c < 10, T," appar- 
ently increases somewhat with decreasing concentration 
but in these cases 6 N 1 (see Figure 5a, the central set 
of hollow circles), consequently u ( T , , " )  e 1OOc; and no 
trend can be established in this region. In summary, the 
precise dependence of onset on polymer concentration is 
not yet known, but available observations show Two only 
weakly dependent upon c, if at all. 

No significant effect of solvent viscosity on onset can 
be detected from among entries 5 to 17 in Table 2 which 
contain data for PIB in four classes of solvents, namely, 
benzene and toluene, cyclohexane, kerosene, and a crude 
oil, all of which have similar densities, p N 0.85 rtr 0.05 

. 5  

C "  
0 s  
* s  
<\ 5 

d "  * "  
I S  

0 0  
0 

0 

3. . 
0 

10 II- I 
10 10 10 10 ' C  

c wppm 

Fig. 15. The effect of polymer concentration on the onset wall shear 
stress. In legend, v and s besides symbols respectively denote onsets 

defined by visual and slope methods (see text). 
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g/cm3, but different kinematic viscosities, respectively, 
0.0063, 0.0116, 0.016, and 0.062 Stokes. 

An inverse power-law relation between T,' and RG is 
suggested by the onset hypothesis, according to which the 
ratio of characteristic polymer and turbulence scales at 
onset must be unique, to reflect the incipient polymer- 
turbulence interaction. Either length or time scales can be 
matched, leading to the respective onset relations 

and 
RGW" = a~ (19) 

Rc3Tw0 = CtT ( 5 )  

where RL and a~ are length- and time-based onset con- 
stants, characteristic of a given polymer species-solvent 
pair. The length and time onset relations are both of form 

T,' cc RG-U (20) 

but with different exponents, respectively, g = 2 and g = 
3, which should permit discrimination between them from 
experimental data. For the three best-characterized poly- 
mer-solvent families, namely, PEO-water (35 entries in 
Table 2 ) ,  PAM-water, and PAMH-l.Om NaCl ( 6  entries, 
combined) and PIB in various solvents ( 12 entries), least- 
squares fitting of the available T," - RG data to the form 
of (20) yields the best exponents g = 2.5 f 0.2, 1.6 k 
0.1, and 2.3 k 0.2, respectively. These provide no clear 
indication as to whether (19) or (5) is to be preferred 
on experimental grounds. We will therefore summarize on- 
set results in terms of both length- and time-based onset 
constants. Table 3 reports average values of f i ~  and of &- 
for various polymer-solvent families, along with their re- 
spective standard deviations and the number of runs (col- 
umn 4)  from which the results were derived. The results 
for PEO-water are the best established; the PAM-water 
and PAMH-l.Om NaCl results reflect onsets all at rather 
too low Refl/zo, while the PIB-cyclohexane onset constants 
are likely too high, stemming from data in recirculating 
flow systems, and all other onset results are only prelim- 
inary. Although the absolute values of the onset constants 
must be interpreted with caution, the difference between 
PEO-water, aT = 4.4 x lo6, and the polymethylene group 
01 entries 2 ,  3, and 4 in Table 3, all RT = 13 X lob, does 
seem to be statistically significant. Onset constants thus 
appear to depend on polymer species skeletal structure. 
No dependence of onset constants upon polymer excluded 
volume can be detected in the few available data for a 
given polymer in different solvents. 

2.3.3 Slope hloduli. Slope increments are readily derived 
from experimental data in the range 2 < S < 30; for S < 2 
statistical uncertainties become large while for S > 30 the 
data exhibit excessive curvature on P-K coordinates, for 
example, see the solid circles in Figure 7. The variation of 
S with polymer concentration was depicted in Figure 5. 
For solutions of a given polymer, the relation 

8 cc ct/z (21) 
appears to be widely applicable. Of the entries in Table 2 
which cover concentration ranges of a decade or more, al- 
most all yield S versus c power-law exponents of 0.5 2 
0.1. As c -+ 0, (21) appears to hold for as long as S can 
meaningfully be detected but as c 3 co, progressing from 
dilute to concentrated solutions, S does eventually increase 
more slowly than c'/z with c [ v ]  v 0.5 representing an ap- 
proximate upper limit for application of (21). For a given 
polymer, the S - c relationship is essentially independent 
of pipe diameter as can be seen by comparing specific 
slope increments, S/c ' / z ,  for the sets of entries (6, 7 ) ,  (51, 
52) ,  (63 to 65 ) ,  (75 to 78),  and (79 to 81) in Table 2. 
Also, for the same polymer, S/c'h seems independent of 
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TABLE 3. ONSET CONSTANTS AND SLOPE MODULI FOR SOME LINEAR, RANDOM-COILING MACROMOLECULES 

Polymer 
Entry species Solvent Runs 

PEO 
PAM 
PAMH 
PIB 
PDMS 
PMMA 
PCIP 
GGM 
HEC 

Water 
Water 
1 . h  NaCl 
Cyclohexane 
Toluene 
Toluene 
Toluene 
Water 
Water 

101 
7 
10 
10 
8 
11 
6 

29 
6 

1. Or, is dimensionless [Equation (19)l. 
2. OT is dimensional [Equation (5)1, with RQ in nm, Two’ in N/m2. 
3. K is dimensional [Equation (6)1, with T = b(M/c)’/* and N = M/mo. 
4. Error limits represent standard deviations. 

the solvent, that is, of polymer excluded volume effects, 
as seen from the sets of entries (5 ,7) ,  (37,38), (71,72), 
and (73, 74) in Table 2; however, this conclusion requires 
that the polymer still remain random-coiling in its most 
expanded conformation. Relation (21) is recast to define 
an intrinsic slope increment 

II = 6 ( M / c )  ‘h (22) 

which is physically a slope increment per macromolecule 
and therefore suitable for further correlation with macro- 
molecular parameters. A plot of intrinsic slope increment 
versus the number of backbone chain links was earlier 
shown in Figure 6, the data suggesting 

= KN312 (6) 

In Figure 6, the solid points are the more reliable, being 
based on concentration ranges exceeding a decade and re- 
liable polymer characterizations, with N (= M/mo) ob- 
tained by use of Table 1. Slope moduli K for various poly- 
mer-solvent families are listed in column 7 of Table 3, 
along with their standard deviations. There are evidently 
two distinct groups; entries 1 to 7 in Table 3, with carbon- 
carbon types of skeletons, show K = (70 -C 30) x 10-8 
while entries 8 and 9 with cellulosic skeletons possess K = 
(1400 k 200) x Polymer sample heterogeneity ef- 
fects on the results summarized in Table 3 are worth point- 
ing out. Heterogeneity has been accounted for in the onset 
constants, at least approximately, by the use of RG obtained 
via the index H, but no account of heterogeneity has been 
taken in deriving the slope moduli. Preliminary study of the 
PEO-water data in Table 2 suggests that K H113 to lI2 
and that the quoted K = 70 x in Table 3, entry 1 
corresponds to an average H N 6; also, extrapolation to H 
= 1 yields a monodisperse KO 2: 30 x 

2.3.4 Maximum Drag Reduction. Table 4 summarizes 
some of the available maximum drag reduction data. 
Entries with asterisks were employed in the original deri- 
vation of Equation (4)  for the maximum drag reduction 
asymptote (Virk, Mickley, and Smith, 1970). More recent 
data are generally in accord with (4) ,  as can be seen in 
Figure 8, and their inclusion in an overall data fit causes 
no Significant change in either the magnitudes (19.0, 
-32.4) or uncertainties (tr0.4, e1 .2)  of the coefficients. 
Future improvements in the form and precision of the 
maximum drag reduction asymptote are likely to result 
from three directions: first, from an extension of the pres- 
ent range of data; second, by more precise rheological 
characterization of the polymer solutions employed, many 
of which are concentrated enough to exhibit significant 

AlChE Journal (Vol. 21, No. 4) 

f l L  x 103 

7.1 t 1.3 

8.2 f 0.3 
13.2 f 2.0 
15.0 2 2.5 

8.2 e 0.4 

- 
- 

8.6 
6.1 

f l T  x 

4.4 tr 2.1 
13.1 t 5.1 
13.8 t 2.8 
13.3 e 2.3 
9.0 f 3.3 

(13.5) 

6.9 
3.6 

- 

K x 106 

70 f 30 
93 -r- 20 
80 t 20 
60 f 15 
70 2 30 
75 
85 

1,300 
1 ,m 

shear thinning; and third, from integration of accurate 
mean velocity profiles obtained during maximum drag 
reduction. In applying (4)  to shear thinning solutions, a 
Reynolds number Re,, formed with the apparent wall vis- 
cosity seems preferable to the generalized power-law 
Reynolds number Re’. For example, in entries 17 and 28 
of Table 4, the authors studied the same shear-thinning 
solution in several pipes of different diameters; in their 
own works friction factor results were reported in terms 
of Re’ and showed the data from different pipes follow- 
ing widely different trajectories, but when we transform 
the results to Rew, using their quoted shear stress versus 
shear rate relations, the data from all pipes lie rather closer 
together and adhere to (4), as can be seen in Figure 8. 

A power-law expression for the maximum drag reduc- 
tion asymptote is 

f = 0.58 Re-0.58; 4000 < Re < 40,000 (4a) 

It should be noted that (4)  exhibits much curvature on 
the usual friction factor coordinates so that (4a) does not 
approximate (4) nearly as effectively as the Blasius expres- 
sion approximates (2) .  
2.4 Mean Velocity Profile Correlotions 

Table 5 summarizes the experimental conditions for some 
of the mean velocity profiles reported during drag reduc- 
tion. Columns 7 and 8, respectively, quote values of Ref”2 
and f -v2 derived from the experimental friction measure- 
ments accompanying each mean velocity profile and col- 
umn 9 lists the corresponding fractional flow enhancement 
S F  from the definition: SF = ( -  1 + ( f p - ’ / 2 / f n - 1 / 2 ) ~ e f 1 / 2 ) .  

