
1 Probability : Worked Examples

(1.1) The information entropy of a distribution {pn} is defined as S = −∑n pn log2 pn, where n ranges over all
possible configurations of a given physical system and pn is the probability of the state |n〉. If there are Ω possible
states and each state is equally likely, then S = log2 Ω, which is the usual dimensionless entropy in units of ln 2.

Consider a normal deck of 52 distinct playing cards. A new deck always is prepared in the same order (A♠ 2♠ · · ·K♣).

(a) What is the information entropy of the distribution of new decks?

(b) What is the information entropy of a distribution of completely randomized decks?

Figure 1: The riffle shuffle.

Now consider what it means to shuffle the cards. In an ideal riffle
shuffle, the deck is split and divided into two equal halves of 26 cards
each. One then chooses at random whether to take a card from either
half, until one runs through all the cards and a new order is established
(see figure).

(c) What is the increase in information entropy for a distribution of
new decks that each have been shuffled once?

(d) Assuming each subsequent shuffle results in the same entropy
increase (i.e. neglecting redundancies), how many shuffles are
necessary in order to completely randomize a deck?

Solution :

(a) Since each new deck arrives in the same order, we have p1 = 1 while p2,...,52! = 0, so S = 0.

(b) For completely randomized decks, pn = 1/Ω with n ∈ {1, . . . ,Ω} and Ω = 52!, the total number of possible
configurations. Thus, Srandom = log2 52! = 225.581.

(c) After one riffle shuffle, there are Ω =
(

52
26

)

possible configurations. If all such configurations were equally

likely, we would have (∆S)riffle = log2
(

52
26

)

= 48.817. However, they are not all equally likely. For example, the
probability that we drop the entire left-half deck and then the entire right half-deck is 2−26. After the last card
from the left half-deck is dropped, we have no more choices to make. On the other hand, the probability for the
sequence LRLR · · · is 2−51, because it is only after the 51st card is dropped that we have no more choices. We
can derive an exact expression for the entropy of the riffle shuffle in the following manner. Consider a deck of
N = 2K cards. The probability that we run out of choices after K cards is the probability of the first K cards
dropped being all from one particular half-deck, which is 2 · 2−K . Now let’s ask what is the probability that we
run out of choices after (K + 1) cards are dropped. If all the remaining (K − 1) cards are from the right half-deck,
this means that we must have one of the R cards among the first K dropped. Note that this R card cannot be the
(K+1)th card dropped, since then all of the first K cards are L, which we have already considered. Thus, there are
(

K
1

)

= K such configurations, each with a probability 2−K−1. Next, suppose we run out of choices after (K + 2)
cards are dropped. If the remaining (K − 2) cards are R, this means we must have 2 of the R cards among the first

(K + 1) dropped, which means
(

K+1
2

)

possibilities. Note that the (K + 2)th card must be L, since if it were R this
would mean that the last (K − 1) cards are R, which we have already considered. Continuing in this manner, we
conclude

ΩK = 2

K
∑

n=0

(

K + n− 1

n

)

=

(

2K

K

)
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K ΩK SK log2
(

2K
K

)

2 6 2.500 2.585
12 2704156 20.132 20.367
26 4.96× 1014 46.274 48.817
100 9.05× 1058 188.730 195.851

Table 1: Riffle shuffle results.

and

SK = −
ΩK
∑

a=1

pa log2 pa =

K−1
∑

n=0

(

K + n− 1

n

)

· 2−(K+n) · (K + n) .

The results are tabulated below in Table 1. For a deck of 52 cards, the actual entropy per riffle shuffle is S26 =
46.274.

(d) Ignoring redundancies, we require k = Srandom/(∆S)riffle = 4.62 shuffles if we assume all riffle outcomes are
equally likely, and 4.88 if we use the exact result for the riffle entropy. Since there are no fractional shuffles, we
round up to k = 5 in both cases. In fact, computer experiments show that the answer is k = 9. The reason we
are so far off is that we have ignored redundancies, i.e. we have assumed that all the states produced by two
consecutive riffle shuffles are distinct. They are not! For decks with asymptotically large numbers of cards N ≫ 1,
the number of riffle shuffles required is k ≃ 3

2 log2 N . See D. Bayer and P. Diaconis, Annals of Applied Probability
2, 294 (1992).
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(1.2) A six-sided die is loaded so that the probability to throw a three is twice that of throwing a two, and the
probability of throwing a four is twice that of throwing a five.

(a) Find the distribution {pn} consistent with maximum entropy, given these constraints.

(b) Assuming the maximum entropy distribution, given two such identical dice, what is the probability to roll
a total of seven if both are thrown simultaneously?

Solution :

(a) We have the following constraints:

X0(p) = p1 + p2 + p3 + p4 + p5 + p6 − 1 = 0

X1(p) = p3 − 2p2 = 0

X2(p) = p4 − 2p5 = 0 .

We define

S∗(p,λ) ≡ −
∑

n

pn ln pn −
2
∑

a=0

λa X
(a)(p) ,

and freely extremize over the probabilities {p1, . . . , p6} and the undetermined Lagrange multipliers {λ0, λ1, λ2}.
We obtain

∂S∗

∂p1
= −1− ln p1 − λ0

∂S∗

∂p4
= −1− ln p4 − λ0 − λ2

∂S∗

∂p2
= −1− ln p2 − λ0 + 2λ1

∂S∗

∂p5
= −1− ln p5 − λ0 + 2λ2

∂S∗

∂p3
= −1− ln p3 − λ0 − λ1

∂S∗

∂p6
= −1− ln p6 − λ0 .

Extremizing with respect to the undetermined multipliers generates the three constraint equations. We therefore
have

p1 = e−λ
0
−1 p4 = e−λ

0
−1 e−λ

2

p2 = e−λ
0
−1 e2λ1 p5 = e−λ

0
−1 e2λ2

p3 = e−λ
0
−1 e−λ

1 p6 = e−λ
0
−1 .

We solve for {λ0, λ1, λ2} by imposing the three constraints. Let x ≡ p1 = p6 = e−λ
0
−1. Then p2 = x e2λ1 ,

p3 = x e−λ
1 , p4 = x e−λ

2 , and p5 = x e2λ2 . We then have

p3 = 2p2 ⇒ e−3λ
1 = 2

p4 = 2p5 ⇒ e−3λ
2 = 2 .

We may now solve for x:

6
∑

n=1

pn =
(

2 + 21/3 + 24/3
)

x = 1 ⇒ x =
1

2 + 3 · 21/3 .

We now have all the probabilities:

p1 = x = 0.1730 p4 = 21/3x = 0.2180

p2 = 2−2/3x = 0.1090 p5 = 2−2/3x = 0.1090

p3 = 21/3x = 0.2180 p6 = x = 0.1730 .
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(b) The probability to roll a seven with two of these dice is

P (7) = 2 p1 p6 + 2 p2 p5 + 2 p3 p4

= 2
(

1 + 2−4/3 + 22/3
)

x2 = 0.1787 .
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(1.3) Consider the contraption in Fig. 2. At each of k steps, a particle can fork to either the left (nj = 1) or to the
right (nj = 0). The final location is then a k-digit binary number.

(a) Assume the probability for moving to the left is p and the probability for moving to the right is q ≡ 1− p at
each fork, independent of what happens at any of the other forks. I.e. all the forks are uncorrelated. Compute

〈Xk〉. Hint: Xk can be represented as a k-digit binary number, i.e. Xk = nk−1nk−2 · · ·n1n0 =
∑k−1

j=0 2
jnj .

(b) Compute 〈X2
k〉 and the variance 〈X2

k〉 − 〈Xk〉2.

(c) Xk may be written as the sum of k random numbers. Does Xk satisfy the central limit theorem as k → ∞?
Why or why not?

Figure 2: Generator for a k-digit random binary number (k = 4 shown).

Solution :

(a) The position after k forks can be written as a k-digit binary number: nk−1nk−2 · · ·n1n0. Thus,

Xk =

k−1
∑

j=0

2j nj ,

where nj = 0 or 1 according to Pn = p δn,1 + q δn,0. Now it is clear that 〈nj〉 = p, and therefore

〈Xk〉 = p

k−1
∑

j=0

2j = p ·
(

2k − 1
)

.

(b) The variance in Xk is

Var(Xk) = 〈X2
k〉 − 〈Xk〉2 =

k−1
∑

j=0

k−1
∑

j′=0

2j+j′
(

〈njnj′〉 − 〈nj〉〈nj′ 〉
)

= p(1− p)
k−1
∑

j=0

4j = p(1− p) · 1
3

(

4k − 1
)

,
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since 〈njnj′〉 − 〈nj〉〈nj′ 〉 = p(1− p) δjj′ .

(c) Clearly the distribution of Xk does not obey the CLT, since 〈Xk〉 scales exponentially with k. Also note

lim
k→∞

√

Var(Xk)

〈Xk〉
=

√

1− p

3p
,

which is a constant. For distributions obeying the CLT, the ratio of the rms fluctuations to the mean scales as the
inverse square root of the number of trials. The reason that this distribution does not obey the CLT is that the
variance of the individual terms is increasing with j.
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(1.4) The binomial distribution,

BN (n, p) =

(

N

n

)

pn (1− p)N−n ,

tells us the probability for n successes in N trials if the individual trial success probability is p. The average

number of successes is ν =
∑N

n=0 nBN (n, p) = Np. Consider the limit N → ∞ with ν finite.

(a) Show that the probability of n successes becomes a function of n and ν alone. That is, evaluate

Pν(n) = lim
N→∞

BN (n, ν/N) .

This is the Poisson distribution.

(b) Show that the moments of the Poisson distribution are given by

〈nk〉 = e−ν
(

ν
∂

∂ν

)k

eν .

(c) Evaluate the mean and variance of the Poisson distribution.

The Poisson distribution is also known as the law of rare events since p = ν/N → 0 in the N → ∞ limit.
See http://en.wikipedia.org/wiki/Poisson distribution#Occurrence for some amusing applications of the
Poisson distribution.

Solution :

(a) We have

Pν(n) = lim
N→∞

N !

n! (N − n)!

(

ν

N

)n(

1− ν

N

)N−n

.

Note that

(N − n)! ≃ (N − n)N−n en−N = NN−n
(

1− n

N

)N

en−N → NN−n eN ,

where we have used the result limN→∞

(

1 + x
N

)N
= ex. Thus, we find

Pν(n) =
1

n!
νn e−ν ,

the Poisson distribution. Note that
∑∞

n=0 Pn(ν) = 1 for any ν.

(b) We have

〈nk〉 =
∞
∑

n=0

Pν(n)n
k =

∞
∑

n=0

1

n!
nkνn e−ν

= e−ν
(

ν
d

dν

)k ∞
∑

n=0

νn

n!
= e−ν

(

ν
∂

∂ν

)k

eν .

(c) Using the result from (b), we have 〈n〉 = ν and 〈n2〉 = ν + ν2, hence Var(n) = ν.
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(1.5) You should be familiar with Stirling’s approximation,

lnK! ∼ K lnK −K + 1
2 ln(2πK) +O

(

K−1
)

,

for large K . In this exercise, you will derive this expansion.

(a) Start by writing

K! =

∞
∫

0

dx xK e−x ,

and define x ≡ K(t+ 1) so that K! = KK+1 e−K F (K), where

F (K) =

∞
∫

−1

dt eKf(t) .

Find the function f(t).

(b) Expand f(t) =
∑∞

n=0 fn t
n in a Taylor series and find a general formula for the expansion coefficients fn. In

particular, show that f0 = f1 = 0 and that f2 = − 1
2 .

(c) If one ignores all the terms but the lowest order (quadratic) in the expansion of f(t), show that

∞
∫

−1

dt e−Kt2/2 =

√

2π

K
−R(K) ,

and show that the remainder R(K) > 0 is bounded from above by a function which decreases faster than
any polynomial in 1/K .

(d) For the brave only! – Find the O
(

K−1
)

term in the expansion for lnK!.

Solution :

(a) Setting x = K(t+ 1), we have

K! = KK+1 e−K

∞
∫

−1

dt (t+ 1)K e−t ,

hence f(t) = ln(t+ 1)− t.

(b) The Taylor expansion of f(t) is
f(t) = − 1

2 t
2 + 1

3 t
3 − 1

4 t
4 + . . . .

(c) Retaining only the leading term in the Taylor expansion of f(t), we have

F (K) ≃
∞
∫

−1

dt e−Kt2/2

=

√

2π

K
−

∞
∫

1

dt e−Kt2/2 .
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Writing t ≡ s+ 1, the remainder is found to be

R(K) = e−K/2

∞
∫

0

ds e−Ks2/2 e−Ks <

√

π

2K
e−K/2 ,

which decreases exponentially with K , faster than any power.

(d) We have

F (K) =

∞
∫

−1

dt e−
1

2
Kt2e

1

3
Kt3− 1

4
Kt4+...

=

∞
∫

−1

dt e−
1

2
Kt2
{

1 + 1
3Kt3 − 1

4Kt4 + 1
18K

2t6 + . . .
}

=

√

2π

K
·
{

1− 3
4K

−1 + 5
6K

−1 +O
(

K−2
)

}

Thus,
lnK! = K lnK −K + 1

2 lnK + 1
2 ln(2π) +

1
12K

−1 +O
(

K−2
)

.
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(1.6) The probability density for a random variable x is given by the Lorentzian,

P (x) =
γ

π
· 1

x2 + γ2
.

Consider the sum XN =
∑N

i=1 xi , where each xi is independently distributed according to P (xi). Find the proba-
bility ΠN (Y ) that |XN | < Y , where Y > 0 is arbitrary.

Solution :

The distribution of a sum of identically distributed random variables, X =
∑N

i=1 xi , is given by

PN (X) =

∞
∫

−∞

dk

2π

[

P̂ (k)
]N

eikX ,

where P̂ (k) is the Fourier transform of the probability distribution P (xi) for each of the xi. The Fourier transform
of a Lorentzian is an exponential:

∞
∫

−∞

dx P (x) e−ikx = e−γ|k| .

Thus,

PN (X) =

∞
∫

−∞

dk

2π
e−Nγ|k| eikX

=
Nγ

π
· 1

X2 +N2γ2
.

The probability for X to lie in the interval X ∈ [−Y, Y ], where Y > 0, is

ΠN (Y ) =

Y
∫

−Y

dX PN (X) =
2

π
tan−1

(

Y

Nγ

)

.

The integral is easily performed with the substitution X = Nγ tan θ. Note that ΠN (0) = 0 and ΠN (∞) = 1.
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(1.7) Let P (x) = (2πσ2)−1/2 e−(x−µ)2/2σ2

. Compute the following integrals:

(a) I =
∞
∫

−∞

dx P (x)x3.

(b) I =
∞
∫

−∞

dx P (x) cos(Qx).

(c) I =
∞
∫

−∞

dx
∞
∫

−∞

dy P (x)P (y) exy . You may set µ = 0 to make this somewhat simpler. Under what conditions

does this expression converge?

Solution :

(a) Write
x3 = (x− µ+ µ)3 = (x− µ)3 + 3(x− µ)2µ+ 3(x− µ)µ2 + µ3 ,

so that

〈x3〉 = 1√
2πσ2

∞
∫

−∞

dt e−t2/2σ2
{

t3 + 3t2µ+ 3tµ2 + µ3
}

.

Since exp(−t2/2σ2) is an even function of t, odd powers of t integrate to zero. We have 〈t2〉 = σ2, so

〈x3〉 = µ3 + 3µσ2 .

A nice trick for evaluating 〈t2k〉:

〈t2k〉 =

∞
∫

−∞

dt e−λt2 t2k

∞
∫

−∞

dt e−λt2
=

(−1)k dk

dλk

∞
∫

−∞

dt e−λt2

∞
∫

−∞

dt e−λt2
=

(−1)k√
λ

dk
√
λ

dλk

∣

∣

∣

∣

∣

λ=1/2σ2

= 1
2 · 3

2 · · ·
(2k−1)

2 λ−k
∣

∣

λ=1/2σ2
=

(2k)!

2k k!
σ2k .

(b) We have

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[

eiQµ

√
2πσ2

∞
∫

−∞

dt e−t2/2σ2

eiQt

]

= Re

[

eiQµ e−Q2σ2/2
]

= cos(Qµ) e−Q2σ2/2 .

Here we have used the result

1√
2πσ2

∞
∫

−∞

dt e−αt2−βt =

√

π

α
eβ

2/4α

with α = 1/2σ2 and β = −iQ. Another way to do it is to use the general result derive above in part (a) for 〈t2k〉
and do the sum:

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[

eiQµ

√
2πσ2

∞
∫

−∞

dt e−t2/2σ2

eiQt

]

= cos(Qµ)

∞
∑

k=0

(−Q2)k

(2k)!
〈t2k〉 = cos(Qµ)

∞
∑

k=0

1

k!

(

− 1
2Q

2σ2
)k

= cos(Qµ) e−Q2σ2/2 .
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(c) We have

I =

∞
∫

−∞

dx

∞
∫

−∞

dy P (x)P (y) eκ
2xy =

e−µ2/2σ2

2πσ2

∫

d2x e−
1

2
Aij xi xj ebi xi ,

where x = (x, y),

A =

(

σ2 −κ2

−κ2 σ2

)

, b =

(

µ/σ2

µ/σ2

)

.

Using the general formula for the Gaussian integral,

∫

dnx e−
1

2
Aij xi xj ebi xi =

(2π)n/2
√

det (A)
exp

(

1
2A

−1
ij bi bj

)

,

we obtain

I =
1√

1− κ4σ4
exp

(

µ2κ2

1− κ2σ2

)

.

Convergence requires κ2σ2 < 1.
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(1.8) Consider a D-dimensional random walk on a hypercubic lattice. The position of a particle after N steps is

RN =

N
∑

j=1

n̂j ,

where n̂j can take on one of 2D possible values: n̂j ∈
{

± ê1, . . . ,±êD
}

, where êµ is the unit vector along
the positive xµ axis. Each of these possible values occurs with probability 1/2D, and each step is statistically
independent from all other steps.

(a) Consider the generating function SN (k) =
〈

eik·RN

〉

. Show that

〈

R
α

1

N · · ·RαJ

N

〉

=
1

i

∂

∂kα
1

· · · 1
i

∂

∂kα
J

∣

∣

∣

∣

k=0

SN (k) .

For example, 〈Rα
NRβ

N 〉 = −
(

∂2SN (k)/∂kα∂kβ
)

k=0
.

(b) Evaluate SN (k) for the case D = 3 and compute the quantities 〈X4
N 〉 and 〈X2

N Y 2
N 〉.

Solution :

(a) The result follows immediately from

1

i

∂

∂kα
eik·R = Rα eik·R

1

i

∂

∂kα

1

i

∂

∂kβ
eik·R = Rα Rβ e

ik·R ,

et cetera. Keep differentiating with respect to the various components of k.

(b) For D = 3, there are six possibilities for n̂j : ±x̂, ±ŷ, and ±ẑ. Each occurs with a probability 1
6 , independent

of all the other n̂j′ with j′ 6= j. Thus,

SN (k) =
N
∏

j=1

〈eik·n̂j 〉 =
[

1

6

(

eikx + e−ikx + eiky + e−iky + eikz + e−ikz

)

]N

=

(

cos kx + cos ky + cos kz
3

)N

.

We have

〈X4
N 〉 = ∂4S(k)

∂k4x

∣

∣

∣

∣

∣

k=0

=
∂4

∂k4x

∣

∣

∣

∣

∣

kx=0

(

1− 1
6 k

2
x + 1

72 k
4
x + . . .

)N

=
∂4

∂k4x

∣

∣

∣

∣

∣

kx=0

[

1 +N
(

− 1
6 k

2
x + 1

72 k
4
x + . . .

)

+ 1
2N(N − 1)

(

− 1
6 k

2
x + 1

72 k
4
x + . . .

)2
+ . . .

]

=
∂4

∂k4x

∣

∣

∣

∣

∣

kx=0

[

1− 1
6Nk2x + 1

72N
2k4x + . . .

]

= 1
3N

2 .
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Similarly, we have

〈X2
N Y 2

N 〉 = ∂4S(k)

∂k2x ∂k
2
y

∣

∣

∣

∣

∣

k=0

=
∂4

∂k2x ∂k
2
y

∣

∣

∣

∣

∣

kx=0

(

1− 1
6 (k

2
x + k2y) +

1
72 (k

4
x + k4y) + . . .

)N

=
∂4

∂k2x ∂k
2
y

∣

∣

∣

∣

∣

kx=ky=0

[

1 +N
(

− 1
6 (k

2
x + k2y) +

1
72 (k

4
x + k4y) + . . .

)

+ 1
2N(N − 1)

(

− 1
6 (k

2
x + k2y) + . . .

)2
+ . . .

]

=
∂4

∂k2x ∂k
2
y

∣

∣

∣

∣

∣

kx=ky=0

[

1− 1
6N(k2x + k2y) +

1
72N

2(k4x + k + y4) + 1
36 k

2
x k

2
y + . . .

]

= 1
9N(N − 1) .
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(1.9) A rare disease is known to occur in f = 0.02% of the general population. Doctors have designed a test for
the disease with ν = 99.90% sensitivity and ρ = 99.95% specificity.

(a) What is the probability that someone who tests positive for the disease is actually sick?

(b) Suppose the test is administered twice, and the results of the two tests are independent. If a random indi-
vidual tests positive both times, what are the chances he or she actually has the disease?

(c) For a binary partition of events, find an expression for P (X |A ∩B) in terms of P (A|X), P (B|X), P (A|¬X),
P (B|¬X), and the priors P (X) and P (¬X) = 1 − P (X). You should assume A and B are independent, so
P (A ∩B|X) = P (A|X) · P (B|X).

Solution :

(a) Let X indicate that a person is infected, and A indicate that a person has tested positive. We then have ν =
P (A|X) = 0.9990 is the sensitivity and ρ = P (¬A|¬X) = 0.9995 is the specificity. From Bayes’ theorem, we have

P (X |A) = P (A|X) · P (X)

P (A|X) · P (X) + P (A|¬X) · P (¬X)
=

νf

νf + (1 − ρ)(1− f)
,

where P (A|¬X) = 1 − P (¬A|¬X) = 1 − ρ and P (X) = f is the fraction of infected individuals in the general
population. With f = 0.0002, we find P (X |A) = 0.2856.

(b) We now need

P (X |A2) =
P (A2|X) · P (X)

P (A2|X) · P (X) + P (A2|¬X) · P (¬X)
=

ν2f

ν2f + (1 − ρ)2(1− f)
,

where A2 indicates two successive, independent tests. We find P (X |A2) = 0.9987.

(c) Assuming A and B are independent, we have

P (X |A ∩B) =
P (A ∩B|X) · P (X)

P (A ∩B|X) · P (X) + P (A ∩B|¬X) · P (¬X)

=
P (A|X) · P (B|X) · P (X)

P (A|X) · P (B|X) · P (X) + P (A|¬X) · P (B|¬X) · P (¬X)
.

This is exactly the formula used in part (b).
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(1.10) Let p(x) = Pr[X = x] where X is a discrete random variable and both X and x are taken from an ‘alphabet’
X . Let p(x, y) be a normalized joint probability distribution on two random variables X ∈ X and Y ∈ Y . The
entropy of the joint distribution is S(X,Y ) = −∑x,y p(x, y) log p(x, y). The conditional probability p(y|x) for y
given x is defined as p(y|x) = p(x, y)/p(x), where p(x) =

∑

y p(x, y).

(a) Show that the conditional entropy S(Y |X) = −
∑

x,y p(x, y) log p(y|x) satisfies

S(Y |X) = S(X,Y )− S(X) .

Thus, conditioning reduces the entropy, and the entropy of a pair of random variables is the sum of the
entropy of one plus the conditional entropy of the other.

(b) The mutual information I(X,Y ) is

I(X,Y ) =
∑

x,y

p(x, y) log

(

p(x, y)

p(x) p(y)

)

.

Show that
I(X,Y ) = S(X) + S(Y )− S(X,Y ) .

(c) Show that S(Y |X) ≤ S(Y ) and that the equality holds only when X and Y are independently distributed.

Solution :

(a) We have

S(Y |X) = −
∑

x,y

p(x, y) log

(

p(x, y)

p(x)

)

= −
∑

x,y

p(x, y) log p(x, y) +
∑

x,y

p(x, y) log p(x)

= S(X,Y )− S(X) ,

since
∑

y p(x, y) = p(x).

(b) Clearly

I(X,Y ) =
∑

x,y

p(x, y)
(

log p(x, y)− log p(x)− log p(y)
)

=
∑

x,y

p(x, y) log p(x, y)−
∑

x

p(x) log p(x)−
∑

y

p(y) log p(y)

= S(X) + S(Y )− S(X,Y ) .

(c) Let’s introduce some standard notation1. Denote the average of a function of a random variable as

Ef(X) =
∑

x∈X

p(x)f(x) .

Equivalently, we could use the familiar angular bracket notation for averages and write Ef(X) as
〈

f(X)
〉

. For
averages over several random variables, we have

Ef(X,Y ) =
∑

x∈X

∑

y∈Y

p(x, y) f(x, y) ,

1See e.g. T. M. Cover and J. A. Thomas, Elements of Information Theory , 2nd edition (Wiley, 2006).
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et cetera. Now here’s a useful fact. If f(x) is a convex function, then

Ef(X) ≥ f(EX) .

For continuous functions, f(x) is convex if f ′′(x) ≥ 0 everywhere2. If f(x) is convex on some interval [a, b], then
for x1,2 ∈ [a, b] we must have

f
(

λx1 + (1− λ)x2

)

≤ λ f(x1) + (1− λ) f(x2) .

This is easily generalized to

f
(

∑

n

pn xn

)

≤
∑

n

pn f(xn) ,

where
∑

n pn = 1, which proves our claim - a result known as Jensen’s theorem.

Now log x is concave, hence the function f(x) = −log x is convex, and therefore

I(X,Y ) = −
∑

x,y

p(x, y) log

(

p(x) p(y)

p(x, y)

)

= −E log

(

p(X) p(Y )

p(X,Y )

)

≥ − logE

(

p(X) p(Y )

p(X,Y )

)

= − log

(

∑

x,y

p(x, y) · p(x) p(y)
p(x, y)

)

= − log

(

∑

x

p(x) ·
∑

y

p(y)

)

= − log(1) = 0 .

So I(X,Y ) ≥ 0. Clearly I(X,Y ) = 0 when X and Y are independently distributed, i.e. when p(x, y) = p(x) p(y).
Using the results from part (b), we then have

I(X,Y ) = S(X) + S(Y )− S(X,Y )

= S(Y )− S(Y |X) ≥ 0 .

2A concave function g(x) is one for which f(x) = −g(x) is convex.
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(1.11) Consider the matrix

M =

(

4 4
−1 9

)

.

(a) Find the characteristic polynomial P (λ) = det (λI −M) and the eigenvalues.

(b) For each eigenvalue λα, find the associated right eigenvector Rα
i and left eigenvector Lα

i . Normalize your
eigenvectors so that 〈Lα |Rβ 〉 = δαβ .

(c) Show explicitly that Mij =
∑

α λα Rα
i Lα

j .

Solution :

(a) The characteristic polynomial is

P (λ) = det

(

λ− 4 −4
1 λ− 9

)

= λ2 − 13λ+ 40 = (λ− 5)(λ− 8) ,

so the two eigenvalues are λ1 = 5 and λ2 = 8.

(b) Let us write the right eigenvectors as ~Rα =

(

Rα
1

Rα
2

)

and the left eigenvectors as ~Lα =
(

Lα
1 Lα

2

)

. Having found

the eigenvalues, we only need to solve four equations:

4R1
1 + 4R1

2 = 5R1
1 , 4R2

1 + 4R2
2 = 8R2

1 , 4L1
1 − L1

2 = 5L1
1 , 4L2

1 − L2
2 = 8L2

1 .

We are free to choose Rα
1 = 1 when possible. We must also satisfy the normalizations 〈Lα |Rβ 〉 = Lα

i R
β
i = δαβ .

We then find

~R1 =

(

1
1
4

)

, ~R2 =

(

1
1

)

, ~L1 =
(

4
3 − 4

3

)

, ~L2 =
(

− 1
3

4
3

)

.

(c) The projectors onto the two eigendirections are

P1 = |R1 〉〈L1 | =





4
3 − 4

3

1
3 − 1

3



 , P2 = |R2 〉〈L2 | =





− 1
3

4
3

− 1
3

4
3



 .

Note that P1 + P2 = I. Now construct

λ1 P1 + λ2 P2 =

(

4 4
−1 9

)

,

as expected.
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(1.12) A Markov chain is a probabilistic process which describes the transitions of discrete stochastic variables
in time. Let Pi(t) be the probability that the system is in state i at time t. The time evolution equation for the
probabilities is

Pi(t+ 1) =
∑

j

Yij Pj(t) .

Thus, we can think of Yij = P (i , t + 1 | j , t) as the conditional probability that the system is in state i at time t+1
given that it was in state j at time t. Y is called the transition matrix. It must satisfy

∑

i Yij = 1 so that the total
probability

∑

i Pi(t) is conserved.

Suppose I have two bags of coins. Initially bag A contains two quarters and bag B contains five dimes. Now I do
an experiment. Every minute I exchange a random coin chosen from each of the bags. Thus the number of coins
in each bag does not fluctuate, but their values do fluctuate.

(a) Label all possible states of this system, consistent with the initial conditions. (I.e. there are always two
quarters and five dimes shared among the two bags.)

(b) Construct the transition matrix Yij .

(c) Show that the total probability is conserved is
∑

i Yij = 1, and verify this is the case for your transition
matrix Y . This establishes that (1, 1, . . . , 1) is a left eigenvector of Y corresponding to eigenvalue λ = 1.

(d) Find the eigenvalues of Y .

(e) Show that as t → ∞, the probability Pi(t) converges to an equilibrium distribution P eq
i which is given by

the right eigenvector of i corresponding to eigenvalue λ = 1. Find P eq
i , and find the long time averages for

the value of the coins in each of the bags.

Solution :

(a) There are three possible states consistent with the initial conditions. In state | 1 〉, bag A contains two quarters
and bag B contains five dimes. In state | 2 〉, bag A contains a quarter and a dime while bag B contains a quarter
and five dimes. In state | 3 〉, bag A contains two dimes while bag B contains three dimes and two quarters. We
list these states in the table below, along with their degeneracies. The degeneracy of a state is the number of
configurations consistent with the state label. Thus, in state | 2 〉 the first coin in bag A could be a quarter and the
second a dime, or the first could be a dime and the second a quarter. For bag B, any of the five coins could be the
quarter.

(b) To construct Yij , note that transitions out of state | 1 〉, i.e. the elements Yi1, are particularly simple. With
probability 1, state | 1 〉 always evolves to state | 2 〉. Thus, Y21 = 1 and Y11 = Y31 = 0. Now consider transitions
out of state | 2 〉. To get to state | 1 〉, we need to choose the D from bag A (probability 1

2 ) and the Q from bag B
(probability 1

5 ). Thus, Y12 = 1
2 × 1

5 = 1
10 . For transitions back to state | 2 〉, we could choose the Q from bag A

(probability 1
2 ) if we also chose the Q from bag B (probability 1

5 ). Or we could choose the D from bag A (probability
1
2 ) and one of the D’s from bag B (probability 4

5 ). Thus, Y22 = 1
2 × 1

5 + 1
2 × 4

5 = 1
2 . Reasoning thusly, one obtains

the transition matrix,

Y =













0 1
10 0

1 1
2

2
5

0 2
5

3
5













.

Note that
∑

i Yij = 1.

(c) Our explicit form for Y confirms the sum rule
∑

i Yij = 1 for all j. Thus, ~L1 = (1 1 1) is a left eigenvector of Y
with eigenvalue λ = 1.
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| j 〉 bag A bag B gA

j gB

j gTOT

j

| 1 〉 QQ DDDDD 1 1 1
| 2 〉 QD DDDDQ 2 5 10
| 3 〉 DD DDDQQ 1 10 10

Table 2: States and their degeneracies.

(d) To find the other eigenvalues, we compute the characteristic polynomial of Y and find, easily,

P (λ) = det (λ I− Y ) = λ3 − 11
10 λ

2 + 1
25 λ+ 3

50 .

This is a cubic, however we already know a root, i.e. λ = 1, and we can explicitly verify P (λ = 1) = 0. Thus, we
can divide P (λ) by the monomial λ − 1 to get a quadratic function, which we can factor. One finds after a small
bit of work,

P (λ)

λ− 1
= λ2 − 3

10 λ− 3
50 =

(

λ− 3
10

)(

λ+ 1
5

)

.

Thus, the eigenspectrum of Y is λ1 = 1, λ2 = 3
10 , and λ3 = − 1

5 .

(e) We can decompose Y into its eigenvalues and eigenvectors, like we did in problem (1). Write

Yij =

3
∑

α=1

λαR
α
i Lα

j .

Now let us start with initial conditions Pi(0) for the three configurations. We can always decompose this vector
in the right eigenbasis for Y , viz.

Pi(t) =
3
∑

α=1

Cα(t)R
α
i ,

The initial conditions are Cα(0) =
∑

i L
α
i Pi(0). But now using our eigendecomposition of Y , we find that the

equations for the discrete time evolution for each of the Cα decouple:

Cα(t+ 1) = λαCα(t) .

Clearly as t → ∞, the contributions from α = 2 and α = 3 get smaller and smaller, since Cα(t) = λt
α Cα(0), and

both λ2 and λ3 are smaller than unity in magnitude. Thus, as t → ∞ we have C1(t) → C1(0), and C2,3(t) → 0.

Note C1(0) =
∑

i L
1
i Pi(0) =

∑

i Pi(0) = 1, since ~L1 = (1 1 1). Thus, we obtain Pi(t → ∞) → R1
i , the components

of the eigenvector ~R1. It is not too hard to explicitly compute the eigenvectors:

~L1 =
(

1 1 1
)

~L2 =
(

10 3 −4
)

~L3 =
(

10 −2 1
)

~R1 = 1
21





1
10
10



 ~R2 = 1
35





1
3
−4



 ~R3 = 1
15





1
−2
1



 .

Thus, the equilibrium distribution P eq
i = limt→∞ Pi(t) satisfies detailed balance:

P eq
j =

gTOT

j
∑

l g
TOT

l

.

Working out the average coin value in bags A and B under equilibrium conditions, one finds A = 200
7 and B = 500

7
(cents), and B/A is simply the ratio of the number of coins in bag B to the number in bag A. Note A + B = 100
cents, as the total coin value is conserved.
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(1.13) The nth moment of the normalized Gaussian distribution P (x) = (2π)−1/2 exp
(

− 1
2x

2
)

is defined by

〈xn〉 = 1√
2π

∞
∫

−∞

dx xn exp
(

− 1
2x

2
)

Clearly 〈xn〉 = 0 if n is a nonnegative odd integer. Next consider the generating function

Z(j) =
1√
2π

∞
∫

−∞

dx exp
(

− 1
2x

2
)

exp(jx) = exp
(

1
2 j

2
)

.

(a) Show that

〈xn〉 = dnZ

djn

∣

∣

∣

∣

∣

j=0

and provide an explicit result for 〈x2k〉 where k ∈ N.

(b) Now consider the following integral:

F (λ) =
1√
2π

∞
∫

−∞

dx exp

(

− 1

2
x2 − λ

4!
x4

)

.

The integral has no known analytic form3, but we may express the result as a power series in the parameter
λ by Taylor expanding exp

(

− λ
4 ! x

4
)

and then using the result of part (a) for the moments 〈x4k〉. Find the
coefficients in the perturbation expansion,

F (λ) =

∞
∑

k=0

Ck λ
k .

(c) Define the remainder after N terms as

RN (λ) = F (λ)−
N
∑

k=0

Ck λ
k .

Compute RN (λ) by evaluating numerically the integral for F (λ) (using Mathematica or some other numeri-
cal package) and subtracting the finite sum. Then define the ratio SN (λ) = RN (λ)/F (λ), which is the relative
error from the N term approximation and plot the absolute relative error

∣

∣SN (λ)
∣

∣ versus N for several values
of λ.(I suggest you plot the error on a log scale.) What do you find?? Try a few values of λ including λ = 0.01,
λ = 0.05, λ = 0.2, λ = 0.5, λ = 1, λ = 2.

(d) Repeat the calculation for the integral

G(λ) =
1√
2π

∞
∫

−∞

dx exp

(

− 1

2
x2 − λ

6!
x6

)

.

(e) Reflect meaningfully on the consequences for weakly and strongly coupled quantum field theories.

3In fact, it does. According to Mathematica, F (λ) =
√

2u
π

exp(u)K
1/4

(u), where u = 3/4λ and Kν(z) is the modified Bessel function. I

am grateful to Prof. John McGreevy for pointing this out.
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Solution :

(a) Clearly

dn

djn

∣

∣

∣

∣

∣

j=0

ejx = xn ,

so 〈xn 〉 =
(

dnZ/djn
)

j=0
. With Z(j) = exp

(

1
2j

2
)

, only the kth order term in j2 in the Taylor series for Z(j)

contributes, and we obtain

〈x2k 〉 = d2k

dj2k

(

j2k

2k k!

)

=
(2k)!

2k k!
.

(b) We have

F (λ) =
∞
∑

n=0

1

n!

(

− λ

4!

)n

〈x4n 〉 =
∞
∑

n=0

(4n)!

4n (4!)n n! (2n)!
(−λ)n .

This series is asymptotic. It has the properties

lim
λ→0

RN (λ)

λN
= 0 (fixed N ) , lim

N→∞

RN (λ)

λN
= ∞ (fixed λ) ,

where RN (λ) is the remainder after N terms, defined in part (c). The radius of convergence is zero. To see this,
note that if we reverse the sign of λ, then the integrand of F (λ) diverges badly as x → ±∞. So F (λ) is infinite for
λ < 0, which means that there is no disk of any finite radius of convergence which encloses the point λ = 0. Note
that by Stirling’s rule,

(−1)n Cn ≡ (4n)!

4n (4!)n n! (2n)!
∼ nn ·

(

2
3

)n
e−n · (πn)−1/2 ,

and we conclude that the magnitude of the summand reaches a minimum value when n = n∗(λ), with

n∗(λ) ≈ 3

2λ

for small values of λ. For large n, the magnitude of the coefficient Cn grows as |Cn| ∼ en lnn+O(n), which dominates
the λn term, no matter how small λ is.

(c) Results are plotted in fig. 3.

It is worth pointing out that the series for F (λ) and for lnF (λ) have diagrammatic interpretations. For a Gaussian
integral, one has

〈x2k 〉 = 〈x2 〉k · A2k

where A2k is the number of contractions. For a proof, see §1.4.3 of the notes. For our integral, 〈x2 〉 = 1. The number
of contractions A2k is computed in the following way. For each of the 2k powers of x, we assign an index running
from 1 to 2k. The indices are contracted, i.e. paired, with each other. How many pairings are there? Suppose we
start with any from among the 2k indices. Then there are (2k − 1) choices for its mate. We then choose another
index arbitrarily. There are now (2k − 3) choices for its mate. Carrying this out to its completion, we find that the
number of contractions is

A2k = (2k − 1)(2k − 3) · · · 3 · 1 =
(2k)!

2k k!
,

exactly as we found in part (a). Now consider the integral F (λ). If we expand the quartic term in a power series,
then each power of λ brings an additional four powers of x. It is therefore convenient to represent each such
quartet with the symbol ×. At order N of the series expansion, we have N ×’s and 4N indices to contract. Each
full contraction of the indices may be represented as a labeled diagram, which is in general composed of several
disjoint connected subdiagrams. Let us label these subdiagrams, which we will call clusters, by an index γ. Now
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Figure 3: Relative error versus number of terms kept for the asymptotic series for F (λ). Note that the optimal
number of terms to sum is N∗(λ) ≈ 3

2λ .

suppose we have a diagram consisting of mγ subdiagrams of type γ, for each γ. If the cluster γ contains nγ vertices
(×), then we must have

N =
∑

γ

mγ nγ .

How many ways are there of assigning the labels to such a diagram? One might think (4!)N · N !, since for each
vertex × there are 4! permutations of its four labels, and there are N ! ways to permute all the vertices. However,
this overcounts diagrams which are invariant under one or more of these permutations. We define the symmetry
factor sγ of the (unlabeled) cluster γ as the number of permutations of the indices of a corresponding labeled
cluster which result in the same contraction. We can also permute the mγ identical disjoint clusters of type γ.

Examples of clusters and their corresponding symmetry factors are provided in fig. 4, for all diagrams with
nγ ≤ 3. There is only one diagram with nγ = 1, resembling ©•©. To obtain sγ = 8, note that each of the circles
can be separately rotated by an angle π about the long symmetry axis. In addition, the figure can undergo a
planar rotation by π about an axis which runs through the sole vertex and is normal to the plane of the diagram.
This results in sγ = 2 · 2 · 2 = 8. For the cluster ©•©•©, there is one extra circle, so sγ = 24 = 16. The third
diagram in figure shows two vertices connected by four lines. Any of the 4! permutations of these lines results
in the same diagram. In addition, we may reflect about the vertical symmetry axis, interchanging the vertices, to
obtain another symmetry operation. Thus sγ = 2 · 4! = 48. One might ask why we don’t also count the planar
rotation by π as a symmetry operation. The answer is that it is equivalent to a combination of a reflection and a
permutation, so it is not in fact a distinct symmetry operation. (If it were distinct, then sγ would be 96.) Finally,
consider the last diagram in the figure, which resembles a sausage with three links joined at the ends into a circle.
If we keep the vertices fixed, there are 8 symmetry operations associated with the freedom to exchange the two
lines associated with each of the three sausages. There are an additional 6 symmetry operations associated with
permuting the three vertices, which can be classified as three in-plane rotations by 0, 2π

3 and 4π
3 , each of which can

also be combined with a reflection about the y-axis (this is known as the group C3v). Thus, sγ = 8 · 6 = 48.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible numbers of clusters
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Figure 4: Cluster symmetry factors. A vertex is represented as a black dot (•) with four ‘legs’.

at each order:

F (γ) =

∞
∑

N=0

1

N !

