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64. This is an example of heat conduction.  The temperature difference can be calculated by Eq. 19-16a. 
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CHAPTER 20:  Second Law of Thermodynamics 

 

Responses to Questions 

 

1.  Yes, mechanical energy can be transformed completely into heat or internal energy, as when an 

object moving over a surface is brought to rest by friction.  All of the original mechanical energy is 

converted into heat. No, the reverse cannot happen (second law of thermodynamics) except in 

very special cases (reversible adiabatic expansion of an ideal gas). For example, in an explosion, a 

large amount of internal energy is converted into mechanical energy, but some internal energy is 

lost to heat or remains as internal energy of the explosion fragments.  

 

2.   Yes, you can warm a kitchen in winter by leaving the oven door open. The oven converts electrical 

energy to heat and leaving the door open will allow this heat to enter the kitchen. However, you 

cannot cool a kitchen in the summer by leaving the refrigerator door open. The refrigerator is a 

heat engine which (with an input of work) takes heat from the low-temperature reservoir (inside 

the refrigerator) and exhausts heat to the high-temperature reservoir (the room). As shown by the 

second law of thermodynamics, there is no “perfect refrigerator,” so more heat will be exhausted 

into the room than removed from the inside of the refrigerator. Thus, leaving the refrigerator door 

open will actually warm the kitchen.    

 

5.  A 10ºC decrease in the low-temperature reservoir will give a greater improvement in the efficiency 

of a Carnot engine. By definition, TL is less than TH, so a 10ºC change will be a larger percentage 

change in TL than in TH, yielding a greater improvement in efficiency.  

 



11. The isothermal process will result in a greater change in entropy.  The entropy change for a 

reversible process is the integral of dQ/T. Q = 0 for an adiabatic process, so the change in entropy is 

also 0. 

Solutions to Problems 
 

1. The efficiency of a heat engine is given by Eq. 20-1a.  We also invoke energy conservation. 

  
H L

2600 J
0.25 25%

2600 J 7800 J

W W
e

Q W Q
    

 
 

 

6. (a)  For the net work done by the engine to be positive, the path must be carried out clockwise.   Then  

the work done by process bc is positive, the work done by process ca is negative, and the work done by 

process ab is 0.  From the shape of the graph, we see that 
bc ca

.W W  

(b) The efficiency of the engine is given by Eq. 20-1a.  So we need to find the work done and the 

heat input.  At first glance we might assume that we need to find the pressure, volume, and 

temperature at the three points on the graph.  But as shown here, only the temperatures and 

the first law of thermodynamics are needed, along with ratios that are obtained from the ideal 

gas law. 
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13. 1 kg of liquid iron will have greater entropy, since it is less ordered than solid iron and its 
molecules have more thermal motion. In addition, heat must be added to solid iron to melt it; 
the addition of heat will increase the entropy of the iron. 

 
15. The machine is clearly doing work to remove heat from some of the air in the room. The 

waste heat is dumped back into the room, and the heat generated in the process of doing 
work is also dumped into the room. The net result is the addition of heat into the room by the 
machine. 

 
16.  Some processes that would obey the first law of thermodynamics but not the second, if they 

actually occurred, include: a cup of tea warming itself by gaining thermal energy from the 
cooler air molecules around it, a ball sitting on a soccer field gathering energy from the grass 
and beginning to roll, and a bowl of popcorn placed in the refrigerator and unpopping as it 
cools.  

 
17. No. While you have reduced the entropy of the papers, you have increased your own entropy 

by doing work, for which your muscles have consumed energy. The entropy of the universe 
has increased as a result of your actions. 

 
19. No. Even if the powdered milk is added very slowly, it cannot be re-extracted from the water 

without very large investments of energy.  This is not a reversible process. 
 
20.  Entropy is a state variable, so the change in entropy for the system will be the same for the 

two different irreversible processes that take the system from state a to state b. However, the 
change in entropy for the environment will not necessarily be the same. The total change in 
entropy (system plus environment) will be positive for irreversible processes, but the amount 
may be different for different irreversible processes.  