Columns 10 and 11 give values of S+ and R+, respec- 
tively, which are useful in discussion of law of the wall 
plots such as Figure 9. The present section will consider 
the precision of mean velocity data, their correlation in the 
polymeric and maximum drag reduction regimes, and the 
inference of the corresponding eddy viscosity profiles. 

Mean velocity measurements in polymer solutions pre- 
sent some experimental difficulties because Pitot tubes, long 
the standard and absolute device for such measurements in 
Newtonian fluids, behave anomalously (Smith, Merrill, 
Mickley, and Virk, 1967; Brennen and Gadd, 1967) in 
polymer solutions. While Pitot tubes of rather large diame- 
ter can still be used to yield accurate profiles at conditions 
of low drag reduction, optical techniques, which do not 
disturb the flow, are the only good source of information 
at high drag reductions (see Note 1 under Table 5) .  An- 
other problem is that, in the time required to measure a 
profile, the level of drag reduction can change (for ex- 
ample, by degradation of a polymer solution being re- 
circulated), introducing uncertainty into the associated 
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TABLE 4. SUMMARY OF bfAXIM DRAG REDUCTION DATA 

Entry 

1" 
2' 
3" 
4' 
5" 
6' 
7" 
8" 
9 

10 
11 
12 
13" 
14" 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33" 
34 
35 
36" 
37 
38 
39 
40' 

Source 

Toms (1948) 
Hoyt (1965) 
Castro (1966) 

Giles ( 1967) 
Little (1967) 

Pruitt (1967) 
Liaw ( 1968) 

Preston (1968) 

Whitsitt (1968) 

Seyer (1969) 
Paterson (1970) 

Bilgen (1971) 
Clarke ( 1971) 

Huang (1971) 

Arunachalam (1972) 
Chung (1972) 

Rollin ( 1972) 
Kim (1973) 
Sylvester (1973) 

Virk ( 1966-71 ) 

Polymer 

PMMA 
PEO 
PEO 
PEO 
PEO 
PEO 
PE 0 
PAMH 
PEO 
PDMS 
PDMS 
PCIP 
PEO 
PEO 
GGM 
PAMH 
PAMH 
PE 0 
PEO 
PEO 
PAMH 
PAMH 
PEO 
PAMH 
PE 0 
PEO 
PAMH 
PAMH 
PAMG 
PAMH 
PAMH 
PEO 
PEO 
PEO 
PEO 
PEO 
PEO 
PAM 
PAM 
PAMH 

Solvent 

Chlorobenzene 
W 
w 
W 
W 
DW 

W 
Benzene 
Toluene 
Toluene 
Toluene 
DW 
DW 
w 
W 
W 
DW 
DW 
W 
DW 
0.02m NaCl 
W 
W 
70/30 Ethanol/W 
W 
W 
W 
W 
DW 
O.lm MgS04 
DW 
DW 
DW 
DW 
DW 
DW 
DW 
DW 
O.lm NaCl 

0.3111 htgso4 

3.1 
(6) 
(4) 
(7) 
(6) 
5.5 
5.5 

(3) 
3.1 

10.7 
5.6 
2.2 
0.85 
6.1 

(0.2) 
(3) 
(3) 
1.0 
8.0 

(5) 
7.8 
9.2 
4.7 

(15) 
(6) 
(4) 
(3) 
(3) 
(5) 
2.2 
2.2 
0.57 
0.76 
1.1 
5.5 
6.1 
8.0 
4.4 

12.0 
15.0 

500 
30,100 
30, 60, 100 
3, 20 
30,300 
100 
100 
100, 1,000 
80,200 
30 
500 
200, 2,000 
300, 1,000 
100 
1,250 
250 
lo00 
30 
30 
30,40, 60,80, 100 
10, 30, 100 
100 
50,100 
50, 80, 100 
6, 33 
50,100,40 
100,200,500 
1,000 
25 
50,100,200 
50,100,200 
3,000 
500, 1,OOO, 2,000 
1,000 
30,100 
5,20, 100, 450 
100 
300, 1,000 
40,100 
30,100 

Pipe I.D., mm 

1.28 
10.2, 4.60, 1.09 
11.0, 7.82, 4.70 
11.0,7.82, 4.70 
2.37, 1.40 
9.53 
9.53 
12.7 
2.72 
2.72 
2.72 
2.72,0.83 
8.51 
8.51 
10.6 
10.6 
25.4 
6.30 
6.30 
25.3,6.35, 3.18 
10.3 
10.3 
19.2, 4.55 
19.2,4.55 
13.6 
11.9 
11.9 
69.8,25.4 
6.20 
6.20 
6.20 
2.92 
2.92 
9.45 
8.46,4.57 
32.1,2.92 
8.46 
9.45 
8.46 
9.45 

1. " denotes data employed (Virk, Mickley, and Smith, 1970) in derivation of Equation (4). 
2. Polymers: Abbr. as in Table 1, PAMG is a glyoxalated PAM. 
3. Solvents: W, DW for water, distilled water; m is molarity of aqueous salt solutions. 
4. Molecular weights in parentheses, estimated from trade names or manufacturers' data, are uncertain. 

friction velocity which is an important normalization pa- 
rameter. The precision of presently available mean velocity 
profiles is typically & 5% in each of U+ and y+. 
2.4.1 Polymeric Regime. In the polymeric regime, the 

essential prediction of the elastic sublayer model is that 
the experimental profiles should show a Newtonian plug 
region ye+ A y+ R+ in which the observed effective 
slip S +  = ( U p +  - U,+),+ equals that computed from 
friction measurements s + = d 2  ( f p -  yz - f n - I h )  Ref1/2. The 
latter S+ are given in Table 5, and these have been used 
to draw the light lines parallel to the Newtonian wall law 
(8) in Figure 9; for each polymeric regime profile it can 
be seen that the experimental data adhere to the predicted 
Newtonian plug line. (This is, of course, an expected 
result because the elastic sublayer model was originally 
inferred from such experimental profiles.) For the fore- 
going to hold, the Newtonian plug portion of the profile 
must occupy most of the pipe cross section, say 5, < 0.1, 
which is roughly equivalent to S+ < 20 loglo (R+/100). 
The model also postulates that, in the elastic sublayer, yv+ 
< y+ < ye+,  the mean velocity profile is a segment of the 
uItimate profiIe (9) ,  and while the only mean velocity data 
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available close enough to the wall (Rudd, 1969) do indeed 
closely coincide with the ultimate profile for 15 < y+ < 
60, rather more evidence is required for any conclusion. 

2.4.2 Ultimate Profile. At the time the ultimate profile 
(9)  was originally inferred, by the method noted in Sec- 
tion 1.2.4, no experimental results were available, but data 
reported subsequently, shown plotted on wall law coordi- 
nates in Figure 16, appear to substantiate it. Among the 
data, the velocity measurements of Rollin and Seyer 
(1972), by a refinement of the technique used earlier by 
Seyer and hletzner (1969), are the most accurate; how- 
ever, these authors used a shear-thinning polymer solution 
and the y+ in our plot are based on wall viscosity which 
may not be appropriate in the pipe core. The results of 
Rudd (1969) are not at maximum drag reduction but show 
a near-wall segment which lies on the ultimate profile as 
noted earlier; the precision of these data cannot be assessed 
for lack of corresponding solvent data. The data of Chung 
and Graebel ( 1972), an early application of laser-Doppler 
anemometry, have errors of about & 20% in the velocity 
measurements alone. Arunachalam, Hummel, and Smith 
(1972) report an error of about & 5% in their velocity 
measurements but provide no information about uncertain- 
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TABLE 5. SUMMARY OF MEAN VELOCITY PROF- DATA DURING DRAG REDUCTION 

Entry 

1 
2 
3 
4. 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

M 
Source Polymer x 10-6 

Elata (1966) GGM 1.7 

Garen (1967) PEO 5 

Virk (1967) PEO 0.7 

Patterson PIB 2.3 

Seyer (1969) PAMH 3 

Rollin (1972) PAMH 3 

(1969) 

Arunachalam PEO 5 
( 1972 ) 

Chung (1972) PAMH 3 

Rudd (1969) PAMH 3 

c, 
T P m  

400 
800 

10 
1,000 
1,000 
2,000 

1,000 
1,000 

100 
100 

1,000 
100 

2.5 

0.55 

5.5 
33 

100 
200 
100 

Pipe I.D., 
mm Ref " 

50.7 20,500 
50.7 14,500 
50.8 6,200 
50.8 5,300 
32.1 2,700 
32.1 8,950 
25.4 3,200 

25.4 780 
25.4 1,680 
25.4 1,840 
25.4 3,450 
25.4 2,950 
69.8 4,980 
13.6 2,290 

13.6 1,440 
13.6 1,780 
11.9 1,300 
11.2 350 
12.7 sq. 1,700 

1. Methods used to measure mean velocities as follows: 
Entries 1 to 6-pitot tubes 
Entry 7-hot film anemometry 
Entries 8 to 13-bubble streak photography 
Entries 14 to 16-photochromic dye photography 
Entries 17 to 19-laser-Doppler anemometry 

2. All polymer molecular weights are approximate only. 
3. In column 10, mdr means the entry is at, or close to, maximum drag reduction. 

ties in y+ although they used a once-through flow system 
and a rather dilute polymer solution so that there should 
be little error in either UT or v.  From the foregoing, the 
approximate agreement between the available data and the 
ultimate profile can be regarded as favorable, but less than 
conclusive, evidence for the existence and correctness of 
the latter. 

