8 Nonequilibrium and Transport Phenomena : Summary

• *Boltzmann equation*: The full phase space distribution for a Hamiltonian system, $\varrho(\varphi, t)$, where $\varphi = (\{q_{\sigma}\}, \{p_{\sigma}\})$, satisfies $\dot{\varrho} + \dot{\varphi} \cdot \nabla \varrho = 0$. This is not true, however, for the one-particle distribution f(q, p, t). Rather, \dot{f} is related to two-, three-, and higher order particle number distributions in a chain of integrodifferential equations known as the BBGKY hierarchy. We can lump our ignorance of these other terms into a *collision integral* and write

$$\underbrace{\frac{\partial f}{\partial t} = -\dot{\boldsymbol{r}} \cdot \frac{\partial f}{\partial \boldsymbol{r}} - \dot{\boldsymbol{p}} \cdot \frac{\partial f}{\partial \boldsymbol{p}}}_{\text{coll}} + \underbrace{\left(\frac{df}{dt}\right)_{\text{coll}}}_{\text{coll}}$$

In the absence of collisions, the distribution evolves solely due to the streaming term with $\dot{r} = p/m$ and $\dot{p} = -\nabla U_{\text{ext}}$. If $\dot{p} = F_{\text{ext}}$ is constant, we have the general solution

$$f(\boldsymbol{r}, \boldsymbol{p}, t) = \phi \left(\boldsymbol{r} - \frac{\boldsymbol{p} t}{m} + \frac{\boldsymbol{F}_{\text{ext}} t^2}{2m}, \, \boldsymbol{p} - \frac{\boldsymbol{F}_{\text{ext}} t}{m} \right)$$

valid for any initial condition $f(\mathbf{r}, \mathbf{p}, t = 0) = \phi(\mathbf{r}, \mathbf{p})$. We write the *convective derivative* as $\frac{D}{Dt} = \frac{\partial}{\partial t} + \dot{\mathbf{r}} \cdot \frac{\partial}{\partial \mathbf{r}} + \dot{\mathbf{p}} \cdot \frac{\partial}{\partial p}$. Then the Boltzmann equation may be written $\frac{Df}{Dt} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$.

• *Collisions*: We are concerned with two types of collision processes: single-particle scattering, due to a local potential, and two-particle scattering, due to interparticle forces. Let Γ denote the set of single particle kinematic variables, *e.g.* $\Gamma = (p_x, p_y, p_z)$ for point particles and $\Gamma = (p, L)$ for diatomic molecules. Then

$$\left(\frac{df}{dt}\right)_{\text{coll}} = \int d\Gamma' \left\{ w(\Gamma \mid \Gamma') f(\boldsymbol{r}, \Gamma'; t) - w(\Gamma' \mid \Gamma) f(\boldsymbol{r}, \Gamma; t) \right\}$$

for single particle scattering, and

$$\begin{split} \left(\frac{df}{dt}\right)_{\text{coll}} &= \int d\Gamma_1 \int d\Gamma'_1 \int d\Gamma'_1 \left\{ w \left(\Gamma \Gamma_1 \mid \Gamma' \Gamma_1'\right) f_2(\boldsymbol{r}, \Gamma'; \boldsymbol{r}, \Gamma_1'; t) - w \left(\Gamma' \Gamma_1' \mid \Gamma \Gamma_1\right) f_2(\boldsymbol{r}, \Gamma; \boldsymbol{r}, \Gamma_1; t) \right\} \\ &\approx \int d\Gamma_1 \int d\Gamma'_1 \int d\Gamma'_1 \left\{ w \left(\Gamma \Gamma_1 \mid \Gamma' \Gamma_1'\right) f(\boldsymbol{r}, \Gamma'; t) f(\boldsymbol{r}, \Gamma_1'; t) - w \left(\Gamma' \Gamma_1' \mid \Gamma \Gamma_1\right) f(\boldsymbol{r}, \Gamma; t) f(\boldsymbol{r}, \Gamma_1; t) \right\} \\ &- w \left(\Gamma' \Gamma_1' \mid \Gamma \Gamma_1\right) f(\boldsymbol{r}, \Gamma; t) f(\boldsymbol{r}, \Gamma_1; t) \right\} \end{split}$$

