8 Nonequilibrium and Transport Phenomena : Summary

- Boltzmann equation: The full phase space distribution for a Hamiltonian system, $\varrho(\boldsymbol{\varphi}, t)$, where $\varphi=\left(\left\{q_{\sigma}\right\},\left\{p_{\sigma}\right\}\right)$, satisfies $\dot{\varrho}+\dot{\varphi} \cdot \nabla \varrho=0$. This is not true, however, for the oneparticle distribution $\boldsymbol{f}(\boldsymbol{q}, \boldsymbol{p}, t)$. Rather, \dot{f} is related to two-, three-, and higher order particle number distributions in a chain of integrodifferential equations known as the BBGKY hierarchy. We can lump our ignorance of these other terms into a collision integral and write

$$
\frac{\partial f}{\partial t}=\overbrace{-\dot{\boldsymbol{r}} \cdot \frac{\partial f}{\partial \boldsymbol{r}}-\dot{\boldsymbol{p}} \cdot \frac{\partial f}{\partial \boldsymbol{p}}}^{\text {streaming }}+\overbrace{\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}}^{\text {collision }}
$$

In the absence of collisions, the distribution evolves solely due to the streaming term with $\dot{\boldsymbol{r}}=\boldsymbol{p} / m$ and $\dot{\boldsymbol{p}}=-\boldsymbol{\nabla} U_{\text {ext }}$. If $\dot{\boldsymbol{p}}=\boldsymbol{F}_{\text {ext }}$ is constant, we have the general solution

$$
f(\boldsymbol{r}, \boldsymbol{p}, t)=\phi\left(\boldsymbol{r}-\frac{\boldsymbol{p} t}{m}+\frac{\boldsymbol{F}_{\mathrm{ext}} t^{2}}{2 m}, \boldsymbol{p}-\frac{\boldsymbol{F}_{\mathrm{ext}} t}{m}\right)
$$

valid for any initial condition $f(\boldsymbol{r}, \boldsymbol{p}, t=0)=\phi(\boldsymbol{r}, \boldsymbol{p})$. We write the convective derivative as $\frac{D}{D t}=\frac{\partial}{\partial t}+\dot{\boldsymbol{r}} \cdot \frac{\partial}{\partial \boldsymbol{r}}+\dot{\boldsymbol{p}} \cdot \frac{\partial}{\partial \boldsymbol{p}}$. Then the Boltzmann equation may be written $\frac{D f}{D t}=\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}$.

- Collisions: We are concerned with two types of collision processes: single-particle scattering, due to a local potential, and two-particle scattering, due to interparticle forces. Let Γ denote the set of single particle kinematic variables, e.g. $\Gamma=\left(p_{x}, p_{y}, p_{z}\right)$ for point particles and $\Gamma=(\boldsymbol{p}, \boldsymbol{L})$ for diatomic molecules. Then

$$
\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}=\int d \Gamma^{\prime}\left\{w\left(\Gamma \mid \Gamma^{\prime}\right) f\left(\boldsymbol{r}, \Gamma^{\prime} ; t\right)-w\left(\Gamma^{\prime} \mid \Gamma\right) f(\boldsymbol{r}, \Gamma ; t)\right\}
$$

for single particle scattering, and

$$
\begin{aligned}
&\left(\frac{\partial f}{\partial t}\right)_{\mathrm{coll}}=\int d \Gamma_{1} \int d \Gamma^{\prime} \int d \Gamma_{1}^{\prime}\left\{w\left(\Gamma \Gamma_{1} \mid \Gamma^{\prime} \Gamma_{1}^{\prime}\right) f_{2}\left(\boldsymbol{r}, \Gamma^{\prime} ; \boldsymbol{r}, \Gamma_{1}^{\prime} ; t\right)-w\left(\Gamma^{\prime} \Gamma_{1}^{\prime} \mid \Gamma \Gamma_{1}\right) f_{2}\left(\boldsymbol{r}, \Gamma ; \boldsymbol{r}, \Gamma_{1} ; t\right)\right\} \\
& \approx \int d \Gamma_{1} \int d \Gamma^{\prime} \int d \Gamma_{1}^{\prime}\left\{w\left(\Gamma \Gamma_{1} \mid \Gamma^{\prime} \Gamma_{1}^{\prime}\right) f\left(\boldsymbol{r}, \Gamma^{\prime} ; t\right) f\left(\boldsymbol{r}, \Gamma_{1}^{\prime} ; t\right)\right. \\
&\left.-w\left(\Gamma^{\prime} \Gamma_{1}^{\prime} \mid \Gamma \Gamma_{1}\right) f(\boldsymbol{r}, \Gamma ; t) f\left(\boldsymbol{r}, \Gamma_{1} ; t\right)\right\}
\end{aligned}
$$