The ultimate profile permits prediction of the ratio of 
center line to bulk average velocities at maximum drag re- 
duction which provides an index of velocity profile shape. 
At R+ = (100, 200, 500, 1000, ZOOO), respectively, Equa- 
tions (9)  and (14c) yield ( U l / U a U ) m  = (1.87, 1.62, 1.45, 
1.37, 1.32) while, to the same approximation, (8) and 
(14a) give ( U 1 / U a u ) ,  = (1.28, 1.25, 1.22, 1.20, 1.18). 
Further, at a given R+ at low drag reduction, it is evident 
that ( U I / U ~ ~ ) ~  = (UI,n+ + S+)/(u,u, ,+ + S + )  < (UJ  
Uau) ,,. Thus, the elastic sublayer model predicts that, with 
increasing drag reduction at a given R + ,  the mean velocity 
profile should initially tend to be blunter than Newtonian, 
but eventually become sharper than Newtonian as maxi- 
mum drag reduction is approached. Qualitative confirma- 
tion of this predicted sequence of velocity profile shape 
changes is available in the resuIts of Rollin and Seyer 
( 1972), and, quite strikingly, in the photographs of Aruna- 
chalam, Hummel, and Smith (1972). I t  is also interesting 
that, at R+ = 100, (Ul/Uau)m is much closer to 2.0 than 
is ( U I / U , , ~ ) ~ ,  which suggests that the ultimate profile can 
evolve from a parabolic laminar profile without the large 
discontinuities that arise in the Newtonian case; this is of 
possible relevance in the detection of intermittency during 
transition. 

2.4.3 Eddy Viscosity Profile. Eddy viscosity profiles dur- 
ing drag reduction, all derived from gross flow and mean 
velocity measurements, are shown in Figure 17, using 
doubly logarithmic coordinates of E / V  versus y+. The New- 
tonian case SF = 0 is represented by the results of Laufer 
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f-" 

22.3 
28.2 
24.2 
28.2 
13.5 
19.9 
17.3 

23.2 
29.2 
18.7 
23.4 
34.9 
19.6 
16.4 

25.7 
27.6 
27.9 
15.2 
29.5 

SF 

0.32 
0.74 
0.64 
0.94 
0 
0.29 
0.27 

1.07 
1.34 
0.47 
0.70 
1.59 
0.36 
0.25 

1.10 
1.18 
1.31 
0.56 
1.0 

S+ 

7.8 
17.0 
13.3 
19.4 
0 
6.4 
5.3 

mdr 
mdr 
8.5 

13.6 
mdr 
7.4 
4.7 

mdr 
mdr 
mdr 
mdr 
20 

R +  

7,250 
5,130 
2,200 
1,880 

941) 
3,170 
1,130 

275 
590 
650 

1,2m 
1,040 
1,760 

810 

510 
630 
460 
125 
600 

(1954) which can be approximated by the usual three seg- 
ments, (i) a near-wall region, (ii) a law of the wall region, 
and (iii) a core region, given by 

e / v  = yy+3 ( 2 3 4  

= xy+ (23b) 

= [R+ ( 2 3 4  
Equations (23a) and (23b), with Newtonian coefficients 
(y,, X,) = (0.00087, 0.4) are indicated by heavy solid 
lines, of slopes 3 and 1, respectively, in Figure 17. In the 
polymer solutions, for region ( i ) ,  we have information 
only at maximum drag reduction. Under these conditions, 
mass transfer measurements (Virk and Suraiya, 1975) at 
Sc = 103, which stress the regions where E / V  < 
suggest (ym/yn)-l'3 = 1.9 2 0.1, while experiments on 

loo 10 10 * 10 10 

Y '  

Fig. 16. Evidence for the ultimate mean velocity profile. See Table 5 
for experimental details. 
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the onset of roughness (Virk, 1971), which stress the re- 
gion where E / Y  = lO-l, yield ( ~ , / y , ) - ' / ~  = 2.5 * 0.2. 
The average ( ym/yn)  = 2.2 may be used to represent 
the near-wall region at maximum drag reduction, and 
(23a) with ym so calculated is shown by the dashed line 
of slope 3 in Figure 17. For region (ii) , all of the E / Y  are 
from differentiation of mean velocity profiles already dis- 
played in Figure 9 and merit no further discussion save to 
point out the approximate bounding relations, (23b) with 
X ,  and X ,  respectively, the latter shown as a dashed line 
of slope 1 in Figure 17. In region (iii), the E / V  profiles 
tend to constant values in all cases as shown by the light 
horizontal lines in Figure 17 besides which are noted the 
corresponding 5 = € / R U T ,  the latter nondimensional group- 
ing being appropriate for the core (Hinze, 1959). At less 
than maximum drag reduction, the polymer solution data 
all yield tp N 5, = 0.06, reinforcing the Newtonian plug 
notion, but at maximum drag reduction, Rollin's data yield 
trn N 0.013. The latter is especially curious because it im- 
plies (tm/tn) = (X,/X,), that is, that at maximum drag 
reduction, the entire outer flow structure, say y+ > 50, is 
analogous to Newtonian save for a ddferent similarity 
parameter, X ,  instead of X,. 

The preceding suggest an eddy viscosity profile during 
drag reduction bounded between the Newtonian profile 
and a maximum drag reduction profile, the latter such 
that, at a given y+, ( E / v ) ~  1: 0.1 ( d u ) ,  in the near-wall 
region, y+ < 10, and ( E / V ) m  N O . ~ ( E / Y ) ,  in the outer 
flow, y+ > 50. At low drag reduction, an essentially New- 
tonian eddy viscosity profile prevails which is, by inference 
from Figure 12a, dimpled downward in the neighborhood 
of E / Y  N 1; with increasing drag reduction, the dimple 
deepens, spreads outward to the pipe core (also, presum- 
ably, toward the wall) and bottoms out on the maximum 
drag reduction profile, the sequence of these events yet 
unknown. 

2.5 Turbulence Structure Correlations 

Table 6 summarizes turbulence structure measurements 
during drag reduction. The contents of columns 1 to 11 in 
Table 6 are identical with those of columns 1 to 11 in 
Table 5,  described earlier. Where a square pipe or rec- 
tangular channel was used, Ref" is omitted and R+, based 
on half-width, quoted. Columns 12 to 15 in Table 6 refer 
to turbulence quantities normalized by inner scales, UT 

and Y ,  values of the former being quoted in column 16. 
Column 12 gives the center line mean square turbulent 
kinetic energy, column 13 the axial turbulent intensity 
gradient at the wall, column 14 the azimuthal streak spac- 
ing, and column 15 the mean time between turbulent 
bursts. For each source in Table 6, the first entry contains 
representative results obtained with (Newtonian) solvent 
alone which are required because the turbulence measure- 
ments are all subject to such large uncertainties that only 
comparisons between polymer solution and solvent results 
have significance. Turbulence structure results presented 
in Section 1.5 were all obtained by laser-Dopp!er anemom- 
etry, and in this section some further results obtained from 
a flow visualization study and by electrochemical tech- 
niques will be discussed. Hot-wire (film) anemometer de- 
rived data are omitted entirely because of the anomalous, 
and yet largely undefined, nature of crossflow heat transfer 
from small cylinders to polymer solutions (Smith et al., 
1967; Friehe and Schwarz, 1969; James and Acosta, 1970). 

The evidence summarized in Section 1.3.3 suggested 
that the elastic sublayer notion might well be applicable 
to the turbulence structure during drag reduction. If so, 
then turbulence quantities should be scaled by the usual 
parameters, that is, elastic sublayer thickness (or S+ ) in 
the polymeric regime and X m  at maximum drag reduction. 
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V i r k  / c 
0.06 

0.06 
0.07 
0.06 

10-31 I i i l l i l ~  I I I I l l l t  ~ I 1 1 1 , , 1 ~  , 1 l , l i l ~  I 

Y '  

1 0  10 lo3 1 0  10 O 

Fig. 17. Eddy viscosity profiles during drag reduction. The heavy solid 
and dashed lines respectively refer to Newtonian ond maximum drag 

reduction (mdr) conditions. 

The entries in Table 6 are all from the polymeric regime, 
so we seek relationships between turbulence quantities and 
S+ .  Preliminary results of this quest are shown in Figure 
18, a three-part plot of ( a )  maximum kinetic energy, ( b )  
axial intensity gradient, and (c)  azimuthal streak spacing 
versus S+ ;  in all three parts, the ordinates are doubly nor- 
malized, first by wall scales and second by the correspond- 
ing nondimensional solvent value. 

In Figure 18a, maximum turbulent kinetic energies were 
obtained from measured maximum axial intensities using 
q = ( u ' ~  + d2 + w ' ~ )  N u'~ ,  the latter a good approxi- 
mation in the region of maximum q+ because the axial 
contribution is about SOY, of the total. The two data points 
in Figure 18a lie on a straight line through (0, 1) and with 
slope 0.1: 

(24) 
If we assume a typical qrnax,%+ = 10 (after Laufer, 1954), 
then (24) implies (qmax,p+ - q m a x , n + )  N S+ = Umax,p+ 
- Urnax,,+, that is, during low drag reduction, the (non- 
dimensional) maximum kinetic energy and mean velocity 
exceed their respective Newtonian values by roughly the 
same amounts. This is possibly a consequence of the closely 
analogous nature of the turbulent transport of kinetic en- 
ergy and of momentum (Virk, 1975). In both cases, the 
transport is due to velocity correlations of the forms <vq> 
and <uu>, respectively, and near the wall <vq> N 

<vii2> so that both depend on a similar sort of coupling 
between the radial and axial flow fields. Recalling Figure 
12b, the latter coupling seems to be altered in the elastic 
sublayer region. 

In Figure 18b, the axial intensity gradients at the wall 
were obtained either from measured axial intensity profiles 

AlChE Journal (Vol. 21, No. 4) 

( q m a x , p + / q m a x , n + )  = 1 + 0.1 S +  
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Fig. 18. The variation of some wall-turbulence quantities with drag 
reduction: (a) Maximum kinetic energy; (b) Axial turbulent intensity 
gradient a t  the wall; (c) Azimuthal streak spacing. See Table 6 for 

experimental details. 

