
1 Probability : Worked Examples

(1.1) The information entropy of a distribution {pn} is defined as S = −∑n pn log2 pn, where n ranges over all
possible configurations of a given physical system and pn is the probability of the state |n〉. If there are Ω possible
states and each state is equally likely, then S = log2 Ω, which is the usual dimensionless entropy in units of ln 2.

Consider a normal deck of 52 distinct playing cards. A new deck always is prepared in the same order (A♠ 2♠ · · ·K♣).

(a) What is the information entropy of the distribution of new decks?

(b) What is the information entropy of a distribution of completely randomized decks?

Figure 1: The riffle shuffle.

Now consider what it means to shuffle the cards. In an ideal riffle
shuffle, the deck is split and divided into two equal halves of 26 cards
each. One then chooses at random whether to take a card from either
half, until one runs through all the cards and a new order is established
(see figure).

(c) What is the increase in information entropy for a distribution of
new decks that each have been shuffled once?

(d) Assuming each subsequent shuffle results in the same entropy
increase (i.e. neglecting redundancies), how many shuffles are
necessary in order to completely randomize a deck?

Solution :

(a) Since each new deck arrives in the same order, we have p1 = 1 while p2,...,52! = 0, so S = 0.

(b) For completely randomized decks, pn = 1/Ω with n ∈ {1, . . . ,Ω} and Ω = 52!, the total number of possible
configurations. Thus, Srandom = log2 52! = 225.581.

(c) After one riffle shuffle, there are Ω =
(

52
26

)

possible configurations. If all such configurations were equally

likely, we would have (∆S)riffle = log2
(

52
26

)

= 48.817. However, they are not all equally likely. For example, the
probability that we drop the entire left-half deck and then the entire right half-deck is 2−26. After the last card
from the left half-deck is dropped, we have no more choices to make. On the other hand, the probability for the
sequence LRLR · · · is 2−51, because it is only after the 51st card is dropped that we have no more choices. We
can derive an exact expression for the entropy of the riffle shuffle in the following manner. Consider a deck of
N = 2K cards. The probability that we run out of choices after K cards is the probability of the first K cards
dropped being all from one particular half-deck, which is 2 · 2−K . Now let’s ask what is the probability that we
run out of choices after (K + 1) cards are dropped. If all the remaining (K − 1) cards are from the right half-deck,
this means that we must have one of the R cards among the first K dropped. Note that this R card cannot be the
(K+1)th card dropped, since then all of the first K cards are L, which we have already considered. Thus, there are
(

K
1

)

= K such configurations, each with a probability 2−K−1. Next, suppose we run out of choices after (K + 2)
cards are dropped. If the remaining (K − 2) cards are R, this means we must have 2 of the R cards among the first

(K + 1) dropped, which means
(

K+1
2

)

possibilities. Note that the (K + 2)th card must be L, since if it were R this
would mean that the last (K − 1) cards are R, which we have already considered. Continuing in this manner, we
conclude

ΩK = 2

K
∑

n=0

(

K + n− 1

n

)

=

(

2K

K

)
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K ΩK SK log2
(

2K
K

)

2 6 2.500 2.585
12 2704156 20.132 20.367
26 4.96× 1014 46.274 48.817
100 9.05× 1058 188.730 195.851

Table 1: Riffle shuffle results.

and

SK = −
ΩK
∑

a=1

pa log2 pa =

K−1
∑

n=0

(

K + n− 1

n

)

· 2−(K+n) · (K + n) .

The results are tabulated below in Table 1. For a deck of 52 cards, the actual entropy per riffle shuffle is S26 =
46.274.

(d) Ignoring redundancies, we require k = Srandom/(∆S)riffle = 4.62 shuffles if we assume all riffle outcomes are
equally likely, and 4.88 if we use the exact result for the riffle entropy. Since there are no fractional shuffles, we
round up to k = 5 in both cases. In fact, computer experiments show that the answer is k = 9. The reason we
are so far off is that we have ignored redundancies, i.e. we have assumed that all the states produced by two
consecutive riffle shuffles are distinct. They are not! For decks with asymptotically large numbers of cards N ≫ 1,
the number of riffle shuffles required is k ≃ 3

2 log2 N . See D. Bayer and P. Diaconis, Annals of Applied Probability
2, 294 (1992).
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(1.2) A six-sided die is loaded so that the probability to throw a three is twice that of throwing a two, and the
probability of throwing a four is twice that of throwing a five.