for two-body scattering, where f_{2} is the two-body distribution, and where the approximation $f_{2}\left(\boldsymbol{r}, \Gamma^{\prime} ; \boldsymbol{r}^{\prime}, \Gamma^{\prime} ; t\right) \approx f(\boldsymbol{r}, \Gamma ; t) f\left(\boldsymbol{r}^{\prime}, \Gamma^{\prime} ; t\right)$ in the second line closes the equation. A quantity $\mathcal{A}(\boldsymbol{r}, \Gamma)$ which is preserved by the dynamics between collisions then satisfies

$$
\frac{d A}{d t} \equiv \frac{d}{d t} \int d^{d} r d \Gamma \mathcal{A}(\boldsymbol{r}, \Gamma) f(\boldsymbol{r}, \Gamma, t)=\int d^{d} r d \Gamma A(\boldsymbol{r}, \Gamma)\left(\frac{\partial f}{\partial t}\right)_{\mathrm{coll}} .
$$

Quantities which are conserved by collisions satisfy $\dot{A}=0$ and are called collisional invariants. Examples include $\mathcal{A}=1$ (particle number), $\mathcal{A}=\boldsymbol{p}$ (linear momentum, if translational invariance applies), and $\mathcal{A}=\varepsilon_{p}$ (energy).

- Time reversal, parity, and detailed balance: With $\Gamma=(\boldsymbol{p}, \boldsymbol{L})$, we define the actions of time reversal and parity as

$$
\Gamma^{T}=(-\boldsymbol{p},-\boldsymbol{L}) \quad, \quad \Gamma^{P}=(-\boldsymbol{p}, \boldsymbol{L}) \quad, \quad \Gamma^{C}=(\boldsymbol{p},-\boldsymbol{L})
$$

where $C=P T$ is the combined operation. Time reversal symmetry of the underlying equations of motion requires $w\left(\Gamma^{\prime} \Gamma_{1}^{\prime} \mid \Gamma \Gamma_{1}\right)=w\left(\Gamma^{T} \Gamma_{1}^{T} \mid \Gamma^{\prime T} \Gamma_{1}^{\prime T}\right)$. Under conditions of detailed balance, this leads to $f^{0}(\Gamma) f^{0}\left(\Gamma_{1}\right)=f^{0}\left(\Gamma^{\prime T}\right) f^{0}\left(\Gamma_{1}^{T}\right)$, where f^{0} is the equilibrium distribution. For systems with both P and T symmetries, $w\left(\Gamma^{\prime} \Gamma_{1}^{\prime} \mid \Gamma \Gamma_{1}\right)=w\left(\Gamma^{C} \Gamma_{1}^{C} \mid \Gamma^{\prime C} \Gamma_{1}^{\prime C}\right)$, whence $w\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}_{1}^{\prime} \mid \boldsymbol{p}, \boldsymbol{p}_{1}\right)=w\left(\boldsymbol{p}, \boldsymbol{p}_{1} \mid \boldsymbol{p}^{\prime}, \boldsymbol{p}_{1}^{\prime}\right)$ for point particles.

