5 Quantum Statistics: Summary

- Second-quantized Hamiltonians: A noninteracting quantum system is described by a Hamiltonian $\hat{H}=\sum_{\alpha} \varepsilon_{\alpha} \hat{n}_{\alpha}$, where ε_{α} is the energy eigenvalue for the single particle state ψ_{α} (possibly degenerate), and \hat{n}_{α} is the number operator. Many-body eigenstates $|\vec{n}\rangle$ are labeled by the set of occupancies $\vec{n}=\left\{n_{\alpha}\right\}$, with $\hat{n}_{\alpha}|\vec{n}\rangle=n_{\alpha}|\vec{n}\rangle$. Thus, $\hat{H}|\vec{n}\rangle=E_{\vec{n}}|\vec{n}\rangle$, where $E_{\vec{n}}=\sum_{\alpha} n_{\alpha} \varepsilon_{\alpha}$.
- Bosons and fermions: The allowed values for n_{α} are $n_{\alpha} \in\{0,1,2, \ldots, \infty\}$ for bosons and $n_{\alpha} \in\{0,1\}$ for fermions.
- Grand canonical ensemble: Because of the constraint $\sum_{\alpha} n_{\alpha}=N$, the ordinary canonical ensemble is inconvenient. Rather, we use the grand canonical ensemble, in which case

$$
\Omega(T, V, \mu)= \pm k_{\mathrm{B}} T \sum_{\alpha} \ln \left(1 \mp e^{-\left(\varepsilon_{\alpha}-\mu\right) / k_{\mathrm{B}} T}\right)
$$

where the upper sign corresponds to bosons and the lower sign to fermions. The average number of particles occupying the single particle state ψ_{α} is then

$$
\left\langle\hat{n}_{\alpha}\right\rangle=\frac{\partial \Omega}{\partial \varepsilon_{\alpha}}=\frac{1}{e^{\left(\varepsilon_{\alpha}-\mu\right) / k_{\mathrm{B}} T} \mp 1} .
$$

In the Maxwell-Boltzmann limit, $\mu \ll-k_{\mathrm{B}} T$ and $\left\langle n_{\alpha}\right\rangle=z e^{-\varepsilon_{\alpha} / k_{\mathrm{B}} T}$, where $z=e^{\mu / k_{\mathrm{B}} T}$ is the fugacity. Note that this low-density limit is common to both bosons and fermions.

- Single particle density of states: The single particle density of states per unit volume is defined to be

$$
g(\varepsilon)=\frac{1}{V} \operatorname{Tr} \delta(\varepsilon-\hat{h})=\frac{1}{V} \sum_{\alpha} \delta\left(\varepsilon-\varepsilon_{\alpha}\right)
$$

where \hat{h} is the one-body Hamiltonian. If \hat{h} is isotropic, then $\varepsilon=\varepsilon(k)$, where $k=|\boldsymbol{k}|$ is the magnitude of the wavevector, and

$$
g(\varepsilon)=\frac{\mathrm{g} \Omega_{d}}{(2 \pi)^{d}} \frac{k^{d-1}}{d \varepsilon / d k}
$$

where g is the degeneracy of each single particle energy state (due to spin, for example).

- Quantum virial expansion: From $\Omega=-p V$, we have

$$
\begin{aligned}
& n(T, z)=\int_{-\infty}^{\infty} d \varepsilon \frac{g(\varepsilon)}{z^{-1} e^{\varepsilon / k_{\mathrm{B}} T} \mp 1}=\sum_{j=1}^{\infty}(\pm 1)^{j-1} z^{j} C_{j}(T) \\
& \frac{p(T, z)}{k_{\mathrm{B}} T}=\mp \int_{-\infty}^{\infty} d \varepsilon g(\varepsilon) \ln \left(1 \mp z e^{-\varepsilon / k_{\mathrm{B}} T}\right)=\sum_{j=1}^{\infty}(\pm 1)^{j-1} \frac{z^{j}}{j} C_{j}(T)
\end{aligned}
$$

where

$$
C_{j}(T)=\int_{-\infty}^{\infty} d \varepsilon g(\varepsilon) e^{-j \varepsilon / k_{\mathrm{B}} T} .
$$

One now inverts $n=n(T, z)$ to obtain $z=z(T, n)$, then substitutes this into $p=p(T, z)$ to obtain a series expansion for the equation of state,

$$
p(T, n)=n k_{\mathrm{B}} T\left(1+B_{2}(T) n+B_{3}(T) n^{2}+\ldots\right) .
$$

The coefficients $B_{j}(T)$ are the virial coefficients. One finds

$$
B_{2}=\mp \frac{C_{2}}{2 C_{1}^{2}} \quad, \quad B_{3}=\frac{C_{2}^{2}}{C_{1}^{4}}-\frac{2 C_{3}}{C_{1}^{3}}
$$

- Photon statistics: Photons are bosonic excitations whose number is not conserved, hence $\mu=0$. The number distribution for photon statistics is then $n(\varepsilon)=1 /\left(e^{\beta \varepsilon}-1\right)$. Examples of particles obeying photon statistics include phonons (lattice vibrations), magnons (spin waves), and of course photons themselves, for which $\varepsilon(k)=\hbar c k$ with $\mathrm{g}=2$. The pressure and number density for the photon gas obey $p(T)=A_{d} T^{d+1}$ and $n(T)=A_{d}^{\prime} T^{d}$, where d is the dimension of space and A_{d} and A_{d}^{\prime} are constants.
- Blackbody radiation: The energy density per unit frequency of a three-dimensional blackbody is givenP by

$$
\varepsilon(\nu, T)=\frac{8 \pi h}{c^{3}} \cdot \frac{\nu^{3}}{e^{h \nu / k_{\mathrm{B}} T}-1} .
$$

The total power emitted per unit area of a blackbody is $\frac{d P}{d A}=\sigma T^{4}$, where $\sigma=\pi^{2} k_{\mathrm{B}}^{4} / 60 \hbar^{3} c^{2}=$ $5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$ is Stefan's constant.

