Fluids

CHAPTER-OPENING QUESTIONS—Guess now!
1. Which container has the largest pressure at the bottom? Assume each container
holds the same volume of water.

(a) (bh) (c) (d) (¢)

The
pressures
are

equal

(&)

. Two balloons are tied and hang with their nearest edges about 3 cm apart. If you
blow between the balloons (not ar the balloons, but at the opening between
them), what will happen?

(a) Nothing.
(b) The balloons will move closer together.
(¢) The balloons will move farther apart.

Underwater divers and sea creatures
experience a buoyant force (Fy) that
closely balances their weight mg.
The buoyant force is equal to the
weight of the volume of fluid
displaced (Archimedes’ principle) and
arises because the pressure increases
with depth in the fluid. Sea creatures
have a density very close to that of
water, so their weight very nearly
equals the buoyant force. Humans
have a density slightly less than
water, so they can float.

When fluids flow, interesting effects
occur because the pressure in the fluid
is lower where the fluid velocity is
higher (Bernoulli’s principle).

T E
A4
» ®
Q
o
CONTENTS

13-1 Phases of Matter
13-2  Density and Specific Gravity
13-3 Pressure in Fluids

13-4 Atmospheric Pressure and
Gauge Pressure

13-5 Pascal’s Principle

13-6  Measurement of Pressure;
Gauges and the Barometer

13-7 Buoyancy and Archimedes’
Principle

13-8 Fluids in Motion; Flow Rate
and the Equation of Continuity

13-9  Bernoulli’s Equation

13-10 Applications of Bernoulli’s
Principle: Torricelli,
Airplanes, Baseballs, TIA

Viscosity

#13-12 Flow in Tubes: Poiseuille’s
Equation, Blood Flow

#13-13 Surface Tension and Capillarity
#13-14 Pumps, and the Heart

339



TABLE 13-1
Densities of Substances!
Density,

Substance p (kg/m?)
Solids

Aluminum 2.70 X 103
Iron and steel 7.8 X103
Copper 89 X 10°
Lead 113 x 10°
Gold 193 x 10°
Concrete 2302
Granite 2900
Wood (typical) 0.3-0.9 X 10°
Glass,common  2.4-2.8 X 10°
Ice (H,0) 0.917 x 103
Bone 1:7=2.0 <102
Liquids

Water (4°C) 1.00 x 103
Blood, plasma 1.03 x 10°
Blood, whole 105 % 10
Sea water 1.025 x 103
Mercury 136 x 103
Alcohol, ethyl 0.79 % 10°
Gasoline 0.68 X 103
Gases

Air 1229
Helium 0.179
Carbon dioxide 1.98

Steam

(water, 100°C) 0.598

"Densities are given at 0°C and 1 atm
pressure unless otherwise specified.
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n previous Chapters we considered objects that were solid and assumed to

maintain their shape except for a small amount of elastic deformation. We

sometimes treated objects as point particles. Now we are going to shift our

attention to materials that are very deformable and can flow. Such “fluids”
include liquids and gases. We will examine fluids both at rest (fluid statics) and in
motion (fluid dynamics).

13—1 Phases of Matter

The three common phases, or states, of matter are solid, liquid, and gas. We can
distinguish these three phases as follows. A solid maintains a fixed shape and a
fixed size; even if a large force is applied to a solid, it does not readily change in
shape or volume. A liquid does not maintain a fixed shape—it takes on the
shape of its container—but like a solid it is not readily compressible, and its
volume can be changed significantly only by a very large force. A gas has
neither a fixed shape nor a fixed volume—it will expand to fill its container.
For example, when air is pumped into an automobile tire, the air does not all
run to the bottom of the tire as a liquid would; it spreads out to fill the whole
volume of the tire. Since liquids and gases do not maintain a fixed shape, they
both have ability to flow; they are thus often referred to collectively as fluids.

The division of matter into three phases is not always simple. How, for
example, should butter be classified? Furthermore, a fourth phase of matter can
be distinguished, the plasma phase, which occurs only at very high temperatures
and consists of ionized atoms (clectrons separated from the nuclei). Some scien-
tists believe that so-called colloids (suspensions of tiny particles in a liquid)
should also be considered a separate phase of matter. Liquid crystals, which are
used in TV and computer screens, calculators, digital watches, and so on, can be
considered a phase of matter intermediate between solids and liquids. However,
for our present purposes we will mainly be interested in the three ordinary
phases of matter.

13—-2 Density and Specific Gravity

It is sometimes said that iron is “heavier” than wood. This cannot really be true
since a large log clearly weighs more than an iron nail. What we should say is that
iron is more dense than wood.

The density, p. of a substance (p is the lowercase Greek letter rho) is defined
as its mass per unit volume:

m
p = (13-1)
where m is the mass of a sample of the substance and V is its volume. Density is a
characteristic property of any pure substance. Objects made of a particular pure
substance, such as pure gold, can have any size or mass, but the density will be
the same for each.
We will sometimes use the concept of density, Eq. 13—1, to write the mass of
an object as

m = pV,
and the weight of an object as
mg = pVg.

The SI unit for density is kg/m®. Sometimes densities are given in g/cm’. Note
that since 1kg/m® = 1000g/(100cm)® = 10°g/10°cm® = 1073 g/cm®, then a
density given in g/em® must be multiplied by 1000 to give the result in kg/m?®. Thus
the density of aluminum is p = 2.70 g/cm®, which is equal to 2700 kg/m>. The
densities of a variety of substances are given in Table 13-1. The Table specifies
temperature and atmospheric pressure because they affect the density of

substances (although the effect is slight for liquids and solids). Note that air is
roughly 1000 times less dense than water.



Mass, given volume and density. What is the mass of a
solid iron wrecking ball of radius 18 cm?

APPROACH First we use the standard formula V = 37#° (see inside rear cover) to
obtain the volume of the sphere. Then Eq. 13-1 and Table 13-1 give us the mass .
SOLUTION The volume of the sphere is

V o= {7 = $(3.14)(0.18m)* = 0.024 m’.
From Table 13-1, the density of iron is p = 7800 kg/m°>, so Eq. 13-1 gives

m = pV = (7800kg/m’)(0.024m%) = 190kg.

The specific gravity of a substance is defined as the ratio of the density of that
substance to the density of water at 4.0°C. Because specific gravity (abbreviated SG)
is a ratio, it is a simple number without dimensions or units. The density of water is
1.00 g/em® = 1.00 X 10*kg/m> so the specific gravity of any substance will be
cqual numerically to its density specified in g/cm?, or 107> times its density specified
in kg/m?>. For example (sce Table 13—1), the specific gravity of lead is 11.3, and that
of alcohol is 0.79.

The concepts of density and specific gravity are especially helpful in the study
of fluids because we are not always dealing with a fixed volume or mass.

13—-3 Pressure in Fluids

Pressure and force are related, but they are not the same thing. Pressure is defined
as force per unit area, where the force F is understood to be the magnitude of the
force acting perpendicular to the surface area A:

pressure = P = % (13-2)
Although force is a vector, pressure is a scalar. Pressure has magnitude only. The
SI unit of pressure is N/m? This unit has the official name pascal (Pa), in honor
of Blaise Pascal (see Section 13-5); that is, 1Pa = 1N/m> However, for
simplicity, we will often use N/m? Other units sometimes used are dynes/cm?,
and Ib/in.? (abbreviated “psi”). Several other units for pressure are discussed,
along with conversions between them, in Section 13-6 (see also the Table inside
the front cover).

Calculating pressure. The two fect of a 60-kg person cover an
area of 500 cm”. () Determine the pressure exerted by the two feet on the ground.
(b) If the person stands on one foot, what will the pressure be under that foot?

APPROACH Assume the person is at rest. Then the ground pushes up on her
with a force equal to her weight mg, and she exerts a force mg on the ground
where her feet (or foot) contact it. Because 1cm? = (102m)? = 107 m?, then
500 cm? = 0.050 m*.
SOLUTION (a) The pressure on the ground exerted by the two feet is

F m, 60kg)(9.8m/s’

p o F_ms_ (0ke)08m/s) ail ) _ 12 X 10°N/m2

A A (0.050 m?)
(b) If the person stands on one foot, the force is still equal to the person’s
weight, but the area will be half as much, so the pressure will be twice as much:
24 X 10°N/m”

Pressure is particularly useful for dealing with fluids. It is an experimental
observation that a fluid exerts pressure in any direction. This is well known to
swimmers and divers who feel the water pressure on all parts of their bodies. At
any depth in a fluid at rest, the pressure is the same in all directions at a given
depth. To see why, consider a tiny cube of the fluid (Fig. 13-1) which is so small
that we can consider it a point and can ignore the force of gravity on it. The
pressure on one side of it must equal the pressure on the opposite side. If this
weren’t true, there would be a net force on the cube and it would start moving. If
the fluid is not flowing, then the pressures must be equal.

A CAUTION

Pressure is a scalar, not a vector

FIGURE 13-1 Pressure is the same
in every direction in a nonmoving
fluid at a given depth. If this weren’t
true, the fluid would be in motion.

i
1
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FIGURE 13-2 If there were a
component of force parallel to the
solid surface of the container, the
liquid would move in response to it.
For a liquid at rest, £} = 0.

FIGURE 13-3 Calculating the
pressure at a depth A in a liquid.

FIGURE 13-4 Forces on a flat,
slablike volume of fluid for
determining the pressure P at a
height y in the fluid.
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For a fluid at rest, the force due to fluid pressure always acts perpendicular to
any solid surface it touches. If there were a component of the force parallel to the
surface, as shown in Fig. 13-2, then according to Newton’s third law the solid surface
would exert a force back on the fluid that also would have a component parallel to
the surface. Such a component would cause the fluid to flow, in contradiction to our
assumption that the fluid is at rest. Thus the force due to the pressure in a fluid at
rest is always perpendicular to the surface.

Let us now calculate quantitatively how the pressure in a liquid of uniform
density varies with depth. Consider a point at a depth / below the surface of the
liquid, as shown in Fig. 13-3 (that is, the surface is a height 4 above this point). The
pressure due to the liquid at this depth /4 is due to the weight of the column of
liquid above it. Thus the force due to the weight of liquid acting on the area A is
F =mg = (pV)g = pAhg, where Ah is the volume of the column of liquid, p is
the density of the liquid (assumed to be constant), and g is the acceleration of
gravity. The pressure P due to the weight of liquid is then

_F  pAhg
Fed= 4
P = pgh. [liquid] (13-3)

Note that the area A doesn’t affect the pressure at a given depth. The fluid
pressure is directly proportional to the density of the liquid and to the depth
within the liquid. In general, the pressure at equal depths within a uniform liquid
is the same.

EXERCISE A Return to Chapter-Opening Question 1, page 339, and answer it again now.
Try to explain why you may have answered differently the first time.

Equation 13-3 tells us what the pressure is at a depth 4 in the liquid, due to the
liquid itself. But what if there is additional pressure exerted at the surface of the
liquid, such as the pressure of the atmosphere or a piston pushing down? And what
if the density of the fluid is not constant? Gases are quite compressible and hence
their density can vary significantly with depth. Liquids, too, can be compressed,
although we can often ignore the variation in density. (One exception is in the
depths of the ocean where the great weight of water above significantly compresses
the water and increases its density.) To cover these, and other cases, we now treat
the general case of determining how the pressure in a fluid varies with depth.

As shown in Fig. 13-4, let us determine the pressure at any height y above
some reference point (such as the ocean floor or the bottom of a tank or swimming
pool). Within this fluid, at the height y, we consider a tiny, flat, slablike volume of the
fluid whose area is A and whose (infinitesimal) thickness is dy, as shown. Let the
pressure acting upward on its lower surface (at height y) be P. The pressure acting
downward on the top surface of our tiny slab (at height y + dy) is designated
P + dP. The fluid pressure acting on our slab thus exerts a force equal to PA
upward on our slab and a force equal to (P + dP)A downward on it. The only
other force acting vertically on the slab is the (infinitesimal) force of gravity dF;,
which on our slab of mass dm is

dF; = (dm)g = pgdV = pgAdy,
where p is the density of the fluid at the height y. Since the fluid is assumed to be at
rest, our slab is in equilibrium so the net force on it must be zero. Therefore we have
PA — (P + dP)A — pgAdy = 0,
which when simplified becomes
dP
dy
This relation tells us how the pressure within the fluid varies with height above any

reference point. The minus sign indicates that the pressure decreases with an
increase in height; or that the pressure increases with depth (reduced height).

- —ps. (13-4)

"Now we are measuring y positive upwards, the reverse of what we did to get Eq. 13-3 where we
measured the depth (i.e. downward as positive).



If the pressure at a height y, in the fluid is P, and at height y, it is P,, then we
can integrate Eq. 13-4 to obtain

Py Y2
I P = —J pg dy
Py Y
Y2
P-B = -f pg dy, (13-5)
N

where we assume p is a function of height y: p = p(y). This is a general relation,
and we apply it now to two special cases: (1) pressure in liquids of uniform density
and (2) pressure variations in the Earth’s atmosphere.
For liquids in which any variation in density can be ignored, p = constant
and Eq. 13-5 is readily integrated:
P = P = —pgly — ) (13-6a)
For the everyday situation of a liquid in an open container—such as water in a glass, a
swimming pool, a lake, or the ocean—there is a {ree surface at the top exposed to the
atmosphere. It is convenient to measure distances from this top surface. That is, we
let /1 be the depth in the liquid where & = y, — y, as shown in Fig. 13-5. If we let y,
be the position of the top surface, then P, represents the atmospheric pressure, £, at
the top surface. Then, from Eq. 13-6a, the pressure P (: Pl) at a depth £ in the fluid is

P = P, + pgh. [A is depth in liquid] (13-6b)
Note that Eq. 13-6b is simply the liquid pressure (Eq. 13-3) plus the pressure P,
due to the atmosphere above.

IETYITRERET Pressure at a faucet. The surface of the water in a storage tank
is 30 m above a water faucet in the kitchen of a house, Fig. 13—6. Calculate the differ-
ence in water pressure between the faucet and the surface of the water in the tank.
APPROACH Water is practically incompressible, so p is constant even for
h = 30m when used in Eq. 13-6b. Only & matters; we can ignore the “route” of
the pipe and its bends.