- Boltzmann's H-theorem: Let $\mathrm{h}(\boldsymbol{r}, t)=\int d \Gamma f(\boldsymbol{r}, \Gamma, t) \ln f(\boldsymbol{r}, \Gamma, t)$. Invoking the Boltzmann equation, it can be shown that $\frac{\partial \mathrm{h}}{\partial t} \leq 0$, which means $\frac{d \mathrm{H}}{d t} \leq 0$, where $\mathrm{H}(t)=\int d^{d} r h(\boldsymbol{r}, t)$ is Boltzmann's H-function. $\mathrm{h}(\boldsymbol{r}, t)$ is everywhere decreasing or constant, due to collisions.
- Weakly inhomogeneous gas: Under equilibrium conditions, f^{0} can be a function only of collisional invariants, and takes the Gibbs form $f^{0}(\boldsymbol{r}, \boldsymbol{p})=C e^{\left(\mu+\boldsymbol{V} \cdot \boldsymbol{p}-\varepsilon_{\Gamma}\right) / k_{\mathrm{B}} T}$. Assume now that μ, \boldsymbol{V}, and T are all weakly dependent on \boldsymbol{r} and $t . f^{0}$ then describes a local equilibrium and as such is annihilated by the collision term in the Boltzmann equation, but not by the streaming term. Accordingly, we seek a solution $f=f^{0}+\delta f$. A lengthy derivation results in
$\left\{\frac{\varepsilon_{\Gamma}-h}{T} \boldsymbol{v} \cdot \boldsymbol{\nabla} T+m v_{\alpha} v_{\beta} \mathcal{Q}_{\alpha \beta}-\frac{\varepsilon_{\Gamma}-h+T c_{p}}{c_{V} / k_{\mathrm{B}}} \boldsymbol{\nabla} \cdot \boldsymbol{V}-\boldsymbol{F}^{\mathrm{ext}} \cdot \boldsymbol{v}\right\} \frac{f^{0}}{k_{\mathrm{B}} T}+\frac{\partial \delta f}{\partial t}=\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}$,
where $\boldsymbol{v}=\frac{\partial \varepsilon}{\partial p}$ is the particle velocity, h is the enthalpy per particle, $\mathcal{Q}_{\alpha \beta}=\frac{1}{2}\left(\frac{\partial V^{\alpha}}{\partial x^{\beta}}+\frac{\partial V^{\beta}}{\partial x^{\alpha}}\right)$, and $\boldsymbol{F}^{\text {ext }}$ is an external force. For an ideal gas, $h=c_{p} T$. The RHS is to be evaluated to first order in δf. The simplest model for the collision integral is the relaxation time approximation, where $\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}=-\frac{\delta f}{\tau}$. Note that this form does not preserve any collisional invariants. The scattering time is obtained from the relation $n \bar{v}_{\text {rel }} \sigma \tau=1$, where σ is the two particle total scattering cross section and $\bar{v}_{\text {rel }}$ is the average relative speed of a pair of particles. This says that there is on average one collision within a tube of cross sectional area σ and length $\bar{v}_{\text {rel }} \tau$. For the Maxwellian distribution, $\bar{v}_{\text {rel }}=\sqrt{2} \bar{v}=\sqrt{\frac{16 k_{\mathrm{B}} T}{\pi m}}$, so $\tau(T) \propto T^{-1 / 2}$. The mean free path is defined as $\ell=\bar{v} \tau=\frac{1}{\sqrt{2} n \sigma}$.
- Transport coefficients: Assuming $F_{\alpha}^{\text {ext }}=\mathcal{Q}_{\alpha \beta}=0$ and steady state, Eq. 8 yields

$$
\delta f=-\frac{\tau\left(\varepsilon-c_{p} T\right)}{k_{\mathrm{B}} T^{2}}(\boldsymbol{v} \cdot \nabla T) f^{0} .
$$

The energy current is given by

$$
j_{\varepsilon}^{\alpha}=\int d \Gamma \varepsilon_{\Gamma} v^{\alpha} \delta f=-\overbrace{\frac{n \tau}{k_{\mathrm{B}} T^{2}}\left\langle v^{\alpha} v^{\beta} \varepsilon_{\Gamma}\left(\varepsilon_{\Gamma}-c_{p} T\right)\right\rangle}^{\text {thermal conductivity } \kappa^{\alpha \beta}}\rangle \frac{\partial T}{\partial x^{\beta}} .
$$

For a monatomic gas, one finds $\kappa^{\alpha \beta}=\kappa \delta^{\alpha \beta}$ with $\kappa(T)=\frac{\pi}{8} n \ell \bar{v} c_{p} \propto T^{1 / 2}$. A similar result follows by considering any intensive quantity ϕ which is spatially dependent through the temperature $T(\boldsymbol{r})$. The ϕ-current across the surface $z=0$ is

$$
\boldsymbol{j}_{\phi}=n \hat{\boldsymbol{z}} \int_{v_{z}>0} d^{3} v P(\boldsymbol{v}) v_{z} \phi(z-\ell \cos \theta)+n \hat{\boldsymbol{z}} \int_{v_{z}<0} d^{3} v P(\boldsymbol{v}) v_{z} \phi(z+\ell \cos \theta)=-\frac{1}{3} n \bar{v} \ell \frac{\partial \phi}{\partial z} \hat{\boldsymbol{z}} .
$$

