
2 Thermodynamics : Summary

• Extensive and intensive variables: The equilibrium state of a thermodynamic system is char-
acterized by specifying a number of state variables which can be either extensive (scaling lin-
early with system size), or intensive (scaling as the zeroth power of system size). Extensive
quantities include: energy E, entropy S, particle number N , magnetization M , etc. Inten-
sive quantities include temperature T , pressure p, number density n, magnetic field H,
etc. The ratio of two extensive quantities is intensive, e.g. n = N/V . In the thermodynamic
limit, all extensive state variables tend to infinity (in whatever units are appropriate), while
their various ratios are all finite. A full description of the state of any thermodynamic sys-
tem must involve at least one extensive variable (but may or may not include intensive
variables).

• Work: The internal energy of a thermodynamic system can change as a result of a gener-
alized displacement dXi, as a result of work W done by the system. We write the differential
form of W as

d̄W = −
∑

i

yi dXi −
∑

a

µa dNa ,

where −yi is the generalized force conjugate to the generalized displacement Xi, and µa is
the chemical potential of species a, which is conjugate to the number of particles of that
species, Na. Think of chemical work as the work required to assemble particles out of
infinitely remote constituents. The slash through the differential symbol indicates that d̄W
is an inexact differential, i.e. there is no function W (T, p, V, . . .).

• Heat: Aside from work done by or on the system, there is another way of changing
the system’s internal energy, which is by transferring heat, Q. Heat is a form of energy
contained in the random microscopic motions of the constituent particles. Like d̄W , the
differential d̄Q is also inexact, and there is no heat function Q(T, p, V, . . .). Transfer of heat
under conditions of constant volume or pressure and constant particle number results in a
change of the the thermodynamic state via a change in temperature: dT = d̄Q/C , where C
is the heat capacity of the system at fixed volume/pressure and particle number.

• First Law: The First Law of Thermodynamics is a statement of energy conservation which
accounts for both types of energies: ∆E = Q−W , or in differential form dE = d̄Q− d̄W .

• Single component systems: A single component system is completely specified by three
state variables, which can be taken to be E, V , and N , and writing d̄W = p dV − µdN , we
have

d̄Q = dE + p dV − µdN .

If, for example, we want to use variables (T, V,N), we write

dE =

(

∂E

∂T

)

V,N

dT +

(

∂E

∂V

)

T,N

dV +

(

∂E

∂N

)

T,V

dN .

Proceeding in this way, one can derive expressions like

CV,N =

(

d̄Q

dT

)

V,N

=

(

∂E

∂T

)

V,N

, Cp,N =

(

d̄Q

dT

)

p,N

=

(

∂E

∂T

)

p,N

+ p

(

∂V

∂T

)

p,N

.
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• Equations of state: An equation of state is a relation among state variables. Examples
include the familiar ideal gas law, pV = Nk

B
T , and the van der Waals equation of state,

(

p+ aN2

V 2

)

(V −Nb) = Nk
B
T .

• Ideal gases: For ideal gases, one has pV = Nk
B
T and E = 1

2fNkB
T , where f is the

number of kinetic degrees of freedom (f = 3 for monatomic, f = 5 for diatomic, and f = 6
for polyatomic gases, assuming only translational and rotational freedoms are excited).

• Special thermodynamic processes: Remember adiabatic (d̄Q = 0), isothermal (dT = 0), iso-
baric (dp = 0), and isochoric (dV = 0). A quasistatic process is one which follows a contin-
uous path is a space of state variables infinitely slowly, so that the system is in equilibrium
at any instant. A reversible process is necessarily quasistatic, and moreover is nondissipa-
tive (i.e. no friction), so that its thermodynamic path may be followed in reverse.

Figure 1: An engine (left) extracts heat Q2 from
a reservoir at temperature T2 and deposits a
smaller amount of heat Q1 into a reservoir at a
lower temperature T1, during each cycle. The dif-
ference W = Q2 − Q1 is transformed into me-
chanical work. A refrigerator (right) performs
the inverse process, drawing heat Q1 from a low
temperature reservoir and depositing heat Q2 =
Q1 +W into a high temperature reservoir, where
W is the work done per cycle.

