
7 Mean Field Theory of Phase Transitions : Summary

• van der Waals system: The van der Waals equation of state may be written p = RT
v−b − a

v2
,

where v is the molar volume. Comparing with the ideal gas law p = RT/v, the vdW equa-
tion accounts for (i) an excluded volume effect due to finite molecular size, and (ii) a long-
distance attraction between molecules. The energy per mole is ε(T, v) = 1

2 fRT − a
v , where

f is the number of independent quadratic terms in the individual molecular Hamiltonian.

Figure 1: Pressure-volume isotherms for the van
der Waals system, corrected to account for the
Maxwell construction. Orange region: nucle-
ation. Purple region: spinodal decomposition.

At fixed T , p(v) is monotonic and decreas-
ing for sufficiently large T , i.e. T > Tc. For
T < Tc , the pressure is no longer mono-
tonic, and p′(v) vanishes at two points
v±(T ). For v ∈ [v−, v+], the isother-

mal compressibility κT = −v−1(∂v/∂p)T is
negative, indicating an absolute thermody-
namic instability. From p(v, T ) and ε(v, T ),
one can derive the molar free energy

f(T, v) = −RT ln
(

T f/2(v − b)
)

− a

v
− Ts0

where s0 is a constant. Analyzing f(T, v),
one finds an even wider range of instability
applies, with vℓ < v− < v+ < vg , where the
extremal liquid and gas volumes are deter-
mined by the coupled equations

p(T, vℓ) = p(T, vg) ,

vg
∫

vℓ

dv p(T, v) =
(

vg − vℓ
)

p(T, vℓ) .

The Maxwell construction extends f(T, v) by a straight line connecting f(T, vℓ) and f(T, vg),
resulting in the isotherms in Fig. 1. This corresponds to a two phase region in which the ho-
mogeneous phase is unstable, either to nucleation, which requires surmounting an energy
barrier, or spinodal composition, which is a spontaneous process. The critical point (vc, Tc) is
given by the simultaneous solution to the equations ∂p/∂v = 0 and ∂2p/∂v2 = 0, which de-
fines a saddle-node bifurcation in the extrema of p(v) at fixed T . This yields Tc = 8a/27bR
and vc = 3b. Plugging these into the vdW equation of state, we find pc = a/27b2.

• Lattice gas model: For interactions consisting of a hard core and a weakly attractive tail,
such as the Lennard-Jones potential, one can imagine discretizing space into unit cells on
the scale of the core size a. Each cell i can then accommodate either zero or one particle.
The resulting Hamiltonian is an Ising ferromagnet,

Ĥ = −
∑

i<j

Jij σiσj −H
∑

i

σi ,

with σi = ±1, Jij = −1
4V (Ri −Rj), and H = 1

2kB
T ln

(

eµ/kBTλ−d
T ad

)

. The correspondences
between the ferromagnet and the liquid-gas system are then v (or n) ↔ m, with m =
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M/N the magnetization per site, and p (or µ) ↔ H . The isothermal compressibility κT
is analogous to the isothermal magnetic susceptibility χT =

(

∂m
∂H

)

T
. At the critical point,

κT (Tc, pc) = ∞↔ χ
T (Tc,Hc) = ∞. See Fig. 2.

Figure 2: Comparison of the liquid-gas phase di-
agram with that of the Ising ferromagnet.

• Mean field theory: Consider the Ising
model, Ĥ = −J∑〈ij〉 σiσj − H

∑

i σi. On
each site i, write σi = m + δσi, where
m = 〈σi〉. Then σi σj = −m2+m (σi+σj)+
δσi δσj , and neglecting the term quadratic
in the fluctuations, we arrive at the mean
field Hamiltonian,

Ĥ
MF

= 1
2NzJ m

2 −
(

H + zJm
)

∑

i

σi ,

where z is the lattice coordination number.
This corresponds to independent spins in
an effective fieldHeff = H+ zJm. For non-
interacting spins in an external field, we
have m = tanh(Heff/kB

T ), i.e.

m = tanh

(

H + zJm

k
B
T

)