Thus, $\boldsymbol{j}_{\phi}=-K \nabla T$, with $K=\frac{1}{3} n \ell \bar{v} \frac{\partial \phi}{\partial T}$ the associated transport coefficient. If $\phi=\left\langle\varepsilon_{\Gamma}\right\rangle$, then $\frac{\partial \phi}{\partial T}=c_{p}$, yielding $\kappa=\frac{1}{3} n \ell \bar{v} c_{p}$. If $\phi=\left\langle p_{x}\right\rangle$, then $j_{p_{x}}^{z}=\Pi_{x z}=-\frac{1}{3} n m \ell \bar{v} \frac{\partial V_{x}}{\partial z} \equiv-\eta \frac{\partial V_{x}}{\partial z}$, where η is the shear viscosity. Using the Boltzmann equation in the relaxation time approximation, one obtains $\eta=\frac{\pi}{8} n m \ell \bar{v}$. From κ and η, we can form a dimensionless quantity $\operatorname{Pr}=\eta c_{p} / m \kappa$, known as the Prandtl number. Within the relaxation time approximation, $\operatorname{Pr}=1$. Most monatomic gases have $\operatorname{Pr} \approx \frac{2}{3}$.

- Linearized Boltzmann equation: To go beyond the phenomenological relaxation time approximation, one must grapple with the collision integral,

$$
\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}=\int d^{3} p_{1} \int d^{3} p^{\prime} \int d^{3} p_{1}^{\prime} w\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}_{1}^{\prime} \mid \boldsymbol{p}, \boldsymbol{p}_{1}\right)\left\{f\left(\boldsymbol{p}^{\prime}\right) f\left(\boldsymbol{p}_{1}^{\prime}\right)-f(\boldsymbol{p}) f\left(\boldsymbol{p}_{1}\right)\right\}
$$

which is a nonlinear functional of the distribution $f(\boldsymbol{p}, t)$ (we suppress the t index here). Writing $f(\boldsymbol{p})=f^{0}(\boldsymbol{p})+f^{0}(\boldsymbol{p}) \psi(\boldsymbol{p})$, we have $\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}=f^{0}(\boldsymbol{p}) \hat{L} \psi+\mathcal{O}\left(\psi^{2}\right)$, with

$$
\hat{L} \psi(\boldsymbol{p})=\int d^{3} p_{1} \int d \Omega\left|\boldsymbol{v}-\boldsymbol{v}_{1}\right| \frac{\partial \sigma}{\partial \Omega} f^{0}\left(\boldsymbol{p}_{1}\right)\left\{\psi\left(\boldsymbol{p}^{\prime}\right)+\psi\left(\boldsymbol{p}_{1}^{\prime}\right)-\psi(\boldsymbol{p})-\psi\left(\boldsymbol{p}_{1}\right)\right\}
$$

The linearized Boltzmann equation (LBE) then takes the form $\left(\hat{L}-\frac{\partial}{\partial t}\right) \psi=Y$, where

$$
Y=\frac{1}{k_{\mathrm{B}} T}\left\{\frac{\varepsilon(\boldsymbol{p})-\frac{5}{2} k_{\mathrm{B}} T}{T} \boldsymbol{v} \cdot \boldsymbol{\nabla} T+m v_{\alpha} v_{\beta} \mathcal{Q}_{\alpha \beta}-\frac{k_{\mathrm{B}} \varepsilon(\boldsymbol{p})}{c_{V}} \nabla \cdot \boldsymbol{V}-\boldsymbol{F} \cdot \boldsymbol{v}\right\}
$$