∑

{mγ}

(4!)NN !
∏

γ s
mγ
γ mγ !

(

− λ

4!

)N

δN,
∑

γ mγnγ

= exp

(

∑

γ

(−λ)nγ

sγ

)

.

Thus,

lnF (γ) =
∑

γ

(−λ)nγ

sγ
,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is instructive to work this out to order
λ2. We have, from the results of part (b),

F (λ) = 1− 1
8 λ+ 35

384 λ
2 +O(λ3) =⇒ lnF (λ) = − 1

8 λ+ 1
12 λ

2 +O(λ3) .

Note that there is one diagram with N = 1 vertex, with symmetry factor s = 8. For N = 2 vertices, there are two
diagrams, one with s = 16 and one with s = 48 (see fig. 4). Since 1

16 + 1
48 = 1

12 , the diagrammatic expansion is
verified to order λ2.

(d) We now have4

G(λ) =
1√
2π

∞
∫

−∞

dx exp

(

− 1

2
x2 − λ

6!
x6

)

=

∞
∑

n=0

1

n!

(

− λ

6!

)n

〈x6n〉 =
∞
∑

n=0

Cn λ
n ,

where

Cn =
(−1)n (6n)!

(6!)n n! 23n (3n)!
.

Invoking Stirling’s approximation, we find

ln |Cn| ∼ 2n lnn−
(

2 + ln 5
3

)

n .

4According to Mathematica, the G(λ) has the analytic form G(λ) = π
√
u
[

Ai
2(u)+Bi

2(u)
]

, where u = (15/2λ)1/3 and Ai(z) and Bi(z) are

Airy functions. The definitions and properties of the Airy functions are discussed in §9.2 of the NIST Handbook of Mathematical Functions.

24



Figure 5: Logarithm of ratio of remainder after N terms RN (λ) to the value of the integral G(λ), for various values
of λ.

From the above expression for Cn, we see that the magnitude of the contribution of the nth term in the perturbation
series is

Cn λ
n = (−1)n exp

(

2n lnn−
(

2 + ln 10
3

)

n+ n lnλ
)

.

Differentiating, we find that this contribution is minimized for n = n∗(λ), where

n∗(λ) =

√

10

3λ
.

Via numerical integration using FORTRAN subroutines from QUADPACK, one obtains the results in Fig. 5 and
Tab. 3.

λ 10 2 0.5 0.2 0.1 0.05 0.02
F 0.92344230 0.97298847 0.99119383 0.996153156 0.99800488 0.99898172 0.99958723
n∗ 0.68 1.3 2.6 4.1 5.8 8.2 13

Table 3: F (λ) and n∗(λ) for problem 8d.

The series for G(λ) and for lnG(λ) again have diagrammatic interpretations. If we expand the sextic term in a
power series, each power of λ brings an additional six powers of x. It is natural to represent each such sextet with
as a vertex with six legs. At order N of the series expansion, we have N such vertices and 6N legs to contract.
As before, each full contraction of the leg indices may be represented as a labeled diagram, which is in general
composed of several disjoint connected clusters. If the cluster γ contains nγ vertices, then for any diagram we
again must have N =

∑

γ mγnγ , where mγ is the number of times the cluster γ appears. As with the quartic
example, the number of ways of assigning labels to a given diagram is given by the total number of possible

permutations (6!)N ·N ! divided by a correction factor
∏

γ s
mγ
γ mγ !, where sγ is the symmetry factor of the cluster γ,

and the mγ ! term accounts for the possibility of permuting among different labeled clusters of the same type γ.
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Figure 6: Diagrams and their symmetry factors for the 1
6!λx

6 zero-dimensional field theory.

Examples of clusters and their corresponding symmetry factors are provided in Fig. 6. There is only one diagram
with nγ = 1, shown panel (a), resembling a three-petaled flower. To obtain sγ = 48, note that each of the petals
can be rotated by 180◦ about an axis bisecting the petal, yielding a factor of 23. The three petals can then be
permuted, yielding an additional factor of 3!. Hence the total symmetry factor is sγ = 23 · 3! = 48. Now we
can see how dividing by the symmetry factor saves us from overcounting. In this case, we get 6!/sγ = 720/48 =
15 = 5 · 3 · 1, which is the correct number of contractions. For the diagram in panel (b), the four petals and the
central loop can each be rotated about a symmetry axis, yielding a factor 25. The two left petals can be permuted,
as can the two right petals. Finally, the two vertices can themselves be permuted. Thus, the symmetry factor is
sγ = 25 · 22 · 2 = 28 = 256. In panel (c), the six lines can be permuted (6!) and the vertices can be exchanged
(2), hence sγ = 6! · 2 = 1440. In panel (d), the two outer loops each can be twisted by 180◦, the central four lines
can be permuted, and the vertices can be permuted, hence sγ = 22 · 4! · 2 = 192. Finally, in panel (e), each pair
of vertices is connected by three lines which can be permuted, and the vertices themselves can be permuted, so
sγ = (3!)3 · 3! = 1296.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible numbers of clusters
at each order:

G(γ) =

∞
∑

N=0

1

N !

∑

{mγ}

(6!)NN !
∏

γ s
mγ
γ mγ !

(

− λ

6!

)N

δN,
∑

γ
mγnγ

= exp

(

∑

γ

(−λ)nγ

sγ

)

.

Thus,

lnG(γ) =
∑

γ

(−λ)nγ

sγ
,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is instructive to work this out to order
λ2. We have, from the results of part (a),

G(λ) = 1− λ

26 ·3 +
7·11·λ2

29 ·3·5 +O(λ3) =⇒ lnG(λ) = − λ

26 ·3 +
113·λ2

28 ·32 ·5 +O(λ3) .
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Note that there is one diagram with N = 1 vertex, with symmetry factor s = 48. For N = 2 vertices, there are three
diagrams, one with s = 256, one with s = 1440, and one with s = 192 (see Fig. 6). Since 1

256 + 1
1440 + 1

192 = 113
28325 ,

the diagrammatic expansion is verified to order λ2.

(e) In quantum field theory (QFT), the vertices themselves carry space-time labels, and the contractions, i.e. the
lines connecting the legs of the vertices, are propagators G(xµ

i − xµ
j ), where xµ

i is the space-time label associated
with vertex i. It is convenient to work in momentum-frequency space, in which case we work with the Fourier

transform Ĝ(pµ) of the space-time propagators. Integrating over the space-time coordinates of each vertex then
enforces total 4-momentum conservation at each vertex. We then must integrate over all the internal 4-momenta
to obtain the numerical value for a given diagram. The diagrams, as you know, are associated with Feynman’s
approach to QFT and are known as Feynman diagrams. Our example here is equivalent to a (0 + 0)-dimensional
field theory, i.e. zero space dimensions and zero time dimensions. There are then no internal 4-momenta to inte-
grate over, and each propagator is simply a number rather than a function. The discussion above of symmetry
factors sγ carries over to the more general QFT case.

There is an important lesson to be learned here about the behavior of asymptotic series. As we have seen, if λ is
sufficiently small, summing more and more terms in the perturbation series results in better and better results,
until one reaches an optimal order when the error is minimized. Beyond this point, summing additional terms
makes the result worse, and indeed the perturbation series diverges badly as N → ∞. Typically the optimal order
of perturbation theory is inversely proportional to the coupling constant. For quantum electrodynamics (QED),
where the coupling constant is the fine structure constant α = e2/~c ≈ 1

137 , we lose the ability to calculate in
a reasonable time long before we get to 137 loops, so practically speaking no problems arise from the lack of
convergence. In quantum chromodynamics (QCD), however, the effective coupling constant is about two orders
of magnitude larger, and perturbation theory is a much more subtle affair.
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2 Thermodynamics : Worked Examples

(2.1) ν moles of an ideal diatomic gas are driven along the cycle depicted in Fig. 1. Section AB is an adiabatic free
expansion; section BC is an isotherm at temperature TA = TB = TC; CD is an isobar, and DA is an isochore. The
volume at B is given by VB = (1− x)VA + xVC, where 0 ≤ x ≤ 1.

(a) Find an expression for the total work Wcycle in terms of ν, TA, VA, VC, and x.

(b) Suppose VA = 1.0 L, VC = 5.0 L, TA = 500K, and ν = 5. What is the volume VB such that Wcycle = 0?

Figure 1: Cycle for problem 1, consisting of
adiabatic free expansion (AB), isotherm (BC),
isobar (CD), and isochore (DA).

Solution :

(a) We have WAB = WDA = 0, and

WBC =

C
∫

B

p dV = νRTA

C
∫

B

dV

V
= νRTA ln

(

VC

VB

)

WCD =

D
∫

C

p dV = pC(VD − VC) = −νRTA

(

1− VA

VC

)

.

Thus,

WCYC = νRTA

[

ln

(

VC

VB

)

− 1 +
VA

VC

]

.

(b) Setting VB = (1 − x)VA + xVC, and defining r ≡ VA/VC, we have

WCYC = νRTA

(

− ln
(

x+ (1− x) r
)

+ 1− r
)

,

and setting WCYC = 0 we obtain x = x∗, with

x∗ =
er−1 − r

1− r
.

For VA = 1.0 L and VC = 5.0 L, we have r = 1
5 and x∗ = 0.31, corresponding to VB = 2.2 L.
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(2.2) A strange material obeys the equation of state E(S, V,N) = aS7/V 4N2, where a is a dimensionful constant.

(a) What are the SI dimensions of a?

(b) Find the equation of state relating p, T , and n = N/V .

(c) Find the coefficient of thermal expansion αp = 1
V

(

∂V
∂T

)

p
and the isothermal compressibility κT = − 1

V

(

∂V
∂p

)

T
.

Express your answers in terms of p and T .

(d) ν moles of this material execute a Carnot cycle between reservoirs at temperatures T1 and T2. Find the heat
Q and work W for each leg of the cycle, and find the cycle efficiency η.

A

B

C
D

Figure 2: The Carnot cycle.

Solution :

(a) Clearly [a] = K7m12/J2 where K are Kelvins, m are meters, and J
are Joules.

(b) We have

T = +

(

∂E

∂S

)

V,N

=
7aS6

N2V 4

p = −
(

∂E

∂V

)

S,N

=
4aS7

N2V 5
.

We must eliminate S. Dividing the second of these equations by the
first, we find S = 7pV/4T , and substituting this into either equation,
we obtain the equation of state,

p = c ·
(

N

V

)1/3

T 7/6 ,

with c = 6
77/6

a−1/6.

(c) Taking the logarithm and then the differential of the above equation of state, we have

dp

p
+

dV

3V
− 7 dT

6T
− dN

3N
= 0 .

Thus,

αp =
1

V

(

∂V

∂T

)

p,N

=
7

2T
, κT = − 1

V

(

∂V

∂p

)

T,N

=
3

p
.

(d) From the results of part (b), we have that dS = 0 means d(N2V 4T ) = 0, so with N constant the equation for
adiabats is d(TV 4) = 0. Thus, for the Carnot cycle of Fig. 2, we have

T2 V
4
A = T1 V

4
D , T2 V

4
B = T1 V

4
C .

We shall use this relation in due time. Another relation we shall use is obtained by dividing out the S7 factor
common in the expressions for E and for p, then substituting for p using the equation of state:

E = 1
4pV = 1

4cN
1/3 V 2/3 T 7/6 .
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AB: Consider the AB leg of the Carnot cycle. We use the equation of state along the isotherm to find

WAB =

VB
∫

V
A

dV p = 3
2cN

1/3 T
7/6
2

(

V
2/3
B − V

2/3
A

)

.

Since E depends on volume, unlike the case of the ideal gas, there is a change in energy along this leg:

(∆E)AB = EB − EA = 1
4cN

1/3 T
7/6
2

(

V
2/3
B − V

2/3
A

)

.

Finally, the heat absorbed by the engine material during this leg is

QAB = (∆E)AB +WAB = 7
4cN

1/3 T
7/6
2

(

V
2/3
B − V

2/3
A

)

.

BC: Next, consider the BC leg. Clearly QBC = 0 since BC is an adiabat. Thus,

WBC = −(∆E)BC = EB − EC = 1
4cN

1/3
(

T
7/6
2 V

2/3
B − T

7/6
1 V

2/3
C

)

.

But the fact that BC is an adiabat guarantees V
2/3
C = (T2/T1)

1/6 V
2/3
B , hence

WBC = 1
4cN

1/3 V
2/3
B T

1/6
2 (T2 − T1) .

CD: For the CD leg, we can apply the results from AB, mutatis mutandis. Thus,

WCD = 3
2cN

1/3 T
7/6
2

(

V
2/3
D − V

2/3
C

)

.

We now use the adiabat conditions V
2/3
C = (T2/T1)

1/6 V
2/3
B and V

2/3
D = (T2/T1)

1/6 V
2/3
A to write WCD as

WCD = 3
2cN

1/3 T1 T
1/6
2

(

V
2/3
A − V

2/3
B

)

.

We therefore have
QCD = 7

4cN
1/3 T1 T

1/6
2

(

V
2/3
A − V

2/3
B

)

.

Note that both WCD and QCD are negative.

DA: We apply the results from the BC leg, mutatis mutandis, and invoke the adiabat conditions. We find QDA = 0
and

WDA = 1
4cN

1/3 V
2/3
A T

1/6
2 (T2 − T1) .

For the cycle, we therefore have

Wcyc = WAB +WBC +WCD +WDA = 7
4cN

1/3 T
1/6
2 (T2 − T1)

(

V
2/3
B − V

2/3
A

)

.

and thus

η =
Wcyc

QAB

= 1− T1

T2

.

This is the same result as for an ideal gas, as must be the case as per the Second Law of Thermodynamics.
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(2.3) For each of the following situations, explain clearly and fully why it is or is not thermodynamically possible.

(a) Energy function E(S, V,N) = aS V N with a constant.

(b) Equation of state V = aN pT with a constant.

(c) A system where
(

∂V
∂T

)

p,N
< 0 over some range of T and p.

(d) The phase diagram for a single component system depicted in Fig. 3 (left panel). (You only need know that
a superfluid is a distinct thermodynamic phase.)

(e) The phase diagram for a single component system in Fig. 3 (right panel). (You only need know that BCC,
HCP, and FCC solids are distinct phases.)

(f) E(S, V,N) = aN2 V −1 exp(S/Nb) with a and b constant.

(g) 15 Joules of heat energy are required to raise the temperature of a system by ∆T = 1◦C at constant volume.
10 Joules of heat energy are required to raise the temperature of the same system by ∆T = 1◦F at constant
pressure.

(h) A heat engine operating between reservoirs at temperatures T1 = 400K and T2 = 600K. During each cycle,
the engine does work W = 300 J and the entropy of the upper reservoir decreases by 2.00 J/K.

Figure 3: Phase diagrams for parts (d) and (e) of problem 3.

Solution :

(a) No! E(λS, λV, λN) = λ3E(S, V,N) is homogeneous of degree 3 – not extensive.

(b) No! The isothermal compressibility κT = − 1
V

(

∂V
∂p

)

T
= −1/p is negative, which violates κT > κS > 0.

(c) Yes! Many systems, such as water, contract upon a temperature increase over some range of temperature.

(d) No! This one is tricky. From the Clapeyron equation, we have
(

dp
dT

)

coex
= ∆s

∆v . Nernst’s law says that the
entropy of both the solid and superfluid phases must vanish at T = 0. Therefore all coexistence curves which
intersect the pressure axis at T = 0 must do so with zero slope.
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(e) No! The Gibbs phase rule d = 2 + σ − ϕ gives the dimension of thermodynamic space over which ϕ distinct
phases among σ species can coexist. For σ = 1 we have ϕ ≤ 3, since d ≥ 0. So four phase coexistence with a single
component is impossible.

(f) Yes! E is properly extensive and convex. One can derive E = pV = NbT , which is the ideal gas law with k
B

replaced by b.

(d) Yes! The heat capacity at constant volume is CV =
(

d̄Q
dT

)

V
= 15 J/K. The heat capacity at constant pressure is

Cp =
(

d̄Q
dT

)

p
= 10 J/ 5

9K = 18 J/K. Stability requires Cp > CV , which is satisfied.

(h) Yes! The only possible obstacle here is whether the engine’s efficiency is greater than that of the corresponding

Carnot cycle, for which η
C

= 1 − T
1

T
2

= 1
3 . We have η = W

Q
2

and ∆S2 = −Q
2

T
2

. Thus, η = W/
[

T2(−∆S2)
]

=

300 J/
[

(600K)(2.00 J/K)
]

= 1
4 < η

C
.
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(2.4) Using the chain rule from multivariable calculus (see §2.17 of the lecture notes), solve the following:

(a) Find (∂N/∂T )S,p in terms of T , N , S, and Cp,N .

(b) Experimentalists can measure CV,N but for many problems it is theoretically easier to work in the grand
canonical ensemble, whose natural variables are (T, V, µ). Show that

CV,N =

(

∂E

∂T

)

V,z

−
(

∂E

∂z

)

T,V

(

∂N

∂T

)

V,z

/(

∂N

∂z

)

T,V

,

where z = exp(µ/k
B
T ) is the fugacity.

Solution :

(a) We have
(

∂N

∂T

)

S,p

=
∂(N,S, p)

∂(T, S, p)
=

∂(N,S, p)

∂(N, T, p)
· ∂(N, T, p)

∂(T, S, p)
= −

NCp,N

TS
.

(b) Using the chain rule,

CV,N =
∂(E, V,N)

∂(T, V,N)
=

∂(E, V,N)

∂(T, V, z)
· ∂(T, V, z)

∂(T, V,N)

=

[

(

∂E

∂T

)

V,z

(

∂N

∂z

)

T,V

−
(

∂E

∂z

)

T,V

(

∂N

∂T

)

V,z

]

·
(

∂z

∂N

)

T,V

=

(

∂E

∂T

)

V,z

−
(

∂E

∂z

)

T,V

(

∂N

∂T

)

V,z

/(

∂N

∂z

)

T,V

.
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(2.5) The entropy of a thermodynamic system S(E, V,N) is given by

S(E, V,N) = r Eα V β Nγ ,

where r is a dimensionful constant.

(a) Extensivity of S imposes a condition on (α, β, γ). Find this constraint.

(b) Even with the extensivity condition satisfied, the system may violate one or more stability criteria. Find the
general conditions on (α, β, γ) which are thermodynamically permissible.

Solution :

(a) Clearly we must have α+ β + γ = 1 in order for S to be extensive.

(b) The Hessian is

Q =
∂2S

∂Xi ∂Xj

=





α(α − 1)S/E2 αβ S/EV αγ S/EN
αβ S/EV β(β − 1)S/V 2 βγ S/VN
αγ S/EN βγ S/VN γ(γ − 1)S/N2



 .

As shown in the notes, for any 2 × 2 submatrix of Q, obtained by eliminating a single row and its corresponding

column, and written

(

a b
b c

)

, we must have a < 0, c < 0, and ac > b2. For example, if we take the upper left 2× 2

submatrix, obtained by eliminating the third row and third column of Q, we have a = α(α−1)S/E2, b = αβ S/EV ,
and c = β(β − 1)S/V 2. The condition a < 0 requires α ∈ (0, 1). Similarly, b < 0 requires β ∈ (0, 1). Finally, ac > b2

requires α + β < 1. Since α + β + γ = 1, this last condition requires γ > 0. Obviously we must have γ < 1 as
well, else either α or β would have to be negative. An examination of either of the other two submatrices yields
the same conclusions. Thus,

α ∈ (0, 1) , β ∈ (0, 1) , γ ∈ (0, 1) .
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(2.6) Consider the equation of state,

p =
R2T 2

a+ vRT
,

where v = NAV/N is the molar volume and a is a constant.

(a) Find an expression for the molar energy ε(T, v). Assume that in the limit v → ∞, where the ideal gas law
pv = RT holds, that the gas is ideal with ε(v → ∞, T ) = 1

2fRT .

(b) Find the molar specific heat cV,N .

Solution :

(a) We fix N throughout the analysis. As shown in §2.11.2 of the lecture notes,

(

∂E

∂V

)

T,N

= T

(

∂p

∂T

)

V,N

− p .

Defining the molar energy ε = E/ν = NAE/N and the molar volume v = V/ν = NAV/N , we can write the above
equation as

(

∂ε

∂v

)

T

= T

(

∂p

∂T

)

v

− p = p

[

(

∂ ln p

∂ lnT

)

v

− 1

]

.

Now from the equation of state, we have

ln p = 2 lnT − ln(a+ vRT ) + 2 lnR ,

hence
(

∂ ln p

∂ ln T

)

v

= 2− vRT

a+ vRT
.

Plugging this into our formula for
(

∂ε
∂v

)

T
, we have

(

∂ε

∂v

)

T

=
a p

a+ vRT
=

aR2T 2

(a+ vRT )2
.

Now we integrate with respect to v at fixed T , using the method of partial fractions. After some grinding, we
arrive at

ε(T, v) = ω(T )− aRT

(a+ vRT )
.

In the limit v → ∞, the second term on the RHS tends to zero. This is the ideal gas limit, hence we must have
ω(T ) = 1

2fRT , where f = 3 for a monatomic gas, f = 5 for diatomic, etc. Thus,

ε(T, v) = 1
2fRT − aRT

a+ vRT
= 1

2fRT − a

v
+

a2

v(a+ vRT )
.

(b) To find the molar specific heat, we compute

cV,N =

(

∂ε

∂T

)

v

= 1
2fR− a2R

(a+ vRT )2
.
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(2.7) A diatomic gas obeys the equation of state

p =
RT

v − b
− a

v2
+

cRT

v3
,

where a, b, and c are constants.

(a) Find the adiabatic equation of state relating temperature T and molar volume v.

(b) What is the internal energy per mole, ε(T, v)?

(c) What is the Helmholtz free energy per mole, f(T, v)?

Solution :

(a) Let ε be the molar internal energy and v the molar volume. We have already shown (see Lecture Notes, §2.11.2)

(

∂ε

∂v

)

T

= T

(

∂p

∂T

)

v

− p .

Thus, for our system,
(

∂ε

∂v

)

T

=
a

v2
⇒ ε(T, v) = 5

2RT − a

v
,

where the first term is the result for the rarefied limit v → ∞, where the gas presumably becomes ideal. Now if
s = S/ν is the molar entropy (ν = N/NA is the number of moles), then

T ds = dε+ p dv = 5
2RdT +RT

dv

v − b
+ cRT

dv

v3
.

Dividing by T and then integrating, we have

s(T, v) = R ln
[

T 5/2(v − b) e−c/2v2
]

+ const. .

Thus, the equation of the adiabat is

T 5/2(v − b) e−c/2v2

= const.

(b) We have already obtained the result

ε(T, v) = 5
2RT − a

v
.

(c) From f = ε− Ts, where f = F/ν is the Helmholtz free energy per mole, we have

f(T, v) = 5
2RT − a

v
− 5

2RT ln

(

bRT

a

)

−RT ln

(

v − b

b

)

+
cRT

2v2
− Ts0 .

Here we have inserted constants with the proper dimensions in order to render our expression for f with the
appropriate dimensions. Thus, the constant s0 has dimensions of J/mol ·K, the same as the gas constant R. Since
c/b2 is dimensionless, there is more than one way to do this. Any resulting differences will show up in a different
expression for s0.
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(2.8) A van der Waals gas undergoes an adiabatic free expansion from initial volume Vi to final volume Vf . The
equation of state is given in §2.11.3 of the lecture notes. The number of particles N is held constant.

(a) If the initial temperature is Ti, what is the final temperature Tf?

(b) Find an expression for the change in entropy ∆S of the gas.

Solution :

(a) This part is done for you in §2.10.5 of the notes. One finds

∆T = Tf − Ti =
2a

fR

(

1

vf
− 1

vi

)

.

(b) Consider a two-legged thermodynamic path, consisting first of a straight leg from (Ti, Vi) to (Ti, Vf), and second
of a straight leg from (Ti, Vf) to (Tf , Vf). We then have

∆S =

∆S
1

︷ ︸︸ ︷

V
f

∫

V
i

dV

(

∂S

∂V

)

T
i
,N

+

∆S
2

︷ ︸︸ ︷

T
f

∫

T
i

dT

(

∂S

∂T

)

V
f
,N

.

Along the first leg we use
(

∂S

∂V

)

T,N

=

(

∂p

∂T

)

V,N

=
R

v − b

and we then find

∆S1 = R ln

(

vf − b

vi − b

)

.

Along the second leg, we have

∆S2 =

T
f

∫

T
i

dT

(

∂S

∂T

)

V
f
,N

=

T
f

∫

T
i

dT
CV

f
,N

T
= 1

2fR

T
f

∫

T
i

dT

T
= 1

2fR ln

(

Tf

Ti

)

.

Thus,

∆S = R ln

(

vf − b

vi − b

)

+ 1
2fR ln

[

1 +
2a

fRTi

(

1

vf
− 1

vi

)

]

.
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(2.9) Recall that a van der Waals gas obeys the equation of state

(

p+
a

v2

)

(

v − b
)

= RT ,

where v is the molar volume. We showed that the energy per mole of such a gas is given by

ε(T, v) = 1
2fRT − a

v
,

where T is temperature and f is the number of degrees of freedom per particle.

A

B

C
D

Figure 4: The Carnot cycle.

(a) For an ideal gas, the adiabatic equation of state is v T f/2 = const.
Find the adiabatic equation of state (at fixed particle number) for the
van der Waals gas.

(b) One mole of a van der Waals gas is used as the working substance
in a Carnot engine (see Fig. 1). Find the molar volume at vC in terms
of vB , T1 , T2 , and constants.

(c) Find the heat QAB absorbed by the gas from the upper reservoir.

(d) Find the work done per cycle, Wcyc. Hint: you only need to know QAB

and the cycle efficiency η.

Solution :

(a) We have

0 = T ds = dε+ p dv

= 1
2fRdT +

(

p+
a

v2

)

dv

= 1
2fRdT +

RT dv

v − b
= 1

2fRT d ln
[

(v − b)T f/2
]

,

where s = NAS/N is the molar entropy. Thus, the adiabatic equation of state for the van der Waals gas is

ds = 0 ⇒ (v − b)T f/2 = const.

Setting b = 0, we recover the ideal gas result.

(b) Since BC is an adiabat, we have

(vB − b)T
f/2
2 = (vC − b)T

f/2
1 ⇒ vC = b+ (vB − b)

(

T2

T1

)f/2

(c) We have, from the First Law,

QAB = EB − EA +WAB

= ν

(

a

vA
− a

vB

)

+ ν

vB
∫

v
A

dv p

= ν

(

a

vA
− a

vB

)

+ ν

vB
∫

v
A

dv

[

RT2

v − b
− a

v2

]

,

11



hence

QAB = νRT2 ln

(

vB − b

vA − b

)

with ν = 1.

(d) Since the cycle is reversible, we must have

η =
Wcyc

QAB

⇒ Wcyc = νR(T2 − T1) ln

(

vB − b

vA − b

)

12



(2.10) The triple point of a single component thermodynamic system is an isolated point (Tt, pt) in the (T, p) plane
where there is three phase coexistence between solid, liquid, and vapor. Consider three phase coexistence between
a pure solid, a pure vapor, and a solution where the solute fraction is x. Find the shift (∆Tt,∆pt) as a function of
x, Tt , and the quantities s

S,L,V
and v

S,L,V
, i.e. the molar entropies and volumes of the three respective phases.

Solution :

At the triple point, we have µ
S
(Tt, pt) = µ

L
(Tt, pt) = µ

V
(Tt, pt), which gives two equations for the two unknowns

Tt and pt. We write Tt = T 0
t +∆T and pt = p0t +∆p, and we solve

µ0
L
(T 0

t +∆T, p0t +∆p)− xk
B
(T 0

t +∆T ) = µ0
V
(T 0

t +∆T, p0t +∆p)

µ0
V
(T 0

t +∆T, p0t +∆p) = µ0
S
(T 0

t +∆T, p0t +∆p) ,

where the 0 superscript indicates the value for a pure phase. We now expand in the notionally small quantities
∆T and ∆p, and we use

(

∂µ

∂T

)

p,N

= −
(

∂S

∂N

)

p,T

= − s

NA

,

(

∂µ

∂p

)

T,N

=

(

∂V

∂N

)

p,T

=
v

NA

,

where s and v are the molar entropy and molar volume, respectively. This yields the linear system,

(

s
V
− s

L
v
L
− v

V

s
S
− s

V
v
V
− v

S

)(

∆T
∆p

)

=

(

xRT 0
t

0

)

.

This yields

∆T =
(v

V
− v

S
) · xRT 0

t

s
V
(v

L
− v

S
) + s

L
(v

S
− v

V
) + s

S
(v

V
− v

L
)

∆p =
(s

V
− s

S
) · xRT 0

t

s
V
(v

L
− v

S
) + s

L
(v

S
− v

V
) + s

S
(v

V
− v

L
)
.

Note that we do not retain terms of order x∆T , because we have assumed x is small, i.e. a weak solution.
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(2.11) A grocer starts his day with 4 boxes of pears, 5 boxes of oranges, and 6 boxes of apples. Each box contains
24 fruit and is initially completely filled.

(a) At some time, the grocer notes that exactly half the pears, a third of the oranges, and a quarter of the apples
have been sold. Assuming that customers take fruit from random positions in each of the boxes, find the
dimensionless entropy lnW of the fruit distribution.

(b) A clumsy customer then topples the table on which the fruit boxes rest, and all the fruit fall to the ground.
The customer cleans up the mess, putting all the fruit back into the boxes, but into random locations. What
is the entropy of the final state?

Solution :

(a) The grocer starts with 96 pears, 120 oranges, and 144 apples. By the time the grocer checks, 48 pears, 40 oranges,
and 36 apples have been removed. The number of ways of doing this is

W =

(

96

48

)(

120

40

)(

144

36

)

= 8.303× 1093 .

Thus, lnW = 216.3.

(b) There are a total of 96 + 120 + 144 = 360 slots for the fruit, which contain the remaining 48 pears, 120 oranges,
and 108 apples. The rest of the slots, which amount to 360− 48− 120− 108 = 84 in total, are empty. Therefore,

W ′ =
360!

94! · 48! · 120! · 108! = 1.093× 10205 ,

and the dimensionless entropy is lnW ′ = 472.1.
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(2.12) In a chemical reaction among σ species,

ζ1 A1 + ζ2 A2 + · · ·+ ζσ Aσ = 0 ,

where Aa is a chemical formula and ζa is a stoichiometric coefficient. When ζa > 0, the corresponding Aa is a
product; when ζa < 0, Aa is a reactant. (See §2.13.1 of the Lecture Notes.) The condition for equilibrium is

σ
∑

a=1

ζa µa = 0 ,

where µa is the chemical potential of the ath species. The equilibrium constant for the reaction is defined as

κ(T, p) =
σ
∏

a=1

x
ζa
a ,

where xa = na

/
∑σ

b=1 nb is the fraction of species a.

(a) Working in the grand canonical ensemble, show that

κ(T, p) =

σ
∏

a=1

(

k
B
T ξa(T )

pλ3
a

)ζa

.

Note that the above expression does not involve any of the chemical potentials µa.

(b) Compute the equilibrium constant κ(T, p) for the dissociative reaction N2 ⇋ 2N at T = 5000K, assum-
ing the following: the characteristic temperature of rotation and that of vibration of the N2 molecule are
Θrot = 2.84K and Θvib = 3350K. The dissociation energy, including zero point contributions, is ∆ =
169.3 kcalmol−1. The electronic ground state of N2 has no degeneracy, but that of the N atom is 4 due to
electronic spin.

Solution :

(a) In the GCE, we have

Ω
(

T, V, {µa}
)

= −k
B
T V

σ
∑

a=1

λ−3
a eµa/kB

T ξa ,

where λa = (2π~2/makB
T )1/2 the thermal wavelength for species a and ξa(T ) is the internal coordinate partition

function for species a. We then have

na = − 1

V

(

∂Ω

∂µa

)

T,V,µb6=a

= za λ
−3
a ξa ,

where za = eµa/kB
T . OK, so we now define

xa =
na

∑σ
b=1 nb

=
zaλ

−3
a ξa

p/k
B
T

=
k

B
T ξa za
p λ3

a

,

since
∑

b nb = −Ω/V k
B
T = p/k

B
T . (Remember Ω = −pV ). Therefore

κ(T, p) ≡
σ
∏

a=1

x
ζa
a

=

σ
∏

a=1

(

k
B
T ξa
pλ3

a

)ζa

·
σ
∏

a=1

z
ζa
a .
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However,
σ
∏

a=1

z
ζa
a =

σ
∏

a=1

eζaµa/kB
T = exp

(

1

k
B
T

σ
∑

a=1

ζa µa

)

= 1 ,

since
∑σ

a=1 ζa µa = 0.

(b) The internal partition function for N is just ξN = (2S +1)(2I +1), where S = 3
2 is the total electronic spin from

Hund’s rules, and I = 1 is the nuclear spin. It turns out that we will never need to know the value of I . For N2

the internal partition function is

ξN
2
= (2I + 1)2 · T

2Θrot

· e∆/T

1− e−Θ
vib

/T
.

This formula requires some explanation. We appeal to Eqs. 4.292 in the Lecture Notes. Since T ≫ Θrot, we have

ζg ≈ ζu ≈ 1
2

∞
∫

0

du e−uΘ
rot

/T =
T

2Θrot

,

where the factor of 1
2 comes from summing only over half the allowed L values, i.e. either all even or all odd, and

where u = L(L + 1) so du = (2L + 1) dL. We then have ξrot = (2I + 1)2T/2Θrot because gg + gu = (2I + 1)2.

The vibrational partition function was derived to be ξvib = 1
2 csch (Θvib/2T ), however since we are including the

zero point vibrational energy 1
2~ωvib = 1

2kB
Θvib in the dissociation energy, we get the above expression for ξN

2

.

According to our result from part (a), we have

κ(T, p) = 32k
B
Θrot · e−∆/T ·

(

1− e−Θ
vib

/T
)

·
λ3
N

2

pλ6
N

= 16
√
2 · kB

Θrot

pλ3
N

· e−∆/T ·
(

1− e−Θ
vib

/T
)

.

Now we need to evaluate some quantities. The gas constant is

R = N
A
k

B
= 8.314 J/mol ·K = 1.986× 10−3 kcal/mol ·K ,

hence at T = 5000K, we have

∆

k
B
T

=
(169.3 kcal/mol)(4184 J/kcal)

(8.314 J/mol ·K)(5000K)
= 17.0 .

Furthermore, Θvib/T = 0.670. The thermal wavelength of N at this temperature is found to be

λN =

(

2π · (1.055× 10−27 g cm2/s)2

(14 g/6.02× 1023) · (1.38× 10−16 erg/K) · 5000K

)1/2

= 6.60 Å .

We also have
k

B
Θrot

pλ3
N

=
(1.38× 10−16 erg/K) · (2.84K)

(1.013× 106 g/cm · s2)(6.60× 10−8 cm)3
· p0
p

=
1.35 p0

p
,

where p0 = 1.013× 105 Pa is atmospheric pressure. Putting it all together, we obtain

κ(T = 5000K, p) = 6.2× 10−7 · p0
p

.
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(2.13) The phase diagram for a binary eutectic system is depicted in Fig. 5. The liquid phase is completely
miscible, but the solid phase separates into A-rich α and B-rich β phases over a broad range of temperatures
and compositions. There is a single chemical composition which solidifies at a temperature lower than any other
for this system - the eutectic composition. You are invited to model such a system using the Gibbs free energy
densities

gL(T, p, x) = (1− x)µA
L (T, p) + xµB

L (T, p) + k
B
T
[

x lnx+ (1 − x) ln(1 − x)
]

+ λL x(1 − x)

gS(T, p, x) = (1− x)µA
S (T, p) + xµB

S (T, p) + k
B
T
[

x lnx+ (1 − x) ln(1 − x)
]

+ λS x(1 − x) ,

Figure 5: Eutectic phase diagram (from Wikipedia).
L denotes the liquid phase, and α and β are two solid
phases.

where λL < 0 and λS > 0. For simplicity, you may assume

µA
L (T, p) ≈ µB

L (T, p) ≡ µL(T, p)

µA
S (T, p) ≈ µB

S (T, p) ≡ µS(T, p) ,

with µS(T, p) = µL(T, p) + rk
B
(T − T0), where r > 0.

(a) By sketching the free energies, show that the phase dia-
gram is as shown in Fig. 5.

(b) Solve numerically for the eutectic temperature assuming
λL = −1, λS = +1, and k

B
T0 = 1, and r = 0.8.

Solution :

Figure 6: Gibbs free energies for liquid (blue)
and solid (red) phases at different temperatures,
with Maxwell constructions shown.

(a) A set of curves illustrating the phenomenon is shown in Fig.
6. We have taken the valus in part (b) of the problem and varied
the quantity k

B
T (in dimensionless units). For our system, both the

liquid and solid free energies are symmetric in x about the point
x = 1

2 . At high temperatures, gL < gS for all x, as shown in the
upper left panel of Fig. 6. As the temperature is lowered, gS starts
to dip below gL at the endpoints x = 0, 1. For our model and pa-
rameters, this happens for k

B
T = k

B
T0 = 1. Because λL > λS,

the curvature of gL(x) is greater than that of gS(x), which means
that initially there will be two intersections where gL(x) = gS(x), at
x = x∗ < 1

2 and x = 1−x∗ > 1
2 . To guarantee thermodynamics sta-

bility, one must invoke the Maxwell construction which connects
the solid curve at some point x1 < x∗ to the liquid curve at point
x2 > x∗, with x2 < 1

2 . A similar construction follows on the second
half of the curve, between gL(1 − x2) and gS(1 − x1). These two
phase regions represent mixtures of the liquid at intermediate con-
centration and a low or high concentration solid phase. Furthering
lower the temperature, the solid curve develops a negative curva-
ture at x = 1

2 for k
B
T < 1

2λS. Eventually, the temperature gets so
low that gS(x) lies below gL(x) for all x ∈ [0, 1]. The system is then in the solid phase, but one must nevertheless
invoke a Maxwell construction, as shown in the lower left panel in Fig. 6, between a low-concentration solid at
x = x3 < 1

2 and a high-concentration solid at x = 1−x3 > 1
2 . At such temperatures, the solid is in a homogeneous

phase for x < x3 or x > 1− x3 , and in a mixed phase for x3 < x < 1− x3.

Figure 7: Gibbs free energies for the liquid (blue)
and solid (red) phases at the eutectic temperature.

(b) A crude numerical experiment is performed by successively
lowering k

B
T until the minima of the gL(x) and gS(x) curves cross,

and then iterating to find the temperature where the minima coin-
cide. In this manner, I find a eutectic temperature k

B
Te = 0.3948, as

shown in Fig. 7.
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3 Approach to Equilibrium : Worked Examples

(3.1) Consider the matrix

M =

(

4 4
−1 9

)

.

(a) Find the characteristic polynomial P (λ) = det (λI −M) and the eigenvalues.

(b) For each eigenvalue λα, find the associated right eigenvector Rα
i and left eigenvector Lα

i . Normalize your
eigenvectors so that 〈Lα |Rβ 〉 = δαβ .

(c) Show explicitly that Mij =
∑

α λαR
α
i L

α
j .

Solution :

(a) The characteristic polynomial is

P (λ) = det

(

λ− 4 −4
1 λ− 9

)

= λ2 − 13λ+ 40 = (λ− 5)(λ− 8) ,

so the two eigenvalues are λ1 = 5 and λ2 = 8.

(b) Let us write the right eigenvectors as ~Rα =

(

Rα
1

Rα
2

)

and the left eigenvectors as ~Lα =
(

Lα
1 Lα

2

)

. Having found

the eigenvalues, we only need to solve four equations:

4R1
1 + 4R1

2 = 5R1
1 , 4R2

1 + 4R2
2 = 8R2

1 , 4L1
1 − L1

2 = 5L1
1 , 4L2

1 − L2
2 = 8L2

1 .

We are free to choose Rα
1 = 1 when possible. We must also satisfy the normalizations 〈Lα |Rβ 〉 = Lα

i R
β
i = δαβ .

We then find

~R1 =

(

1
1
4

)

, ~R2 =

(

1
1

)

, ~L1 =
(

4
3 − 4

3

)

, ~L2 =
(

− 1
3

4
3

)

.

(c) The projectors onto the two eigendirections are

P1 = |R1 〉〈L1 | =





4
3 − 4

3

1
3 − 1

3



 , P2 = |R2 〉〈L2 | =





− 1
3

4
3

− 1
3

4
3



 .

Note that P1 + P2 = I. Now construct

λ1 P1 + λ2 P2 =

(

4 4
−1 9

)

,

as expected.
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(3.2) Consider a three-state system with the following transition rates:

W12 = 0 , W21 = γ , W23 = 0 , W32 = 3γ , W13 = γ , W31 = γ .

(a) Find the matrix Γ such that Ṗi = −ΓijPj .

(b) Find the equilibrium distribution P eq
i .

(c) Does this system satisfy detailed balance? Why or why not?

Solution :

(a) Following the prescription in Eq. 3.3 of the Lecture Notes, we have

Γ = γ





2 0 −1
−1 3 0
−1 −3 1



 .

