
1 Probability Distributions : Summary

• Discrete distributions: Let n label the distinct possible outcomes of a discrete random
process, and let pn be the probability for outcome n. Let A be a quantity which takes
values which depend on n, with An being the value of A under the outcome n. Then the
expected value of A is 〈A〉 = ∑

n pnAn, where the sum is over all possible allowed values
of n. We must have that the distribution is normalized, i.e. 〈1〉 = ∑

n pn = 1.

• Continuous distributions: When the random variable ϕ takes a continuum of values, we
define the probability density P (ϕ) to be such that P (ϕ) dµ is the probability for the outcome
to lie within a differential volume dµ of ϕ, where dµ = W (ϕ)

∏n
i=1 dϕi, were ϕ is an n-

component vector in the configuration space Ω, and where the function W (ϕ) accounts for
the possibility of different configuration space measures. Then if A(ϕ) is any function on
Ω, the expected value of A is 〈A〉 =

∫

Ω

dµ P (ϕ)A(ϕ).

• Central limit theorem: If {x1, . . . , xN} are each independently distributed according to

P (x), then the distribution of the sum X =
∑N

i=1 xi is

PN (X) =

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxN P (x1) · · ·P (xN ) δ
(

X −
N
∑

i=1

xi

)

=

∞
∫

−∞

dk

2π

[

P̂ (k)
]N

eikX ,

where P̂ (k) =
∫

dx P (x) e−ikx is the Fourier transform of P (x). Assuming that the lowest

moments of P (x) exist, ln
[

P̂ (k)
]

= −iµk − 1
2σ

2k2 + O(k3), where µ = 〈x〉 and σ2 =
〈x2〉 − 〈x〉2 are the mean and standard deviation. Then for N → ∞,

PN (X) = (2πNσ2)−1/2 e−(X−Nµ)2/2Nσ2

,

which is a Gaussian with mean 〈X〉 = Nµ and standard deviation
√

〈X2〉 − 〈X〉2 =
√
N σ.

Thus, X is distributed as a Gaussian, even if P (x) is not a Gaussian itself.

• Entropy: The entropy of a statistical distribution is {pn} is S = −∑

n pn ln pn. (Sometimes
the base 2 logarithm is used, in which case the entropy is measured in bits.) This has the
interpretation of the information content per element of a random sequence.

• Distributions from maximum entropy: Given a distribution {pn} subject to (K + 1) con-
straints of the form X a =

∑

nX
a
n pn with a ∈ {0, . . . ,K}, where X 0 = X0

n = 1 (normal-
ization), the distribution consistent with these constraints which maximizes the entropy
function is obtained by extremizing the multivariable function

S∗
(

{pn}, {λa}
)

= −
∑

n

pn ln pn −
K
∑

a=0

λa

(

∑

n

Xa
n pn − X a

)

,

with respect to the probabilities {pn} and the Lagrange multipliers {λa}. This results in a
Gibbs distribution,

pn =
1

Z
exp

{

−
K
∑

a=1

λaX
a
n

}

,
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where Z = e1+λ
0 is determined by normalization, i.e.

∑

n pn = 1 (i.e. the a = 0 constraint)
and the K remaining multipliers determined by the K additional constraints.

• Multidimensional Gaussian integral:

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxn exp
(

− 1
2 xiAij xj + bi xi

)

=

(

(2π)n

detA

)1/2

exp
(

1
2 biA

−1
ij bj

)

.

• Bayes’ theorem: Let the conditional probability for B given A be P (B|A). Then Bayes’ theo-
rem says P (A|B) = P (A) · P (B|A) /P (B). If the ’event space’ is partitioned as {Ai}, then
we have the extended form,

P (Ai|B) =
P (B|Ai) · P (Ai)

∑

j P (B|Aj) · P (Aj)
.

When the event space is a ‘binary partition’ {A,¬A}, as is often the case in fields like
epidemiology (i.e. test positive or test negative), we have

P (A|B) =
P (B|A) · P (A)

P (B|A) · P (A) + P (B|¬A) · P (¬A) .

Note that P (A|B) + P (¬A|B) = 1 (which follows from ¬¬A = A).

• Updating Bayesian priors: Given data in the form of observed values x = {x1, . . . , xN} ∈ X
and a hypothesis in the form of parameters θ = {θ1, . . . , θK} ∈ Θ, we write the conditional
probability (density) for observing x given θ as f(x|θ). Bayes’ theorem says that the cor-
responding distribution π(θ|x) for θ conditioned on x is

π(θ|x) = f(x|θ)π(θ)
∫

Θ

dθ′ f(x|θ′)π(θ′)
,

We call π(θ) the prior for θ, f(x|θ) the likelihood of x given θ, and π(θ|x) the posterior for
θ given x. We can use the posterior to find the distribution of new data points y, called
the posterior predictive distribution, f(y|x) =

∫

Θ

dθ f(y|θ)π(θ|x) . This is the update of the

prior predictive distribution, f(x) =
∫

Θ

dθ f(x|θ)π(θ) . As an example, consider coin flipping

with f(x|θ) = θX (1 − θ)N−X , where N is the number of flips, and X =
∑N

j=1 xj with
xj a discrete variable which is 0 for tails and 1 for heads. The parameter θ ∈ [0, 1] is

the probability to flip heads. We choose a prior π(θ) = θα−1 (1 − θ)β−1/B(α, β) where
B(α, β) = Γ(α) Γ(β)/Γ(α + β) is the Beta distribution. This results in a normalized prior
1
∫

0

dθ π(θ) = 1. The posterior distribution for θ is then

π(θ|x1, . . . , xN ) =
f(x1, . . . , xN |θ)π(θ)

∫ 1
0 dθ

′ f(x1, . . . , xN |θ′)π(θ′)
=

θX+α−1(1− θ)N−X+β−1

B(X + α,N −X + β)
.

2



The prior predictive is f(x) =
1
∫

0

dθf(x|θ)π(θ) = B(X + α,N − X + β)/B(α, β) , and the

posterior predictive for the total number of heads Y in M flips is

f(y|x) =
1

∫

0

dθ f(y|θ)π(θ|x) = B(X + Y + α,N −X +M − Y + β)

B(X + α,N −X + β)
.
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