SOLUTION We assume the atmospheric pressure at the surface of the water
in the storage tank is the same as at the faucet. So, the water pressure
difference between the faucet and the surface of the water in the tank is

AP = pgh = (10 X 10°kg/m*)(9.8 m/s?)(30m) = 2.9 X 10°N/m%

NOTE The height 4 is sometimes called the pressure head. In this Example, the
head of water is 30 m at the faucet. The very different diameters of the tank and
faucet don’t affect the result—only pressure does.
IETYIITEERI Y Force on aquarium window. Calculate the force due to
water pressure exerted on a 1.0 m X 3.0 m aquarium viewing window whose top
edge is 1.0 m below the water surface, Fig. 13-7.
APPROACH At a depth A, the pressure due to the water is given by Eq. 13—6b.
Divide the window up into thin horizontal strips of length £ = 3.0m and thick-
ness dy, as shown in Fig. 13-7. We choose a coordinate system with y = 0 at the
surface of the water and y is positive downward. (With this choice, the minus sign
in Eq. 13—6a becomes plus, or we use Eq. 13-6b with y = h.) The force due to
water pressure on each strip is dFF = PdA = pgyl dy.
SOLUTION The total force on the window is given by the integral:

Y2=20m L ) ,
f pgylLdy = 3pghy3 — 1)
yi=10m
= 1(1000 kg/m*)(9.8 m/s?)(3.0 m)[(2.0 m)? — (1.0 m)?] = 44,000 N.
NOTE To check our answer, we can do an estimate: multiply the area of the
window (3.0 mz) times the pressure at the middle of the window (h = 1.5m)

using Eq. 13-3, P = pgh = (1000 kg/m*)(9.8 m/s?)(1.5m) ~ 1.5 X 10*N/m>. So
F =PA~ (15 % 10*'N/m?)(3.0m)(1.0m) ~ 4.5 X 10*N. Good!

EXERCISE B A dam holds back a lake that is 85 m deep at the dam. If the lake is 20 km
long, how much thicker should the dam be than if the lake were smaller, only 1.0 km long?

FIGURE 13-5 Pressure at a depth
h = (y, — y) inaliquid of density p
is P = Py + pgh, where P, is the
external pressure at the liquid’s top
surface.

FIGURE 13-6 Example 13-3.

FIGURE 13-7 Example 13-4.
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Now let us apply Eq. 13-4 or 13-5 to gases. The density of gases is normally
quite small, so the difference in pressure at different heights can usually be ignored
if y, — y, is not large (which is why, in Example 13-3, we could ignore the
difference in air pressure between the faucet and the top of the storage tank).
Indeed, for most ordinary containers of gas, we can assume that the pressure is
the same throughout. However, if y, — y; is very large, we cannot make this
assumption. An interesting example is the air of Earth’s atmosphere, whose pressure at
sea level is about 1.013 X 10°N/m? and decreases slowly with altitude.

IETYITHER Elevation effect on atmospheric pressure. (a) Determine

the variation in pressure in the Earth’s atmosphere as a function of height y
above sea level, assuming g is constant and that the density of the air is
proportional to the pressure. (This last assumption is not terribly accurate, in part
because temperature and other weather effects are important.) (b) At what
elevation is the air pressure equal to half the pressure at sea level?
APPROACH We start with Eq. 13-4 and integrate it from the surface of the Earth
where y = 0and P = P,, up to height y at pressure P.In (b) we choose P = 1P,.
SOLUTION (a) We are assuming that p is proportional to P, so we can write

p P

= —>

Po I

where Py = 1.013 X 10°N/m? is atmospheric pressure at sea level and
po = 1.29kg/m> is the density of air at sea level at 0°C (Table 13-1). From the
differential change in pressure with height, Eq. 13-4, we have

an_ —pg = —P<@)g

dy By
SO

P _ o,

P B

We integrate this from y = 0 (Earth’s surface) and P = P, to the height y
where the pressure is P:

Pap _ _p [V

L,P B PogL g

In£ = —&gy.
Py 2

since InP — In Py = In(P/PR,). Then

P = Pye (pos/Py,
So, based on our assumptions, we find that the air pressure in our atmosphere
decreases approximately exponentially with height.
NOTE The atmosphere does not have a distinct top surface, so there is no natural
point from which to measure depth in the atmosphere, as we can do for a liquid.
(b) The constant (p,g/P,) has the value

pog  (129kg/m?)(9.80 m/s?) i e

— = = = 125X 10 m™.

Py (1.013 x 10°N/m?)
Then, when we set P = 3 P, in our expression derived in (a), we obtain

% = o (1.25%10~* m™")y
or, taking natural logarithms of both sides,

Iny = (=125 x 107 m™)y
so (recall Iny = —In2, Appendix A-7, Eq. ii)

y = (In2.00)/(1.25 x 10 m™) = 5550 m.
Thus, at an clevation of about 5500 m (about 18,000 ft), atmospheric pressure
drops to half what it is at sea level. It is not surprising that mountain climbers
often use oxygen tanks at very high altitudes.




13-4 Atmospheric Pressure and
Gauge Pressure

Atmospheric Pressure

The pressure of the air at a given place on Earth varies slightly according to the
weather. At sca level, the pressure of the atmosphere on average is 1.013 X 10° N/m?
(or 14.71b/in.2). This value lets us define a commonly used unit of pressure, the
atmosphere (abbreviated atm):

latm = 1.013 X 10°N/m? = 101.3kPa.

Another unit of pressure sometimes used (in meteorology and on weather maps)
is the bar, which is defined as

1bar = 1.000 X 10°N/m?

Thus standard atmospheric pressure is slightly more than 1 bar.

The pressure due to the weight of the atmosphere is exerted on all objects
immersed in this great sea of air, including our bodies. How does a human body
withstand the enormous pressure on its surface? The answer is that living cells
maintain an internal pressure that closely equals the external pressure, just as the
pressure inside a balloon closely matches the outside pressure of the atmosphere.
An automobile tire, because of its rigidity, can maintain internal pressures much
greater than the external pressure.

CONCEPTUAL EXAMPLE 13-6 | Finger holds water in a straw. You insert
a straw of length £ into a tall glass of water. You place your finger over the
top of the straw, capturing some air above the water but preventing any additional
air from getting in or out, and then you lift the straw from the water. You
find that the straw retains most of the water (see Fig. 13-8a). Does the air
in the space between your finger and the top of the water have a pressure P
that is greater than, equal to, or less than the atmospheric pressure B, outside
the straw?

RESPONSE Consider the forces on the column of water (Fig. 13-8b). Atmos-
pheric pressure outside the straw pushes upward on the water at the bottom
of the straw, gravity pulls the water downward, and the air pressure inside
the top of the straw pushes downward on the water. Since the water is in
equilibrium, the upward force due to atmospheric pressure F, must balance the
two downward forces. The only way this is possible is for the air pressure
inside the straw to be less than the atmosphere pressure outside the straw.
(When you initially remove the straw from the glass of water, a little water may
leave the bottom of the straw, thus increasing the volume of trapped air and
reducing its density and pressure.)

Gauge Pressure

It is important to note that tire gauges, and most other pressure gauges, register the
pressure above and beyond atmospheric pressure. This is called gauge pressure.
Thus, to get the absolute pressure, P, we must add the atmospheric pressure, B, to
the gauge pressure, Py :

P =P+ Ps.
If a tire gauge registers 220kPa, the absolute pressure within the tire is

220kPa + 101 kPa = 321 kPa, equivalent to about 3.2atm (2.2atm gauge
pressure).

@) PHYSICs APPLIED
Pressure on living cells

P=2 l""

h myg =
’ peAh

A
(a) (b)

FIGURE 13-8 Example 13-6.
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Brake Brake
cylinder pads
Disk,
(b) attached to wheel

FIGURE 13-9 Applications of
Pascal’s principle: (a) hydraulic lift;
(b) hydraulic brakes in a car.

) puvsics APPLIED
Hydraulic lift

) Puvsics APPLIED
Hydraulic brakes
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13-5 Pascal’s Principle

The Earth’s atmosphere exerts a pressure on all objects with which it is in contact,
including other fluids. External pressure acting on a fluid is transmitted throughout that
fluid. For instance, according to Eq. 133, the pressure due to the water at a depth of
100m below the surface of a lake is P = pgh = (1000 kg/m?)(9.8 m/s?)(100m) =
9.8 X 10°N/m> or 9.7 atm. However, the (otal pressure at this point is due to the
pressure of water plus the pressure of the air above it. Hence the total pressure (if the
lake is near sea level) is 9.7 atm + 1.0 atm = 10.7 atm. This is just one example of a
general principle attributed to the French philosopher and scientist Blaise Pascal
(1623-1662). Pascal’s principle states that if an external pressure is applied to a
confined fluid, the pressure at every point within the fluid increases by that amount.

A number of practical devices make use of Pascal’s principle. One example
is the hydraulic lift, illustrated in Fig. 13-9a, in which a small input force is used
to exert a large output force by making the area of the output piston larger than
the area of the input piston. To see how this works, we assume the input and
output pistons are at the same height (at least approximately). Then the external
input force F,,, by Pascal’s principle, increases the pressure equally throughout.
Therefore, at the same level (see Fig. 13-9a),

P out = Pl
where the input quantities are represented by the subscript “in” and the output by
“out.” Since P = F/A, we write the above equality as

Fow _ B

Aom Ain
or

Fou _ Aou

Fi Ain

The quantity F,,/F;, is called the mechanical advantage of the hydraulic lift, and it
is equal to the ratio of the areas. For example, if the area of the output piston is
20 times that of the input cylinder, the force is multiplied by a factor of 20. Thus a
force of 200 1b could lift a 4000-Ib car.

Figure 13-9b illustrates the brake system of a car. When the driver presses the
brake pedal, the pressure in the master cylinder increases. This pressure increase
occurs throughout the brake fluid, thus pushing the brake pads against the disk
attached to the car’s wheel.

13—6 Measurement of Pressure;
Gauges and the Barometer

Many devices have been invented to measure pressure, some of which are shown
in Fig. 13-10. The simplest is the open-tube manometer (Fig 13-10a) which is
a U-shaped tube partially filled with a liquid, usually mercury or water. The
pressure P being measured is related to the difference in height Ak of the two
levels of the liquid by the relation
P = By + pg Ah,

where P, is atmospheric pressure (acting on the top of the liquid in the left-hand
tube), and p is the density of the liquid. Note that the quantity pg Ak is the gauge
pressure—the amount by which P exceeds atmospheric pressure F,. If the liquid
in the left-hand column were lower than that in the right-hand column, P would
have to be less than atmospheric pressure (and A/ would be negative).

Instead of calculating the product pg Ak, sometimes only the change in height
Ah is specified. In fact, pressures are sometimes specified as so many “millimeters
of mercury” (mm-Hg) or “mm of water” (mm-H,O). The unit mm-Hg is equivalent
to a pressure of 133 N/m?, since pg Ak for Imm = 1.0 X 10 m of mercury gives

pg Ah = (13.6 X 10°kg/m*)(9.80 m/s?)(1.00 X 10~ m) = 1.33 X 10> N/m*

The unit mm-Hg is also called the torr in honor of Evangelista Torricelli
(1608-1647), a student of Galileo’s who invented the barometer (see next page).




Py

Air pressure

§ / e P Flexible I ‘
Al (Pressure being chamber§ 1§ /
measured)
I

(b) Aneroid gauge (used mainly
- = for air pressure and then
(a) Open-tube manometer called an aneroid barometer)

J

FIGURE 13-10 Pressure gauges: (a) open-tube manometer, (b) aneroid gauge, and
(c) common tire-pressure gauge.

Conversion factors among the various units of pressure (an incredible nuisance!)
are given in Table 13-2. It is important that only N/m? = Pa, the proper SI unit,
be used in calculations involving other quantities specified in SI units.

TABLE 13-2 Conversion Factors Between Different Units of Pressure

In Terms of 1Pa = 1N/m? 1 atm in Different Units
1atm = 1.013 X 10° N/m? latm = 1.013 X 10° N/m?>
= 1.013 X 10°Pa = 101.3 kPa
1bar = 1.000 X 10° N/m? 1 atm = 1.013 bar
1 dyne/cm? = 0.1 N/m? 1atm = 1.013 X 10° dyne/cm?
11b/in.2 = 6.90 X 10° N/m? 1 atm = 14.71b/in.?
11b/ft? = 47.9N/m? 1atm = 2.12 X 10°1b/ft?
1em-Hg = 1.33 X 10° N/m? Latm = 76.0 cm-Hg
1 mm-Hg = 133 N/m? 1atm = 760 mm-Hg
1 torr = 133 N/m? 1 atm = 760 torr
1 mm-H,O (4°C) = 9.80 N/m? Latm = 1.03 X 10* mm-H,0 (4°C)

Another type of pressure gauge is the aneroid gauge (Fig. 13-10b) in which
the pointer is linked to the flexible ends of an evacuated thin metal chamber. In an
clectronic gauge, the pressure may be applied to a thin metal diaphragm whose
resulting distortion is translated into an electrical signal by a transducer. A
common tire gauge is shown in Fig. 13-10c.

Atmospheric pressure can be measured by a modified kind of mercury
manometer with one end closed, called a mercury barometer (Fig. 13-11). The
glass tube is completely filled with mercury and then inverted into the bowl of
mercury. If the tube is long enough, the level of the mercury will drop, leaving a
vacuum at the top of the tube, since atmospheric pressure can support a column of
mercury only about 76 cm high (exactly 76.0 cm at standard atmospheric pressure).
That is, a column of mercury 76 cm high exerts the same pressure as the atmosphere':

P = pg Ah
= (13.6 X 10°kg/m*)(9.80 m/s?)(0.760 m) = 1.013 X 10°N/m? = 1.00 atm.

"This calculation confirms the entry in Table 13-2, 1atm = 76.0 cm-Hg.

Scale reading,
gauge pressure

Atmospheric
pressure

<+ Spring

Pressure of
air in tire

(¢) Tire gauge

PROBLEM SOLVING

n calculations, use SI units:
1Pa=1N/m*

FIGURE 13-11 A mercury

barometer, invented by Torricelli, is
shown here when the air pressure is
standard atmospheric, 76.0 cm-Hg.

P=0-

76.0 cm

P=1am

SECTION 13-6 Measurement of Pressure; Gauges and the Barometer

347



FIGURE 13-12 A water

barometer: a full tube of water is
inserted into a tub of water, keeping
the tube’s spigot at the top closed.
When the bottom end of the tube is
unplugged, some water flows out of
the tube into the tub, leaving a
vacuum between the water’s upper
surface and the spigot. Why? Because
air pressure can not support a column
of water more than 10 m high.