for point particles. To solve the LBE, we must invert the operator $\hat{L}-\frac{\partial}{\partial t}$. Various useful properties follow from defining the inner product $\left\langle\psi_{1} \mid \psi_{2}\right\rangle \equiv \int d^{3} p f^{0}(\boldsymbol{p}) \psi_{1}(\boldsymbol{p}) \psi_{2}(\boldsymbol{p})$, such as the self-adjointness of $\hat{L}:\left\langle\psi_{1} \mid \hat{L} \psi_{2}\right\rangle=\left\langle\hat{L} \psi_{1} \mid \psi_{2}\right\rangle$. We then have $\hat{L}\left|\phi_{n}\right\rangle=-\lambda_{n}\left|\phi_{n}\right\rangle$, with $\left\langle\phi_{m} \mid \phi_{n}\right\rangle=\delta_{m n}$ and real eigenvalues λ_{n}. There are five zero eigenvalues corresponding to the collisional invariants:

$$
\phi_{1}(\boldsymbol{p})=\frac{1}{\sqrt{n}} \quad, \quad \phi_{2,3,4}(\boldsymbol{p})=\frac{p_{\alpha}}{\sqrt{n m k_{\mathrm{B}} T}} \quad, \quad \phi_{5}(\boldsymbol{p})=\sqrt{\frac{2}{3 n}}\left(\frac{\varepsilon(\boldsymbol{p})}{k_{\mathrm{B}} T}-\frac{3}{2}\right) .
$$

When $Y=0$, the formal solution to $\frac{\partial \psi}{\partial t}=\hat{L} \psi$ is $\psi(\boldsymbol{p}, t)=\sum_{n} C_{n} \phi_{n}(\boldsymbol{p}) e^{-\lambda_{n} t}$. Aside from the collisional invariants, all the eigenvalues λ_{n} must be positive, corresponding to relaxation to the equilibrium state. One can check that the particle, energy, and heat currents are given by $\boldsymbol{j}=\langle\boldsymbol{v} \mid \psi\rangle, \boldsymbol{j}_{\varepsilon}=\langle\boldsymbol{v} \varepsilon \mid \psi\rangle$, and $\boldsymbol{j}_{q}=\langle\boldsymbol{v}(\varepsilon-\mu) \mid \psi\rangle$.

In steady state, the solution to $\hat{L} \psi=Y$ is $\psi=\hat{L}^{-1} Y$. This is valid provided Y is orthogonal to each of the collisional invariants, in which case

$$
\psi(\boldsymbol{p})=\sum_{n \notin \mathrm{CI}} \lambda_{n}^{-1}\left\langle\phi_{n} \mid Y\right\rangle \phi_{n}(\boldsymbol{p})
$$

Once we have $|\psi\rangle$, we may obtain the various transport coefficients by computing the requisite currents. For example, to find the thermal conductivity κ and shear viscosity η,

$$
\begin{array}{llll}
\kappa: & Y=\frac{1}{k_{\mathrm{B}} T^{2}} \frac{\partial T}{\partial x} X_{\kappa} \quad, \quad X_{\kappa} \equiv\left(\varepsilon-\frac{5}{2} k_{\mathrm{B}}\right) v_{x} & \Rightarrow \quad \kappa=-\frac{\left\langle X_{\kappa} \mid \psi\right\rangle}{\partial T / \partial x} \\
\eta: & Y=\frac{m}{k_{\mathrm{B}} T} \frac{\partial V_{x}}{\partial y} X_{\eta} \quad, \quad X_{\eta} \equiv v_{x} v_{y} \quad & \Rightarrow \quad \eta=-\frac{m\left\langle X_{\eta} \mid \psi\right\rangle}{\partial V_{x} / \partial y} .
\end{array}
$$

- Variational approach: The Schwarz inequality, $\langle\psi|-\hat{L}|\psi\rangle \cdot\langle\phi| \hat{H}|\phi\rangle \geq\langle\phi| \hat{H}|\psi\rangle^{2}$, holds for the positive semidefinite operator $\hat{H} \equiv-\hat{L}$. One therefore has

$$
\kappa \geq \frac{1}{k_{\mathrm{B}} T^{2}} \frac{\left\langle\phi \mid X_{\kappa}\right\rangle^{2}}{\langle\phi| \hat{H}|\phi\rangle} \quad, \quad \eta \geq \frac{m^{2}}{k_{\mathrm{B}} T} \frac{\left\langle\phi \mid X_{\eta}\right\rangle^{2}}{\langle\phi| \hat{H}|\phi\rangle} .
$$

