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Chapter 7

Time Reversal

7.1 The Poincaré Group

7.1.1 Space inversion and time-reversal

Recall that the Poincaré group P(1, n) in n space dimensions is the set of matrices

R(L, b) =




L00 · · · L0n b0
...

. . .
...

...

Ln0 · · · Lnn bn
0 · · · 0 1




, (7.1)

where L ∈ O(1, n) is a Lorentz transformation, meaning LTgL = g with g = diag(1,−1, . . . ,−1) is a
diagonal matrix of rank (n + 1), and b is an (n+ 1)-component column vector1. Note g is of rank n+ 2,
and its action on a vector ξ whose transpose is ξT = (x0 , x1 , . . . , xn , 1) is given by

R(L, b) ξ =




L00 · · · L0n b0
...

. . .
...

...

Ln0 · · · Lnn bn
0 · · · 0 1







x0
...

xn
1




=




x′0
...

x′n
1




≡ ξ′ , (7.2)

where x′µ = Lµνxν + bµ . The space inversion and time-reversal operators, I and T , respectively, ex-
pressed as elements of O(1, n), are then

I =


 1 01×n

0n×1 −1n×n


 , T =


 −1 01×n

0n×1 1n×n


 , (7.3)

1In chapter 1, we called this group P(n, 1), which is equivalent to P(1, n). In both cases, the metric tensor gµν is diagonal and
the temporal entry g00 is of opposite sign to the spatial entries g11 = g22 = · · · = gnn.

1



2 CHAPTER 7. TIME REVERSAL

and are both of rank (n + 1). Their corresponding rank matrices I and T , which are elements of P(1, n)
and therefore of rank (n+ 2), are then given by

I =


 I(n+1)×(n+1) 0(n+1)×1

01×(n+1) 1


 , T =


 T(n+1)×(n+1) 0(n+1)×1

01×(n+1) 1


 . (7.4)

Note that I−1 = I and T −1 = T , and furthermore that

I R(L, b)I−1 = R(ILI−1, Ib)

T R(L, b)T −1 = R(TLT−1, T b) .
(7.5)

The product IT = T I is

IT =


 −1(n+1)×(n+1) 0(n+1)×1

01×(n+1) 1


 , (7.6)

which commutes with all pure Lorentz transformations, but fails to commute with space-time transla-
tions, since

IT R(E, b) (IT )−1 = R(E,−b) . (7.7)

7.1.2 Representations of the Poincaré Lie algebra

We now restrict our attention to the case n = 3, where the Poincaré group consists of 5× 5 matrices. The
generators of the Poincaré Lie algebra p(1, 3) are classified as being translations, rotations, or boosts. The
lowest order variation of R(L, b) about the identity R(E, 0) is

δR =




0 δω01 δω02 δω03 δb0
δω01 0 δω12 −δω31 δb1
δω02 −δω12 0 δω23 δb2
δω03 δω31 −δω23 0 δb3
0 0 0 0 0



≡ −iPµ δbµ − iJµν δωµν . (7.8)

More precisely,

R(E, δb) = exp
(
−iPµ δbµ

)

R(E + δω, 0) = exp
(
−iJµν δωµν

)
,

(7.9)

where AµBµ = gµνA
µBν , and where δωT = −g δω g and JT = −gJg . We stress that for each µ ∈

{0, 1, 2, 3} the generator Pµ is a 5×5 matrix, as is each of the six independent elements of Jµν . The latter
is further split into its rotation and boost components by writing

Ji =
1
2ǫijk J

jk , Ki = Ji0 , (7.10)
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with i ∈ {1, 2, 3}. J are the generators of rotations, and K the generators of boosts. Thus, we have a
total of ten generators of the Lie algebra p(1, 3) : P 0 , P , J , and K, the 5 × 5 matrices of which can be
read off from Eqn. 7.8. Under space inversion and time-reversal,

I P 0 I−1 = +P0 , I P I−1 = −P , I J I−1 = +J , IK I−1 = −K (7.11)

T P 0 T −1 = −P0 , T P T −1 = +P , T J T −1 = +J , T K T −1 = −K . (7.12)

7.1.3 Whither time-reversal?

The problem is that P 0 changes sign under T , but P does not. In classical mechanics, the action of
time-reversal is

rT = r , pT = −p , LT = −L , ET = E , BT = −B . (7.13)

Thus, ifH(E,B) is the Hamiltonian for a charged particle in the presence of electric and magnetic fields,[
H(E,B)

]
T
= H(E,−B). Unlike space inversion, time-reversal in classical mechanics is not a canonical

transformation, since it does not preserve the Poisson bracket
{
xµ , pν

}
PB

= δµν . This is our first clue
that there is something special about time-reversal and that attempting to implement it in quantum
mechanics via a unitary transformation is doomed to fail.

Indeed, if we use Eqn. 7.12 to define Hermitian generators of p(1, 3), we run into problems quantizing
because the generator of time translations, P 0, which is the Hamiltonian, is apparently odd under time-
reversal, while the momentum P , which is the generator of space translations, is even under time-
reversal. This poses severe problems for the classical-quantum correspondence.

Indeed, suppose we define a time-reversal operator T̂ whose action on wavefunctions ψ(x, t) is

ψ′(x, t) = T̂ ψ(x, t) = λψ(x,−t) , (7.14)

where λ ∈ C. Does ψ′(x, t) satisfy the Schrödinger equation?

i~
∂

∂t
ψ′(x, t) = i~λ

∂

∂t
ψ(x,−t) = −i~λ

∂

∂(−t)
ψ(x,−t)

= −λ Ĥ ψ(x,−t) = −Ĥ ψ′(x, t) .

(7.15)

No, it does not. In hindsight, this was obvious from the start. The Schrödinger equation is first order in
time, hence it is not invariant under t→ −t. So at this point we are left with three possibilities:

(i) Quantum physics, unlike Newtonian physics, is not invariant under time-reversal. [horrible!]

(ii) T̂ ĤT̂−1 = −Ĥ and the correspondence principle fails. [horrible!]

(iii) i~ ∂
∂t does not change sign under time-reversal. [hmmm. . .]
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7.2 Antilinearity : The Solution to All Our Problems

I don’t know about you, but I’m putting my money on option (iii). How could we make that work out?
Well, suppose that the action of time-reversal is not given by Eqn. 7.14, but rather by

ψ′(x, t) = λǨψ(x,−t) = λψ∗(x,−t) , (7.16)

where Ǩ is the scalar complex conjugation operator2 which complex conjugates every scalar to its right.
Now we have

i~
∂

∂t
ψ′(x, t) = i~λ

∂

∂t
ψ∗(x,−t) = λ

[
i~

∂

∂(−t)
ψ(x,−t)

]∗
= λ Ĥ∗ψ∗(x,−t) = Ĥ∗ψ′(x, t) , (7.17)

and so long as Ĥ = Ĥ∗, the Schrödinger equation remains invariant under time-reversal. Now that was
so fun, let’s do it again:

ψ′′(x, t) = λǨ λǨ ψ
(
x,−(−t)

)
= |λ|2 ψ(x, t) , (7.18)

and if time-reversal applied twice preserves the state ψ(x, t) up to a phase, we conclude that phase |λ|2

must be unity, i.e. Ť 2 = 1 and λ = eiθ is a unimodular complex number. This result is applicable to scalar
wavefunctions ψ. When there is a spinor component due to intrinsic angular momentum, then the most
general form for Ť is Ť = ÛǨ , where Û is a unitary operator. In this case the unitary Û may act on the
spinor coordinates of Ψ , but since two applications of Ť must result in the same state, i.e. must preserve
the ray in Hilbert space, we conclude Ť 2 Ψ = eiα Ψ , i.e. Ť 2 = eiα is at most a constant phase. But then

Ť 3 Ψ = Ť (Ť 2 Ψ) = Ť eiα Ψ = e−iα Ť Ψ

= (Ť 2) Ť Ψ = eiα Ť Ψ ,
(7.19)

and we conclude e2iα = 1, hence α = 0 or α = π. As we shall see below, the case α = 0 applies when the
intrinsic angular momentum is j ∈ Z, while α = π applies when j ∈ Z+ 1

2 .

An operator Ǎ for which

Ǎ
[
α
∣∣φ
〉
+ β

∣∣ψ
〉]

= α∗Ǎ
∣∣φ
〉
+ β∗Ǎ

∣∣ψ
〉

(7.20)

is called antilinear. Thus, time-reversal operator for spinless particles, Ť = eiθǨ , is antilinear. Note that
we use the inverted hat symbol (ˇ ) to denote an antilinear operator.