(Rudd, 1969; Logan, 1972), as shown in Figure l l a ,  or 
from electrochemical measurements (Fortuna and Han- 
ratty, 1972). Plotted against S+, these data are equivocal: 
the former measurements suggest (ap+/an+)  = 1 , 6  < 
S+ < 20, while the latter show ( a p + / m n + )  = 0.8 f 0.1, 
5 < S +  < 15, but it is apparent that no profound changes 
in a+ occur during low drag reduction. Therefore, we 
surmise that 

( a p + / m n + )  = 1 (25) 
as indicated by the horizontal line in Figure 18b. Physi- 
cally, a +  is derived from the region of the viscous sub- 
layer, y+ < 10, a characteristic feature of which is an 
intermittent streaky structure (Kline et a]., 1967). a+ it- 
self is directly the viscous sublayer turbulent intensity ex- 
pressed as a fraction of mean velocity, Limy++o <uu>Yz/ 
U (E 0.3) ; also, a+ is related to the intermittency in the 
viscous sublayer through the streak velocity deficiency rel- 
ative to the mean flow. The data embodied in (25) suggest 
then that some features of the Newtonian streaky structure 
persist unchanged at  low drag reduction. 

In Figure 18c, the azimuthal streak spacings shown were 
derived from analysis of electrochemical measurements 
(Fortuna and Hanratty, 1972; Eckelman, Fortuna, and 
Hanratty, 1972) and from flow visualization experiments 
(Donohue, Tiederman, and Reischman, 1972). There is 
a distinct tendency for Z +  to increase with increasing S+, 
with semilogarithmic slope dlnZ+/dS+ = 0.10 2 0.02. 
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The solid line in Figure 18c, from fitting the data, is 

ln(Zp+/Zfl+) = 0.11 S +  (26) 

Comparison of (26) with the elastic sublayer relation 
(13), ln(y,+/y,+) = 0.11 S+, leads to the interesting 
conclusion that the azimuthal streak spacing increases 
roughly in proportion to elastic sublayer thickness, that 
is, the Newtonian aspect ratio of azimuthal to radial macro- 
scales is preserved in the inner flow. It should be noted 
that the results of Figures 18b and 18c are not indepen- 
dent, but the measurements required to test their mutual 
consistency are unavailable. 

Concerning the phenomenon of turbulent bursts, Dono- 
hue, Tiederman, and Reischman (1972) seemed unable 
to detect any significant differences between Newtonian 
flows and those with low drag reduction. Their results for 
the mean time between bursts, given in column 15 of 
Table 6, show 0bb.p' = 100 & 30 essentially indistinguish- 
able from ebb,,,+ = 135 f 40. It is not certain whether 
e b b  is best normalized by inner (Kline et al., 1967) or 
outer (Rao, Narasimha, and Badri Narayanan, 1971) flow 
scales; use of the latter yields (U,,&,b/R), = 17 & 3, 
again indistinguishable from ( U a & , b / R ) f l  = 16 2 8. 

2.6 Sources 
We attempt to refer the reader to some of the original 

sources of the preceding developments. 
In regard to gross flow, the works of Toms (1948) and 

Oldroyd (1948) are required reading; the former's data 
touch on all presently known gross flow features while the 
latter's connection of drag reduction with an effective slip 
(inferred, incidentally, from a P-K plot) anticipated ex- 
perimental results by 17 years. Some of the earliest in- 
vestigations of onset were by Elata and Tirosh (1965), 
Hershey and Zakin ( 1967), and Virk et al. ( 1966, 1967). 
The latter works pointed out the existence of an abrupt 
onset of drag reduction and identified Tw* and RG as 
relevant flow and polymer parameters in an onset hypothe- 
sis based on length scales. Time-based onset hypotheses 
were first proposed by Hershey and Zakin (1967), Fabula, 
Lumley, and Taylor (1966), and Elata, Lehrer, and Ka- 
hanovitz (1966). In the polymeric regime, the P-K slope 
increment was identified as an important entity by Meyer 
(1966), his fluid property parameter QI differing from our 
6 only by a numerical factor. The dependencies of 6 upon 
polymeric parameters, as c'h (Virk and Baher, 1970) and 
N3'2 (Virk, 1971), were suggested by the present author. 
The maximum drag reduction asymptote, its universality, 
and Prandtl-Karman form were first pointed out by US 

(Virk et al., 1967, 1970) although the existence of a maxi- 
mum possible drag reduction was independently noted by 
several investigators (Hoyt and Fabula, 1964; Castro and 
Squire, 1967; Giles, 1968). The reader should also be 
aware of some alternative gross flow correlation schemes, 
for example, those of Rodriguez, Zakin, and Patterson 
( 1967), Whitsitt, Crawford, and Harrington (1968), Seyer 
and hletzner ( 1969), Astarita, Greco, and Nicodemo 
(1969). 

Some of the earliest mean velocity profiles, exhibiting 
the effective slip, were reported by Ernst (1966), Elata, 
Lehrer, and Kahanovitz (1966), Goren and Norbury 
(1967), and Virk et al. (1967) ; the first profiles at maxi- 
mum drag reduction were measured by Seyer and Metzner 
(1969) and by Rollin and Seyer ( 1972). Mean flow models 
evolved from the thickened laminar sublayer scheme 
(hleyer, 1966; Elata, Lehrer, and Kahanovitz, 1966) , that 
is, two zones, a viscous sublayer and a Newtonian plug, 
with the latter moving upward to show an effective slip as 
the former thickened with increasing drag reduction. The 
model is appropriate at low drag reduction but erroneously 
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tends toward Poiseuille’s law as drag reduction increases. 
Seyer and hletzner (1969) eliminated the latter error by 
forcing the viscous sublayer thickening to be asymptotic, 
with maximum allowed Newtonian plug effective slip of 
S+ 1 25, but this then predicts a maximum drag reduction 
asymptote with Prandtl-Karman slope, 4.0 (and a parallel 
upshift of (%/a) in f - ”  relative to ( 2 ) ) ,  whereas the 
experimentally observed asymptote (4)  has a much differ- 
ent slope, 19.0. Finally, our three-zone elastic sublayer 
model (Virk, Xlickley, and Smith, 1970; Virk, 1971) prop- 
erly reproduces presently known gross flow and mean ve- 
locity profile features. Another three-zone mean flow model 
is due to Van Driest (1967, 1970); in this, the central 
zone mixing length constant is assumed to be a function 
of macromolecular parameters and therefore fails to yield 
the observed asymptotic behavior, which is independent 
of macromolecular parameters. 

The turbulence structure measurements summarized in 
Table 6 are all among the first of their kind during drag 
reduction, namely axial intensity (Rudd, 1969), radial 
intensity and turbulent shear stress (Logan, 1972), azi- 
muthal streak spacing (Fortuna and Hanratty, 1972) and 
times between bursts (Donohue, Tiederman, and Reisch- 
man, 1972). 

3. MECHANISM 

A mechanism for drag reduction must specify the basic 
polymer-turbulence interaction responsible for the phe- 
nomenon and detail how this interaction affects the energy 
balances in turbulent pipe flow to yield the observed 
reduction in specific energy requirement relative to the 
solvent alone. In this section, the attempt is first to outline 
a physical framework for discussion of the mechanism 
problem and to refer the reader to some of the approaches 
taken in the literature. Next, we try to synthesize a (frag- 
mentary) picture of the polymer-turbulence interaction and 
of the energy balances by inference from experimental in- 
formation. It should be noted at the outset that the mech- 
anism of drag reduction is still rather obscure and our dis- 
cussion involves speculation and is likely to contain some 
erroneous impressions. 

3.1 Physical Framework 
We try to outline some elements of a drag reduction 

mechanism. The region initially affected by the addition 
of macromolecules appears to be y+ N 15, and the char- 
acteristic features of the flow in this region involve turbu- 
lent bursts (Kline et al., 1967). To assess the interaction 
between a macromolecule and a burst, we seek a simple 
flow field to model the fluid particle deformation during 
a burst. The sequence of burst events is quite well known 
(Kline et al., 1967; Corino and Brodkey, 1969; Kim, Kline, 
and Reynolds, 1971; Nychas, Hershey, and Brodkey, 1973; 
Offen and Kline, 1974), but a clear kinematic signature 
relevant to drag reduction has yet to be identified. How- 
ever, elongational flows seem to merit the most attention 
for two reasons: first, because dilute polymer solutions can 
exhibit striking anomalies at stagnation points (Smith 
et al., 1967), the approach to which involves this type 
of irrotational, straining motion, and second, because fluid 
particle elongations of significant magnitude are indeed ap- 
parent in the near-wall flow visualizations of Grass (1971) 
and of Kim, Kline, and Reynolds (1971). The next step 
is to describe dilute polymer solutions by an appropriate 
rheological equation of state, developments pertinent to 
drag reduction being considered in several recent works 
(Metzner and Metzner, 1970; Batchelor, 1971; Lodge and 
Wu, 1971; Bird, Warner, and Evans, 1971; Hinch and 
Leal, 1973; Oliver and Bragg, 1974; Hinch, 1974; Wil- 

liams, 1975). Finally, the rheological equation is applied to 
a model of the wall turbulence, and the predicted changes, 
relative to Newtonian, are interpreted in terms of experi- 
mental drag reduction observations. 