(b) Note that summing on the row index yields
∑

i Γij = 0 for any j, hence (1, 1, 1) is a left eigenvector of Γ with

eigenvalue zero. It is quite simple to find the corresponding right eigenvector. Writing ~ψ t = (a, b, c), we obtain
the equations c = 2a, a = 3b, and a+ 3b = c, the solution of which, with a+ b+ c = 1 for normalization, is a = 3

10 ,
b = 1

10 , and c = 6
10 . Thus,

P eq =





0.3
0.1
0.6



 .

(c) The equilibrium distribution does not satisfy detailed balance. Consider for example the ratio P eq
1 /P eq

2 = 3.
According to detailed balance, this should be the same as W12/W21, which is zero for the given set of transition
rates.

2



(3.3) A Markov chain is a process which describes transitions of a discrete stochastic variable occurring at discrete
times. Let Pi(t) be the probability that the system is in state i at time t. The evolution equation is

Pi(t+ 1) =
∑

j

Qij Pj(t) .

The transition matrix Qij satisfies
∑

iQij = 1 so that the total probability
∑

i Pi(t) is conserved. The element Qij is
the conditional probability that for the system to evolve to state i given that it is in state j. Now consider a group of
Physics graduate students consisting of three theorists and four experimentalists. Within each group, the students
are to be regarded as indistinguishable. Together, the students rent two apartments, A and B. Initially the three
theorists live in A and the four experimentalists live in B. Each month, a random occupant of A and a random
occupant of B exchange domiciles. Compute the transition matrix Qij for this Markov chain, and compute the
average fraction of the time that B contains two theorists and two experimentalists, averaged over the effectively
infinite time it takes the students to get their degrees. Hint: Q is a 4× 4 matrix.

Solution:

There are four states available, and they are listed together with their degeneracies in Table 2.

| j 〉 room A room B gA

j gB

j gTOT

j

| 1 〉 TTT EEEE 1 1 1
| 2 〉 TTE EEET 3 4 12
| 3 〉 TEE EETT 3 6 18
| 4 〉 EEE ETTT 1 4 4

Table 1: States and their degeneracies.

Let’s compute the transition probabilities. First, we compute the transition probabilities out of state | 1 〉, i.e. the
matrix elements Qj1. Clearly Q21 = 1 since we must exchange a theorist (T) for an experimentalist (E). All the
other probabilities are zero: Q11 = Q31 = Q41 = 0. For transitions out of state | 2 〉, the nonzero elements are

Q12 = 1
4 × 1

3 = 1
12 , Q22 = 3

4 × 1
3 + 1

4 × 2
3 = 5

12 , Q32 = 1
2 .

To compute Q12, we must choose the experimentalist from room A (probability 1
3 ) with the theorist from room B

(probability 1
4 ). For Q22, we can either choose E from A and one of the E’s from B, or one of the T’s from A and the

T from B. This explains the intermediate steps written above. For transitions out of state | 3 〉, the nonzero elements
are then

Q23 = 1
3 , Q33 = 1

2 , Q43 = 1
6 .

Finally, for transitions out of state | 4 〉, the nonzero elements are

Q34 = 3
4 , Q44 = 1

4 .

The full transition matrix is then

Q =





















0 1
12 0 0

1 5
12

1
3 0

0 1
2

1
2

3
4

0 0 1
6

1
4





















.

Note that
∑

iQij = 1 for all j = 1, 2, 3, 4. This guarantees that φ(1) = (1 , 1 , 1 , 1) is a left eigenvector of Q with

eigenvalue 1. The corresponding right eigenvector is obtained by setting Qij ψ
(1)
j = ψ

(1)
i . Simultaneously solving

3



these four equations and normalizing so that
∑

j ψ
(1)
j = 1, we easily obtain

ψ(1) =
1

35









1
12
18
4









.

This is the state we converge to after repeated application of the transition matrix Q. If we decompose Q =
∑4

α=1 λα |ψ(α) 〉〈φ(α) |, then in the limit t → ∞ we have Qt ≈ |ψ(1) 〉〈φ(1) |, where λ1 = 1, since the remaining
eigenvalues are all less than 1 in magnitude1. Thus, Qt acts as a projector onto the state |ψ(1) 〉. Whatever the initial

set of probabilities Pj(t = 0), we must have 〈φ(1) |P (0) 〉 =
∑

j Pj(0) = 1. Therefore, limt→∞ Pj(t) = ψ
(1)
j , and we

find P3(∞) = 18
35 . Note that the equilibrium distribution satisfies detailed balance:

ψ
(1)
j =

gTOT

j
∑

l g
TOT

l

.

1One can check that λ
1
= 1, λ

2
=

5

12
, λ

3
= − 1

4
. and λ

4
= 0.
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(3.4) Suppose I have three bags containing among them four coins. Initially, bag #1 contains a quarter, bag #2
contains a dime, and bag #3 contains two nickels. At each time step, I choose two bags randomly and randomly
exchange one coin from each bag. The time evolution satisfies Pi(t+1) =

∑

j Yij Pj(t), where Yij = P (i , t+1 | j , t)
is the conditional probability that the system is in state i at time t+ 1 given that it was in state j at time t.

(a) How many configurations are there for this system?

(b) Construct the transition matrix Yij and verify that
∑

i Yij = 1.

(c) Find the eigenvalues of Y (you may want to use something like Mathematica).

(d) Find the equilibrium distribution P eq
i .

Solution :

(a) There are seven possible configurations for this system, shown in Table 2 below.

1 2 3 4 5 6 7
bag 1 Q Q D D N N N
bag 2 D N Q N Q D N
bag 3 NN DN NN QN DN QN DQ
g 1 2 1 2 2 2 2

Table 2: Configurations and their degeneracies for problem 3.

(b) The transition matrix is

Y =













































0 1
6

1
3 0 0 1

6 0

1
3

1
6 0 1

6
1
3 0 1

6

1
3 0 0 1

6
1
6 0 0

0 1
6

1
3

1
6 0 1

3
1
6

0 1
3

1
3 0 1

6
1
6

1
6

1
3 0 0 1

3
1
6

1
6

1
6

0 1
6 0 1

6
1
6

1
6

1
3













































(c) Interrogating Mathematica, I find the eigenvalues are

λ1 = 1 , λ2 = − 2
3 , λ3 = 1

3 , λ4 = 1
3 , λ5 = λ6 = λ7 = 0 .

(d) We may decompose Y into its left and right eigenvectors, writing

Y =

7
∑

a=1

λa |Ra 〉〈La |

Yij =

7
∑

a=1

λa R
a
i L

a
j
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The full matrix of left (row) eigenvectors is

L =





















1 1 1 1 1 1 1
−2 1 2 −1 −1 1 0
−1 0 −1 0 0 0 1
0 −1 0 1 −1 1 0
1 −1 1 −1 0 0 1
1 0 −1 −1 0 1 0
−1 −1 1 0 1 0 0





















The corresponding matrix of right (column) eigenvectors is

R =
1

24





















2 −3 −6 0 4 1 −5
4 3 0 −6 −4 −1 −7
2 3 −6 0 4 −5 1
4 −3 0 6 −4 −7 −1
4 −3 0 −6 −4 5 11
4 3 0 6 −4 11 5
4 0 12 0 8 −4 −4





















Thus, we have RL = LR = I, i.e. R = L−1, and

Y = RΛL ,

with Λ = diag
(

1 , − 2
3 ,

1
3 ,

1
3 , 0 , 0 , 0

)

.

The right eigenvector corresponding to the λ = 1 eigenvalue is the equilibrium distribution. We therefore read off
the first column of the R matrix:

(P eq)t =
(

1
12

1
6

1
12

1
6

1
6

1
6

1
6

)

.

Note that

P eq
i =

gi
∑

j gj
,

where gj is the degeneracy of state j (see Tab. 2). Why is this so? It is because our random choices guarantee that
Yij gj = Yji gi for each i and j (i.e. no sum on repeated indices). Now sum this equation on j, and use

∑

j Yji = 1.
We obtain

∑

j Yij gj = gi , which says that the | g 〉 is a right eigenvector of Y with eigenvalue 1. To obtain the
equilibrium probability distribution, we just have to normalize by dividing by

∑

j gj .
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(3.5) A ball of mass m executes perfect one-dimensional motion along the symmetry axis of a piston. Above the
ball lies a mobile piston head of mass M which slides frictionlessly inside the piston. Both the ball and piston
head execute ballistic motion, with two types of collision possible: (i) the ball may bounce off the floor, which
is assumed to be infinitely massive and fixed in space, and (ii) the ball and piston head may engage in a one-
dimensional elastic collision. The Hamiltonian is

H =
P 2

2M
+

p2

2m
+MgX +mgx ,

where X is the height of the piston head and x the height of the ball. Another quantity is conserved by the
dynamics: Θ(X − x). I.e., the ball always is below the piston head.

(a) Choose an arbitrary length scale L, and then energy scale E0 = MgL, momentum scale P0 = M
√
gL, and

time scale τ0 =
√

L/g. Show that the dimensionless Hamiltonian becomes

H̄ = 1
2 P̄

2 + X̄ +
p̄2

2r
+ rx̄ ,

with r = m/M , and with equations of motion dX/dt = ∂H̄/∂P̄ , etc. (Here the bar indicates dimensionless
variables: P̄ = P/P0, t̄ = t/τ0, etc.) What special dynamical consequences hold for r = 1?

(b) Compute the microcanonical average piston height 〈X〉. The analogous dynamical average is

〈X〉T = lim
T→∞

1

T

T
∫

0

dtX(t) .

When computing microcanonical averages, it is helpful to use the Laplace transform, discussed toward the
end of §3.3 of the notes. (It is possible to compute the microcanonical average by more brute force methods
as well.)

(c) Compute the microcanonical average of the rate of collisions between the ball and the floor. Show that this
is given by

〈

∑

i

δ(t− ti)
〉

=
〈

Θ(v) v δ(x− 0+)
〉

.

The analogous dynamical average is

〈γ〉T = lim
T→∞

1

T

T
∫

0

dt
∑

i

δ(t− ti) ,

where {ti} is the set of times at which the ball hits the floor.

(d) How do your results change if you do not enforce the dynamical constraint X ≥ x?

(e) Write a computer program to simulate this system. The only input should be the mass ratio r (set Ē = 10 to
fix the energy). You also may wish to input the initial conditions, or perhaps to choose the initial conditions
randomly (all satisfying energy conservation, of course!). Have your program compute the microcanonical
as well as dynamical averages in parts (b) and (c). Plot out the Poincaré section of P vs. X for those times
when the ball hits the floor. Investigate this for several values of r. Just to show you that this is interesting,
I’ve plotted some of my own numerical results in fig. 1.
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Solution:

(a) Once we choose a length scale L (arbitrary), we may define E0 = M gL, P0 = M
√
gL, V0 =

√
gL, and

τ0 =
√

L/g as energy, momentum, velocity, and time scales, respectively, the result follows directly. Rather than
write P̄ = P/P0 etc., we will drop the bar notation and write

H = 1
2P

2 +X +
p2

2r
+ rx .

(b) What is missing from the Hamiltonian of course is the interaction potential between the ball and the piston
head. We assume that both objects are impenetrable, so the potential energy is infinite when the two overlap. We
further assume that the ball is a point particle (otherwise reset ground level to minus the diameter of the ball). We
can eliminate the interaction potential from H if we enforce that each time X = x the ball and the piston head
undergo an elastic collision. From energy and momentum conservation, it is easy to derive the elastic collision
formulae

P ′ =
1− r

1 + r
P +

2

1 + r
p

p′ =
2r

1 + r
P − 1− r

1 + r
p .

We can now answer the last question from part (a). When r = 1, we have that P ′ = p and p′ = P , i.e. the ball and
piston simply exchange momenta. The problem is then equivalent to two identical particles elastically bouncing
off the bottom of the piston, and moving through each other as if they were completely transparent. When the
trajectories cross, however, the particles exchange identities.

Averages within the microcanonical ensemble are normally performed with respect to the phase space distribution

̺(ϕ) =
δ
(

E −H(ϕ)
)

Tr δ
(

E −H(ϕ)
) ,

where ϕ = (P,X, p, x), and

Tr F (ϕ) =

∞
∫

−∞

dP

∞
∫

0

dX

∞
∫

−∞

dp

∞
∫

0

dx F (P,X, p, x) .

Since X ≥ x is a dynamical constraint, we should define an appropriately restricted microcanonical average:

〈

F (ϕ)
〉

µce
≡ ˜Tr

[

F (ϕ) δ
(

E −H(ϕ)
)

]

/

˜Tr δ
(

E −H(ϕ)
)

where

˜TrF (ϕ) ≡
∞
∫

−∞

dP

∞
∫

0

dX

∞
∫

−∞

dp

X
∫

0

dx F (P,X, p, x)

is the modified trace. Note that the integral over x has an upper limit ofX rather than ∞, since the region of phase
space with x > X is dynamically inaccessible.

When computing the traces, we shall make use of the following result from the theory of Laplace transforms. The
Laplace transform of a function K(E) is

̂K(β) =

∞
∫

0

dE K(E) e−βE .
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Figure 1: Poincaré sections for the ball and piston head problem. Each color corresponds to a different initial
condition. When the mass ratio r = m/M exceeds unity, the system apparently becomes ergodic.

The inverse Laplace transform is given by

K(E) =

c+i∞
∫

c−i∞

dβ

2πi
̂K(β) eβE ,

where the integration contour, which is a line extending from β = c − i∞ to β = c + i∞, lies to the right of any

singularities of ̂K(β) in the complex β-plane. For this problem, all we shall need is the following:

K(E) =
Et−1

Γ(t)
⇐⇒ ̂K(β) = β−t .

For a proof, see §4.2.2 of the lecture notes.

We’re now ready to compute the microcanonical average of X . We have

〈X〉 = N(E)

D(E)
,

9



where

N(E) = ˜Tr
[

X δ(E −H)
]

D(E) = ˜Tr δ(E −H) .

Let’s first compute D(E). To do this, we compute the Laplace transform ̂D(β):

̂D(β) = ˜Tr e−βH

=

∞
∫

−∞

dP e−βP 2/2

∞
∫

−∞

dp e−βp2/2r

∞
∫

0

dX e−βX

X
∫

0

dx e−βrx

=
2π

√
r

β

∞
∫

0

dX e−βX

(

1− e−βrX

βr

)

=

√
r

1 + r
· 2π
β3

.

Similarly for ̂N(β) we have

̂N(β) = ˜TrX e−βH

=

∞
∫

−∞

dP e−βP 2/2

∞
∫

−∞

dp e−βp2/2r

∞
∫

0

dX X e−βX

X
∫

0

dx e−βrx

=
2π

√
r

β

∞
∫

0

dX X e−βX

(

1− e−βrX

βr

)

=
(2 + r) r3/2

(1 + r)2
· 2π
β4

.

Taking the inverse Laplace transform, we then have

D(E) =

√
r

1 + r
· πE2 , N(E) =

(2 + r)
√
r

(1 + r)2
· 1
3πE

3 .

We then have

〈X〉 = N(E)

D(E)
=

(

2 + r

1 + r

)

· 1
3E .

The ‘brute force’ evaluation of the integrals isn’t so bad either. We have

D(E) =

∞
∫

−∞

dP

∞
∫

0

dX

∞
∫

−∞

dp

X
∫

0

dx δ
(

1
2P

2 + 1
2rp

2 +X + rx− E
)

.

To evaluate, define P =
√
2ux and p =

√
2r uy . Then we have dP dp = 2

√
r dux duy and 1

2P
2 + 1

2r p
2 = u2x + u2y.

Now convert to 2D polar coordinates with w ≡ u2x + u2y . Thus,

D(E) = 2π
√
r

∞
∫

0

dw

∞
∫

0

dX

X
∫

0

dx δ
(

w +X + rx − E
)

=
2π√
r

∞
∫

0

dw

∞
∫

0

dX

X
∫

0

dx Θ(E − w −X)Θ(X + rX − E + w)

=
2π√
r

E
∫

0

dw

E−w
∫

E−w

1+r

dX =
2π

√
r

1 + r

E
∫

0

dq q =

√
r

1 + r
· πE2 ,
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with q = E − w. Similarly,

N(E) = 2π
√
r

∞
∫

0

dw

∞
∫

0

dX X

X
∫

0

dx δ
(

w +X + rx − E
)

=
2π√
r

∞
∫

0

dw

∞
∫

0

dX X

X
∫

0

dx Θ(E − w −X)Θ(X + rX − E + w)

=
2π√
r

E
∫

0

dw

E−w
∫

E−w

1+r

dX X =
2π√
r

E
∫

0

dq

(

1− 1

(1 + r)2

)

· 1
2q

2 =

(

2 + r

1 + r

)

·
√
r

1 + r
· 1
3πE

3 .

(c) Using the general result

δ
(

F (x) −A
)

=
∑

i

δ(x − xi)
∣

∣F ′(xi)
∣

∣

,

where F (xi) = A, we recover the desired expression. We should be careful not to double count, so to avoid this
difficulty we can evaluate δ(t− t+i ), where t+i = ti + 0+ is infinitesimally later than ti. The point here is that when
t = t+i we have p = r v > 0 (i.e. just after hitting the bottom). Similarly, at times t = t−i we have p < 0 (i.e. just prior
to hitting the bottom). Note v = p/r. Again we write γ(E) = N(E)/D(E), this time with

N(E) = ˜Tr
[

Θ(p) r−1p δ(x− 0+) δ(E −H)
]

.

The Laplace transform is

̂N(β) =

∞
∫

−∞

dP e−βP 2/2

∞
∫

0

dp r−1 p e−βp2/2r

∞
∫

0

dX e−βX

=

√

2π

β
· 1
β
· 1
β

=
√
2π β−5/2 .

Thus,
N(E) = 4

√
2

3 E3/2

and

〈γ〉 = N(E)

D(E)
= 4

√
2

3π

(

1 + r√
r

)

E−1/2 .

(d) When the constraint X ≥ x is removed, we integrate over all phase space. We then have

̂D(β) = Tr e−βH

=

∞
∫

−∞

dP e−βP 2/2

∞
∫

−∞

dp e−βp2/2r

∞
∫

0

dX e−βX

∞
∫

0

dx e−βrx =
2π

√
r

β3
.

For part (b) we would then have

̂N(β) = Tr X e−βH

=

∞
∫

−∞

dP e−βP 2/2

∞
∫

−∞

dp e−βp2/2r

∞
∫

0

dX X e−βX

∞
∫

0

dx e−βrx =
2π

√
r

β4
.
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The respective inverse Laplace transforms areD(E) = π
√
rE2 andN(E) = 1

3π
√
rE3. The microcanonical average

of X would then be
〈X〉 = 1

3E .

Using the restricted phase space, we obtained a value which is greater than this by a factor of (2+ r)/(1+ r). That
the restricted average gives a larger value makes good sense, since X is not allowed to descend below x in that
case. For part (c), we would obtain the same result for N(E) since x = 0 in the average. We would then obtain

〈γ〉 = 4
√
2

3π r−1/2 E−1/2 .

The restricted microcanonical average yields a rate which is larger by a factor 1 + r. Again, it makes good sense
that the restricted average should yield a higher rate, since the ball is not allowed to attain a height greater than
the instantaneous value of X .

(e) It is straightforward to simulate the dynamics. So long as 0 < x(t) < X(t), we have

Ẋ = P , Ṗ = −1 , ẋ =
p

r
, ṗ = −r .

Starting at an arbitrary time t0, these equations are integrated to yield

X(t) = X(t0) + P (t0) (t− t0)− 1
2 (t− t0)

2

P (t) = P (t0)− (t− t0)

x(t) = x(t0) +
p(t0)

r
(t− t0)− 1

2 (t− t0)
2

p(t) = p(t0)− r(t− t0) .

We must stop the evolution when one of two things happens. The first possibility is a bounce at t = tb, meaning
x(tb) = 0. The momentum p(t) changes discontinuously at the bounce, with p(t+b ) = −p(t−b ), and where p(t−b ) < 0
necessarily. The second possibility is a collision at t = tc, meaning X(tc) = x(tc). Integrating across the collision,
we must conserve both energy and momentum. This means

P (t+c ) =
1− r

1 + r
P (t−c ) +

2

1 + r
p(t−c )

p(t+c ) =
2r

1 + r
P (t−c )−

1− r

1 + r
p(t−c ) .

r X(0) 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce r X(0) 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce
0.3 0.1 6.1743 5.8974 0.5283 0.4505 1.2 0.1 4.8509 4.8545 0.3816 0.3812
0.3 1.0 5.7303 5.8974 0.4170 0.4505 1.2 1.0 4.8479 4.8545 0.3811 0.3812
0.3 3.0 5.7876 5.8974 0.4217 0.4505 1.2 3.0 4.8493 4.8545 0.3813 0.3812
0.3 5.0 5.8231 5.8974 0.4228 0.4505 1.2 5.0 4.8482 4.8545 0.3813 0.3812
0.3 7.0 5.8227 5.8974 0.4228 0.4505 1.2 7.0 4.8472 4.8545 0.3808 0.3812
0.3 9.0 5.8016 5.8974 0.4234 0.4505 1.2 9.0 4.8466 4.8545 0.3808 0.3812
0.3 9.9 6.1539 5.8974 0.5249 0.4505 1.2 9.9 4.8444 4.8545 0.3807 0.3812

Table 3: Comparison of time averages and microcanonical ensemble averages for r = 0.3 and r = 0.9. Initial
conditions are P (0) = x(0) = 0, with X(0) given in the table and E = 10. Averages were performed over a period
extending for Nb = 107 bounces.

In the following tables I report on the results of numerical simulations, comparing dynamical averages with (re-
stricted) phase space averages within the microcanonical ensemble. For r = 0.3 the microcanonical averages
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poorly approximate the dynamical averages, and the dynamical averages are dependent on the initial conditions,
indicating that the system is not ergodic. For r = 1.2, the agreement between dynamical and microcanonical
averages generally improves with averaging time. Indeed, it has been shown by N. I. Chernov, Physica D 53, 233
(1991), building on the work of M. P. Wojtkowski, Comm. Math. Phys. 126, 507 (1990) that this system is ergodic
for r > 1. Wojtkowski also showed that this system is equivalent to the wedge billiard, in which a single point
particle of mass m bounces inside a two-dimensional wedge-shaped region

{

(x, y)
∣

∣ x ≥ 0 , y ≥ x ctnφ
}

for some

fixed angle φ = tan−1
√

m
M . To see this, pass to relative (X ) and center-of-mass (Y) coordinates,

X = X − x Px =
mP −Mp

M +m

Y =
MX +mx

M +m
Py = P + p .

Then

H =
(M +m)P2

x

2Mm
+

P2
y

2(M +m)
+ (M +m) gY .

There are two constraints. One requires X ≥ x, i.e. X ≥ 0. The second requires x > 0, i.e.

x = Y − M

M +m
X ≥ 0 .

Figure 2: Long time running numerical averages Xav(t) ≡ t−1
∫ t

0
dt′ X(t′) for r = 0.3 (top) and r = 1.2 (bottom),

each for three different initial conditions, with E = 10 in all cases. Note how in the r = 0.3 case the long time
average is dependent on the initial condition, while the r = 1.2 case is ergodic and hence independent of initial

conditions. The dashed black line shows the restricted microcanonical average, 〈X〉µce = (2+r)
(1+r) · 1

3E.

13



Now define x ≡ X , px ≡ Px, and rescale y ≡ M+m√
Mm

Y and py ≡
√
Mm

M+m Py to obtain

H =
1

2µ

(

p2x + p2y
)

+M g y

with µ = Mm
M+m the familiar reduced mass and M =

√
Mm. The constraints are then x ≥ 0 and y ≥

√

M
m x.

r X(0) Nb 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce
1.2 7.0 104 4.8054892 4.8484848 0.37560388 0.38118510
1.2 7.0 105 4.8436969 4.8484848 0.38120356 0.38118510
1.2 7.0 106 4.8479414 4.8484848 0.38122778 0.38118510
1.2 7.0 107 4.8471686 4.8484848 0.38083749 0.38118510
1.2 7.0 108 4.8485825 4.8484848 0.38116282 0.38118510
1.2 7.0 109 4.8486682 4.8484848 0.38120259 0.38118510
1.2 1.0 109 4.8485381 4.8484848 0.38118069 0.38118510
1.2 9.9 109 4.8484886 4.8484848 0.38116295 0.38118510

Table 4: Comparison of time averages and microcanonical ensemble averages for r = 1.2, with Nb ranging from
104 to 109.
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(3.6) Consider a toroidal phase space (x, p) ∈ T
2. You can describe the torus as a square [0, 1]× [0, 1] with opposite

sides identified. Design your own modified Arnold cat map acting on this phase space, i.e. a 2 × 2 matrix with
integer coefficients and determinant 1.

(a) Start with an initial distribution localized around the center – say a disc centered at (12 ,
1
2 ). Show how these

initial conditions evolve under your map. Can you tell whether your dynamics are mixing?

(b) Now take a pixelated image. For reasons discussed in the lecture notes, this image should exhibit Poincaré
recurrence. Can you see this happening?

Solution :

(a) Any map

(

x′

p′

)

=

M
︷ ︸︸ ︷

(

a b
c d

) (

x
p

)

,

will due, provided det M = ad − bc = 1. Arnold’s cat map has M =

(

1 1
1 2

)

. Consider the generalized cat map

with M =

(

1 1
p p+ 1

)

. Starting from an initial square distribution, we iterate the map up to three times and show

the results in Fig. 3. The numerical results are consistent with a mixing flow. (With just a few further interations,
almost the entire torus is covered.)

(c) A pixelated image exhibits Poincaré recurrence, as we see in Fig. 4.

Figure 3: Zeroth, first, second, and third iterates of the generalized cat map with p = 2, acting on an initial square
distribution (clockwise from upper left).
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(3.7) Consider a modified version of the Kac ring model where each spin exists in one of three states: A, B, or C.
The flippers rotate the internal states cyclically: A→B→C→A.

(a) What is the Poincaré recurrence time for this system? Hint: the answer depends on whether or not the total
number of flippers is a multiple of 3.

(b) Simulate the system numerically. Choose a ring size on the order ofN = 10, 000 and investigate a few flipper
densities: x = 0.001, x = 0.01, x = 0.1, x = 0.99. Remember that the flippers are located randomly at the
start, but do not move as the spins evolve. Starting from a configuration where all the spins are in the A
state, plot the probabilities pA(t), pB(t), and pC(t) versus the discrete time coordinate t, with t ranging from 0
to the recurrence time. If you can, for each value of x, plot the three probabilities in different colors or line
characteristics (e.g. solid, dotted, dashed) on the same graph.

(c) Let’s call at = p
A
(t), etc. Explain in words why the Stosszahlansatz results in the equations

at+1 = (1− x) at + x ct

bt+1 = (1− x) bt + xat

ct+1 = (1− x) ct + x bt .

This describes what is known as a Markov process, which is governed by coupled equations of the form
Pi(t + 1) =

∑

j Qij Pj(t), where Q is the transition matrix. Find the 3 × 3 transition matrix for this Markov
process.

(d) Show that the total probability is conserved by a Markov process if
∑

iQij = 1 and verify this is the case for
the equations in (c).

(e) One can then eliminate ct = 1− at − bt and write these as two coupled equations. Show that if we define

ãt ≡ at − 1
3 , b̃t ≡ bt − 1

3 , c̃t ≡ ct − 1
3

that we can write
(

ãt+1

b̃t+1

)

= R

(

ãt
b̃t

)

,

and find the 2× 2 matrix R. Note that this is not a Markov process in A and B, since total probability for the
A and B states is not itself conserved. Show that the eigenvalues of R form a complex conjugate pair. Find
the amplitude and phase of these eigenvalues. Show that the amplitude never exceeds unity.

(f) The fact that the eigenvalues of R are complex means that the probabilities should oscillate as they decay to
their equilibrium values p

A
= p

B
= p

C
= 1

3 . Can you see this in your simulations?

Solution :

(a) If the number of flippers Nf is a multiple of 3, then each spin will have made an integer number of complete
cyclic changes A→B→C→A after one complete passage around the ring. The recurrence time is then N , where N
is the number of sites. If the number of flippers Nf is not a multiple of 3, then the recurrence time is simply 3N .

(b) See figs. 5, 6, 7.

(c) According to the Stosszahlansatz, the probability at+1 that a given spin will be in state A at time (t + 1) is
the probability at it was in A at time t times the probability (1 − x) that it did not encounter a flipper, plus the
probability ct it was in state C at time t times the probability x that it did encounter a flipper. This explains the
first equation. The others follow by cyclic permutation. The transition matrix is

Q =





1− x 0 x
x 1− x 0
0 x 1− x



 .
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Figure 4: Evolution of a pixelated blobfish under the p = 2 generalized cat map.

Figure 5: Simulation of three state Kac ring model with initial conditions at=0 = 0.7, bt=0 = 0.2, ct=0 = 0.1. Note
the oscillations as equilibrium is approached.

(d) The total probability is
∑

i Pi. Assuming
∑

iQij = 1, we have

∑

i

Pi(t+ 1) =
∑

i

∑

j

Qij Pj(t) =
∑

j

(

∑

i

Qij

)

Pj(t) =
∑

j

Pj(t)

and the total probability is conserved. That’s a Good Thing.
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Figure 6: Simulation of three state Kac ring model with initial conditions at=0 = 0.7, bt=0 = 0.2, ct=0 = 0.1.

(e) Substituting at = ãt +
1
3 , etc. into the Markov process and eliminating c̃t = −

(

ãt + b̃t
)

, we obtain

R =

(

1− 2x −x
x 1− x

)

.

The characteristic polynomial for R is

P (λ) = det
(

λ · 1−R
)

= (λ− 1 + 2x)(λ − 1 + x) + x2

= λ2 − (2 − 3x)λ+ (1− 3x+ 3x2) .

The eigenvalues are the two roots of P (λ):

λ± = 1− 3
2 x± i

√
3
2 x .

Note that we can write
λ±(x) = e−1/τ(x) e±iφ(x)

where

τ(x) = − 2

ln
(

1− 3x+ 3x2
) , φ(x) = tan−1

(
√
3 x

2− 3x

)

.

Since x(1 − x) achieves its maximum volume on the unit interval x ∈ [0, 1] at x = 1
2 , where x(1 − x) = 1

4 , we see
that 1

2 ≤ |λ(x)| ≤ 1, hence 0 ≤ τ(x) ≤ ln 2. We plot τ(x) and φ(x) in fig. 7.

If you managed to get this far, then you’ve done all that was asked. However, one can go farther and analytically
solve the equations for the Markov chain. In so doing, we will discuss the linear algebraic aspects of the problem.
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The matrixR is real but not symmetric. For such a matrix, the characteristic polynomial satisfies
[

P (λ)
]∗

= P (λ∗),
hence if λ is a root of P (λ = 0), which is to say λ is an eigenvalue, then so is λ∗. Accordingly, the eigenvalues of a
real asymmetric matrix are either real or come in complex conjugate pairs. We can decompose such a matrix R as
a sum over its eigenvectors,

Rij =
∑

α

λα ψ
α
i φ

α
j ,

where
∑

j

Rij ψ
α
j = λα ψ

α
i

∑

i

φαi Rij = λα φ
α
j .

Thus, ψα
j is the jth component of the αth right eigenvector ofR, while φαi is the ith component of the αth left eigenvector

of R. Note that φα is a right eigenvector for the transposed matrix Rt. We can further impose the normalization
condition,

〈

φα
∣

∣ψβ
〉

=
∑

i

ψα
i φ

β
i = δαβ .

Figure 7: Phase angle and relaxation time for the
Markov process derived via the Stosszahlansatz from
the three state Kac ring model.

One can check that the following assignment of eigenvec-
tors is valid for our R(x) matrix:

~ψ+ =

(

1
−eiπ/3

)

~φ+ = 1√
3
eiπ/6

(

1 eiπ/3
)

.

and

~ψ− =

(

1
−e−iπ/3

)

~φ+ = 1√
3
e−iπ/6

(

1 e−iπ/3
)

.

Let us write the vector

~ηt =

(

ãt
b̃t

)

.

We then may expand ~ηt in the right eigenvectors of R,
writing

~ηt =
∑

α

Cα λ
t
α
~ψα .

Suppose we begin in a state where at=0 = 1 and bt=0 =

ct=0 = 0. Then we have ãt=0 = 2
3 and b̃t=0 = − 1

3 , hence

Cα =
〈

~φα
∣

∣

(

+2/3

−1/3

)

〉

.

We thereby find C+ = C− = 1
3 , and

ãt =
2
3 e

−t/τ cos
(

t φ
)

b̃t =
2
3 e

−t/τ sin
(

t φ− π
6

)

,

with c̃t = −
(

ãt + b̃t
)

.

(f) Yes! The oscillation is particularly clear in the lower panel of fig. 5.
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(3.8) Consider a spin singlet formed by two S = 1
2 particles, |Ψ 〉 = 1√

2

(

|↑A ↓B 〉 − |↓A ↑B 〉
)

. Find the reduced

density matrix, ρA = Tr B|Ψ 〉〈Ψ |.

Solution :

We have
|Ψ 〉〈Ψ | = 1

2 |↑A ↓B 〉〈 ↑A ↓B |+ 1
2 |↓A ↑B 〉〈 ↓A ↑B | − 1

2 |↑A ↓B 〉〈 ↓A ↑B | − 1
2 |↓A ↑B 〉〈 ↑A ↓B | .

Now take the trace over the spin degrees of freedom on site B. Only the first two terms contribute, resulting in the
reduced density matrix

ρA = Tr B|Ψ 〉〈Ψ | = 1
2 |↑A 〉〈 ↑A |+ 1

2 |↓A 〉〈 ↓A | .

Note that Tr ρA = 1, but whereas the full density matrix ρ = Tr B|Ψ 〉〈Ψ | had one eigenvalue of 1, corresponding
to eigenvector |Ψ 〉, and three eigenvalues of 0, corresponding to any state orthogonal to |Ψ 〉, the reduced density
matrix ρA does not correspond to a ‘pure state’ in that it is not a projector. It has two degenerate eigenvalues at
λ = 1

2 . The quantity SA = −Tr ρA ln ρA = ln 2 is the quantum entanglement entropy for the spin singlet.
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4 Statistical Ensembles : Worked Examples

(4.1) Consider a system of N identical but distinguishable particles, each of which has a nondegenerate ground
state with energy zero, and a g-fold degenerate excited state with energy ε > 0.

(a) Let the total energy of the system be fixed at E = Mε, where M is the number of particles in an excited state.
What is the total number of states Ω(E,N)?

(b) What is the entropy S(E,N)? Assume the system is thermodynamically large. You may find it convenient
to define ν ≡ M/N , which is the fraction of particles in an excited state.

(c) Find the temperature T (ν). Invert this relation to find ν(T ).

(d) Show that there is a region where the temperature is negative.

(e) What happens when a system at negative temperature is placed in thermal contact with a heat bath at
positive temperature?

Solution :

(a) Since each excited particle can be in any of g degenerate energy states, we have

Ω(E,N) =

(

N

M

)

gM =
N ! gM

M ! (N −M)!
.

(b) Using Stirling’s approximation, we have

S(E,N) = k
B
lnΩ(E,N) = −Nk

B

{

ν ln ν + (1− ν) ln(1− ν)− ν ln g
}

,

where ν = M/N = E/Nε.

(c) The inverse temperature is

1

T
=

(

∂S

∂E

)

N

=
1

Nε

(

∂S

∂ν

)

N

=
k

B

ε
·
{

ln

(

1− ν

ν

)

+ ln g

}

,

hence
k

B
T =

ε

ln
(

1−ν
ν

)

+ ln g
.

Inverting,

ν(T ) =
g e−ε/k

B
T

1 + g e−ε/k
B
T
.

(d) The temperature diverges when the denominator in the above expression for T (ν) vanishes. This occurs at
ν = ν∗ ≡ g/(g + 1). For ν ∈ (ν∗, 1), the temperature is negative! This is technically correct, and a consequence
of the fact that the energy is bounded for this system: E ∈ [0, Nε]. The entropy as a function of ν therefore has a
maximum at ν = ν∗. The model is unphysical though in that it neglects various excitations such as kinetic energy
(e.g. lattice vibrations) for which the energy can be arbitrarily large.

(e) When a system at negative temperature is placed in contact with a heat bath at positive temperature, heat flows
from the system to the bath. The energy of the system therefore decreases, and since ∂S

∂E < 0, this results in a net

1



Figure 1: Bottom: dimensionless temperature θ(ν) ≡ kBT/ε versus dimensionless energy density ν = E/Nε for
problem 1, shown here for g = 3. Note that T → ∓∞ for ν → ν∗±0+, where ν∗ = g/(g+1) is the energy density at
which the entropy is maximum. Top: dimensionless entropy s(ν) ≡ S/NkB versus dimensionless energy density
ν. Note the maximum at ν∗ = g/(g + 1), where g is the degeneracy of the excited level.

entropy increase, which is what is demanded by the Second Law of Thermodynamics. More precisely, let d̄Q be
the heat added to the system from the bath. The first law then says dE = d̄Q. The total entropy change due to
such a differential heat transfer is

dStot = dS + dSb =

(

1

T
− 1

Tb

)

dE ,

where dS = dSsys is the entropy change of the system and T is the system temperature; Tb > 0 is the temperature

of the bath. We see that the Second Law, dStot ≥ 0, requires that dE ≤ 0. For d̄Q = dE < 0, the total entropy
increases. Note that the heat capacity of the system is

C =
∂E

∂T
= Nε

∂ν

∂T
=

Nε2

k
B
T 2

g e−ε/k
B
T

(

1 + g e−ε/k
B
T
)2

and that C ≥ 0. Even though the temperature T can be negative, we always have C(T ) ≥ 0; this is necessary for
thermodynamic stability. We conclude that the system’s temperature changes by dT = dE/C, so if dE < 0 we
have dT < 0 and the system cools.

All should be clear upon examination of Fig. 1. When ν > ν∗, the system temperature is negative. Placing

the system in contact with a bath at temperature Tb > 0 will cause heat to flow from the system to the bath:
d̄Q = dE < 0. This means dν = dE/Nε < 0, hence ν decreases and approaches ν∗ from above, at which point
T = −∞. At this point, a further differential transfer −d̄Q > 0 from the system to the bath continues to result in

an increase of total entropy, with dStot = −d̄Q/Tb at ν = ν∗. Thus, ν crosses ν∗, and the temperature flips from
T = −∞ to T = +∞. At this point, we can appeal to our normal intuition. The system is much hotter than the
bath, and heat continues to flow to the bath. This has the (familiar) effect of lowering the system temperature,

2



which will then approach Tb from above. Ultimately, both system and bath will be at temperature Tb, as required
for thermodynamic equilibrium.

3



(4.2) Solve for the model in problem 1 using the ordinary canonical ensemble. The Hamiltonian is

Ĥ = ε

N
∑

i=1

(

1− δσ
i
,1

)

,

where σi ∈ {1, . . . , g + 1}.

(a) Find the partition function Z(T,N) and the Helmholtz free energy F (T,N).

(b) Show that M̂ = ∂Ĥ
∂ε counts the number of particles in an excited state. Evaluate the thermodynamic average

ν(T ) = 〈M̂〉/N .

(c) Show that the entropy S = −
(

∂F
∂T

)

N
agrees with your result from problem 1.

Solution :

(a) We have

Z(T,N) = Tr e−βĤ =
(

1 + g e−ε/k
B
T
)N

.

The free energy is

F (T,N) = −k
B
T lnF (T,N) = −Nk

B
T ln

(

1 + g e−ε/k
B
T
)

.

(b) We have

M̂ =
∂Ĥ

∂ε
=

N
∑

i=1

(

1− δσ
i
,1

)

.

Clearly this counts all the excited particles, since the expression 1 − δσ
i
,1 vanishes if i = 1, which is the ground

state, and yields 1 if i 6= 1, i.e. if particle i is in any of the g excited states. The thermodynamic average of M̂ is

〈M̂〉 =
(

∂F
∂ε

)

T,N
, hence

ν =
〈M̂〉
N

=
g e−ε/k

B
T

1 + g e−ε/k
B
T
,

which agrees with the result in problem 1c.

(c) The entropy is

S = −
(

∂F

∂T

)

N

= Nk
B
ln
(

1 + g e−ε/k
B
T
)

+
Nε

T

g e−ε/k
B
T

1 + g e−ε/k
B
T
.

Working with our result for ν(T ), we derive

1 + g e−ε/k
B
T =

1

1− ν

ε

k
B
T

= ln

(

g(1− ν)

ν

)

.

Inserting these results into the above expression for S, we verify

S = −Nk
B
ln(1− ν) +Nk

B
ν ln

(

g(1− ν)

ν

)

= −Nk
B

{

ν ln ν + (1− ν) ln(1− ν)− ν ln g
}

,

as we found in problem 1b.
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(4.3) Consider a system of noninteracting spin trimers, each of which is described by the Hamiltonian

Ĥ = −J
(

σ1σ2 + σ2σ3 + σ3σ1

)

− µ0H
(

σ1 + σ2 + σ3

)

.

The individual spin polarizations σi are two-state Ising variables, with σi = ±1.

(a) Find the single trimer partition function ζ.

(b) Find the magnetization per trimer m = µ0 〈σ1 + σ2 + σ3〉.

(c) Suppose there are N△ trimers in a volume V . The magnetization density is M = N△m/V . Find the zero field
susceptibility χ(T ) = (∂M/∂H)H=0.

(d) Find the entropy S(T,H,N△).

(e) Interpret your results for parts (b), (c), and (d) physically for the limits J → +∞, J → 0, and J → −∞.