7.2.1 Properties of antilinear operators

The following are True Facts about antilinear operators:

• An antilinear operator does not commute with complex numbers. Rather

Ǎ c = c∗Ǎ ⇒ Ǎ c Ǎ−1 = c∗ . (7.21)

2We shall see below in §7.2.4 how to define time-reversal for particles with S = 1

2
.
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• Rather than 〈φ | Â ψ 〉 = 〈 Â† φ |ψ 〉 as for linear Â, for antilinear Ǎ we have
〈
φ
∣∣ Ǎ ψ

〉
=
〈
Ǎ†φ

∣∣ψ
〉∗

. (7.22)

Indeed, the familiar Dirac notation 〈φ | Â |ψ 〉 = 〈φ | Â ψ 〉 = 〈 Â†φ |ψ 〉 is misleading and should
be eschewed in the case of antilinear operators, for which we may write

(〈
φ
∣∣Ǎ
)
=
〈
Ǎ† φ

∣∣ ,
(
Ǎ
∣∣ψ
〉)

=
∣∣ Ǎ ψ

〉
(7.23)

and (〈
φ
∣∣Ǎ
)∣∣ψ

〉
=
[〈
φ
∣∣
(
Ǎ
∣∣ψ
〉)]∗

(7.24)

Thus, 〈 Ǎ† φ |ψ 〉 = 〈φ |Ǎ ψ 〉
∗
. It is very dangerous and often wrong to remove the parentheses in

the above relations!

• Though this follows from the first bullet, it is worth emphasizing:

(c Ǎ)−1 = Ǎ−1 c−1 = c∗−1 Ǎ−1 . (7.25)

• The time-reversal operator is both unitary and antilinear, i.e. it is antiunitary. Because it is unitary,
Ť †Ť = Ê. Thus entails

〈
Ťφ
∣∣ Ť ψ

〉
=
〈
Ť †Ť φ

∣∣ψ
〉∗

=
〈
φ
∣∣ψ
〉∗

=
〈
ψ
∣∣φ
〉

. (7.26)

Thus, ∣∣〈 Ť φ
∣∣ Ťψ

〉∣∣2 =
∣∣〈φ

∣∣ψ
〉∣∣2 (7.27)

for all |φ 〉 and |ψ 〉 . So time-reversal preserves probabilities.

• Let Û and V̂ be unitary, and let Ǎ and B̌ be antiunitary. Then Û V̂ and ǍB̌ are both unitary, while
Û B̌ and V̂Ǎ are both antiunitary. These follow directly from Eqn. 7.20.

• Any symmetry operation which preserves probabilities can be represented as an operator acting
on the Hilbert space of states that is either both linear and unitary, or antilinear and antiunitary.

The proof of the last bullet point is elementary3. Let Q̃ be an operator which preserves probabilities.
Then it must preserve the norm, i.e.

〈
Q̃ Ψ

∣∣ Q̃ Ψ
〉
=
〈
Ψ
∣∣Ψ
〉

. (7.28)

for all |Ψ 〉. Now let |Ψ 〉 = c |φ 〉 + |ψ 〉 . Then

〈
Q̃ (c φ+ ψ)

∣∣ Q̃ (c φ+ ψ)
〉
=
〈
c φ+ ψ

∣∣ cφ+ ψ
〉

= |c|2
〈
φ
∣∣φ
〉
+
〈
ψ
∣∣ψ
〉
+ 2Re

[
c
〈
ψ
∣∣φ
〉]

=
〈
c̃ Q̃ φ+ Q̃ ψ

∣∣ c̃ Q̃ φ+ Q̃ ψ
〉

= |c̃|2
〈
φ
∣∣φ
〉
+
〈
ψ
∣∣ψ
〉
+ 2Re

[
c̃
〈
ψ
∣∣φ
〉]

,

(7.29)

3Wigner said it, so it must be true. See, e.g., Appendix A of S. Weinberg, The Quantum Theory of Fields (vol. 1) or Theorem
10.4.2 of Lax. Here we follow Lax’s proof.
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where c̃ = c if Q̃ is linear and c̃ = c∗ if Q̃ is antilinear. Note |c̃|2 = |c|2 in either case. Then setting c = 1
and c = i gives

c = 1 ⇒ Re
〈
Q̃ ψ

∣∣ Q̃ φ
〉
= Re

〈
ψ
∣∣φ
〉

c = i ⇒ Im
〈
Q̃ ψ

∣∣ Q̃ φ
〉
= ± Im

〈
ψ
∣∣φ
〉

,
(7.30)

where the top sign holds for Q̃ linear and the bottom sign for Q̃ antilinear. For Q̃ linear, we have

〈 Q̃ ψ | Q̃ φ 〉 = 〈ψ |φ 〉, which establishes that Q̃ is unitary. For Q̃ antilinear, 〈 Q̃ ψ | Q̃ φ 〉 = 〈φ |ψ 〉, which

establishes that Q̃ is antiunitary.

As a result of the complex conjugation, we now have an updated and more suitable version of Eqn. 7.12,

Î P̂ 0 Î−1 = +P0 , Î P̂ Î−1 = −P̂ , Î Ĵ Î−1 = +Ĵ , Î K̂ Î−1 = −K̂ (7.31)

Ť P̂ 0 Ť−1 = +P0 , Ť P̂ Ť−1 = −P̂ , Ť Ĵ Ť−1 = −Ĵ , Ť K̂ Ť−1 = +K̂ . (7.32)

All is well!

7.2.2 Position and momentum eigenstates

We may now compute the action of Ť on operators, but how does it act on basis states? We first consider
the case in which the particles are spinless. With respect to time-reversal, one can define an orthonormal
basis |ψµ 〉 which is defined to be real, i.e. for which | Ť ψµ 〉 = |ψµ 〉. To see why this is so, consider

an arbitrary basis vector |φµ 〉 and form | ψ̃µ 〉 ≡ |φµ 〉 + | Ť φµ 〉. For spinless particles, Ť 2 = 1, hence

| Ť ψ̃µ 〉 = | ψ̃µ 〉 and | ψ̃µ 〉 is an eigenstate of Ť with eigenvalue +1. Now consider any vector |φν 〉

satisfying 〈 ψ̃µ |φν 〉 = 0 and form | ψ̃ν 〉 ≡ |φν 〉+ | Ť φν 〉. Then

〈
ψ̃µ

∣∣ ψ̃ν

〉
=
〈
ψ̃µ

∣∣ Ť φν
〉
=
〈
Ť ψ̃µ

∣∣ Ť 2 φν
〉∗

=
〈
ψ̃µ

∣∣φν
〉∗

= 0 (7.33)

because Ť 2 = +1 and 〈 Ť ψ̃µ | = 〈 ψ̃µ | . Followed to its conclusion (for a finite-dimensional Hilbert
space), this procedure results in a complete set of mutually orthogonal vectors, which can further be
normalized so as to be orthonormal, viz. 〈ψµ |ψν 〉 = δµν with | Ť ψµ 〉 = |ψµ 〉 for all µ . Furthermore, if

Ť ĤŤ = Ĥ , then its matrix elements in this basis are

Hµν =
〈
ψµ

∣∣ Ĥ ψν

〉
=
〈
Ť ψµ

∣∣ Ť
Ĥ︷ ︸︸ ︷

Ť−1Ĥ Ť ψν

〉
=
〈
ψµ

∣∣ Ĥ
∣∣ψν

〉∗
= H∗

µν , (7.34)

and therefore all the matrix elements Hµν are real.