for two-body scattering, where f_2 is the two-body distribution, and where the approximation $f_2(\mathbf{r}, \Gamma'; \mathbf{r}', \Gamma'; t) \approx f(\mathbf{r}, \Gamma; t) f(\mathbf{r}', \Gamma'; t)$ in the second line closes the equation. A quantity $\mathcal{A}(\mathbf{r}, \Gamma)$ which is preserved by the dynamics between collisions then satisfies

$$\frac{dA}{dt} \equiv \frac{d}{dt} \int d^d r \, d\Gamma \, \mathcal{A}(\boldsymbol{r}, \Gamma) \, f(\boldsymbol{r}, \Gamma, t) = \int d^d r \, d\Gamma \, \mathcal{A}(\boldsymbol{r}, \Gamma) \left(\frac{df}{dt}\right)_{\text{coll}}$$

Quantities which are conserved by collisions satisfy A = 0 and are called *collisional invariants*. Examples include A = 1 (particle number), A = p (linear momentum, if translational invariance applies), and $A = \varepsilon_p$ (energy).

• *Time reversal, parity, and detailed balance*: With $\Gamma = (\mathbf{p}, \mathbf{L})$, we define the actions of time reversal and parity as

$$arGamma^{\scriptscriptstyle T}=(-oldsymbol{p},-oldsymbol{L}) ~~,~~ arGamma^{\scriptscriptstyle P}=(-oldsymbol{p},oldsymbol{L}) ~~,~~ arGamma^{\scriptscriptstyle C}=(oldsymbol{p},-oldsymbol{L}) ~~,$$

where C = PT is the combined operation. Time reversal symmetry of the underlying equations of motion requires $w(\Gamma'\Gamma'_1 | \Gamma\Gamma_1) = w(\Gamma^T\Gamma_1^T | \Gamma'^T\Gamma_1'^T)$. Under conditions of *detailed balance*, this leads to $f^0(\Gamma) f^0(\Gamma_1) = f^0(\Gamma'^T) f^0(\Gamma_1'^T)$, where f^0 is the equilibrium distribution. For systems with both P and T symmetries, $w(\Gamma'\Gamma'_1 | \Gamma\Gamma_1) = w(\Gamma^C\Gamma_1^C | \Gamma'^C\Gamma_1'^C)$, whence $w(p', p'_1 | p, p_1) = w(p, p_1 | p', p'_1)$ for point particles.

• Boltzmann's \mathcal{H} -theorem: Let $h(\mathbf{r},t) = \int d\Gamma f(\mathbf{r},\Gamma,t) \ln f(\mathbf{r},\Gamma,t)$. Invoking the Boltzmann equation, it can be shown that $\frac{\partial h}{\partial t} \leq 0$, which means $\frac{d\mathcal{H}}{dt} \leq 0$, where $\mathcal{H}(t) = \int d^d r h(\mathbf{r},t)$ is Boltzmann's \mathcal{H} -function. $h(\mathbf{r},t)$ is everywhere decreasing or constant, due to collisions.

• Weakly inhomogeneous gas: Under equilibrium conditions, f^0 can be a function only of collisional invariants, and takes the Gibbs form $f^0(\mathbf{r}, \mathbf{p}) = Ce^{(\mu + \mathbf{V} \cdot \mathbf{p} - \varepsilon_{\Gamma})/k_{\mathrm{B}}T}$. Assume now that μ , \mathbf{V} , and T are all weakly dependent on \mathbf{r} and t. f^0 then describes a *local equilibrium* and as such is annihilated by the collision term in the Boltzmann equation, but not by the streaming term. Accordingly, we seek a solution $f = f^0 + \delta f$. A lengthy derivation results in