Of drag reduction models which have been proposed in 
the literature, Walsh (1967) gave substance to a long- 
standing, but vague, association of drag reduction with 
visco-elasticity (Metzner and Park, 1964; Wells, 1965; 
Gadd, 1966) by linking it to the turbulent transport of 
macromolecular strain energy. While the relevance of its 
transport remains unproven, the strain energy, resulting 
from macromolecular deformation, does seem implicated 
in drag reduction. Black (1968) provided the first clear 
connection between drag reduction and the bursting phe- 
nomenon in wall turbulence, assuming that the polymer 
molecules reduced the burst frequency. Experiments at 
low drag reduction do not appear to support Black‘s basic 
assumption, but his model nevertheless has many qualita- 
tively correct features and, most notably, predicted an 
increase in u,,,,‘+ relative to Newtonian which anticipated 
experimental measurements. Landahl ( 1973) and Landahl 
and Bark (1974) have applied their two-scale model of a 
turbulent boundary layer to drag reduction. They consider 
the flow to consist of large- and small-scale fields, coupled 
through the turbulent bursting process, with bursts viewed 
as a kind of recurring instability. The elongation of added 
polymer molecules is postulated to stabilize the small-scale 
flow field, presumably because at very small scales, that 
is, high strain rates, macromolecular extension profoundly 
increases the (elongational) viscosity. Landahl’s model in- 
corporates an attractive rheological argument, but its de- 
tailed consequences, especially the implied burst stabiliza- 
tion, remain to be tested. Lumley (1969, 1973) has 
postulated a most comprehensive and physically plausible 
drag reduction mechanism in which macromolecular elon- 
gation initiates a sequence of changes in mean and turbu- 
lent flow structures, which are predicted in some detail and 
“suggest many investigations,” the outcome of which is 
awaited. Hansen (1973), a noteworthy example of the 
continuum approach, has examined the behavior of a 
fluid with a simple rheological equation, Maxwell’s model, 
in a transient laminar shear flow, which is relevant to wall 
turbulence, and obtained results which qualitatively agree 
with some gross flow drag reduction observations. Substan- 
tive mechanistic ideas are also contained in some of the 
following references: Gadd (1971), Boggs (1969), Peter- 
lin (1970), Rudd (1971), and Gordon and Balakrishnan 
( 1972). 

3.2 Polymer-Turbulence interaction 
Oldroyd’s (1948) suggestion that the polymer molecules 

most affected by the near-wall region is supported and 
clarified by many subsequent experiments. Wells and 
Spangler (1967) injected a polymer solution into a turbu- 
lent water flow at both the wall and the axis of a pipe; in 
the former case, the wall shear stress was reduced almost 
directly downstream of the injection point, whereas in the 
latter case the drag reduction was observed relatively much 
further downstream, presumably only after the macromole- 
cules had diffused to the wall region. Mean velocity pro- 
files, shown.in Figure 9, indicate that, at low drag reduc- 
tion, the region affected is closer to the wall than y+ N 50, 
whereas rough pipe experiments ( McNally, 1968; Spang- 
ler, 1969; Virk, 1971) show that onset is unaffected by the 
presence (hydraulically smooth flow) or absence (fully 
rough flow) of a viscous sublayer, which suggests that the 
region of interest is further from the wall than y+ -N 5; 
together, these implicate 5 < y+ < 50 as the region af- 
fected by the macromolecules. Turbulence measurements 
(Figure l l a )  also suggest that the region affected is 
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roughly 10 < y+ < 100. From the foregoing, it is very 
likely that the polymer-turbulence interaction responsible 
for drag reduction commences in the buffer zone near the 
plane of peak turbulent energy production, y + N 15. 

Flow visualization studies (Kim, Kline, and Reynolds, 
1971) indicate that turbulent energy production occurs 
mainly during relatively discrete bursts in which low speed 
streaks lift up from the viscous sublayer, exhibit an oscilla- 
tory growth of instability, and then break down via stream- 
wise and transverse vortices, being ejected into the core 
during the latter processes. It is clearly of interest to com- 
pare macromolecular and burst scales. Bursts have two 
characteristic times, the mean time between bursts 8bb 
which is the inverse of the average frequency of bursting, 
and the actual duration of a burst 8 b  with 81, < ebb. I t  is 
yet unclear whether burst times correlate with inner or 
outer flow scales. For turbulent boundary layers, the cor- 
relation of Rao et al. (1971) indicates ( & b U , / A * )  = 32 
2 5, independent of Reynolds number; in pipe flow, from 
( U a u / U l )  N 0.8 and ( A ~ R )  N 1/8 (Schlichting, 1960), 
we should then expect ( 8 b b U a u / R )  = 3.2 ? 0.5. However, 
the available data (Corino and Brodkey, 1969; Donohue, 
Tiederman, and Reischman, 1972; Bremhorst and Walker, 
1973) show 25 > ( 8 b b U a u / R  > 3 for 6 X lo3 < Re < 6 
X lo4 and, among much scatter, ( e b b U a u / R )  a Re-l. This 
suggests that inner scaling might be the more appropriate, 
and the same data yield 8bb’ = 180 f 100 with no dis- 
cemable trends versus Re. In regard to burst duration, 
which is the time more relevant to drag reduction, the 
spectral measurements of Bremhorst and Walker (1973) 

molecular time scale can be estimated from the theory 
of Zimm (1956) which predicts a terminal relaxation time 
rm = 0.42 M [ ? ]  T,/NkT. As an example relevant to drag 
reduction, the experimental relaxation time measurements 
of Sakanishi (1968) on a PIB, M N 2 x lo6, in benzene 
and in cyclohexane are in striking agreement with Zimm’s 
theory. The empirical time onset constants of Table 3, 
Zimm’s theory, and Cob+ allow an estimate of the (uni- 
versal) ratio of relaxation time to burst duration at onset: 

Suggest cob’ = 0.4 f 0.2 ( & +  = % / c o b + ) .  The maCrO 

( o b r t ) ’  = ob+CtT(0.42 X 63‘2(P X 10-”/NkT) N 2 
(27) 

(Incidentally, the dimensionless group on the left-hand 
side of (27) is sometimes called a Deborah number, a 
generic name for the ratio of characteristic fluid to flow 
times, or their reciprocal.) In regard to length scales, the 
viscous sublayer streaks which eventually burst have a 
width of = 20 -C 10; this should be relevant at the 
start of the bursting process, but striking changes in length 
scale (Kim, Kline, and Reynolds, 1971) occur thereafter. 
From another angle, an axial kinetic energy spectrum at 
y+ = 13 (Bremhorst and Walker, 1973) shows a maximum 
at k +  N 0.02, the reciprocal of which, that is, the energy- 
containing eddy wavelength, is about streak width. The 
same energy spectrum suggests a maximum for the dissipa- 
tion function k2E ( k )  at k +  N 0.2 from which the smallest 
burst length scale can be taken as k b f  = 5. We have then 
the (maximum) ratio of random-coiled macromolecule to 
burst length scales at onset: 

(kbRG) * = CtL/hb+ N 0.002 (28) 

At the onset of drag reduction, (27) and (28) indicate 
that the strain rate during a turbulent burst is high enough 
to excite the macromolecule while the random-coiling 
macromolecule is small enough that over its domain the 
bursting flow field is essentially uniform. Among polymers 
used, 20 < (Lc /RG)  < 330, at the upper end of which 
range the macromolecule contour length would be of the 

order of the burst microscale at the onset, although, we 
hastily add, there is no evidence whatever for the attain- 
ment of a fully-uncoiled state, experiments on macromo- 
lecular elongation yielding maximum principal axis exten- 
sion ratios N 4, two orders of magnitude lower than full 
extension (Cottrell, Merrill, and Smith, 1969; Smith, Mer- 
rill, and Banijamali, 1974). 

The precise role of elongational flows, either during 
turbulent bursts or in deforming macromolecules, is yet un- 
known. Peterlin ( 1966) has shown theoretically that, at 
high strain rates, the increase in macromolecular principal 
extension ratio with strain rate is faster in elongational 
than in shear flows. This leads (Lumley, 1971, 1973; 
Landahl, 1973) to the theoretical possibility of enormous 
increases in elongational viscosity, but not in shear viscos- 
ity, for dilute polymer solutions in a flow field where the 
ratio of vorticity to strain rate is small. The main experi- 
mental basis for associating elongational flows with drag 
reduction resides in the anomalous behavior exhibited by 
stagnation flow devices in dilute polymer solutions as we 
now try to illustrate (Virk and Merrill, 1969). Consider 
the flow of a 100 wppm solution of a PEO, M ‘v 5 X 106, 
in four cases: ( i )  past a Pitot tube of squared-off cylindri- 
cal tip, O.D. 0.51 mm, (ii) transverse to a cylindrical hot- 
film probe, O.D. 0.025 mm, (iii) inside a pipe of I.D. 32.1 
mm, with turbulent flow, and (iv) inside a capillary tube 
of I.D. 0.24 mm, with laminar flow. In the first two cases, 
the onset of anomalous behavior, namely (i) decreased 
stagnation pressure and (ii) lower heat transfer coefficient, 
relative to Newtonian, occurred at a stagnation strain rate 
of order lo3 s-l. Approaching a stagnation point, the flow 
is irrotational and the rate-of-strain tensor has its principal 
axes of extension perpendicular to the stagnation stream- 
line, the stagnation strain rate being of order ( U J R )  
where U, is the approach velocity and R the obstruction 
half-width, normal to the flow. In case (iii), the onset of 
turbulent drag reduction occurred at a wall shear rate of 
about lo3 sP1, but in case (iv), at wall shear rates up to 
lo5 s-l, no anomalous behavior was observed: in a devel- 
oped laminar pipe flow, of course, there is vorticity, of the 
order of the strain rate. Comparison of cases ( i )  and (ii) 
with (iv) suggests the importance of elongational flows in 
causing anomalous behavior of dilute polymer solutions, 
and then the further comparison between (i) and (ii), 
and (iii) suggests that elongational flow may be relevant 
to drag reduction. 