Typically this is taken to be the case for position eigenstates, | r 〉 , i.e.
∣∣ r
〉
=
∣∣ Ťr

〉
=
∣∣ Ť †r

〉
, (7.35)

and therefore

〈
r
∣∣ Ť
(
α
∣∣φ
〉
+ β

∣∣ψ
〉)

=
[
α
〈
Ť †r

∣∣φ
〉
+ β

〈
Ť †r

∣∣ψ
〉]∗

= α∗
〈
r
∣∣φ
〉∗

+ β∗
〈
r
∣∣ψ
〉∗

= α∗φ∗(r) + β∗ψ∗(r) .
(7.36)
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Furthermore, if |ψ 〉 =
∫
ddr | r 〉〈 r |ψ 〉 , then

∣∣ Ť ψ
〉
= Ť

∫
ddr
〈
r
∣∣ψ
〉
Ť−1

∣∣ Ťr
〉
=

∫
ddr
∣∣ r
〉 〈

r
∣∣ψ
〉∗

. (7.37)

We also have Ť ĤŤ−1 = Ĥ∗, so if Ĥ = Ĥ∗, then Ĥ |ψ 〉 = E |ψ 〉 entails

Ĥ
∣∣ Ť ψ

〉
= Ť ĤŤ−1

∣∣ Ť ψ
〉
= Ť Ĥ

∣∣ψ
〉
= E

∣∣ T̂ ψ
〉

, (7.38)

and since 〈
r
∣∣ Ťψ

〉
=
〈
Ť †r

∣∣ψ
〉∗

=
〈
r
∣∣ψ
〉∗

= ψ∗(r) , (7.39)

if the eigenstate |ψ 〉 is nondegenerate, ψ(r) can be chosen to be real. This is very important, so let’s say
it again, this time with feeling:

⋆ For spinless particles, if Ť Ĥ = ĤŤ , the non-degenerate eigenstates of Ĥ are real, possibly multiplied by a
constant phase.

For momentum eigenstates, we have

eip·r/~ =
〈
r
∣∣p
〉
=
〈
Ťp
∣∣ Ťr

〉
=
〈
r
∣∣ Ťp

〉∗
, (7.40)

and we conclude | Ťp 〉 = | Ť †p 〉 = | − p 〉. This can also be deduced from the operator transformation
properties,

Ť r̂ Ť−1 = +r̂ , Ť p̂ Ť−1 = −p̂ , (7.41)

where the latter follows from the action of complex conjugation on p̂ = −i~∇.

If Q̂ is any operator with a definite signature under spinless time-reversal, i.e. if

Ǩ Q̂ Ǩ−1 = η
Q̂
Q̂ (7.42)

with η
Q̂
= ±1, then if Ĥ = Ĥ∗ is time-reversal invariant,

Ǩ Q̂(t) Ǩ−1 = Ǩ eiĤt/~ Q̂ e−iĤt/~ Ǩ−1 = e−iĤt/~ Ǩ Q̂ Ǩ−1 eiĤt/~ = η
Q̂
Q̂(−t) . (7.43)

7.2.3 Change of basis for time-reversal

Recall Ť = λǨ with |λ| = 1. We are free to choose λ = 1, in which case Ť = Ǩ is the complex
conjugation operator. Thus far we have defined Ǩ with respect to a particular Ť -invariant basis, i.e. the
position basis4 We could choose a different basis,

{
|n 〉

}
, and define the action of a new time-reversal

operator Ǩ ′ as

Ǩ ′
∑

n

ψn

∣∣n
〉
=
∑

n

ψ∗
n

∣∣n
〉

. (7.44)

4The ”time-reversal basis” is one for which the basis states have time-reversal eigenvalue +1.
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Since Ť = Ǩ ′ and Ǩ are both antilinear, they must be related by a unitary operator, i.e. Ť = ÛǨ. Then

Ť 2 = ÛǨÛǨ = Û Û∗ ≡ eiα , (7.45)

since a second time-reversal operation must restore the original state up to a phase. Thus, eiα Û † = Û∗,
and taking the transpose we obtain eiα Û∗ = Û †, whence e2iα = 1 , which says that α = 0 or α = π. For
spinless particles, as we have seen, Ť 2 = +1. In the next section, we consider the case of S = 1

2 .

7.2.4 Time reversal with spin

In order that the spin-orbit term in the electron Hamiltonian5,

Ĥ
SO

=
~

4m2c2
σ ·∇V × p , (7.46)

remain invariant under time-reversal, we must have ŤσŤ−1 = −σ. With Ť = ÛǨ ,

ŤσŤ−1 = ÛǨσǨ−1Û−1

= Û
(
σx x̂− σy ŷ + σz ẑ

)
Û † = −σ .

(7.47)

Thus, ÛσxÛ † = −σx , ÛσyÛ † = +σy , ÛσzÛ † = −σz , and Û = eiβσy is a solution, where eiβ is an
arbitrary phase, which we may take to be i , so that U = iσy ∈ SU(2) has unit determinant. We now
have

Ť 2 = (iσy) Ǩ (iσy) Ǩ = (iσy)2 = −1 . (7.48)

For N spins each with S = 1
2 ,

Ť = (iσy1) · · · (iσ
y
N ) Ǩ (7.49)

and Ť 2 = (−1)N . Note that
∏N

n=1(iσ
y
n) = exp(iπSy/~) corresponds to a rotation by π of all the spins

about the y-axis in internal space.

Now consider the case of general angular momentum Ĵ , with Ĵ
2
= ~

2j(j + 1). We have Ť Ĵ Ť−1 = −Ĵ ,

which entails Ť Ĵ
2
Ť−1 = Ĵ

2
, hence Ť preserves the j quantum number. We also have

Ĵz Ť
∣∣ j,m

〉
= Ť (Ť−1Ĵz Ť )

∣∣ j,m
〉
= −~mŤ

∣∣ j,m
〉

, (7.50)

from which we conclude Ť | j,m 〉 = Cj,m | j,−m 〉, where Cj,m is a complex scalar. We furthermore have

Ĵ± Ť
∣∣ j,m

〉
= −Ť Ĵ∓

∣∣ j,m
〉
= −A∓(j,m) Ť

∣∣ j,m∓ 1
〉
= −A∓(j,m) Cj,m∓1

∣∣ j,−m± 1
〉

= Cj,m Ĵ
±
∣∣ j,−m

〉
= Cj,mA±(j,−m)

∣∣ j,−m± 1
〉

,
(7.51)

where A±(j,m) = A∓(j,−m) = ~
√
j(j + 1)−m(m∓ 1) . Thus, we conclude Cj,m∓1 = −Cj,m , which

we may choose to solve with the assignment Cj,m = (−1)j+m . One more time, with great feeling:

Ť
∣∣ j,m

〉
= (−1)j+m

∣∣ j,−m
〉

. (7.52)

5Our notation is somewhat inconsistent as we generally do not place hats on r, p, and σ. That these entities function as
operators on Hilbert space is taken for granted.
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Thus, Ť = ÛǨ with Ǩ
∣∣ j,m

〉
=
∣∣ j,m

〉
and

Û =




0 0 · · · 0 1
0 0 · · · −1 0
... . .

. ...
...

(−1)2j 0 · · · 0 0


 (7.53)

so that
Ť 2 = Û Ǩ Û Ǩ = Û2 = (−1)2j . (7.54)

Therefore, in the case of a single j-quantum, we have Ť 2 = +1 or j ∈ Z, and Ť 2 = −1 for j ∈ Z+ 1
2 . For

the general case of N j-quanta, Ť 2 = (−1)2jN .

7.2.5 Kramers degeneracy

When
[
Ť , Ĥ

]
= 0 and Ť 2 = −1, all states in the eigenspectrum of Ĥ are evenfold degenerate. We prove

this by showing that |ψ 〉 and | Ť ψ 〉 are degenerate and orthogonal. The proof of degeneracy is provided
in Eqn. 7.38. As to orthogonality,

〈
ψ
∣∣ Ťψ

〉
=
〈
Ť ψ

∣∣ Ť 2ψ
〉∗

= −
〈
Ť ψ

∣∣ψ
〉∗

= −
〈
ψ
∣∣ Ť ψ

〉
, (7.55)

and therefore 〈ψ | Ť ψ 〉 = 0. Thus, the dimension of Hilbert space must be even. For N spin-12 objects,
this requires N odd, i.e. the total spin Stot is a half odd integer.

In the absence of Ĥ
SO

, we are free to define Ť = Ǩ even though electrons have S = 1
2 . The reasoning

is the same as that which permitted us to use the ordinary point group and not the double group in
such circumstances. In the context of time-reversal,

[
Ǩ, Ĥ

]
= 0 in the absence of Ĥ

SO
, so we are free to

classify states by their properties with respect to Ǩ alone.