FIGURE 13-13 Determination of
the buoyant force.
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A calculation similar to what we just did will show that atmospheric pressure
can maintain a column of water 10.3 m high in a tube whose top is under vacuum
(Fig. 13-12). No matter how good a vacuum pump is, water cannot be made to rise
more than about 10 m using normal atmospheric pressure. To pump water out of deep
mine shafts with a vacuum pump requires multiple stages for depths greater than 10 m.
Galileo studied this problem, and his student Torricelli was the first to explain it. The
point is that a pump does not really suck water up a tube—it merely reduces the pres-
sure at the top of the tube. Atmospheric air pressure pushes the water up the tube if
the top end is at low pressure (under a vacuum), just as it is air pressure that pushes (or
maintains) the mercury 76 cm high in a barometer. [Force pumps (Section 13-14) that
push up from the bottom can exert higher pressure to push water more than 10 m high.]

CONCEPTUAL EXAMPLE 13-7 | Suction. A student suggests suction-cup shoes
for Space Shuttle astronauts working on the exterior of a spacecraft. Having just
studied this Chapter, you gently remind him of the fallacy of this plan. What is it?

RESPONSE Suction cups work by pushing out the air underneath the cup. What holds
the suction cup in place is the air pressure outside it. (This can be a substantial
force when on Earth. For example, a 10-cm-diameter suction cup has an area of
7.9 X 10°m? The force of the atmosphere on it is (7.9 X 10 m?)(1.0 X 10°N/m?) ~
800 N, about 1801bs!) But in outer space, there is no air pressure to push the suction
cup onto the spacecraft.

We sometimes mistakenly think of suction as something we actively do. For
example, we intuitively think that we pull the soda up through a straw. Instead,
what we do is lower the pressure at the top of the straw, and the atmosphere
pushes the soda up the straw.

13—7 Buoyancy and Archimedes’ Principle

Objects submerged in a fluid appear to weigh less than they do when outside the
fluid. For example, a large rock that you would have difficulty lifting off the
ground can often be easily lifted from the bottom of a stream. When the rock
breaks through the surface of the water, it suddenly seems to be much heavier.
Many objects, such as wood, float on the surface of water. These are two examples
of buoyancy. In each example, the force of gravity is acting downward. But in addi-
tion, an upward buoyant force is exerted by the liquid. The buoyant force on fish
and underwater divers (as in the Chapter-Opening photo) almost exactly balances
the force of gravity downward, and allows them to “hover” in equilibrium.

The buoyant force occurs because the pressure in a fluid increases with depth.
Thus the upward pressure on the bottom surface of a submerged object is greater
than the downward pressure on its top surface. To see this effect, consider a
cylinder of height Az whose top and bottom ends have an areca A and which is
completely submerged in a fluid of density pg, as shown in Fig. 13-13. The fluid
exerts a pressure P, = pgpgh, at the top surface of the cylinder (Eq. 13-3). The force
due to this pressure on top of the cylinderis F; = P, A = prgh; A, and it is directed
downward. Similarly, the fluid exerts an upward force on the bottom of the cylinder
equal to F, = P, A = ppgh, A. The net force on the cylinder exerted by the fluid
pressure, which is the buoyant force, Fy;, acts upward and has the magnitude

Fy = B — F = ppgA(h, — hy)
= prgA Ah
= prVg
= mgg,
where V = A Ah is the volume of the cylinder, the product pgV is the mass of
the fluid displaced, and pgVg = mpg is the weight of fluid which takes up a

volume equal to the volume of the cylinder. Thus the buoyant force on the cylinder
is equal to the weight of fluid displaced by the cylinder.




This result is valid no matter what the shape of the object. Its discovery is P
credited to Archimedes (287?-212 B.C.), and it is called Archimedes’ principle: the = |
buoyant force on an object immersed in a fluid is equal to the weight of the fluid —  Fp
displaced by that object.

By “fluid displaced,” we mean a volume of fluid equal to the submerged | ‘,\ .
volume of the object (or that part of the object that is submerged). If the object is / )
placed in a glass or tub initially filled to the brim with water, the water that flows 138 - =
over the top represents the water displaced by the object. L5 N

We can derive Archimedes’ principle in general by the following simple but = e
elegant argument. The irregularly shaped object D shown in Fig. 13-14a is acted on (a) Ymg
by the force of gravity (its weight, mg, downward) and the buoyant force, Fg,
upward. We wish to determine Fg. To do so, we next consider a body (D' in — ——
Fig. 13-14b), this time made of the fluid itself, with the same shape and size me———— ||,
as the original object, and located at the same depth. You might think of this — Fy —
body of fluid as being separated from the rest of the fluid by an imaginary
membrane. The buoyant force Fg on this body of fluid will be exactly the same l o
as that on the original object since the surrounding fluid, which exerts Fy, is
in exactly the same configuration. This body of fluid D’ is in equilibrium (the fluid e
as a whole is at rest). Therefore, Fy = m'g, where m’g is the weight of the f"l \
body of fluid. Hence the buoyant force Fj is equal to the weight of the body of —§—
fluid whose volume equals the volume of the original submerged object, which is (b) n'g
Archimedes’ principle.

Archimedes’ discovery was made by experiment. What we have done in the FIGURE 13-14
last two paragraphs is to show that Archimedes’ principle can be derived from — Archimedes’ principle.
Newton’s laws.

CONCEPTUAL EXAMPLE 13-8 | Two pails of water. Consider two identical
pails of water filled to the brim. One pail contains only water, the other has a piece
of wood floating in it. Which pail has the greater weight?

RESPONSE Both pails weigh the same. Recall Archimedes’ principle: the wood
displaces a volume of water with weight equal to the weight of the wood.
Some water will overflow the pail, but Archimedes’ principle tells us the
spilled water has weight equal to the weight of the wood object; so the pails have
the same weight.

Recovering a submerged statue. A 70-kg ancicnt statuc
lies at the bottom of the sea. Its volume is 3.0 X 10*cm®. How much force is
needed to lift it?

APPROACH The force F needed to lift the statue is equal to the statue’s weight mg
minus the buoyant force Fy. Figure 13—15 is the free-body diagram. FIGURE 13-15 Example 13-9.The
SOLUTION The buoyant force on the statue due to the water is equal to the weight of ~ foree needed to lift the statue is F.

3.0 X 10*cm® = 3.0 X 1072 m® of water (for seawater, p = 1.025 X 10’ kg/m°):

F
Iy = My,08 = PHzng &
= (1.025 X 10°kg/m*)(3.0 X 1072m*)(9.8 m/s?) .

2 £ Lt

= 3.0 X 10>N. F

i

The weight of the statue is mg = (70kg)(9.8 m/s?) = 6.9 x 10*N. Hence the
force F needed to lift it is 690N — 300N = 390 N. It is as if the statue had a \
mass of only (390N)/(9.8m/s?) = 40ke. — b
NOTE Here F = 390N is the force needed to lift the statue without accelera-

tion when it is under water. As the statue comes out of the water, the force F —
increases, reaching 690 N when the statue is fully out of the water.

mg

SECTION 13-7 Buoyancy and Archimedes’ Principle 349



Archimedes, is said to have discovered his principle in his bath while thinking
how he might determine whether the king’s new crown was pure gold or a fake.
Gold has a specific gravity of 19.3, somewhat higher than that of most metals, but
a determination of specific gravity or density is not readily done directly because,
even if the mass is known, the volume of an irregularly shaped object is not casily
calculated. However, if the object is weighed in air (= w) and also “weighed” while
it is under water (=w'), the density can be determined using Archimedes’ prin-
ciple, as the following Example shows. The quantity w’ is called the apparent
weight in water, and is what a scale reads when the object is submerged in water
(see Fig. 13-16); w’ equals the true weight (w = mg) minus the buoyant force.

IETNTITHERITN Archimedes: Is the crown gold? When a crown of mass 14.7 kg
is submerged in water, an accurate scale reads only 13.4 kg. Is the crown made of gold?
APPROACH If the crown is gold, its density and specific gravity must be very high,
SG = 19.3 (see Section 13-2 and Table 13-1). We determine the specific gravity
using Archimedes’ principle and the two free-body diagrams shown in Fig. 13-16.
SOLUTION The apparent weight of the submerged object (the crown) is w’
(what the scale reads), and is the force pulling down on the scale hook. By
Newton’s third law, w’ equals the force F that the scale exerts on the crown in
Fig. 13-16b. The sum of the forces on the crown is zero, so w' equals the actual
weight w (= mg) minus the buoyant force Fy:

w = Fp = w— F
S0

w—w = F.
Let V be the volume of the completely submerged object and pg, its density (so
poV isits mass), and let pg be the density of the fluid (water). Then (pF V)g is the
weight of fluid displaced (= FB). Now we can write

We divide these two equations and obtain
w___ poVE _ po,

w—w  prVg  pr
We see that w/(w — w') is equal to the specific gravity of the object if the fluid
in which it is submerged is water (pp = 1.00 X 10°kg/m®). Thus

o w (14.7ke)g _ 147kg

puo  w—w  (147kg — 134kg)g ~ 13kg
This corresponds to a density of 11,300 kg/m?. The crown is not gold, but seems
to be made of lead (see Table 13-1).

= 11.3.

FIGURE 13-16 (a) A scale reads the mass of an object --
in air—in this case the crown of Example 13-10.

All objects are at rest, so the tension Fr in the w =
connecting cord equals the weight w of the object: 147k g |

Fr = mg. We show the free-body diagram of the

crown, and F is what causes the scale reading (it is =l
equal to the net downward force on the scale, by Qs =
Newton’s third law). (b) Submerged, the crown has
an additional force on it, the buoyant force Fg.
The net force is zero,so Fr + Fg = mg (= w). 1 By =-mg)

w' N
(134kg)g

The scale now reads m’ = 13.4 kg, where m’ is
related to the effective weight by w' = m'g.
Thus Fp = w' = w — Fg.

M

W= mg
(b)

(a)
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Archimedes’ principle applies equally well to objects that float, such as
wood. In general, an object floats on a fluid if its density (po) is less than that of
the fluid (pg). This is readily seen from Fig. 13-17a, where a submerged log will
experience a net upward force and float to the surface if F > mg; that is, if
peVg > po Vg or pr > po. At equilibrium—that is, when floating—the buoyant
force on an object has magnitude equal to the weight of the object. For example, a
log whose specific gravity is 0.60 and whose volume is 2.0 m® has a mass m = poV =
(0.60 x 10°kg/m?)(2.0m®) = 1200 kg. If the log is fully submerged, it will displace
a mass of water mp = ppV = (1000 kg/m*)(2.0 m®) = 2000 kg. Hence the buoyant
force on the log will be greater than its weight, and it will float upward to the surface
(Fig. 13-17). The log will come to equilibrium when it displaces 1200 kg of water, which
means that 1.2 m? of its volume will be submerged. This 1.2 m® corresponds to 60%
of the volume of the log (1.2/2.0 = 0.60), so 60% of the log is submerged.

In general when an object floats, we have F = mg, which we can write as (sec
Fig. 13-18)

F = mg
prVaispi& = PoVos,
where Vg is the full volume of the object and Vg, is the volume of fluid it
displaces (= volume submerged). Thus

Vdispl _ fl;)

Vo Pr
That is, the fraction of the object submerged is given by the ratio of the object’s
density to that of the fluid. If the fluid is water, this fraction equals the specific
gravity of the object.

IETYITEESIEM Hydrometer calibration. A hydrometer is a simple instrument

used to measure the specific gravity of a liquid by indicating how deeply the
instrument sinks in the liquid. A particular hydrometer (Fig. 13-19) consists of a glass
tube, weighted at the bottom, which is 25.0 cm long and 2.00 cm? in cross-sectional
area, and has a mass of 45.0 g. How far from the end should the 1.000 mark be placed?

APPROACH The hydrometer will float in water if its density p is less than
pw = 1.000 g/cm® the density of water. The fraction of the hydrometer
submerged (‘/::Iisplaced/vlolal) is equal to the density ratio p/py,.

SOLUTION The hydrometer has an overall density

— M & = 0.900 /cm3

PV T Rooem)(@50em) e
Thus, when placed in water, it will come to equilibrium when 0.900 of its volume
is submerged. Since it is of uniform cross section, (0.900)(25.0cm) = 22.5cm of
its length will be submerged. The specific gravity of water is defined to be 1.000,

so the mark should be placed 22.5 cm from the weighted end.

EXERCISE C On the hydrometer of Example 13-11, will the marks above the 1.000 mark
represent higher or lower values of density of the liquid in which it is submerged?

Archimedes’ principle is also useful in geology. According to the theories of
plate tectonics and continental drift, the continents float on a fluid “sea” of slightly
deformable rock (mantle rock). Some interesting calculations can be done using
very simple models, which we consider in the Problems at the end of the Chapter.

Air is a fluid, and it too exerts a buoyant force. Ordinary objects weigh less in air
than they do if weighed in a vacuum. Because the density of air is so small, the effect
for ordinary solids is slight. There are objects, however, that float in air—helium-filled
balloons, for example, because the density of helium is less than the density of air.

EXERCISE D Which of the following objects, submerged in water, experiences the largest
magnitude of the buoyant force? (a) A 1-kg helium balloon; (b) 1 kg of wood; (¢) 1 kg of
ice; (d) 1 kg of iron; (e) all the same.

Fiy =(2000 kg)g

gy = 1200 kg
V=20m? ]

(a) mg = (1200 kg)g

Fg= (1200 kg)g

(b)

FIGURE 13-17 (a) The fully
submerged log accelerates upward
because F > mg. It comes to
equilibrium (b) when =F = 0, so
Fs = mg = (1200 kg)g. Thus 1200 kg,
or 1.2 m?, of water is displaced.

FIGURE 13-18 An object floating
in equilibrium: Fg = mg.

Fy=peVgsp 2

mg = poVpg

FIGURE 13-19 A hydrometer.
Example 13-11.

1000

|
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FIGURE 13-20 Example 13-12.

FIGURE 13-21 (a) Streamline, or
laminar, flow; (b) turbulent flow.
The photos show airflow around an
airfoil or airplane wing (more in
Section 13-10).
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EXERCISE E Which of the following objects, submerged in water, experiences the largest
magnitude of the buoyant force? (a) A 1-m* helium balloon; (b) 1 m* of wood; (¢) 1 m? of
ice; (d) 1 m® of iron; (e) all the same.