,

which is a self-consistent equation for
m(T,H). This equation also follows from
extremizing the mean field free energy,

given by F = −k
B
T lnTr e−Ĥ

MF
/k

B
T . It is convenient to dimensionalize by writing

f = F/zJN , h = H/zJ , and θ = k
B
T/zJ . Then

f(m,T, h) = 1
2m

2 − θ ln cosh

(

m+ h

θ

)

− θ ln 2

= f0 +
1
2 (θ − 1)m2 + 1

12m
4 − hm+ . . . ,

where the second line is an expansion for small m and h. The dimensionless mean field
equation is m = tanh

(

(m+ h)/θ
)

. When h = 0, we have m = tanh(m/θ), and for θ > θc ,
where θc = 1 (i.e. Tc = zJ/k

B
), there is only one solution atm = 0. For θ < θc , there are two

additional broken symmetry solutions at m = ±m0 , and one can check that they correspond
to minima in the free energy, whereas m = 0 is a local maximum. Just below θc, one finds
m(θ) =

√

3(1− θ) ∝ (θc − θ)β, where β = 1
2 is the mean field order parameter exponent.

An order parameter is a quantity which vanishes throughout a disordered phase, usually
at high temperature, but which spontaneously breaks a global symmetry to take a finite
value in the ordered phase. For the Ising ferromagnet, the order parameter is m, the local
magnetization. The global symmetry of the Ising model in zero external field is the Z2

symmetry associated with flipping all the spins: σi → −σi for all i. An external field
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Figure 3: Phase diagram for the Ising ferromagnet. In the hatched blue region, the mean
field equations have three solutions. Along the boundary dashed green line, where is a
saddle-node bifurcation so that there is a unique solution to the MF equations in the white
region. The thermodynamic properties are singular, with discontinuous magnetization,
along the solid black line, which terminates in the critical point at (θ, h) = (1, 0).

explicitly breaks this symmetry. For a given system, there may be several distinct ordered
phases and a cascade of symmetry-breaking transitions as temperature is lowered.

Again setting h = 0, we see that f(θ > θc) = f0, while f(θ < θc) = f0 − 3
4(θc − θ)2 just

below the transition. Thus, there is a jump in the specific heat c = −θ ∂2f
∂θ2 at the transition,

with ∆c = −3
2 . Very close to the transition, we therefore have c(T ) ∝ |θ − θc|−α, where the

mean field value of the exponent is α = 0.

As we increase |h| from zero, two of the solutions merge and eventually annihilate at h∗(θ),
leaving a unique solution for h > h∗(θ), as depicted in Fig. 3. For small m and h,, setting
∂f
∂m = 0, we obtain 1

3m
3 + (θ − 1)m − h = 0. Thus, when θ is just above θc = 1, we have

m = h/(θ − 1), hence the susceptibility is χ = ∂m
∂h ∝ |θ − θc|−γ , where γ = 1 is the mean

field susceptibility exponent. The same power law behavior is found for θ < θc ; one finds
m(θ) = m0(θ) +

h
2(1−θ) . Finally, if we fix θ = θc, we have m(θc, h) ∝ h1/δ with δ = 3. The

quantities α, β, γ, and δ are critical exponents for the Ising transition. Mean field theory
becomes exact when the number of neighbors is infinite, which arises in two hypothetical
settings: (i) infinite range interactions, or (ii) infinite spatial dimension.

A phenomenological model for magnetization dynamics takes ∂m
∂t = − ∂f

∂m , som is dissipa-
tively driven to a local minimum of the free energy. This is a simple dynamical system with
control parameters (θ, h). For h = 0, the point θ = θc corresponds to a supercritical pitch-
fork bifurcation, and more generally there is an imperfect bifurcation everywhere along the
curve h = h∗(θ), defined by the simultaneous vanishing of both ∂f/∂m and ∂2f/∂m2, cor-
responding to the dashed green curve in Fig. 3. This leads to the phenomenon of hysteresis:
a protocol in which the control parameters cross both branches of this curve is irreversible.

• Variational density matrix: The free energy is given by F = Tr (̺Ĥ) + k
B
T Tr (̺ ln ̺).