7.2.6 External fields

In the presence of external fields, the one electron Hamiltonian is given by

Ĥ =
1

2m

(
p+ e

cA
)2

+ V (r) +
e~

2mc
σ ·B

+
~

4m2c2
σ ·∇V ×

(
p+ e

cA
)
+

~
2

8m2c2
∇2V +O(m−3) ,

(7.56)

where V (r) = −e φ(r) , E = −∇φ , and B = ∇ × A. Beyond the kinetic and potential energy terms
in this expression, we have, respectively, the Zeeman and spin-orbit terms, both of which involve the
electron’s spin, and the Darwin term, which in the presence of a potential V (r) = −Ze2/r is proportional
to ∇2(1/r) = −4π δ(r). In general φ(r) is generated by an external charge density ρ(r) and A(r) by an
external current density j(r). Where do all these terms come from, by the way? From the Dirac equation,
of course:

i~
∂Ψ

∂t
=

(
mc2 + V cσ ·

(
p+ e

cA
)

cσ ·
(
p+ e

cA
)

−mc2 + V

)
Ψ . (7.57)
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The wavefunction Ψ is a four-component Dirac spinor; each of the entries in the above Hamiltonian
matrix is a 2 × 2 subblock. Since mc2 is the largest energy scale in town, the coupling between the up-
per two ”positive energy” components and the lower two ”negative energy” components is relatively
weak, and can be eliminated order by order in (mc2)−1 by successive canonical transformations of the
type discussed in §6.7. This procedure is known as the Foldy-Wouthuysen transformation and is described
in standard texts of yore such as Bjorken and Drell (see the Appendix §7.6 for a derivation). The Dirac
equation is of course wrong6, and the real theory of electrons interacting with photons is given by quan-
tum electrodynamics. Thus the g-factor multiplying (e/2mc)B ·S, where S = 1

2~σ, is g = 2, which is
the ”tree level” value. Radiative corrections, calculable within QED, lead to g = 2 + α

π +O(α2), where
α = e2/~c ≈ 1/137 is the fine structure constant. But I digress.

The Hamiltonian ĤT = Ť ĤŤ−1 is invariant under time-reversal provided

ρT (r, t) = ρ(r,−t) , jT (r, t) = −j(r,−t) (7.58)

φT (r, t) = φ(r,−t) , AT (r, t) = −A(r,−t) (7.59)

ET (r, t) = E(r,−t) , BT (r, t) = −B(r,−t) , (7.60)

where the conditions on φ and A are of course true up to a gauge transformation. We then have
ĤT (E,B) = Ĥ(ET ,BT ) and ψT (t ; E,B) = ÛǨψ(−t ; ET ,BT ).

7.3 Time Reversal and Point Group Symmetries

All point group operations ĝ ≡ Û(g) commute with time-reversal:
[
Ť , ĝ

]
= 0. The reason is that proper

point group operations are rotations, hence ĝ = exp
(
− iξn̂ · Ĵ/~

)
, and Ť iĴ Ť−1 = iĴ . The improper

operations include spatial inversion Î , which also commutes with Ť .

Consider the case of a particle of total spin j subjected to point group operations. We have

(i) Ť 2 = +1 , j = 0 : The time-reversal operator is then simply complex conjugation, i.e. Ť = Ǩ.
Consider any complex scalar basis function ψ(r). Then

Ť ĝ ψ(r) = ĝ Ť ψ(r) = ψ∗(rg) . (7.61)

(ii) Ť 2 = −1 , j = 1
2 : The time-reversal operator is T̂ = iσy Ǩ , and we write the wavefunction as a

two-component column vector, with ψT(r) =
(
ψ↑(r) , ψ↓(r)

)
. Then it can be shown that

Ť ĝ ψ(r) = ĝ Ť ψ(r) = iσy
[
D1/2(g)

]∗
(
ψ∗
↑(rg)

ψ∗
↓(rg)

)
. (7.62)

The essential step in establishing the above result is to show σyD1/2(g)σy =
[
D1/2(g)

]∗
, which is

left as an exercise for the student.

6With respect to QED, the Dirac equation is correct ”at tree level”.
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(iii) For general j, one has ψT(r) =
(
ψm(r) , . . . , ψ−m(r)

)
, and

Ť ĝ ψ(r) = ĝ Ť ψ(r) = ψT (rg) (7.63)

whose components are given by

ψT

m(rg) = (−1)j−m
[
Dj

−m,m′(g)
]∗
ψ∗
m′(rg) . (7.64)

This is readily derived using the definition and properties of rotation matrices, discussed in §4.3.2.

7.3.1 Complex conjugate representations

Suppose |ψΓ
µ 〉 for µ ∈ {1, . . . , dΓ } are basis vectors for an invariant subspace VΓ transforming according

to a representation Γ of the point group G. Then combining point group and time-reversal operations
yields

ĝ
∣∣ Ť ψΓ

ν

〉
= Ť ĝ

∣∣ψΓ
ν

〉
= Ť

[ ∣∣ψΓ
µ

〉
DΓ

µν(g)
]
=
∣∣ Ť ψΓ

µ

〉
DΓ ∗

µν (g) . (7.65)

This tells us that the basis vectors | Ť ψΓ
µ 〉 transform as the complex conjugate representation Γ ∗. In §2.5,

we discussed the significance of the Frobenius-Schur indicator,

εΓ =
1

NG

∑

g∈G

χΓ (g2) , (7.66)

which takes the values εΓ ∈ {−1, 0,+1}, in determining whether a given IRREP can be made real, i.e.
whether it is equivalent to one whose representation matrices are all real. We found

(i) εΓ = +1 : The representation matrices DΓ (G) may be brought to real form by a similarity trans-
formation S DΓ (G)S−1. All characters χΓ (g) are real. In such cases, Γ is said to be real.

(ii) εΓ = −1 : DΓ (G) andDΓ ∗

are equivalent, meaning they are related by a similarity transformation,
but they cannot be brought to real form. All characters χΓ (g) are real. In such cases, Γ is said to be
pseudoreal.

(iii) εΓ = 0 : DΓ (G) and DΓ ∗

are inequivalent, and χΓ (g) /∈ R for some group elements g. In such
cases, Γ is said to be complex.

The single crystallographic point groups have no pseudoreal IRREPs. The following crystallographic
groups have complex IRREPs: C3 , C3h , C4 , C4h , C6 , C6h , T , Th. The spin IRREPs of the double point
groups all have dimensions dΓ = 1, 2, or 4. They are real only for the case dΓ = 1. For dΓ = 2 and 4, they
are pseudoreal. For SO(3), we use the invariant measure to compute the Frobenius-Schur indicator. The
invariant measure is given by

dµ(ξ, n̂) = (1− cos ξ)
dξ

2π

dn̂

4π
, (7.67)
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hence

εj =
1

2π

2π∫

0

dξ (1− cos ξ)χ(j)(2ξ)

=
1

2π

2π∫

0

dξ (1− cos ξ)
sin (2j + 1)ξ

sin ξ
=

{
+1 if j ∈ Z

−1 if j ∈ Z+ 1
2 .

(7.68)

Does the presence of time-reversal symmetry lead to additional degeneracies in the eigenspectrum? We
state the following results without proof:7

(i) If εΓ Ť
2 = +1, then there are no additional degeneracies. This is the case for real IRREPs when

Ť = +1, and for pseudoreal IRREPs when Ť 2 = −1. In the latter case, one can redefine the states so
that |ψΓ ∗

µ 〉 = | Ť ψΓ
µ 〉 .

(ii) If εΓ Ť
2 = −1, then there is a doubling, and | Ť ψΓ

µ 〉 is orthogonal to |ψΓ
ν 〉 for all µ and ν. This is

the case for real IRREPs when Ť 2 = −1 and for pseudoreal IRREPs when Ť 2 = +1. Doubling means
that a given representation appears twice, with degenerate energies.

(iii) If εΓ Ť
2 = 0, the IRREPs Γ and Γ ∗ are inequivalent and degenerate. Such degenerate IRREPs are

called paired.