(a) Find the distribution {pn} consistent with maximum entropy, given these constraints.

(b) Assuming the maximum entropy distribution, given two such identical dice, what is the probability to roll
a total of seven if both are thrown simultaneously?

Solution :

(a) We have the following constraints:

X0(p) = p1 + p2 + p3 + p4 + p5 + p6 − 1 = 0

X1(p) = p3 − 2p2 = 0

X2(p) = p4 − 2p5 = 0 .

We define

S∗(p,λ) ≡ −
∑

n

pn ln pn −
2
∑

a=0

λa X
(a)(p) ,

and freely extremize over the probabilities {p1, . . . , p6} and the undetermined Lagrange multipliers {λ0, λ1, λ2}.
We obtain

∂S∗

∂p1
= −1− ln p1 − λ0

∂S∗

∂p4
= −1− ln p4 − λ0 − λ2

∂S∗

∂p2
= −1− ln p2 − λ0 + 2λ1

∂S∗

∂p5
= −1− ln p5 − λ0 + 2λ2

∂S∗

∂p3
= −1− ln p3 − λ0 − λ1

∂S∗

∂p6
= −1− ln p6 − λ0 .

Extremizing with respect to the undetermined multipliers generates the three constraint equations. We therefore
have

p1 = e−λ
0
−1 p4 = e−λ

0
−1 e−λ

2

p2 = e−λ
0
−1 e2λ1 p5 = e−λ

0
−1 e2λ2

p3 = e−λ
0
−1 e−λ

1 p6 = e−λ
0
−1 .

We solve for {λ0, λ1, λ2} by imposing the three constraints. Let x ≡ p1 = p6 = e−λ
0
−1. Then p2 = x e2λ1 ,

p3 = x e−λ
1 , p4 = x e−λ

2 , and p5 = x e2λ2 . We then have

p3 = 2p2 ⇒ e−3λ
1 = 2

p4 = 2p5 ⇒ e−3λ
2 = 2 .

We may now solve for x:

6
∑

n=1

pn =
(

2 + 21/3 + 24/3
)

x = 1 ⇒ x =
1

2 + 3 · 21/3 .

We now have all the probabilities:

p1 = x = 0.1730 p4 = 21/3x = 0.2180

p2 = 2−2/3x = 0.1090 p5 = 2−2/3x = 0.1090

p3 = 21/3x = 0.2180 p6 = x = 0.1730 .
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(b) The probability to roll a seven with two of these dice is

P (7) = 2 p1 p6 + 2 p2 p5 + 2 p3 p4

= 2
(

1 + 2−4/3 + 22/3
)

x2 = 0.1787 .
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(1.3) Consider the contraption in Fig. 2. At each of k steps, a particle can fork to either the left (nj = 1) or to the
right (nj = 0). The final location is then a k-digit binary number.

(a) Assume the probability for moving to the left is p and the probability for moving to the right is q ≡ 1− p at
each fork, independent of what happens at any of the other forks. I.e. all the forks are uncorrelated. Compute

〈Xk〉. Hint: Xk can be represented as a k-digit binary number, i.e. Xk = nk−1nk−2 · · ·n1n0 =
∑k−1

j=0 2
jnj .

(b) Compute 〈X2
k〉 and the variance 〈X2

k〉 − 〈Xk〉2.

(c) Xk may be written as the sum of k random numbers. Does Xk satisfy the central limit theorem as k → ∞?
Why or why not?

Figure 2: Generator for a k-digit random binary number (k = 4 shown).