Using variational functions $\phi_{\kappa}=\left(\varepsilon-\frac{5}{2} k_{\mathrm{B}} T\right) v_{x}$ and $\phi_{\eta}=v_{x} v_{y}$, one finds, after tedious calculations,

$$
\kappa \geq \frac{75 k_{\mathrm{B}}}{64 \sqrt{\pi} d^{2}}\left(\frac{k_{\mathrm{B}} T}{m}\right)^{1 / 2} \quad, \quad \eta \geq \frac{5\left(m k_{\mathrm{B}} T\right)^{1 / 2}}{16 \sqrt{\pi} d^{2}} .
$$

Taking the lower limit in each case, we obtain a Prandtl number $\operatorname{Pr}=\frac{\eta c_{p}}{m \kappa}=\frac{2}{3}$, which is close to what is observed for monatomic gases.

- Quantum transport: For quantum systems, the local equilibrium distribution is of the Bose-Einstein or Fermi-Dirac form,

$$
f^{0}(\boldsymbol{r}, \boldsymbol{k}, t)=\left\{\exp \left(\frac{\varepsilon(\boldsymbol{k})-\mu(\boldsymbol{r}, t)}{k_{\mathrm{B}} T(\boldsymbol{r}, t)}\right) \mp 1\right\}^{-1}
$$

with $\boldsymbol{k}=\boldsymbol{p} / \hbar$, and

$$
\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}=\int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \int \frac{d^{3} k_{1}^{\prime}}{(2 \pi)^{3}} w\left\{f^{\prime} f_{1}^{\prime}(1 \pm f)\left(1 \pm f_{1}\right)-f f_{1}\left(1 \pm f^{\prime}\right)\left(1 \pm f_{1}^{\prime}\right)\right\}
$$

where $w=w\left(\boldsymbol{k}, \boldsymbol{k}_{1} \mid \boldsymbol{k}^{\prime}, \boldsymbol{k}_{1}^{\prime}\right), f=f(\boldsymbol{k}), f_{1}=f\left(\boldsymbol{k}_{1}\right), f^{\prime}=f\left(\boldsymbol{k}^{\prime}\right)$, and $f_{1}^{\prime}=f\left(\boldsymbol{k}_{1}^{\prime}\right)$, and where we have assumed time-reversal and parity symmetry. The most important application is to electron transport in metals and semiconductors, in which case f^{0} is the Fermi distribution. With $f=f^{0}+\delta f$, one has, within the relaxation time approximation,

$$
\frac{\partial \delta f}{\partial t}-\frac{e}{\hbar c} \boldsymbol{v} \times \boldsymbol{B} \cdot \frac{\partial \delta f}{\partial \boldsymbol{k}}-\boldsymbol{v} \cdot\left[e \mathcal{E}+\frac{\varepsilon-\mu}{T} \boldsymbol{\nabla} T\right] \frac{\partial f^{0}}{\partial \varepsilon}=-\frac{\delta f}{\tau}
$$

where $\mathcal{E}=-\boldsymbol{\nabla}(\phi-\mu / e)=\boldsymbol{E}-e^{-1} \boldsymbol{\nabla} \mu$ is the gradient of the 'electrochemical potential' $\phi-e^{-1} \mu$. For steady state transport with $\boldsymbol{B}=0$, one has

$$
\begin{array}{r}
\boldsymbol{j}=-2 e \int_{\hat{\Omega}} \frac{d^{3} k}{(2 \pi)^{3}} \boldsymbol{v} \delta f \equiv L_{11} \mathcal{E}-L_{12} \boldsymbol{\nabla} T \\
\boldsymbol{j}_{q}=2 \int_{\hat{\Omega}} \frac{d^{3} k}{(2 \pi)^{3}}(\varepsilon-\mu) \boldsymbol{v} \delta f \equiv L_{21} \mathcal{E}-L_{22} \boldsymbol{\nabla} T
\end{array}
$$

where $L_{11}^{\alpha \beta}=e^{2} \mathcal{J}_{0}^{\alpha \beta}, L_{21}^{\alpha \beta}=T L_{12}^{\alpha \beta}=-e \mathcal{J}_{1}^{\alpha \beta}$, and $L_{22}^{\alpha \beta}=\frac{1}{T} \mathcal{J}_{2}^{\alpha \beta}$, with

$$
\mathcal{J}_{n}^{\alpha \beta} \equiv \frac{1}{4 \pi^{3} \hbar} \int d \varepsilon \tau(\varepsilon)(\varepsilon-\mu)^{n}\left(-\frac{\partial f^{0}}{\partial \varepsilon}\right) \int d S_{\varepsilon} \frac{v^{\alpha} v^{\beta}}{|\boldsymbol{v}|} .
$$