Helium balloon. What volume V of helium is needed if a
balloon is to lift a load of 180 kg (including the weight of the empty balloon)?

APPROACH The buoyant force on the helium balloon, Fy, which is equal to the
weight of displaced air, must be at least equal to the weight of the helium plus
the weight of the balloon and load (Fig. 13-20). Table 13—1 gives the density of
helium as 0.179 kg/m°.

SOLUTION The buoyant force must have a minimum value of
Fy = (my. + 180kg)g.
This equation can be written in terms of density using Archimedes’ principle:

Pair Vg = (pHeV + 180 kg)g
Solving now for V, we find

180 kg 180 kg P
V = = 3 = le0m’.
Pair — Pue  (1.29kg/m’ — 0.179 kg/m’)
NOTE This is the minimum volume needed near the Earth’s surface, where
pair = 1.29kg/m’. To reach a high altitude, a greater volume would be needed
since the density of air decreases with altitude.

13-8 Fluids in Motion; Flow Rate
and the Equation of Continuity

We now turn to the subject of fluids in motion, which is called fluid dynamics, or
(especially if the fluid is water) hydrodynamics.

We can distinguish two main types of fluid flow. If the flow is smooth, such
that neighboring layers of the fluid slide by each other smoothly, the flow is said to
be streamline or laminar flow." In streamline flow, each particle of the fluid follows
a smooth path, called a streamline, and these paths do not cross one another
(Fig. 13-21a). Above a certain speed, the flow becomes turbulent. Turbulent flow
is characterized by erratic, small, whirlpool-like circles called eddy currents or
eddies (Fig. 13-21b). Eddies absorb a great deal of energy, and although a certain
amount of internal friction called viscosity is present even during streamline flow,
it is much greater when the flow is turbulent. A few tiny drops of ink or food
coloring dropped into a moving liquid can quickly reveal whether the flow is
streamline or turbulent.

"The word laminar means “in layers.”




Let us consider the steady laminar flow of a fluid through an enclosed tube or
pipe as shown in Fig. 13-22. First we determine how the speed of the fluid changes
when the size of the tube changes. The mass flow rate is defined as the mass Am of
fluid that passes a given point per unit time At:

Am

At

In Fig. 13-22, the volume of fluid passing point 1 (that is, through area A;) in a

time Af is A; Af;, where A is the distance the fluid moves in time At. Since the

velocity' of fluid passing point 1is v; = Af;/At, the mass flow rate through area A, is
Amy — p AV, p AN,

A T A A A

where AV, = A Al is the volume of mass Am,, and p, is the fluid density.

Similarly, at point 2 (through area A,), the flow rate is p, A, v,. Since no fluid flows

in or out the sides, the flow rates through A; and A, must be equal. Thus, since

mass flow rate =

Am;  Am,
Ar A
then
prAY = pr Ay, (13-7a)

This is called the equation of continuity.

If the fluid is incompressible (p doesn’t change with pressure), which is an
excellent approximation for liquids under most circumstances (and sometimes for
gases as well), then p;, = p,, and the equation of continuity becomes

Ay = Ay, [p = constant] (13-7b)

The product Av represents the volume rate of flow (volume of fluid passing a
given point per second), since AV/Ar = A Al/At = Av, which in SI units is m*/s.
Equation 13-7b tells us that where the cross-sectional area is large, the velocity is
small, and where the area is small, the velocity is large. That this is reasonable can
be seen by looking at a river. A river flows slowly through a meadow where it is
broad, but speeds up to torrential speed when passing through a narrow gorge.

D CVIJINETHES ESTIMATE | Blood flow. In humans, blood flows from the

heart into the aorta, from which it passes into the major arteries. These branch into
the small arteries (arterioles), which in turn branch into myriads of tiny capillaries,
Fig. 13-23. The blood returns to the heart via the veins. The radius of the aorta is
about 1.2cm, and the blood passing through it has a speed of about 40 cm/s. A
typical capillary has a radius of about 4 X 10™* ¢m, and blood flows through it at a
speed of about 5 X 107* m/s. Estimate the number of capillaries that are in the body.

APPROACH We assume the density of blood doesn’t vary significantly from the
aorta to the capillaries. By the equation of continuity, the volume flow rate in
the aorta must equal the volume flow rate through all the capillaries. The total
area of all the capillaries is given by the area of one capillary multiplied by the
total number N of capillaries.

SOLUTION Let A, be the area of the aorta and A, be the area of all the capil-
laries through which blood flows. Then A, = Nrg,,, where rg, ~ 4 X 107*cm
is the estimated average radius of one capillary. From the equation of continuity
(Eq. 13-7b), we have

nA;, = v A
’U2N7Tré,p = vlﬂ'rgona
S0 5
W= ﬂr;;m _ ( 0.4013/s )(1.2x 1(:2m>2 7% 109,
Uy TFeap 5xX107%m/s/\ 4 X 10 m

or on the order of 10 billion capillaries.

"If there were no viscosity, the velocity would be the same across a cross section of the tube. Real fluids
have viscosity, and this internal friction causes different layers of the fluid to flow at different speeds. In
this case v, and v, represent the average speeds at each cross section.

FIGURE 13-22 Fluid flow through
a pipe of varying diameter.
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Blood flow

FIGURE 13-23
Human circulatory system.

Arteries

Head

v = valves
¢ = capillaries
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FIGURE 13-24 Example 13-14.

FIGURE 13-25 Fluid flow: for
derivation of Bernoulli’s equation.
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IETYITHERITE Heating duct to a room. What area must a heating duct

have if air moving 3.0 m/s along it can replenish the air every 15 minutes in a
room of volume 300 m*? Assume the air’s density remains constant.

APPROACH We apply the equation of continuity at constant density, Eq. 13-7b,
to the air that flows through the duct (point 1 in Fig. 13-24) and then into the
room (point 2). The volume flow rate in the room equals the volume of the room
divided by the 15-min replenishing time.
SOLUTION Consider the room as a large section of the duct, Fig. 13-24, and
think of air equal to the volume of the room as passing by point 2 in
t = 15min = 900s. Reasoning in the same way we did to obtain Eq. 13-7a
(changing Af to t), we write v, = &/t so A,v, = A4/t = V,/t, where V,
is the volume of the room. Then the equation of continuity becomes
Ajvy = Ayv, = Vo/t and
Vi 300 m? 5
wi = (BOm/s)900s) - om
If the duct is square, then each side has length £ = VA =033m, or 33cm.
A rectangular duct 20 cm X S5 cm will also do.

A =

13-9 Bernoulli's Equation

Have you ever wondered why an airplane can fly, or how a sailboat can move
against the wind? These are examples of a principle worked out by Daniel
Bernoulli (1700-1782) concerning fluids in motion. In essence, Bernoulli’s principle
states that where the velocity of a fluid is high, the pressure is low, and where the
velocity is low, the pressure is high. For example, if the pressures in the fluid at
points 1 and 2 of Fig. 13-22 are measured, it will be found that the pressure is lower
at point 2, where the velocity is greater, than it is at point 1, where the velocity is
smaller. At first glance, this might seem strange; you might expect that the greater
speed at point 2 would imply a higher pressure. But this cannot be the case. For if
the pressure in the fluid at point 2 were higher than at point 1, this higher pressure
would slow the fluid down, whereas in fact it has sped up in going from point 1 to
point 2. Thus the pressure at point 2 must be less than at point 1, to be consistent
with the fact that the fluid accelerates.

To help clarify any misconceptions, a faster fluid would exert a greater force on
an obstacle placed in its path. But that is not what we mean by the pressure in a
fluid, and besides we are not considering obstacles that interrupt the flow. We are
examining smooth streamline flow. The fluid pressure is exerted on the walls of a
tube or pipe, or on the surface of any material the fluid passes over.

Bernoulli developed an equation that expresses this principle quantitatively. To
derive Bernoulli’s equation, we assume the flow is steady and laminar, the fluid is
incompressible, and the viscosity is small enough to be ignored. To be general, we
assume the fluid is flowing in a tube of nonuniform cross section that varies in height
above some reference level, Fig. 13-25. We will consider the volume of fluid shown in
color and calculate the work done to move it from the position shown in Fig. 13-25a
to that shown in Fig. 13-25b. In this process, fluid entering area A, flows a distance
AZ, and forces the fluid at area A, to move a distance Af,. The fluid to the left of
area A, exerts a pressure P, on our section of fluid and does an amount of work

W, = FAL = PLA AL
At area A,, the work done on our cross section of fluid is

W, = =P, A, AL,
The negative sign is present because the force exerted on the fluid is opposite to the
motion (thus the fluid shown in color does work on the fluid to the right of point 2).

Work is also done on the fluid by the force of gravity. The net effect of the process
shown in Fig. 13-25 is to move a mass m of volume A, Af; (= A, Af,, since the




fluid is incompressible) from point 1 to point 2, so the work done by gravity is

W = —mg(y, = »)s
where y; and y, are heights of the center of the tube above some (arbitrary) refer-
ence level. In the case shown in Fig. 13-25, this term is negative since the motion is
uphill against the force of gravity. The net work W done on the fluid is thus

W =W +W+W
w P A Ay — P A, AL, — mgy, + mgy,.
According to the work-energy principle (Section 7-4), the net work done on a
system is equal to its change in kinetic energy. Hence

Tmv} — tmwl = PLA AL — PLA, AL — mgy, + mgy,.
The mass m has volume A;Af; = A, Al, for an incompressible fluid. Thus we can
substitute m = pA; A, = pA, Al,, and then divide through by A, Al = A, AL,
to obtain

103 = ypvi = P — P = pgy + pgyi.
which we rearrange to get

8 AF %pv% + pgy = P + %pv% + pgy:. (13-8) Bernoulli’s equation

This is Bernoulli’s equation. Since points 1 and 2 can be any two points along a
tube of flow, Bernoulli’s equation can be written as

P + 1p® + pgy = constant

at every point in the fluid, where y is the height of the center of the tube above a
fixed reference level. [Note that if there is no flow (v, = v, = 0), then Eq. 13-8
reduces to the hydrostatic equation, Eq. 13-6a: P, — P, = —pg(y, — yl).]

Bernoulli’s equation is an expression of the law of energy conservation, since
we derived it from the work-energy principle.

EXERCISE F As water in a level pipe passes from a narrow cross section of pipe to a wider
cross section, how does the pressure against the walls change?

JETYITEESITH Flow and pressure in a hot-water heating system. Water

circulates throughout a house in a hot-water heating system. If the water is
pumped at a speed of 0.50 m/s through a 4.0-cm-diameter pipe in the basement
under a pressure of 3.0 atm, what will be the flow speed and pressure in a
2.6-cm-diameter pipe on the second floor 5.0 m above? Assume the pipes do not
divide into branches.

APPROACH We use the equation of continuity at constant density to determine the
flow speed on the second floor, and then Bernoulli’s equation to find the pressure.

SOLUTION We take v, in the equation of continuity, Eq. 13-7, as the flow speed
on the second floor, and v; as the flow speed in the basement. Noting that the
arcas are proportional to the radii squared (A4 = ﬂ'rz), we obtain

2 2
v = le—fl = v::gl = (O.SOm/s)%
To find the pressure on the second floor, we use Bernoulli’s equation (Eq. 13-8):
Pyo= P+ pgly — ») + 3p(vl — )
(3.0 X 10°N/m?) + (1.0 X 10°kg/m*)(9.8 m/s?)(—5.0m)
+ 3(1.0 X 10°kg/m*)[(0.50 m/s)* — (1.2m/s)?]
(3.0 X 10°N/m?) — (4.9 X 10*N/m?) — (6.0 X 10 N/m?)
2.5 X 10°N/m?> = 2.5atm.

= 12m/s.

NOTE The velocity term contributes very little in this case.

SECTION 13-9  Bernoulli's Equation
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FIGURE 13-26 Torricelli’s
theorem: v, = \/2g(y; — ).

FIGURE 13-27 Examples of
Bernoulli’s principle: (a) atomizer,
(b) Ping-Pong ball in jet of air.
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FIGURE 13-28 Lift on an airplane
wing. We are in the reference frame
of the wing, seeing the air flow by.

Lower pressure

@rpHYsics apPLIED
Airplanes and dynamic lift
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13-10 Applications of Bernoulli’s Principle:
Torricelli, Airplanes, Baseballs, TIA

Bernoulli’s equation can be applied to many situations. One example is to calculate
the velocity, v,, of a liquid flowing out of a spigot at the bottom of a reservoir,
Fig. 13-26. We choose point 2 in Eq. 13-8 to be the top surface of the liquid.
Assuming the diameter of the reservoir is large compared to that of the spigot, v,
will be almost zero. Points 1 (the spigot) and 2 (top surface) are open to the
atmosphere, so the pressure at both points is equal to atmospheric pressure:
P, = P,. Then Bernoulli’s equation becomes

3P0 + pgy = pgy;

v = v2g(YZ - }’1)4

This result is called Torricelli’s theorem. Although it is seen to be a special case of
Bernoulli’s equation, it was discovered a century earlier by Evangelista Torricelli.
Equation 13-9 tells us that the liquid leaves the spigot with the same speed that a
freely falling object would attain if falling from the same height. This should not be
too surprising since Bernoulli’s equation relies on the conservation of energy.
Another special case of Bernoulli’s equation arises when a fluid is flowing hori-
zontally with no significant change in height; that is, y; = y,. Then Eq. 13-8 becomes

P+ Aot = P+ Aok, (13-10)

which tells us quantitatively that the speed is high where the pressure is low, and
vice versa. It explains many common phenomena, some of which are illustrated in
Figs. 13-27 to 13-32. The pressure in the air blown at high speed across the top of
the vertical tube of a perfume atomizer (Fig. 13-27a) is less than the normal air
pressure acting on the surface of the liquid in the bowl. Thus atmospheric pressure
in the bowl pushes the perfume up the tube because of the lower pressure at the
top. A Ping-Pong ball can be made to float above a blowing jet of air (some
vacuum cleaners can blow air), Fig. 13-27b; if the ball begins to leave the jet of air,
the higher pressure in the still air outside the jet pushes the ball back in.

or
13-9)

EXERCISE G Return to Chapter-Opening Question 2, page 339, and answer it again now.
Try to explain why you may have answered differently the first time. Try it and see.