7.3.2 Generalized time-reversal

In cases where
[
Ť , Ĥ

]
6= 0, but

[
r̂ Ť , Ĥ

]
= 0 for some point group operation r ∈ G, the following result

is useful:

ĝ
∣∣ Θ̌ ψΓ

ν

〉
=
(
r̂
∣∣ Θ̌ ψΓ

µ

〉)
DΓ ∗

µν (h
−1gh) , (7.69)

where Θ̌ = r̂ Ť is an antiunitary operator which effectively stands in for time-reversal Ť . This state of
affairs persists, for example, when a magnetic field H is present, which by itself breaks time-reversal
symmetry, but there is a point group operation r̂, such as a twofold axis perpendicular to H or a mirror
plane containing H8, both of which reverse H . Thus Θ̌ preserves H and is a symmetry, assuming time-
reversal is otherwise unbroken. Above we considered the time-reverse representation Γ T = Γ ∗. We
denote the generalized time-reverse representation by ΓΘ. The details are worked out in §10.6 of Lax,
and we present the results in Tab. 7.1. We define

ε̃Γ =
1

NG

∑

g∈G

χΓ
(
(rg)2

)
(7.70)

as well as

DΓΘ

(g) =
[
DΓ (r−1gr)

]∗
, χΓΘ

(g) = TrDΓΘ

(g) =
[
χΓ (r−1gr)

]∗
. (7.71)

7For a proof, see Lax §10.7.
8Since H is a pseudovector, it is reversed by a mirror containing H and preserved by a mirror orthogonal to H .
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equivalence of representations degeneracies

type ε̃Γ χΓΘ
= χΓ ? DΓΘ

= S−1DΓS ? S symmetry DΓΘ
=DΓ ? Ť 2 = +1 Ť 2 = −1

1 +1 yes yes S = DΓ (r2)ST if ST = S none doubling

2 −1 yes yes S = −DΓ (r2)ST if ST = S doubling none

3 0 no no none no pairing pairing

Table 7.1: Representations and degeneracies for generalized time reversal Θ̌ = r̂ Ť .

The issue is whether a given IRREP Γ is equivalent to its generalized time-reverse ΓΘ, as well as whether
the generalized time-reversal symmetry entails any extra degeneracies in the spectrum of Ĥ. Equiva-

lence of IRREPs means that there exists a fixed matrix S with DΓΘ
(g) = S−1DΓ (g)S for all g ∈ G. Since

we presume our representations to be unitary, S is also unitary. The analysis hinges on the value of the
generalized Frobenius-Schur indicator, ε̃Γ , defined above in eqn. 7.70. When r = E, the results in Tab.
7.1 recapitulate those already stated. For the cases ε̃Γ = ±1 (types 1 and 2), the representation matrices

may be made to be identical, i.e. DΓΘ
(g) = DΓ (g), provided S = ST, i.e. if DΓ (r2) = ε̃Γ D

Γ (E).

7.4 Consequences of Time-Reversal

7.4.1 Selection rules and time-reversal

Selection rules in quantum mechanics refer to symmetries which result in the vanishing of certain matrix

elements of the form V
ΓaΓb

αβ = 〈Ψ
Γa
α | V̂ |Ψ

Γ
b

β 〉 . From the point of view of the Wigner-Eckart theorem, we

may always decompose the potential V̂ into components which transform according to IRREPs of our
symmetry group, viz.

V̂ =
∑

Γc,γ

vΓc,γ
Q̂Γc

γ , (7.72)

in which the various matrix elements are subject to the considerations underlying the Wigner-Eckart
theorem of §3.2.5. Here we are interested in the consequences of time-reversal symmetry.

Consider a matrix element

〈
Ψ
∣∣ V̂
∣∣Ψ′

〉
=
〈
V̂ †Ψ

∣∣Ψ′
〉
=
〈
ŤΨ′

∣∣ Ť V̂ †Ť−1 ŤΨ
〉
= ηV

〈
ŤΨ′

∣∣ V̂ ŤΨ
〉

, (7.73)

where we assume Ť V̂ † Ť−1 = ηV V̂ . Typically V̂ will be Hermitian, i.e. V̂ = V̂ †. Suppose further that
Ψ′ = Ť Ψ is the time-reverse mate of Ψ. If Ť 2 = εT then we have

〈
Ψ
∣∣ V̂
∣∣Ψ′

〉
= ηV εT

〈
Ψ
∣∣ V̂
∣∣Ψ′

〉
, (7.74)

which means 〈Ψ | V̂ |Ψ′ 〉 = 0 if ηV εT = −1 . This is of course to be expected.
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Now consider the thermal average of some Hermitian operator, 〈V̂ (t)〉 = Tr
(
ˆ̺ V̂ (t)

)
=
∑

n Pn 〈n | V̂ (t) |n 〉 ,

where ˆ̺ is the equilibrium density matrix Z−1 exp(−βĤ) and Pn = Z−1 exp(−βEn) . For Ť ĤŤ−1 = Ĥ ,
we can equally well take the trace over the states | T̂ n 〉, which are each energetically degenerate with
the corresponding |n 〉. Then

〈 V̂ (t) 〉 =
∑

n

Pn

〈
Ť n
∣∣ V̂ (t) Ť n

〉
=
∑

n

Pn ηV
〈
n
∣∣ V̂ †(−t)

∣∣n
〉
= 〈 V̂ (−t) 〉 , (7.75)

where we have used

〈
Ť n
∣∣ V̂ (t) Ť n

〉
=
〈
Ť n
∣∣ Ť

η
V
V̂ (−t)︷ ︸︸ ︷

Ť−1 V̂ (t) Ť n
〉
= ηV

〈
V̂ (−t)n

∣∣n
〉
=
〈
n
∣∣ V̂ †(−t)

∣∣n
〉

. (7.76)

More generally, time-reversal symmetry has the following consequences,

〈 Â(t) B̂(0) 〉 = ηA ηB 〈 B̂(0) Â(−t) 〉 , (7.77)

which leads us to the following discussion.

7.4.2 Onsager reciprocity

Now consider a general quantum mechanical system with a Hamiltonian Ĥ0 subjected to a time-dependent
perturbation, Ĥ1(t), where

Ĥ1(t) = −
∑

i

Q̂i φi(t) . (7.78)

Here, the {Q̂i} are a set of Hermitian operators, and the {φi(t)} are fields or potentials. Some examples:

Ĥ1(t) =





−M̂ ·B(t) magnetic moment – magnetic field

∫
d3r ˆ̺(r)φ(r, t) density – scalar potential

−1
c

∫
d3r ĵ(r) ·A(r, t) electromagnetic current – vector potential

We now ask, what is 〈Q̂i(t)〉? We assume that the lowest order response is linear, i.e.

〈Q̂i(t)〉 =

∞∫

−∞

dt′ χij(t− t′)φj(t
′) +O(φk φl) . (7.79)

Note that we assume that the O(φ0) term vanishes, which can be assured with a judicious choice of
the {Qi}

9. We also assume that the responses are all causal, i.e. χij(t − t′) = 0 for t < t′. To compute

χij(t−t
′), we will use first order perturbation theory to obtain 〈Q̂i(t)〉 and then functionally differentiate

with respect to φj(t
′):

χij(t− t′) =
δ
〈
Q̂i(t)

〉

δφj(t′)
. (7.80)

9If not, define δQ̂i ≡ Q̂i − 〈Q̂i〉0 and consider 〈δQ̂i(t)〉.
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The first step is to establish the result,

∣∣Ψ(t)
〉
= T exp

{
−
i

~

t∫

t0

dt′
[
Ĥ0 + Ĥ1(t

′)
]} ∣∣Ψ(t0)

〉
, (7.81)

where T is the time ordering operator, which places earlier times to the right. This is easily derived starting
with the Schrödinger equation,

i~
d

dt

∣∣Ψ(t)
〉
= Ĥ(t)

∣∣Ψ(t)
〉
, (7.82)

where Ĥ(t) = Ĥ0 + Ĥ1(t). Integrating this equation from t to t+ dt gives

∣∣Ψ(t+ dt)
〉
=

(
1−

i

~
Ĥ(t) dt

) ∣∣Ψ(t)
〉

∣∣Ψ(t0 +N dt)
〉
=

(
1−

i

~
Ĥ
(
t0 + (N − 1) dt

))
· · ·

(
1−

i

~
Ĥ(t0)

) ∣∣Ψ(t0)
〉
,

(7.83)

hence ∣∣Ψ(t2)
〉
= U(t2, t1)

∣∣Ψ(t1)
〉

(7.84)

where

Û(t2, t1) = T exp



−

i

~

t2∫

t1

dt Ĥ(t)



 (7.85)

is a unitary linear operator, known as the time evolution operator between times t1 and t2. It satisfies a
composition law, U(t3, t1) = U(t3, t2)U(t2, t1).

