1 Probability Distributions: Summary

- Discrete distributions: Let n label the distinct possible outcomes of a discrete random process, and let p_{n} be the probability for outcome n. Let A be a quantity which takes values which depend on n, with A_{n} being the value of A under the outcome n. Then the expected value of A is $\langle A\rangle=\sum_{n} p_{n} A_{n}$, where the sum is over all possible allowed values of n. We must have that the distribution is normalized, i.e. $\langle 1\rangle=\sum_{n} p_{n}=1$.
- Continuous distributions: When the random variable φ takes a continuum of values, we define the probability density $P(\boldsymbol{\varphi})$ to be such that $P(\boldsymbol{\varphi}) d \mu$ is the probability for the outcome to lie within a differential volume $d \mu$ of $\boldsymbol{\varphi}$, where $d \mu=W(\boldsymbol{\varphi}) \prod_{i=1}^{n} d \varphi_{i}$, were φ is an n component vector in the configuration space Ω, and where the function $W(\varphi)$ accounts for the possibility of different configuration space measures. Then if $A(\boldsymbol{\varphi})$ is any function on Ω, the expected value of A is $\langle A\rangle=\int_{\Omega} d \mu P(\boldsymbol{\varphi}) A(\boldsymbol{\varphi})$.
- Central limit theorem: If $\left\{x_{1}, \ldots, x_{N}\right\}$ are each independently distributed according to $P(x)$, then the distribution of the sum $X=\sum_{i=1}^{N} x_{i}$ is

$$
\mathcal{P}_{N}(X)=\int_{-\infty}^{\infty} d x_{1} \cdots \int_{-\infty}^{\infty} d x_{N} P\left(x_{1}\right) \cdots P\left(x_{N}\right) \delta\left(X-\sum_{i=1}^{N} x_{i}\right)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi}[\hat{P}(k)]^{N} e^{i k X}
$$

where $\hat{P}(k)=\int d x P(x) e^{-i k x}$ is the Fourier transform of $P(x)$. Assuming that the lowest moments of $P(x)$ exist, $\ln [\hat{P}(k)]=-i \mu k-\frac{1}{2} \sigma^{2} k^{2}+\mathcal{O}\left(k^{3}\right)$, where $\mu=\langle x\rangle$ and $\sigma^{2}=$ $\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$ are the mean and standard deviation. Then for $N \rightarrow \infty$,

$$
P_{N}(X)=\left(2 \pi N \sigma^{2}\right)^{-1 / 2} e^{-(X-N \mu)^{2} / 2 N \sigma^{2}},
$$

which is a Gaussian with mean $\langle X\rangle=N \mu$ and standard deviation $\sqrt{\left\langle X^{2}\right\rangle-\langle X\rangle^{2}}=\sqrt{N} \sigma$. Thus, X is distributed as a Gaussian, even if $P(x)$ is not a Gaussian itself.

- Entropy: The entropy of a statistical distribution is $\left\{p_{n}\right\}$ is $S=-\sum_{n} p_{n} \ln p_{n}$. (Sometimes the base 2 logarithm is used, in which case the entropy is measured in bits.) This has the interpretation of the information content per element of a random sequence.
- Distributions from maximum entropy: Given a distribution $\left\{p_{n}\right\}$ subject to $(K+1)$ constraints of the form $\mathcal{X}^{a}=\sum_{n} X_{n}^{a} p_{n}$ with $a \in\{0, \ldots, K\}$, where $\mathcal{X}^{0}=X_{n}^{0}=1$ (normalization), the distribution consistent with these constraints which maximizes the entropy function is obtained by extremizing the multivariable function

$$
S^{*}\left(\left\{p_{n}\right\},\left\{\lambda_{a}\right\}\right)=-\sum_{n} p_{n} \ln p_{n}-\sum_{a=0}^{K} \lambda_{a}\left(\sum_{n} X_{n}^{a} p_{n}-\mathcal{X}^{a}\right)
$$

with respect to the probabilities $\left\{p_{n}\right\}$ and the Lagrange multipliers $\left\{\lambda_{a}\right\}$. This results in a Gibbs distribution,

$$
p_{n}=\frac{1}{Z} \exp \left\{-\sum_{a=1}^{K} \lambda_{a} X_{n}^{a}\right\}
$$

where $Z=e^{1+\lambda_{0}}$ is determined by normalization, i.e. $\sum_{n} p_{n}=1$ (i.e. the $a=0$ constraint) and the K remaining multipliers determined by the K additional constraints.