$$\left\{\frac{\varepsilon_{\Gamma} - \mathbf{h}}{T} \, \boldsymbol{v} \cdot \boldsymbol{\nabla} T + m \, v_{\alpha} v_{\beta} \, \mathcal{Q}_{\alpha\beta} - \frac{\varepsilon_{\Gamma} - \mathbf{h} + T c_{p}}{c_{V}/k_{\mathrm{B}}} \, \boldsymbol{\nabla} \cdot \boldsymbol{V} - \boldsymbol{F}^{\mathrm{ext}} \cdot \boldsymbol{v} \right\} \frac{f^{0}}{k_{\mathrm{B}}T} + \frac{\partial \, \delta f}{\partial t} = \left(\frac{df}{dt}\right)_{\mathrm{coll}} \quad ,$$

where $v = \frac{\partial \varepsilon}{\partial p}$ is the particle velocity, h is the enthalpy per particle, $\mathcal{Q}_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial V^{\alpha}}{\partial x^{\beta}} + \frac{\partial V^{\beta}}{\partial x^{\alpha}} \right)$, and F^{ext} is an external force. For an ideal gas, $h = c_p T$. The RHS is to be evaluated to first order in δf . The simplest model for the collision integral is the *relaxation time approximation*, where $\left(\frac{\partial f}{\partial t}\right)_{\text{coll}} = -\frac{\delta f}{\tau}$. Note that this form does not preserve any collisional invariants. The scattering time is obtained from the relation $n\bar{v}_{\text{rel}}\sigma\tau = 1$, where σ is the two particle total scattering cross section and \bar{v}_{rel} is the average relative speed of a pair of particles. This says that there is on average one collision within a tube of cross sectional area σ and length $\bar{v}_{\text{rel}}\tau$. For the Maxwellian distribution, $\bar{v}_{\text{rel}} = \sqrt{2} \, \bar{v} = \sqrt{\frac{16 \, k_{\text{B}} T}{\pi m}}$, so $\tau(T) \propto T^{-1/2}$. The *mean free path* is defined as $\ell = \bar{v}\tau = \frac{1}{\sqrt{2}n\sigma}$.

• *Transport coefficients*: Assuming $F_{\alpha}^{\text{ext}} = Q_{\alpha\beta} = 0$ and steady state, Eq. 8 yields

$$\delta f = -\frac{\tau(\varepsilon - c_p T)}{k_{\rm B} T^2} \left(\boldsymbol{v} \cdot \boldsymbol{\nabla} T \right) f^0$$

The energy current is given by

$$j_{\varepsilon}^{\alpha} = \int d\Gamma \ \varepsilon_{\Gamma} \ v^{\alpha} \ \delta f = - \underbrace{\frac{n\tau}{k_{\rm B}T^2} \left\langle v^{\alpha} v^{\beta} \ \varepsilon_{\Gamma} (\varepsilon_{\Gamma} - c_p T) \right\rangle}_{dT} \frac{\partial T}{\partial x^{\beta}}$$

For a monatomic gas, one finds $\kappa^{\alpha\beta} = \kappa \, \delta^{\alpha\beta}$ with $\kappa(T) = \frac{\pi}{8} n \ell \bar{v} c_p \propto T^{1/2}$. A similar result follows by considering any intensive quantity ϕ which is spatially dependent through the temperature $T(\mathbf{r})$. The ϕ -current across the surface z = 0 is

$$\boldsymbol{j}_{\phi} = n \hat{\boldsymbol{z}} \int d^{3} v P(\boldsymbol{v}) v_{z} \phi(z - \ell \cos \theta) + n \hat{\boldsymbol{z}} \int d^{3} v P(\boldsymbol{v}) v_{z} \phi(z + \ell \cos \theta) = -\frac{1}{3} n \, \bar{v} \, \ell \, \frac{\partial \phi}{\partial z} \, \hat{\boldsymbol{z}}$$