Solution :

The eight trimer configurations and their corresponding energies are listed in the table below.

|σ1σ2σ3 〉 E |σ1σ2σ3 〉 E

|↑↑↑ 〉 −3J − 3µ0H |↓↓↓ 〉 −3J + 3µ0H
|↑↑↓ 〉 +J − µ0H |↓↓↑ 〉 +J + µ0H
|↑↓↑ 〉 +J − µ0H |↓↑↓ 〉 +J + µ0H
|↓↑↑ 〉 +J − µ0H |↑↓↓ 〉 +J + µ0H

Table 1: Spin configurations and their corresponding energies.

(a) The single trimer partition function is then

ζ =
∑

α

e−βEα = 2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H) .

(b) The magnetization is

m =
1

βζ

∂ζ

∂H
= 3µ0 ·

(

e3βJ sinh(3βµ0H) + e−βJ sinh(βµ0H)

e3βJ cosh(3βµ0J) + 3 e−βJ cosh(βµ0H)

)

(c) Expanding m(T,H) to lowest order in H , we have

m = 3βµ2
0 H ·

(

3 e3βJ + e−βJ

e3βJ + 3 e−βJ

)

+O(H3) .

Thus,

χ(T ) =
N△

V
· 3µ

2
0

k
B
T

·
(

3 e3J/kB
T + e−J/k

B
T

e3J/kB
T + 3 e−J/k

B
T

)

.

(d) Note that

F =
1

β
lnZ , E =

∂ lnZ

∂β
.
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Thus,

S =
E − F

T
= k

B

(

lnZ − β
∂ lnZ

∂β

)

= N△k
B

(

ln ζ − β
∂ ln ζ

∂β

)

.

So the entropy is

S(T,H,N△) = N△k
B
ln
(

2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)
)

− 6N△βJk
B
·
(

e3βJ cosh(3βµ0H)− e−βJ cosh(βµ0H)

2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)

− 6N△βµ0Hk
B
·
(

e3βJ sinh(3βµ0H) + e−βJ sinh(βµ0H)

2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)

.

Setting H = 0 we have

S(T,H = 0, N△) = N△k
B
ln 2 +N△k

B
ln
(

1 + 3 e−4J/k
B
T
)

+
N△J

T
·
(

12 e−4J/k
B
T

1 + 3 e−4J/k
B
T

)

= N△k
B
ln 6 +N△k

B
ln
(

1 + 1
3 e

4J/k
B
T
)

−
N△J

T
·
(

4 e4J/kB
T

3 + e4J/kB
T

)

.

(e) Note that for J = 0 we have m = 3µ2
0H/k

B
T , corresponding to three independent Ising spins. The H = 0

entropy is then N△k
B
ln 8 = 3N△k

B
ln 2, as expected. As J → +∞ we have m = 9µ2

0H/k
B
T = (3µ0)

2H/k
B
T ,

and each trimer acts as a single Z2 Ising spin, but with moment 3µ0. The zero field entropy in this limit tends
to N△k

B
ln 2, again corresponding to a single Z2 Ising degree of freedom per trimer. For J → −∞, we have

m = µ2
0 H/k

B
T and S = N△k

B
ln 6. This is because the only allowed (i.e. finite energy) states of each trimer are the

three states with magnetization +µ0 and the three states with magnetization −µ0, all of which are degenerate at
H = 0.
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(4.4) In §4.9.4 of the lecture notes, we considered a simple model for the elasticity of wool in which each of N
monomers was in one of two states A or B, with energies ε

A,B
and lengths ℓ

A,B
. Consider now the case where the A

state is doubly degenerate due to a magnetic degree of freedom which does not affect the energy or the length of
the A

± monomers.

(a) Generalize the results from this section of the lecture notes and show that you can write the Hamiltonian Ĥ

and chain length L̂ in terms of spin variables Sj ∈ {−1, 0, 1}, where Sj = ±1 if monomer j is in state A
±,

and Sj = 0 if it is in state B. Construct the appropriate generalization of K̂ − Ĥ − τL̂.

(b) Find the equilibrium length L(T, τ,N) as a function of the temperature, tension, and number of monomers.

(c) Now suppose an external magnetic field is present, so the energies of the A
± states are split, with ε

A± =
ε
A
∓ µ0H . Find an expression for L(T, τ,H,N).

Solution :

(a) Take

Ĥ =
N
∑

j=1

[

ε
B
+ (ε

A
− ε

B
)S2

j

]

, L̂ =
N
∑

j=1

[

ℓ
B
+ (ℓ

A
− ℓ

B
)S2

j

]

,

resulting in

K̂ = Ĥ − τL̂ = N(ε
B
− τℓ

B
) + ∆

N
∑

j=1

S2
j ,

where
∆ = (ε

A
− ε

B
)− τ(ℓ

A
− ℓ

B
) .

(b) The partition function is

Y (T, τ,N) = e−G/k
B
T = Tr e−K̂/k

B
T

= e−N(ε
B
−τℓ

B
)/k

B
T
(

1 + 2 e−∆/k
B
T
)N

.

Thus, the Gibbs free energy is

G(T, τ,N) = −k
B
T lnY (T, τ,N) = N(ε

B
− τℓ

B
)−Nk

B
T ln

(

1 + 2 e−∆/k
B
T
)

.

The equilibrium length is

L = −∂G

∂τ
= Nℓ

B
+N(ℓ

A
− ℓ

B
) · 2 e−∆/k

B
T

1 + 2 e−∆/k
B
T
.

Note that L = Nℓ
A

for ∆ → −∞ and L = Nℓ
B

for ∆ → +∞.

(c) Accounting for the splitting of the two A states,

L = Nℓ
B
+N(ℓ

A
− ℓ

B
) · 2 e−∆/k

B
T cosh(µ0H/k

B
T )

1 + 2 e−∆/k
B
T cosh(µ0H/k

B
T )

.
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(4.5) Consider a generalization of the situation in §4.4 of the notes where now three reservoirs are in thermal
contact, with any pair of systems able to exchange energy.

(a) Assuming interface energies are negligible, what is the total density of states D(E)? Your answer should be
expressed in terms of the densities of states functions D1,2,3 for the three individual systems.

(b) Find an expression for P (E1, E2), which is the joint probability distribution for system 1 to have energy E1

while system 2 has energy E2 and the total energy of all three systems is E1 + E2 + E3 = E.

(c) Extremize P (E1, E2) with respect to E1,2. Show that this requires the temperatures for all three systems
must be equal: T1 = T2 = T3. Writing Ej = E∗

j + δEj , where E∗
j is the extremal solution (j = 1, 2), expand

lnP (E∗
1 + δE1 , E

∗
2 + δE2) to second order in the variations δEj . Remember that

S = k
B
lnD ,

(

∂S

∂E

)

V,N

=
1

T
,

(

∂2S

∂E2

)

V,N

= − 1

T 2CV

.

(d) Assuming a Gaussian form for P (E1, E2) as derived in part (c), find the variance of the energy of system 1,

Var(E1) =
〈

(E1 − E∗
1 )

2
〉

.

Solution :

(a) The total density of states is a convolution:

D(E) =

∞
∫

−∞

dE1

∞
∫

−∞

dE2

∞
∫

−∞

dE3 D1(E1)D2(E2)D3(E3) δ(E − E1 − E2 − E3) .

(b) The joint probability density P (E1, E2) is given by

P (E1, E2) =
D1(E2)D2(E2)D3(E − E1 − E2)

D(E)
.

(c) We set the derivatives ∂ lnP/∂E1,2 = 0, which gives

∂ lnP

∂E1

=
∂ lnD1

∂E1

− ∂D3

∂E3

= 0 ,
∂ lnP

∂E2

=
∂ lnD3

∂E2

− ∂D3

∂E3

= 0 ,

where E3 = E − E1 − E2 in the argument of D3(E3). Thus, we have

∂ lnD1

∂E1

=
∂ lnD2

∂E2

=
∂ lnD3

∂E3

≡ 1

T
.

Expanding lnP (E∗
1 + δE1 , E

∗
2 + δE2) to second order in the variations δEj , we find the first order terms cancel,

leaving

lnP (E∗
1 + δE1 , E

∗
2 + δE2) = lnP (E∗

1 , E
∗
2 )−

(δE1)
2

2k
B
T 2C1

− (δE2)
2

2k
B
T 2C2

− (δE1 + δE2)
2

2k
B
T 2C3

+ . . . ,

where ∂2 lnDj/∂E
2
j = −1/2k

B
T 2Cj , with Cj the heat capacity at constant volume and particle number. Thus,

P (E1, E2) =

√

det (C−1)

2πk
B
T 2

exp
(

− 1

2k
B
T 2

C−1
ij δEi δEj

)

,

8



where the matrix C−1 is defined as

C−1 =

(

C−1
1 + C−1

3 C−1
3

C−1
3 C−1

2 + C−1
3

)

.

One finds
det (C−1) = C−1

1 C−1
2 + C−1

1 C−1
3 + C−1

2 C−1
3 .

The prefactor in the above expression forP (E1, E2) has been fixed by the normalization condition
∫

dE1

∫

dE2P (E1, E2) =
1.

(d) Integrating over E2, we obtain P (E1):

P (E1) =

∞
∫

−∞

dE2 P (E1, E2) =
1

√

2πk
B

˜C1T
2

e−(δE
1
)2/2k

B
C̃

1
T 2

,

where

˜C1 =
C−1

2 + C−1
3

C−1
1 C−1

2 + C−1
1 C−1

3 + C−1
2 C−1

3

.

Thus,

〈(δE1)
2〉 =

∞
∫

−∞

dE1 (δE1)
2 = k

B

˜C1T
2 .

9



(4.6) Show that the Boltzmann entropyS = −k
B

∑

n Pn lnPn agrees with the statistical entropy S(E) = k
B
lnD(E, V,N)

in the thermodynamic limit.

Solution :

Let’s first examine the canonical partition function, Z =
∞
∫

0

dE D(E) e−βE . We compute this integral via the saddle

point method, extremizing the exponent, lnD(E)− βE , with respect to E. The resulting maximum lies at Ē such

that 1
T = ∂S

∂E

∣

∣

Ē
, where S(E) = k

B
lnD(E) is the statistical entropy computed in the microcanonical ensemble. The

ordinary canonical partition function is then

Z ≈ D(Ē) e−βĒ

∞
∫

−∞

d δE e−(δE)2/2k
B
T 2CV

= (2πk
B
T 2CV )

1/2 D(Ē) e−βĒ .

Taking the logarithm, we obtain the Helmholtz free energy,

F = −k
B
T lnZ = −k

B
lnD(Ē) + Ē − 1

2kB
T ln

(

2πk
B
T 2CV

)

.

Now S
OCE

= −k
B

∑

n Pn lnPn, with Pn = 1
Z e−βEn . Therefore

S
OCE

(T ) =
k

B

Z

∞
∫

0

dE D(E) e−βE
(

lnZ + βE
)

= k
B
lnZ +

1

T
·
∫∞

0 dE ED(E) e−βE

∫∞

0 dE D(E) e−βE
.

The denominator of the second term is Z , which we have already evaluated. We evaluate the numerator using the
same expansion about Ē. The only difference is the additional factor of E = Ē+ δE in the integrand. The δE term

integrates to zero, since the remaining factors in the integrand yield D(Ē) e−βĒ e−(δE)2/2k
B
T 2CV , which is even in

δE. Thus, the second term in the above equation is simply Ē/T , and we obtain

S
OCE

= k
B
lnD(Ē) + 1

2kB
ln
(

2πk
B
T 2CV ) .

The RHS here is dominated by the first term, which is extensive, whereas the second term is of order lnV . Thus,

we conclude that S
OCE

(T, V,N) = SµCE
(Ē, V,N), where Ē and T are related by 1

T = ∂S
∂E

∣

∣

Ē
.
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(4.7) Consider rod-shaped molecules with moment of inertia I , and a dipole moment µ. The contribution of the
rotational degrees of freedom to the Hamiltonian is

Ĥrot =
p2θ
2I

+
p2φ

2I sin2θ
− µE cos θ ,

where E is the external electric field, and (θ, φ) are polar and azimuthal angles describing the molecular orienta-
tion1.

(a) Calculate the contribution of the rotational degrees of freedom of each dipole to the classical partition func-
tion.

(b) Obtain the mean polarization P = 〈µ cos θ〉 of each dipole.

(c) Find the zero-field isothermal polarizability, χ(T ) =
(

∂P
∂E

)

E=0
.

(d) Calculate the rotational energy per particle at finite field E, and comment on its high and low-temperature
limits.

(e) Sketch the rotational heat capacity per dipole as a function of temperature.

Solution :

(a) The rotational contribution to the single particle partition function is

ξrot =

∞
∫

−∞

dpθ

∞
∫

−∞

dpφ

π
∫

0

dθ

2π
∫

0

dφ e−p2

θ/2IkB
T e−p2

φ/2IkB
T sin2θ eµE cos θ/k

B
T

= 2π · (2πIk
B
T )1/2

π
∫

0

dθ eµE cos θ/k
B
T

∞
∫

−∞

dpθ e
−p2

φ/2IkB
T sin2θ

= 4π2Ik
B
T

π
∫

0

dθ sin θ eµE cos θ/k
B
T =

8π2I(k
B
T )2

µE
sinh

(

µE

k
B
T

)

.

The translational contribution is ξtr = V λ−3
T . The single particle free energy is then

f = −k
B
T ln

(

8π2Ik2
B
T 2
)

+ k
B
T ln(µE)− k

B
T ln sinh

(

µE

k
B
T

)

− k
B
T ln

(

V/λ3
T

)

.

(b) The mean polarization of each dipole is

P = − ∂f

∂E
= −k

B
T

E
+ µ ctnh

(

µE

k
B
T

)

.

(c) We expand ctnh (x) = 1
x + x

3 + O(x3) in a Laurent series, whence P = µ2E/3k
B
T + O(E3). Then χ(T ) =

µ2/3k
B
T , which is of the Curie form familiar from magnetic systems.

(d) We have ξrot = Tr e−βĥ
rot , hence

εrot = 〈ĥrot〉 = −∂ ln ξrot
∂β

= − ∂

∂β

{

− 2 lnβ + ln sinh(βµE)
}

= 2k
B
T − µE ctnh

(

µE

k
B
T

)

.

1This is problem 4.12 from vol. 1 of M. Kardar.
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Figure 2: Rotational heat capacity crot(T ) for problem 7.

At high temperatures T ≫ µE/k
B

, the argument of ctnhx is very small, and using the Laurent expansion we find
εrot = k

B
T . This comports with our understanding from equipartition, since there are only two quadratic degrees

of freedom present (pθ and pφ). The orientational degree of freedom θ does not enter because µE cos θ ≪ k
B
T

in this regime. Unlike the rotational kinetic energy, the rotational potential energy is bounded. In the limit T ≪
µE/k

B
, we have that the argument of ctnhx is very large, hence εrot ≈ 2k

B
T − µE. This can be understood as

follows. If we change variables to p̃φ ≡ pφ/ sin θ, then we have

ξrot =

∞
∫

−∞

dpθ

∞
∫

−∞

dp̃φ

π
∫

0

dθ sin θ

2π
∫

0

dφ e−p2

θ/2IkB
T e−p̃2

φ/2IkB
T eµE cos θ/k

B
T

=

∞
∫

−∞

dpθ

∞
∫

−∞

dp̃φ

1
∫

−1

dx

2π
∫

0

dφ e−p2

θ/2IkB
T e−p̃2

φ/2IkB
T eµEx/k

B
T ,

where x = cos θ. We see that x appears linearly in the energy, and simple dimensional analysis reveals that any
degree of freedom ζ which appears homogeneously as U(ζ) ∝ ζr contributes k

B
T/r to the average energy. In our

case, we have quadratic contributions to the Hamiltonian from pθ and p̃φ, a linear contribution from x = cos θ,

and φ itself does not appear. Hence ε = −µE + 2 × 1
2kB

T + k
B
T = −µE + 2k

B
T . The −µE term is the minimum

value of the potential energy.

(e) The rotational heat capacity per molecule, sketched in Fig. 2, is given by

crot =
∂εrot
∂T

= 2k
B
− k

B

(

µE/k
B
T

sinh(µE/k
B
T )

)2

.
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(4.8) Consider a surface containing Ns adsorption sites which is in equilibrium with a two-component nonrela-
tivistic ideal gas containing atoms of types A and B . (Their respective masses are m

A
and m

B
). Each adsorption

site can be in one of three possible states: (i) vacant, (ii) occupied by an A atom, with energy −∆
A

, and (ii) occupied
with a B atom, with energy −∆

B
.

(a) Find the grand partition function for the surface, Ξsurf(T, µA
, µ

B
, N

s
).

(b) Suppose the number densities of the gas atoms are n
A

and n
B

. Find the fraction f
A
(n

A
, n

B
, T ) of adsorption

sites with A atoms, and the fraction f0(nA
, n

B
, T ) of adsorption sites which are vacant.

Solution :

(a) The surface grand partition function is

Ξsurf(T, µA
, µ

B
, N

s
) =

(

1 + e(∆A
+µ

A
)/k

B
T + e(∆B

+µ
B
)/k

B
T
)N

s

.

(b) From the grand partition function of the gas, we have

nA = λ−3
T,A e

µ
A
/k

B
T , nB = λ−3

T,B eµB
/k

B
T ,

with

λT,A =

√

2π~2

m
A
k

B
T

, λT,B =

√

2π~2

m
B
k

B
T

.

Thus,

f0 =
1

1 + n
A
λ3
T,A e∆A

/k
B
T + n

B
λ3
T,B e∆B

/k
B
T

fA =
n
A
λ3
T,A e∆A

/k
B
T

1 + n
A
λ3
T,A e∆A

/k
B
T + n

B
λ3
T,B e∆B

/k
B
T

f
B
=

n
B
λ3
T,B e∆B

/k
B
T

1 + n
A
λ3
T,A e∆A

/k
B
T + n

B
λ3
T,B e∆B

/k
B
T
.

Note that f0 + f
A
+ f

B
= 1.
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(4.9) Consider a two-dimensional gas of identical classical, noninteracting, massive relativistic particles with

dispersion ε(p) =
√

p2c2 +m2c4.

(a) Compute the free energy F (T, V,N).

(b) Find the entropy S(T, V,N).

(c) Find an equation of state relating the fugacity z = eµ/kB
T to the temperature T and the pressure p.

Solution :

(a) We have Z = (ζA)N/N ! where A is the area and

ζ(T ) =

∫

d2p

h2
e−β

√
p2c2+m2c4 =

2π

(βhc)2
(

1 + βmc2
)

e−βmc2 .

To obtain this result it is convenient to change variables to u = β
√

p2c2 +m2c4, in which case p dp = u du/β2c2,
and the lower limit on u is mc2. The free energy is then

F = −k
B
T lnZ = Nk

B
T ln

(

2π~2c2N

(k
B
T )2A

)

−Nk
B
T ln

(

1 +
mc2

k
B
T

)

+Nmc2 .

where we are taking the thermodynamic limit with N → ∞.

(b) We have

S = −∂F

∂T
= −Nk

B
ln

(

2π~2c2N

(k
B
T )2A

)

+Nk
B
ln

(

1 +
mc2

k
B
T

)

+Nk
B

(

mc2 + 2k
B
T

mc2 + k
B
T

)

.

(c) The grand partition function is

Ξ(T, V, µ) = e−βΩ = eβpV =

∞
∑

N=0

ZN(T, V,N) eβµN .

We then find Ξ = exp
(

ζA eβµ
)

, and

p =
(k

B
T )3

2π(~c)2

(

1 +
mc2

k
B
T

)

e(µ−mc2)/k
B
T .

Note that

n =
∂(βp)

∂µ
=

p

k
B
T

=⇒ p = nk
B
T .
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(4.10) A nonrelativistic gas of spin- 12 particles of mass m at temperature T and pressure p is in equilibrium with
a surface. There is no magnetic field in the bulk, but the surface itself is magnetic, so the energy of an adsorbed
particle is −∆− µ0Hσ, where σ = ±1 is the spin polarization and H is the surface magnetic field. The surface has
N

S
adsorption sites.

(a) Compute the Landau free energy of the gas Ω
gas

(T, V, µ). Remember that each particle has two spin polar-
ization states.

(b) Compute the Landau free energy of the surface Ω
surf

(T,H,N
S
). Remember that each adsorption site can be

in one of three possible states: empty, occupied with σ = +1, and occupied with σ = −1.

(c) Find an expression for the fraction f(p, T,∆, H) of occupied adsorption sites.

(d) Find the surface magnetization, M = µ0

(

N
surf,↑ −N

surf,↓

)

.

Solution :

(a) We have

Ξ
gas

(T, V, µ) =

∞
∑

N=0

eNµ/k
B
T Z(T, V,N) =

∞
∑

N=0

V N

N !
eNµ/k

B
T 2N λ−3N

T

= exp
(

2V k
B
Tλ−3

T eµ/kB
T
)

,

where λT =
√

2π~2/mk
B
T is the thermal wavelength. Thus,

Ωgas = −k
B
T ln Ξgas = −2V k

B
Tλ−3

T eµ/kB
T .

(b) Each site on the surface is independent, with three possible energy states: E = 0 (vacant), E = −∆ − µ0H
(occupied with σ = +1), and E = −∆+ µ0H (occupied with σ = −1). Thus,

Ξ
surf

(T,H,N
S
) =

(

1 + e(µ+∆+µ
0
H)/k

B
T + e(µ+∆−µ

0
H)/k

B
T
)N

S

.

The surface free energy is

Ω
surf

(T,H,N
S
) = −k

B
T ln Ξ

surf
= −N

S
k

B
T ln

(

1 + 2 e(µ+∆)/k
B
T cosh(µ0H/k

B
T )
)

.

(c) The fraction of occupied surface sites is f = 〈Nsurf/NS
〉. Thus,

f = − 1

N
S

∂Ω
surf

∂µ
=

2 e(µ+∆)/k
B
T cosh(µ0H/k

B
T )

1 + 2 e(µ+∆)/k
B
T cosh(µ0H/k

B
T )

=
2

2 + e−(µ+∆)/k
B
T sech(µ0H/k

B
T )

.

To find f(p, T,∆, H), we must eliminate µ in favor of p, the pressure in the gas. This is easy! From Ωgas = −pV ,

we have p = 2k
B
Tλ−3

T eµ/kB
T , hence

e−µ/k
B
T =

2k
B
T

p λ3
T

.

Thus,

f(p, T,∆, H) =
p λ3

T

p λ3
T + k

B
T e−∆/k

B
T sech(µ0H/k

B
T )

.
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Note that f → 1 when ∆ → ∞, when T → 0, when p → ∞, or when H → ∞.

(d) The surface magnetization is

M = −∂Ω
surf

∂H
= NS µ0 ·

2 e(µ+∆)/k
B
T sinh(µ0H/k

B
T )

1 + 2 e(µ+∆)/k
B
T cosh(µ0H/k

B
T )

=
N

S
µ0 p λ

3
T tanh(µ0H/k

B
T )

p λ3
T + k

B
T e−∆/k

B
T sech(µ0H/k

B
T )

.
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(4.11) A classical gas consists of particles of two species: A and B. The dispersions for these species are

ε
A
(p) =

p2

2m
, ε

B
(p) =

p2

4m
−∆ .

In other words, m
A
= m and m

B
= 2m, and there is an additional energy offset −∆ associated with the B species.

(a) Find the grand potential Ω(T, V, µ
A
, µ

B
).

(b) Find the number densities n
A
(T, µ

A
, µ

B
) and n

B
(T, µ

A
, µ

B
).

(c) If 2A ⇋ B is an allowed reaction, what is the relation between n
A

and n
B

?
(Hint : What is the relation between µ

A
and µ

B
?)

(d) Suppose initially that n
A
= n and n

B
= 0. Find n

A
in equilibrium, as a function of T and n and constants.

Solution :

(a) The grand partition function Ξ is a product of contributions from the A and B species, and the grand potential
is a sum:

Ω = −V k
B
T λ−3

T eµA
/k

B
T − 23/2 V k

B
T λ−3

T e(µB
+∆)/k

B
T

Here, we have defined the thermal wavelength for the A species as λT ≡ λT,A =
√

2π~2/mk
B
T . For the B species,

since the mass is twice as great, we have λT,B = 2−1/2 λT,A.

(b) The number densities are

n
A
= − 1

V
· ∂Ω

∂µ
A

= V λ−3
T eµA

/k
B
T

n
B
= − 1

V
· ∂Ω

∂µ
B

= 23/2 V λ−3
T e(µB

+∆)/k
B
T .

If the reaction 2A ⇋ B is allowed, then the chemical potentials of the A and B species are related by µ
B
= 2µ

A
≡ 2µ.

We then have
n

A
λ3
T = eµ/kB

T , n
B
λ3
T = 23/2 e(2µ+∆)/k

B
T .

(c) The relation we seek is therefore
n

B
= 23/2 n2

Aλ
3
T e∆/k

B
T .

(d) If we initially have n
A
= n and n

B
= 0, then in general we must have

n
A
+ 2n

B
= n =⇒ n

B
= 1

2

(

n− n
A

)

.

Thus, eliminating n
B

, we have a quadratic equation,

23/2 λ3
T e∆/k

B
T n2

A
= 1

2 (n− n
A
) ,

the solution of which is

n
A
=

−1 +
√

1 + 16
√
2nλ3

T e∆/k
B
T

8
√
2λ3

T e∆/k
B
T

.
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(4.12) The potential energy density for an isotropic elastic solid is given by

U(x) = µTr ε2 + 1
2λ (Tr ε)

2

= µ
∑

α,β

ε2αβ(x) +
1
2λ
(

∑

α

εαα(x)
)2

,

where µ and λ are the Lamé parameters and

εαβ =
1

2

(

∂uα

∂xβ
+

∂uβ

∂xα

)

,

with u(x) the local displacement field, is the strain tensor. The Cartesian indices α and β run over x, y, z. The
kinetic energy density is

T (x) = 1
2ρ u̇

2(x) .

(a) Assume periodic boundary conditions, and Fourier transform to wavevector space,

uα(x, t) = 1√
V

∑

k

ûα
k(t) e

ik·x

ûα
k(t) =

1√
V

∫

d3x uα(x, t) e−ik·x .

Write the Lagrangian L =
∫

d3x
(

T − U
)

in terms of the generalized coordinates ûα
k(t) and generalized

velocities ˙̂uα
k(t).

(b) Find the Hamiltonian H in terms of the generalized coordinates ûα
k(t) and generalized momenta π̂α

k (t).

(c) Find the thermodynamic average 〈u(0) · u(x)〉.

(d) Suppose we add in a nonlocal interaction of the strain field of the form

∆U = 1
2

∫

d3x

∫

d3x′
Tr ε(x) Tr ε(x′) v(x− x′) .

Repeat parts (b) and (c).

Solution :

To do the mode counting we are placing the system in a box of dimensions Lx × Ly × Lz and imposing periodic
boundary conditions. The allowed wavevectors k are of the form

k =

(

2πnx

Lx

,
2πny

Ly

,
2πnz

Lz

)

.

We shall repeatedly invoke the orthogonality of the plane waves:

Lx
∫

0

dx

Ly
∫

0

dy

Lz
∫

0

dz ei(k−k′)·x = V δk,k′ ,

where V = LxLyLz is the volume. When we Fourier decompose the displacement field, we must take care to note

that ûα
k

is complex, and furthermore that ûα
−k

=
(

ûα
k

)∗
, since uα(x) is a real function.

(a) We then have

T =

∞
∫

−∞

dx 1
2ρ u̇

2(x, t) = 1
2ρ
∑

k

∣

∣ ˙̂u
α

k(t)
∣

∣

2

18



and

U =

∞
∫

−∞

dx

[

1
2µ

∂uα

∂xβ

∂uα

∂xβ
+ 1

2 (λ + µ) (∇·u)2
]

= 1
2

∑

k

(

µ δαβ + (λ+ µ) k̂α k̂β
)

k2 ûα
k(t) û

β
−k

(t) .

The Lagrangian is of course L = T − U .

(b) The momentum π̂α
k conjugate to the generalized coordinate ûα

k is

π̂α
k =

∂L

∂ ˙̂u
α

k

= ρ ˙̂uα
−k ,

and the Hamiltonian is

H =
∑

k

π̂α
k
˙̂uα
k − L

=
∑

k

{
∣

∣π̂α
k

∣

∣

2

2ρ
+ 1

2

[

µ
(

δαβ − k̂α k̂β
)

+ (λ+ 2µ) k̂α k̂β
]

k2 ûα
k ûβ

−k

}

.

Note that we have added and subtracted a term µ k̂α k̂β within the expression for the potential energy. This is

because Pαβ = k̂α k̂β and Qαβ = δαβ − k̂α k̂β are projection operators satisfying P
2 = P and Q

2 = Q, with P+Q = I,

the identity. P projects any vector onto the direction k̂, and Q is the projector onto the (two-dimensional) subspace

orthogonal to k̂.

(c) We can decompose û
k

into a longitudinal component parallel to k̂ and a transverse component perpendicular to

k̂, writing

ûk = ik̂ û
‖

k
+ iêk,1 û

⊥,1
k

+ iêk,2 û
⊥,2
k

,

where {êk,1 , êk,2 , k̂} is a right-handed orthonormal triad for each direction k̂. A factor of i is included so that

û
‖

−k
=
(

û
‖

k

)∗
, etc. With this decomposition, the potential energy takes the form

U = 1
2

∑

k

[

µk2
(

∣

∣û⊥,1
k

∣

∣

2
+
∣

∣û⊥,2
k

∣

∣

2
)

+ (λ+ 2µ)k2
∣

∣û
‖

k

∣

∣

2
]

.

Equipartition then means each independent degree of freedom which is quadratic in the potential contributes an

average of 1
2kB

T to the total energy. Recalling that u
‖

k
and u⊥,j

k
(j = 1, 2) are complex functions, and that they are

each the Fourier transform of a real function (so that k and −k terms in the sum for U are equal), we have

〈

µk2
∣

∣û⊥,1
k

∣

∣

2
〉

=
〈

µk2
∣

∣û⊥,2
k

∣

∣

2
〉

= 2× 1
2kB

T
〈

(λ+ 2µ)k2
∣

∣û
‖

k

∣

∣

2
〉

= 2× 1
2kB

T .

Thus,

〈

|ûk|2
〉

= 4× 1
2kB

T × 1

µk2
+ 2× 1

2kB
T × 1

(λ+ 2µ)k2

=

(

2

µ
+

1

λ+ 2µ

)

k
B
T

k2
.
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Then

〈

u(0) · u(x)
〉

=
1

V

∑

k

〈

|ûk|2
〉

eik·x

=

∫

d3k

(2π)3

(

2

µ
+

1

λ+ 2µ

)

k
B
T

k2
eik·x

=

(

2

µ
+

1

λ+ 2µ

)

k
B
T

4π|x| .

Recall that in three space dimensions the Fourier transform of 4π/k2 is 1/|x|.

(d) The k-space representation of ∆U is

∆U = 1
2

∑

k

k2 v̂(k) k̂α k̂β ûα
k ûβ

−k
,

where v̂(k) is the Fourier transform of the interaction v(x− x′):

v̂(k) =

∫

d3r v(r) e−ik·r .

We see then that the effect of ∆U is to replace the Lamé parameter λ with the k-dependent quantity,

λ → λ(k) ≡ λ+ v̂(k) .

With this simple replacement, the results of parts (b) and (c) retain their original forms, mutatis mutandis.
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(4.13) For polyatomic molecules, the full internal partition function is written as the product

ξ(T ) =
gel · gnuc
gsym

· ξvib(T ) · ξrot(T ) ,

where gel is the degeneracy of the lowest electronic state2, gnuc =
∏

j(2Ij + 1) is the total nuclear spin degeneracy,

ξvib(T ) is the vibrational partition function, and ξrot(T ) is the rotational partition function3. The integer gsym
is the symmetry factor of the molecule, which is defined to be the number of identical configurations of a given
molecule which are realized by rotations when the molecule contains identical nuclei. Evaluate gnuc and gsym
for the molecules CH4 (methane), CH3D, CH2D2, CHD3, and CD4. Discuss how the successive deuteration of
methane will affect the vibrational and rotational partition functions. For the vibrations your discussion can be
qualitative, but for the rotations note that all one needs, as we derived in problem (6), is the product I1I2I3 of the
moments of inertia, which is the determinant of the inertia tensor Iαβ in a body-fixed center-of-mass frame. Using the
parallel axis theorem, one has

Iαβ =
∑

j

mj

(

r2
j δαβ − rαj rβj

)

+M
(

R2 δαβ −RαRβ
)

where M =
∑

j mj and R = M−1
∑

j mjrj . Recall that methane is structurally a tetrahedron of hydrogen atoms
with a carbon atom at the center, so we can take r1 = (0, 0, 0) to be the location of the carbon atom and r2,3,4,5 =
(1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1) to be the location of the hydrogen atoms, with all distances in units
of 1√

3
times the C−H separation.

Solution :

The total partition function is given by

Z(T, V,N) =
V N

N !

(

2π~2

Mk
B
T

)3N/2

ξNint(T ) ,

The Gibbs free energy per particle is

µ(T, p) =
G(T, p,N)

N
= k

B
T ln

(

p λd
T

k
B
T

)

− k
B
T ln ξ(T )

= k
B
T ln

(

p λd
T

k
B
T

)

− k
B
T ln

(

gel · gnuc
gsym

)

+ k
B
T
∑

a

ln
(

2 sinh(Θa/2T )
)

− k
B
T ln

[

(

2k
B
T

~2

)3/2
√

πI1I2I3

]

.

The electronic degeneracy is gel = 1 for all stages of deuteration. The nuclear spin of the proton is I = 1
2 and

that of the deuteron is I = 1. Thus there is a nuclear degeneracy of 2Ip + 1 = 2 for each hydrogen nucleus and
2Id + 1 = 3 for each deuterium nucleus. The symmetry factor is analyzed as follows. For methane CH4, there are
four threefold symmetry axes, resulting in gsym = 12. The same result holds for CD4. For CH3D or CHD3, there
is a single threefold axis, hence gsym = 3. For CH2D2, the two hydrogen nuclei lie in a plane together with the
carbon, and the two deuterium nuclei lie in a second plane together with the carbon. The intersection of these two
planes provides a twofold symmetry axis, about which a 180◦ rotation will rotate one hydrogen into the other and
one deuterium into the other. Thus gsym = 2.

To analyze the rotational partition function, we need the product I1I2I3 of the principal moments of inertia, which
is to say the determinant of the inertia tensor det I . We work here in units of amu for mass and 1√

3
times the C−H

2We assume the temperature is low enough that we can ignore electronic excitations.
3Note that for linear polyatomic molecules such as CO

2
and HCN, we must treat the molecule as a rotor, i.e. we use eqn. 4.261 of the notes.
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separation for distance. The inertia tensor is

Iαβ =
∑

j

mj

(

r2
j δαβ − rαj rβj

)

+M
(

R2 δαβ −RαRβ
)

where

M =
∑

j

mj

R = M−1
∑

j

mjrj .

The locations of the four hydrogen/deuterium ions are:

L1 : (+1,+1,+1)

L2 : (+1,−1,−1)

L3 : (−1,+1,−1)

L4 : (−1,−1,+1) .

For CH4 we have M = 16 and R = 0. The inertia tensor is

ICH
4
=





8 0 0
0 8 0
0 0 8



 .

Similarly, for CD4 we have

ICD
4

=





16 0 0
0 16 0
0 0 16



 .

For CH3D, there is an extra mass unit located at L1 relative to methane, so M = 17. The CM is at R =
1
17 (+1,+1,+1). According to the general formula above for Iαβ , thie results in two changes to the inertia ten-
sor, relative to ICH

4

. We find

∆I =





2 −1 −1
−1 2 −1
−1 −1 2



+
1

17





2 −1 −1
−1 2 −1
−1 −1 2



 ,

where the first term accounts for changes in I in the frame centered at the carbon atom, and the second term shifts
to the center-of-mass frame. Thus,

ICH
3
D =













10 + 2
17 − 18

17 − 18
17

− 18
17 10 + 2

17 − 18
17

− 18
17 − 18

17 10 + 2
17













.

For CHD3, we regard the system as CD4 with a missing mass unit at L1, hence M = 19. The CM is now at
R = 1

17 (−1,−1,−1). The change in the inertia tensor relative to ICD
4

is then

∆I = −





2 −1 −1
−1 2 −1
−1 −1 2



+
1

19





2 −1 −1
−1 2 −1
−1 −1 2



 .

Thus,
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mass M degeneracy symmetry det I
molecule (amu) factor gnuc factor gsym (amu) · a2/3

CH4 16 24 = 16 4× 3 = 12 83

CH3D 17 23 · 3 = 24 1× 3 = 3 8 ·
(

11 + 3
17

)2

CH2D2 18 22 · 32 = 36 1× 2 = 2 12 ·
(

8 + 2
9

)

·
(

16 + 2
9

)

CHD3 19 2 · 33 = 54 1× 3 = 3 16 ·
(

13 + 3
19

)2

CD4 20 34 = 81 4× 3 = 12 163

Table 2: Nuclear degeneracy, symmetry factor, and I1I2I3 product for successively deuterated methane.

ICHD
3

=













14 + 2
19

18
19

18
19

18
19 14 + 2

19
18
19

18
19

18
19 14 + 2

19













.

Finally, for CH2D2. we start with methane and put extra masses at L1 and L2, so M = 18 and R = 1
9 (+1, 0, 0).

Then

∆I = −





4 0 0
0 4 −2
0 −2 4



+
2

9





0 0 0
0 1 0
0 0 1





and

ICH
2
D

2

=













12 0 0

0 12 + 2
9 −2

0 −2 12 + 2
9













.

For the vibrations, absent a specific model for the small oscillations problem the best we can do is to say that

adding mass tends to lower the normal mode frequencies since ω ∼
√

k/M .
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5 Quantum Statistics : Worked Examples

(5.1) For a system of noninteracting S = 0 bosons obeying the dispersion ε(k) = ~v|k|.

(a) Find the density of states per unit volume g(ε).

(b) Determine the critical temperature for Bose-Einstein condensation in three dimensions.

(c) Find the condensate fraction n0/n for T < Tc.

(d) For this dispersion, is there a finite transition temperature in d = 2 dimensions? If not, explain why. If so,

compute T
(d=2)
c .

Solution :

(a) The density of states in d dimensions is

g(ε) =

∫

ddk

(2π)d
δ(ε− ~vk) =

Ωd

(2π)d
εd−1

(~v)d
.

(b) The condition for T = Tc is to write n = n(Tc, µ = 0):

n =

∞
∫

0

dε
g(ε)

eε/kB
T
c − 1

=
1

2π2(~v)3

∞
∫

0

dε
ε2

eε/kB
T
c − 1

=
ζ(3)

π2

(

k
B
Tc

~v

)3

.

Thus,

k
B
Tc =

(

π2

ζ(3)

)1/3

~v n1/3 .

(c) For T < Tc, we have

n = n0 +
ζ(3)

π2

(

k
B
T

~v

)3

⇒ n0

n
= 1−

(

T

Tc(n)

)3

.

(d) In d = 2 we have

n =
1

2π(~v)2

∞
∫

0

dε
ε

eε/kB
T
c − 1

=
ζ(2)

2π

(

k
B
Tc

~v

)2

⇒ k
B
T (d=2)
c = ~v

√

2πn

ζ(2)
.
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(5.2) Consider a three-dimensional Fermi gas of S = 1
2 particles obeying the dispersion relation ε(k) = A |k|4.

(a) Compute the density of states g(ε).

(b) Compute the molar heat capacity.

(c) Compute the lowest order nontrivial temperature dependence for µ(T ) at low temperatures. I.e. compute
the O(T 2) term in µ(T ).

Solution :

(a) The density of states in d = 3, with g = 2S+1 = 2, is given by

g(ε) =
1

π2

∞
∫

0

dk k2 δ
(

ε− ε(k)
)

=
1

π2
k2(ε)

dk

dε

∣

∣

∣

∣

∣

k=(ε/A)1/4

=
ε−1/4

4π2A3/4
.

(b) The molar heat capacity is

cV =
π2

3n
R g(ε

F
) k

B
T =

π2R

4
· kB

T

εF

,

where ε
F
= ~

2k2
F
/2m can be expressed in terms of the density using kF = (3π2n)1/3, which is valid for any isotropic

dispersion in d = 3. In deriving this formula we had to express the density n, which enters in the denominator in
the above expression, in terms of ε

F
. But this is easy:

n =

ε
F
∫

0

dε g(ε) =
1

3π2

(

ε
F

A

)3/4

.

(c) We have (Lecture Notes, §5.8.6)

δµ = −π2

6
(k

B
T )2

g′(ε
F
)

g(ε
F
)
=

π2

24
· (kB

T )2

εF

.

Thus,

µ(n, T ) = ε
F
(n) +

π2

24
· (kB

T )2

ε
F
(n)

+O(T 4) ,

where ε
F
(n) = ~

2

2m (3π2n)2/3.
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(5.3) A bosonic gas is known to have a power law density of states g(ε) = Aεσ per unit volume, where σ is a real
number.

(a) Experimentalists measure Tc as a function of the number density n and make a log-log plot of their results.
They find a beautiful straight line with slope 3

7 . That is, Tc(n) ∝ n3/7. Assuming the phase transition they
observe is an ideal Bose-Einstein condensation, find the value of σ.

(b) For T < Tc, find the heat capacity CV .