If t1 < t < t2, then differentiating Û(t2, t1) with respect to φi(t) yields

δÛ (t2, t1)

δφj(t)
=
i

~
Û(t2, t) Q̂j Û(t, t1) , (7.86)

since ∂Ĥ(t)/∂φj(t) = −Q̂j . We may therefore write (assuming t0 < t, t′)

δ |Ψ(t) 〉

δφj(t′)

∣∣∣∣
{φi=0}

=
i

~
e−iĤ0(t−t′)/~ Q̂j e

−iĤ0(t′−t0)/~
∣∣Ψ(t0)

〉
Θ(t− t′)

=
i

~
e−iĤ0t/~ Q̂j(t

′) e+iĤ0 t0/~
∣∣Ψ(t0)

〉
Θ(t− t′) ,

(7.87)

where
Q̂j(t) ≡ eiĤ0t/~ Q̂j e

−iĤ0t/~ (7.88)

is the operator Q̂j in the time-dependent interaction representation. Finally, we have

χij(t− t′) =
δ

δφj(t′)

〈
Ψ(t)

∣∣ Q̂i

∣∣Ψ(t)
〉
=
δ 〈Ψ(t) |

δφj(t′)
Q̂i

∣∣Ψ(t)
〉
+
〈
Ψ(t)

∣∣ Q̂i
δ |Ψ(t) 〉

δφj(t′)

=

{
−
i

~

〈
Ψ(t0)

∣∣ e−iĤ0t0/~ Q̂j(t
′) e+iĤ0t/~ Q̂i

∣∣Ψ(t)
〉

+
i

~

〈
Ψ(t)

∣∣ Q̂i e
−iĤ0t/~ Q̂j(t

′) e+iĤ0t0/~
∣∣Ψ(t0)

〉}
Θ(t− t′)

=
i

~

〈[
Q̂i(t), Q̂j(t

′)
]〉

Θ(t− t′) ,

(7.89)
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were averages are with respect to the wavefunction |Ψ 〉 ≡ exp(−iĤ0 t0/~) |Ψ(t0) 〉, with t0 → −∞. This
is sometimes known as the retarded response function. This result is valid at finite temperature if we take
the bracket 〈· · · 〉 to denote thermal averaging, viz.

χij(t− t′) =
i

~

∑

m

Pm

〈
m
∣∣ [Q̂i(t), Q̂j(t

′)
] ∣∣m

〉
Θ(t− t′) (7.90)

=
i

~

∑

m,n

Pm

{〈
m
∣∣ Q̂i(t)

∣∣n
〉〈
n
∣∣ Q̂j(t

′)
∣∣m
〉
−
〈
m
∣∣ Q̂j(t

′)
∣∣n
〉〈
n
∣∣ Q̂i(t)

∣∣m
〉}

Θ(t− t′) .

Now the sums over states |m 〉 and |n 〉 can equally well be performed over their time-reverses | Ťm 〉
and | Ť n 〉. Assuming H0 is time-reversal invariant, the energy spectrum is identical. Note then that

〈
Ťm

∣∣ Q̂i(t) Ť n
〉〈
Ť n
∣∣ Q̂j(t

′) Ťm
〉
=
〈
Ť−1Q̂i(t)Ť n

∣∣m
〉〈
Ť−1Q̂j(t

′)Ť m
∣∣n
〉

= ηi ηj
〈
Q̂i(−t)n

∣∣m
〉〈
Q̂j(−t

′)m
∣∣n
〉

= ηi ηj
〈
m
∣∣Q†

j(−t
′)
∣∣n
〉〈
n
∣∣ Q̂†

i (−t)
∣∣m
〉

,

(7.91)

where

Ť−1 Q̂i(t) Ť = Ť−1 eiĤ0t/~ Q̂i e
−iĤ0t/~ Ť = e−iĤ0t/~ Ť−1 Q̂i Ť e

+iĤ0t/~ = ηi Q̂i(−t) . (7.92)

Here, ηi = ±1 is the signature of the operator Q̂i under time-reversal. Appealing now to hermiticity of
Q̂i, we have

χij(t− t′) =
i

~
ηi ηj

〈[
Q̂j(−t

′), Q̂i(−t)
]〉

Θ(t− t′) = ηi ηj χji(t− t′) , (7.93)

where we have also appealed to time translation invariance. The above relation is a consequence of time-
reversal invariance, and is known as Onsager reciprocity. In the frequency domain, the linear response of
a system to a finite frequency perturbations φj(ω) is given by 〈Q̂i(ω)〉 = χij(ω)φj(ω).

We have assumed here that Ť Ĥ0Ť
−1 = Ĥ0 . Suppose though that Ĥ0 = Ĥ0(H) where H is a magnetic

field, which reverses under time-reversal. Then the derivation goes through as before, with the im-
portant caveat that Ĥ0(H) must be replaced by Ĥ0(−H) after time-reversal. The statement of Onsager
reciprocity is then

χij(t− t′) = ηi ηj χ
T
ji(t− t′) , (7.94)

where χij(t − t′) is the response function for a system with Hamiltonian Ĥ0(H) , and χT
ji(t − t′) is the

response function for a system with Hamiltonian Ĥ0(−H) .

7.5 Color groups

Cesium chloride is a cubic structure in which the Cs and Cl ions lie on interpenetrating simple cubic
lattices. Its space group is Pm3m, and consists of operations

{
g
∣∣R
}

where g ∈ Oh and R is a simple
cubic direct lattice vector. We could also describe the symmetries of CsCl by including another space
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Figure 7.1: Colored squares and their magnetic point group symmetries.

group generator
{
θ
∣∣ τ
}

, where τ = 1
2(a1 + a2 + a3) translates from a corner to a center of any cubic

cell, and θ is an alchemy operation which converts Cs to Cl and vice versa. Thus θ2 = E.

Consider the symmetries of the three colored squares in Fig. 7.1. The symmetry of an uncolored square
is C4v, which has eight elements: {E,C2, 2C4, 2σv , 2σd}. In the figure, the square on the left is symmetric
under the subgroup {E,C2, 2σv} , but any of the operations {2C4, 2σd} is a symmetry only if they are
accompanied by an operation θ which exchanges blue and white; again θ2 = E. Thus, it is symmetric
under the operations of the magnetic point group10

4′m′m =
{
E,C2, 2σv , 2θC4, 2θσd

}
. (7.95)

The square in the center is symmetric under the subgroup {E,C2, 2C4} and under {2θσv, 2θσd}, which
altogether constitute the magnetic point group 4m′m′:

4m′m′ =
{
E,C2, 2C4, 2θσv, 2θσd

}
. (7.96)

Finally, the square on the right is symmetric under the subgroup {E,C2, 2σd} and under {2θC4, 2θσv},
which altogether constitute the magnetic point group 4mm′:

4′mm′ =
{
E,C2, 2σv , 2θC4, 2θσd

}
. (7.97)

Since 4′mm′ and 4m′m differ only by swapping the mirrors, they are equivalent, as can be seen by
redefining their respective unit cells after a 45◦ rotation. We shall comment on the significance of the
primes presently (astute students should be able to infer their meaning!).

Let P be an ordinary point group which we wish to extend to a magnetic point group PM. It is easy to
see that there are only the following three possibilities:

(i) No group operations involve color changes and PM = P. Such magnetic point groups are uncol-
ored. Uncolored point groups describe nonmagnetic structures, or ferromagnets where all the local
moments are of the same polarization (”color”).

10See Mirman [1999], Joshua [1991], V. Kopský, Symmetry 7, 135 (2015) and R. Lifshitz, Magnetic Point Groups and Space Groups
in Encyclopedia of Condensed Matter 3, 219 (Elsevier, 2005).
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σ
′

σ
′

σσ

Figure 7.2: The two magnetic point groups deriving from C2v = mm2. A black dot indicates spin
polarization m = +j and a white dot indicates a spin polarization m = −j, with j ∈ Z.

(ii) To every element g ∈ P corresponds an element θ g ∈ PM. Thus PM = P× 1′ where 1′ = {E, θ} is a
Z2 clone. Such magnetic point groups are called grey. Note that θ ∈ PM for all grey groups, which
cannot be a symmetry element for any site group PM(r), because it changes the color on each
site. However, coupled with lattice translations, the θ operation does appear in space group ele-
ments. For example, consider the one-dimensional antiferromagnet consisting of identical atoms
whose local moments are arranged as

∣∣ · · · ↑↓↑↓↑↓ · · ·
〉

. Then if τ is half the wavelength of the
spin pattern, i.e. the distance between consecutive ↑ and ↓ sites,

{
θ
∣∣ τ
}
∈ SM is an element of the

magnetic space group and then by definition θ ∈ PM is in the magnetic point group. The situation
is roughly analogous to the status of the inversion operation I in diamond. The maximally sym-
metric site group for diamond is Td , which does not contain I . But diamond is nonsymmorphic
and

{
I
∣∣ τ I

}
∈ S is in diamond’s space group Fd3m. Clearly this state of affairs requires trans-

lational symmetries and thus grey groups do not occur in finite systems such as molecules. Grey
groups have twice the number of elements as their corresponding ordinary point groups.