I t  seems possible that the elastic sublayer observed dur- 
ing drag reduction physically represents the region where 
macromolecular deformation alters the normal Newtonian 
energetic processes (Virk, 1971). Pursuing this premise, 
we devise a theoretical expression for turbulent strain en- 
ergy and try to relate it to the experimental results. The 
strain energy per unit of a dilute polymer solution is the 
molecular concentration ( Nc/M) times the strain 
energy per molecule, the latter being (Treolar, 1958) 

sm01 = (kT/2) ( -  1 + L”’/L2) (29) 

Theories of macromolecular extension in laminar flows 
(Peterlin, 1963, 1966; Cerf, 1968) show that, at small 
extensions, in both shear and elongation, 

( -  1 + L”2/L2) = J p  (30) 

with B a nondimensional strain rate and J predicted to be 
about lo-’. Experiments in a Couette flow (Cottrell, 
Merrill, and Smith, 1969) yield J about 
while those in a Borda flow (Smith, Merrill, and Banija- 
mali, 1974) show J may be about lop1. The disagreement 
between the theoretical and Couette flow results (and, 
presumably, also between the Couette and Borda flow 

to 
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results) can be attributed (Cerf, 1968; Cottrell, Merrill, 
and Smith, 1969) to an internal viscosity, that is, to tor- 
sional energy barriers that hinder interconversions between 
conformational isomers, thus making the real polymer 
chain less than perfectly flexible. Taking J to be an em- 
pirical chain deformation factor, dependent on polymer 
skeletal structure, the mean strain energy in a one-dimen- 
sional flow is 

S = JkT (Nc/M) ( M  [7] 7JNkT) 2G2 (31) 

Now, the response of a macromolecule to an external 
stimulus requires the coordinated movement of various 
sets of its individual segments, termed modes, and in a 
turbulent flow the macromolecule will necessarily suffer 
stimulation by the entire spectrum of turbulence. There- 
fore, the turbulent strain energy s’ can be thought of as 
being distributed over all modes of the macromolecule at 
all wave numbers of the turbulent flow field. A typical 
spectral element of s’ will thus contain the strain energy 
associated with, say, the jth mode of the macromolecule at 
the kth wave number. The form on an s’ element is obtained 
by analogy with (31) in which the ( M [ ? ]  ?,/NkT) term 
has dimensions of time and can hence be replaced by an 
element ~ j ,  representing the contribution of the jth mode 
to the macromolecular relaxation time while G2 is replaced 
by an element k2E (k) dk of the mean-square turbulent 
strain rate at wave number k. The local turbulent strain 
energy is, finally, 

S’ = [JkT(Nc/M) ( M [ 7 ]  7,/NkT)2] 

Of the two square brackets on the right-hand side of (32), 
the first, of dimensions [length12, consists entirely of mo- 
lecular parameters associated with a given polymer solu- 
tion, whereas the second, dimensions [time] -2, involves 
only the excitation of an individual macromolecule by the 
turbulent flow field at the given radial location. This sep- 
aration of variables is reminiscent of that employed in 
Equation (15b) of Section 2.1. If the turbulent strain 
energy is normalized by wall turbulence scales, @ ( Nb2) 3/2 

substituted for the ME71 product in ( 3 2 ) ,  and the nor- 
malized excitation integral (at a characteristic radial loca- 
tion) called l+, then 

s’+ = [ (Nc/M) ‘I2 N3/”(  J/kT) ‘I2 b3 (@/N) ( U T / V , )  1’ I +  
(33) 

Experimental results for the slope increment in the poly- 
meric regime, (6) and (22) substituted into (15b), show 
that the observed effective slip is given by 

Sf = [ (Nc/M)’/” N3/2(~/1.626N1/2)] I~(uT/uT*) 
(34) 

The experimental concentration and backbone chain link 
dependencies are both matched by assuming the effective 
slip related to the square root of turbulent strain energy: 

s+ oc S’+1/2 

Equation (35) is our tentative physical connection between 
the theoretically developed expressions for turbulent strain 
energy and the experimentally observed dependence of 
drag reduction on polymeric parameters. Notice that (33), 
(34), and (35) imply a further pair of relations: 

(35) 

K a (J/kT)’/2 b3 (36) 

a (uT*/uT)ln(uT/uTO) (37) 

and 

Relation (36) suggests that the drag reduction slope 
modulus K is physically related to the polymer chain de- 
formation factor J, the effect of which might be obtained 
by classification according to ( d b 3 ) .  From the data in 
Tables 1 and 3, the carbon-carbon and cellulosic skeleton 
polymers respectively yield ( d b 3 )  c-c/ ( K / b 3 )  cell N 6, which 
accords with the carbon-carbon chain being more flexible 
than the cellulosic chain, the respective chain conforma- 
tion factors being 1.8 and 3.5. The excitation integral, the 
second bracket on the right-hand side of (32), is evidently 
the usual dissipation integral with all ordinates altered by 
a (dimensionless) summation that couples the macromole- 
cule to the flow field; the major contributions to the inte- 
gral should therefore arise from the dissipative wave num- 
bers. For a Newtonian flow, the highest turbulent strain 
rates occur at y+ N 15, which is then likely to be the 
radial location of maximum s’ prior to onset. When the 
variation of I+ with friction velocity, as in (37), is plotted 
over the usual experimental range of ( u T / u T # ) ,  the func- 
tion on the right-hand side of (37) increases rapidly from 
0 at ( U T / U T * )  = 1 to 0.2 at ( U T / U T * )  N 1.2 and then 
stays essentially unchanged at 0.32 -C 0.05 for 1.5 < (uT/ 
U T ~ )  < 8, implying that the excitation integral switches 
from one value, characteristic of Newtonian flow, to an- 
other, that is characteristic of drag reduction, over a 
rather narrow range of friction velocity. 

In summary, the polymer-turbulence interaction responsi- 
ble for drag reduction seems to commence in the neigh- 
borhood of the plane of peak turbulence energy produc- 
tion, y f  N 15, suggesting an involvement of the macro- 
molecule in the turbulent bursting process. Macromolecu- 
lar extension appears implicated in the interaction from 
the approximate equalities of macromolecular relaxation 
time and turbulent burst duration at onset and from the 
correlation of the effective slip with macromolecular strain 
energy. Whether the act of macromolecular elongation in- 
terferes with the burst or whether it is the elongated macro- 
molecules which do so is unclear; nor is it known which 
part of the burst cycle is most affected. Concerning these 
questions, imagine an additive-burst matrix, the rows be- 
ing macromolecular states, namely, ( 1 )  random-coiled, 
(2) coiling-uncoiling, and (3) extended, while the col- 
umns are burst events, namely, (1) lift-up, ( 2 )  growth, 
and (3) breakdown. Experiments on drag reduction by 
extended polyelectrolyte molecules and fibers provide in- 
formation on row (3) exclusively, and their comparison 
with drag reduction by random-coiling macromolecules 
might then suggest the elements of interest in rows (1) 
and (2) .  The gross flow behavior of random-coiling macro- 
molecule solutions and of collapsed polyelectrolytes on the 
one hand does indeed seem to differ strikingly from that 
of fiber suspensions and of extended polyelectrolytes on 
the other (Virk, 1975). In the former case, called Type A, 
a family of polymer solutions yields polymeric regime seg- 
ments fanning outwards from a common onset point on 
the Prandtl-Karman line with slopes increasing with in- 
creasing additive concentration and drag reduction increas- 
ing with increasing Ref%. In the latter case, called Type B, 
a family of solutions of extended polyelectrolytes, say, 
yields polymeric regime segments roughly parallel to, but 
displaced upwards from, the Prandtl-Karman line with 
drag reduction essentially independent of Ref” but in- 
creasing with increasing additive concentration. Perhaps 
Type A drag reduction results from the elastic deformation 
of the additive, whereas Type B drag reduction is charac- 
teristic of rigid, already extended additives. 

3.3 Energy Balances 
We examine how the mean a d  turbulent energy bal- 

ances in Newtonian turbulent flow, for example, Laufer 
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(1954), Hinze (1959), Monim and Yaglom (1971), are 
altered during drag reduction, all comparisons being made 
a t  constant R+ with neglect of differences between the 
polymer solution and solvent constitutive equations. 

The local mean energy balance (Cartesian coordinates) 
reads 

o 0 Newtonian 

: \  - <UU> ( d U / d y )  (38) 
I11 

The energy available from the pressure gradient (I)  suffers 
direct viscous dissipation (I1 = Du) and causes turbulerlt 
energy production (111 = P T )  . Profiles of Dv and Pr have 
been determined experimentally in Newtonian flow 
(Laufer, 1954) ; during drag reduction these can only be 
inferred from eddy viscosity profiles such as presented in 
Figure 17, using the relations Du+ = (1 - [ ) / (  E / V  + 1 ) 2  
and Pr+ = D v + E / Y .  The estimated variation of Dv+ and 
of P r +  versus y+  is sketched in Figure 19, arithmetic co- 
ordinates, for both Newtonian and maximum drag reduc- 
tion flows at R+ = 1000. The plane of peak turbulent 
energy production, at which E / Y  = 1, shifts from ymax,n+ 
= 12 to ymax,m+ 2: 28. Integration of (38) ,  normalized 
over the pipe cross section yields the overall mean energy 
balance 

1 

(2U,,+/R+) = D,u+ d ( 1  - 'p + s,' P f +  d ( 1  - [ ) 2  

I I1 I11 
(39) 

Evaluation of the right-hand side terms in (39) from 
Figure 19 gives the integral direct viscous dissipation (I1 
= S O U + )  and turbulent energy production (111 = J P r + )  
as follows: (JDu+,  J P r + ) ,  = (0.019, 0.019) and ($Do+,  
J P r + ) ,  = (0.047, 0.046). Thus, a t  constant R+,  the ratio 
of total turbulent energy production to total direct viscous 
dissipation at a pipe cross section during maximum drag 
reduction appears to be essentially the same as in New- 
tonian flow. Good Du+ and Pr+ profi!es cannot be synthe- 
sized in the case of low drag reduction, for lack of eddy 
viscosity data in the near-wall region, but it may be sur- 
mised that ymax,n+ < ymax,p+ < ymax,m+, that is, the peak 
production plane moves progressively away from the wall 
as drag reduction increases, and since ( {Pr+/ . fDu+ l m  N 