Airplane Wings and Dynamic Lift

Airplanes experience a “lift” force on their wings, keeping them up in the air, if they
are moving at a sufficiently high speed relative to the air and the wing is tilted
upward at a small angle (the “attack angle”), as in Fig. 13-28, where streamlines of
air are shown rushing by the wing. (We are in the reference frame of the wing, as if
sitting on the wing.) The upward tilt, as well as the rounded upper surface of the
wing, causes the streamlines to be forced upward and to be crowded together above
the wing. The area for air flow between any two streamlines is reduced as the
streamlines get closer together, so from the equation of continuity (Alv1 = A, vz),
the air speed increases above the wing where the streamlines are squished together.
(Recall also how the crowded streamlines in a pipe constriction, Fig. 13-22, indicate
the velocity is higher in the constriction.) Because the air speed is greater above the
wing than below it, the pressure above the wing is less than the pressure below the
wing (Bernoulli’s principle). Hence there is a net upward force on the wing called
dynamic lift. Experiments show that the speed of air above the wing can even be
double the speed of the air below it. (Friction between the air and wing exerts a drag

force, toward the rear, which must be overcome by the plane’s engines.)

A flat wing, or one with symmetric cross section, will experience lift as long as
the front of the wing is tilted upward (attack angle). The wing shown in Fig. 13-28
can experience lift even if the attack angle is zero, because the rounded upper
surface deflects air up, squeezing the streamlines together. Airplanes can fly upside
down, experiencing lift, if the attack angle is sufficient to deflect streamlines up
and closer together.



Our picture considers streamlines; but if the attack angle is larger than about
15°, turbulence sets in (Fig. 13-21b) leading to greater drag and less lift, causing
the wing to “stall” and the plane to drop.

From another point of view, the upward tilt of a wing means the air moving
horizontally in front of the wing is deflected downward; the change in momentum
of the rebounding air molecules results in an upward force on the wing (Newton’s
third law).

Sailboats

A sailboat can move against the wind, with the aid of the Bernoulli effect, by setting
the sails at an angle, as shown in Fig. 13-29. The air travels rapidly over the bulging
front surface of the sail, and the relatively still air filling the sail exerts a greater
pressure behind the sail, resulting in a net force on the sail, F,inq - This force would tend
to make the boat move sideways if it weren’t for the keel that extends vertically down-
ward beneath the water: the water exerts a force (f*‘water) on the keel nearly perpendicular

to the keel. The resultant of these two forces (Fy) is almost directly forward as shown.

Baseball Curve

Why a spinning pitched baseball (or tennis ball) curves can also be explained using
Bernoulli’s principle. It is simplest if we put ourselves in the reference frame of the
ball, with the air rushing by, just as we did for the airplane wing. Suppose the ball
is rotating counterclockwise as seen from above, Fig. 13-30. A thin layer of air
(“boundary layer”) is being dragged around by the ball. We are looking down on
the ball, and at point A in Fig. 13-30, this boundary layer tends to slow down the
oncoming air. At point B, the air rotating with the ball adds its speed to that
of the oncoming air, so the air speed is higher at B than at A. The higher speed
at B means the pressure is lower at B than at A, resulting in a net force toward B.
The ball’s path curves toward the left (as seen by the pitcher).

Lack of Blood to the Brain—TIA

In medicine, one of many applications of Bernoulli’s principle is to explain a TIA, a
transient ischemic attack (meaning a temporary lack of blood supply to the brain). A
person suffering a TIA may experience symptoms such as dizziness, double vision,
headache, and weakness of the limbs. A TIA can occur as follows. Blood normally
flows up to the brain at the back of the head via the two vertebral arteries—one
going up each side of the neck—which meet to form the basilar artery just below the
brain, as shown in Fig. 13-31. The vertebral arteries issue from the subclavian arteries,
as shown, before the latter pass to the arms. When an arm is exercised vigorously,
blood flow increases to meet the needs of the arm’s muscles. If the subclavian artery
on one side of the body is partially blocked, however, as in arteriosclerosis (hardening
of the arteries), the blood velocity will have to be higher on that side to supply the
needed blood. (Recall the equation of continuity: smaller arca means larger velocity
for the same flow rate, Egs. 13-7.) The increased blood velocity past the opening to
the vertebral artery results in lower pressure (Bernoulli’s principle). Thus blood rising
in the vertebral artery on the “good” side at normal pressure can be diverted down
into the other vertebral artery because of the low pressure on that side, instead of
passing upward to the brain. Hence the blood supply to the brain is reduced.

Other Applications

A venturi tube is essentially a pipe with a narrow constriction (the throat). The
flowing fluid speeds up as it passes through this constriction, so the pressure is lower
in the throat. A venturi meter, Fig. 13-32, is used to measure the flow speed of
gases and liquids, including blood velocity in arteries.

Why does smoke go up a chimney? It’s partly because hot air rises (it’s less
dense and therefore buoyant). But Bernoulli’s principle also plays a role. When
wind blows across the top of a chimney, the pressure is less there than inside the
house. Hence, air and smoke are pushed up the chimney by the higher indoor
pressure. Even on an apparently still night there is usually enough ambient air flow
at the top of a chimney to assist upward flow of smoke.

Mainsail

FIGURE 13-29 Sailboat sailing
against the wind.

Home plate

FIGURE 13-30 Looking down on a
pitched baseball heading toward home
plate. We are in the reference frame of
the baseball, with the air flowing by.

Basilar
anery
(to brain)
( )
Left _/ Right
vertebral - | . vertebral
artery artery
Subclavian . Suhclavian
artery . / anery
Constriction
Aorta
FIGURE 13-31 Rear of the head

and shoulders showing arteries leading
to the brain and to the arms. High
blood velocity past the constriction in
the left subclavian artery causes low
pressure in the left vertebral artery, in
which a reverse (downward) blood
flow can then occur, resulting in a TIA,
a loss of blood to the brain.

FIGURE 13-32 Venturi meter.
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Bernoulli’s equation ignores the effects of friction (viscosity) and the
compressibility of the fluid. The energy that is transformed to internal (or potential)
energy due to compression and to thermal energy by friction can be taken into
account by adding terms to Eq. 13-8. These terms are difficult to calculate
theoretically and are normally determined empirically. They do not significantly
alter the explanations for the phenomena described above.

*13—11 Viscosity

[ Moving plate Ve ey 7
. => Velocity T
—
Fluid = gradient |

l Stationary plate |

FIGURE 13-33
Determination of viscosity.

TABLE 13-3
Coefficients of Viscosity
Fluid Coefficient
(temperature of Viscosity,
in °C) n (Pa-s)f
Water (0°) 1.8 x 1073
(20°) 1.0 X 1073
(100°) (03 5% 107

Whole blood (37°) ~4 X 1073
Blood plasma (37°) ~1.5 X 1073
Ethyl alcohol 20°) 12 x 1073

Engine oil (30°)

(SAE 10) 200 x 1073
Glycerine (20°) 1500 x 1073
Air (20°) 0.018 x 1073
Hydrogen (0°) 0.009 X 1073

Water vapor (100°)  0.013 X 1073
1Pa-s = 10P = 1000 cP.

Real fluids have a certain amount of internal friction called viscosity, as mentioned
in Section 13-8. Viscosity exists in both liquids and gases, and is essentially a
frictional force between adjacent layers of fluid as the layers move past one
another. In liquids, viscosity is due to the electrical cohesive forces between the
molecules. In gases, it arises from collisions between the molecules.

The viscosity of different fluids can be expressed quantitatively by a coefficient of
wviscosity, 1 (the Greek lowercase letter eta), which is defined in the following way. A
thin layer of fluid is placed between two flat plates. One plate is stationary and the
other is made to move, Fig. 13-33. The fluid directly in contact with each plate is held
to the surface by the adhesive force between the molecules of the liquid and those of
the plate. Thus the upper surface of the fluid moves with the same speed v as the
upper plate, whereas the fluid in contact with the stationary plate remains stationary.
The stationary layer of fluid retards the flow of the layer just above it, which in turn
retards the flow of the next layer, and so on. Thus the velocity varies continuously
from O to v, as shown. The increase in velocity divided by the distance over which this
change is made—equal to v/f—is called the velocity gradient. To move the upper
plate requires a force, which you can verify by moving a flat plate across a puddle of
syrup on a table. For a given fluid, it is found that the force required, F, is propor-
tional to the area of fluid in contact with each plate, A, and to the speed, v, and is
inversely proportional to the separation, £, of the plates: F o vA/{. For different
{luids, the more viscous the fluid, the greater is the required force. Hence the propor-
tionality constant for this equation is defined as the coefficient of viscosity, 7:

F=ngA %
Solving for 7, we find n = Ff/vA. The SI unit for n is N-s/m?=
Pa-s (pascal-second). In the cgs system, the unit is dyne-s/cm?, which is called a
poise (P). Viscosities are often given in centipoise (1 cP = 1072 P). Table 13-3 lists
the coefficient of viscosity for various fluids. The temperature is also specified,
since it has a strong effect; the viscosity of liquids such as motor oil, for example,
decreases rapidly as temperature increases.”

(13-11)

*13—12 Flow in Tubes: Poiseuille’s

358 CHAPTER 13 Fluids

Equation, Blood Flow

If a fluid had no viscosity, it could flow through a level tube or pipe without a force
being applied. Viscosity acts like a sort of friction (between fluid layers moving at
slightly ditferent speeds), so a pressure difference between the ends of a level tube
is necessary for the steady flow of any real f{luid, be it water or oil in a pipe, or
blood in the circulatory system of a human.

The French scientist J. L. Poiscuille (1799-1869), who was interested in the
physics of blood circulation (and after whom the poise is named), determined how
the variables affect the flow rate of an incompressible fluid undergoing laminar
flow in a cylindrical tube. His result, known as Poiseuille’s equation, is:

7RY(P, — P,)
Q St > 13-12)
where R is the inside radius of the tube, £ is the tube length, P, — P, is the pressure

"The Society of Automotive Engineers assigns numbers to represent the viscosity of oils: 30 weight
(SAE 30) is more viscous than 10 weight. Multigrade oils, such as 20-50, are designed to maintain
viscosity as temperature increases; 20-50 means the oil is 20 wt when cool but is like a 50-wt pure oil
when it is hot (engine running temperature).



difference between the ends, 7 is the coefficient of viscosity, and Q is the volume
rate of flow (volume of fluid flowing past a given point per unit time which in SI
has units of m*/s). Equation 1312 applies only to laminar flow.

Poiscuille’s equation tells us that the flow rate Q is directly proportional to the
“pressure gradient,” (P, — B,)/{, and it is inversely proportional to the viscosity
of the fluid. This is just what we might expect. It may be surprising, however,
that Q also depends on the fourth power of the tube’s radius. This means that for
the same pressure gradient, if the tube radius is halved, the flow rate is decreased
by a factor of 16! Thus the rate of flow, or alternately the pressure required to
maintain a given flow rate, is greatly affected by only a small change in tube radius.

An interesting example of this R* dependence is blood flow in the human body. @ PHYSICS APPLIED
Poiseuille’s equation is valid only for the streamline flow of an incompressible fluid. Blood flow
So it cannot be precisely accurate for blood whose flow is not without turbulence
and that contains blood cells (whose diameter is almost equal to that of a capillary).
Nonetheless, Poiseuille’s equation does give a reasonable first approximation. Because
the radius of arteries is reduced as a result of arteriosclerosis (thickening and
hardening of artery walls) and by cholesterol buildup, the pressure gradient must be
increased to maintain the same flow rate. If the radius is reduced by half, the heart
would have to increase the pressure by a factor of about 2* = 16 in order to maintain
the same blood-flow rate. The heart must work much harder under these conditions,
but usually cannot maintain the original flow rate. Thus, high blood pressure is an indi-
cation both that the heart is working harder and that the blood-flow rate is reduced.

*13-13 Surface Tension and Capillarity

The surface of a liquid at rest behaves in an interesting way, almost as if it were a
stretched membrane under tension. For example, a drop of water on the end of
a dripping faucet, or hanging from a thin branch in the early morning dew
(Fig. 13-34), forms into a nearly spherical shape as if it were a tiny balloon filled
with water. A steel needle can be made to float on the surface of water even
though it is denser than the water. The surface of a liquid acts like it is under
tension, and this tension, acting along the surface, arises from the attractive forces
between the molecules. This effect is called surface tension. More specifically, a
quantity called the surface tension, v (the Greek letter gamma), is defined as the
force F per unit length £ that acts perpendicular to any line or cut in a liquid
surface, tending to pull the surface closed:

FIGURE 13-34 Spherical water
F droplets, dew on a blade of grass.

vy - (13-13)

To understand this, consider the U-shaped apparatus shown in Fig. 13-35

which encloses a thin film of liquid. Because of surface tension, a force F is TABLE 13-4 .
required to pull the movable wire and thus increase the surface area of the liquid. g:rbf:tc;:‘::smn of Some
The liquid contained by the wire apparatus is a thin film having both a top and a
bottom surface. Hence the total length of the surface being increased is 2¢, and Surface
the surface tension is ¥ = F/2{. A delicate apparatus of this type can be used to Substance Tension
measure the surface tension of various liquids. The surface tension of water is (temperature in °C) (i)
0.072 N/m at 20°C. Table 13-4 gives the values for several substances. Note that Mercury (20°) 0.44
temperature has a considerable effect on the surface tension. Blood, whole (37°) 0.058
Blood, plasma (37°) 0.073
4 FIGURE 13-35 U-shaped wire Alcohol, ethyl (20°) 0.023
apparatus holding a f'ilm of liquid to Water (0°) 0.076
T ¥ measure surface tension (¥ = F/240). 20°) 0.072
£ frm—F (100°) 0.059
l s Y » Benzene (20°) 0.029
) Liquid Y Wike Soap solution (020") ~0.025
(a) Top view (b) Edge view (magnified) Oxjeen (715 Wits
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FIGURE 13-36 A water strider.

[¢

Water Mercury J

— A

(a) (b)
FIGURE 13-38 (a) Water “wets”

the surface of glass, whereas (b)
mercury does not “wet” the glass.

FIGURE 13-39 Capillarity.

(a) (b)
Glass tube Glass tube
in water in mercury
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Because of surface tension, some insects (Fig. 13-36) can walk on water, and
objects more dense than water, such as a steel needle, can float on the surface.
Figure 13-37a shows how the surface tension can support the weight w of an
object. Actually, the object sinks slightly into the fluid, so w is the “effective
weight” of that object—its true weight less the buoyant force.