Thus, $\mathbf{j}_{\phi} = -K \nabla T$, with $K = \frac{1}{3}n \ell \bar{v} \frac{\partial \phi}{\partial T}$ the associated transport coefficient. If $\phi = \langle \varepsilon_{\Gamma} \rangle$, then $\frac{\partial \phi}{\partial T} = c_p$, yielding $\kappa = \frac{1}{3}n\ell \bar{v}c_p$. If $\phi = \langle p_x \rangle$, then $j_{p_x}^z = \Pi_{xz} = -\frac{1}{3}nm\ell \bar{v} \frac{\partial V_x}{\partial z} \equiv -\eta \frac{\partial V_x}{\partial z}$, where η is the shear viscosity. Using the Boltzmann equation in the relaxation time approximation, one obtains $\eta = \frac{\pi}{8}nm\ell \bar{v}$. From κ and η , we can form a dimensionless quantity $\Pr = \eta c_p/m\kappa$, known as the *Prandtl number*. Within the relaxation time approximation, $\Pr = 1$. Most monatomic gases have $\Pr \approx \frac{2}{3}$.

• *Linearized Boltzmann equation*: To go beyond the phenomenological relaxation time approximation, one must grapple with the collision integral,

$$\left(\frac{df}{dt}\right)_{\text{coll}} = \int d^3p_1 \int d^3p' \int d^3p'_1 w(\mathbf{p}', \mathbf{p}'_1 \mid \mathbf{p}, \mathbf{p}_1) \left\{ f(\mathbf{p}') f(\mathbf{p}'_1) - f(\mathbf{p}) f(\mathbf{p}_1) \right\} ,$$

which is a nonlinear functional of the distribution $f(\boldsymbol{p},t)$ (we suppress the *t* index here). Writing $f(\boldsymbol{p}) = f^0(\boldsymbol{p}) + f^0(\boldsymbol{p}) \psi(\boldsymbol{p})$, we have $\left(\frac{\partial f}{\partial t}\right)_{\text{coll}} = f^0(\boldsymbol{p}) \hat{L}\psi + \mathcal{O}(\psi^2)$, with

$$\hat{L}\psi(\boldsymbol{p}) = \int d^3p_1 \int d\Omega |\boldsymbol{v} - \boldsymbol{v}_1| \frac{\partial\sigma}{\partial\Omega} f^0(\boldsymbol{p}_1) \left\{ \psi(\boldsymbol{p}') + \psi(\boldsymbol{p}_1') - \psi(\boldsymbol{p}) - \psi(\boldsymbol{p}_1) \right\} \quad .$$

The linearized Boltzmann equation (LBE) then takes the form $(\hat{L} - \frac{\partial}{\partial t})\psi = Y$, where

$$Y = \frac{1}{k_{\rm B}T} \left\{ \frac{\varepsilon(\boldsymbol{p}) - \frac{5}{2}k_{\rm B}T}{T} \, \boldsymbol{v} \cdot \boldsymbol{\nabla}T + m \, v_{\alpha}v_{\beta} \, \mathcal{Q}_{\alpha\beta} - \frac{k_{\rm B}\,\varepsilon(\boldsymbol{p})}{c_{V}} \, \boldsymbol{\nabla}\cdot\boldsymbol{V} - \boldsymbol{F}\cdot\boldsymbol{v} \right\}$$

for point particles. To solve the LBE, we must invert the operator $\hat{L} - \frac{\partial}{\partial t}$. Various useful properties follow from defining the inner product $\langle \psi_1 | \psi_2 \rangle \equiv \int d^3p f^0(p) \psi_1(p) \psi_2(p)$, such as the self-adjointness of \hat{L} : $\langle \psi_1 | \hat{L} \psi_2 \rangle = \langle \hat{L} \psi_1 | \psi_2 \rangle$. We then have $\hat{L} | \phi_n \rangle = -\lambda_n | \phi_n \rangle$, with $\langle \phi_m | \phi_n \rangle = \delta_{mn}$ and real eigenvalues λ_n . There are five zero eigenvalues corresponding to the collisional invariants:

$$\phi_1(\boldsymbol{p}) = \frac{1}{\sqrt{n}} \qquad , \qquad \phi_{2,3,4}(\boldsymbol{p}) = \frac{p_\alpha}{\sqrt{nmk_{\rm B}T}} \qquad , \qquad \phi_5(\boldsymbol{p}) = \sqrt{\frac{2}{3n}} \left(\frac{\varepsilon(\boldsymbol{p})}{k_{\rm B}T} - \frac{3}{2}\right) \quad .$$