(c) For T > Tc, find an expression for p(T, z), where z = eβµ is the fugacity. Recall the definition of the polylog-
arithm (or generalized Riemann zeta function)1,

Liq(z) ≡
1

Γ(q)

∞
∫

0

dt
tq−1

z−1et − 1
=

∞
∑

n=1

zn

nq
,

where Γ(q) =
∞
∫

0

dt tq−1 e−t is the Gamma function.

(d) If these particles were fermions rather than bosons, find (i) the Fermi energy ε
F
(n) and (ii) the pressure p(n)

as functions of the density n at T = 0.

Solution :

(a) At T = Tc, we have µ = 0 and n0 = 0, hence

n =

∞
∫

−∞

dε
g(ε)

eε/kB
T
c − 1

= Γ(1 + σ) ζ(1 + σ)A (k
B
Tc)

1+σ .

Thus, Tc ∝ n
1

1+σ = n3/7 which means σ = 4
3 .

(b) For T < Tc we have µ = 0, but the condensate carries no energy. Thus,

E = V

∞
∫

−∞

dε
ε g(ε)

eε/kB
T − 1

= Γ(2 + σ) ζ(2 + σ)A (k
B
T )2+σ

= Γ
(

10
3

)

ζ
(

10
3

)

A (k
B
T )10/3 .

Thus,
CV = Γ

(

13
3

)

ζ
(

10
3

)

A (k
B
T )7/3 ,

where we have used z Γ(z) = Γ(z + 1).

(c) The pressure is p = −Ω/V , which is

p(T, z) = −k
B
T

∞
∫

−∞

dε g(ε) ln
(

1− z e−ε/k
B
T
)

= −Ak
B
T

∞
∫

0

dε εσ ln
(

1− z e−ε/k
B
T
)

=
A

1 + σ

∞
∫

0

dε
ε1+σ

z−1 eε/kB
T − 1

= Γ(1 + σ)A (k
B
T )2+σ Li2+σ(z)

= Γ
(

7
3

)

A (k
B
T )10/3 Li10/3(z) .

1Some sources use the notation ζq(z) for the polylogarithm, but for those of you who have yet to master the scribal complexities of the
Greek ζ , you can use the notation Liq(z) instead.
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(d) The Fermi energy is obtained from

n =

ε
F
∫

0

dε g(ε) =
Aε1+σ

F

1 + σ
⇒ ε

F
(n) =

(

(1 + σ)n

A

)
1

1+σ

=

(

7n

3A

)3/7

.

We obtain the pressure from p = −
(

∂E
∂V

)

N
. The energy is

E = V

ε
F
∫

0

dε g(ε) ε = V · Aε2+σ
F

2 + σ
∝ V − 1

1+σ .

Thus, p = 1
1+σ · E

V , i.e.

p(n) =
Aε2+σ

F

(1 + σ)(2 + σ)
= 3

10

(

7
3

)3/7
A−3/7n10/7 .
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(5.4) At low energies, the conduction electron states in graphene can be described as fourfold degenerate fermions
with dispersion ε(k) = ~v

F
|k|. Using the Sommerfeld expension,

(a) Find the density of single particle states g(ε).

(b) Find the chemical potential µ(T, n) up to terms of order T 4.

(c) Find the energy density E(T, n) = E/V up to terms of order T 4.

Solution :

(a) The DOS per unit volume is

g(ε) = 4

∫

d2k

(2π)2
δ(ε− ~v

F
k) =

2ε

π(~v
F
)2

.

(b) The Sommerfeld expansion is

∞
∫

−∞

dε f(ε− µ) φ(ε) =

µ
∫

−∞

dε φ(ε) +
π2

6
(kT )2 φ′(µ) +

7π4

360
(k

B
T )4 φ′′′(µ) + . . . .

For the particle density, set φ(ε) = g(ε), in which case

n =
1

π

(

µ

~v
F

)2

+
π

3

(

k
B
T

~v
F

)2

.

The expansion terminates after the O(T 2) term. Solving for µ,

µ(T, n) = ~v
F
(πn)1/2

[

1− π

3n

(

k
B
T

~v
F

)2
]1/2

= ~v
F
(πn)1/2

{

1− π

6n

(

k
B
T

~v
F

)2

− π2

72n2

(

k
B
T

~v
F

)4

+ . . .

}

(c) For the energy density E , we take φ(ε) = ε g(ε), whence

E(T, n) = 2µ

3π

[

(

µ

~v
F

)2

+

(

πk
B
T

~v
F

)2
]

= 2
3

√
π ~v

F
n3/2

{

1 +
π

2n

(

k
B
T

~v
F

)2

− π2

8n2

(

k
B
T

~v
F

)4

+ . . .

}
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(5.5) Consider a system of N spin- 12 particles occupying a volume V at temperature T . Opposite spin fermions
may bind in a singlet state to form a boson:

f ↑ + f ↓ ⇋ b

with a binding energy −∆ < 0. Assume that all the particles are nonrelativistic; the fermion mass is m and the
boson mass is 2m. Assume further that spin-flip processes exist, so that the ↑ and ↓ fermion species have identical

chemical potential µf .

(a) What is the equilibrium value of the boson chemical potential, µb? Hint : the answer is µb = 2µf .

(b) Let the total mass density be ρ. Derive the equation of state ρ = ρ(µf , T ), assuming the bosons have not
condensed. You may wish to abbreviate

Lip(z) ≡
∞
∑

n=1

zn

np
.

(c) At what value of µf do the bosons condense?

(d) Derive an equation for the Bose condensation temperature Tc. Solve this equation for Tc in the limits ε0 ≪ ∆

and ε0 ≫ ∆, respectively, where

ε0 ≡ π~2

m

(

ρ/2m

ζ
(

3
2

)

)2/3

.

(e) What is the equation for the condensate fraction ρ0(T, ρ)/ρ when T < Tc?

Solution :

(a) The chemical potential is the Gibbs free energy per particle. If the fermion and boson species are to coexist at
the same T and p, the reaction f ↑ +f ↓⇋ b must result in ∆G = µb − 2µf = 0.

(b) For T > Tc,

ρ = −2mλ−3
T Li3/2

(

− eµf
/k

B
T
)

+ 2
√
8mλ−3

T Li3/2

(

e(2µf
+∆)/k

B
T
)

,

where λT =
√

2π~2/mk
B
T is the thermal wavelength for particles of mass m. This formula accounts for both

fermion spin polarizations, each with number density nf↑ = nf↓ = −λ−3
T Li3/2(−zf) and the bosons with number

density
√
8λ−3

T Li3/2(zb e
β∆), with zb = z2f due to chemical equilibrium among the species. The factor of 23/2 =

√
8

arises from the fact that the boson mass is 2m, hence the boson thermal wavelength is λT /
√
2.

(c) The bosons condense when µb = −∆, the minimum single particle energy. This means µf = − 1
2∆. The

equation of state for T < Tc is then

ρ = −2mλ−3
T Li3/2

(

− e−∆/2k
B
T
)

+ 4
√
2 ζ
(

3
2

)

mλ−3
T + ρ0 ,

where ρ0 is the condensate mass density.

(d) At T = Tc we have ρ0 = 0, hence

ρ

2m

(

2π~2

mk
B
Tc

)3/2

=
√
8 ζ
(

3
2

)

− Li3/2

(

− e−∆/2k
B
T
c

)

,

which is a transcendental equation. Om. In the limit where ∆ is very large, we have

Tc(∆ ≫ ε0) =
π~2

mk
B

(

ρ/2m

ζ
(

3
2

)

)2/3

=
ε0
k

B

.
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In the opposite limit, we have ∆ → 0+ and −Li3/2(−1) = η(3/2), where η(s) is the Dirichlet η-function,

η(s) =

∞
∑

j=1

(−1)j−1 j−s =
(

1− 21−s
)

ζ(s) .

Then

Tc(∆ ≪ ε0) =
2ε0/kB

(

1 + 3
2

√
2
)2/3

.

(e) The condensate fraction is

ν =
ρ0
ρ

= 1−
(

T

Tc

)3/2

·
√
8 ζ
(

3
2

)

− Li3/2

(

− e−∆/2k
B
T
)

√
8 ζ
(

3
2

)

− Li3/2

(

− e−∆/2k
B
T
c

) .

Note that as ∆ → −∞ we have −Li3/2

(

− e−∆/2k
B
T
)

→ 0 and the condensate fraction approaches the free boson

result, ν = 1− (T/Tc)
3/2. In this limit there are no fermions present.
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(5.6) A three-dimensional system of spin-0 bosonic particles obeys the dispersion relation

ε(k) = ∆ +
~
2
k
2

2m
.

The quantity ∆ is the formation energy and m the mass of each particle. These particles are not conserved –
they may be created and destroyed at the boundaries of their environment. (A possible example: vacancies in a
crystalline lattice.) The Hamiltonian for these particles is

H =
∑

k

ε(k) n̂
k
+

U

2V
N̂2 ,

where n̂
k

is the number operator for particles with wavevector k, N̂ =
∑

k
n̂
k

is the total number of particles, V
is the volume of the system, and U is an interaction potential.

(a) Treat the interaction term within mean field theory. That is, define N̂ = 〈N̂〉+δN̂ , where 〈N̂〉 is the thermody-

namic average of N̂ , and derive the mean field self-consistency equation for the number density ρ = 〈N̂〉/V
by neglecting terms quadratic in the fluctuations δN̂ . Show that the mean field Hamiltonian is

H
MF

= − 1
2V Uρ2 +

∑

k

[

ε(k) + Uρ
]

n̂
k
,

(b) Derive the criterion for Bose condensation. Show that this requires ∆ < 0. Find an equation relating Tc, U ,
and ∆.

Solution :

(a) We write

N̂2 =
(

〈N̂〉+ δN̂
)2

= 〈N̂〉2 + 2〈N̂〉 δN̂ + (δN̂)2

= −〈N̂〉2 + 2〈N̂〉 N̂ + (δN̂)2 .

We drop the last term, (δN̂)2, because it is quadratic in the fluctuations. This is the mean field assumption. The
Hamiltonian now becomes

H
MF

= − 1
2V Uρ2 +

∑

k

[

ε(k) + Uρ
]

n̂
k
,

where ρ = 〈N̂〉/V is the number density. This, the dispersion is effectively changed, to

ε̃(k) =
~
2
k
2

2m
+∆+ Uρ .

The average number of particles in state
∣

∣k
〉

is given by the Bose function,

〈n̂
k
〉 = 1

exp
[

ε̃(k)/k
B
T
]

− 1
.

Summing over all k states, and using
1

V

∑

k

−→
∫

d3k

(2π)3
,

8



we obtain

ρ =
1

V

∑

k

〈n̂
k
〉

= ρ0 +

∫

d3k

(2π)3
1

e~
2k2/2mk

B
T e(∆+Uρ)/k

B
T − 1

= ρ0 +

∞
∫

0

dε
g(ε)

e(ε+∆+Uρ)/k
B
T − 1

where ρ0 = 〈n̂
k=0

〉/V is the number density of the k = 0 state alone, i.e. the condensate density. When there is no

condensate, ρ0 = 0. The above equation is the mean field equation. It is equivalent to demanding ∂F/∂ρ = 0, i.e.
to extremizing the free energy with respect to the mean field parameter ρ. Though it is not a required part of the
solution, we have here written this relation in terms of the density of states g(ε), defined according to

g(ε) ≡
∫

d3k

(2π)3
δ

(

ε− ~
2
k
2

2m

)

=
m3/2

√
2π2~3

√
ε .

(b) Bose condensation requires
∆+ Uρ = 0 ,

which clearly requires ∆ < 0. Writing ∆ = −|∆|, we have, just at T = Tc,

ρ(Tc) =
|∆|
U

=

∫

d3k

(2π)3
1

e~2k2/2mkBTc − 1
,

since ρ0(Tc) = 0. This relation determines Tc. Explicitly, we have

|∆|
U

=

∞
∫

0

dε g(ε)

∞
∑

j=1

e−jε/kBT
c

= ζ
(

3
2

)

(

mk
B
Tc

2π~2

)3/2

,

where ζ(ℓ) =
∑∞

n=1 n
−ℓ is the Riemann zeta function. Thus,

Tc =
2π~2

mk
B

( |∆|
ζ
(

3
2

)

U

)2/3

.
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(5.7) A three-dimensional gas of particles obeys the dispersion ε(k) = Ak5/2. There are no internal degrees of
freedom (i.e. the degeneracy factor is g = 1). The number density is n2.

(a) Compute the single particle density of states g(ε).

(b) For bosons, compute the condensation temperature T
BEC

(n).

(c) For fermions, compute the ground state energy density e0(n).

(d) For photon statistics, compute the temperature T (n).

(e) For photon statistics, compute the entropy density s(n) = S/V .

(f) For bosons and fermions, compute the second virial coefficient B2(T ).

Solution :

(a) With ε = Akσ we have k(ε) = (ε/A)1/σ , and

g(ε) =
1

2π2

k2

ε′(k)

∣

∣

∣

∣

k=k(ε)

=
ε

3

σ
−1

2π2σA3/σ
=

ε1/5

5π2A6/5
.

(b) The number density n(T, z, n0) for bosons, in the grand canonical ensemble, is

n(T, z, n0) =

∞
∫

0

dε
g(ε)

z−1eε/kB
T − 1

+ n0 ,

where n0 is the condensate density. For T < T
BEC

, we have z = 1 and n0 > 0. For T > T
BEC

, we have z < 1 and
n0 = 0. Precisely at T = T

BEC
, both conditions apply: z = 1 and n0 = 0. Thus,

n =

∞
∫

0

dε
g(ε)

eε/kB
T
c − 1

=
Γ
(

3
σ

)

ζ
(

3
σ

)

2π2σ

(

k
B
Tc

A

)3/σ

=
Γ
(

6
5

)

ζ
(

6
5

)

5π2

(

k
B
Tc

A

)6/5

.

Thus,

T
BEC

(n) =

(

2π2σ n

Γ
(

3
σ

)

ζ
(

3
σ

)

)σ/3

· A

kB
=

(

5π2n

Γ
(

6
5

)

ζ
(

6
5

)

)5/6

· A

kB
.

(c) The ground state energy density for spinless (i.e. g = 1) fermions is

ε0 =
E0

V
=

∫

d3k

(2π)3
Akσ Θ(k

F
− k) =

A

2π2

k3+σ
F

3 + σ
.

The number density is

n =
N

V
=

∫

d3k

(2π)3
Θ(k

F
− k) =

k3
F

6π2
=⇒ k

F
=
(

6π2n
)1/3

.

Thus,

ε0(n) =

(

6π2
)σ/3

1 + σ
3

· An1+σ
3 = 6

11

(

6π2
)5/6 ·An11/6 .

2We will solve the problem for the more general dispersion ε(k) = Akσ and then indicate the result for σ = 5

2
.
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(d) The photon density is

n =

∞
∫

0

dε
g(ε)

eε/kB
T − 1

,

which is the same expression as in part (b) above! Thus,

T (n) =

(

2π2σ n

Γ
(

3
σ

)

ζ
(

3
σ

)

)σ/3

· A

kB
=

(

5π2n

Γ
(

6
5

)

ζ
(

6
5

)

)5/6

· A

kB
.

(e) The grand potential is

Ω(T, V ) = V k
B
T

∞
∫

0

dε g(ε) ln
(

1− e−ε/k
B
T
)

= −V

∞
∫

0

dε
H(ε)

eε/kB
T − 1

,

where g(ε) = H ′(ε). Integrating g(ε) to obtain H(ε), we have

Ω(T, V ) = − V

6π2A3/σ

∞
∫

0

dε
ε3/σ

eε/kB
T − 1

= −Γ
(

3
σ + 1

)

ζ
(

3
σ

)

6π2A3/σ
V
(

k
B
T
)1+ 3

σ

The entropy density is then

s(T ) = − 1

V

∂Ω

∂T
=

Γ
(

3
σ + 2

)

ζ
(

3
σ + 1

)

6π2

(

k
B
T

A

)3/σ

k
B
,

The number density, as we have seen, is

n(T ) =
Γ
(

3
σ

)

ζ
(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

,

hence

s(n) =
ζ
(

3
σ + 1

)

ζ
(

3
σ

) ·
(

3
σ + 1

)

nk
B
=

ζ
(

11
5

)

ζ
(

6
5

) · 11
5 nk

B
.

On dimensionful grounds, we knew a priori that s(n) ∝ nk
B

.

(f) We have

n =

∞
∫

0

dε
g(ε)

z−1eε/kB
T − 1

= ± Γ
(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

Li 3
σ
(±z)

p

k
B
T

=

∞
∫

0

dε
H(ε)

z−1eε/kB
T − 1

= ± Γ
(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

Li 3
σ
+1(±z) ,

where the top sign is for bosons and the bottom for fermions. It helps to define the thermal wavelength

λT ≡
(

2π2σ

Γ
(

3
σ

)

)1/3

·
(

k
B
T

A

)1/σ

=

(

5π2

Γ
(

6
5

)

)1/3(
A

k
B
T

)2/5

,

so

nλ3
T = ± Li 3

σ
(±z) = z ± 2−3/σz2 +O

(

z3
)

pλ3
T

k
B
T

= ± Li 3
σ
+1(±z) = z ± 2−1−(3/σ)z2 +O

(

z3
)

.
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From the first of these, we have
z = nλ3

T ∓ 2−3/σn2λ6
T +O

(

n3λ9
T

)

.

Substituting this into the second equation, we obtain the lowest nontrivial term in the virial expansion of the
equation of state:

p

k
B
T

= n∓ 2−1−(3/σ) n2λ3
T +O

(

n3λ6
T

)

.

The second virial coefficient is then

B2(T ) = ∓2−1−(3/σ) λ3
T = ∓ 5π2

211/5 Γ
(

6
5

)

(

A

k
B
T

)6/5

.
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(5.8) Consider a three-dimensional gas of noninteracting quantum particles with dispersion ε(k) = A |k|3/2.

(a) Find the single particle density of states per unit volume g(ε).

(b) Find expressions for n(T, z) and p(T, z), each expressed as power series in the fugacity z, for both Bose-
Einstein and Fermi-Dirac statistics.

(c) Find the virial expansion for the equation of state up to terms of order n3, for both bosons and fermions.

Solution :

(a) The density of states for dispersion ε(k) = A |k|σ is

g(ε) = g

∫

ddk

(2π)d
δ
(

ε−Akσ
)

=
gΩd

(2π)d

∞
∫

0

dk kd−1 δ
(

k − (ε/A)1/σ
)

σAkσ−1
= D ε

d
σ
−1 ,

with

D =
2g

(2
√
π)d σΓ(d/2)

A−d/σ .

(b) We have

n(T, z) =

∞
∑

j=1

(±1)j−1 Cj(T ) z
j

p(T, z) = k
B
T

∞
∑

j=1

(±1)j−1 zj j−1 Cj(T ) z
j ,

where

Cj(T ) =

∞
∫

0

dε g(ε) e−jε/k
B
T = D Γ(d/σ)

(

k
B
T

j

)d/σ

.

Thus, we have

±nvT =

∞
∑

j=1

j−r (±z)j

± pvT/kB
T =

∞
∑

j=1

j−(r+1) (±z)j ,

where r = d/σ and

vT =
1

D Γ(d/σ) (k
B
T )d/σ

=
(2
√
π)dσ Γ(d/2)

2gD Γ(d/σ)

(

A

k
B
T

)d/σ

.

has dimensions of volume.

(c) We now let x = ±z, and interrogate Mathematica:

In[1]= y = InverseSeries [ x + x^2/2^r + x^3/3^r + x^4/4^r + O[x]^5 ]

In[2]= w = y + y^2/2^(r+1) + y^3/3^(r+1) + y^4/4^(r+1) + O[y]^5 .

13



The result is
p = nk

B
T
[

1 +B2(T )n+B3(T )n
2 + . . .

]

,

where

B2(T ) = ∓2−(r+1) vT

B3(T ) =
(

2−2r − 2 · 3−(r+1)
)

v2T

B4(T ) = ±2−(3r+1) 31−r
(

22r+1 − 5 · 3r−1 − 2r−1 3r
)

v3T .

Substitute σ = 3
2 to find the solution for the conditions given.
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(5.9) You know that at most one fermion may occupy any given single-particle state. A parafermion is a particle
for which the maximum occupancy of any given single-particle state is k, where k is an integer greater than zero.
(For k = 1, parafermions are regular everyday fermions; for k = ∞, parafermions are regular everyday bosons.)
Consider a system with one single-particle level whose energy is ε, i.e. the Hamiltonian is simply H = εn, where
n is the particle number.

(a) Compute the partition function Ξ(µ, T ) in the grand canonical ensemble for parafermions.

(b) Compute the occupation function n(µ, T ). What is n when µ = −∞? When µ = ε? When µ = +∞? Does
this make sense? Show that n(µ, T ) reduces to the Fermi and Bose distributions in the appropriate limits.

(c) Sketch n(µ, T ) as a function of µ for both T = 0 and T > 0.

Solution:

The general expression for Ξ is

Ξ =
∏

α

∑

nα

(

z e−βεα
)nα .

Now the sum on n runs from 0 to k, and
k
∑

n=0

xn =
1− xk+1

1− x
.

(a) Thus,

Ξ =
1− e(k+1)β(µ−ε)

1− eβ(µ−ε)
.

(b) We then have

n = −∂Ω

∂µ
=

1

β

∂ ln Ξ

∂µ

=
1

eβ(ε−µ) − 1
− k + 1

e(k+1)β(ε−µ) − 1

Figure 1: k = 3 parafermion occupation number versus ε− µ for kBT = 0, kBT = 0.25, kBT = 0.5, and kBT = 1.
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(c) A plot of n(ε, T, µ) for k = 3 is shown in Fig. 1. Qualitatively the shape is that of the Fermi function f(ε − µ).
At T = 0, the occupation function is n(ε, T = 0, µ) = kΘ(µ− ε). This step function smooths out for T finite.

(d) For each k < ∞, the occupation number n(z, T ) is a finite order polynomial in z, and hence an analytic function
of z. Therefore, there is no possibility for Bose condensation except for k = ∞.
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(5.10) A gas of quantum particles with photon statistics has dispersion ε(k) = A |k|4.

(a) Find the single particle density of states per unit volume g(ε).

(b) Repeat the arguments of §5.5.2 in the Lecture Notes for this dispersion.

(c) Assuming our known values for the surface temperature of the sun, the radius of the earth-sun orbit, and
the radius of the earth, what would you expect the surface temperature of the earth to be if the sun radiated
particles with this dispersion instead of photons?

Solution :

(a) See the solution to part (a) of problem 8 above. For d = 3 and σ = 4 we have

g(ε) =
g

2π2
A−3/4 ε−1/4 .

(b) Scaling volume by λ scales the lengths by λ1/3, the quantized wavevectors by λ−1/3, and the energy eigenval-
ues by λ−4/3, since ε ∝ k4. Thus,

p = −
(

∂E

∂V

)

S

=
4E

3V
,

which says
(

∂E

∂V

)

T

= T

(

∂p

∂T

)

V

− p = 3
4 p ⇒ p(T ) = B T 7/4 .

Indeed,

p(T ) = −k
B
T

∞
∫

−∞

g(ε) ln
(

1− e−ε/k
B
T
)

= − g

2π2 A3/4
(k

B
T )7/4

∞
∫

−∞

du u−1/4 ln(1− e−u) .

(c) See §5.5.5 of the Lecture Notes. Assume a dispersion of the form ε(k) for the (nonconserved) bosons. Then the
energy current incident on a differential area dA of surface normal to ẑ is

dP = dA ·
∫

d3k

(2π)3
Θ(cos θ) · ε(k) · 1

~

∂ε(k)

∂kz
· 1

eε(k)/kB
T − 1

.

Note that
∂ε(k)

∂kz
=

kz
k

∂ε

∂k
= cos θ ε′(k) .

Now let us assume a power law dispersion ε(k) = Akα. Changing variables to t = Akα/k
B
T , we find

dP

dA
= σ T 2+ 2

α ,

where

σ = ζ
(

2 + 2
α

)

Γ
(

2 + 2
α

)

· g k
2+ 2

α

B A− 2

α

8π2~
.

One can check that for g = 2, A = ~c, and α = 1 that this result reduces to Stefan’s Law. Equating the power
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incident on the earth to that radiated by the earth,

4πR2
⊙ · σT 2(1+α−1)

⊙ · πR
2
e

4πa2e
= 4πR2

e · σT 2(1+α−1)
e ,

which yields

Te =

(

R⊙

2ae

)
α

α+1

T⊙ .

Plugging in the appropriate constants and setting α = 4, we obtain Te = 45.2K. Brrr!
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(5.11) Consider a three-dimensional ultrarelativistic gas, with dispersion ε = ~c|k|. Find the viral expansion of
the equation of state p = p(n, T ) to order n3 for both bosons and fermions.

Solution : We have

βp = ∓g

∫

d3k

(2π)3
ln
(

1∓ z e−βε(k)
)

z = g

∫

d3k

(2π)3
1

z−1 eβε(k) ∓ 1
,

where g is the degeneracy of each k mode. WIth ε(k) = ~ck, we change variables to t = β~ck and find

βp =
g

6π2

(

k
B
T

~c

)3
∞
∫

−∞

dt
t3

z−1 et ∓ 1
=

g

π2

(

k
B
T

~c

)3 ∞
∑

j=1

(±1)j−1 zj

j4

n =
g

2π2

(

k
B
T

~c

)3
∞
∫

−∞

dt
t2

z−1 et ∓ 1
=

g

π2

(

k
B
T

~c

)3 ∞
∑

j=1

(±1)j−1 zj

j3
,

where we have integrated by parts in the first of these equations. Now it’s time to ask Mathematica :

In[1] = y = InverseSeries [ x + x^2/2^3 + x^3/3^3 + x^4/4^3 + x^5/5^3 + O[x]^6 ]

Out[1] = x -
x^2

8
-

5 x^3

864
-

31 x^4

13 824
-

56 039 x^5

62 208 000
+ O[x]^6

In[2] = w = y + y^2/2^4 + y^3/3^4 + y^4/4^4 + y^5/5^4

Out[2] = x -
x^2

16
-

47 x^3

5184
-

25 x^4

9216
-

2 014 561 x^5

1 866 240 000
+ O[x]^6

So with the definition

λT = π2/3
g
−1/3 ~c

k
B
T

,

we have
p = nk

B
T
(

1 + B2 n+B3 n
2 + . . .

)

,

where
B2 = ∓ 1

16 λ3
T , B3 = − 47

5184 λ6
T , B4 = ∓ 25

9216 λ9
T , B4 = − 2014561

1866240000 λ12
T .
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(5.12) Almost all elements freeze into solids well before they can undergo Bose condensation. Setting the Linde-
mann temperature equal to the Bose condensation temperature, show that this implies a specific ratio of k

B
Θ

D
to

~
2/Ma2, where M is the atomic mass and a is the lattice spacing. Evaluate this ratio for the noble gases He, Ne,

Ar, Kr, and Xe. (You will have to look up some numbers.)

Solution : The Lindemann melting temperature TM and the Bose condensation temperature Tc for monatomic
solids are given by

TM = x2 · Mk
B
Θ2

D
a2

9~2
, Tc =

2π~2

Mk
B

(

n

ζ(3/2)

)2/3

,

where a is the lattice constant, M the atomic mass, and Θ
D

the Debye temperature. For a simple cubic lattice, the
number density is n = a−3. Helium solidifies into a hexagonal close packed (HCP) structure, while Neon, Argon,
Krypton, and Xenon solidify into a face-centered cubic (FCC) structure. The unit cell volume for both HCP and
FCC is a3/

√
2, where a is the lattice spacing, so n =

√
2 a−3 for the rare gas solids. Thus, we find

TM

Tc

=
x

α
·
(

k
B
Θ

D

~2/Ma2

)2

.

where

α = 18π

(
√
2

ζ(3/2)

)2/3

≈ 40 .

If we set x = 0.1 we find x
α ≈ 1

400 . Now we need some data for Θ
D

and a. The most convenient table of data
I’ve found is from H. Glyde’s article on solid helium in the Encyclopedia of Physics. The table entry for 4He is for
the BCC structure at a pressure p = 25 bar. For a BCC structure the unit cell volume is 4a3/3

√
3. Define the ratio

R ≡ k
B
Θ

D
/(~2/Ma2).

As one can see from Tab. 1 and from the above equation for TM/Tc. the R values are such that the melting
temperature is predicted to be several orders of magnitude higher than the ideal Bose condensation temperature
in every case except 4He, where the ratio is on the order of unity (and is less than unity if the actual melting
temperature is used). The reason that 4He under high pressure is a solid rather than a Bose condensate at low
temperatures is because the 4He atoms are not free particles.

crystal a (Å) M (amu) Θ
D

(K) T actual
M (K) Tc ~

2/Ma2k
B

(K) R
4He 3.57 4.00 25 1.6 3.9 0.985 25
Ne 4.46 20.2 66 24.6 0.50 0.125 530
Ar 5.31 39.9 84 83.8 0.18 0.0446 1900
Kr 5.65 83.8 64 161.4 0.076 0.0188 3400
Xe 6.13 131 55 202.0 0.041 0.0102 20000

Table 1: Lattice constants for Ne, Ar, Kr, and Xe from F. W. de Wette and R. M. J. Cotterill, Solid State Comm. 6, 227
(1968). Debye temperatures and melting temperatures from H. Glyde, Solid Helium in Encyclopedia of Physics.
4He data are for p = 25 bar, in the bcc phase (from Glyde).
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(5.13) A nonrelativistic Bose gas consists of particles of spin S = 1. Each boson has mass m and magnetic moment

µ0. A gas of these particles is placed in an external field H .

(a) What is the relationship of the Bose condensation temperature Tc(H) to Tc(H = 0) when µ0H ≫ k
B
T ?

(b) Find the magnetization M for T < Tc when µ0H ≫ k
B
T . Calculate through order exp(−µ0H/k

B
T ).

Solution :

The number density of bosons is given by

n(T, z) = λ−3
T

{

Li3/2

(

z eµ0
H/k

B
T
)

+ Li3/2

(

z
)

+ Li3/2

(

z e−µ
0
H/k

B
T
)

}

.

The argument of Liz(z) cannot exceed unity, thus Bose condensation occurs for z = exp(−µ0H/k
B
T ) (assuming

H > 0). Thus, the condition for Bose condensation is given by

nλ3
T
c
= ζ(3/2) + Li3/2

(

e−µ
0
H/k

B
T
c

)

+ Li3/2

(

e−2µ
0
H/k

B
T
c

)

.

This is a transcendental equation for T = Tc(n,H). In the limit µ0H ≫ k
B
Tc, the second two terms become

negligible, since

Lis(z) =

∞
∑

j=1

zj

js
.

Thus,

Tc(H → ∞) =
2π~2

m

(

n

ζ(3/2)

)2/3

.

When H = 0, we have Thus,

Tc(H → 0) =
2π~2

m

(

n

3 ζ(3/2)

)2/3

.

Thus,
Tc(H → ∞)

Tc(H → 0)
= 32/3 = 2.08008 . . .

The magnetization density is

M = µ0 λ
−3
T

{

Li3/2

(

z eµ0
H/k

B
T
)

− Li3/2

(

z e−µ
0
H/k

B
T
)

}

.

For T < Tc, we have z = exp(−µ0H/k
B
T ) and therefore

M = µ0 λ
−3
T

{

ζ(3/2)−
∞
∑

j=1

j−3/2 e−2jµ
0
H/k

B
T
}

= nµ0

{

1− e−2µ
0
H/k

B
T

ζ(3/2)
+O

(

e−4µ
0
H/k

B
T
)

}
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(5.14) Consider a set of N noninteracting S = 1
2 fermions in a one-dimensional harmonic oscillator potential. The

oscillator frequency is ω. For k
B
T ≪ ~ω, find the lowest order nontrivial contribution to the heat capacity C(T ),

using the ordinary canonical ensemble. The calculation depends on whether N is even or odd, so be careful! Then
repeat your calculation for S = 3

2 .

Solution :

The partition function is given by

Z = g0 e
−βE

0 + g1E
−βE

1 + . . . ,

where gj and Ej are the degeneracy and energy of the jth energy level, respectively. From this, we have

F = −k
B
T lnZ = E0 − k

B
T ln

(

g0 + g1 e
−∆

1
/k

B
T + . . .

)

,

where ∆j ≡ Ej −E0 is the excitation energy for energy level j>1. Suppose that the spacings between consecutive
energy levels are much larger than the temperature, i.e. Ej+1 − Ej ≫ k

B
T . This is the case for any harmonic

oscillator system so long as ~ω ≫ k
B
T , where ω is the oscillator frequency. We then have

F = E0 − k
B
T ln g0 −

g1
g0

k
B
T e−∆

1
/k

B
T + . . .

The entropy is

S = −∂F

∂T
= ln g0 +

g1
g0

e−∆
1
/k

B
T +

g1
g0

∆1

T
e−∆

1
/k

B
T + . . .

and thus the heat capacity is

C(T ) = T
∂S

∂T
=

g1
g0

∆2
1

k
B
T 2

e−∆
1
/k

B
T + . . .

With g0 = g1 = 1, this recovers what we found in §4.10.6 of the Lecture Notes for the low temperature behavior of
the Schottky two level system.
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N even :

N odd :

g0=1 g1=2

g0=2 g1=4

Figure 2: Ground states and first excited states for the S = 1
2 one-dimensional simple harmonic oscillator.
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Figure 3: Ground states and first excited states for the general S case, with K = 2S+1.

OK, so now let us consider the problem at hand, which is the one-dimensional harmonic oscillator, whose energy
levels lie at Ej = (j + 1

2 )~ω, hence ∆j = j~ω is the jth excitation energy. For S = 1
2 , each level is twofold degen-

erate. When N is even, the ground state is unique, and we occupy states | j , ↑ 〉 and | j , ↓ 〉 for j ∈
{

0 , . . . , N
2 −1

}

.
Thus, the ground state is nondegenerate and g0 = 1. The lowest energy excited states are then made, at fixed
total particle number N , by promoting either of the | j = N

2 −1 , σ 〉 levels (σ =↑ or ↓) to j = N
2 . There are g1 = 2

ways to do this, each of which increases the energy by ∆1 = ~ω. When N is odd, we fill one of the spin species
up to level j = N−1

2 and the other up to level j = N+1
2 . In this case g0 = 2. What about the excited states? It

turns out that g1 = 4, as can be seen from the diagrams in Fig. 2. For N odd, in either of the two ground states,
the highest occupied oscillator level is j = N+1

2 , which is only half-occupied with one of the two spin species. To

make an excited state, one can either (i) promote the occupied state to the next oscillator level j = N+3
2 , or (ii) fill

the unoccupied state by promoting the occupied state from the j = N−1
2 level. So g1 = 2 · 2 = 4. Thus, for either

possibility regarding the parity of N , we have g1/g0 = 2, which means

C(T ) =
2(~ω)2

k
B
T 2

e−~ω/k
B
T + . . .

This result is valid for N > 1.

An exception occurs when N = 1, where the lone particle is in the n = 0 oscillator level. Since there is no n = −1
level, the excited state degeneracy is then g1 = 2, and the heat capacity is half the above value. Of course, for
N = 0 we have C = 0.

What happens for general spin S? Now each oscillator level has a K ≡ 2S+1 spin degeneracy. We may write
N = rK + s, where r and s are integers and s ∈ {0 , 1 , . . . , K− 1}. The ground states are formed by fully
occupying all | j , m 〉 states, with m ∈ {1, . . . ,K}, from j = 0 to j = r−1. The remaining s particles must all be

placed in the K degenerate levels at j = r, and there are
(

K
s

)

ways of achieving this. Thus, g0 =
(

K
s

)

.

Now consider the excited states. We first assume r > 0. There are then two ways to make an excited state. If
s > 0, we can promote one of the s occupied states with j = r to the next oscillator level j = r+1. One then has
s−1 of the K states with j = r occupied, and one of the K states with j = r+1 occupied. The degeneracy for this

configuration is g =
(

K
1

)(

K
s−1

)

= K
(

K
s−1

)

. Another possibility is to promote one of the filled j = r−1 levels to the
j = r level, resulting in K − 1 occupied states with j = r−1 and s+1 occupied states with j = r. This is possible
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for any allowed value of s. The degeneracy of this configuration is g =
(

K
K−1

)(

K
s+1

)

= K
(

K
s+1

)

. Thus,

g1 = K

(

K

s+ 1

)

+K

(

K

s− 1

)

,

and thus for r > 0 and s > 0 we have

C(T ) =
g1
g0

k
B

(

~ω

k
B
T

)2

e−~ω/k
B
T + . . .

= K ·
{

K − s

s+ 1
+

s

K − s+ 1

}

· k
B

(

~ω

k
B
T

)2

e−~ω/k
B
T + . . .

The situation is depicted in Fig. 3. Upon reflection, it becomes clear that this expression is also valid for s = 0,
since the second term in the curly brackets in the above equation, which should be absent, yields zero anyway.

The exceptional cases occur when r = 0, in which case there is no j = r−1 level to depopulate. In this case,

g1 = K
(

K
s−1

)

and g1/g0 = Ks/(K − s + 1). Note that all our results are consistent with the K = 2 case studied
earlier.
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(5.15) A noninteracting Bose gas in d = 3 dimensions has dispersion ε(k) = ~c|k|.

(a) Find Tc(n).

(b) For T < Tc, find n(T, n0) and p(T ).

(c) For T > Tc, find n(T, z) and p(T, z).

(d) Find and plot the molar heat capacity at constant volume as a function of T/Tc. Comment on its noteworthy
features.

Solution :

(a) The density of states is obtained from g(ε) dε = d3k
(2π)3 , which yields

g(ε) =
ε2

2π2(~c)3
.

The critical temperature is then determined by

n =

∞
∫

0

dε
g(ε)

eε/kB
Tc − 1

=
ζ(3)

π2

(

k
B
Tc

~c

)3

,

hence

Tc(n) =
~c

k
B

(

π2n

ζ(3)

)1/3

.

One has ζ(3) ≈ 1.2020569.

(b) For T < Tc, we have

n(T, n0) = n0 +
ζ(3)

π2

(

k
B
T

~c

)3

p(T ) =
ζ(4)

π2

(k
B
T )4

(~c)3
.

One has ζ(4) = π4

90 ≈ 1.0823232.

(c) For T > Tc, we have

n(T, z) =
1

π2

(

k
B
T

~c

)3

Li3(z)

p(T, z) =
1

π2

(k
B
T )4

(~c)3
Li4(z) .

(d) The energy is given by E − µN = − ∂
∂β ln Ξ. With ln Ξ = −βΩ = βpV , the energy for T > Tc is

E(T, V, z) = µN − V
∂

∂β

(

βp
)

=
3V

π3

(k
B
T )4

(~c)3
Li4(z) .
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The particle number for T > Tc is

N(T, V, z) =
V

π2

(

k
B
T

~c

)3

Li3(z) .

When T < Tc, we have

E(T, V ) =
3 ζ(4)V

π3

(k
B
T )4

(~c)3
, N(T, V, n0) = V n0 +

ζ(3)V

π2

(

k
B
T

~c

)3

.

We may now compute cV,N , the molar heat capacity at constant volume. For T < Tc,

cV,N (T, z) =
N

A

N

(

∂E

∂T

)

V,N

=
12 ζ(4)

ζ(3)

(

T

Tc(n)

)3

R .

For T > Tc, we write

dN
∣

∣

V
=

3V

π2

(

k
B
T

~c

)3

Li3(z)
dT

T
+

V

π2

(

k
B
T

~c

)3

Li2(z)
dz

z
,

so setting dN |V = 0 requires a relation between dz and dT , viz.

dz

z
= −dT

T
· 3 Li3(z)
Li2(z)

.

We next differentiate the energy E, obtaining

dE
∣

∣

V
=

12 k
B

π2
V

(

k
B
T

~c

)3

Li4(z) dT +
3

π2

(k
B
T )4

(~c)3
Li2(z)

dz

z

=
3 k

B

π2
V

(

k
B
T

~c

)3
{

4 Li4(z)−
3 Li23(z)

Li2(z)

}

dT .

Thus, dividing through by dT and then by N/N
A

,

cV,N(T, z) = 3R

[

4 Li4(z)

Li3(z)
− 3 Li3(z)

Li2(z)

]

,

along with

n(T, z) =
1

π2

(

k
B
T

~c

)3

Li3(z) ⇒ Li3(z) = ζ(3)

(

Tc(n)

T

)3

.

Note that z → 0 as T → ∞, in which case cV,N → 3R, which is the appropriate Dulong-Petit result for the case of
a linear dispersion in d = 3 dimensions.

One remarkable aspect to our result is that

lim
T→T−

c (n)
cV,N (T ) =

12 ζ(4)

ζ(3)
R ≈ 10.80471R

lim
T→T+

c (n)
cV,N (T ) =

[

12 ζ(4)

ζ(3)
− 9 ζ(3)

ζ(2)

]

R ≈ 4.227845R ,

which says that cV,N (T ) exhibits a discontinuous drop at the critical temperature Tc(n).
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(5.16) Consider free fermions with density of states g(ε) = Aεα and number density n.

(a) Find the Fermi energy ε
F
(n).

(b) Find the chemical potential shift at finite temperature up to terms of order T 4.

(c) Find the heat capacity at constant volume CV,N to first order in T .

Solution :

(a) We have

n =

ε
F
∫

0

dε g(ε) =
Aεα+1

F

α+ 1
⇒ ε

F
=

(

(α + 1)n

A

)
1

α+1

.

(b) Invoking the Sommerfeld expansion,

n =

ε
F
∫

0

dε g(ε) + π2

6 g′(ε
F
) (k

B
T )2 + 7π4

360 g′′′(ε
F
) (k

B
T )4 + . . .