FIGURE 13-37 Surface tension
acting on (a) a sphere, and (b) an
insect leg. Example 13-16. (a) w (b)

Insect walks on water. The base of an
insect’s leg is approximately spherical in shape, with a radius of about
2.0 X 107> m. The 0.0030-g mass of the insect is supported equally by its six legs.
Estimate the angle 6 (see Fig. 13-37) for an insect on the surface of water.
Assume the water temperature is 20°C.

APPROACH Since the insect is in equilibrium, the upward surface tension force
is equal to the pull of gravity downward on each leg. We ignore the buoyant
force for this estimate.

SOLUTION For cach leg, we assume the surface tension force acts all around a
circle of radius r, at an angle 6, as shown in Fig. 13-37a. Only the vertical compo-
nent, ycos#f, acts to balance the weight mg. So we set the length £ in Eq. 13—13
equal to the circumference of the circle, £ ~ 27r. Then the net upward force due
to surface tension is F, ~ (ycos)l ~ 2mrycosf. We set this surface tension
force equal to one-sixth the weight of the insect since it has six legs:

27rycosd ~ tmg
(6.28)(2.0 X 10 m)(0.072N/m) cos§ ~ (3.0 X 107°kg)(9.8 m/s?)
0.49
~ —— = 0.54.
cos @ 090 0

So 6 ~ 57°. If cos @ had come out greater than 1, the surface tension would not
be great enough to support the insect’s weight.

NOTE Our estimate ignored the buoyant force and ignored any difference
between the radius of the insect’s “foot” and the radius of the surface depression.

Soaps and detergents lower the surface tension of water. This is desirable for
washing and cleaning since the high surface tension of pure water prevents it from
penetrating easily between the fibers of material and into tiny crevices. Substances
that reduce the surface tension of a liquid are called surfactants.

Surface tension plays a role in another interesting phenomenon, capillarity. It is a
common observation that water in a glass container rises up slightly where it touches
the glass, Fig. 13-38a. The water is said to “wet” the glass. Mercury, on the other hand,
is depressed when it touches the glass, Fig. 13-38b; the mercury does not wet the glass.
Whether a liquid wets a solid surface is determined by the relative strength of the
cohesive forces between the molecules of the liquid compared to the adhesive forces
between the molecules of the liquid and those of the container. Cohesion refers to the
force between molecules of the same type, whereas adhesion refers to the force between
molecules of different types. Water wets glass because the water molecules are more
strongly attracted to the glass molecules than they are to other water molecules. The
opposite is true for mercury: the cohesive forces are stronger than the adhesive forces.

In tubes having very small diameters, liquids are observed to rise or fall relative
to the level of the surrounding liquid. This phenomenon is called capillarity, and such
thin tubes are called capillaries. Whether the liquid rises or falls (Fig. 13-39) depends
on the relative strengths of the adhesive and cohesive forces. Thus water rises in a
glass tube, whereas mercury falls. The actual amount of rise (or fall) depends on the
surface tension—which is what keeps the liquid surface from breaking apart.



*13—14 Pumps, and the Heart

We conclude this Chapter with a brief discussion of pumps, including the heart.
Pumps can be classified into categories according to their function. A wvacuum
pump is designed to reduce the pressure (usually of air) in a given vessel. A force
pump, on the other hand, is a pump that is intended to increase the pressure—for
example, to lift a liquid (such as water from a well) or to push a fluid through a
pipe. Figure 13-40 illustrates the principle behind a simple reciprocating pump. It
could be a vacuum pump, in which case the intake is connected to the vessel to be
evacuated. A similar mechanism is used in some force pumps, and in this case the
fluid is forced under increased pressure through the outlet.

A centrifugal pump (Fig. 13-41), or any force pump, can be used as a
circulating pump—that is, to circulate a fluid around a closed path, such as the
cooling water or lubricating oil in an automobile.

The heart of a human (and of other animals as well) is essentially a circulating
pump. The action of a human heart is shown in Fig. 13-42. There are actually two
separate paths for blood flow. The longer path takes blood to the parts of the body, via
the arteries, bringing oxygen to body tissues and picking up carbon dioxide, which it
carries back to the heart via veins. This blood is then pumped to the lungs (the second
path), where the carbon dioxide is released and oxygen is taken up. The oxygen-laden
blood is returned to the heart, where it is again pumped to the tissues of the body.

Intake

FIGURE 13-42 (a) In the diastole phase, the heart relaxes between beats. Blood
moves into the heart; both atria fill rapidly. (b) When the atria contract, the systole
or pumping phase begins. The contraction pushes the blood through the mitral and
tricuspid valves into the ventricles. (¢) The contraction of the ventricles forces the
blood through the semilunar valves into the pulmonary artery, which leads to the
lungs, and to the aorta (the body’s largest artery), which leads to the arteries serving
all the body. (d) When the heart relaxes, the semilunar valves close; blood fills the
atria, beginning the cycle again.

Right atrium Pulmonary

Left atrium

FIGURE 13-41
the rotating blades force fluid
through the outlet pipe; this kind of
pump is used in vacuum cleaners
and as a water pump in automobiles.
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FIGURE 13-40 One kind of pump:
the intake valve opens and air (or
fluid that is being pumped) fills the
empty space when the piston moves
to the left. When the piston moves to
the right (not shown), the outlet
valve opens and fluid is forced out.
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P
r Outlat

-

(from the body) (from the lungs) Rriery

Wik
K7

Tricuspid
valve

\\
Mitral
valve

valves

{
AL |
Right Left

ventricle ventricle
(a)

| Summary

(10 lungs)

Semilunar

(=Y t/

\ Right
‘\\f Aorta  Atrium
L (o the \$

b i ‘\ body)

é- Left
atrium

Mitral
valve

*Semilunar
valves Tricuspid
valve

(c) (d)

The three common phases of matter are solid, liquid, and gas.
Liquids and gases are collectively called fluids, meaning they
have the ability to flow. The density of a material is defined as
its mass per unit volume:

m

p:v.

Specific gravity is the ratio of the density of the material to
the density of water (at 4°C).
Pressure is defined as force per unit arca:

13-1)

F
P = e (13-2)
The pressure P at a depth 4 in a liquid is given by
P = pgh, (13-3)

where p is the density of the liquid and g is the acceleration due

to gravity. If the density of a fluid is not uniform, the pressure P
varies with height y as

dP

; 13-4)

= —pg

Pascal’s principle says that an external pressure applied to a
confined fluid is transmitted throughout the fluid.

Pressure is measured using a manometer or other type
of gauge. A barometer is used to measure atmospheric pres-
sure. Standard atmospheric pressure (average at sea level) is
1.013 X 10°N/m%  Gauge pressure is the total (absolute)
pressure less atmospheric pressure.

Archimedes’ principle states that an object submerged
wholly or partially in a fluid is buoyed up by a force equal to the
weight of fluid it displaces (Fg = mpg = pg Vaispl g).

Summary 361



Fluid flow can be characterized either as streamline (some-
times called laminar), in which the layers of fluid move
smoothly and regularly along paths called streamlines, or as
turbulent, in which case the flow is not smooth and regular but
is characterized by irregularly shaped whirlpools.

Fluid flow rate is the mass or volume of fluid that passes a
given point per unit time. The equation of continuity states that
for an incompressible fluid flowing in an enclosed tube, the
product of the velocity of flow and the cross-sectional area of
the tube remains constant:

Av = constant. (13-7b)

Bernoulli’s principle tells us that where the velocity of a

J Questions

fluid is high, the pressure in it is low, and where the velocity is
low, the pressure is high. For steady laminar flow of an incom-
pressible and nonviscous fluid, Bernoulli’s equation, which is
based on the law of conservation of energy, is
Pt gpvt + pgy = Py + 3pv3 + pgys, (13-8)

for two points along the flow.

[*Viscosity refers to friction within a fluid and is essentially
a frictional force between adjacent layers of fluid as they move
past one another.]

[*Liquid surfaces hold together as if under tension (surface
tension), allowing drops to form and objects like needles and
insects to stay on the surface.]

1. If one material has a higher density than another, must the mole-
cules of the first be heavier than those of the second? Explain.

2. Airplane travelers sometimes note that their cosmetics
bottles and other containers have leaked during a flight.
‘What might cause this?

3. The three containers in Fig. 13-43 are filled with water to the
same height and have the same surface area at the base; hence
the water pressure, and the total force on the base of each, is the
same. Yet the total weight of water is different for each. Explain
this “hydrostatic paradox.”

FIGURE 13-43
Question 3.

4. Consider what happens when you push both a pin and the
blunt end of a pen against your skin with the same force.
Decide what determines whether your skin is cut—the net
force applied to it or the pressure.

5. A small amount of water is boiled in a 1-gallon metal can.
The can is removed from the heat and the lid put on. As the
can cools, it collapses. Explain.

6. When blood pressure is measured, why must the cuff be
held at the level of the heart?

7. An ice cube floats in a glass of water filled to the brim.
‘What can you say about the density of ice? As the ice melts,
will the water overflow? Explain.

8. Will an ice cube float in a glass of alcohol? Why or why not?

9. A submerged can of Coke® will sink, but a can of Diet
Coke® will float. (Try it!) Explain.

10. Why don’t ships made of iron sink?

11. Explain how the tube in Fig. 13-44, known as a siphon,
can transfer liquid from one
container to a lower one even
though the liquid must flow
uphill for part of its journey.
(Note that the tube must be
filled with liquid to start with.)

FIGURE 13-44
Question 11. A siphon.

—
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A barge filled high with sand approaches a low bridge over
the river and cannot quite pass under it. Should sand be
added to, or removed from, the barge? [Hint: Consider
Archimedes’ principle.]
13. Explain why helium weather balloons, which are used to

measure atmospheric conditions at high altitudes, are normally
released while filled to only 10-20% of their maximum volume.

12
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14. A row boat floats in a swimming pool, and the level
of the water at the edge of the pool is marked. Consider the
following situations and explain whether the level of the water
will rise, fall, or stay the same. (a) The boat is removed from
the water. (b) The boat in the water holds an iron anchor which
is removed from the boat and placed on the shore. (¢) The iron
anchor is removed from the boat and dropped in the pool.

15. Will an empty balloon have precisely the same apparent
weight on a scale as a balloon filled with air? Explain.

16. Why do you float higher in salt water than in fresh water?

17. If you dangle two pieces of paper vertically, a few inches
apart (Fig. 13-45), and blow between them, how do you
think the papers will move? Try it and see. Explain.

FIGURE 13-46
Question 18. Water
coming from a faucet.

FIGURE 13-45
Question 17.

18. Why does the stream of water from a faucet become

narrower as it falls (Fig. 13-46)?

Children are told to avoid standing too close to a rapidly

moving train because they might get sucked under it. Is this

possible? Explain.

20. A tall Styrofoam cup is filled with water. Two holes are
punched in the cup near the bottom, and water begins
rushing out. If the cup is dropped so it falls freely, will the
water continue to flow from the holes? Explain.

21. Why do airplanes normally take off into the wind?

22. Two ships moving in parallel paths close to one another risk

colliding. Why?

Why does the canvas top of a convertible bulge out when

the car is traveling at high speed? [Hinr: The windshield

deflects air upward, pushing streamlines closer together.]

24. Roofs of houses are sometimes “blown” off (or are they
pushed off?) during a tornado or hurricane. Explain using
Bernoulli’s principle.

19.

23,



| Problems

13-2 Density and Specific Gravity
1. (I) The approximate volume of the granite monolith known
as El Capitan in Yosemite National Park (Fig. 13-47) is
about 10% m3. What is its approximate mass?

FIGURE 13-47 Problem 1.

2. (I) What is the approximate mass of air in a living room
5.6m X 3.8m X 2.8m?

3. (I) If you tried to smuggle gold bricks by filling your back-
pack, whose dimensions are 56 cm X 28 cm X 22 cm, what
would its mass be?

4. (I) State your mass and then estimate your volume. [Hint:
Because you can swim on or just under the surface of the
water in a swimming pool, you have a pretty good idea of
your density.]

5. (II) A bottle has a mass of 35.00 g when empty and 98.44 g
when filled with water. When filled with another fluid, the
mass is 89.22 g. What is the specific gravity of this other fluid?

6. (I) If 5.0L of antifreeze solution (specific gravity = 0.80)
is added to 4.0 L of water to make a 9.0-L mixture, what is
the specific gravity of the mixture?

7. (IIT) The Earth is not a uniform sphere, but has regions of
varying density. Consider a simple model of the Earth
divided into three regions—inner core, outer core, and
mantle. Each region is taken to have a unique constant
density (the average density of that region in the real Earth):

Radius Density

Region (km) (kg/m?)
Inner Core 0-1220 13,000
Outer Core 1220-3480 11,100
Mantle 3480-6371 4,400

(a) Use this model to predict the average density of the entire
Earth. (b) The measured radius of the Earth is 6371 km and
its mass is 5.98 X 10**kg. Use these data to determine the
actual average density of the Earth and compare it (as a
percent difference) with the one you determined in (a).

13-3 to 13-6 Pressure; Pascal’s Principle

8. (I) Estimate the pressure needed to raise a column of water
to the same height as a 35-m-tall oak tree.

9. (I) Estimate the pressure exerted on a floor by (a) one pointed
chair leg (66kg on all four legs) of arca = 0.020 cm?, and
(b) a 1300-kg elephant standing on one foot (area = 800 cm?).

10.

13.

14

16.

17.

18.

(I) What is the difference in blood pressure (mm-Hg)
between the top of the head and bottom of the feet of a
1.70-m-tall person standing vertically?

. (II) How high would the level be in an alcohol barometer at

normal atmospheric pressure?

. (II) In a movie, Tarzan evades his captors by hiding under-

water for many minutes while breathing through a long, thin
reed. Assuming the maximum pressure difference his lungs
can manage and still breathe is —85 mm-Hg, calculate the
deepest he could have been.

(II) The maximum gauge pressure in a hydraulic lift is
17.0 atm. What is the largest-size vehicle (kg) it can lift if the
diameter of the output line is 22.5 cm?

(II) The gauge pressure in each of the four tires of an auto-
mobile is 240 kPa. If each tire has a “footprint” of 220 cm?,
estimate the mass of the car.