When Y = 0, the formal solution to $\frac{\partial \psi}{\partial t} = \hat{L}\psi$ is $\psi(\mathbf{p}, t) = \sum_n C_n \phi_n(\mathbf{p}) e^{-\lambda_n t}$. Aside from the collisional invariants, all the eigenvalues λ_n must be positive, corresponding to relaxation to the equilibrium state. One can check that the particle, energy, and heat currents are given by $\mathbf{j} = \langle \mathbf{v} | \psi \rangle$, $\mathbf{j}_{\varepsilon} = \langle \mathbf{v} \varepsilon | \psi \rangle$, and $\mathbf{j}_q = \langle \mathbf{v} (\varepsilon - \mu) | \psi \rangle$.

In steady state, the solution to $\hat{L}\psi = Y$ is $\psi = \hat{L}^{-1}Y$. This is valid provided *Y* is orthogonal to each of the collisional invariants, in which case

$$\psi(\boldsymbol{p}) = \sum_{n \notin \mathsf{CI}} \lambda_n^{-1} \left< \phi_n \, | \, Y \right> \phi_n(\boldsymbol{p})$$

Once we have $|\psi\rangle$, we may obtain the various transport coefficients by computing the requisite currents. For example, to find the thermal conductivity κ and shear viscosity η ,

$$\begin{split} \kappa &: \qquad Y = \frac{1}{k_{\rm B}T^2} \frac{\partial T}{\partial x} X_{\kappa} \qquad , \qquad X_{\kappa} \equiv \left(\varepsilon - \frac{5}{2}k_{\rm B}\right) v_x \qquad \Rightarrow \quad \kappa = -\frac{\langle X_{\kappa} \, | \, \psi \, \rangle}{\partial T / \partial x} \\ \eta &: \qquad Y = \frac{m}{k_{\rm B}T} \frac{\partial V_x}{\partial y} X_{\eta} \qquad , \qquad X_{\eta} \equiv v_x \, v_y \qquad \Rightarrow \quad \eta = -\frac{m \, \langle X_{\eta} \, | \, \psi \, \rangle}{\partial V_x / \partial y} \quad . \end{split}$$

• *Variational approach*: The Schwarz inequality, $\langle \psi | - \hat{L} | \psi \rangle \cdot \langle \phi | \hat{H} | \phi \rangle \geq \langle \phi | \hat{H} | \psi \rangle^2$, holds for the positive semidefinite operator $\hat{H} \equiv -\hat{L}$. One therefore has

$$\kappa \geq \frac{1}{k_{\rm B}T^2} \frac{\langle \phi \,|\, X_{\kappa} \,\rangle^2}{\langle \phi \,|\, \hat{H} \,|\, \phi \,\rangle} \qquad , \qquad \eta \geq \frac{m^2}{k_{\rm B}T} \frac{\langle \phi \,|\, X_{\eta} \,\rangle^2}{\langle \phi \,|\, \hat{H} \,|\, \phi \,\rangle}$$

Using variational functions $\phi_{\kappa} = (\varepsilon - \frac{5}{2}k_{\rm B}T)v_x$ and $\phi_{\eta} = v_x v_y$, one finds, after tedious calculations,

$$\kappa \ge \frac{75 k_{\rm B}}{64\sqrt{\pi} d^2} \left(\frac{k_{\rm B}T}{m}\right)^{1/2} \qquad , \qquad \eta \ge \frac{5 (mk_{\rm B}T)^{1/2}}{16\sqrt{\pi} d^2}$$

Taking the lower limit in each case, we obtain a Prandtl number $Pr = \frac{\eta c_p}{m\kappa} = \frac{2}{3}$, which is close to what is observed for monatomic gases.