- Ideal Bose gas: For Bose systems, we must have $\varepsilon_{\alpha}>\mu$ for all single particle states. The number density is

$$
n(T, \mu)=\int_{-\infty}^{\infty} d \varepsilon \frac{g(\varepsilon)}{e^{\beta(\varepsilon-\mu)}-1}
$$

This is an increasing function of μ and an increasing function of T. For fixed T, the largest value $n(T, \mu)$ can attain is $n\left(T, \varepsilon_{0}\right)$, where ε_{0} is the lowest possible single particle energy, for which $g(\varepsilon)=0$ for $\varepsilon<\varepsilon_{0}$. If $n_{\mathrm{c}}(T) \equiv n\left(T, \varepsilon_{0}\right)<\infty$, this establishes a critical density above which there is Bose condensation into the energy ε_{0} state. Conversely, for a given density n there is a critical temperature $T_{\mathrm{c}}(n)$ such that n_{0} is finite for $T<T_{\mathrm{c}}$. For $T<T_{\mathrm{c}}, n=n_{0}+n_{\mathrm{c}}(T)$, with $\mu=\varepsilon_{0}$. For $T>T_{\mathrm{c}}, n(T, \mu)$ is given by the integral formula above, with $n_{0}=0$. For a ballistic dispersion $\varepsilon(\boldsymbol{k})=\hbar^{2} \boldsymbol{k}^{2} / 2 m$, one finds $n \lambda_{T_{\mathrm{c}}}^{d}=\mathrm{g} \zeta(d / 2)$, i.e. $k_{\mathrm{B}} T_{\mathrm{c}}=\frac{2 \pi \hbar^{2}}{m}(n / \mathrm{g} \zeta(d / 2))^{2 / d}$. For $T<T_{\mathrm{c}}(n)$, one has $n_{0}=n-\mathrm{g} \zeta\left(\frac{1}{2} d\right) \lambda_{T}^{-d}=n\left(1-\left(T / T_{\mathrm{c}}\right)^{d / 2}\right)$ and $p=\mathrm{g} \zeta\left(1+\frac{1}{2} d\right) k_{\mathrm{B}} T \lambda_{T}^{-d}$. For $T>T_{\mathrm{c}}(n)$, one has $n=\mathrm{g} \mathrm{Li}_{\frac{d}{2}}(z) \lambda_{T}^{-d}$ and $p=\mathrm{g} \mathrm{Li}_{\frac{d}{2}+1}(z) k_{\mathrm{B}} T \lambda_{T}^{-d}$, where

$$
\operatorname{Li}_{q}(z) \equiv \sum_{n=1}^{\infty} \frac{z^{n}}{n^{q}}
$$

- Ideal Fermi gas: The Fermi distribution is $n(\varepsilon)=f(\varepsilon-\mu)=1 /\left(e^{(\varepsilon-\mu) / k_{\mathrm{B}} T}+1\right)$. At $T=0$, this is a step function: $n(\varepsilon)=\Theta(\mu-\varepsilon)$, and $n=\int_{-\infty}^{\mu} d \varepsilon g(\varepsilon)$. The chemical potential at $T=0$ is called the Fermi energy: $\mu(T=0, n)=\varepsilon_{\mathrm{F}}(n)$. If the dispersion is $\varepsilon(\boldsymbol{k})$, the locus of \boldsymbol{k} values satisfying $\varepsilon(\boldsymbol{k})=\varepsilon_{\mathrm{F}}$ is called the Fermi surface. For an isotropic and monotonic dispersion $\varepsilon(k)$, the Fermi surface is a sphere of radius k_{F}, the Fermi wavevector. For isotropic three-dimensional systems, $k_{\mathrm{F}}=\left(6 \pi^{2} n / \mathrm{g}\right)^{1 / 3}$.
- Sommerfeld expansion: Let $\phi(\varepsilon)=\frac{d \Phi}{d \varepsilon}$. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} d \varepsilon f(\varepsilon-\mu) \phi(\varepsilon) & =\pi D \csc (\pi D) \Phi(\mu) \\
& =\left\{1+\frac{\pi^{2}}{6}\left(k_{\mathrm{B}} T\right)^{2} \frac{d^{2}}{d \mu^{2}}+\frac{7 \pi^{4}}{360}\left(k_{\mathrm{B}} T\right)^{4} \frac{d^{4}}{d \mu^{4}}+\ldots\right\} \Phi(\mu),
\end{aligned}
$$

where $D=k_{\mathrm{B}} T \frac{d}{d \mu}$. One then finds, for example, $C_{V}=\gamma V T$ with $\gamma=\frac{1}{3} \pi^{2} k_{\mathrm{B}}^{2} g\left(\varepsilon_{\mathrm{F}}\right)$. Note that nonanalytic terms proportional to $\exp \left(-\mu / k_{\mathrm{B}} T\right)$ are invisible in the Sommerfeld expansion.