 



11. The isothermal process will result in a greater change in entropy.  The entropy change for a 

reversible process is the integral of dQ/T. Q = 0 for an adiabatic process, so the change in entropy is 

also 0. 

Solutions to Problems 
 

1. The efficiency of a heat engine is given by Eq. 20-1a.  We also invoke energy conservation. 
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6. (a)  For the net work done by the engine to be positive, the path must be carried out clockwise.   Then  

the work done by process bc is positive, the work done by process ca is negative, and the work done by 

process ab is 0.  From the shape of the graph, we see that 
bc ca

.W W  

(b) The efficiency of the engine is given by Eq. 20-1a.  So we need to find the work done and the 

heat input.  At first glance we might assume that we need to find the pressure, volume, and 

temperature at the three points on the graph.  But as shown here, only the temperatures and 

the first law of thermodynamics are needed, along with ratios that are obtained from the ideal 

gas law. 

  ab:    3
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Of course, individual values could have been found for the work and heat on each process, and 

used in the efficiency equation instead of referring everything to the temperatures. 

 

8. The maximum efficiency is the Carnot efficiency, given in Eq. 20-3. 
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 We assume that both temperatures are measured to the same precision – the nearest degree. 

 

12. This is a perfect Carnot engine, and so its efficiency is given by Eq. 20-1a and Eq. 20-3.  Use these 

two expressions to solve for the rate of heat output. 
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18. The heat input must come during the isothermal expansion.  

From section 20-3, page 534, we have 

b

H H H

a

ln ln 2.
V

Q nRT nRT
V

    Since this is a Carnot cycle, we may 

use Eq. 20-3 combined with Eq. 20-1. 
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The adiabatic relationship between points b and c and the ideal  

gas law are used to express the temperature ratio in terms of the volume ratio. 

V
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20. (a) We use the ideal gas law and the adiabatic process  

relationship to find the values of the pressure and volume at each of the four points. 
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 To summarize:  
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(b) Isotherm ab: 
int
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 Isotherm cd: 
int
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  Adiabat da: 
da

0  ;Q   

         3 3

int c b c b2 2

bc

bc bc int

bc

 1.00 mol 8.314 J mol K 140 K

        1746J 1700J   ;  1746J 1700J

V
E nC T T nR T T

W Q E

     

       

g

 

 To summarize: 
int
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(c) Using Eq. 20-1: 
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  The slight disagreement is due to rounding of various calculations. 

 



26. The coefficient of performance for an ideal refrigerator is given by Eq. 20-4c, with temperatures in 

Kelvins.  Use that expression to find the temperature inside the refrigerator. 
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27. The efficiency of a perfect Carnot engine is given by Eq. 20-1a and Eq. 20-3.  Equate these two 

expressions to solve for the work required. 
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31. The coefficient of performance is the heat removed from the low-temperature area divided by the 

work done to remove the heat.  In this case, the heat removed is the latent heat released by the 

freezing ice, and the work done is 1.2 kW times the elapsed time.  The mass of water frozen is its 

density times its volume. 
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32. Heat energy is taken away from the water, so the change in entropy will be negative.  The 
heat transfer is the mass of the steam times the latent heat of vaporization. 

  
( )( )

( )
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1500J K
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mLQ
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×
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+
 

 
33. Energy has been made “unavailable” in the frictional stopping of the sliding box.  We take 

that “lost” kinetic energy as the heat term of the entropy calculation. 
  ( )( )221 1

2 2 7.5 kg 4.0m s 293 K 0.20J KiS Q T mv TΔ = = = =  

 Since this is a decrease in “availability,” the entropy of the universe has increased. 
 