. (II) (a) Determine the total force and the absolute pressure

on the bottom of a swimming pool 28.0m by 8.5m whose
uniform depth is 1.8 m. (b) What will be the pressure against
the side of the pool near the bottom?

(I) A house at the bottom of a hill is fed by a full tank of
water 5.0m deep and connected to the house by a pipe
that is 110 m long at an angle of 58° from the horizontal
(Fig. 13-48). (a) Determine the water gauge pressure at the
house. (b) How
high could the 5_(‘)”13
water shoot if it ' \
came vertically
out of a broken

pipe in front of ‘_\‘.l 10m
the house? /\
a, \ = '\
FIGURE 13-48 877\ . iy
Problem 16. [ NS

(II) Water and then oil (which don’t mix) are poured into a
U-shaped tube, open at both ends.
They come to equilibrium as shown [ 2 [

in Fig. 13-49. What is the density of ‘ £ 8.62cm
the oil? [Hinr: Pressures at points a ~ Oil | 27.2 L
and b are equal. Why?] ‘ “'" |
aj b
FIGURE 13-49 ' Water “
Problem 17. p -

(II) In working out his principle, Pascal showed dramatically
how force can be multiplied with fluid pressure. He placed a
long, thin tube of radius » = 0.30 cm

vertically into a wine barrel of radius 1
R =21cm, Fig. 13-50. He found
that when the barrel was filled with
water and the tube filled to a height
of 12 m, the barrel burst. Calculate (a)
the mass of water in the tube, and (b)
the net force exerted by the water in
the barrel on the lid just before
rupture.

r=0.30¢cm

Cagree |

12m

FIGURE 13-50
Problem 18 (not to scale).
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19.

20.

21.

22,

(II) What is the normal pressure of the atmosphere at the
summit of Mt. Everest, 8850 m above sea level?

(II) A hydraulic press for compacting powdered samples has
a large cylinder which is 10.0 cm in diameter, and a small
cylinder with a diameter of 2.0 cm (Fig. 13-51). A lever is
attached to the small cylinder as shown. The sample, which
is placed on the large cylinder, has an area of 4.0 cm?>.
What is the pressure on the sample if 350N is applied to
the lever?

350N

Sample

4

Hydraulic [ 100 ¢m

fuid

Small cylinder

2.0em

FIGURE 13-51

Problem 20.

(II) An open-tube mercury manometer is used to measure
the pressure in an oxygen tank. When the atmospheric
pressure is 1040 mbar, what is the absolute pressure (in Pa)
in the tank if the height of the mercury in the open tube is
(a) 21.0 cm higher, (b) 5.2 cm lower, than the mercury in the
tube connected to the tank?

(II) A beaker of liquid accelerates from rest, on a horizontal
surface, with acceleration a to the right. (a) Show that the
surface of the liquid makes an angle 6 = tan™!(a/g) with
the horizontal. (b) Which edge of the water surface is higher?
(c) How does the pressure vary with depth below the surface?

. (IIT) Water stands at a height /# behind a vertical dam of

uniform width b. (a) Use integration to show that the total
force of the water on the dam is F = 1pgh’h. (b) Show
that the torque about the base of the dam due to this force
can be considered to act with a lever arm equal to 4/3.
(c) For a freestanding concrete dam of uniform thickness ¢ and
height 4, what minimum thickness is needed to prevent
overturning? Do you need to add in atmospheric pressure
for this last part? Explain.

. (IIT) Estimate the density of the water 5.4km deep in the

sea. (See Table 12-1 and Section 12-4 regarding bulk
modulus.) By what fraction does it differ from the density at
the surface?

. (III) A cylindrical bucket of liquid (density p) is rotated

about its symmetry axis, which is vertical. If the angular
velocity is w, show that the pressure at a distance r from the
rotation axis is

P =P + %pmzrz,

where Py is the pressure at r = 0.

13-7 Buoyancy and Archimedes’ Principle

26.

27.

(I) What fraction of a piece of iron will be submerged
when it floats in mercury?

(I) A geologist finds that a Moon rock whose mass is 9.28 kg
has an apparent mass of 6.18 kg when submerged in water.
‘What is the density of the rock?
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39,

(II) A crane lifts the 16,000-kg steel hull of a sunken ship
out of the water. Determine («) the tension in the crane’s
cable when the hull is fully submerged in the water, and
(b) the tension when the hull is completely out of the water.
(IT) A spherical balloon has a radius of 7.35 m and is filled
with helium. How large a cargo can it lift, assuming that the
skin and structure of the balloon have a mass of 930 kg?
Neglect the buoyant force on the cargo volume itself.

(IT) A 74-kg person has an apparent mass of 54 kg (because
of buoyancy) when standing in water that comes up to the
hips. Estimate the mass of each leg. Assume the body has
SG = 1.00.

(II) What is the likely identity of a metal (see Table 13-1) if
a sample has a mass of 63.5 g when measured in air and an
apparent mass of 55.4 g when submerged in water?

(II) Calculate the true mass (in vacuum) of a piece of
aluminum whose apparent mass is 3.0000 kg when weighed
in air.

(IT) Because gasoline is less dense than water, drums
containing gasoline will float in water. Suppose a 230-L steel
drum is completely full of gasoline. What total volume of
steel can be used in making the drum if the gasoline-filled
drum is to float in fresh water?

(II) A scuba diver and her gear displace a volume of 65.0L
and have a total mass of 68.0 kg. («) What is the buoyant force
on the diver in scawater? (b) Will the diver sink or float?

(IT) The specific gravity of ice is 0.917, whereas that of
seawater is 1.025. What percent of an iceberg is above the
surface of the water?

(IT) Archimedes’ principle can be used not only to deter-
mine the specific gravity of a solid using a known liquid
(Example 13-10); the reverse can be done as well. (a) As an
example, a 3.80-kg aluminum ball has an apparent mass of
2.10 kg when submerged in a particular liquid: calculate the
density of the liquid. (b) Derive a formula for determining
the density of a liquid using this procedure.

(II) (a) Show that the buoyant force Fz on a partially
submerged object such as a ship acts at the center of gravity
of the fluid before it is displaced. This point is called the
center of buoyancy. (b) To ensure that a ship is in stable
equilibrium, would it be better if its center of buoyancy was
above, below, or at the same point
as, its center of gravity? Explain.
(See Fig. 13-52.)

FIGURE 13-52
Problem 37.

(IT) A cube of side length 10.0cm and made of unknown
material floats at the surface between water and oil. The oil
has a density of 810 kg/m>. If the cube floats so that it is
72% in the water and 28% in the oil, what is the mass of the
cube and what is the buoyant force on the cube?

(II) How many helium-filled balloons would it take to lift a
person? Assume the person has a mass of 75kg and that
each helium-filled balloon is spherical with a diameter of
33 cm.



40.

41.

42.

(II) A scuba tank, when fully submerged, displaces 15.7 L of
seawater. The tank itself has a mass of 14.0 kg and, when
“full,” contains 3.00 kg of air. Assuming only a weight and
buoyant force act, determine the net force (magnitude and
direction) on the fully submerged tank at the beginning of a
dive (when it is full of air) and at the end of a dive (when it
no longer contains any air).

(IIT) If an object floats in water, its density can be deter-
mined by tying a sinker to it so that both the object and the
sinker are submerged. Show that the specific gravity is given
by w/(wl — w;,), where w is the weight of the object alone
in air, w; is the apparent weight when a sinker is tied to it
and the sinker only is submerged, and w, is the apparent
weight when both the object and the sinker are submerged.
(III) A 3.25-kg piece of wood (SG = 0.50) floats on water.
What minimum mass of lead, hung from the wood by a
string, will cause it to sink?

13-8 to 13-10 Fluid Flow, Bernoulli's Equation

43.

4.

46.

47.

48.

49.

wn
=
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-

(I) A 15-cm-radius air duct is used to replenish the air of a
room 82m X 5.0m X 3.5m every 12min. How fast does
the air flow in the duct?

(I) Using the data of Example 13-13, calculate the average
speed of blood flow in the major arteries of the body which
have a total cross-sectional area of about 2.0 cm”.

. (I) How fast does water flow from a hole at the bottom of a

very wide, 5.3-m-deep storage tank filled with water? Ignore
viscosity.

(IT) A fish tank has dimensions 36 cm wide by 1.0 m long by
0.60 m high. If the filter should process all the water in the
tank once every 4.0 h, what should the flow speed be in the
3.0-cm-diameter input tube for the filter?

(IT) What gauge pressure in the water mains is necessary if a
firehose is to spray water to a height of 18 m?

(1) A 3-in. (inside) diameter garden hose is used to fill a
round swimming pool 6.1 m in diameter. How long will it
take to fill the pool to a depth of 1.2m if water flows from
the hose at a speed of 0.40 m/s?

(IT) A 180-km/h wind blowing over the flat roof of a house
causes the roof to lift off the house. If the house is
6.2m X 124 m in size, estimate the weight of the roof.
Assume the roof is not nailed down.

. (II) A 6.0-cm-diameter horizontal pipe gradually narrows to

4.5 cm. When water flows through this pipe at a certain rate,
the gauge pressure in these two sections is 32.0kPa and
24.0 kPa, respectively. What is the volume rate of flow?

. (IT) Estimate the air pressure inside a category 5 hurricane,

where the wind speed is 300 km/h (Fig. 13-53).

FIGURE 13-53 Problem 51.

55.

. (II) What is the lift (in newtons) due to Bernoulli’s principle on

a wing of area 88 m? if the air passes over the top and bottom
surfaces at speeds of 280 m/s and 150 m/s, respectively?

. (II) Show that the power needed to drive a fluid through a

pipe with uniform cross-section is equal to the volume rate
of flow, O, times the pressure difference, P, — P,.

. (IT) Water at a gauge pressure of 3.8 atm at street level flows

into an office building
at a speed of 0.68m/s
through a pipe 5.0cm
in diameter. The pipe
tapers down to 2.8 cm
in diameter by the
top floor, 18 m above
(Fig. 13-54), where the
faucet has been left
open. Calculate the
flow velocity and the
gauge pressure in the
pipe on the top floor.
Assume no branch pipes
and ignore viscosity.

FIGURE 13-54
Problem 54.

(IT) In Fig. 13-55, take into account the speed of the top
surface of the tank and show that the speed of fluid leaving
the opening at the bottom is

2gh

V= A0
(1 - ay/43)
where h =y, — y;, and A, and A, are the areas of the
opening and of the top surface, respectively. Assume A; << A,
so that the flow remains
nearly steady and laminar.
v, $

Y=

Y —V
FIGURE 13-55

Problems 55, 56, 58,
and 59.

. (IT) Suppose the top surface of the vessel in Fig. 13-55 is

subjected to an external gauge pressure P5. (a) Derive a
formula for the speed, vy, at which the liquid flows from the
opening at the bottom into atmospheric pressure, F.
Assume the velocity of the liquid surface, v,, is approxi-
mately zero. (b) If P, = 0.85atm and y, — y =24m,
determine v for water.

. (IT) You are watering your lawn with a hose when you put

your finger over the hose opening to increase the distance
the water reaches. If you are pointing the hose at the same
angle, and the distance the water reaches increases by a
factor of 4, what fraction of the hose opening did you block?

Problems 365



59.

60.

61.

. (IIT) Suppose the opening in the tank of Fig. 13-55 is a height /2,

above the base and the liquid surface is a height %, above the
base. The tank rests on level ground. (¢) At what horizontal
distance from the base of the
tank will the fluid strike the
ground? (b) At what other
height, A}, can a hole be Y2 =¥y
placed so that the emerging
liquid will have the same
“range”? Assume v, ~ 0.

FIGURE 13-55 (repeated)
Problems 55, 56, 58, and 59.

(ITI) (a) In Fig. 13-55, show that Bernoulli’s principle predicts
that the level of the liquid, & = y, — y;, drops at a rate

dh 2ghA7

a — Na-ar
where A, and A, are the areas of the opening and the top
surface, respectively, assuming A} << A,, and viscosity is
ignored. (b) Determine A as a function of time by integrating.
Let h = hy at t = 0. (c) How long would it take to empty
a 10.6-cm-tall cylinder filled with 1.3L of water if the
opening is at the bottom and has a 0.50-cm diameter?
(III) (a) Show that the flow speed measured by a venturi
meter (see Fig. 13-32) is given by the relation

2P - Py)
v = AN T o
plAT — A3)

(b) A venturi meter is measuring the flow of water; it has a
main diameter of 3.0 cm tapering down to a throat diameter of
1.0 cm. If the pressure difference is measured to be 18 mm-Hg,
what is the speed of the water entering the venturi throat?
(IIT) Thrust of a rocket. (a) Use Bernoulli’s equation and
the equation of continuity to show that the emission speed
of the propelling gases of a rocket is
V2AP = B)/p.
where p is the density of the gas, P is the pressure of the gas
inside the rocket, and F is atmospheric pressure just outside
the exit orifice. Assume that the gas density stays approxi-
mately constant, and that the arca of the exit orifice, Ay, is
much smaller than the cross-sectional area, A, of the inside
of the rocket (take it to be a large cylinder). Assume also
that the gas speed is not so high that significant turbulence
or nonsteady flow sets in. (b) Show that the thrust force on
the rocket due to the emitted gases is

F = 244P — Ry).

1, '

v o=

. (III) A fire hose exerts a force on the person holding it. This

is because the water accelerates as it goes from the hose
through the nozzle. How much force is required to hold
a 7.0-cm-diameter hose delivering 450 L/min through a
0.75-cm-diameter nozzle?

*13-11 Viscosity

*63.

*64.

(II) A viscometer consists of two concentric cylinders, 10.20 cm
and 10.60 cm in diameter. A liquid fills the space between them
to a depth of 12.0 cm. The outer cylinder is fixed, and a torque
of 0.024 m- N keeps the inner cylinder turning at a steady rota-
tional speed of 57 rev/min. What is the viscosity of the liquid?
(ITI) A long vertical hollow tube with an inner diameter of
1.00 cm s filled with SAE 10 motor oil. A 0.900-cm-diameter,
30.0-cm-long 150-g rod is dropped vertically through the oil
in the tube. What is the maximum speed attained by the rod
as it falls?
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*13-12 Flow in Tubes; Poiseuille’s Equation

*65.

66,

*67.

*69.

*70.

*71.