We now write µ = ε
F
+δµ and solve for δµ(ε

F
, T ), using n =

ε
F
∫

0

dε g(ε). We write the double power series expansion

of the above result, up to orders (k
B
T )4 and (k

B
T )2 δµ:

0 = g(ε
F
) δµ+ 1

2g
′(ε

F
) (δµ)2 + π2

6 g′(ε
F
) (k

B
T )2 + π2

6 g′′(ε
F
) (k

B
T )2 δµ+ 7π4

360 g′′′(ε
F
) (k

B
T )4 + . . .

We now solve for the coefficients of the order (k
B
T )2 and (k

B
T )4 terms in δµ(T ), yielding

δµ(T ) = −π2

6

g′(ε
F
)

g(ε
F
)
(k

B
T )2 − π4

360

{

7 g′′′(ε
F
)

g(ε
F
)

− 10 g′(ε
F
) g′′(ε

F
)

g2(ε
F
)

+
5 g′3(ε

F
)

g3(ε
F
)

}

(k
B
T )4 + . . .

Substituting g(ε) = Aεα into the above expression, we find

δµ(T ) = −απ2

6

(k
B
T )2

εF

− α(α− 2)(2α− 7)π4

360

(k
B
T )4

ε3
F

+ . . .

(c) The heat capacity is

CV,N = π2

3 V g(ε
F
) k2

B
T = π2

3 VAεα
F
k2

B
T ,

where ε
F
(n) is given in the solution to part (a).
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(5.17) In an n-type semiconductor, the donor levels lie a distance ∆ below the bottom of the conduction band.
Suppose there are M such donor levels. Due to the fact that such donor levels are spatially localized, one can
ignore the possibility of double occupancy. Thus, each donor level can be occupied by at most one electron, but of
either spin polarization. Assume the conduction band dispersion is isotropic, given by ε

k
= ~

2
k
2/2m∗. You may

set the conduction band minimum to εc(0) ≡ 0.

(a) Assuming that the conduction band is very sparsely populated, find an expression for the conduction elec-
tron density nc(T, µ).

(b) Suppose there are Nd electrons sitting on the donor sites, i.e. Nd of the M donor levels are singly occupied.
Find the entropy of these electrons.

(c) Find the chemical potential of the donor electrons.

(d) Use the fact that the donor electrons and the conduction band electrons are in thermal equilibrium to elimi-
nate µ from the problem, and find the conduction electron density nc(T ) and the fraction νd(T ) of occupied
donor sites. Assume that the donor concentration is ρd, and that all conduction electrons are due to singly
ionized donors.

Solution :

(a) We have

nc = 2

∫

d3k

(2π)d
1

eβ(εk−µ
c
) + 1

≈ 2λ−3
c eµc

/k
B
T ,

where µc is the chemical potential and λc = (2π~2/m∗k
B
T )1/2 thermal de Broglie wavelength for the conduction

electrons.

(b) We assume that each donor site can either be empty, or else occupied by an electron in one of two possible
polarization states. We forbid double occupancy of the donors, due to the large Coulomb energy associated with
such a state. The number of configurations for Nd occupied donor sites is then

Ω(Nd,M) = 2Nd

(

M

Nd

)

,

and therefore

Sd = k
B
ln

(

2Nd M !

Nd! (M −Nd)!

)

.

The free energy of the donor system is then

F (T,Nd,M) = −Nd∆− k
B
T ln

(

2Nd M !

Nd! (M −Nd)!

)

≈ −Nd∆−Nd kB
T ln 2 +Mk

B
T

{

Nd

M
ln

(

Nd

M

)

+

(

M −Nd

M

)

ln

(

M −Nd

M

)

}

,

where we have invoked Stirling’s approximation. The chemical potential for the donor level electrons, which we
will need later, is then

µd =

(

∂F

∂Nd

)

T,M

= −∆− k
B
T ln 2 + k

B
T ln

(

fd
1− fd

)

,

where fd = Nd/M is the fraction of donor sites which are occupied.
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(c) Invoking our results from part (a) and (b), and setting µc = µd ≡ µ, we have

eµ/kB
T = 1

2 ncλ
3
c = 1

2 e
−∆/k

B
T fd
1− fd

,

Thus,
(

f−1
d − 1

)

nc = λ−3
c e−∆/k

B
T .

Now suppose the donor site density is ρd. All the conduction electrons must come from ionized donor sites. The
fraction of such sites is 1− fd , hence nc = (1 − fd) ρd. Therefore, we have

(1 − fd)
2

fd
=

e−∆/k
B
T

ρdλ
3
c

≡ b(T ) .

This yields a quadratic equation for 1− fd , whose solution is

1− fd = − 1
2b+

√

1
4b

2 + b ⇒ nc =

{

− 1
2b+

√

1
4b

2 + b

}

ρd .

Note that fd → 1 as b → 0. In this limit, which is achieved when k
B
T ≪ ∆, or when ρdλ

3
c ≫ 1, or by some

combination of these two conditions, all the donor sites are occupied, and the conduction electron density is zero.
It is energetically/entropically two costly for the donors to donate an electron to the conduction band. In the

T → 0 limit, we have 1− fd ≃
√
b , hence the chemical potential becomes

µ(T → 0) = − 1
2∆+ k

B
T ln

[

1
2ρd

(

2π~2

m∗k
B
T

)3/2
]

,

which ultimately ends up exactly halfway between the donor levels and the bottom of the conduction band.

This problem is very similar to the adsorption model considered in §4.9.3 of the Lecture Notes. There, we consid-
ered a surface of adsorption sites in equilibrium with a classical gas. The only difference here is that the adsorbate
particles can exist in one of two energetically degenerate polarization states. One can also solve for the donor
density in the grand canonical ensemble. The donors are independent, hence the partition function for the donor
electrons is

Ξd =
(

1 + 2 eµ/kB
T e∆/k

B
T
)M

.

Note the factor of two, due to the degeneracy of the spin polarization states. If we were to include the possibility
of doubly occupied donors, we would have instead

Ξd =
(

1 + 2 eµ/kB
T e∆/k

B
T + e2µ/kB

T e(2∆−U)/k
B
T
)M

,

where the energy of the doubly occupied level is −2∆ + U , with U being the Coulomb repulsion energy for two
electrons to sit on the same localized donor site. Again, we have assumed U is much larger than every other
energy scale in this problem, meaning we can ignore the possibility of double occupancy. The grand potential for
the donor electrons is then Ωd = −k

B
T ln Ξd , and so

fd = − 1

M

(

∂Ωd

∂µ

)

T,M

=
1

1
2e

−(µ+∆)/k
B
T + 1

,

which recovers the result previously obtained in part (a).
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6 Interacting Classical Systems : Worked Examples

(6.1) Consider a model in which there are three possible states per site, which we can denote by A, B, and V. The
states A and B are for our purposes identical. The energies of A-A, A-B, and B-B links are all identical and equal to
W . The state V represents a vacancy, and any link containing a vacancy, meaning A-V, B-V, or V-V, has energy 0.

(a) Suppose we write σ = +1 for A, σ = −1 for B, and σ = 0 for V. How would you write a Hamiltonian for
this system? Your result should be of the form

Ĥ =
∑

〈ij〉

E(σi , σj) .

Find a simple and explicit function E(σ, σ′) which yields the correct energy for each possible bond configu-
ration.

(b) Consider a triangle of three sites. Find the average total energy at temperature T . There are 33 = 27 states
for the triangle. You can just enumerate them all and find the energies.

(c) For a one-dimensional ring ofN sites, find the 3×3 transfer matrixR. Find the free energy per site F (T,N)/N
and the ground state entropy per site S(T,N)/N in the N → ∞ limit for the cases W < 0 and W > 0.
Interpret your results. The eigenvalue equation for R factorizes, so you only have to solve a quadratic
equation.

Solution :

(a) The quantity σ2
i is 1 if site i is in state A or B and is 0 in state V. Therefore we have

Ĥ =W
∑

〈ij〉

σ2
i σ

2
j .

(b) Of the 27 states, eight have zero vacancies – each site has two possible states A and B – with energy E =
3W . There are 12 states with one vacancy, since there are three possible locations for the vacancy and then four
possibilities for the remaining two sites (each can be either A or B). Each of these 12 single vacancy states has
energy E = W . There are 6 states with two vacancies and 1 state with three vacancies, all of which have energy
E = 0. The partition function is therefore

Z = 8 e−3βW + 12 e−βW + 7 .

Note that Z(β = 0) = Tr 1 = 27 is the total number of ‘microstates’. The average energy is then

E = − 1

Z

∂Z

∂β
=

(

24 e−3βW + 12 e−βW

8 e−3βW + 12 e−βW + 7

)

W

(c) The transfer matrix is

Rσσ′ = e−βWσ2σ′2

=





e−βW e−βW 1
e−βW e−βW 1
1 1 1



 ,

where the row and column indices are A (1), B (2), and V (3), respectively. The partition function on a ring of N
sites is

Z = λN1 + λN2 + λN3 ,
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where λ1,2,3 are the three eigenvalues of R. Generally the eigenvalue equation for a 3 × 3 matrix is cubic, but
we can see immediately that detR = 0 because the first two rows are identical. Thus, λ = 0 is a solution to the
characteristic equation P (λ) = det

(

λI − R
)

= 0, and the cubic polynomial P (λ) factors into the product of λ and
a quadratic. The latter is easily solved. One finds

P (λ) = λ3 − (2x+ 1)λ2 + (2x− 2)λ ,

where x = e−βW . The roots are λ = 0 and

λ± = x+ 1
2 ±

√

x2 − x+ 9
4 .

The largest of the three eigenvalues is λ+, hence, in the thermodynamic limit,

F = −k
B
T lnZ = −Nk

B
T ln

(

e−W/k
B
T + 1

2 +
√

e−2W/k
B
T − e−W/k

B
T + 9

4

)

.

The entropy is S = −∂F
∂T . In the limit T → 0 with W < 0, we have

λ+(T → 0 , W < 0) = 2 e|W |/k
B
T + e−|W |/k

B
T +O(e−2|W |/k

B
T
)

.

Thus

F (T → 0 , W < 0) = −N |W | −Nk
B
T ln 2 + . . .

S(T → 0 , W < 0) = N ln 2 .

When W > 0, we have
λ+(T → 0 , W > 0) = 2 + 2

3 e
−W/k

B
T +O(e−2W/k

B
T
)

.

Then

F (T → 0 , W > 0) = −Nk
B
T ln 2− 1

3NkB
T e−W/k

B
T + . . .

S(T → 0 , W > 0) = N ln 2 .

Thus, the ground state entropies are the same, even though the allowed microstates are very different. For W < 0,
there are no vacancies. For W > 0, every link must contain at least one vacancy.
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(6.2) The Blume-Capel model is a spin-1 version of the Ising model, with Hamiltonian

H = −J
∑

〈ij〉

Si Sj −∆
∑

i

S2
i ,

where Si ∈ {−1 , 0 , +1} and where the first sum is over all links of a lattice and the second sum is over all sites. It
has been used to describe magnetic solids containing vacancies (S = 0 for a vacancy) as well as phase separation
in 4He − 3He mixtures (S = 0 for a 4He atom). For parts (b), (c), and (d) you should work in the thermodynamic
limit. The eigenvalues and eigenvectors are such that it would shorten your effort considerably to use a program
like Mathematica to obtain them.

(a) Find the transfer matrix for the d = 1 Blume-Capel model.

(b) Find the free energy F (T,∆, N).

(c) Find the density of S = 0 sites as a function of T and ∆.

(d) Exciting! Find the correlation function 〈Sj Sj+n 〉 .

Solution :

(a) The transfer matrix R can be written in a number of ways, but it is aesthetically pleasing to choose it to be
symmetric. In this case we have

RSS′ = eβJSS′

eβ∆(S2+S′2)/2 =





eβ(∆+J) eβ∆/2 eβ(∆−J)

eβ∆/2 1 eβ∆/2

eβ(∆−J) eβ∆/2 eβ(∆+J)



 .

(b) For an N -site ring, we have
Z = Tr e−βH = Tr

(

RN) = λN+ + λN0 + λN− ,

where λ+, λ0, and λ− are the eigenvalues of the transfer matrix R. To find the eigenvalues, note that

~ψ0 =
1√
2





1
0
−1





is an eigenvector with eigenvalue λ0 = 2 eβ∆ sinh(βJ). The remaining eigenvectors must be orthogonal to ψ0, and
hence are of the form

~ψ± =
1

√

2 + x2±





1
x±
1



 .

We now demand

R





1
x
1



 =





2 eβ∆ cosh(βJ) + x eβ∆/2

2 eβ∆/2 + x

2 eβ∆ cosh(βJ) + x eβ∆/2



 =





λ
λx
λ



 ,

resulting in the coupled equations

λ = 2 eβ∆ cosh(βJ) + x eβ∆/2

λx = 2eβ∆/2 + x .
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Eliminating x, one obtains a quadratic equation for λ. The solutions are

λ± =
(

eβ∆ cosh(βJ) + 1
2

)

±
√

(

eβ∆ cosh(βJ) + 1
2

)2

+ 2 eβ∆

x± = e−β∆/2

{

(

1
2 − eβ∆ cosh(βJ)

)

±
√

(

1
2 − eβ∆ cosh(βJ)

)2

+ 2 eβ∆
}

.

Note λ+ > λ0 > 0 > λ− and that λ+ is the eigenvalue of the largest magnitude. This is in fact guaranteed by the
Perron-Frobenius theorem, which states that for any positive matrix R (i.e. a matrix whose elements are all positive)
there exists a positive real number p such that p is an eigenvalue ofR and any other (possibly complex) eigenvalue

of R is smaller than p in absolute value. Furthermore the associated eigenvector ~ψ is such that all its components
are of the same sign. In the thermodynamic limit N → ∞ we then have

F (T,∆, N) = −Nk
B
T lnλ+ .

(c) Note that, at any site,

〈S2〉 = − 1

N

∂F

∂∆
=

1

β

∂ lnλ+
∂∆

,

and furthermore that
δS,0 = 1− S2 .

Thus,

ν0 ≡ N0

N
= 1− 1

β

∂ lnλ+
∂∆

.

After some algebra, find

ν0 = 1− r − 1
2√

r2 + 2 eβ∆
,

where
r = eβ∆ cosh(βJ) + 1

2 .

It is now easy to explore the limiting cases ∆ → −∞, where we find ν0 = 1, and ∆ → +∞, where we find ν0 = 0.
Both these limits make physical sense.

(d) We have

C(n) = 〈Sj Sj+n 〉 = Tr
(

ΣRnΣRN−n
)

Tr
(

RN
) ,

where ΣSS′ = S δSS′ . We work in the thermodynamic limit. Note that 〈+ |Σ |+ 〉 = 0, therefore we must write

R = λ+ |+ 〉〈+ |+ λ0 | 0 〉〈 0 |+ λ− | − 〉〈− | ,
and we are forced to choose the middle term for the n instances of R between the two Σ matrices. Thus,

C(n) =

(

λ0
λ+

)n
∣

∣〈+ |Σ | 0 〉
∣

∣

2
.

We define the correlation length ξ by

ξ =
1

ln
(

λ+/λ0
) ,

in which case
C(n) = Ae−|n|/ξ ,

where now we generalize to positive and negative values of n, and where

A =
∣

∣〈+ |Σ | 0 〉
∣

∣

2
=

1

1 + 1
2x

2
+

.
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(6.3) DC Comics superhero Clusterman and his naughty dog Henry are shown in Fig. 1. Clusterman, as his name
connotes, is a connected diagram, but the diagram for Henry contains some disconnected pieces.

(a) Interpreting the diagrams as arising from the Mayer cluster expansion, compute the symmetry factor sγ for
Clusterman.

(b) What is the total symmetry factor for Henry and his disconnected pieces? What would the answer be if,
unfortunately, another disconnected piece of the same composition were to be found?

(c) What is the lowest order virial coefficient to which Clusterman contributes?

Figure 1: Mayer expansion diagrams for Clusterman and his dog.

Solution :

First of all, this is really disgusting and you should all be ashamed that you had anything to do with this problem.

(a) Clusterman’s head gives a factor of 6 because the upper three vertices can be permuted among themselves
in any of 3! = 6 ways. Each of his hands gives a factor of 2 because each hand can be rotated by π about its
corresponding arm. The arms themselves can be interchanged, by rotating his shoulders by π about his body axis
(Clusterman finds this invigorating). Finally, the analysis for the hands and arms applies just as well to the feet
and legs, so we conclude

sγ = 6 ·
(

22 · 2
)2

= 3 · 27 = 384 .

Note that an arm cannot be exchanged with a leg, because the two lower vertices on Clusterman’s torso are not
equivalent. Plus, that would be a really mean thing to do to Clusterman.

(b) Henry himself has no symmetries. The little pieces each have s△ = 3!, and moreover they can be exchanged,

yielding another factor of 2. So the total symmetry factor for Henry plus disconnected pieces is s△△ = 2! ·
(3!)2 = 72. Were another little piece of the same. . . er. . . consistency to be found, the symmetry factor would be

s△△△ = 3! · (3!)3 = 24 · 34 = 1296, since we get a factor of 3! from each of the △ pieces, and a fourth factor of 3!
from the permutations among the △s.

(c) There are 18 vertices in Clusterman, hence he will first appear in B18.
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(6.4) Use the high temperature expansion to derive the spin-spin correlation functions for a spin- 12 (σn = ±1)
Ising chain and Ising ring. Compare with the results in chapter 6 of the lecture notes.

Solution :

The spin-spin correlation function Ckl = 〈σk σl〉 is expressed as a ratio Ykl/Z as in eqn. 6.51 of the Lecture Notes
(LN). For the chain, the only diagram which contributes to Z is Γ = {∅}, i.e. the trivial empty lattice. This is
because there is no way to form closed loops on a chain. Thus Zring = 2N (coshβJ)N−1 since the number of links
is N

L
= N − 1 (see LN eqn. 6.45). For the chain, in addition to the empty lattice, there is one closed loop that can

be formed which includes every link of the chain. Thus Zchain = 2N(coshβJ)N
(

1 + xN
)

, where x = tanhβJ . As
for the numerator Ykl, on the chain there is only one possible string, shown in Fig. 2, which extends between sites
k and l. Thus Y chain

kl = 2N (coshβJ)N−1x|k−l|. On the ring there are two possible strings, since the ring is multiply

connected. Thus Y ring
kl = 2N(coshβJ)N

(

x|k−l| + xN−|k−l|
)

. Therefore,

Cchain
kl = x|k−l| , Cring

kl =
x|k−l| + xN−|k−l|

1 + xN
.

1

1 1
2 2

2 3

3 3

4

4 4

5 6 7 8 9 10 11 12

5
5

66

7 7

88

9 9

10 10

11 11

1212

Figure 2: Diagrams for the numerator of the high temperature expansion of the spin-spin correlation function on
an Ising ring and chain.
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(6.5) An ionic solution of dielectric constant ǫ and mean ionic density n fills a grounded conducting sphere of
radius R. A charge Q lies at the center of the sphere. Calculate the ionic charge density as a function of the radial
coordinate r, assuming Q/r ≪ k

B
T .

Solution :

Debye-Hückel theory tells us that

n±(r) =
1
2n∞ e∓eφ(r)/k

B
T

and

∇2φ = −4πe

ǫ

(

n+ − n−

)

− 4π

ǫ
ρ

ext
,

where ǫ is the dielectric constant. Assuming φ≪ k
B
T , we have ∇2φ = κ2

D
φ− 4πǫ−1ρ

ext
, with

κ
D
=

√

4πn∞e
2

ǫ k
B
T

.

Assuming a spherically symmetric solution, with a point charge Q at the origin, we solve

(

− 1

r

∂2

∂r2
r + κ2

D

)

φ =
4πQ

ǫ
δ(r) .

The solution is then of the form φ(r) = 1
r u(r), with u′′ = κ2

D
u for r > 0. Thus,

φ(r) = A
cosh(κ

D
r)

r
+B

sinh(κ
D
r)

r
.

As r → 0 we must have an unscreened charge Q, hence A = Q/ǫ. The boundary condition on the conducting
sphere is φ(R) = 0, hence B = −A ctnh (κ

D
R). Thus,

φ(r) =
Q cosh(κ

D
r)

ǫ r
·
(

1− tanh(κ
D
r)

tanh(κ
D
R)

)

.

We stress that this solution is valid only where e φ(r) ≪ k
B
T .
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(6.6) Consider a three-dimensional gas of point particles interacting according to the potential

u(r) =











+∆0 if r ≤ a

−∆1 if a < r ≤ b

0 if b < r ,

where ∆0,1 are both positive. Compute the second virial coefficient B2(T ) and find a relation which determines
the inversion temperature in a throttling process.

Solution :

The Mayer function is

f(r) =











e−∆
0
/k

B
T − 1 if r ≤ 0

e∆1
/k

B
T − 1 if a < r ≤ b

0 if b < r .

The second virial coefficient is

B2(T ) = − 1
2

∫

d3r f(r)

=
2πa3

3
·
[

(

1− e−∆
0
/k

B
T
)

+ (s3 − 1)
(

1− e∆1
/k

B
T
)

]

,

where s = b/a. The inversion temperature is a solution of the equation B2(T ) = TB′
2(T ), which gives

s3 − 1 =
1 +

(

∆
0

k
B
T − 1

)

e−∆
0
/k

B
T

1 +
(

∆
1

k
B
T + 1

)

e∆1
/k

B
T

.
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(6.7) At the surface of every metal a dipolar layer develops which lowers the potential energy for electrons inside
the metal. Some electrons near the surface escape to the outside, leaving a positively charged layer behind, while
overall there is charge neutrality. The situation is depicted in Fig. 3. The electron density outside the metal is very
low and Maxwell-Boltzmann statistics are appropriate.

Figure 3: Electron distribution in the vicinity of the
surface of a metal.

(a) Consider a flat metallic surface, normal to x̂, located at
x = 0. Assume for x > 0 an electronic distribution n(x) =
n0 exp(eφ/k

B
T ), where φ is the electric potential. For x > 0

there are only electrons; all the positive charges are located
within the metal. Write down the self-consistent equation for
the potential φ(x).

(b) Having found the self-consistent equation for φ(x), show
that, multiplying by φ′(x), the equation can be integrated
once, analogous to the conservation of energy for mechanical
systems (with φ playing the role of the coordinate and x play-
ing the role of time). Show that the equation can be integrated
once again to yield φ(x), with the constant determined by the
requirement that n(x = 0) = n0.

(c) Find n(x).

Solution :

(a) The self-consistent equation is Poisson’s equation,

∇2φ = −4πρ = 4πen0 e
eφ/k

B
T .

Since the only variation is along x, we have φ′′ = 4πen0 e
eφ/k

B
T . Multiplying each side by dφ

dx , we have

d

dx

(

1
2φ

′2
)

=
d

dx

(

4πn0 kB
T eeφ/kB

T
)

,

and integrating this equation from x to ∞ we obtain

dφ

dx
= −(8πn0 kB

T )1/2 eeφ/2kB
T .

Note also the choice of sign here, due to the fact that the potential −eφ for electrons must increase with x. The
boundary term at x = ∞ must vanish since n(∞) = 0, which requires eeφ(∞)/k

B
T = 0.

(b) Integrating once more, we have

e−eφ(x)/2k
B
T =

(

2πn0 e
2

k
B
T

)1/2

(x + a) ,

where a is a constant of integration. Since n(x = 0) ≡ n0, we must have φ(0) = 0, and hence

a =

(

k
B
T

2πn0 e
2

)1/2

.

Thus,

φ(x) = −2k
B
T

e
ln

(

x+ a

a

)

.

(c) The electron number distribution is then

n(x) = n0

(

a

x+ a

)2

.
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(6.8) In §6.4.3 of the notes, the virial equation of state is derived for a single species of particle.

(a) Generalize eqn. 5.160 to the case of two species interacting by uσσ′ (r), where σ and σ′ are the species labels.

(b) For a plasma, show from Debye-Hückel theory that the pair correlation function is gσσ′ ∝ exp
(

−σσ′q2φ(r)/k
B
T
)

,
where σ and σ′ are the signs of the charges (magnitude q), and φ(r) is the screened potential due to a unit
positive test charge.

(c) Find the equation of state for a three-dimensional two-component plasma, in the limit where T is large.

Solution :

(a) Let i = 1, . . . , N+ +N− index all the particles, and let σi = ±1 denote the sign of the charge of particle i, with
σi = +1 for 1 ≤ i ≤ N+ and σi = −1 for (N++1) ≤ i ≤ (N++N−). In a globally neutral system, N+ = N− ≡ 1

2N .
We define

gµν(r) ≡
1

nµnν

〈

∑

i6=j

δ(r − xi) δ(xj) δσ
i
,µ δσ

j
,ν

〉

,

where nµ is the density of particles of species µ, with µ = ±1. As defined, gµν(r) → 1 as r → ∞. If instead we

normalize gµν by dividing by n2
tot = (n+ + n−)

2, then we would have gµν(r → ∞) = 1
4 . We next work on the

virial equation of state,

p

k
B
T

=
N+ +N−

V
− 1

3V k
B
T

N
+
+N

−
∑

i=1

〈

xi ·∇iW
〉

.

The potential is

W =
∑

i<j

σi σj q
2

|xi − xj |
≡
∑

i<j

uσ
i
σ
j

(

|xi − xj |
)

,

with uσσ′(r) = σσ′q2/r. Then using translational invariance one has

p

k
B
T

= n+ + n− − 2π

3k
B
T

∑

σ,σ′

nσn σ′

∞
∫

0

dr r3 u′σσ′ (r) gσσ′ (r)

(b) According to Debye-Hückel theory,

gσσ′(r) = exp

(

− σσ′q φ(r)

k
B
T

)

,

where φ(r) is the screened potential at r due to a point charge q at the origin, which satisfies

∇2φ = 4πnq sinh
(

qφ/k
B
T
)

− 4πq δ(r) ,

where n+ = n− ≡ 1
2n. In the high temperature limit, we can expand the sinh function and we obtain the Yukawa

potential

φ(r) =
q

r
e−κ

D
r ,

where

κ
D
=

(

4πnq2

k
B
T

)1/2
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is the Debye screening wavevector. Thus, we have

p

k
B
T

= n− πn2

6k
B
T

∞
∫

0

dr r3
(

− q2

r2

)

∑

σ,σ′

σσ′ gσσ′ (r)

= n− 2πn2q3

3(k
B
T )2

∞
∫

0

dr r φ(r) = n− 2πn2q4

3(k
B
T )2κ

D

= n

(

1−
√
π n1/2 q3

3 (k
B
T )3/2

)

.
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(6.9) Consider a liquid where the interaction potential is u(r) = ∆0 (a/r)
k , where ∆0 and a are energy and

length scales, respectively. Assume that the pair distribution function is given by g(r) ≈ e−u(r)/k
B
T . Compute the

equation of state. For what values of k do your expressions converge?

Solution:

According to the virial equation of state in eqn. 6.157 of the Lecture Notes,

p = nk
B
T − 2

3πn
2

∞
∫

0

dr r3 g(r)u′(r) .

Substituting for u(r) and g(r) as in the statement of the problem, we change variables to

s ≡ u(r)

k
B
T

⇒ ds =
u′(r)

k
B
T
dr ,

so

r = a

(

∆0

k
B
T

)1/k

s−1/k

and

r3 g(r)u′(r) dr = k
B
T a3

(

∆0

k
B
T

)3/k

s−3/k e−s ds .

We then have

p = nk
B
T + 2

3πn
3a3k

B
T

(

∆0

k
B
T

)3/k
∞
∫

0

ds s−3/k e−s

= nk
B
T

{

1 + 2
3πΓ

(

1− 3
k

)

na3
(

∆0

k
B
T

)3/k
}

.

Note that a minus sign appears because we must switch the upper and lower limits on the s integral. This expres-
sion converges provided k < 0 or k > 3.
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(6.10) Consider a charge Q impurity located at the origin of a two-dimensional metallic plane. You may model
the plane initially as a noninteracting Fermi gas in the presence of a neutralizing background. Poisson’s equation
is

∇2φ = 4πe
[

n(ρ)− n0

]

δ(z)− 4πQ δ(ρ) δ(z) ,

where r = (ρ, z) is decomposed into a two-dimensional vector ρ and the scalar z, and where n0 is the number
density of electrons at |ρ| = ∞.

(a) Using the Thomas-Fermi approach, find the two-dimensional electron number density n(ρ) in terms of the
local potential φ(ρ, 0).

(b) By Fourier transformation, show that

φ̂(k, q) =
4πQ

k2 + q2
− 4πn0e

2

εF

χ̂(k)

k2 + q2
,

where k is a two-dimensional wavevector, and

χ̂(k) =

∞
∫

−∞

dq

2π
φ̂(k, q) .

(c) Solve for χ̂(k) and then for φ̂(k, q).

(d) Derive an expression for the potential φ(ρ, z).

(e) Derive an expression for the local charge density ̺(ρ) = en0 − en(ρ). Show that ̺(ρ) = Q
2πλ2 f(ρ/λ), where

λ is a screening length and f(s) is some function, and expression for which you should derive. Sketch f(s).

Solution:

(a) In two dimensions we have

n = 2

∫

d2k

(2π)2
Θ(kF − k) =

k2
F

2π
=
mεF
π~2

,

where we have used εF = ~
2k2

F
/2m. In the presence of a potential, the energy levels are shifted and it is the

electrochemical potential ε∞
F

= εF − eφ which is constant throughout the system. Thus, the local electron density
is

n(ρ) =
m

π~2

[

ε∞
F

+ e φ(ρ, 0)
]

= n0 +
me

π~2
φ(ρ, 0) .

Here, φ(r) = φ(ρ, z) is the electrostatic potential in three-dimensional space. When we restrict to the z = 0 plane
we write φ(ρ, 0).

(b) We now have

∇2φ =
4

aB

φ(ρ, 0) δ(z)− 4πQ δ(ρ) δ(z) ,

where a
B
= ~

2/me2 is the Bohr radius. Now we take the Fourier transform by multiplying the above equation by

eik·ρeiqz and then integrating over all ρ and z. This gives

−(k2 + q2)φ̂(k, q) =
4

a
B

χ̂(k)
︷ ︸︸ ︷

∞
∫

−∞

dq

2π
φ̂(k, q) −4πQ ,
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Figure 4: Plot of the screening charge density in units of −Q/2πλ2 for problem (10).

hence

φ̂(k, q) =
4πQ

k2 + q2
− 4

a
B

χ̂(k)

k2 + q2
.

(c) To solve for χ̂(k) we integrate the above equation over q and use the fact that

∞
∫

−∞

dq

2π

eiqz

k2 + q2
=
e−|kz|

2 |k| .

Thus,

χ̂(k) =
2πQ

|k| − 2

|ka
B
|
χ̂(k)

Thus,

χ̂(k) =
2πQ

|k|+ λ−1
,

where λ = 1
2aB

. Plugging this back into our equation for φ̂(k, q), we obtain

φ̂(k, q) =
4πQ · |kλ|

(

k2 + q2
)(

1 + |kλ|
) .
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(d) Now we Fourier transform back to real space:

φ(ρ, z) =

∫

d2k

(2π)2

∞
∫

−∞

dq

2π
φ̂(k, q) eik·ρ eiqz

=

∫

d2k

(2π)2
e−|kz|

2 |k| · 4πQ |kλ|
1 + |kλ| · eik·ρ

=
Q

λ
F
(

ρ/λ, |z|/λ
)

,

where

F (σ, ζ) =

∞
∫

0

du
u

1 + u
J0(σu) e

−ζu ,

where J0(s) is the Bessel function of order zero.

(e) We have

̺(ρ) = e
[

n0 − n(ρ)
]

= − Q

2πλ2
F (ρ/λ, 0) .

Note

F (ρ/λ, 0) =

∞
∫

0

du
u J0(uρ/λ)

1 + u
=
λ

ρ
−

∞
∫

0

du
J0(uρ/λ)

1 + u

=
λ

ρ
+ 1

2π Y0(ρ/λ)− 1
2πH0(ρ/λ) ,

where Y0(s) is a Bessel function of the second kind and H0(s) is the Struve function. Asymptotically1 we obtain

̺(ρ) =
Q

2πλ2

{

p−1
∑

n=1

(−1)n Γ2
(

1
2 + n

)

(

2λ

ρ

)(2n+1)

+ O
(

2λ/ρ)2p+1

}

.

Note that ̺(ρ) ∝ ρ−3 at large distances. In the above formula, p is arbitrary. Since Γ(z+ 1
2 ) ∼ z ln z−z, the optimal

value of p to minimize the remainder in the sum is p ≈ ρ/2λ. See Fig. 4 for a sketch.

1See Gradshteyn and Ryzhik §8.554, then use Γ(z) Γ(1− z) = π csc(πz).
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(11) The grand partition function for a system is given by the expression

Ξ = (1 + z)V/v
0

(

1 + zαV/v
0

)

,

where α > 0. In this problem, you are to work in the thermodynamic limit. You will also need to be careful to
distinguish the cases |z| < 1 and |z| > 1.

(a) Find an expression for the pressure p(T, z).

(b) Find an expression for the number density n(T, z).

(c) Plot v(p, T ) as a function of p for different temperatures and show there is a first order phase transition, i.e.

a discontinuity in v(p), which occurs for |z| = 1. What is the change in volume at the transition? .

Solution :

(a) The grand potential is

Ω(T, z) = −k
B
T ln Ξ = −kB

T V

v0
ln(1 + z)− k

B
T ln

(

1 + zαV/v
0

)

.

Now take the thermodynamic limit V/v0 → ∞. One then has

Ω(T, z) = −kB
T V

v0
ln(1 + z)−

{

0 if |z| < 1
αk

B
T V

v
0

ln z if |z| > 1 .

From this we compute the pressure,

p = −
(

∂Ω

∂V

)

T,µ

=
k

B
T

v0
ln(1 + z) +

αk
B
T

v0
· z

αV/v
0 ln z

1 + zαV/v
0

=
k

B
T

v0
ln(1 + z) +

{

0 if |z| < 1
αk

B
T

v
0

ln z if |z| > 1 .

(b) For the density, we have

n = − z

V k
B
T

(

∂Ω

∂z

)

T,V

=
1

v0
· z

1 + z
+
α

v0
· zαV/v

0

1 + zαV/v
0

=
1

v0
· z

1 + z
+

{

0 if |z| < 1

α/v0 if |z| > 1 .

(c) We eliminate z from the above equations, and we write v = 1/n as the volume per particle. The fugacity z(v)
satisfies

z(v) =



















































v
0

v−v
0

if v > 2v0

1 if
2v

0

1+2α < v < 2v0

v
0
−αv

(1+α)v−v
0

if
v
0

1+α < v <
2v

0

1+2α

∞ if v <
v
0

1+α

16



We then have

pv0
k

B
T

=























































ln
(

v
v−v

0

)

v > 2v0

ln 2
2v

0

1+2α < v < 2v0

ln
[(

v
(1+α)v−v

0

)(

v
0
−αv

(1+α)v−v
0

)α]
v
0

1+α < v <
2v

0

1+2α

∞ v <
v
0

1+α

Sample plots of z(v) and p(v) are shown in Fig. 5.

Figure 5: z(v) and p(v) for α = 0.2, 1.0, and 3.0.
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(6.12) In problem 11, you considered the thermodynamic properties associated with the grand partition function
Ξ(V, z) = (1 + z)V/v

0

(

1 + zαV/v
0

)

. Consider now the following partition function:

Ξ(V, z) = (1 + z)V/v
0

K
∏

j=1

{

1 +

(

z

σj

)αV/Kv
0

}

.

Consider the thermodynamic limit where α is a number on the order of unity, V/v0 → ∞, and K → ∞ but with
Kv0/V → 0. For example, we might have K ∝ (V/v0)

1/2.

(a) Show that the number density is

n(T, z) =
1

v0

z

1 + z
+
α

v0

|z|
∫

0

dσ g(σ) ,

where

g(σ) =
1

K

K
∑

j=1

δ(σ − σj) .

(b) Derive the corresponding expression for p(T, z).

(c) In the thermodynamic limit, the spacing between consecutive σj values becomes infinitesimal. In this case,
g(σ) approaches a continuous distribution. Consider the flat distribution,

g(σ) =
1

w
Θ(σ − r)Θ(r + w − σ) =

{

w−1 if r < σ < r + w

0 otherwise.

The model now involves three dimensionless parameters2: α, r, and w. Solve for z(v). You will have to take
cases, and you should find there are three regimes to consider3.

(d) Plot pv0/kB
T versus v/v0 for the case α = 1

4 and r = w = 1.

(e) Comment on the critical properties (i.e. the singularities) of the equation of state.

Solution :

(a) We have

1

V
ln Ξ =

1

v0
ln(1 + z) +

α

Kv0

K
∑

i=1

ln(z/σi)Θ
(

|z| − σi
)

,

so from n = V −1z ∂ ln Ξ/∂z,

n =
1

v0

z

1 + z
+

α

Kv0

K
∑

i=1

Θ
(

|z| − σi
)

=
1

v0

z

1 + z
+
α

v0

|z|
∫

0

dσ g(σ) .

2The quantity v
0

has dimensions of volume and disappears from the problem if one defines ṽ = v/v
0

.
3You should find that a fourth regime, v < (1 + r−1)v

0
, is not permitted.
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(b) The pressure is p = V −1k
B
T ln Ξ:

p =
k

B
T

v0
ln(1 + z) +

αk
B
T

Kv0

K
∑

i=1

ln(z/σi)Θ
(

|z| − σi
)

=
k

B
T

v0
ln(1 + z) +

αk
B
T

v0

|z|
∫

0

dσ g(σ) ln
(

z/σ
)

.

(c) We now consider the given form for g(σ). From our equation for n(z), we have

nv0 =
v0
v

=











z
1+z if |z| ≤ r
z

1+z + α
w (z − r) if r ≤ |z| ≤ r + w

z
1+z + α if r + w ≤ |z| .

We need to invert this result. We assume z ∈ R
+. In the first regime, we have

z ∈ [ 0 , r ] ⇒ z =
v0

v − v0
with

v

v0
∈
[

1 + r−1 , ∞
]

.

In the third regime,

z ∈ [ r + w , ∞ ] ⇒ z =
v0 − αv

(1 + α) v − v0
with

v

v0
∈
[

1

1 + α
,

1 + r + w

(1 + α)(r + w) + α

]

.

Note that there is a minimum possible volume per particle, vmin = v0/(1 +α), hence a maximum possible density
nmax = 1/vmin. This leaves us with the second regime, where z ∈ [ r , r + w ]. We must invert the relation

v0
v

=
z

1 + z
+
α

w
(z − r) ⇒ α

w
z2 +

(

α

w
(1− r) + 1− v0

v

)

z −
(

αr

w
+
v0
v

)

= 0 .

obtaining

z =
−
[

α
w (1 − r) + 1− v

0

v

]

+

√

[

α
w (1− r) + 1− v

0

v

]2

+ 4α
w

(

αr
w +

v
0

v

)

2α/w
,

which holds for

a ∈ [ r , r + w ] ⇒ v

v0
∈
[

1 + r + w

(1 + α)(r + w) + α
, 1 + r−1

]

.

The dimensionless pressure π = pv0/kB
T is given by

z ∈ [ 0 , r ] ⇒ π = ln(1 + z) with
v

v0
∈
[

1 + r−1 , ∞
]

.

and
z ∈ [ r + w , ∞ ] ⇒ π = ln(1 + z) + α ln z − α

w

[

(r + w) ln(r + w)− r ln r − w
]

in the large volume region and
v

v0
∈
[

1

1 + α
,

1 + r + w

(1 + α)(r + w) + α

]

in the small volume region. In the intermediate volume region, we have

π = ln(1 + z) +
α

w
(z − r) ln z − α

w

(

z ln z − r ln r − z + r
)

,
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which holds for

z ∈ [ r , r + w ] ⇒ v

v0
∈
[

1 + r + w

(1 + α)(r + w) + α
, 1 + r−1

]

.

(d) The results are plotted in Fig. 4. Note that v is a continuous function of π, indicating a second order transition.

(e) Consider the thermodynamic behavior in the vicinity of z = r, i.e. near v = (1 + r−1)v0. Let’s write z = r + ǫ
and work to lowest nontrivial order in ǫ. On the low density side of this transition, i.e. for ǫ < 0, we have, with
ν = nv0 = v0/v,

ν =
z

1 + z
=

r

1 + r
+

ǫ

(1 + r)2
+O(ǫ2)

π = ln(1 + z) = ln(1 + r) +
ǫ

1 + r
+O(ǫ2) .

Eliminating ǫ, we have
ν < νc ⇒ π = ln(1 + r) + (1 + r)(ν − νc) + . . . ,

where νc = r/(1 + r) is the critical dimensionless density. Now investigate the high density side of the transition,
where ǫ > 0. Integrating over the region [ r , r + ǫ ], we find

ν =
z

1 + z
+
α

w
(z − r) =

r

1 + r
+

[

1

(1 + r)2
+
α

w

]

ǫ+O(ǫ2)

π = ln(1 + z) +
α

w

[

z + r ln(r/z)− r
]

= ln(1 + r) +
ǫ

1 + r
+O(ǫ2) .

Figure 6: Fugacity z and dimensionless pressure pv0/kBT versus dimensionless volume per particle v/v0 for prob-
lem (2), with α = 1

4 and r = w = 1. Different portions of the curves are shown in different colors. The dashed line
denotes the minimum possible volume vmin = v0/(1 + α).
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Note that ∂π/∂z is continuous through the transition. As we are about to discover, ∂π/∂ν is discontinuous.
Eliminating ǫ, we have

ν > νc ⇒ π = ln(1 + r) +
1 + r

1 + (1 + r)2 (α/w)
(ν − νc) + . . . .