 
35. Because the temperature change is small, we can approximate any entropy integrals by 

avg .S Q TΔ =   There are three terms of entropy to consider.  First, there is a loss of entropy 

from the water for the freezing process, 1SΔ .  Second, there is a loss of entropy from that 
newly-formed ice as it cools to  
–10oC, 2SΔ .  That process has an “average” temperature of –5oC.  Finally, there is a gain of 

entropy by the “great deal of ice,” 3SΔ , as the heat lost from the original mass of water in 
steps 1 and 2 goes into that great deal of ice.  Since it is a large quantity of ice, we assume 
that its temperature does not change during the processes. 
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37. The same amount of heat that leaves the high temperature heat source enters the low 

temperature body of water.  The temperatures of the heat source and body of water are 
constant, so the entropy is calculated without integration. 
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39. Because the process happens at a constant temperature, we have .S Q TΔ =   The heat flow 

can be found from the first law of thermodynamics, the work for expansion at a constant 
temperature,  and the ideal gas equation 
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Δ = − = → = = = →

× ×
Δ = = = =

 

 
 
42. Since the process is at a constant volume, VdQ nC dT= .  For a diatomic gas in the 

temperature range of this problem, 5
2VC R= . 

 
 

( )( ) ( )
( )

2

1

25 5
2 2

1

273 55 K
ln 2.0mol 8.314J mol K ln 4.0J K

273 25 K

T
V

T

dQ nC dT T
S nR

T T T
+

Δ = = = = =
+∫ ∫ g  

 
 
44. Entropy is a state variable, and so the entropy difference between two states is the same for 

any path.  Since we are told that states a and b have the same temperature, we may find the 
entropy change by calculating the change in entropy for an isothermal process connecting 
the same two states.  We also use the first law of thermodynamics. 

( )
( ) ( )

int b a

b a
b a

0     ln

ln
ln

VE nC T Q W Q W nRT V V

nRT V VdQ Q
S nR V V

T T T

Δ = Δ = = − → = =

Δ = = = =∫
 

 
45. (a) The figure shows two processes that start at the same state.  The  

top process is adiabatic, and the bottom process is isothermic.  We 
see from the figure that at a volume of V/2, the pressure is greater 
for the adiabatic process.  We also prove it analytically. 

Isothermal: ( )1 1 2 2 1 2
2 1 1 11

21 2 2 1

    1 2
PV PV V T V

P P P P
T T V T V

= → = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Adiabatic: 1
1 1 2 2 2 1 1 11

22

    2
V V

PV PV P P P P
V V

γ γ

γ γ γ= → = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

V 

P 

V/2 



Since 1,γ >  we see that ( ) ( )2 2adiabatic isothermic
.P P>   The ratio is 

( )
( )

12 1adiabatic

2 1isothermic

2
2 .

2
P P
P P

γ
γ −= =  

(b) For the adiabatic process: No heat is transferred to or from the gas, so

adiabatic 0 .
dQ

S
T

Δ = =∫  

 For the isothermal process:  2
int isothermal isothermal
isothermal 1

0    ln
V

E Q W nRT
V

Δ = → = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  
( )

( ) ( )

2 1isothermal isothermal
isothermal isothermal

1
2 1 2

ln1
=

            ln ln ln 2

nRT V VdQ Q
S dQ

T T T T
nR V V nR nR

Δ
Δ = = =

= = = −

∫ ∫  

(c) Since each process is reversible, the energy change of the universe is 0, and so 

surroundings system .S SΔ = −Δ   For the adiabatic process, surroundings 0 .SΔ =   For the isothermal 

process, surroundings ln 2 .S nRΔ =  
 
46. (a) The equilibrium temperature is found using calorimetry, from Chapter 19.  The 
heat lost by the  

water is equal to the heat gained by the aluminum. 

   

( ) ( )

( )( )( ) ( )( )( )
( )( ) ( )( )

2 2 2

2 2 2

2 2

H O H O H O Al Al Al

Al Al Al H O H O H O

Al Al H O H O

  

0.150 kg 900J kg C 15 C 0.215kg 4186J kg C 100 C
   

0.150 kg 900J kg C 0.215kg 4186J kg C

88.91 C 89 C   

f f

f

m c T T m c T T

m c T m c T
T

m c m c

− = − →

+
=

+

° ° + ° °
=

° + °

= ° = °

g g
g g

 

 (b) 
final final final final

2

2 2 2

Al H O Al H O2 2

H OAl
Al H O Al Al H O H O

T T T T

T T T T

dQdQ dT dT
S S S m c m c

T T T T
Δ = Δ + Δ = + = +∫ ∫ ∫ ∫  

  ( )( ) ( )
( )