• Heat engines and the Second Law: A
heat engine takes a thermodynamic sys-
tem through a repeated cycle of equilib-
rium states A → B → C → · · · → A, the
net result of which is to convert heat into
mechanical work, or vice versa. A perfect
engine, which would extract heat Q from a
large thermal reservoir1, such as the ocean,
and convert it into work W = Q each cy-
cle, is not possible, according to the Second
Law of Thermodynamics. Real engines ex-
tract heat Q2 from an upper reservoir at
temperature T2, dump heat Q1 into a lower
reservoir at temperature T1, and transform
the difference into useful mechanical work
W = Q2 − Q1. A refrigerator is simply an
engine operating in reverse: work is done
in order to extract heat Q1 from the lower
reservoir, and Q2 =W+Q1 is dumped into
the upper reservoir in each cycle. The effi-

ciency of the engine cycle is defined to be η = 1 −
Q

1

Q
2

. The engine efficiency is bounded

from above by the efficiency of a reversible cycle operating between those two reservoirs,

such as the Carnot cycle (two adiabats and two isotherms). Thus, η ≤ ηC = 1−
T
1

T
2

.

• Entropy: The Second Law guarantees that an engine operating between two reservoirs

must satisfy
Q

1

T
1

+
Q

2

T
2

≤ 0, with the equality holding for reversible cycles. Here Q1 = −Q1

is the (negative) heat transferred to the engine from reservoir #1. Since an arbitrary curve
in the p-V plane (at fixed N ) can be composed of a combination of Carnot cycles, one

1A thermal reservoir, or heat bath, is any very large object with a fixed temperature. Because it is so large, the
change in temperature ∆T = Q/C which results from a heat transfer Q is negligible, since the heat capacity
C is an extensive quantity.
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concludes
∮

d̄Q
T

≤ 0, again with equality holding for reversible cycles. Clausius, in 1865,

realized that one could thereby define a new state function, the entropy, S, with dS = d̄Q
T

.
Thus, d̄Q ≤ T dS, with equality holding for reversible processes. The entropy is extensive,
with units [S] = J/K.

• Gibbs-Duhem relation: For reversible processes, we now have

dE = T dS +
∑

i

yi dXi +
∑

a

µa dNa ,

which says E = E
(

S, {Xi}, {Na}
)

, which is to say E is a function of all the extensive vari-
ables. It therefore must be homogeneous of degree one, i.e. λE = E

(

λS, {λXi}, {λNa}
)

,
and from Euler’s theorem it then follows that

E = TS +
∑

i

yiXi +
∑

a

µaNa

0 = S dT +
∑

i

Xi dyi +
∑

a

Na dµa .

This means that there is one equation of state which can be written as a function of all the
’proper’ intensive variables.

• Thermodynamic potentials: Under equilibrium conditions, one can make Legendre trans-
forms to an appropriate or convenient system of thermodynamic variables. Some common
examples:

E(S, V,N) = E dE = T dS − p dV + µdN

F (T, V,N) = E − TS dF = −S dT − p dV + µdN

H(S, p,N) = E + pV dH = T dS + V dp + µdN

G(T, p,N) = E − TS + pV dG = −S dT + V dp+ µdN

Ω(T, V, µ) = E − TS − µN dΩ = −S dT − p dV −N dµ .

Under general nonequilibrium conditions, the Second Law says that each of the equalities
on the right is replaced by an inequality, i.e. dG ≤ −S dT + V dp + µdN . Thus, under
conditions of constant temperature, pressure, and particle number, the Gibbs free energy
G will achieve its minimum possible value via spontaneous processes. Note that Gibbs-
Duhem says that G = µN and Ω = −pV .

• Maxwell relations: Since the various thermodynamic potentials are state variables, we
have that the mixed second derivatives can each be expressed in two ways. This leads to
relations of the form

∂2G

∂T ∂p
= −

(

∂S

∂p

)

T,N

=

(

∂V

∂T

)

p,N

.