Extremizing F with respect to ̺ subject to the normalization condition Tr ̺ = 1 yields

the equilibrium Gibbs distribution ̺ = Z−1e−βĤ . Any distribution other than that of
Gibbs will yield a larger value of F . Therefore, we can construct a variational Ansatz for
̺ and minimize F with respect to its variational parameters. For example, in the case of
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the Ising model Ĥ = −∑i<j Jij σi σj − H
∑

i σi , then assuming translational invariance

Jij = J
(

|Ri −Rj |
)

, we write ̺var(σ1, . . . , σN ) =
∏N

i=1 ˜̺(σi) , with

˜̺(σ) =
(1 +m

2

)

δσ,1 +
(1−m

2

)

δσ,−1 .

Adimensionalizing by writing θ = k
B
T/Ĵ(0) and h = H/Ĵ(0) with Ĵ(0) =

∑

j Jij , one
finds the variational free energy is

f(m, θ, h) = −1
2 m

2 − hm+ θ

{

(1 +m

2

)

ln
(1 +m

2

)

+
(1−m

2

)

ln
(1−m

2

)

}

= −θ ln 2− hm+ 1
2 (θ − 1)m2 + θ

12 m
4 + θ

30 m
6 + . . .

Extremizing with respect to m yields the same equation as before: m = tanh
(

(m + h)/θ
)

.
One can prove that this variational density matrix formulation of mean field theory yields
identical results to the ”neglect of fluctuations” method described above.

• Landau theory of phase transitions: The basic idea is to write a phenomenological expan-
sion of the free energy in powers of the order parameter(s) of a system, with coefficients
depending on quantities such as temperature and field, and keeping terms only up to some
low order. On then analyzes how the minima of the resulting finite degree polynomial be-
have as a function of these coefficients. The simplest case is that of a model with Ising
symmetry, where the order parameter is a real scalar quantity m. One writes

f = f0 +
1
2am

2 + 1
4bm

4 − hm ,

with b > 0 for stability. Extremizing with respect to m yields am+ bm3 − h = 0. For a > 0
there is a unique solution to this equation for m(h), but for a < 0 there are three roots
when |h| < h∗(a), with h∗(a) = 2

33/2
b−1/2 (−a)3/2. For h = 0, one has m(a > 0) = 0 and

m(a < 0) = ±
√

−a/b. Thus, ac = 0 is the critical point in zero field.

Figure 4: Behavior of the quartic free energy
f(m) = 1

2
am2 − 1

3
ym3 + 1

4
bm4. A: y2 < 4ab ;

B: 4ab < y2 < 9

2
ab ; C and D: y2 > 9

2
ab. The thick

black line denotes a line of first order transitions,
where the order parameter is discontinuous.

For certain systems, such as the liquid-gas
transition, there is no true Ising symme-
try between the two homogeneous phases.
The order parameter, which can taken to be
proportional to the density relative to that
at the critical point, is again a real scalar.
With no Z2 symmetry, we write

f = f0 +
1
2am

2 − 1
3ym

3 + 1
4bm

4 ,

with b > 0 and y > 0. Extremizing yields
(a − ym + bm2)m = 0 , which has three
roots, one at m = 0 and the other two at

m = m± ≡ y
2b ±

√

( y
2b

)2 − a
b . The situation

is as depicted in Fig. 4. For y2 > 4ab only
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the m = 0 root is real. For 4ab < y2 < 9
2ab,

all three roots are real, but the minimum of f remains at m = 0. For y2 > 9
2ab, all three

roots are real, with a global minimum at m = m+ and a local one at m = m−. Thus, along
the curve y2 = 9

2ab, there is a discontinuous change in the order parameter, betweenm = 0
and m = 3a/y, which is the hallmark of a first order phase transition. Note that this occurs
for a > 0, before the coefficient of the quadratic term in f(m) has changed sign. One says
in this case that the first order transition preempts the second order one.

• Mean field theory of fluctuations: For the Ising model, Ĥ = −∑i<j Jij σi σj −
∑

iHi σi ,

now with local fields Hi , the local magnetization is mi = 〈σi〉 = − ∂F
∂Hi

. The susceptibility,

given by χij =
∂mi
∂Hj

, is an example of a thermodynamic response function. In equilibrium, it

is related to the correlation function,

Cij ≡ 〈σi σj〉 − 〈σi〉 〈σj〉 ,

with Cij = k
B
T χij . Within mean field theory, this relation no longer applies, and it is the

response functions which are more accurately represented: the usual MF description treats
each site as independent, hence CMF

ij = 0 (!) To compute χMF

ij , take a variational density
matrix which is a product of single-site ones, as above, where the local magnetization is
mi. Extremizing the resulting free energy with respect to each mi yields a set of coupled
nonlinear equations,

mi = tanh

(

∑

j Jij mj +Hi

k
B
T

)

.