• *Quantum transport*: For quantum systems, the local equilibrium distribution is of the Bose-Einstein or Fermi-Dirac form,

$$f^{0}(\boldsymbol{r}, \boldsymbol{k}, t) = \left\{ \exp\left(\frac{\varepsilon(\boldsymbol{k}) - \mu(\boldsymbol{r}, t)}{k_{\rm B}T(\boldsymbol{r}, t)}\right) \mp 1 \right\}^{-1}$$

,

with $k = p/\hbar$, and

$$\left(\frac{df}{dt}\right)_{\text{coll}} = \int \frac{d^3k_1}{(2\pi)^3} \int \frac{d^3k'}{(2\pi)^3} \int \frac{d^3k'_1}{(2\pi)^3} w \left\{ f'f_1' \left(1 \pm f\right) \left(1 \pm f_1\right) - ff_1 \left(1 \pm f'\right) \left(1 \pm f'_1\right) \right\}$$

where $w = w(\mathbf{k}, \mathbf{k}_1 | \mathbf{k}', \mathbf{k}'_1)$, $f = f(\mathbf{k})$, $f_1 = f(\mathbf{k}_1)$, $f' = f(\mathbf{k}')$, and $f'_1 = f(\mathbf{k}'_1)$, and where we have assumed time-reversal and parity symmetry. The most important application is to electron transport in metals and semiconductors, in which case f^0 is the Fermi distribution. With $f = f^0 + \delta f$, one has, within the relaxation time approximation,

$$\frac{\partial \, \delta f}{\partial t} - \frac{e}{\hbar c} \, \boldsymbol{v} \times \boldsymbol{B} \cdot \frac{\partial \, \delta f}{\partial \boldsymbol{k}} - \boldsymbol{v} \cdot \left[e \, \boldsymbol{\mathcal{E}} + \frac{\varepsilon - \mu}{T} \, \boldsymbol{\nabla} T \right] \frac{\partial f^0}{\partial \varepsilon} = -\frac{\delta f}{\tau} \quad ,$$

where $\mathcal{E} = -\nabla(\phi - \mu/e) = \mathbf{E} - e^{-1}\nabla\mu$ is the gradient of the 'electrochemical potential' $\phi - e^{-1}\mu$. For steady state transport with $\mathbf{B} = 0$, one has

$$\boldsymbol{j} = -2e \int_{\hat{\Omega}} \frac{d^3k}{(2\pi)^3} \, \boldsymbol{v} \, \delta f \equiv L_{11} \, \boldsymbol{\mathcal{E}} - L_{12} \, \boldsymbol{\nabla} \, T$$
$$\boldsymbol{j}_q = 2 \int_{\hat{\Omega}} \frac{d^3k}{(2\pi)^3} \, (\varepsilon - \mu) \, \boldsymbol{v} \, \delta f \equiv L_{21} \, \boldsymbol{\mathcal{E}} - L_{22} \, \boldsymbol{\nabla} \, T$$

where $L_{11}^{\alpha\beta} = e^2 \mathcal{J}_0^{\alpha\beta}$, $L_{21}^{\alpha\beta} = TL_{12}^{\alpha\beta} = -e \mathcal{J}_1^{\alpha\beta}$, and $L_{22}^{\alpha\beta} = \frac{1}{T} \mathcal{J}_2^{\alpha\beta}$, with

$$\mathcal{J}_{n}^{\alpha\beta} \equiv \frac{1}{4\pi^{3}\hbar} \int d\varepsilon \, \tau(\varepsilon) \, (\varepsilon - \mu)^{n} \left(-\frac{\partial f^{0}}{\partial \varepsilon}\right) \int dS_{\varepsilon} \, \frac{v^{\alpha} \, v^{\beta}}{|v|}$$