• Thermodynamic stability: Suppose T , p, and N are fixed. Then

∆G =
1

2

[

∂E

∂S2
(∆S)2 +

∂2E

∂S ∂V
∆S∆V +

∂2E

∂V 2
(∆V )2

]

+ . . . ,
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and since in equilibrium G is at a minimum, ∆G > 0 requires that the corresponding
Hessian matrix of second derivatives be positive definite:

∂2E

∂S2
=

(

∂T

∂S

)

V

=
T

CV

> 0

∂2E

∂V 2
= −

(

∂p

∂V

)

S

=
1

V κS
> 0

∂2E

∂S2
·
∂2E

∂V 2
−

(

∂2E

∂S ∂V

)2

=
T

V κS CV

−

(

∂T

∂V

)2

S

> 0 .

• Response coefficients: In addition to heat capacities CV = T
(

∂S
∂T

)

V
and Cp = T

(

∂S
∂T

)

p
one

defines the isothermal compressibility κT = − 1
V

(

∂V
∂p

)

T
and the adiabatic compressibility

κS = − 1
V

(

∂V
∂p

)

S
, as well as the thermal expansion coefficient αp = 1

V

(

∂V
∂T

)

p
. Invoking the

Maxwell relations, one derives certain identities, such as

Cp − CV =
V Tα2

p

κT
, κT − κS =

V Tα2
p

Cp

.

• Entropy of mixing: The entropy of any substance obeying the ideal gas law is given by the
expression S(T, V,N) = Nk

B
ln(V/N) +Nφ(T ). If different ideal gases at the same p and

T were separated via physical barriers, and the barriers were then removed, the change in
entropy would be ∆S = −Nk

B

∑

a xa lnxa, where xa = Na/N with N =
∑

aNa being the
total number of particles over all species. This is called the entropy of mixing.

• Weak solutions and osmotic pressure: If one species is much more plentiful than the others,
we give it a particle label a = 0 and call it the solvent. The Gibbs free energy of a weak
solution is then

G
(

T, p,N0, {Na}
)

= N0 g0(T, p)+
∑

a

Na

{

k
B
T ln

(

Na

eN0

)

+ψa(T, p)

}

+
1

2N0

∑

a,b

Aab(T, p)NaNb .

Assuming xa = Na/N0 ≪ 1 for a > 0, we have µ0 = g0 − xk
B
T and µa = k

B
T lnxa + ψa. If

x > 0 on the right side of a semipermeable membrane and x = 0 on the left, then assuming
the membrane is permeable to the solvent, we must have µ0 = g0(T, pL

) = g0(T, pR
)−xk

B
T .

This leads to a pressure difference, π, called the osmotic pressure, given by π = p
R
− p

L
=

xk
B
T
/(∂µ

0

∂p

)

T,N
. Since a Maxwell relation guarantees

(∂µ
0

∂p

)

T,N
=

(∂V
0

∂N

)

T,p
, we have the

equation of state πv = xRT , where v is the molar volume of the solvent.

• Binary solutions: In a mixture of A and B species, let x = N
B
/(N

A
+N

B
). The Gibbs free

energy per particle is

g(T, p, x) = (1− x)µ0A(T, p) + xµ0B(T, p) + k
B
T
[

x lnx+ (1− x) ln(1− x)
]

+ λABx(1− x) .

4



Figure 2: Phase diagram for the binary system.
The black curve is the coexistence curve, and the
dark red curve is the spinodal. A-rich material is
to the left and B-rich to the right.

If λ
AB

> 0, the A and B components repel,
and the mixture becomes unstable. There is
a local instability, corresponding to spinodal
decomposition, when g′′(x) = 0. This occurs
at a temperature k

B
T ∗ = 2λ

AB
x(1−x). But

for a given x, an instability toward phase
separation survives to even higher temper-
ature, and is described by the Maxwell con-
struction. The coexistence boundary is ob-
tained from

[

g(x2) − g(x1)
]

/(x2 − x1) =
g′(x1) = g′(x2), and from the symmetry
under x ↔ 1 − x, one finds k

B
Tcoex =

λ
AB

(1 − 2x)/ ln
(

x−1 − 1
)

, where nucleation
of the minority phase sets in.