( J P r  + /JDu + ) n, we might expect ( JPr  + /JDu + ) N 

( J P r + / J D u + ) ,  also. 
The local turbulent energy balance reads 

<UV> (dU/dy) + v < (auj/axi) (aUj /axi )  > 
I I1 

+ a<uq2/2>/ay + a<vp/p>/ay - v a z < q 2 / 2 > / a y 2  = 0 

(40) 
I11 IV V 

The terms in (40) respectively represent turbulent energy 
production (I = - P r ) ,  dissipation (I1 = Di, with Car- 
tesian tensor summation of indices i and j implied), tur- 
bulent transport of kinetic energy (111) and of potential 
energy (IV) by the radial velocity, and the molccular 
transport of turbulent kinetic energy (V)  ; and integration 
of (40) across the pipe cross scetion shows that total 
turbulent energy production must equal the total dissipa- 
tion of turbulent energy. A simplified picture of the tur- 
bulent energy balance in Newtonian pipe flow, consider- 
ing only terms 1; 11: and 111 of ( 4 3 ) ,  is as follon-s. At all 
radial locations, turbulence production and dissipation arc 
approximately equal; in the core, 5 > 5, N 0.1, or outer 
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Fig. 19. Estimated direct viscous dissipation and turbulent energy 
production profiles in the wall region during Newtonian and maxi- 

mum drag reduction flows a t  R +  = 1000. 

portion of the outer flow, ( P r  - Di) < 0, the net energy 
shortfall being supplied by the diffusion of turbulent ki- 
netic energy from the near-wall inner portion of the inner 
flow, y+ < yi+ 'v 100 where ( P r  - Di) > 0. The region 
of inner-outer flow overlap, y+ > yi+, ( < Ec, has ( P r  - 
Di) e 0 and through this region there is an essentially con- 
stant flux r-. puT3 of kinetic energy in transit from y +  < 
yi+ to 5 > 5,. The corresponding nondimensional turbu- 
lent kinetic energy profile is shown in Figure 20a which 
has an arithmetic ordinate q+ and dual logarithmic abscis- 
sae - y+ from the wall outward and 5 from the axis in- 
ward. The three zones are apparent: 

1. The near-wall region, in which q+ increases to a max- 
imum: 

4' N ( u ' + ) ~  = ( a n + y + ) ' ;  0 < y+ <ymax,n+ (41) 

2.  The overlap region of nearly constant q + :  

q+ N q m a x , n + ;  y +  > ymax,n+, t < t c  (42) 

3. The core region, in which, strikingly, the energy ex- 
cess essentially equals the velocity defect: 

q +  - q n + ( l )  = - ( l / X n )  In5  = U n + ( l )  - U + ;  

t c  < t < 1.0 (43) 
Equations (41) to (43) are shown by solid lines in Figure 
20~1, provicliiig an approximate description of the data. 
Turning to the polymer solutions, a partial kinetic energy 
profile can he synthesized from the data of L o e n  (1972) 
at l o ~ v  drag reduction. This is s ~ o M . ~ ,  dong Lvith corre- 
sponding results for solvent alone, in  Figure 20b, which 
has  the same abscissae as Figure 20a but an ordinate 
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quu+ = (u '~  + u * ) / u T ~  obtained from the intensity mea- 
surements shown in Figure 11. quu+ should provide a good 
approximation to the actual q +  in the region of the wall, 
up to q,,,,, + , where q is predominantly axial and should be 
about 2/3 of the actual q+ in the core where the wr2 com- 
ponent omitted makes a relatively constant contribution 
of 1/3 to q. In Figure 20b, the solid line on the left is 
q,,+ a y t 2  faired through the solvent data; it can be seen 
that qmax,p+ for the polymer solution lies close to the ex- 
tension of this line; also qmax,p+ - qmax,,,+ N S+ as noted 
earlier. The solid line on the right is drawn with slope 
- (2/3X,) through qn+ ( t  = l) ,  and it can be seen that 
the polymer solution and solvent data straddle this line 
in the core 0.3 < 6 < 1, establishing a Newtonian plug. 
In the region y+ > y m a x + ,  [ < tc, the missing w' compo- 
nent and the relatively low R +  hinder analysis, but the 
polymer solution q,,+ drops off more sharply than solvent 
reaching the latter level at y+ 1: 100, which marks the 
interface between the elastic sublayer and Newtonian plug 
regions. ;\;ow, if the core is essentially Newtonian during 
low drag reduction, then its energy requirement must also 
be. Hence, the usual Newtonian kinetic energy flux N p u ~ ~  
must proceed from the region of production through the 
inner region to the inner edge of the core to. The observed 
increase in potential difference q m a x , p +  - q c c , p +  = q m a x , p +  
- qlnar,,+ required to maintain the same flux must then 
reflect an increased resistance, or reduced turbulent diffu- 
sivity, of the intervening region, that is, the elastic sub- 
layer. Since turbulent transport of kinetic energy occurs by 
a correlation term of form <vq> N <uu2>, the coupling 
between 0 and u2 must be reduced relative to Newtonian. 
Analogous arguments apply to turbulent momentum trans- 
port, which is possibly why Aqmax+ s: S+. 

The interconversion of kinetic energy between axial and 
transverse components is also of interest. According to the 
usual interpretation (for example, by Hinze, 1959), all 
turbulent energy production feeds into the axial compo- 
nent, and then, if u2 > (u2 + w2) , energy is transferred 
out of 212, and into v2 and w2, by the pressure-velocity 
gradient correlation < p  ( d u / d x )  >, which thus tends to 
equalize all components, promoting isotropy. During drag 
reduction, the observalion that q,+ = a,+, ( 2 5 ) ,  suggests 
that the energy production feeds into the axial component 
in the normal Sewtonian fashion. However, the anisotropy, 
roughly measured by u'2 - ( u ' ~  + r d 2 )  N u ' ~ ,  markedly 
exceeds Seivtonian in the wall region, which implies a 
greater resistance to the transfer of energy out of the axial 
and into the transverse components. 

In summary, during low drag reduction, the outer flow 
structure and the viscous sublayer streaky structure are 
both Newtonian, as is the turbulent burst frequency, indi- 
cating that the overall cycle of events which sustain tur- 
bulent flow remains essentially Newtonian. In the near-wall 
region, the tur1)ulent energy produced feeds normally into 
the axial component of the turbulent kinetic energy, but 
the macromolecules appear to hinder the transfer of en- 
crgy between axial and transverse components and de- 
crease the correlation between the axial and radial flow 
fields, thus reducing the turbulent diffusivity and retarding 
turbulent transport. To maintain the usual Newtonian en- 
ergy flux froni wall to core, despite the increased resistance 
of the intervening region, apparently forces the flow to 
increase the pokential difference, that is, to increase q m a x +  
rr u, , , , i2+ .  The turbulent energy production, which feeds 
u2, is a product of two terms of which < U U > / U T *  is, if 
anything, lower than Newtonian while (dU+ / dy+  ) is not 
much different from its maximum value of unity in the 
region of interest. Therefore, to achieve a higher d2+ than 
Ne\vtoni;m, the region of high velocity gradient must per- 
sist for a greater distance from the wall. This would ap- 
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Fig. 20. Turbulent kinetic energy profiles: ( a )  Newtonian flow (after 

Laufer, 19.54); !b) Low drag reduction (after Logan, 1972). 

pear to be the essential source of the effective slip asso- 
ciated with drag reduction. 

The preceding paragraph, and the last paragraph in 
Section 3.2, are the elements of our drag reduction mech- 
anism. 

4. SUMMARY 

4.1 Experimental Evidence 
1. Three major gross-flow features of drag reduction by 

dilute solutions of random-coiling macromolecules in tur- 
bulent pipe flows have been identified: 

(1) The onset of drag reduction, rather abruptly, at a 
characteristic wall shear stress. 
( 2 )  A polymeric regime in which the observed friction 
factor relations depend upon polymeric parameters, 
namely, the polymer species-solvent pair, polymer mo- 
lecular weight, and concentration. 
( 3 )  A maximum drag reduction asymptote which is in- 
sensitive to polymeric parameters, being universally, 

f-" = 19.0 loglo Ref" - 32.4 

The drag reduction phenomenon appears bounded be- 
tween the Prandtl-Karman law for Newtonian turbulent 
flow ( 2 )  and (4). 

2 .  The friction factor relation exhibited by a given poly- 
mer solution in the polymeric regime can be experimentally 
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characterized by two parameters, namely, the onset wall 
shear stress T," (or, equivalently, the onset wave number 
W") and the Prandtl-Karman slope increment 6: 

f-" = (4.0 + 6) loglo Ref" - 0.4 - 6 loglo VZdW" 

The onset wall shear stress is essentially independent of 
pipe diameter, polymer concentration, and solvent vis- 
cosity, and varies inversely as the two to three power of 
polymer radius of gyration. An approximate onset correla- 
tion is 

(3) 

Tw4Rc3 = QT ( 5 )  

with QT an onset constant, characteristic of a polymer 
species-solvent pair. The slope increment is essentially in- 
dependent of pipe diameter, varies as the square root of 
polymer concentration and as the three-halves power of 
the number of chain links in the polymer backbone, and 
seems unaffected by decreases in polymer excluded volume. 
A slope increment correlation is 

6 = K ( C / M )  =I2 N3I2 (6) 

with K a slope modulus, characteristic of a polymer species- 
solvent pair. There are preliminary indications that both 
QT and K are influenced by the skeletal structure of the 
polymer species while being unaffected by the solvent 
strength. 