These results entail

$$\boldsymbol{\mathcal{E}} = \rho \, \boldsymbol{j} + Q \, \boldsymbol{\nabla} T \qquad , \qquad \boldsymbol{j}_q = \Box \, \boldsymbol{j} - \kappa \, \boldsymbol{\nabla} T$$

or, in terms of the \mathcal{J}_n ,

$$\rho = \frac{1}{e^2} \mathcal{J}_0^{-1} \quad , \quad Q = -\frac{1}{e T} \mathcal{J}_0^{-1} \mathcal{J}_1 \quad , \quad \Box = -\frac{1}{e} \mathcal{J}_1 \mathcal{J}_0^{-1} \quad , \quad \kappa = \frac{1}{T} \left(\mathcal{J}_2 - \mathcal{J}_1 \mathcal{J}_0^{-1} \mathcal{J}_1 \right) \quad .$$

These results describe the following physical phenomena:

<u>Electrical resistance</u> ($\nabla T = B = 0$): An electrical current j will generate an electric field $\mathcal{E} = \rho j$, where ρ is the *electrical resistivity*.

<u>Peltier effect</u> ($\nabla T = B = 0$): An electrical current j will generate an heat current $j_q = \Box j$, where \Box is the *Peltier coefficient*.

<u>Thermal conduction</u> (j = B = 0): A temperature gradient ∇T gives rise to a heat current $j_q = -\kappa \nabla T$, where κ is the *thermal conductivity*.

<u>Seebeck effect</u> (j = B = 0): A temperature gradient ∇T gives rise to an electric field $\mathcal{E} = Q\nabla T$, where Q is the Seebeck coefficient.

For a parabolic band with effective electron mass m^* , one finds

$$\rho = \frac{m^*}{ne^2\tau} \quad , \quad Q = -\frac{\pi^2 k_{\rm B}^2 T}{2e\,\varepsilon_{\rm F}} \quad , \quad \kappa = \frac{\pi^2 n\tau k_{\rm B}^2 T}{3m^*}$$

with $\Box = TQ$, where $\varepsilon_{\rm F}$ is the Fermi energy. The ratio $\kappa/\sigma T = \frac{\pi^2}{3}(k_{\rm B}/e)^2 = 2.45 \times 10^{-8} {\rm V}^2 {\rm K}^{-2}$ is then predicted to be universal, a result known as the *Wiedemann-Franz law*. This also predicts all metals to have negative thermopower, which is not the case. In the presence of an external magnetic field B, additional transport effects arise:

<u>Hall effect</u> $(\frac{\partial T}{\partial x} = \frac{\partial T}{\partial y} = j_y = 0)$: An electrical current $\mathbf{j} = j_x \hat{\mathbf{x}}$ and a field $\mathbf{B} = B_z \hat{\mathbf{z}}$ yield an electric field $\boldsymbol{\mathcal{E}}$. The Hall coefficient is $R_{\rm H} = \mathcal{E}_y / j_x B_z$.

Ettingshausen effect $(\frac{\partial T}{\partial x} = j_y = j_{q,y} = 0)$: An electrical current $\mathbf{j} = j_x \hat{x}$ and a field $\mathbf{B} = B_z \hat{z}$ yield a temperature gradient $\frac{\partial T}{\partial y}$. The *Ettingshausen coefficient* is $P = \frac{\partial T}{\partial y}/j_x B_z$.

<u>Nernst effect</u> $(j_x = j_y = \frac{\partial T}{\partial y} = 0)$: A temperature gradient $\nabla T = \frac{\partial T}{\partial x} \hat{x}$ and a field $\boldsymbol{B} = B_z \hat{z}$ yield an electric field $\boldsymbol{\mathcal{E}}$. The Nernst coefficient is $\Lambda = \mathcal{E}_y / \frac{\partial T}{\partial x} B_z$.