These results entail

$$
\mathcal{E}=\rho \boldsymbol{j}+Q \boldsymbol{\nabla} T \quad, \quad \boldsymbol{j}_{q}=\sqcap \boldsymbol{j}-\kappa \boldsymbol{\nabla} T
$$

or, in terms of the \mathcal{J}_{n},
$\rho=\frac{1}{e^{2}} \mathcal{J}_{0}^{-1} \quad, \quad Q=-\frac{1}{e T} \mathcal{J}_{0}^{-1} \mathcal{J}_{1} \quad, \quad \sqcap=-\frac{1}{e} \mathcal{J}_{1} \mathcal{J}_{0}^{-1} \quad, \quad \kappa=\frac{1}{T}\left(\mathcal{J}_{2}-\mathcal{J}_{1} \mathcal{J}_{0}^{-1} \mathcal{J}_{1}\right)$.
These results describe the following physical phenomena:
Electrical resistance ($\nabla T=\boldsymbol{B}=0$): An electrical current \boldsymbol{j} will generate an electric field $\mathcal{E}=\rho \boldsymbol{j}$, where ρ is the electrical resistivity.
$\underline{\text { Peltier effect }}$ ($\nabla T=\boldsymbol{B}=0$): An electrical current \boldsymbol{j} will generate an heat current $\boldsymbol{j}_{q}=\sqcap \boldsymbol{j}$, where \sqcap is the Peltier coefficient.
 $j_{q}=-\kappa \nabla T$, where κ is the thermal conductivity.

Seebeck effect $(j=\boldsymbol{B}=0)$: A temperature gradient ∇T gives rise to an electric field $\mathcal{E}=Q \nabla T$, where Q is the Seebeck coefficient.

For a parabolic band with effective electron mass m^{*}, one finds

$$
\rho=\frac{m^{*}}{n e^{2} \tau} \quad, \quad Q=-\frac{\pi^{2} k_{\mathrm{B}}^{2} T}{2 e \varepsilon_{\mathrm{F}}} \quad, \quad \kappa=\frac{\pi^{2} n \tau k_{\mathrm{B}}^{2} T}{3 m^{*}}
$$

with $\Pi=T Q$, where ε_{F} is the Fermi energy. The ratio $\kappa / \sigma T=\frac{\pi^{2}}{3}\left(k_{\mathrm{B}} / e\right)^{2}=2.45 \times$ $10^{-8} \mathrm{~V}^{2} \mathrm{~K}^{-2}$ is then predicted to be universal, a result known as the Wiedemann-Franz law. This also predicts all metals to have negative thermopower, which is not the case. In the presence of an external magnetic field \boldsymbol{B}, additional transport effects arise:
$\underline{\text { Hall effect }}\left(\frac{\partial T}{\partial x}=\frac{\partial T}{\partial y}=j_{y}=0\right)$: An electrical current $\boldsymbol{j}=j_{x} \hat{\boldsymbol{x}}$ and a field $\boldsymbol{B}=B_{z} \hat{z}$ yield an electric field \mathcal{E}. The Hall coefficient is $R_{\mathrm{H}}=\mathcal{E}_{y} / j_{x} B_{z}$.

Ettingshausen effect $\left(\frac{\partial T}{\partial x}=j_{y}=j_{q, y}=0\right)$: An electrical current $j=j_{x} \hat{\boldsymbol{x}}$ and a field $\boldsymbol{B}=B_{z} \hat{z}$ yield a temperature gradient $\frac{\partial T}{\partial y}$. The Ettingshausen coefficient is $P=\frac{\partial T}{\partial y} / j_{x} B_{z}$.
 yield an electric field \mathcal{E}. The Nernst coefficient is $\Lambda=\mathcal{E}_{y} / \frac{\partial T}{\partial x} B_{z}$.
$\underline{\text { Righi-Leduc effect }}\left(j_{x}=j_{y}=\mathcal{E}_{y}=0\right)$: A temperature gradient $\nabla T=\frac{\partial T}{\partial x} \hat{x}$ and a field $\overline{\boldsymbol{B}}=B_{z} \hat{\boldsymbol{z}}$ yield an orthogonal gradient $\frac{\partial T}{\partial y}$. The Righi-Leduc coefficient is $\mathcal{L}=\frac{\partial T}{\partial y} / \frac{\partial T}{\partial x} B_{z}$.