( )( ) ( )
( )

2 2

2

final final
Al Al H O H O

Al H O

    ln ln

273.15 88.91 K
    0.150 kg 900J kg K ln

273.15 15 K

273.15 88.91 K
       0.215kg 4186J kg K ln 3.7 J K

273.15 100 K

T T
m c m c

T T
= +

+
=

+

+
+ =

+

g

g

 

 



 
48. (a) The gases do not interact since they are ideal, and 
so each gas expands to twice its volume with  

no change in temperature.  Even though the actual 
process is not reversible, the entropy change can be 
calculated for a reversible process that has the same 
initial and final states.  This is discussed in Example 20-
7. 

 
 

( )( )

2

2

2
N Ar

1

total N Ar

ln ln 2

2 ln 2 2 1.00mol 8.314J mol K ln 2 11.5J K

V
S S nR nR

V

S S S nR

Δ = Δ = =

Δ = Δ + Δ = = =g
 

(b) Because the containers are insulated, no heat is transferred to or from the environment.  

Thus surroundings 0 .
dQ

S
T

Δ = =∫  

(c) Let us assume that the argon container is twice the size of the nitrogen container.  Then 
the final  

nitrogen volume is 3 times the original volume, and the final argon volume is 1.5 times 
the original volume. 

 

 ( )( )

2

2

2

2 2
N Ar

1 1

total N Ar

N Ar

ln ln 3  ;  ln ln1.5

ln 3 ln1.5 ln 4.5 1.00 mol 8.314 J mol K ln 4.5

        12.5J K

V V
S nR nR S nR nR

V V

S S S nR nR nR

Δ = = Δ = =

Δ = Δ + Δ = + = =

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

g  

50. We assume that the process is reversible, so that the entropy change is given by Eq. 20-8.  
The heat transfer is given by .VdQ nC dT=  

  
( ) ( ) ( )

2 2 2 2
2

1

1 1 1 1

3
2 31

3

T T T T
TV

T
T T T T

n aT bT dTdQ nC dT
S n a bT dT n aT bT

T T T

+
= = = = + = +∫ ∫ ∫ ∫  

 

 
( ) ( )( ) ( ) ( ) ( )3 32 41

3  0.15mol 2.08mJ mol K 1.0 K 3.0 K 2.57 mJ mol K 1.0 K 3.0 K

4.0mJ K  

= − + −

= −

⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦g g
 

 
 

 
 
69. All of the processes are either constant pressure or constant volume, and so the heat input 

and output can be calculated with specific heats at constant pressure or constant volume.  
This tells us that heat is input when the temperature increases, and heat is exhausted when 
the temperature decreases.  The lowest temperature will be the temperature at point b.  We 
use the ideal gas law to find the temperatures. 

 V

p
a

b
d

c

TH

TL



( ) ( ) ( )( )0 0 0 0 0 00 0
b a b c b d b

      

2 3 3 2
,  2 ,  3 , 6

PV
PV nRT T

nR
P V P V P VPV

T T T T T T T
nR nR nR nR

= → = →

= = = = = = =

 

 (a) process ab: ( )ab 0 0 0 0 ab ; 0W P V P V PV Q= Δ = − = − <  
  process bc:

 ( ) ( ) 0 03 3 3
bc bc c b b 0 02 2 20 ;  2 2 3V

PV
W P V Q nC T nR T T nR T nR PV

nR
= Δ = = Δ = − = = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

  process cd:   bc 0 03  ;W P V PV= Δ =  

( ) ( ) 0 05 5 5 15
cd d c b 0 02 2 2 23 3P

PV
Q nC T nR T T nR T nR PV

nR
= Δ = − = = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

  process da: da da0 ;  0W P V Q= Δ = <  

   0 0 0 0
rectangle 15 21

2 2H 0 0 0 0

3 2
0.1905 0.19

3
W PV PV

e
Q PV PV

−
= = = = ≈

+
 

(b) rectangleH L b b
Carnot

H b Carnot

6 0.1905
0.8333  ;  0.23

6 0.8333
eT T T T

e
T T e
− −

= = = = =  

 
 
72. We have a monatomic gas, so 5

3 .γ =   Also the pressure, volume, 
and temperature for state a are known.  We use the ideal gas law, 
the adiabatic relationship, and the first law of thermodynamics. 