<u>Righi-Leduc effect</u> $(j_x = j_y = \mathcal{E}_y = 0)$: A temperature gradient $\nabla T = \frac{\partial T}{\partial x} \hat{x}$ and a field $\overline{B} = B_z \hat{z}$ yield an orthogonal gradient $\frac{\partial T}{\partial y}$. The *Righi-Leduc coefficient* is $\mathcal{L} = \frac{\partial T}{\partial y} / \frac{\partial T}{\partial x} B_z$.

• *Stochastic processes*: Stochastic processes involve a random element, hence they are not wholly deterministic. The simplest example is the Langevin equation for Brownian motion, $\dot{p} + \gamma p = F + \eta(t)$, where p is a particle's momentum, γ a damping rate due to friction, F an external force, and $\eta(t)$ a *stochastic random force*. We can integrate this first order equation to obtain

$$p(t) = p(0) e^{-\gamma t} + \frac{F}{\gamma} \left(1 - e^{-\gamma t} \right) + \int_{0}^{t} ds \, \eta(s) e^{\gamma(s-t)}$$

We assume that the random force $\eta(t)$ has zero mean, and furthermore that

$$\langle \eta(s) \eta(s') \rangle = \phi(s - s') \approx \Gamma \,\delta(s - s')$$

in which case one finds $\langle p^2(t) \rangle = \langle p(t) \rangle^2 + \frac{\Gamma}{2\gamma}(1 - e^{-2\gamma t})$. If there is no external force, we expect the particle thermailzes at long times, *i.e.* $\langle \frac{p^2}{2m} \rangle = \frac{1}{2}k_{\rm B}T$. This fixes $\Gamma = 2\gamma mk_{\rm B}T$, where *m* is the particle's mass. One can integrate again to find the position. At late times $t \gg \gamma^{-1}$, one finds $\langle x(t) \rangle = \text{const.} + \frac{Ft}{\gamma m}$, corresponding to a mean velocity $\langle p/m \rangle = F/\gamma$. The RMS fluctuations in position, however, grow as

$$\langle x^2(t) \rangle - \langle x(t) \rangle^2 = \frac{2k_{\rm B}Tt}{\gamma m} \equiv 2Dt$$

where $D = k_{\rm B}T/\gamma m$ is the *diffusion constant*. Thus, after the memory of the initial conditions is lost $(t \gg \gamma^{-1})$, the mean position advances linearly in time due to the external force, and the RMS fluctuations in position also increase linearly.

• Fokker-Planck equation: Suppose x(t) is a stochastic variable, and define

$$\delta x(t) \equiv x(t+\delta t) - x(t)$$

Furthermore, assume $\langle \delta x(t) \rangle = F_1(x(t)) \delta t$ and $\langle [\delta x(t)]^2 \rangle = F_2(x(t)) \delta t$, but that $\langle [\delta x(t)]^n \rangle - O(\delta t^2)$ for n > 2. One can then show that the probability density $P(x,t) = \langle \delta(x-x(t)) \rangle$ satisfies the *Fokker-Planck equation*,

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x} \left[F_1(x) P(x,t) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[F_2(x) P(x,t) \right]$$

For Brownian motion, $F_1(x) = F/\gamma m \equiv u$ and $F_2(x) = 2D$. The resulting Fokker-Planck equation is then $P_t = -uP_x + DP_{xx}$, where $P_t = \frac{\partial P}{\partial t}$, $P_{xx} = \frac{\partial^2 P}{\partial x^2}$, etc. The Galilean transformation $x \to x - ut$ then results in $P_t = DP_{xx}$, which is known as the *diffusion equation*, a general solution to which is given by $P(x,t) = \int_{-\infty}^{\infty} dx' K(x - x', t - t') P(x', t')$, where

$$K(\Delta x, \Delta t) = (4\pi D\Delta t)^{-1/2} e^{-(\Delta x)^2/4D\Delta t}$$

is the *diffusion kernel*. Thus, $\Delta x_{\text{RMS}} = \sqrt{2D\Delta t}$.