(iii) Suppose P has a normal subgroup B of index two, which means that P = B ∪ (P − B) and fur-
thermore that P − B = uB for any u /∈ B. Thus the order N

P
is even, and both B and P − B

contain 1
2NP

elements. Now form the group PM = B ∪ θ(P − B), whose order is also N
P

This
is the familiar coset construction via Lagrange’s theorem which we discussed in the dim and dis-
tant past (see §1.3.1). How do we find which point groups have normal subgroups of order two?
Check the character tables for their one-dimensional representations other than the trivial IRREP.
Such one-dimensional IRREPs will necessarily have χΓ (g) = −1 for half the group elements, and
the classes for which χΓ (C) = +1 contain the elements of an index two normal subgroup B. Such
groups PM are called black and white groups.

For example, C4v has three nontrivial one-dimensional IRREPs: A2, B1, and B2. In A2, the classes
with χA

2(C) = 1 are {E,C2, 2C4}, whose elements form an index two normal subgroup B, whence
the construction of PM = 4m′m′ in Eqn. 7.96. Choosing the B1 IRREP, we find B = {E,C2, 2σv},
whence the construction of PM = 4′m′m in Eqn. 7.95. Choosing B2 just swaps the mirrors and
yields a group equivalent to 4′m′m. Another example is shown in Fig. 7.2, which depicts the two
magnetic point groups deriving from C2v = mm2.

The notation for magnetic space groups is to place a prime on elements of the Hermann-Maugin symbol
which are paired with the θ operation in order to produce a symmetry. In other words, the primed
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Figure 7.3: The five new black and white Bravais lattices in two dimensions. Clockwise from upper
left, they derive from the square (1), oblique (1), centered rectangular (1), and rectangular (2) uncolored
lattices. When the colors both fade to grey, each of these figures becomes a Bravais lattice (45◦ rotated
square, oblique, rectangular, centered rectangular, and rectangular, respectively).

elements are those not in the subgroup B.

7.5.1 Magnetic Bravais lattices and magnetic space groups

In constructing magnetic space groups, we must include translations. For ordinary space groups S, the
elements

{
E
∣∣R
}

represent translations by a Bravais lattice vector R. But for magnetic space groups
SM we can have operations such as

{
θ
∣∣R
}

, where R is a translation vector in the direct magnetic Bravais
lattice. A magnetic Bravais lattice (or colored lattice) is one in which there are two sublattices, one black
and one white. An important restriction is that a colored lattice must turn into a regular lattice if the
colors fade, i.e. if the distinction between the black and white sites is removed. In two dimensions,
there are five uncolored lattices (oblique, hexagonal, rectangular, centered rectangular, and square), and
it turns out there are five black and white (BW) lattices, for a total of ten. In three dimensions, there
are 14 uncolored lattices and 22 BW ones for a total of 36. Why are there almost double the number of
BW as compared to uncolored lattices in d = 3? The reason is that the BW lattices have an additional
primitive lattice vector τ

BW
, i.e. that which connects the B and W sublattices. There can be more than one

possible such τ
BW

, however. The situation is roughly analogous to the different centering possibilities
for cubic, tetragonal, orthorhombic, and monoclinic Bravais lattices. In Fig. 7.3 we show the additional
five BW lattices which arise in two dimensions. Recall in d = 2 there are five lattices: oblique, hexagonal,
rectangular, centered rectangular, and square. From the all-black oblique lattice, we can imagine adding
white sites in the center of each plaquette or in the middle of one set of parallel edges. However these
options are equivalent, as one can simply redefine the original direct lattice vectors such that one of
them extends diagonally across the cell, i.e. replace a2 by a′

2 = a1 + a2. The center of the original
oblique plaquette now lies at the midpoint of the side a′

2. When faded, this BW lattice becomes an
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oblique uncolored lattice. So we can only conjure up one additional BW lattice from the black oblique.
The hexagonal case adds nothing new to what we have just derived, since the addition of a sublattice
breaks the hexagonal symmetry anyway. With rectangular, we may place white sites in the center of each
cell, or at the midpoint of a parallel pair of sides. When faded, the former yields a centered rectangular
lattice and the latter another rectangular lattice. Attempting to place white sites at the midpoints of all
sides of the rectangle does not produce a Bravais lattice when faded and is therefore not a permitted
extension of the rectangular case, but it is a permitted extension of the centered rectangular case, and
when faded produces a rectangular lattice. Finally, placing white sites at the centers of a pair of parallel
sides of a square is equivalent to the same extension of the rectangular cell, hence yields nothing new.
But placing a white site at the center of each square is permitted and leads to a θC4 symmetry not present
in any of the rectangular extensions. So there are a total of five additional BW lattices in two dimensoins.
In three dimensions, to the 14 all black Bravais lattices, we get unique BW extensions from triclinic (1),
monoclinic (5), orthorhombic (8), tetragonal (4), trigonal (0), hexagonal (2), and cubic (2), for a total of
22 BW extensions, and 36 colored Bravais lattices in all.

When it comes to point groups, we follow the recipe in §7.5 above. In any dimension, there is a grey (G)
point group P

′ = P × {E, θ} for each uncolored (U) point group P. To create a black and white (BW)
point group PM , we must identify uncolored point groups P with normal subgroups B of index 2, and
then construct PM = B∪θ(P−B). Since a given P may have several such maximal proper subgroups, the
number of BW point groups is greater than then number of U or G point groups. In three dimensions,
for example, there are 32 U and 32 G point groups, and 58 BW point groups. The latter are listed in Tab.
7.2. A summary of the numbers of U, G, and BW point groups in d = 2 and d = 3 dimensions is given
in Tab. 7.3.

Next, we come to space groups. These may be build upon either uncolored or black and white Bravais
lattices. For example, in d = 3 we have learned that there are a total of 230 uncolored space groups. For
each space group S we can add the color changing element θ as a generator of the point group to create
a grey space group S

′ with twice the number of elements of S. There is a one-to-one correspondence
between uncolored and grey groups, hence there are 230 grey space groups as well. When it comes to
building the black and white space groups, if the underlying Bravais lattice is uncolored, the recipe is
the same as for the point groups. That is, we start with a space group S generated by

{
E
∣∣R
}

and{
g
∣∣ τg

}
, where g ∈ P− B, and

{
θ h
∣∣ τh

}
, where h ∈ B. Thus results in 674 new black and white space

groups. But we are not quite done! We could have started with a black and white Bravais lattice, in
which case the black and white space group generators are

{
E
∣∣R
}

,
{
g
∣∣ τg

}
where g ∈ P − B, and{

θ h
∣∣ τh + τ

BW

}
where h ∈ B . This adds another 517 lattices, for a total of 1191 BW space groups.

Adding this to the 230 uncolored and 230 grey space groups, we arrive at a total of 1,651 colored three-
dimensional space groups, the properties of which are tabulated in a riveting 11,976 page text by D. B.
Litvin, entitled Magnetic Group Tables, Part 2 (International Union of Crystallography, 2013).
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system P
(Sch)

P
HM N

P
colored point groups PM

triclinic C1 1 1 none

Ci 1 2 1
′

monoclinic C2 2 2 2′

Cs m 2 m′

C2h 2/m 4 2/m′ , 2′/m , 2′/m′

orthorhombic D2 222 4 2′2′2

C2v mm2 4 m′m2 , m′m′2

D2h mmm 8 m′mm, m′m′m, m′m′m′

tetragonal C4 4 4 4′

S4 4 4 4
′

C4h 4/m 8 4/m′ , 4′/m , 4′/m′

D4 422 8 4′22′ , 4′2′2′

C4v 4mm 8 4′m′m, 4m′m′

D2d 42m 8 4
′
2′m, 4

′
2m′ , 4

′
2′m′

D4h 4/mmm 16 4/m′mm, 4/mm′m′ , 4/m′m′m′ ,

4′/mm′m, 4′/m′m′m

trigonal C3 3 3 none

S6 3 3 3
′

D3 32 6 32′

C3v 3m 6 3m′

D3d 3m 12 3
′
m, 3m′ , 3

′
m′

hexagonal C6 6 6 6′

C3h 6 6 6
′

C6h 6/m 12 6′/m , 6/m′ , 6′/m′

D6 622 12 6′2′2 , 62′2′

C6v 6mm 12 6′m′m, 6m′m′

D3h 6m2 12 6
′
m′2 , 6

′
m2′ , 6m′2′

D6h 6/mmm 24 6/m′mm, 6/mm′m′ , 6/m′m′m′ ,

6′/mm′m, 6′/m′m′m

cubic T 23 12 none

Th m3 24 m′3

O 432 24 4′32′

Td 43m 24 4
′
3m′

Oh m3m 48 m′3m, m3m′ , m′3m′

Table 7.2: The 58 colored three-dimensional magnetic point groups.
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Bravais lattices point groups space groups