Expanding for small fields and magnetizations, one obtains
∑

j

(

k
B
T δij − Jij

)

mj = Hi ,

hence χij =
∂mi
∂Hj

=
(

k
B
T · I − J

)−1

ij
. For translationally invariant systems, the eigenvectors

of the matrix Jij are plane waves ψq,i = eiq·Ri , and one has

m̂(q) =
Ĥ(q)

k
B
T − Ĵ(q)

⇒ χ̂(q) =
∂m̂(q)

∂Ĥ(q)
=

1

k
B
T − Ĵ(q)

,

where Ĵ(q) =
∑

R J(R) e−iq·R. The mean field value of Tc is then Ĵ(Q), where q = Q

is the ordering wavevector which maximizes Ĵ(q). For a ferromagnet, which is dominated
by positive values of Jij , one has Q = 0, and expanding about this point one may write

Ĵ(q) = k
B
Tc −Cq2 + . . . , in which case χ(q) ∝ (ξ−2 + q2)−1 at long wavelengths, which is

of the Ornstein-Zernike (OZ) form.

• Global symmetries: A global symmetry is an operation carried out equally at every point
in space (continuous systems) or in every unit cell of the lattice (discrete systems) such
that the Hamiltonian is left invariant. The symmetry operations comprise a group G. In
the absence of a symmetry-breaking external field, Ising systems have symmetry group
Z2. The p-state clock model has symmetry group Zp. The q-state Potts model has symme-
try group Sq (the permutation group on q elements). In each of these cases, the group
G is discrete. Examples of models with continuous symmetries include the XY model
(G = O(2)), the Heisenberg model (G = O(3) or O(n)), the Standard Model of particle
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physics (G = SU(3) × SU(2) × U(1)), etc. Depending on whether G is discrete or contin-
uous, and on the dimension of space, there may be no ordered phase possible. The lower
critical dimension dℓ of a model is the dimension at or below which there is no spontaneous
symmetry breaking at any finite temperature. For systems with discrete global symme-
tries, dℓ = 1. For systems with continuous global symmetries, dℓ = 2. The upper critical
dimension du is the dimension above which mean field exponents are exact. This depends
on structure of the model itself, and not all models have a finite upper critical dimension.

Figure 5: Left panel : Imry-Ma domains for an
O(2) model. The arrows point in the direction

of the local order parameter field 〈Ω̂(r)〉. Right
panel : free energy density as a function of do-
main size Ld. Note Ld > a always.

• Random systems: A system with quenched
randomness orders in a different way than
a pure one. Typically the randomness may
be modeled as a weak symmetry break-
ing field that is spatially varying, but aver-
ages to zero on large scales. Imry and Ma
(1975) reasoned that such a system could
try to lower its energy by forming domains
in which the order parameter takes advan-
tage of local fluctuations in the random
field. If the size of these domains is Ld,
then the rms fluctuations of the random
field integrated over a single domain are

proportional to L
d/2
d , where d is the dimension of space. By aligning the order parame-

ter in each domain with the direction of the average field therein, one lowers the energy by
Ebulk ≈ −Hrms (Ld/a)

d/2 per domain, where a is a microscopic length. The surface energy
of a single domain is Esurf ≈ J(Ld/a)

d−σ , where σ = 1 if the global symmetry is discrete
and σ = 2 if it is continuous. This follows from a simple calculation of the associated do-
main wall energy. Dividing by the number of atoms (or unit cells) in a domain (Ld/a)

d, one
obtains the energy density,

f ≈ J

(

a

Ld

)σ

−Hrms

(

a

Ld

)
d
2

.