- Stochastic processes: Stochastic processes involve a random element, hence they are not wholly deterministic. The simplest example is the Langevin equation for Brownian motion, $\dot{p}+\gamma p=F+\eta(t)$, where p is a particle's momentum, γ a damping rate due to friction, F an external force, and $\eta(t)$ a stochastic random force. We can integrate this first order equation to obtain

$$
p(t)=p(0) e^{-\gamma t}+\frac{F}{\gamma}\left(1-e^{-\gamma t}\right)+\int_{0}^{t} d s \eta(s) e^{\gamma(s-t)}
$$

We assume that the random force $\eta(t)$ has zero mean, and furthermore that

$$
\left\langle\eta(s) \eta\left(s^{\prime}\right)\right\rangle=\phi\left(s-s^{\prime}\right) \approx \Gamma \delta\left(s-s^{\prime}\right)
$$

in which case one finds $\left\langle p^{2}(t)\right\rangle=\langle p(t)\rangle^{2}+\frac{\Gamma}{2 \gamma}\left(1-e^{-2 \gamma t}\right)$. If there is no external force, we expect the particle thermailzes at long times, i.e. $\left\langle\frac{p^{2}}{2 m}\right\rangle=\frac{1}{2} k_{\mathrm{B}} T$. This fixes $\Gamma=2 \gamma m k_{\mathrm{B}} T$, where m is the particle's mass. One can integrate again to find the position. At late times $t \gg \gamma^{-1}$, one finds $\langle x(t)\rangle=$ const. $+\frac{F t}{\gamma m}$, corresponding to a mean velocity $\langle p / m\rangle=F / \gamma$. The RMS fluctuations in position, however, grow as

$$
\left\langle x^{2}(t)\right\rangle-\langle x(t)\rangle^{2}=\frac{2 k_{\mathrm{B}} T t}{\gamma m} \equiv 2 D t
$$

where $D=k_{\mathrm{B}} T / \gamma m$ is the diffusion constant. Thus, after the memory of the initial conditions is lost $\left(t \gg \gamma^{-1}\right)$, the mean position advances linearly in time due to the external force, and the RMS fluctuations in position also increase linearly.

- Fokker-Planck equation: Suppose $x(t)$ is a stochastic variable, and define

$$
\delta x(t) \equiv x(t+\delta t)-x(t)
$$

Furthermore, assume $\langle\delta x(t)\rangle=F_{1}(x(t)) \delta t$ and $\left\langle[\delta x(t)]^{2}\right\rangle=F_{2}(x(t)) \delta t$, but that $\left\langle[\delta x(t)]^{n}\right\rangle-$ $\mathcal{O}\left(\delta t^{2}\right)$ for $n>2$. One can then show that the probability density $P(x, t)=\langle\delta(x-x(t))\rangle$ satisfies the Fokker-Planck equation,

$$
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}\left[F_{1}(x) P(x, t)\right]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left[F_{2}(x) P(x, t)\right]
$$

For Brownian motion, $F_{1}(x)=F / \gamma m \equiv u$ and $F_{2}(x)=2 D$. The resulting Fokker-Planck equation is then $P_{t}=-u P_{x}+D P_{x x}$, where $P_{t}=\frac{\partial P}{\partial t}, P_{x x}=\frac{\partial^{2} P}{\partial x^{2}}$, etc. The Galilean transformation $x \rightarrow x-u t$ then results in $P_{t}=D P_{x x}$, which is known as the diffusion equation, a general solution to which is given by $P(x, t)=\int_{-\infty}^{\infty} d x^{\prime} K\left(x-x^{\prime}, t-t^{\prime}\right) P\left(x^{\prime}, t^{\prime}\right)$, where

$$
K(\Delta x, \Delta t)=(4 \pi D \Delta t)^{-1 / 2} e^{-(\Delta x)^{2} / 4 D \Delta t}
$$

is the diffusion kernel. Thus, $\Delta x_{\mathrm{RMS}}=\sqrt{2 D \Delta t}$.