U BW total U G BW total U G BW total

d = 2 5 5 10 10 10 11 31 17 17 46 80

d = 3 14 22 36 32 32 58 122 230 230 1191 1651

Table 7.3: True Facts about magnetic lattices, point groups, and space groups. Notation: U (uncolored),
G (grey), and BW (black and white).
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7.5.2 Corepresentations of color groups

7.6 Appendix : The Foldy-Wouthuysen Transformation

The Dirac Hamiltonian is

H = mc2 γ0 + cγ0 γ ·π + V , (7.98)

where π = p+ e
cA is the dynamical momentum and where the γµ are the Dirac matrices,

γ0 =

(
12×2 02×2

02×2 −12×2

)
, γ =

(
02×2 σ2×2

−σ2×2 02×2

)
. (7.99)

Here σ is the vector of Pauli matrices. The Dirac equation is

i~
dΨ

dt
= HΨ , (7.100)

where Ψ is a four-component Dirac spinor.

The idea behind the FW transformation is to unitarily transform to a different Hilbert space basis such
that the coupling in H between the upper and lower components of the Dirac spinor vanishes. This may
be done systematically as an expansion in inverse powers of the electron mass m. We begin by defining
K ≡ cγ0γ ·π + V so that H = mc2 γ0 +K . Note that K is of order m0. We then write

H̃ = eiS H e−iS = H + i
[
S,H

]
+

(i)2

2!

[
S, [S,H]

]
+ . . . , (7.101)

where S itself is written as a power series in (mc2)−1:

S =
S0
mc2

+
S1

(mc2)2
+ . . . . (7.102)

The job now is to write H̃ as a power series in m−1. The first few terms are easy to find:

H̃ = mc2 γ0 +K + i
[
S0, γ

0
]
+

1

mc2

(
i
[
S0,K

]
+ i
[
S1, γ

0
]
− 1

2

[
S0, [S0, γ

0]
])

+ . . . (7.103)

We choose the operators Sn so as to cancel, at each order in m−1, the off-diagonal terms in H̃ that couple
the upper two components of Ψ to the lower two components of Ψ. To order m0, we then demand

cγ0γ ·π + i
[
S0, γ

0
]
= 0 . (7.104)

Note that we do not demand that i
[
S0, γ

0
]

completely cancel K – indeed it is impossible to find such an
S0, and one way to see this is to take the trace. The trace of any commutator must vanish, but TrK = 4V ,
which is in general nonzero. But this is of no concern to us, since we only need cancel the (traceless)
off-diagonal part of K , which is to say cγ0γ ·π.
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To solve for S0, one can write it in terms of its four 2 × 2 subblocks, compute the commutator with γ0,
and then impose eqn. 7.104. One then finds S0 = − i

2cγ ·π, the derivation of which is left as an exercise.

At the next level, we have to deal with the term in the round brackets in eqn. 7.103. Since we know S0,
we can compute the first and the third terms therein. In general, this will leave us with an off-diagonal
term coupling upper and lower components of Ψ. We then choose S1 so as to cancel this term. This
calculation already is tedious, and we haven’t even gotten to the spin-orbit interaction term yet, since it
is of order m−2.

7.6.1 Derivation of the Spin-Orbit Interaction

Here’s a simpler way to proceed to order m−2. Let a, b be block indices and i, j be indices within each
block. Thus, the component Ψai is the ith component of the ath block; Ψa=1,i=2 is the lower component
of the upper block, i.e. the second component of the four-vector Ψ.

Write the Hamiltonian as
H = mc2 τ z + cσ ·π τx + V (r) , (7.105)

where τµ are Pauli matrices with indices a, b and σν are Pauli matrices with indices i, j. The σ and τ
matrices commute because they act on different indices.

A very important result regarding Pauli matrices:

eiθ n̂·τ/2 τα e−iθ n̂·τ/2 = nαnβ τβ + cos θ (δαβ − nαnβ) τβ + sin θ ǫαβγ nβ τγ . (7.106)

STUDENT EXERCISE: Verify and interpret the above result.

Using this result, we can write

Aτ z +B τx =
√
A2 +B2 ·e−i tan−1(B/A) τy/2 τ z ei tan

−1(B/A) τy/2 , (7.107)

and, for our specific purposes,

mc2 τ z + σ ·π τx =
√

(mc2)2 + (cσ ·π)2 ·U τ z U † , (7.108)

where U = exp
(
− i tan−1(σ·πmc ) τ

y/2
)
. The fact that σ ·π is an operator is no obstacle here, since it

commutes with the τµ matrices. We can give meaning to expressions like tan−1(σ ·π/mc) in terms of
their Taylor series expansions.

We therefore have the result,

U †H U =
√
(mc2)2 + (cσ ·π)2 τ z + U † V (r)U . (7.109)

The first term is diagonal in the block indices. Expanding the square root, we have

mc2
√

1 +
(σ ·π

mc

)2
= mc2 +

(σ ·π)2

2m
+O(m−3)

= mc2 +
π2

2m
+

e~

2mc
B ·σ +O(m−3) ,

(7.110)
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since

(σ ·π)2 = σµσν πµπν = (δµν + iǫµνλσλ)πµπν

= π2 + i
2ǫ

µνλ
[
pµ + e

cA
µ, pν + e

cA
ν
]

= π2 +
e~

c
B ·σ .

(7.111)

We next need to compute U † V (r)U to order m−2. To do this, first note that

U = 1−
i

2

σ ·π

mc
τy −

1

8

(σ ·π

mc

)2
+ . . . , (7.112)

Thus,

U † V U = V +
i

2mc

[
σ ·π, V

]
τy −

1

8m2c2
[
σ ·π, [σ ·π, V ]

]
+ . . . . (7.113)

Upon reflection, one realizes that, to this order, it suffices to take the first term in the Taylor expansion
of tan−1(σ ·π/mc) in the expression for U , in which case one can then invoke eqn. 7.101 to obtain the
above result. The second term on the RHS of eqn. 7.113 is simply ~

2mc σ ·∇ V τy. The third term is

i~

8m2c2
[
σµπµ, σν∂νV

]
=

i~

8m2c2

{
σµ
[
πµ, σν∂νV

]
+
[
σµ, σν∂νV

]
πµ
}

=
i~

8m2c2

{
~

i
∂µ∂νV σµσν + 2iǫµνλσλ∂νV πµ

}

=
~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π .

(7.114)

Therefore,

U †H U =

(
mc2 +

π2

2m
+

e~

2mc
B ·σ

)
τ z + V +

~

2mc
σ ·∇ V τy

+
~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇ V × π +O(m−3) .

(7.115)

This is not block-diagonal, owing to the last term on the RHS of the top line. We can eliminate this term
by effecting yet another unitary transformation. However, this will result in a contribution to the energy
of order m−3, so we can neglect it. To substantiate this last claim, drop all the block-diagonal terms
except for the leading order one, mc2 τ z , and consider the Hamiltonian

K = mc2 τ z +
~

2mc
σ ·∇V τy . (7.116)

We now know how to bring this to block-diagonal form. The result is

K̃ = mc2

√

1 +

(
~σ ·∇ V

2m2c3

)2
τ z =

(
mc2 +

~
2(∇ V )2

8m3c4
+ . . .

)
τ z , (7.117)

and the correction is of order m−3, as promised.

We now assume all the negative energy (τ z = −1) states are filled. The Hamiltonian for the electrons,
valid to O(m−3), is then

H̃ = mc2 + V +
π2

2m
+

e~

2mc
B ·σ +

~
2

8m2c2
∇

2V +
~

4m2c2
σ ·∇V × π +O(m−3) . (7.118)
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