For d < 2σ the surface term (∝ J) dominates for small Ld and the bulk term for large Ld.
The energy has a minimum at Ld ≈ a (2σJ/dHrms)

2/(2σ−d) . Thus, for d < 2σ the ordered
state is always unstable to domain formation in the presence of a random field. For d > 2σ, the
relevant dominance of the two terms is reversed, and the minimum becomes a maximum.
There are then two possibilities, depending on the relative size of J andHrms. The smallest
allowed value for Ld is the lattice scale a, in which case f(Ld = a) ≈ J −Hrms. Comparing
with f(Ld = ∞) = 0, we see that if the random field is weak, so J > Hrms, the minimum
energy state occurs for Ld = ∞, i.e. the system has an ordered ground state. We then
expect a finite critical temperature Tc > 0 for a transition to a high T disordered state. If
on the other hand the random field is strong and J < Hrms, then the energy is minimized
for Ld = a, meaning the ground state of the system is disordered down to the scale of
the lattice spacing. In this case there is no longer any finite temperature phase transition,
because there is no ordered phase.

• Ginzburg-Landau theory: Allow the order parameter to vary in space. The free energy is

6



then a functional of m(x):

F
[

m(x) , h(x)
]

=

∫

ddx

{

f0 +
1
2am

2 + 1
4bm

4 − hm+ 1
2κ (∇m)2 + . . .

}

.

Extremize F by setting the functional derivative δF/δm(x) to zero, resulting in

am+ bm3 − hm− κ∇2m = 0 .

For a > 0 and small h (take b, c > 0) then m is small, and one has (a − κ∇2)m = h, hence
m̂(q) = ĥ(q)/(a + κq2), which is of the OZ form. If a < 0, write m(x) = m0 + δm(x),
and for small |a| find m2

0 = −a/3b and δm̂(q) = ĥ(q)/(−2a + κq2). Deeper in the ordered
(a < 0) phase, and for h = 0, one can envisage a situation wherem(x) interpolates between
the two degenerate values ±m0. Assuming the variation occurs only along one direction,
one can solve am + bm3 − κd2m/dx2 = 0 to obtain m(x) = m0 tanh(x/

√
2 ξ), where the

coherence length is ξ = (κ/|a|)1/2.

• Ginzburg criterion: The actual Helmholtz free energy, which we will here callA(T,H, V,N),
is obtained by performing a functional integral over the order parameter field. The parti-
tion function is Z = e−βA =

∫

Dme−βF [m(x)]. Near Tc, we are licensed to keep only up to
quadratic terms in m and its gradients in F [m], resulting in

A = 1
2kB

T
∑

q

ln

(

a+ κq2

πk
B
T

)

.

Let a(t) = αt with t ≡ (T − Tc)/Tc , and let Λ−1 be the microscopic (lattice) cutoff. The
specific heat is then (for t > 0):

c = − 1

V Λd
T
∂2A

∂T 2
=
α2Λ−d

2κ2

Λ
∫

ddq

(2π)d
1

(ξ−2 + q2)2
∼











const. if d > 4

− ln t if d = 4

t
d
2
−2 if d < 4 ,

with ξ =
(

κ/α|t|
)1/2 ∝ |t|−1/2.

The upper critical dimension is dℓ = 4. For d > 4, mean field theory is qualitatively
accurate, with finite corrections. In dimensions d ≤ 4, the mean field result is overwhelmed
by fluctuation contributions as t → 0+ (i.e. as T → T+

c ). We see that MFT is sensible
provided the fluctuation contributions are small, i.e. provided

R−4
a
d ξ4−d ≪ 1 , (1)

with R = (κ/α)1/2 , which entails t≫ t
G

, where

t
G
=

(

a

R

)
2d
4−d

(2)

is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory,
namely t ≫ t

G
, is known as the Ginzburg criterion. The region |t| < t

G
is known as the
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critical region. In a lattice ferromagnet, R ∼ a is on the scale of the lattice spacing itself,
hence t

G
∼ 1 and the critical regime is very large. Mean field theory then fails quickly as

T → Tc. In a (conventional) three-dimensional superconductor, R is on the order of the
Cooper pair size, and R/a ∼ 102 − 103, hence t

G
= (a/R)6 ∼ 10−18 − 10−12 is negligibly

narrow. The mean field theory of the superconducting transition – BCS theory – is then
valid essentially all the way to T = Tc.
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