(I) Engine oil (assume SAE 10, Table 13-3) passes through
a fine 1.80-mm-diameter tube that is 8.6 cm long. What pressure
difference is needed to maintain a flow rate of 6.2 mL/min?
(I) A gardener feels it is taking too long to water a garden with
aj-in.-diameter hose. By what factor will the time be cut using a
3-in.-diameter hose instead? Assume nothing else is changed.
(II) What diameter must a 15.5-m-long air duct have if the
ventilation and heating system is to replenish the air in a
room 8.0m X 14.0m X 4.0m every 12.0 min? Assume the
pump can exert a gauge pressure of 0.710 X 1073 atm.

. (IT) What must be the pressure difference between the two ends

of a 1.9-km section of pipe, 29 cm in diameter, if it is to transport
oil (p = 950kg/m? 1 = 0.20Pa-s) at a rate of 650 cm?/s?
(IT) Poiseuille’s equation does not hold if the flow velocity is
high enough that turbulence sets in. The onset of turbulence
occurs when the Reynolds mumber, Re, exceeds approxi-
mately 2000. Re is defined as
2vrp

n
where v is the average speed of the fluid, p is its density, n is its
viscosity, and r is the radius of the tube in which the fluid is
flowing. (a) Determine if blood flow through the aorta is
laminar or turbulent when the average speed of blood in the
aorta (r = 0.80cm) during the resting part of the heart’s
cycle is about 35cm/s. (b) During exercise, the blood-flow
speed approximately doubles. Calculate the Reynolds number
in this case, and determine if the flow is laminar or turbulent.
(IT) Assuming a constant pressure gradient, if blood flow is
reduced by 85%, by what factor is the radius of a blood
vessel decreased?
(IIT) A patient is to be given a blood transfusion. The blood
is to flow through a tube from a raised bottle to a needle
inserted in the vein (Fig. 13-56). The inside diameter of the
25-mm-long needle is 0.80 mm, and the -
required flow rate is 2.0 cm® of blood per i
minute. How high 4 should the bottle be
placed above the needle? Obtain p
and 7 from the Tables. Assume the
blood pressure is 78 torr above
atmospheric pressure.

Re =

FIGURE 13-56
Problems 71 and 79.

*13-13 Surface Tension and Capillarity

*72.

*74,

#75.

(I) If the force F needed to move the wire in Fig. 13-35 is
34 X 107N, calculate the surface tension 7y of the
enclosed fluid. Assume £ = 0.070 m.

3. (I) Calculate the force needed to move the wire in Fig. 13-35 if

it is immersed in a soapy solution and the wire is 24.5 cm long.
(IT) The surface tension of a liquid can be determined by
measuring the force F needed to just lift a circular platinum
ring of radius r from the surface of the liquid. (a) Find a
formula for y in terms of F and r. (b) At 30°C, if
F =580 x 107N and r =28cm, calculate y for the
tested liquid.

(III) Estimate the diameter of a steel needle that can just
“float” on water due to surface tension.



*76.

(III) Show that inside a soap bubble, there must be a pressure
AP in excess of that outside equal to AP = 4y/r, where ris
the radius of the bubble and v is the surface tension. [Hint:
Think of the bubble as two hemispheres in contact with each
other: and remember that there are two surfaces to the
bubble. Note that this result applies to any kind of membrane,
where 2y is the tension per unit length in that membrane.]

| General Problems

77,

(III) A common effect of surface tension is the ability of a
liquid to rise up a narrow tube due to what is called capillary
action. Show that for a narrow tube of radius r placed in a
liquid of density p and surface tension v, the liquid in the tube
will reach a height & = 2y/pgr above the level of the liquid
outside the tube, where g is the gravitational acceleration.
Assume that the liquid “wets” the capillary (the liquid surface
is vertical at the contact with the inside of the tube).

78.

79.

80.

81.

82.

83.

84.

86.

A 28-N force is applied to the plunger of a hypodermic
needle. If the diameter of the plunger is 1.3cm and that
of the needle 0.20 mm, («) with what force does the fluid leave
the needle? (b) What force on the plunger would be needed to
push fluid into a vein where the gauge pressure is 75 mm-Hg?
Answer for the instant just before the fluid starts to move.

Intravenous infusions are often made under gravity, as
shown in Fig. 13-56. Assuming the fluid has a density of
1.00 g/cm?, at what height 4 should the bottle be placed so
the liquid pressure is (a) 55 mm-Hg, and (b) 650 mm-H,0?
(c) If the blood pressure is 78 mm-Hg above atmospheric
pressure, how high should the bottle be placed so that the
fluid just barely enters the vein?

A beaker of water rests on an electronic balance that reads
998.0 g. A 2.6-cm-diameter solid copper ball attached to a
string is submerged in the water, but does not touch the
bottom. What are the tension in the string and the new
balance reading?

Estimate the difference in air pressure between the top and
the bottom of the Empire State building in New York City?
It is 380m tall and is located at sea level. Express as a
fraction of atmospheric pressure at sca level.

A hydraulic lift is used to jack a 920-kg car 42 cm off the floor.
The diameter of the output piston is 18 cm, and the input force
is 350 N. (¢) What is the area of the input piston? (b) What is
the work done in lifting the car 42 cm? (c) If the input piston
moves 13 cm in each stroke, how high does the car move up
for each stroke? (d) How many strokes are required to jack
the car up 42 cm? (e) Show that energy is conserved.

When you ascend or descend a great deal when driving in a
car, your ears “pop,” which means that the pressure behind the
eardrum is being equalized to that outside. If this did not
happen, what would be the approximate force on an eardrum
of area 0.20 cm? if a change in altitude of 950 m takes place?

Giraffes are a wonder of cardiovascular engineering. Calcu-
late the difference in pressure (in atmospheres) that the
blood vessels in a giraffe’s head must accommodate as the
head is lowered from a full upright position to ground level
for a drink. The height of an average giraffe is about 6 m.

. Suppose a person can reduce the pressure in his lungs to

—75 mm-Hg gauge pressure. How high can water then be
“sucked” up a straw?

Airlines are allowed to maintain a minimum air pressure
within the passenger cabin equivalent to that at an altitude
of 8000 ft (2400 m) to avoid adverse health effects among
passengers due to oxygen deprivation. Estimate this
minimum pressure (in atm).

87.

88.

89.

90.

91.

92.

93:

A simple model (Fig. 13-57) considers a continent as a
block (density ~ 2800 kg/m’) floating in the mantle rock
around it (density ~ 3300 kg/m‘x)‘ Assuming the continent
is 35km thick (the average thickness of the Earth’s conti-
nental crust), esti-
mate the height of %
g fFB
n
Continent

the continent above
——(density = 2I800 kg/m3)[———

the surrounding rock.

'mﬁ
FIGURE 13-57 Mantle rock (density = 3300 kg/m3)

Problem 87.

A ship, carrying fresh water to a desert island in the
Caribbean, has a horizontal cross-sectional area of 2240 m?
at the waterline. When unloaded, the ship rises 8.50m
higher in the sea. How many cubic meters of water was
delivered?

During ascent, and especially during descent, volume changes
of trapped air in the middle ear can cause ear discomfort
until the middle-ear pressure and exterior pressure are
cqualized. (a) If a rapid descent at a rate of 7.0m/s or
faster commonly causes ear discomfort, what is the
maximum rate of increase in atmospheric pressure (that is,
dP/dt) tolerable to most people? (b) In a 350-m-tall
building, what will be the fastest possible descent time for
an elevator traveling from the top to ground floor, assuming
the elevator is properly designed to account for human
physiology?

A raft is made of 12logs lashed together. Each is 45cm in
diameter and has a length of 6.1 m. How many people can the
raft hold before they start getting their feet wet, assuming the
average person has a mass of 68 kg? Do not neglect the weight
of the logs. Assume the specific gravity of wood is 0.60.

Estimate the total mass of the Earth’s atmosphere, using
the known value of atmospheric pressure at sea level.

During cach heartbeat, approximately 70 cm® of blood is
pushed from the heart at an average pressure of 105 mm-Hg.
Calculate the power output of the heart, in watts, assuming
70 beats per minute.

Four lawn sprinkler heads are fed by a 1.9-cm-diameter
pipe. The water comes out of the heads at an angle of 35°
to the horizontal and covers a radius of 7.0 m. (a) What is
the velocity of the water coming out of each sprinkler
head? (Assume zero air resistance.) (b) If the output diam-
eter of each head is 3.0 mm, how many liters of water do
the four heads deliver per second? (¢) How fast is the
water flowing inside the 1.9-cm-diameter pipe?
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9.

96.

A bucket of water is accelerated upward at 1.8 g. What is
the buoyant force on a 3.0-kg granite rock (SG = 2.7)
submerged in the water? Will the rock float? Why or why not?

. The stream of water from a faucet decreases in diameter as it

falls (Fig. 13-58). Derive an equation for the diameter of the
stream as a function of the distance y

below the faucet, given that the water

has speed v, when it leaves the

faucet, whose diameter is d.

FIGURE 13-58 Problem 95.
Water coming from a faucet.

You need to siphon water from a clogged sink. The sink has
an area of 0.38 m? and is filled to a height of 4.0 cm. Your
siphon tube rises 45cm above

101.

Three forces act significantly on a freely floating helium-
filled balloon: gravity, air resistance (or drag force), and a
buoyant force. Consider a spherical helium-filled balloon
of radius » = 15cm rising upward through 0°C air,
and m = 2.8 g is the mass of the (deflated) balloon itself.
For all speeds v, except the very slowest ones, the flow of
air past a rising balloon is turbulent, and the drag force Fp
is given by the relation
Fp = 3 Cpparr™’

where the constant Cp = 0.47 is the “drag coefficient” for
a smooth sphere of radius . If this balloon is released from
rest, it will accelerate very quickly (in a few tenths of a second)
to its terminal velocity vy, where the buoyant force is
cancelled by the drag force and the balloon’s total weight.
Assuming the balloon’s acceleration takes place over a
negligible time and distance, how long does it take the
released balloon to rise a distance & = 12m?

the bottom of the sink and then *102. If cholesterol buildup reduces the diameter of an artery by
descends 85cm to a pail as 15%, by what % will the blood flow rate be reduced,
shown in Fig. 13-59. The siphon ¥ assuming the same pressure difference?
tube has a diameter of 2.0cm. 103. A two-component model used to determine percent body
(a) Assuming that the water 45cm fat in a human body assumes that a fraction f(< 1) of the
level in the sink has almost 4 body’s total mass m is composed of fat with a density of
zero velocity, estimate the water t40cm S5cm 0.90 g/cm®, and that the remaining mass of the body is
velocity when it enters the pail. composed of fat-free tissue with a density of 1.10 g/cm®. If
(b) Estimate how long it will the specific gravity of the entire body’s density is X, show
take to empty the sink. ! that the percent body fat (= f X 100) is given by
495
FIGURE 13-59 ABoly it = o — 450
Problem 96. *Numerical/Computer
97. An airplane has a mass of 1.7 X 10°kg, and the air flows  #104. (III) Air pressure decreases with altitude. The following data
past the lower surface of the wings at 95 m/s. If the wings show the air pressure at different altitudes.
have a surface area of 1200 mz,‘hO\iv fast must t.he air flo.w Altitude (m) Pressure (kPa)
over the upper surface of the wing if the plane is to stay in
the air? 0 101.3
98. A drinking fountain shoots water about 14 cm up in the air 1000 89.88
from a nozzle of diameter 0.60 cm. The pump at the base of 2000 79.50
the unit (1.1 m below the nozzle) pushes water into a 1.2- 3000 70.12
cm-diameter supply pipe that goes up to the nozzle. What 4000 61.66
gauge pressure does the pump have to provide? Ignore the 5000 54.05
viscosity; your answer will therefore be an underestimate. 6000 47.22
99. A hurricane-force wind of 200 km/h blows across the face 7000 4111
of a storefront window. Estimate the force on the 8000 35.65
2.0m X 3.0 m window due to the difference in air pressure 9000 30.80
inside and outside the window. Assume the store is airtight so 10,000 2630
the inside pressure remains at 1.0 atm. (This is why you should (a) Determine the best-fit quadratic equation that shows
not tightly seal a building in preparation for a hurricane). how the air pressure changes with altitude. (b) Determine
100. Blood from an animal is placed in a bottle 1.30 m above a the best-fit exponential equation that describes the change
3.8-cm-long needle, of inside diameter 0.40 mm, from of air pressure with altitude. (c¢) Use each fit to find the air
which it flows at a rate of 4.1 cm?/min. What is the pressure at the summit of the mountain K2 at 8611 m, and
viscosity of this blood? give the % difference.
Answers to Exercises
A: (d). E: (e).
B: The same. Pressure depends on depth, not on length. F: Increases.
C: Lower. G: (b).
D: (a).
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Oscillations

CHAPTER-OPENING QUESTION—Guess now!
A simple pendulum consists of a mass m (the “bob”) hanging on the end of a thin
string of length £ and negligible mass. The bob is pulled sideways so the string makes a
5.0° angle to the vertical; when released, it oscillates back
and forth at a frequency f. If the pendulum was raised to a
10.0° angle instead, its frequency would be

(a) twice as great.

(b) half as great.

(¢) the same, or very close to it.

(d) not quite twice as great.

(e) a bit more than half as great.

any objects vibrate or oscillate—an object on the end of a spring, a

tuning fork, the balance wheel of an old watch, a pendulum, a plastic

ruler held firmly over the edge of a table and gently struck, the strings

of a guitar or piano. Spiders detect prey by the vibrations of their
webs; cars oscillate up and down when they hit a bump; buildings and bridges
vibrate when heavy trucks pass or the wind is fierce. Indeed, because most solids
arc clastic (see Chapter 12), they vibrate (at least briefly) when given an impulse.
Electrical oscillations are necessary in radio and television sets. At the atomic level,
atoms vibrate within a molecule, and the atoms of a solid vibrate about their relatively
fixed positions. Because it is so common in everyday life and occurs in so many
areas of physics, oscillatory motion is of great importance. Mechanical oscillations
are fully described on the basis of Newtonian mechanics.

An object attached to a coil spring
can exhibit oscillatory motion. Many
kinds of oscillatory motion are
sinusoidal in time, or nearly so, and
are referred to as being simple
harmonic motion. Real systems
generally have at least some friction,
causing the motion to be damped.
The automobile spring shown here
has a shock absorber (yellow) that
purposefully dampens the oscillation
to make for a smooth ride. When an
external sinusoidal force is exerted
on a system able to oscillate,
resonance occurs if the driving force
is at or near the natural frequency of
oscillation.
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