 (a) Use the ideal gas equation to relate states a and b.  Use 
the  

adiabatic relationship to relate states a and c. 

( )

b b a a

b a

a b
b a

b a

a a c c

  

22.4 L 273K
1.00atm 0.400atm

56.0 L 273K

  

PV PV
T T

V T
P P

V T

PV PVγ γ

= →

= = =

= →

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

( )
5 / 3

a
c a

c

22.4L
1.00atm 0.2172atm 0.217atm

56.0L
V

P P
V

γ

= = = ≈
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 (b) Use the ideal gas equation to calculate the temperature at c. 

   ( ) ( )b b c c c c
c b

b c b b

0.2172atm
    273K 1 148K

0.400atm
PV PV P V

T T
T T P V

= = → = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) Process ab: int
ab

0   ;  VE nC TΔ = Δ =  

 
V

P

Isothermal

Adiabatic

a

b

c

Va Vb



    

 

( )( )( )b
ab ab

a

ab
ab

ab

ln 1.00 mol 8.314 J mol K 273K ln 2.5

     2079.7 J 2080J

2079.7 J
7.62 J K

273K

V
Q W nRT

V

Q
S

T

= = =

= ≈

Δ = = =

g

 

  Process bc: bc 0   ;W =  

( ) ( )( )

( ) ( )
c

b

3
int bc 2
bc

c
c 3

bc 2
bb

1.00 mol 8.314 J mol K 148 K 273K

      1559 J 1560J

148 K
ln 1.00 mol 8.314 J mol K ln

273K

7.64 J K      

V

T
V

V
T

E Q nC T

dQ nC dT T
S nC

T T T

Δ = = Δ = −

= − ≈ −

Δ = = = =

= −

∫ ∫

g

g

 
  Process ca: ( )ca bc0   ;  0  adiabatic  ;Q S= Δ =  

     
( )int int int

ca ab bc

int ca
ca

0 1560J   

1560J   ;  1560J

E W E E

E W

Δ = − = −Δ − Δ = − − − →

Δ = = −
 

 (d) 
input

2080J 1560J
0.25

2080J
W

e
Q

−
= = =  

   
73. Take the energy transfer to use as the initial kinetic energy of the cars, because this energy 

becomes “unusable” after the collision – it is transferred to the environment. 

( ) ( ) ( )

( )

2

21
2

1m s
1100kg 75km h

2 3.6km h
1700J K

15 273 K
imvQ

S
T T

Δ = = = =
+

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

 
 
78. Since two of the processes are adiabatic, no heat transfer 

occurs in those processes.  Thus the heat transfer must 
occur along the isobaric processes. 

 

 
( ) ( )

( )
( )

( )
( )

H bc c b L da d a

d a d aL

H c b c b

  ;  

1 1 1

P P

P

P

Q Q nC T T Q Q nC T T

nC T T T TQ
e

Q nC T T T T

= = − = = −

− −
= − = − = −

− −

 

 Use the ideal gas relationship, which says that 
.PV nRT=  

 

 V

P

b

da

Adiabatic
compression

Adiabatic
expansion

c
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( )

( )
( )

( )
( )

d d a a

d a d d a a

c c b bc b c c b b

a d a

b c b

1 1 1

  1

PV PV
T T PV PVnR nRe

PV PVT T PV PV
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P V V
P V V

−
− −

= − = − = −
− −−

−
= −

−

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
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Because process ab is adiabatic, we have 
1/

b
a a b b a b

a

    
P

PV PV V V
P

γ

γ γ= → =
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  Because process 

cd is adiabatic, we have 
1/

b
b c a d d c

a

    .
P

PV PV V V
P

γ

γ γ= → =
⎛ ⎞
⎜ ⎟
⎝ ⎠

  Substitute these into the 

efficiency expression. 
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1 1
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