Figure 3: Phase diagram and distil-
lation sequence for an ideal mixture.

• Miscible fluids and liquid-vapor coexistence: If λ
AB

< 0,
there is no instability toward phase separation, and the
A and B fluids are said to be completely miscible. Exam-
ple: benzene C6H6 and toluene C6H5CH3. At higher
temperatures, near the liquid gas transition, there is
an instability toward phase separation. In the vapor
phase, λV

AB
≈ 0, while for the liquid λL

AB
< 0. The

free energy curves g
L
(T, p, x) and g

V
(T, p, x) are then

both convex as a function of x, but choosing the min-
imum g(x) = min

(

g
L
(x), g

V
(x)

)

, one is forced toward
a Maxwell construction, hence phase coexistence. In
the case of ’ideal liquids’ with different boiling points,
we can even take λL

AB
≈ 0. By successively boiling

and then separating and condensing the resulting va-
por, the mixture may be distilled (see Fig. 3). When
λL
AB

6= 0, the mixture may be azeotropic in which case
the extremum of the boiling point occurs at an interme-
diate concentration (see Fig. 4).

• Thermochemistry: A chemical reaction among σ species may be represented

ζ1 A1 + ζ2 A2 + · · ·+ ζσ Aσ = 0 ,

where Aa is a chemical formula, and ζa is a stoichiometric coefficient. If ζa > 0, then Aa is a
product, while for ζa < 0, Aa is a reactant. Chemical equilibrium requires

∑σ
a=1 ζa µa = 0.

For a mixture of ideal gases, one has the law of mass action,

κ(T, p) ≡

σ
∏

a=1

xζaa =

σ
∏

a=1

(

k
B
Tξa(T )

pλ3a

)ζa

,
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Figure 4: Phase diagram for the positive
azeotrope chloroform plus methanol.

where ξa(T ) is the internal coordinate par-
tition function for molecular species a.
κ(T, p) is the equilibrium constant of the re-
action. When κ is large, products are fa-
vored over reactants. When κ is small,
reactants are favored over products. One
may further show

(

∂ lnκ

∂T

)

p

=
∆h

k
B
T 2

,

where ∆h is the enthalpy of the reaction.
When ∆h < 0, the reaction is exothermic.
At finite pressure, this means that heat is
transferred to the environment: Q = ∆E +
p∆V = ∆H < 0, where H = E+pV . When
∆h > 0, the reaction is endothermic, and requires heat be transferred from the environment.

• Clapeyron relation: Across a coexistence curve p(T ) separating two phases, the chemical
potential µ is continuous. This says dg1 = −s1 dT + v1 dp = −s2 dT + v2 dp = dg2, where g,
s, and v are the Gibbs free energy, entropy, and volume per mole, respectively. Then

(

∂p

∂t

)

coex

=
s2 − s1
v2 − v1

=
ℓ

T ∆v
,

where ℓ = T ∆s = T (s2 − s1) is the molar latent heat of transition which must be supplied in
order to change from phase #1 to phase #2, even without changing T or p.

• Gibbs phase rule: For a system with σ species, Gibbs-Duhem says µσ = µσ(T, p, µ1, . . . , µσ−1),
so a maximum of σ+1 intensive quantities may be specified. If a system with σ species has
equilibrium among ϕ phases, then there are σ(ϕ− 1) independent equilibrium conditions

µ
(j)
a = µ

(j′)
a , where a labels species and j labels phases, among the 2 + ϕ(σ − 1) intensive

variables, and so ϕ-phase equilibrium can exist over a space of dimension d = 2 + σ − ϕ.
Since this cannot be negative, we have ϕ ≤ 2+σ. Thus, for a single species, we can at most
have three phase coexistence, which would then occur on a set of dimension zero, as is the
case for the triple point of water, for example.
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