Thus, the isothermal compressibility κT = − 1
v

(

∂v
∂p

)

T
is discontinuous at the transition. This can be seen clearly as

a kink in Fig. 6.

Suppose the density of states g(σ) behaves as a power law in the vicinity of σ = r, with g(σ) ≃ A (σ − r)t.
Normalization of the integral of g(σ) then requires t > −1 for convergence at this lower limit. For z = r + ǫ with
ǫ > 0, one now has

ν =
r

1 + r
+

ǫ

(1 + r)2
+
αA ǫt+1

t+ 1
+ . . .

π = ln(1 + r) +
ǫ

1 + r
+

αA ǫt+2

(t+ 1)(t+ 2)r
+ . . . .

If t > 0, then to order ǫ the expansion is the same for ǫ < 0, and both π and its derivative ∂π
∂ν are continuous across

the transition. (Higher order derivatives, however, may be discontinuous or diverge.) If −1 < t < 0, then ǫt+1

dominates over ǫ in the first of these equations, and we have

ǫ =

(

(t+ 1)(ν − νc)

αA

)
1

t+1

and

π = ln(1 + r) +
1

1 + r

(

t+ 1

αA

)
1

t+1

(ν − νc)
1

t+1 ,

which has a nontrivial power law behavior typical of second order critical phenomena.
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7 Mean Field Theory of Phase Transitions : Worked Examples

(7.1) Find vc, Tc, and pc for the equation of state,

p =
RT

v − b
− α

v3
.

Solution :

We find p′(v):
∂p

∂v
= − RT

(v − b)2
+

3α

v4
.

Setting this to zero yields the equation

f(u) ≡ u4

(u− 1)2
=

3α

RTb2
,

where u ≡ v/b is dimensionless. The function f(u) on the interval [1,∞] has a minimum at u = 2, where fmin =
f(2) = 16. This determines the critical temperature, by setting the RHS of the above equation to fmin. Then
evaluate pc = p(vc, Tc). One finds

vc = 2b , Tc =
3α

16Rb2
, pc =

α

16b3
.

1



(7.2) The Dieterici equation of state is

p (v − b) = RT exp

(
− a

vRT

)
.

(a) Find the critical point (pc, vc, Tc) for this equation of state

(b) Writing p̄ = p/pc, v̄ = v/vc, and T̄ = T/Tc, rewrite the equation of state in the form p̄ = p̄
(
v̄, T̄

)
.

(c) For the brave only! Writing p̄ = 1 + π, T̄ = 1 + t, and v̄ = 1 + ε, find εliq(t) and εgas(t) for 0 < (−t) � 1,
working to lowest nontrivial order in (−t).

Solution :

(a) We have

p =
RT

v − b
e−a/vRT ,

hence (
∂p

∂v

)
T

= p ·

{
− 1

v − b
+

a

v2RT

}
.

Setting the LHS of the above equation to zero, we then have

v2

v − b
=

a

RT
⇒ f(u) ≡ u2

u− 1
=

a

bRT
,

where u = v/b is dimensionless. Setting f ′(u∗) = 0 yields u∗ = 2, hence f(u) on the interval u ∈ (1,∞) has a
unique global minimum at u = 2, where f(2) = 4. Thus,

vc = 2b , Tc =
a

4bR
, pc =

a

4b2
e−2 .

(b) In terms of the dimensionless variables p̄, v̄, and T̄ , the equation of state takes the form

p̄ =
T̄

2v̄ − 1
exp

(
2− 2

v̄T̄

)
.

When written in terms of the dimensionless deviations π, ε, and t, this becomes

π =

(
1 + t

1 + 2ε

)
exp

(
2(ε+ t+ εt)

1 + ε+ t+ εt

)
− 1 .

Expanding via Taylor’s theorem, one finds

π(ε, t) = 3t− 2tε+ 2t2 − 2
3ε

3 + 2ε2t− 4εt2 − 2
3 t

3 + . . . .

Thus,

πεt ≡
∂2π

∂ε ∂t
= −2 , πεεε ≡

∂3π

∂ε3
= −4 ,

and according to the results in §7.2.2 of the Lecture Notes, we have

εL,G = ∓
(

6πεt
πεεε

)1/2
= ∓

(
− 3t

)1/2
.
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(7.3) Consider a ferromagnetic spin-1 triangular lattice Ising model . The Hamiltonian is

Ĥ = −J
∑
〈ij〉

Szi S
z
j −H

∑
i

Szi ,

where Szi ∈ {−1 , 0 , +1} on each site i, H is a uniform magnetic field, and where the first sum is over all links of
the lattice.

(a) Derive the mean field Hamiltonian ĤMF for this model.

(b) Derive the free energy per site F/N within the mean field approach.

(c) Derive the self consistent equation for the local moment m = 〈Szi 〉.

(d) Find the critical temperature Tc(H = 0).

(e) Assuming |H| � kB|T − Tc| � J , expand the dimensionless free energy f = F/6NJ in terms of θ = T/Tc,
h = H/kBTc, and m. Minimizing with respect to m, find an expression for the dimensionless magnetic
susceptibility χ = ∂m/∂h close to the critical point.

Solution :

(a) Writing Szi = m+ δSzi , where m = 〈Szi 〉 and expanding Ĥ to linear order in the fluctuations δSzi , we find

ĤMF = 1
2NzJm

2 − (H + zJm)
∑
i

Szi ,

where z = 6 for the triangular lattice.

(b) The free energy per site is

F/N = 1
2zJm

2 − kBT lnTr e(H+zJm)Sz

= 1
2zJm

2 − kBT ln

{
1 + 2 cosh

(
H + zJm

kBT

)}
.

(c) The mean field equation is ∂F/∂m = 0, which is equivalent to m = 〈Szi 〉. We obtain

m =
2 sinh

(
H+zJm
kBT

)
1 + 2 cosh

(
H+zJm
kBT

) .

(d) To find Tc, we set H = 0 in the mean field equation:

m =
2 sinh(βzJm)

1 + 2 cosh(βzJm)

= 2
3βzJm+O(m3) .

The critical temperature is obtained by setting the slope on the RHS of the above equation to unity. Thus,

Tc =
2zJ

3kB

.

So for the triangular lattice, where z = 6, one has Tc = 4J/kB.
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(e) Scaling T and H as indicated, the mean field equation becomes

m =
2 sinh

(
(m+ h)/θ

)
1 + 2 cosh

(
(m+ h)/θ

) =
m+ h

θ/θc

+ . . . ,

where θc = 2
3 , and where we assume θ > θc. Solving for m(h), we have

m =
h

1− θc
θ

=
θc h

θ − θc

+O
(
(θ − θc)2

)
.

Thus, χ = θc/(θ − θc), which reflects the usual mean field susceptibility exponent γ = 1.
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(7.4) Consider a ferromagnetic spin-S Ising model on a lattice of coordination number z. The Hamiltonian is

Ĥ = −J
∑
〈ij〉

σi σj − µ0H
∑
i

σi ,

where σ ∈ {−S,−S + 1, . . . ,+S}with 2S ∈ Z.

(a) Find the mean field Hamiltonian ĤMF.

(b) Adimensionalize by setting θ ≡ kBT/zJ , h ≡ µ0H/zJ , and f ≡ F/NzJ . Find the dimensionless free energy
per site f(m,h) for arbitrary S.

(c) Expand the free energy as

f(m,h) = f0 + 1
2am

2 + 1
4bm

4 − chm+O(h2, hm3,m6)

and find the coefficients f0, a, b, and c as functions of θ and S.

(d) Find the critical point (θc, hc).

(e) Find m(θc, h) to leading order in h.

Solution :

(a) Writing σi = m+ δσi, we find

ĤMF = 1
2NzJm

2 − (µ0H + zJ)
∑
i

σi .

(b) Using the result
S∑

σ=−S
eβµ0Heffσ =

sinh
(
(S + 1

2 )βµ0H
)

sinh
(

1
2βµ0H

) ,

we have
f = 1

2m
2 − θ ln sinh

(
(2S + 1)(m+ h)/2θ

)
+ θ ln sinh

(
(m+ h)/2θ

)
.

(c) Expanding the free energy, we obtain

f = f0 + 1
2am

2 + 1
4bm

4 − chm+O(h2, hm3,m6)

= −θ ln(2S + 1) +

(
3θ − S(S + 1)

6θ

)
m2 +

S(S + 1)(2S2 + 2S + 1)

360 θ3
m4 − 2

3 S(S + 1)hm+ . . . .

Thus,

f0 = −θ ln(2S + 1) , a = 1− 1
3S(S + 1)θ−1 , b =

S(S + 1)(2S2 + 2S + 1)

90 θ3
, c = 2

3 S(S + 1) .

(d) Set a = 0 and h = 0 to find the critical point: θc = 1
3S(S + 1) and hc = 0.

(e) At θ = θc, we have f = f0 + 1
4bm

4 − chm + O(m6). Extremizing with respect to m, we obtain m = (ch/b)1/3.
Thus,

m(θc, h) =

(
60

2S2 + 2S + 1

)1/3
θ h1/3 .
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(7.5) Consider the O(2) model,
Ĥ = − 1

2

∑
i,j

Jij n̂i ·n̂j −H ·
∑
i

n̂i ,

where n̂i = cosφi x̂+ sinφi ŷ. Consider the case of infinite range interactions, where Jij = J/N for all i, j, where
N is the total number of sites.

(a) Show that

exp

[
βJ

2N

∑
i,j

n̂i ·n̂j

]
=
NβJ

2π

∫
d2m e−NβJm

2/2 eβJm·
∑
i n̂i .

(b) Using the definition of the modified Bessel function I0(z),

I0(z) =

2π∫
0

dφ

2π
ez cosφ ,

show that
Z = Tr e−βĤ =

∫
d2m e−NA(m,h)/θ ,

where θ = kBT/J and h = H/J . Find an expression for A(m,h).

(c) Find the equation which extremizes A(m,h) as a function ofm.

(d) Look up the properties of I0(z) and write down the first few terms in the Taylor expansion of A(m,h) for
small m and h. Solve for θc.

Solution :

(a) We have
Ĥ

kBT
= − J

2NkBT

(∑
i

n̂i

)2
− H

kBT
·
∑
i

n̂i .

Therefore

e−Ĥ/kBT = exp

[
1

2Nθ

(∑
i

n̂i

)2
+
h

θ
·
∑
i

n̂i

]

=
N

2πθ

∫
d2m exp

[
−Nm

2

2θ
+

(
m+ h

θ

)
·
∑
i

n̂i

]
.

(b) Integrating the previous expression, we have

Z = Tr e−Ĥ/kBT =
∏
i

∫
dn̂i
2π

e−Ĥ[{n̂i}]/kBT

=
N

2πθ

∫
d2m e−Nm

2/2θ
[
I0
(
|m+ h|/θ

)]N
.

Thus, we identify

A(m,h) = 1
2m

2 − θ ln I0
(
|m+ h|/θ

)
− θ

N
ln(N/2πθ) .
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(c) Extremizing with respect to the vectorm, we have

∂A

∂m
= m− m+ h

|m+ h|
·
I1
(
|m+ h|/θ

)
I0
(
|m+ h|/θ

) = 0 ,

where I1(z) = I ′0(z). Clearly any solution requires thatm and h be colinear, hence

m =
I1
(
(m+ h)/θ

)
I0
(
(m+ h)/θ

) .
(d) To find θc, we first set h = 0. We then must solve

m =
I1(m/θ)

I0(m/θ)
.

The modified Bessel function Iν(z) has the expansion

Iν(z) =
(

1
2z
)ν ∞∑

k=0

(
1
4z

2
)k

k! Γ(k + ν + 1)
.

Thus,

I0(z) = 1 + 1
4z

2 + . . .

I1(z) = 1
2z + 1

16z
3 + . . . ,

and therefore I1(z)/I0(z) = 1
2z −

1
16z

3 +O(z5), and we read off θc = 1
2 .
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(7.6) Consider the O(3) model,
Ĥ = −J

∑
〈ij〉

n̂i · n̂j −H ·
∑
i

n̂i ,

where each n̂i is a three-dimensional unit vector.

(a) Writing
n̂i = m+ δn̂i ,

withm = 〈n̂i〉 and δn̂i = n̂i −m, derive the mean field Hamiltonian.

(b) Compute the mean field free energy f(m, θ,h), where θ = kBT/zJ and h = H/zJ , with f = F/NzJ . Here
z is the lattice coordination number and N the total number of lattice sites, as usual. You may assume that
m ‖ h. Note that the trace over the local degree of freedom at each site i is given by

Tr
i
→
∫
dn̂i
4π

,

where the integral is over all solid angle.

(c) Find the critical point (θc, hc).

(d) Find the behavior of the magnetic susceptibility χ = ∂m/∂h as a function of temperature θ just above θc.

Solution :

(a) Making the mean field Ansatz, one obtains the effective fieldHeff = H+zJm, and the mean field Hamiltonian

ĤMF = 1
2NzJm

2 − (H + zJm) ·
∑
i

n̂i .

(b) We assume thatm ‖ h, in which case

f(m, θ, h) = 1
2m

2 − θ ln

∫
dn̂

4π
e(m+h)ẑ·n̂/θ

= 1
2m

2 − θ ln

(
sinh

(
(m+ h)/θ

)
(m+ h)/θ

)
.

Here we have without loss of generality taken h to lie in the ẑ direction.

(c) We expand f(m, θ, h) for small m and θ, obtaining

f(m, θ, h) = 1
2m

2 − (m+ h)2

6 θ
+

(m+ h)4

180 θ3
+ . . .

= 1
2

(
1− 1

3θ

)
m2 − hm

3 θ
+

m4

180 θ4
+ . . .

We now read off hc = 0 and θc = 1
3 .

(d) Setting ∂f/∂m = 0, we obtain (
1− θc

θ

)
m =

θc

θ
hm+O(m3) .

We therefore have

m(h, θ > θc) =
θc h

θ − θc

+O(h3) , χ(θ > θc) =
∂m

∂h

∣∣∣∣
h=0

=
θc

θ − θc

.
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(7.7) Consider an Ising model on a square lattice with Hamiltonian

Ĥ = −J
∑
i∈A

∑
j∈B

′
Si σj ,

where the sum is over all nearest-neighbor pairs, such that i is on the A sublattice and j is on the B sublattice (this is
the meaning of the prime on the j sum), as depicted in Fig. 1. The A sublattice spins take values Si ∈ {−1, 0,+1},
while the B sublattice spins take values σj ∈ {−1,+1}.

(a) Make the mean field assumptions 〈Si〉 = mA for i ∈ A and 〈σj〉 = mB for j ∈ B. Find the mean field free
energy F (T,N,mA,mB). Adimensionalize as usual, writing θ ≡ kBT/zJ (with z = 4 for the square lattice)
and f = F/zJN . Then write f(θ,mA,mB).

(b) Write down the two mean field equations (one for mA and one for mB).

(c) Expand the free energy f(θ,mA,mB) up to fourth order in the order parameters mA and mB.

(d) Show that the part of f(θ,mA,mB) which is quadratic in mA and mB may be written as a quadratic form, i.e.

f(θ,mA,mB) = f0 + 1
2

(
mA mB

)(M11 M12

M21 M22

)(
mA

mB

)
+O

(
m4

A,m
4
B

)
,

where the matrix M is symmetric, with components Maa′ which depend on θ. The critical temperature θc

is identified as the largest value of θ for which det M(θ) = 0. Find θc and explain why this is the correct
protocol to determine it.

Solution :

(a) Writing Si = mA + δSi and σj = mB + δσj and dropping the terms proportional to δSi δσj , which are quadratic
in fluctuations, one obtains the mean field Hamiltonian

ĤMF = 1
2NzJmAmB − zJmB

∑
i∈A

Si − zJmA

∑
j∈B

σj ,

with z = 4 for the square lattice. Thus, the internal field on each A site is Hint,A = zJmB, and the internal field on
each B site is Hint,B = zJmA. The mean field free energy, FMF = −kBT lnZMF, is then

FMF = 1
2NzJmAmB − 1

2NkBT ln
[
1 + 2 cosh(zJmB/kBT )

]
− 1

2NkBT ln
[
2 cosh(zJmA/kBT )

]
.

Adimensionalizing,

f(θ,mA,mB) = 1
2mAmB − 1

2θ ln
[
1 + 2 cosh(mB/θ)

]
− 1

2θ ln
[
2 cosh(mA/θ)

]
.

(b) The mean field equations are obtained from ∂f/∂mA = 0 and ∂f/∂mB = 0. Thus,

mA =
2 sinh(mB/θ)

1 + 2 cosh(mB/θ)

mB = tanh(mA/θ) .

(c) Using

ln
(
2 coshx

)
= ln 2 +

x2

2
− x4

12
+O(x6) , ln

(
1 + 2 coshx

)
= ln 3 +

x2

3
− x4

36
+O(x6) ,

9



Figure 1: The square lattice and its A and B sublattices.

we have

f(θ,mA,mB) = f0 + 1
2mAmB −

m2
A

4 θ
− m2

B

6 θ
+

m4
A

24 θ3
+

m4
B

72 θ3
+ . . . ,

with f0 = − 1
2θ ln 6.

(d) From the answer to part (c), we read off

M(θ) =

− 1
2θ

1
2

1
2 − 1

3θ

 ,

from which we obtain det M = 1
6θ
−2 − 1

4 . Setting det M = 0 we obtain θc =
√

2
3 .
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(7.8) The spin lattice Hamiltonian for the three state (Z3) clock model is written

Ĥ = −J
∑
〈ij〉

n̂i · n̂j ,

where each local unit vector n̂i is a planar spin which can take one of three possible values:

n̂ = ê1 , n̂ = − 1
2 ê1 +

√
3

2 ê2 , n̂ = − 1
2 ê1 −

√
3

2 ê2 .

Note that the internal space in which each unit vector n̂i exists is distinct from the physical Euclidean space in
which the lattice points reside.

(a) Consider the clock model on a lattice of coordination number z. Make the mean field assumption 〈n̂i〉 =
m ê1. Expanding the Hamiltonian to linear order in the fluctuations, derive the mean field Hamiltonian for
this model ĤMF.

(b) Rescaling θ = kBT/zJ and f = F/NzJ , where F is the Helmholtz free energy and N is the number of sites,
find f(m, θ).

(c) Is the transition second order or first order? Why?

(d) Find the equations which determine the critical temperature θc.

(e) Show that this model is equivalent to the three state Potts model. Is the Z4 clock model equivalent to the
four state Potts model? Why or why not?

Solution :

(a) We can solve the mean field theory on a general lattice of coordination number z. The mean field Hamiltonian
is

ĤMF = 1
2NzJm

2 − zJm ê1 ·
∑
i

n̂i .

(b) We have

f(m, θ) = 1
2m

2 − θ lnTr
n̂

exp
(
m ê1 · n̂/θ

)
= 1

2m
2 − θ ln

(
1
3e
m/θ + 2

3e
−m/2θ

)
=

1

2

(
1− 1

2 θ

)
m2 − m3

24 θ2
+

m4

64 θ3
+O(m5) .

Here we have defined Tr n̂ = 1
3

∑
n̂ as the normalized trace. The last line is somewhat tedious to obtain, but is not

necessary for this problem.

(c) Since f(m, θ) 6= f(−m, θ), the Landau expansion of the free energy (other than constants) should include terms
of all orders starting with O(m2). This means that there will in general be a cubic term, hence we expect a first
order transition.

(d) At the critical point, the magnetization m = mc is finite. We then have to solve two equations to determine mc

and θc. The first condition is that the free energy have degenerate minima at the transition, i.e. f(m = 0, θ = θc) =
f(m = mc, θ = θc) . Thus,

1
2m

2 = θ ln
(

1
3e
m/θ + 2

3e
−m/2θ

)
.
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The second is the mean field equation itself, i.e.

∂f

∂m
= 0 ⇒ m =

em/θ − e−m/2θ

em/θ + 2 e−m/2θ
.

These equations for (m, θ) = (mc, θc) are nonlinear and hence we cannot expect to solve them analytically.

If, however, the transition were very weakly first order, then mc is by assumption small, which means we should
be able to get away with the fourth order Landau expansion of the free energy. For a free energy f(m) = 1

2am
2 −

1
3ym

3 + 1
4bm

4, setting f(m) = f ′(m) = 0 we obtain m = 3a/y and y2 = 9ab. For our system, a = 1 − 1
2θ , y = 1

8θ2 ,
and b = 1

16θ3 . We then obtain θc = 5
9 . Note that the second order term in f(m) changes sign at θ∗ = 1

2 , so
θc > θ∗ is consistent with the fact that the second order transition is preempted by the first order one. Now we
may ask, just how good was our assumption that the transition is weakly first order. To find out, we compute
mc = 3a/y = 24 θc(θc− 1

2 ) = 20
27 which is not particularly small compared to unity. Hence the assumption that our

transition is weakly first order is not justified.

(e) Let ε(n̂, n̂′) = −Jn̂ · n̂′ be the energy for a given link. The unit vectors n̂ and n̂′ can each point in any of three
directions, which we can label as 0◦, 120◦, and 240◦. The matrix of possible bond energies is shown in Tab. 1.

εclockσσ′ 0◦ 120◦ 240◦

0◦ −J 1
2J

1
2J

120◦ 1
2J −J 1

2J
240◦ 1

2J
1
2J −J

Table 1: Z3 clock model energy matrix.

Now consider the q = 3 Potts model, where the local states are labeled |A 〉, |B 〉, and |C 〉. The Hamiltonian is

Ĥ = −J̃
∑
〈ij〉

δσi,σj .

The interaction energy matrix for the Potts model is given in Tab. 2.

We can in each case label the three states by a local variable σ ∈ {1, 2, 3}, corresponding, respectively, to 0◦, 120◦,
and 240◦ for the clock model and to A, B, and C for the Potts model. We then observe

εclockσσ′ (J) = εPotts

σσ′ ( 3
2J) + 1

2J .

Thus, the free energies satisfy
F clock(J) = 1

4NzJ + F Potts( 3
2J) ,

and the models are equivalent. However, the Zq clock model and q-state Potts model are not equivalent for q > 3.
Can you see why? Hint: construct the corresponding energy matrices for q = 4.

εPotts

σσ′ A B C

A −J̃ 0 0

B 0 −J̃ 0

C 0 0 −J̃

Table 2: q = 3 Potts model energy matrix.
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(7.9) Consider the U(1) Ginsburg-Landau theory with

F =

∫
ddr

[
1
2a |Ψ|

2 + 1
4b |Ψ|

4 + 1
2κ |∇Ψ|2

]
.

Here Ψ(r) is a complex-valued field, and both b and κ are positive. This theory is appropriate for describing the
transition to superfluidity. The order parameter is 〈Ψ(r)〉. Note that the free energy is a functional of the two
independent fields Ψ(r) and Ψ∗(r), where Ψ∗ is the complex conjugate of Ψ. Alternatively, one can consider F a
functional of the real and imaginary parts of Ψ.

(a) Show that one can rescale the field Ψ and the coordinates r so that the free energy can be written in the form

F = ε0

∫
ddx
[
± 1

2 |ψ|
2 + 1

4 |ψ|
4 + 1

2 |∇ψ|2
]
,

where ψ and x are dimensionless, ε0 has dimensions of energy, and where the sign on the first term on the
RHS is sgn(a). Find ε0 and the relations between Ψ and ψ and between r and x.

(b) By extremizing the functional F [ψ,ψ∗] with respect to ψ∗, find a partial differential equation describing the
behavior of the order parameter field ψ(x).

(c) Consider a two-dimensional system (d = 2) and let a < 0 (i.e. T < Tc). Consider the case where ψ(x)
describe a vortex configuration: ψ(x) = f(r) eiφ, where (r, φ) are two-dimensional polar coordinates. Find
the ordinary differential equation for f(r) which extremizes F .

(d) Show that the free energy, up to a constant, may be written as

F = 2πε0

R∫
0

dr r

[
1
2

(
f ′
)2

+
f2

2r2
+ 1

4

(
1− f2

)2]
,

where R is the radius of the system, which we presume is confined to a disk. Consider a trial solution for
f(r) of the form

f(r) =
r√

r2 + a2
,

where a is the variational parameter. Compute F (a,R) in the limit R → ∞ and extremize with respect to a
to find the optimum value of a within this variational class of functions.

Solution :

(a) Taking the ratio of the second and first terms in the free energy density, we learn that Ψ has units of A ≡(
|a|/b

)1/2. Taking the ratio of the third to the first terms yields a length scale ξ =
(
κ/|a|

)1/2. We therefore write
Ψ = Aψ and x̃ = ξx to obtain the desired form of the free energy, with

ε0 = A2 ξd |a| = |a|2− 1
2d b−1 κ

1
2d .

(b) We extremize with respect to the field ψ∗. Writing F = ε0

∫
d3x F , with F = ± 1

2 |ψ|
2 + 1

4 |ψ|
4 + 1

2 |∇ψ|2,

δ(F/ε0)

δψ∗(x)
=

∂F
∂ψ∗

−∇· ∂F
∂∇ψ∗

= ± 1
2 ψ + 1

2 |ψ|
2 ψ − 1

2 ∇
2ψ .

Thus, the desired PDE is
−∇2ψ ± ψ + |ψ|2 ψ = 0 ,
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which is known as the time-independent nonlinear Schrödinger equation.

(c) In two dimensions,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
.

Plugging in ψ = f(r) eiφ into∇2ψ + ψ − |ψ|2ψ = 0, we obtain

d2f

dr2
+

1

r

df

dr
− f

r2
+ f − f3 = 0 .

(d) Plugging ∇ψ = r̂ f ′(r) + i
r f(r) φ̂ into our expression for F , we have

F = 1
2 |∇ψ|2 − 1

2 |ψ|
2 + 1

4 |ψ|
4

= 1
2

(
f ′
)2

+
f2

2r2
+ 1

4

(
1− f2

)2 − 1
4 ,

which, up to a constant, is the desired form of the free energy. It is a good exercise to show that the Euler-Lagrange
equations,

∂ (rF)

∂f
− d

dr

(
∂ (rF)

∂f ′

)
= 0

results in the same ODE we obtained for f in part (c). We now insert the trial form for f(r) into F . The resulting
integrals are elementary, and we obtain

F (a,R) = 1
4πε0

{
1− a4

(R2 + a2)2
+ 2 ln

(
R2

a2
+ 1

)
+

R2 a2

R2 + a2

}
.

Taking the limit R→∞, we have

F (a,R→∞) = 2 ln

(
R2

a2

)
+ a2 .

We now extremize with respect to a, which yields a =
√

2. Note that the energy in the vortex state is logarith-
mically infinite. In order to have a finite total free energy (relative to the ground state), we need to introduce an
antivortex somewhere in the system. An antivortex has a phase winding which is opposite to that of the vortex,
i.e. ψ = f e−iφ. If the vortex and antivortex separation is r, the energy is

V (r) = 1
2πε0 ln

(
r2

a2
+ 1

)
.

This tends to V (r) = πε0 ln(d/a) for d � a and smoothly approaches V (0) = 0, since when r = 0 the vortex and
antivortex annihilate leaving the ground state condensate. Recall that two-dimensional point charges also interact
via a logarithmic potential, according to Maxwell’s equations. Indeed, there is a rather extensive analogy between
the physics of two-dimensional models with O(2) symmetry and (2 + 1)-dimensional electrodynamics.
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(7.10) Consider a two-state Ising model, with an added dash of quantum flavor. You are invited to investigate
the transverse Ising model, whose Hamiltonian is written

Ĥ = − 1
2

∑
i,j

Jijσ
x
i σ

x
j −H

∑
i

σzi ,

where the σαi are Pauli matrices:

σxi =

(
0 1
1 0

)
i

, σzi =

(
1 0
0 −1

)
i

.

(a) Using the trial density matrix,
%i = 1

2 + 1
2 mx σ

x
i + 1

2 mz σ
z
i

compute the mean field free energy F/NĴ(0) ≡ f(θ, h,mx,mz), where θ = kBT/Ĵ(0), and h = H/Ĵ(0). Hint:
Work in an eigenbasis when computing Tr (% ln %).

(b) Derive the mean field equations for mx and mz .

(c) Show that there is always a solution with mx = 0, although it may not be the solution with the lowest free
energy. What is mz(θ, h) when mx = 0?

(d) Show that mz = h for all solutions with mx 6= 0.

(e) Show that for θ ≤ 1 there is a curve h = h∗(θ) below which mx 6= 0, and along which mx vanishes. That is,
sketch the mean field phase diagram in the (θ, h) plane. Is the mean field transition at h = h∗(θ) first order
or second order?

(f) Sketch, on the same plot, the behavior of mx(θ, h) and mz(θ, h) as functions of the field h for fixed θ. Do this
for θ = 0, θ = 1

2 , and θ = 1.

Solution :

(a) We have Tr (% σx) = mx and Tr (% σz) = mz . The eigenvalues of % are 1
2 (1±m), wherem = (m2

x+m2
z)

1/2. Thus,

f(θ, h,mx,mz) = − 1
2m

2
x − hmz + θ

[
1 +m

2
ln

(
1 +m

2

)
+

1−m
2

ln

(
1−m

2

)]
.

(b) Differentiating with respect to mx and mz yields

∂f

∂mx

= 0 = −mx +
θ

2
ln

(
1 +m

1−m

)
· mx

m

∂f

∂mz

= 0 = −h+
θ

2
ln

(
1 +m

1−m

)
· mz

m
.

Note that we have used the result
∂m

∂mµ

=
mµ

m

where mα is any component of the vectorm.

(c) If we set mx = 0, the first mean field equation is satisfied. We then have mz = m sgn(h), and the second mean
field equation yields mz = tanh(h/θ). Thus, in this phase we have

mx = 0 , mz = tanh(h/θ) .
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(d) When mx 6= 0, we divide the first mean field equation by mx to obtain the result

m =
θ

2
ln

(
1 +m

1−m

)
,

which is equivalent to m = tanh(m/θ). Plugging this into the second mean field equation, we find mz = h. Thus,
when mx 6= 0,

mz = h , mx =
√
m2 − h2 , m = tanh(m/θ) .

Note that the length of the magnetization vector, m, is purely a function of the temperature θ in this phase and
thus does not change as h is varied when θ is kept fixed. What does change is the canting angle of m, which is
α = tan−1(h/m) with respect to the ẑ axis.

(e) The two solutions coincide when m = h, hence

h = tanh(h/θ) =⇒ θ∗(h) =
2h

ln
(

1+h
1−h

) .
Inverting the above transcendental equation yields h∗(θ). The componentmx, which serves as the order parameter
for this system, vanishes smoothly at θ = θc(h). The transition is therefore second order.

(f) See fig. 2.

Figure 2: Solution to the mean field equations for problem 2. Top panel: phase diagram. The region within the
thick blue line is a canted phase, where mx 6= 0 and mz = h > 0; outside this region the moment is aligned along
ẑ and mx = 0 with mz = tanh(h/θ).
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(7.11) The Landau free energy of a crystalline magnet is given by the expression

f = 1
2α t

(
m2
x +m2

y

)
+ 1

4b1
(
m4
x +m4

y

)
+ 1

2b2m
2
xm

2
y ,

where the constants α and b1 are both positive, and where t is the dimensionless reduced temperature, t = (T −
Tc)/Tc.

(a) Rescale, so that f is of the form

f = ε0

{
1
2 t
(
φ2
x + φ2

y

)
+ 1

4

(
φ4
x + φ4

y + 2λφ2
x φ

2
y

)}
,

where mx,y = s φx,y , where s is a scale factor. Find the appropriate scale factor and find expressions for the
energy scale ε0 and the dimensionless parameter λ in terms of α, b1, and b2.

(b) For what values of λ is the free energy unbounded from below?

(c) Find the equations which minimize f as a function of φx,y .

(d) Show that there are three distinct phases: one in which φx = φy = 0 (phase I), another in which one of φx,y
vanishes but the other is finite (phase II) and one in which both of φx,y are finite (phase III). Find f in each
of these phases, and be clear to identify any constraints on the parameters t and λ.

(e) Sketch the phase diagram for this theory in the (t, λ) plane, clearly identifying the unphysical region where
f is unbounded, and indicating the phase boundaries for all phase transitions. Make sure to label the phase
transitions according to whether they are first or second order.

Solution :

(a) It is a simple matter to find

mx,y =

√
α

b1
φx,y , ε0 =

α2

b1
, λ =

b2
b1
.

(b) Note that

f = 1
4 ε0

(
φ2
x φ2

y

)(1 λ
λ 1

)(
φ2
x

φ2
y

)
+ 1

2 ε0

(
φ2
x φ2

y

)(t
t

)
(1)

We need to make sure that the quartic term goes to positive infinity when the fields φx,y tend to infinity. Else
the free energy will not be bounded from below and the model is unphysical. Clearly the matrix in the first term
on the RHS has eigenvalues 1 ± λ and corresponding (unnormalized) eigenvectors

(
1
±1

)
. Since φ2

x,y cannot be
negative, we only need worry about the eigenvalue 1+λ. This is negative for λ < −1. Thus, λ ≤ −1 is unphysical.

(c) Differentiating with respect to φx,y yields the equations

∂f

∂φx
=
(
t+ φ2

x + λφ2
y

)
φx = 0 ,

∂f

∂φy
=
(
t+ φ2

y + λφ2
x

)
φy = 0 .

(d) Clearly phase I with φx = φy = 0 is a solution to these equations. In phase II, we set one of the fields to zero,
φy = 0 and solve for φx =

√
−t, which requires t < 0. A corresponding solution exists if we exchange φx ↔ φy . In

phase III, we solve (
1 λ
λ 1

)(
φ2
x

φ2
y

)
= −

(
t
t

)
⇒ φ2

x = φ2
y = − t

1 + λ
.
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Figure 3: Phase diagram for problem (2e).

This phase also exists only for t < 0, and λ > −1 as well, which is required if the free energy is to be bounded
from below. Thus, we find

(φx,I , φy,I) = (0, 0) , fI = 0

and
(φx,II , φy,II) = (±

√
−t , 0) or (0 , ±

√
−t) , fII = − 1

4ε0 t
2

and

(φx,III , φy,III) = ±
√
−t

1+λ (1 , 1) or ±
√
−t

1+λ (1 , −1) , fIII = − ε0 t
2

2 (1 + λ)
.

(e) To find the phase diagram, we note that phase I has the lowest free energy for t > 0. For t < 0 we find

fIII − fII = 1
4 ε0 t

2 λ− 1

λ+ 1
, (2)

which is negative for |λ| < 1. Thus, the phase diagram is as depicted in fig. 3.
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(7.12) A system is described by the Hamiltonian

Ĥ = −J
∑
〈ij〉

ε(µi, µj)−H
∑
i

δµi,A , (3)

where on each site i there are four possible choices for µi: µi ∈ {A,B,C,D}. The interaction matrix ε(µ, µ′) is
given in the following table:

ε A B C D

A +1 −1 −1 0
B −1 +1 0 −1
C −1 0 +1 −1
D 0 −1 −1 +1

(a) Write a trial density matrix

%(µ1, . . . , µN ) =

N∏
i=1

%1(µi)

%1(µ) = x δµ,A + y(δµ,B + δµ,C + δµ,D) .

What is the relationship between x and y? Henceforth use this relationship to eliminate y in terms of x.

(b) What is the variational energy per site, E(x, T,H)/N?

(c) What is the variational entropy per site, S(x, T,H)/N?

(d) What is the mean field equation for x?

(e) What value x∗ does x take when the system is disordered?

(f) Write x = x∗+ 3
4ε and expand the free energy to fourth order in ε. (The factor 3

4 should generate manageable
coefficients in the Taylor series expansion.)

(g) Sketch ε as a function of T for H = 0 and find Tc. Is the transition first order or second order?

Solution :

(a) Clearly we must have y = 1
3 (1− x) in order that Tr(%1) = x+ 3y = 1.

(b) We have
E

N
= − 1

2zJ
(
x2 − 4xy + 3 y2 − 4 y2

)
−Hx ,

The first term in the bracket corresponds to AA links, which occur with probability x2 and have energy −J . The
second term arises from the four possibilities AB, AC, BA, CA, each of which occurs with probability xy and with
energy +J . The third term is from the BB, CC, and DD configurations, each with probability y2 and energy −J .
The last term is from the BD, CD, DB, and DC configurations, each with probability y2 and energy +J . Finally,
there is the field term. Eliminating y = 1

3 (1− x) from this expression we have

E

N
= 1

18zJ
(
1 + 10x− 20x2

)
−Hx

Note that with x = 1 we recover E = − 1
2NzJ −H , i.e. an interaction energy of −J per link and a field energy of

−H per site.
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(c) The variational entropy per site is

s(x) = −kB Tr
(
%1 ln %1

)
= −kB

(
x lnx+ 3y ln y

)
= −kB

[
x lnx+ (1− x) ln

(
1− x

3

)]
.

(d) It is convenient to adimensionalize, writing f = F/Nε0, θ = kBT/ε0, and h = H/ε0, with ε0 = 5
9zJ . Then

f(x, θ, h) = 1
10 + x− 2x2 − hx+ θ

[
x lnx+ (1− x) ln

(
1− x

3

)]
.

Differentiating with respect to x, we obtain the mean field equation

∂f

∂x
= 0 =⇒ 1− 4x− h+ θ ln

(
3x

1− x

)
= 0 .

(e) When the system is disordered, there is no distinction between the different polarizations of µ0. Thus, x∗ = 1
4 .

Note that x = 1
4 is a solution of the mean field equation from part (d) when h = 0.

(f) Find
f
(
x = 1

4 + 3
4 ε, θ, h

)
= f0 + 3

2

(
θ − 3

4

)
ε2 − θ ε3 + 7

4 θ ε
4 − 3

4 h ε

with f0 = 9
40 −

1
4h− θ ln 4.

(g) For h = 0, the cubic term in the mean field free energy leads to a first order transition which preempts the
second order one which would occur at θ∗ = 3

4 , where the coefficient of the quadratic term vanishes. We learned
in §7.6 of the Lecture Notes that for a free energy f = 1

2am
2− 1

3ym
3 + 1

4bm
4 that the first order transition occurs for

a = 2
9 b
−1y2, where the magnetization changes discontinuously from m = 0 at a = a+

c to m0 = 2
3 b
−1y at a = a−c .

For our problem here, we have a = 3
(
θ − 3

4

)
, y = 3θ, and b = 7θ. This gives

θc = 63
76 ≈ 0.829 , ε0 = 2

7 .

As θ decreases further below θc to θ = 0, ε increases to ε(θ = 0) = 1. No sketch needed!
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(7.13) Consider a q-state Potts model on the body-centered cubic (BCC) lattice. The Hamiltonian is given by

Ĥ = −J
∑
〈ij〉

δσi , σj ,

where σi ∈ {1, . . . , q} on each site.

(a) Following the mean field treatment in §7.5.3 of the Lecture Notes, write x =
〈
δσi , 1

〉
= q−1 + s, and expand

the free energy in powers of s up through terms of order s4. Neglecting all higher order terms in the free
energy, find the critical temperature θc, where θ = kBT/zJ as usual. Indicate whether the transition is first
order or second order (this will depend on q).

(b) For second order transitions, the truncated Landau expansion is sufficient, since we care only about the sign
of the quadratic term in the free energy. First order transitions involve a discontinuity in the order parameter,
so any truncation of the free energy as a power series in the order parameter involves an approximation.
Find a way to numerically determine θc(q) based on the full mean field (i.e. variational density matrix) free
energy. Compare your results with what you found in part (a), and sketch both sets of results for several
values of q.

Solution :

(a) The expansion of the free energy f(s, θ) is given in eqn. 7.129 of the notes (set h = 0). We have

f = f0 + 1
2a s

2 − 1
3y s

3 + 1
4b s

4 +O(s5) ,

with

a =
q(qθ − 1)

q − 1
, y =

(q − 2) q3θ

2(q − 1)2
, b = 1

3q
3θ
[
1 + (q − 1)−3

]
.

For q = 2 we have y = 0, and there is a second order phase transition when a = 0, i.e. θ = q−1. For q > 2, there
is a cubic term in the Landau expansion, and this portends a first order transition. Restricting to the quartic free
energy above, a first order at a > 0 transition preempts what would have been a second order transition at a = 0.
The transition occurs for y2 = 9

2ab. Solving for θ, we obtain

θL

c =
6(q2 − 3q + 3)

(5q2 − 14q + 14) q
.

The value of the order parameter s just below the first order transition temperature is

s(θ−c ) =
√

2a/b ,

where a and b are evaluated at θ = θc

(b) The full variational free energy, neglecting constants, is

f(x, θ) = − 1
2x

2 − (1− x)2

2(q − 1)
+ θ x lnx+ θ (1− x) ln

(
1− x
q − 1

)
.

Therefore

∂f

∂x
= −x+

1− x
q − 1

+ θ lnx− θ ln

(
1− x
q − 1

)
∂2f

∂x2
= − q

q − 1
+

θ

x(1− x)
.

Solving for ∂2f
∂x2 = 0, we obtain

x± =
1

2
± 1

2

√
1− θ

θ0

,
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Figure 4: Variational free energy of the q = 7 Potts model versus variational parameter x. Left: free energy f(x, θ).
Right: derivative f ′(x, θ) with respect to the x. The dot-dash magenta curve in both cases is the locus of points
for which the second derivative f ′′(x, θ) with respect to x vanishes. Three characteristic temperatures are marked
θ = q−1 (blue), where the coefficient of the quadratic term in the Landau expansion changes sign; θ = θ0 (red),
where there is a saddle-node bifurcation and above which the free energy has only one minimum at x = q−1

(symmetric phase); and θ = θc (green), where the first order transition occurs.