- Multidimensional Gaussian integral:

$$
\int_{-\infty}^{\infty} d x_{1} \cdots \int_{-\infty}^{\infty} d x_{n} \exp \left(-\frac{1}{2} x_{i} A_{i j} x_{j}+b_{i} x_{i}\right)=\left(\frac{(2 \pi)^{n}}{\operatorname{det} A}\right)^{1 / 2} \exp \left(\frac{1}{2} b_{i} A_{i j}^{-1} b_{j}\right)
$$

- Bayes' theorem: Let the conditional probability for B given A be $P(B \mid A)$. Then Bayes' theorem says $P(A \mid B)=P(A) \cdot P(B \mid A) / P(B)$. If the 'event space' is partitioned as $\left\{A_{i}\right\}$, then we have the extended form,

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)}{\sum_{j} P\left(B \mid A_{j}\right) \cdot P\left(A_{j}\right)}
$$

When the event space is a 'binary partition' $\{A, \neg A\}$, as is often the case in fields like epidemiology (i.e. test positive or test negative), we have

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P(B \mid \neg A) \cdot P(\neg A)}
$$

Note that $P(A \mid B)+P(\neg A \mid B)=1$ (which follows from $\neg \neg A=A$).

- Updating Bayesian priors: Given data in the form of observed values $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{N}\right\} \in \mathcal{X}$ and a hypothesis in the form of parameters $\boldsymbol{\theta}=\left\{\theta_{1}, \ldots, \theta_{K}\right\} \in \Theta$, we write the conditional probability (density) for observing \boldsymbol{x} given $\boldsymbol{\theta}$ as $f(\boldsymbol{x} \mid \boldsymbol{\theta})$. Bayes' theorem says that the corresponding distribution $\pi(\boldsymbol{\theta} \mid \boldsymbol{x})$ for $\boldsymbol{\theta}$ conditioned on \boldsymbol{x} is

$$
\pi(\boldsymbol{\theta} \mid \boldsymbol{x})=\frac{f(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\int_{\Theta} d \boldsymbol{\theta}^{\prime} f\left(\boldsymbol{x} \mid \boldsymbol{\theta}^{\prime}\right) \pi\left(\boldsymbol{\theta}^{\prime}\right)}
$$

We call $\pi(\boldsymbol{\theta})$ the prior for $\boldsymbol{\theta}, f(\boldsymbol{x} \mid \boldsymbol{\theta})$ the likelihood of \boldsymbol{x} given $\boldsymbol{\theta}$, and $\pi(\boldsymbol{\theta} \mid \boldsymbol{x})$ the posterior for $\boldsymbol{\theta}$ given \boldsymbol{x}. We can use the posterior to find the distribution of new data points \boldsymbol{y}, called the posterior predictive distribution, $f(\boldsymbol{y} \mid \boldsymbol{x})=\int_{\Theta} d \boldsymbol{\theta} f(\boldsymbol{y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} \mid \boldsymbol{x})$. This is the update of the prior predictive distribution, $f(\boldsymbol{x})=\int_{\Theta} d \boldsymbol{\theta} f(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})$. As an example, consider coin flipping with $f(\boldsymbol{x} \mid \boldsymbol{\theta})=\theta^{X}(1-\theta)^{N-X}$, where N is the number of flips, and $X=\sum_{j=1}^{N} x_{j}$ with x_{j} a discrete variable which is 0 for tails and 1 for heads. The parameter $\theta \in[0,1]$ is the probability to flip heads. We choose a prior $\pi(\theta)=\theta^{\alpha-1}(1-\theta)^{\beta-1} / \mathrm{B}(\alpha, \beta)$ where $\mathrm{B}(\alpha, \beta)=\Gamma(\alpha) \Gamma(\beta) / \Gamma(\alpha+\beta)$ is the Beta distribution. This results in a normalized prior $\int_{0}^{1} d \theta \pi(\theta)=1$. The posterior distribution for θ is then

$$
\pi\left(\theta \mid x_{1}, \ldots, x_{N}\right)=\frac{f\left(x_{1}, \ldots, x_{N} \mid \theta\right) \pi(\theta)}{\int_{0}^{1} d \theta^{\prime} f\left(x_{1}, \ldots, x_{N} \mid \theta^{\prime}\right) \pi\left(\theta^{\prime}\right)}=\frac{\theta^{X+\alpha-1}(1-\theta)^{N-X+\beta-1}}{\mathrm{~B}(X+\alpha, N-X+\beta)}
$$

The prior predictive is $f(\boldsymbol{x})=\int_{0}^{1} d \theta f(\boldsymbol{x} \mid \theta) \pi(\theta)=\mathrm{B}(X+\alpha, N-X+\beta) / \mathrm{B}(\alpha, \beta)$, and the posterior predictive for the total number of heads Y in M flips is

$$
f(\boldsymbol{y} \mid \boldsymbol{x})=\int_{0}^{1} d \theta f(\boldsymbol{y} \mid \theta) \pi(\theta \mid \boldsymbol{x})=\frac{\mathrm{B}(X+Y+\alpha, N-X+M-Y+\beta)}{\mathrm{B}(X+\alpha, N-X+\beta)} .
$$