3. Mean velocity profiles during drag reduction show 
two characteristic extremes: at low drag reduction the en- 
tire outer flow, y+ > 50, say, is shifted upward from but 
parallel to the Newtonian law of the wall by an amount 
S+, the effective slip, whereas at maximum drag reduction 
the ultimate velocity profile has a semilogarithmic form 
similar to the Newtonian wall law but with a mixing length 
constant X ,  = 0.085, about a fifth of the Newtonian X ,  = 
0.40. The general mean velocity profile thus comprises 
three zones: 

(1) The usual viscous sublayer 

u+ = y+;  0 L y+  L yv+ (7) 

(2) An elastic sublayer, characteristic of drag reduction, 
in which the profile can be approximated by a segment 
of the ultimate profile sufficient to yield the effective slip 

(9) 

(3) A Newtonian plug region, with Newtonian mixing 
length constant, in which the profile is parallel-shifted 
upward by S +  relative to the Newtonian law of the wall 

U+ = 11.7 In y+  - 17.0; ye+ < yf < ye+ 

U+ = 2.5 In t j+  + 5.5 + 9.2 In (ye+/yU+); 
ye+ L y +  4 R+ (8) + (13) 

The elastic sublayer segment (2) arises at the onset, prior 
to which the mean velocity profile consists only of segments 
(1)  and (3) with S+ = 0, that is, the Prandtl-Taylor ap- 
proximation for Newtonian turbulent flow. In the polymeric 
regime, the elastic sublayer grows with increasing drag re- 
duction, the profile showing all three segments, with zone 
(2) increasing at the expense of zone (3).  At maximum 
drag reduction, the elastic sublayer extends to the pipe 
axis, the profile consisting only of segments ( 1)  and (2). 
4. Turbulence structure information, available only in 

the polymeric regime, also suggests the existence of three 
radial zones, analogous to (but not identical with) those 
observed in the mean velocity profiles: 

(1) The viscous sublayer. In  this region, the Newtonian 
streaky structure semes to remain at least partially intact 
during drag reduction, with the axial intensity gradient 
at the wall and the aspect ratio of transverse macroscales 
both essentially the same as Newtonian. 
( 2 )  The elastic sublayer. Here the turbulence structure 
during drag reduction is significantly different from New- 
tonian: relatively, the (nondimensional) axial intensity 
is higher while the radial intensity, turbulent shear stress, 
and u-u correlation coefficient are all lower. The maxi- 
mum turbulent kinetic energy appears to exceed New- 
tonian by roughly the same amount S +  that the maxi- 
mum mean velocity exceeds Newtonian. 
( 3 )  The Newtonian plug. In this region, the turbulence 
structure during drag reduction appears to be the same 
as Newtonian based on measurements of axial and radial 
intensities. 

4.2 Physical Interpretation 
1. The polymer-turbulence interaction responsible for 

drag reduction appears to commence in the vicinity y+ N 

15 of the plane of peak turbulent energy production, sug- 
gesting that the polymer molecules interfere with the tur- 
bulent bursting processes. 

2.  At the onset of drag reduction the duration of a tur- 
bulent burst is of order the terminal relaxation time of a 
macromolecule and after onset the extent of drag reduc- 
tion correlates with the turbulent strain energy of the dilute 
polymer solution. These observations suggest that macro- 
molecular extension is involved in the mechanism of drag 
reduction, At onset, the random-coiled radius of gyration 
of the macromolecule is about 10-3 times the smallest tur- 
bulent burst length scale. 

3. The axial and radial turbulent flow fields are decou- 
pled in the region of interaction, as witnessed by a striking 
reduction in the u-u correlation coefficient, relative to 
Newtonian. The polymer-induced flow field decoupling 
seems to retard about equally the radial transport of axial 
momentum and of turbulent kinetic energy. The observed 
drag reduction is possibly a consequence of the readjust- 
ments, notably an increase in maximum kinetic energy, that 
the inner flow makes to maintain the overall cross-sectional 
turbulent energy balance. 
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NOTATION 

a, K = 
A, B = 

A, B = 
b =  

A A  

- C - 

C U V  = 

d =  
E ( k )  = 
f =  
g =  
G =  

Mark-Houwink parameters, Equation (17) 
coefficients in Equation (10) 

coefficients in Equation (11) 
effective bond length per backbone chain link 
concentration of polymeric solute, in parts per 
million by weight (wppm) 
correlation coefficient 

pipe inside diameter 
turbulent kinetic energy density at k 
Fanning's friction factor ( 2T,/pUav2) 
exponent in Relation (20) 
strain (or shear) rate 

( < uv > / < u2> 112 < .2>1/2 ) 
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H =  
I =  
I =  

k =  
k =  
L, Lc = 

mo = 

heterogeneity index, defined by Equation (18) 
excitation integral, in Equation (32) 
chain deformation factor, defined by Equation 
(30) 
Boltzmann’s constant 
wave number 
macromolecule end-to-end distances, root mean 
sauare. contour 
mhecular weight per backbone chain link 

(usually weight), weight, number, averages 
M ,  M,, M ,  = polymer molecular weights; unspecified 

- .  
Avogadro‘s number 
number of backbone chain links in macromole- 
cule (M/mo) 
pressures; fluctuating, mean 
turbulent kinetic energy 
volumetric flow rate 
pipe radius (half width for noncircular cross 
sections) 
fractional drag reduction [1 - ( f / f n ) R e ]  

macromolecule root mean square radius of gyra- 
tion, z-average 
Reynolds number (dU,,/v) 
generalized ( power-law ) Reynolds number 
strain energy of a macromolecule 
strain energies of a polymer solution; fluctuating, 
mean 
effective slip (Uav,p+ - U a v , n + ) ~ + ,  also see 
Equation (13) 
fractional flow enhancement 

temperature 
wall shear stress 

[ - 1 + ( f-”2/fn-1/2) Ref’/2] 

u, v, w = fluctuating velocity components in x, y, z direc- 

UT 
V, V,,, V, = mean velocities in x direction; local, bulk 

Wo 
x, y, z = Cartesian coordinates in axial, radial, azimuthal 

X = mixing length constant 
tj = distance from pipe wall 
2 = azimuthal streak spacing 

tions 
= friction velocity ( T , / p )  *I2 

average, free stream 
= onset wave number ( U T ’ / V ~ )  

directions with origin at  pipe wall 

Greek Letters 
axial intensity gradient at wall, 

Limy++, (du’+/dy+) 
Flory excluded volume (or ‘expansion’) factors, 
viscosity-, &-based 
parameter of a polymer solution being strained 
(TOG ) 
coefficients in Equations (23a) and (23c) 
slope increment, ( df-1/2/dlogloRef1/2) - 4.0 
momentum thickness of a boundary layer 
eddy (shear) viscosity <uv>/ (dU/dy  ) 
viscosity 
viscosity (polymer solution) relative to solvent 
intrinsic viscosity 
mean time between bursts, burst duration 
slope modulus, Equations (6) and (22) 
burst dissipation wavelength, streak width at  
1iftUD 

p j ( j ,  k) = an eigenvalue summation for jth mode (of n 
total) at kth wave number, see Equation (32) 

V = kinematic viscosity 
[ 
II 
P = density 
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= radius-normalized distance from wall ( y/R) 
= intrinsic slope increment, Equation (22) 

macromolecule chain conformation factor (&,,/ 

macromolecular (relaxation) time scale 
(W?1 7JNkT) 

Zimm theory relaxation times, terminal (0.42 T O ) ,  

jth mode 
ratio of Reynolds to total shear stresses <uu>/ 

Florv’s viscositv constant 

RG,Of) 

uT2(1 - 

polimer soluti6n parameter, Equation (15b) 
( 2a/eb ) 
onset constants, time- and length-based, Equa- 
tions (19), (5) 

burst 
c, e, i, v = regions of pipe cross section: inner edge of core, 

outer edge of elastic sublayer, outer edge of in- 
ner flow, outer edge of viscous sublayer 

i, i = dummy indices 
n, p ,  m = gross flow regimes: Newtonian, polymeric, max- 

max 
o, of = unperturbed (in theta solvent), unperturbed 

S = based on solvent viscosity and density 
tr = at transition from laminar to turbulent flow 
w = at wall, [ = 0 
1 = ataxis, [ =  1 

Superscripts 
O 

+ 
” = deformed macromolecule 
0 = for monodisperse polymer 

Other Symbols 
< > = timeaverage 
var = error variance 
m = salt solution molality 

mum drag reduction 
= maximum, or at location of maximum 

with free rotation about bonds 

= at onset of drag reduction 
= normalized by inner scales, uT and u 
= root mean square turbulent quantity I 

V = percent error operator, for example, c ( 6 )  = 
lOO[var (6) ]”/6 
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Optimal Decomposition of 

Process Networks 

The tearing or decomposition of recycle process networks is extended 
to include the enumeration of alternate cut sets or tear stream sets. The 
optimality criterion is the response to convergence acceleration in the quasi- 
Newton sense and an algorithm is proposed to select the optimum cut set 
adaptively as the recycle computation proceeds. 

SCOPE 

The object of this study is to reduce the computer time 
required to complete the steady state mass and energy 
balance calculations in a chemical process with recycle. In 
the modular simulation approach, the process model in 
the computer consists of a set of subroutines (operation 
modules) whose function is to calculate the properties of 
the physical output streams given the properties of the 
physical input streams and design parameters appropriate 
to each module, for example, the temperature in an iso- 
thermal flash module. The process model is thus com- 
posed of a network of streams and operation modules 
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quite analogous to the usual flow sheet representation of 
the plant. 

Completing the steady state simulation is a matter of 
identifying the recycle streams in the model and finding 
the properties of these streams, that is, temperature, pres- 
sure, enthalpy, flow rate and composition, which lead to 
stationary computation loops as the information flows are 
traced around the plant in the direction of physical flows 
from one module to its neighbor. One simple procedure 
is to guess the recycle stream properties and then allow 
the computer to iterate around process loops until recycle 
stream properties converge. This direct substitution ap- 
proach yields the slowest approach to steady state. Con- 
siderable improvement can be achieved if the successive 
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