Figure 5: Comparisons of order parameter jump at θc
(top) and critical temperature θc (bottom) for untrun-
cated (solid lines) and truncated (dashed lines) expan-
sions of the mean field free energy. Note the agreement
as q → 2, where the jump is small and a truncated ex-
pansion is then valid.

where
θ0 =

q

4(q − 1)
.

For temperatures below θ0, the function f(x, θ) has three ex-
trema: two local minima and one local maximum. The points
x± lie between either minimum and the maximum. The situ-
ation is depicted in fig. 4 for the case q = 7. To locate the first
order transition, we must find the temperature θc for which
the two minima are degenerate. This can be done numerically,
but there is an analytic solution:

θMF

c =
q − 2

2(q − 1) ln(q − 1)
, s(θ−c ) =

q − 2

q
.

A comparison of with results from part (a) is shown in fig. 5.
Note that the truncated free energy is sufficient to obtain the
mean field solution for q = 2. This is because the transition
for q = 2 is continuous (i.e. second order), and we only need
to know f(θ,m) in the vicinity of m = 0.
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(7.14) The Blume-Capel model is a S = 1 Ising model described by the Hamiltonian

Ĥ = − 1
2

∑
i,j

Jij Si Sj + ∆
∑
i

S2
i ,

where Jij = J(Ri −Rj) and Si ∈ {−1, 0,+1}. The mean field theory for this model is discussed in section 7.11
of the Lecture Notes, using the ’neglect of fluctuations’ method. Consider instead a variational density matrix
approach. Take %(S1, . . . , SN ) =

∏
i %̃(Si), where

%̃(S) =

(
n+m

2

)
δS,+1 + (1− n) δS,0 +

(
n−m

2

)
δS,−1 .

(a) Find 〈1〉, 〈Si〉, and 〈S2
i 〉.

(b) Find E = Tr (%H).

(c) Find S = −kBTr (% ln %).

(d) Adimensionalizing by writing θ = kBT/Ĵ(0), δ = ∆/Ĵ(0), and f = F/NĴ(0), find the dimensionless free
energy per site f(m,n, θ, δ).

(e) Write down the mean field equations.

(f) Show that m = 0 always permits a solution to the mean field equations, and find n(θ, δ) when m = 0.

(g) To find θc, set m = 0 but use both mean field equations. You should recover eqn. 7.322 of the Lecture Notes.

(h) Show that the equation for θc has two solutions for δ < δ∗ and no solutions for δ > δ∗. Find the value of δ∗.1

(i) Assume m2 � 1 and solve for n(m, θ, δ) using one of the mean field equations. Plug this into your result for
part (d) and obtain an expansion of f in terms of powers of m2 alone. Find the first order line. You may find
it convenient to use Mathematica here.

Solution :

(a) From the given expression for %̃, we have

〈1〉 = 1 , 〈S〉 = m , 〈S2〉 = n ,

where 〈A〉 = Tr(%̃ A).

(b) From the results of part (a), we have

E = Tr(%̃ Ĥ)

= − 1
2NĴ(0)m2 +N∆n ,

assuming Jii = 0 for al i.

(c) The entropy is

S = −kBTr (% ln %)

= −NkB

{(
n−m

2

)
ln

(
n−m

2

)
+ (1− n) ln(1− n) +

(
n+m

2

)
ln

(
n+m

2

)}
.

1Nota bene : (θ∗, δ∗) is not the tricritical point.
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(d) The dimensionless free energy is given by

f(m,n, θ, δ) = − 1
2m

2 + δn+ θ

{(
n−m

2

)
ln

(
n−m

2

)
+ (1− n) ln(1− n) +

(
n+m

2

)
ln

(
n+m

2

)}
.

(e) The mean field equations are

0 =
∂f

∂m
= −m+ 1

2θ ln

(
n−m
n+m

)
0 =

∂f

∂n
= δ + 1

2θ ln

(
n2 −m2

4 (1− n)2

)
.

These can be rewritten as

m = n tanh(m/θ)

n2 = m2 + 4 (1− n)2 e−2δ/θ .

(f) Setting m = 0 solves the first mean field equation always. Plugging this into the second equation, we find

n =
2

2 + exp(δ/θ)
.

(g) If we set m→ 0 in the first equation, we obtain n = θ, hence

θc =
2

2 + exp(δ/θc)
.

(h) The above equation may be recast as

δ = θ ln

(
2

θ
− 2

)
with θ = θc. Differentiating, we obtain

∂δ

∂θ
= ln

(
2

θ
− 2

)
− 1

1− θ
=⇒ θ =

δ

δ + 1
.

Plugging this into the result for part (g), we obtain the relation δ eδ+1 = 2, and numerical solution yields the
maximum of δ(θ) as

θ∗ = 0.3164989 . . . , δ = 0.46305551 . . . .

This is not the tricritical point.

(i) Plugging in n = m/ tanh(m/θ) into f(n,m, θ, δ), we obtain an expression for f(m, θ, δ), which we then expand
in powers of m, obtaining

f(m, θ, δ) = f0 + 1
2am

2 + 1
4bm

4 + 1
6cm

6 +O(m8) .

We find

a =
2

3θ

{
δ − θ ln

(
2(1− θ)

θ

)}

b =
1

45 θ3

{
4(1− θ) θ ln

(
2(1− θ)

θ

)
+ 15θ2 − 5θ + 4δ(θ − 1)

}

c =
1

1890 θ5(1− θ)2

{
24 (1− θ)2 θ ln

(
2(1− θ)

θ

)
+ 24δ(1− θ)2 + θ

(
35− 154 θ + 189 θ2

)}
.
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The tricritical point occurs for a = b = 0, which yields

θt = 1
3 , δt = 2

3 ln 2 .

If, following Landau, we consider terms only up through order m6, we predict a first order line given by the
solution to the equation

b = − 4√
3

√
ac .

The actual first order line is obtained by solving for the locus of points (θ, δ) such that f(m, θ, δ) has a degenerate
minimum, with one of the minima at m = 0 and the other at m = ±m0. The results from Landau theory will
coincide with the exact mean field solution at the tricritical point, where the m0 = 0, but in general the first order
lines obtained by the exact mean field theory solution and by a truncated sixth order Landau expansion of the free
energy will differ.
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(7.15) Consider the following model Hamiltonian,

Ĥ =
∑
〈ij〉

E(σi, σj) ,

where each σi may take on one of three possible values, and

E(σ, σ′) =

−J +J 0
+J −J 0
0 0 +K

 ,

with J > 0 and K > 0. Consider a variational density matrix %v(σ1, . . . , σN ) =
∏
i %̃(σi), where the normalized

single site density matrix has diagonal elements

%̃(σ) =

(
n+m

2

)
δσ,1 +

(
n−m

2

)
δσ,2 + (1− n) δσ,3 .

(a) What is the global symmetry group for this Hamiltonian?

(b) Evaluate E = Tr (%v Ĥ).

(c) Evaluate S = −kB Tr (%v ln %v).

(d) Adimensionalize by writing θ = kBT/zJ and c = K/J , where z is the lattice coordination number. Find
f(n,m, θ, c) = F/NzJ .

(e) Find all the mean field equations.

(f) Find an equation for the critical temperature θc, and show graphically that it has a unique solution.

Solution :

(a) The global symmetry group is Z2. If we label the spin values as σ ∈ {1, 2, 3}, then the group elements can be
written as permutations, 1 =

(
123
123

)
and J =

(
123
213

)
, with J 2 = 1.

(b) For each nearest neighbor pair (ij), the distribution of {σ,σj} is according to the product %̃(σi) %̃(σj). Thus, we
have

E = 1
2NzJ

∑
σ,σ′

%̃(σ) %̃(σ′) ε(σ, σ′)

= 1
2NzJ ·

{ %̃2(1)︷ ︸︸ ︷(
n+m

2

)2

(−J)+

%̃2(2)︷ ︸︸ ︷(
n−m

2

)2

(−J)+

2 %̃(1) %̃(2)︷ ︸︸ ︷
2

(
n+m

2

)(
n−m

2

)
(+J)+

%̃2(3)︷ ︸︸ ︷
(1− n)2 (+K)

}

= − 1
2Nz

[
Jm2 −K(1− n)2

]
.

(c) The entropy is

S = −NkB Tr
(
%̃ ln %̃

)
= −NkB

{(
n+m

2

)
ln

(
n+m

2

)
+

(
n−m

2

)
ln

(
n−m

2

)
+ (1− n) ln(1− n)

}
.
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(d) This can be solved by inspection from the results of parts (b) and (c):

f = − 1
2m

2 + 1
2c (1− n)2 + θ

[(
n+m

2

)
ln

(
n+m

2

)
+

(
n−m

2

)
ln

(
n−m

2

)
+ (1− n) ln(1− n)

]
.

(e) There are two mean field equations, obtained by extremizing with respect to n and to m, respectively:

∂f

∂n
= 0 = c (n− 1) + 1

2θ ln

(
n2 −m2

4 (1− n)2

)
∂f

∂m
= 0 = −m+ 1

2θ ln

(
n−m
n+m

)
.

These may be recast as

n2 = m2 + 4 (1− n)2 e−2c(n−1)/θ

m = n tanh(m/θ) .

(f) To find θc, we take the limit m→ 0. The second mean field equation then gives n = θ. Substituting this into the
first mean field equation yields

θ = 2 (1− θ) e−2c(θ−1)/θ .

If we define u ≡ θ−1 − 1, this equation becomes

2u = e−cu .

It is clear that for c > 0 this equation has a unique solution, since the LHS is monotonically increasing and the
RHS is monotonically decreasing, and the difference changes sign for some u > 0. The low temperature phase is
the ordered phase, which spontaneously breaks the aforementioned Z2 symmetry. In the high temperature phase,
the Z2 symmetry is unbroken.
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(7.16) Consider a set of magnetic moments on a cubic lattice (z = 6). Due to the cubic anisotropy, the system is
modeled by the Hamiltonian

Ĥ = −J
∑
〈ij〉

n̂i · n̂j −H ·
∑
i

n̂i ,

where at each site n̂i can take one of six possible values: n̂i ∈ {±x̂ , ±ŷ , ±ẑ}.

(a) Find the mean field free energy f(θ,m,h), where θ = kBT/6J and h = H/6J .

(b) Find the self-consistent mean field equation for m, and determine the critical temperature θc(h = 0). How
doesm behave just below θc? Hint: you will have to go beyond O(m2) to answer this.

(c) Find the phase diagram as a function of θ and h when h = h x̂.

Solution :

(a) The effective mean field isHeff = zJm+H , wherem = 〈n̂i〉. The mean field Hamiltonian is

ĤMF = 1
2NzJm

2 −Heff ·
∑
i

n̂i .

With h = H/zJ and θ = kBT/zJ , we then have

f(θ ,h ,m) = − kBT

NzJ
lnTr e−Ĥeff/kBT

= 1
2

(
m2
x +m2

y +m2
z

)
− θ ln

[
2 cosh

(
mx + hx

θ

)
+ 2 cosh

(
my + hy

θ

)
+ 2 cosh

(
mz + hz

θ

)]
.

(b) The mean field equation is obtained by setting ∂f
∂mα

= 0 for each Cartesian component α ∈ {x, y, z} of the order
parameterm. Thus,

mx =
sinh

(
mx+hx

θ

)
cosh

(
mx+hx

θ

)
+ cosh

(
my+hy

θ

)
+ cosh

(
mz+hz

θ

) ,
with corresponding equations for my and mz . We now set h = 0 and expand in powers of m, using coshu =

1 + 1
2u

2 + 1
24u

4 +O(u6) and ln(1 + u) = u− 1
2u

2 +O(u3). We have

f(θ ,h = 0 ,m) = 1
2

(
m2
x +m2

y +m2
z

)
− θ ln

(
6 +

m2
x +m2

y +m2
z

θ2
+
m4
x +m4

y +m4
z

12 θ4
+O(m6)

)

= −θ ln 6 + 1
2

(
1− 1

3θ

)(
m2
x +m2

y +m2
z

)
+
m2
xm

2
y +m2

ym
2
z +m2

zm
2
x

36 θ3
+O(m6) .

We see that the quadratic term is negative for θ < θc = 1
3 . Furthermore, the quadratic term depends only on the

magnitude of m and not its direction. How do we decide upon the direction, then? We must turn to the quartic
term. Note that the quartic term is minimized when m lies along one of the three cubic axes, in which case the
term vanishes. So we know that in the ordered phasem prefers to lie along±x̂,±ŷ, or±ẑ. How can we determine
its magnitude? We must turn to the sextic term in the expansion:

f(θ , h = 0 ,m) = −θ ln 6 + 1
2

(
1− 1

3θ

)
m2 +

m6

3240 θ5
+O(m8) ,

which is valid providedm = mn̂ lies along a cubic axis. Extremizing, we obtain

m(θ) = ±
[
540 θ4 (θc − θ)

]1/4
'
(

20
3

)1/4
(θc − θ)1/4 ,
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where θc = 1
3 . So due to an accidental cancellation of the quartic term, we obtain a nonstandard mean field order

parameter exponent of β = 1
4 .

(c) When h = h x̂, the magnetization will choose to lie along the x̂ axis in order to minimize the free energy. One
then has

f(θ, h,m) = −θ ln 6 + 1
2m

2 − θ ln

[
2
3 + 1

3 cosh

(
m+ h

θ

)]
= −θ ln 6 + 3

2 (θ − θc)m2 + 3
40 m

6 − hm+ . . . ,

where in the second line we have assumed θ ≈ θc , and we have expanded for small m and h. The phase diagram
resembles that of other Ising systems. The h field breaks the m → −m symmetry, and there is a first order line
extending along the θ axis (i.e. for h = 0) from θ = 0 and terminating in a critical point at θ = θc . As we have seen,
the order parameter exponent is nonstandard, with β = 1

4 . What of the other critical exponents? Minimizing f
with respect to m, we have

3(θ − θc)m+ 9
20 m

5 − h = 0 .

For θ > θc and m small, we can neglect the O(m5) term and we find m(θ, h) = h
3(θ−θc) , corresponding to the

familiar susceptibility exponent γ = 1.

Consider next the heat capacity. For θ > θc the free energy is f = −θ ln 6 , arising from the entropy term alone,

whereas for θ < θc we have m2 =
√

20
3 (θc − θ)1/2, which yields

f(θ < θc , h = 0) = −θ ln 6−
√

20
3 (θc − θ)3/2 .

Thus, the heat capacity, which is c = −θ ∂
2f
∂θ2 , behaves as c(θ) ∝ (θc − θ)−1/2, corresponding to α = 1

2 , rather than
the familiar α = 0 .

Finally, we examine the behavior of m(θc , h). Setting θ = θc , we have

f(θc , h ,m) = −hm+ 9
40 m

6 +O(m8) .

Setting ∂f
∂m = 0, we find m ∝ h1/δ with δ = 5, which is also nonstandard.
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(7.17) A magnet consists of a collection of local moments which can each take the values Si = −1 or Si = +3.
The Hamiltonian is

Ĥ = − 1
2

∑
i,j

Jij SiSj −H
∑
i

Si .

(a) Define m = 〈Si〉, h = H/Ĵ(0), θ = kBT/Ĵ(0). Find the dimensionless mean field free energy per site,
f = F/NĴ(0) as a function of θ, h, and m.

(b) Write down the self-consistent mean field equation for m.

(c) At θ = 0, there is a first order transition as a function of field between the m = +3 state and the m = −1
state. Find the critical field hc(θ = 0).

(d) Find the critical point (θc , hc) and plot the phase diagram for this system.

(e) Solve the problem using the variational density matrix approach.

Solution :

(a) We invoke the usual mean field treatment of dropping terms quadratic in fluctuations, resulting in an effective
field Heff = Ĵ(0)m+H and a mean field Hamiltonian

ĤMF = 1
2NĴ(0)m2 −Heff

N∑
i=1

Si .

The free energy is then found to be

f(θ, h,m) = 1
2m

2 − θ ln
(
e3(m+h)/θ + e−(m+h)/θ

)
= 1

2m
2 −m− h− θ ln cosh

(
2(m+ h)

θ

)
− θ ln 2 .

(b) We extremize f with respect to the order parameter m and obtain

m = 1 + 2 tanh

(
2(m+ h)

θ

)
.

(c) When T = 0 there are no fluctuations, and since the interactions are ferromagnetic we may examine the two
uniform states. In the state where Si = +3 for each i, the energy is E1 = 9

2NĴ(0) − 3NH . In the state where
Si = −1 ∀ i, the energy is E2 = 1

2NĴ(0) +NH . Equating these energies gives H = −Ĵ(0) , i.e. h = −1.

(d) The first order transition at h = −1 and θ = 0 continues in a curve emanating from this point into the finite
θ region of the phase diagram. This phase boundary is determined by the requirement that f(θ, h,m) have a
degenerate double minimum as a function of m for fixed θ and h. This provides us with two conditions on the
three quantities (θ, h,m) , which in principle allows the determination of the curve h = hc(θ). The first order line
terminates in a critical point where these two local minima annihilate with a local maximum, which requires that
∂f
∂m = ∂2f

∂m2 = ∂3f
∂m3 = 0 , which provides the three conditions necessary to determine (θc , hc , mc). Now from our
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Figure 6: Phase diagram for problem 17.

expression for f(θ, h,m), we have

∂f

∂m
= m− 1− 2 tanh

(
2(m+ h)

θ

)
∂2f

∂m2
= 1− 4

θ
sech2

(
2(m+ h)

θ

)
∂3f

∂m3
=

16

θ2
tanh

(
2(m+ h)

θ

)
sech2

(
2(m+ h)

θ

)
.

Now set all three of these quantities to zero. From the third of these, we get m+ h = 0, which upon insertion into
the second gives θ = 4. From the first we then get m = 1, hence h = −1.

For a slicker derivation, note that the free energy may be written

f(θ, h,m) = 1
2 (m+ h)2 − θ ln cosh

(
2(m+ h)

θ

)
− (1 + h)(m+ h) + 1

2h
2 − θ ln 2 .

Thus, when h = −1, we have that f is an even function of m− 1. Expanding then in powers of m+ h , we have

f(θ, h = −1,m) = f0 + 1
2

(
1− 4

θ

)
(m− 1)2 + 4

3θ3 (m− 1)4 + . . . ,

whence we conclude θc = 4 and hc = −1.

(e) The most general single site variational density matrix is

%(S) = x δS,−1 + (1− x) δS,+3 .

This is normalized by construction. The average magnetization is

m = Tr (S%) = (−1) · x+ (+3) · (1− x) = 3− 4x ⇒ x =
3−m

4
.

Thus we have
%(S) =

3−m
4

δS,−1 +
1 +m

4
δS,+3 .

The variational free energy is then

F = Tr (Ĥ%̂) + kBT Tr (%̂ ln %̂)

= − 1
2NĴ(0)m2 −NHm+ kBT

[(
3−m

4

)
ln

(
3−m

4

)
+

(
1 +m

4

)
ln

(
1 +m

4

)]
,
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where we assume all the diagonal elements vanish, i.e. Jii = 0 for all i. Dividing by NĴ(0), we have

f(θ, h,m) = − 1
2m

2 − hm− θ

[(
3−m

4

)
ln

(
3−m

4

)
+

(
1 +m

4

)
ln

(
1 +m

4

)]
.

Minimizing with respect to the variational parameter m yields

∂f

∂m
= −m− h+ 1

4θ ln

(
1 +m

3−m

)
,

which is equivalent to our earlier result m = 1 + 2 tanh
[
2(m+ h)/θ

]
.

If we once again expand in powers of (m− 1), we have

f(θ, h,m) = −
(

1
2 + h+ θ ln 2

)
− (h+ 1)(m− 1) + 1

8 (θ − 4)(m− 1)2 + 1
48 (m− 1)4 + . . . .

Again, we see (θc, hc) = (4,−1).
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8 Nonequilibrium and Transport Phenomena : Worked Examples

(8.1) Consider a monatomic ideal gas in the presence of a temperature gradient ∇T . Answer the following
questions within the framework of the relaxation time approximation to the Boltzmann equation.

(a) Compute the particle current j and show that it vanishes.

(b) Compute the ‘energy squared’ current,

jε2 =

∫
d3p ε2v f(r,p, t) .

(c) Suppose the gas is diatomic, so cp = 7
2kB. Show explicitly that the particle current j is zero. Hint: To do this,

you will have to understand the derivation of eqn. 8.85 in the Lecture Notes and how this changes when the
gas is diatomic. You may assume Qαβ = F = 0.

Solution :

(a) Under steady state conditions, the solution to the Boltzmann equation is f = f0 + δf , where f0 is the equilib-
rium distribution and

δf = − τf
0

kBT
·
ε− cpT
T

v ·∇T .

For the monatomic ideal gas, cp = 5
2kB. The particle current is

jα =

∫
d3p vα δf

= − τ

kBT
2

∫
d3p f0(p) vα vβ

(
ε− 5

2kBT
) ∂T
∂xβ

= − 2nτ

3mkBT
2

∂T

∂xα
〈
ε
(
ε− 5

2kBT
)〉
,

where the average over momentum/velocity is converted into an average over the energy distribution,

P̃ (ε) = 4πv2
dv

dε
PM(v) = 2√

π
(kBT )−3/2 ε1/2 φ(ε) e−ε/kBT .

As discussed in the Lecture Notes, the average of a homogeneous function of ε under this distribution is given by〈
εα
〉

= 2√
π

Γ
(
α+ 3

2

)
(kBT )α .

Thus, 〈
ε
(
ε− 5

2kBT
)〉

= 2√
π

(kBT )2
{

Γ
(
7
2

)
− 5

2 Γ
(
5
2

)}
= 0 .

(b) Now we must compute

jαε2 =

∫
d3p vα ε2 δf

= − 2nτ

3mkBT
2

∂T

∂xα
〈
ε3
(
ε− 5

2kBT
)〉
.
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We then have 〈
ε3
(
ε− 5

2kBT
)〉

= 2√
π

(kBT )4
{

Γ
(
11
2

)
− 5

2 Γ
(
9
2

)}
= 105

2 (kBT )4

and so
jε2 = −35nτkB

m
(kBT )2 ∇T .

(c) For diatomic gases in the presence of a temperature gradient, the solution to the linearized Boltzmann equation
in the relaxation time approximation is

δf = −τ f
0

kBT
·
ε(Γ )− cpT

T
v ·∇T ,

where

ε(Γ ) = εtr + εrot = 1
2mv2 +

L21 + L22
2I

,

where L1,2 are components of the angular momentum about the instantaneous body-fixed axes, with I ≡ I1 =
I2 � I3. We assume the rotations about axes 1 and 2 are effectively classical, so equipartition gives 〈εrot〉 =
2 × 1

2kB = kB. We still have 〈εtr〉 = 3
2kB. Now in the derivation of the factor ε(ε − cpT ) above, the first factor of ε

came from the vαvβ term, so this is translational kinetic energy. Therefore, with cp = 7
2kB now, we must compute〈

εtr
(
εtr + εrot − 7

2kBT
)〉

=
〈
εtr
(
εtr − 5

2kBT
)〉

= 0 .

So again the particle current vanishes.

Note added :

It is interesting to note that there is no particle current flowing in response to a temperature gradient when τ is
energy-independent. This is a consequence of the fact that the pressure gradient ∇p vanishes. Newton’s Second
Law for the fluid says that nmV̇ + ∇p = 0, to lowest relevant order. With ∇p 6= 0, the fluid will accelerate.
In a pipe, for example, eventually a steady state is reached where the flow is determined by the fluid viscosity,
which is one of the terms we just dropped. (This is called Poiseuille flow.) When p is constant, the local equilibrium
distribution is

f0(r,p) =
p/kBT

(2πmkBT )3/2
e−p

2/2mkBT ,

where T = T (r). We then have
f(r,p) = f0(r − vτ,p) ,

which says that no new collisions happen for a time τ after a given particle thermalizes. I.e. we evolve the stream-
ing terms for a time τ . Expanding, we have

f = f0 − τp

m
· ∂f

0

∂r
+ . . .

=

{
1− τ

2kBT
2

(
ε(p)− 5

2kBT
) p

m
·∇T + . . .

}
f0(r,p) ,

which leads to j = 0, assuming the relaxation time τ is energy-independent.

When the flow takes place in a restricted geometry, a dimensionless figure of merit known as the Knudsen number,
Kn = `/L, where ` is the mean free path and L is the characteristic linear dimension associated with the geometry.
For Kn � 1, our Boltzmann transport calculations of quantities like κ, η, and ζ hold, and we may apply the
Navier-Stokes equations1. In the opposite limit Kn � 1, the boundary conditions on the distribution are crucial.
Consider, for example, the case ` = ∞. Suppose we have ideal gas flow in a cylinder whose symmetry axis is x̂.

1These equations may need to be supplemented by certain conditions which apply in the vicinity of solid boundaries.
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Particles with vx > 0 enter from the left, and particles with vx < 0 enter from the right. Their respective velocity
distributions are

Pj(v) = nj

(
m

2πkBTj

)3/2
e−mv2/2kBTj ,

where j = L or R. The average current is then

jx =

∫
d3v
{
nL vx PL(v) Θ(vx) + nR vx PR(v) Θ(−vx)

}
= nL

√
2kBTL

m
− nR

√
2kBTR

m
.
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(8.2) Consider a classical gas of charged particles in the presence of a magnetic field B. The Boltzmann equation
is then given by

ε− h
kBT

2
f0 v ·∇T − e

mc
v ×B · ∂ δf

dv
=

(
∂f

∂t

)
coll

.

Consider the case where T = T (x) and B = Bẑ. Making the relaxation time approximation, show that a solution
to the above equation exists in the form δf = v ·A(ε), where A(ε) is a vector-valued function of ε(v) = 1

2mv2

which lies in the (x, y) plane. Find the energy current jε. Interpret your result physically.

Solution : We’ll use index notation and the Einstein summation convention for ease of presentation. Recall that
the curl is given by (A×B)µ = εµνλAν Bλ. We write δf = vµAµ(ε), and compute

∂ δf

∂vλ
= Aλ + vα

∂Aα
∂vλ

= Aλ + vλ vα
∂Aα
∂ε

.

Thus,

v ×B · ∂ δf
∂v

= εµνλ vµBν
∂ δf

∂vλ

= εµνλ vµBν

(
Aλ + vλ vα

∂Aα
∂ε

)
= εµνλ vµBν Aλ .

We then have
ε− h
kBT

2
f0 vµ ∂µT =

e

mc
εµνλ vµBν Aλ −

vµAµ
τ

.

Since this must be true for all v, we have

Aµ −
eBτ

mc
εµνλ nν Aλ = − (ε− h) τ

kBT
2

f0 ∂µT ,

where B ≡ B n̂. It is conventional to define the cyclotron frequency, ωc = eB/mc, in which case(
δµν + ωcτ εµνλ nλ

)
Aν = Xµ ,

where X = −(ε− h) τf0 ∇T/kBT
2. So we must invert the matrix

Mµν = δµν + ωcτ εµνλ nλ .

To do so, we make the Ansatz,
M−1νσ = Aδνσ +B nν nσ + C ενσρ nρ ,

and we determine the constants A, B, and C by demanding

MµνM
−1
νσ =

(
δµν + ωcτ εµνλ nλ

)(
Aδνσ +B nν nσ + C ενσρ nρ

)
=
(
A− C ωc τ

)
δµσ +

(
B + C ωc τ

)
nµ nσ +

(
C +Aωc τ

)
εµσρ nρ ≡ δµσ .

Here we have used the result
εµνλ ενσρ = ενλµ ενσρ = δλσ δµρ − δλρ δµσ ,

as well as the fact that n̂ is a unit vector: nµ nµ = 1. We can now read off the results:

A− C ωcτ = 1 , B + C ωcτ = 0 , C +Aωcτ = 0 ,
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which entail

A =
1

1 + ω2
cτ

2
, B =

ω2
cτ

2

1 + ω2
cτ

2
, C = − ωcτ

1 + ω2
cτ

2
.

So we can now write

Aµ = M−1µν Xν =
δµν + ω2

cτ
2 nµ nν − ωcτ εµνλ nλ
1 + ω2

cτ
2

Xν .

The α-component of the energy current is

jαε =

∫
d3p

h3
vα εα vµAµ(ε) =

2

3m

∫
d3p

h3
ε2Aα(ε) ,

where we have replaced vα vµ → 2
3m ε δαµ. Next, we use

2

3m

∫
d3p

h3
ε2Xν = − 5τ

3m
k2BT

∂T

∂xν
,

hence

jε = − 5τ

3m

k2BT

1 + ω2
cτ

2

(
∇T + ω2

cτ
2 n̂ (n̂·∇T ) + ωcτ n̂×∇T

)
.

We are given that n̂ = ẑ and ∇T = T ′(x) x̂. We see that the energy current jε is flowing both along −x̂ and along
−ŷ. Why does heat flow along ŷ? It is because the particles are charged, and as they individually flow along −x̂,
there is a Lorentz force in the −ŷ direction, so the energy flows along −ŷ as well.
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(8.3) Consider one dimensional motion according to the equation

ṗ+ γp = η(t) ,

and compute the average
〈
p4(t)

〉
. You should assume that〈

η(s1) η(s2) η(s3) η(s4)
〉

= φ(s1 − s2)φ(s3 − s4) + φ(s1 − s3)φ(s2 − s4) + φ(s1 − s4)φ(s2 − s3)

where φ(s) = Γ δ(s). You may further assume that p(0) = 0.

Solution :

Integrating the Langevin equation, we have

p(t) =

t∫
0

dt1 e
−γ(t−t1) η(t1) .

Raising this to the fourth power and taking the average, we have

〈
p4(t)

〉
=

t∫
0

dt1 e
−γ(t−t1)

t∫
0

dt2 e
−γ(t−t2)

t∫
0

dt3 e
−γ(t−t3)

t∫
0

dt4 e
−γ(t−t4)

〈
η(t1) η(t2) η(t3) η(t4)

〉

= 3Γ 2

t∫
0

dt1 e
−2γ(t−t1)

t∫
0

dt2 e
−2γ(t−t2) =

3Γ 2

4 γ2
(
1− e−2γt

)2
.

We have here used the fact that the three contributions to the average of the product of the four η’s each contribute
the same amount to 〈p4(t)〉. Recall Γ = 2MγkBT , where M is the mass of the particle. Note that〈

p4(t)
〉

= 3
〈
p2(t)

〉2
.
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(8.4) A photon gas in equilibrium is described by the distribution function

f0(p) =
2

ecp/kBT − 1
,

where the factor of 2 comes from summing over the two independent polarization states.

(a) Consider a photon gas (in three dimensions) slightly out of equilibrium, but in steady state under the influ-
ence of a temperature gradient ∇T . Write f = f0 + δf and write the Boltzmann equation in the relaxation
time approximation. Remember that ε(p) = cp and v = ∂ε

∂p = cp̂, so the speed is always c.

(b) What is the formal expression for the energy current, expressed as an integral of something times the distri-
bution f?

(c) Compute the thermal conductivity κ. It is OK for your expression to involve dimensionless integrals.

Solution :

(a) We have

df0 = − 2cp eβcp

(eβcp − 1)2
dβ =

2cp eβcp

(eβcp − 1)2
dT

kBT
2
.

The steady state Boltzmann equation is v · ∂f
0

∂r =
(
∂f
∂t

)
coll

, hence with v = cp̂,

2 c2 ecp/kBT

(ecp/kBT − 1)2
1

kBT
2
p ·∇T = −δf

τ
.

(b) The energy current is given by

jε(r) =

∫
d3p

h3
c2p f(p, r) .

(c) Integrating, we find

κ =
2c4τ

3h3kBT
2

∫
d3p

p2 ecp/kBT

(ecp/kBT − 1)2

=
8πkBτ

3c

(
kBT

hc

)3 ∞∫
0

ds
s4 es

(es − 1)2

=
4kBτ

3π2c

(
kBT

hc

)3 ∞∫
0

ds
s3

es − 1
,

where we simplified the integrand somewhat using integration by parts. The integral may be computed in closed
form:

In =

∞∫
0

ds
sn

es − 1
= Γ(n+ 1) ζ(n+ 1) ⇒ I3 =

π4

15
,

and therefore

κ =
π2kBτ

45 c

(
kBT

hc

)3
.

7



(8.5) Suppose the relaxation time is energy-dependent, with τ(ε) = τ0 e
−ε/ε0 . Compute the particle current j and

energy current jε flowing in response to a temperature gradient ∇T .

Solution :

Now we must compute {
jα

jαε

}
=

∫
d3p

{
vα

ε vα

}
δf

= − 2n

3mkBT
2

∂T

∂xα
〈
τ(ε)

{ ε
ε2

}(
ε− 5

2kBT
)〉
,

where τ(ε) = τ0 e
−ε/ε0 . We find

〈
e−ε/ε0 εα

〉
= 2√

π
(kBT )−3/2

∞∫
0

dε εα+
1
2 e−ε/kBT e−ε/ε0

= 2√
π

Γ
(
α+ 3

2

)
(kBT )α

(
ε0

ε0 + kBT

)α+ 3
2

.

Therefore,

〈
e−ε/ε0 ε

〉
= 3

2 kBT

(
ε0

ε0 + kBT

)5/2
〈
e−ε/ε0 ε2

〉
= 15

4 (kBT )2
(

ε0
ε0 + kBT

)7/2
〈
e−ε/ε0 ε3

〉
= 105

8 (kBT )3
(

ε0
ε0 + kBT

)9/2
and

j =
5nτ0k

2
BT

2m

ε
5/2
0

(ε0 + kBT )7/2
∇T

jε = −5nτ0k
2
BT

4m

(
ε0

ε0 + kBT

)7/2(
2ε0 − 5kBT

ε0 + kBT

)
∇T .

The previous results are obtained by setting ε0 = ∞ and τ0 = 1/
√

2nv̄σ. Note the strange result that κ becomes
negative for kBT > 2

5ε0.
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(8.6) Use the linearized Boltzmann equation to compute the bulk viscosity ζ of an ideal gas.

(a) Consider first the case of a monatomic ideal gas. Show that ζ = 0 within this approximation. Will your
result change if the scattering time is energy-dependent?

(b) Compute ζ for a diatomic ideal gas.

Solution :

According to the Lecture Notes, the solution to the linearized Boltzmann equation in the relaxation time approxi-
mation is

δf = − τf
0

kBT

{
mvαvβ

∂Vα
∂xβ

−
(
εtr + εrot

) kB

cV
∇·V

}
.

We also have
Tr Π = nm 〈v2〉 = 2n 〈εtr〉 = 3p− 3ζ∇·V .

We then compute Tr Π:

Tr Π = 2n 〈εtr〉 = 3p− 3ζ∇·V

= 2n

∫
dΓ (f0 + δf) εtr

The f0 term yields a contribution 3nkBT = 3p in all cases, which agrees with the first term on the RHS of the
equation for Tr Π. Therefore

ζ∇·V = − 2
3n

∫
dΓ δf εtr .

(a) For the monatomic gas, Γ = {px, py, pz}. We then have

ζ∇·V =
2nτ

3kBT

∫
d3p f0(p) ε

{
mvαvβ

∂Vα
∂xβ

− ε

cV /kB
∇·V

}
=

2nτ

3kBT

〈(
2
3 −

kB
cV

)
ε
〉
∇·V = 0 .

Here we have replacedmvαvβ → 1
3mv2 = 2

3εtr under the integral. If the scattering time is energy dependent, then
we put τ(ε) inside the energy integral when computing the average, but this does not affect the final result: ζ = 0.

(b) Now we must include the rotational kinetic energy in the expression for δf , and we have cV = 5
2kB. Thus,

ζ∇·V =
2nτ

3kBT

∫
dΓ f0(Γ ) εtr

{
mvαvβ

∂Vα
∂xβ

−
(
εtr + εrot

) kB

cV
∇·V

}
=

2nτ

3kBT

〈
2
3ε

2
tr −

kB
cV

(
εtr + εrot

)
εtr

〉
∇·V ,

and therefore
ζ =

2nτ

3kBT

〈
4
15 ε

2
tr − 2

5kBT εtr
〉

= 4
15nτkBT .
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(8.7) Consider a two-dimensional gas of particles with dispersion ε(k) = Jk2, where k is the wavevector. The
particles obey photon statistics, so µ = 0 and the equilibrium distribution is given by

f0(k) =
1

eε(k)/kBT − 1
.

(a) Writing f = f0 + δf , solve for δf(k) using the steady state Boltzmann equation in the relaxation time
approximation,

v · ∂f
0

∂r
= −δf

τ
.

Work to lowest order in ∇T . Remember that v = 1
~
∂ε
∂k is the velocity.

(b) Show that j = −λ∇T , and find an expression for λ. Represent any integrals you cannot evaluate as dimen-
sionless expressions.

(c) Show that jε = −κ∇T , and find an expression for κ. Represent any integrals you cannot evaluate as
dimensionless expressions.

Solution :

(a) We have

δf = −τ v · ∂f
0

∂r
= −τ v ·∇T

∂f0

∂T

= −2τ

~
J2k2

kBT
2

eε(k)/kBT(
eε(k)/kBT − 1

)2 k·∇T

(b) The particle current is

jµ =
2J

~

∫
d2k

(2π)2
kµ δf(k) = −λ ∂T

∂xµ

= −4τ

~2
J3

kBT
2

∂T

∂xν

∫
d2k

(2π)2
k2 kµ kν

eJk
2/kBT(

eJk
2/kBT − 1

)2
We may now send kµkν → 1

2k
2δµν under the integral. We then read off

λ =
2τ

~2
J3

kBT
2

∫
d2k

(2π)2
k4

eJk
2/kBT(

eJk
2/kBT − 1

)2
=
τk2BT

π~2

∞∫
0

ds
s2 es(
es − 1

)2 =
ζ(2)

π

τk2BT

~2
.

Here we have used
∞∫
0

ds
sα es(
es − 1

)2 =

∞∫
0

ds
α sα−1

es − 1
= Γ(α+ 1) ζ(α) .

(c) The energy current is

jµε =
2J

~

∫
d2k

(2π)2
Jk2 kµ δf(k) = −κ ∂T

∂xµ
.
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We therefore repeat the calculation from part (c), including an extra factor of Jk2 inside the integral. Thus,

κ =
2τ

~2
J4

kBT
2

∫
d2k

(2π)2
k6

eJk
2/kBT(

eJk
2/kBT − 1

)2
=
τk3BT

2

π~2

∞∫
0

ds
s3 es(
es − 1

)2 =
6 ζ(3)

π

τk3BT
2

~2
.
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(8.8) Due to quantum coherence effects in the backscattering from impurities, one-dimensional wires don’t obey
Ohm’s law (in the limit where the ‘inelastic mean free path’ is greater than the sample dimensions, which you
may assume). Rather, let R(L) = R(L)/(h/e2) be the dimensionless resistance of a quantum wire of length L, in
units of h/e2 = 25.813 kΩ. Then the dimensionless resistance of a quantum wire of length L+ δL is given by

R(L+ δL) = R(L) +R(δL) + 2R(L)R(δL)

+ 2 cosα
√
R(L)

[
1 +R(L)

]
R(δL)

[
1 +R(δL)

]
,

where α is a random phase uniformly distributed over the interval [0, 2π). Here,

R(δL) =
δL

2`
,

is the dimensionless resistance of a small segment of wire, of length δL<∼ `, where ` is the ‘elastic mean free path’.
(Using the Boltzmann equation, we would obtain ` = 2π~nτ/m.)

Show that the distribution function P (R, L) for resistances of a quantum wire obeys the equation

∂P

∂L
=

1

2`

∂

∂R

{
R (1 +R)

∂P

∂R

}
.

Show that this equation* may be solved in the limitsR � 1 andR � 1, with

P (R, z) =
1

z
e−R/z

forR � 1, and

P (R, z) = (4πz)−1/2
1

R
e−(lnR−z)

2/4z

forR � 1, where z = L/2` is the dimensionless length of the wire. Compute 〈R〉 in the former case, and 〈lnR〉 in
the latter case.

Solution :

From the composition rule for series quantum resistances, we derive the phase averages

〈
δR
〉

=
(

1 + 2R(L)
)δL

2`〈
(δR)2

〉
=
(

1 + 2R(L)
)2(δL

2`

)2

+ 2R(L)
(

1 +R(L)
) δL

2`

(
1 +

δL

2`

)
= 2R(L)

(
1 +R(L)

) δL
2`

+O
(
(δL)2

)
,

whence we obtain the drift and diffusion terms

F1(R) =
2R+ 1

2`
, F2(R) =

2R(1 +R)

2`
.

Note that 2F1(R) = dF2/dR, which allows us to write the Fokker-Planck equation as

∂P

∂L
=

∂

∂R

{
R (1 +R)

2`

∂P

∂R

}
.

Defining the dimensionless length z = L/2`, we have

∂P

∂z
=

∂

∂R

{
R (1 +R)

∂P

∂R

}
.
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In the limitR � 1, this reduces to
∂P

∂z
= R ∂2P

∂R2
+
∂P

∂R
,

which is satisfied by P (R, z) = z−1 exp(−R/z). For this distribution one has 〈R〉 = z.

In the opposite limit,R � 1, we have

∂P

∂z
= R2 ∂

2P

∂R2
+ 2R ∂P

∂R

=
∂2P

∂ν2
+
∂P

∂ν
,

where ν ≡ lnR. This is solved by the log-normal distribution,

P (R, z) = (4πz)−1/2 e−(ν+z)
2/4z .

Note that

P (R, z) dR = (4πz)−1/2 exp

{
− (lnR− z)2

4z

}
d lnR .

One then obtains 〈lnR〉 = z.
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