Solution :

(a) The position after k forks can be written as a k-digit binary number: nk−1nk−2 · · ·n1n0. Thus,

Xk =

k−1
∑

j=0

2j nj ,

where nj = 0 or 1 according to Pn = p δn,1 + q δn,0. Now it is clear that 〈nj〉 = p, and therefore

〈Xk〉 = p

k−1
∑

j=0

2j = p ·
(

2k − 1
)

.

(b) The variance in Xk is

Var(Xk) = 〈X2
k〉 − 〈Xk〉2 =

k−1
∑

j=0

k−1
∑

j′=0

2j+j′
(

〈njnj′〉 − 〈nj〉〈nj′ 〉
)

= p(1− p)
k−1
∑

j=0

4j = p(1− p) · 1
3

(

4k − 1
)

,
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since 〈njnj′〉 − 〈nj〉〈nj′ 〉 = p(1− p) δjj′ .

(c) Clearly the distribution of Xk does not obey the CLT, since 〈Xk〉 scales exponentially with k. Also note

lim
k→∞

√

Var(Xk)

〈Xk〉
=

√

1− p

3p
,

which is a constant. For distributions obeying the CLT, the ratio of the rms fluctuations to the mean scales as the
inverse square root of the number of trials. The reason that this distribution does not obey the CLT is that the
variance of the individual terms is increasing with j.
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(1.4) The binomial distribution,

BN (n, p) =

(

N

n

)

pn (1− p)N−n ,

tells us the probability for n successes in N trials if the individual trial success probability is p. The average

number of successes is ν =
∑N

n=0 nBN (n, p) = Np. Consider the limit N → ∞ with ν finite.

(a) Show that the probability of n successes becomes a function of n and ν alone. That is, evaluate

Pν(n) = lim
N→∞

BN (n, ν/N) .

This is the Poisson distribution.

(b) Show that the moments of the Poisson distribution are given by

〈nk〉 = e−ν
(

ν
∂

∂ν

)k

eν .

(c) Evaluate the mean and variance of the Poisson distribution.

The Poisson distribution is also known as the law of rare events since p = ν/N → 0 in the N → ∞ limit.
See http://en.wikipedia.org/wiki/Poisson distribution#Occurrence for some amusing applications of the
Poisson distribution.

Solution :

(a) We have

Pν(n) = lim
N→∞

N !

n! (N − n)!

(

ν

N

)n(

1− ν

N

)N−n

.

Note that

(N − n)! ≃ (N − n)N−n en−N = NN−n
(

1− n

N

)N

en−N → NN−n eN ,

where we have used the result limN→∞

(

1 + x
N

)N
= ex. Thus, we find

Pν(n) =
1

n!
νn e−ν ,

the Poisson distribution. Note that
∑∞

n=0 Pn(ν) = 1 for any ν.

(b) We have

〈nk〉 =
∞
∑

n=0

Pν(n)n
k =

∞
∑

n=0

1

n!
nkνn e−ν

= e−ν
(

ν
d

dν

)k ∞
∑

n=0

νn

n!
= e−ν

(

ν
∂

∂ν

)k

eν .

(c) Using the result from (b), we have 〈n〉 = ν and 〈n2〉 = ν + ν2, hence Var(n) = ν.
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(1.5) You should be familiar with Stirling’s approximation,

lnK! ∼ K lnK −K + 1
2 ln(2πK) +O

(

K−1
)

,

for large K . In this exercise, you will derive this expansion.

(a) Start by writing

K! =

∞
∫

0

dx xK e−x ,

and define x ≡ K(t+ 1) so that K! = KK+1 e−K F (K), where

F (K) =

∞
∫

−1

dt eKf(t) .

Find the function f(t).

(b) Expand f(t) =
∑∞

n=0 fn t
n in a Taylor series and find a general formula for the expansion coefficients fn. In

particular, show that f0 = f1 = 0 and that f2 = − 1
2 .

(c) If one ignores all the terms but the lowest order (quadratic) in the expansion of f(t), show that

∞
∫

−1

dt e−Kt2/2 =

√

2π

K
−R(K) ,

and show that the remainder R(K) > 0 is bounded from above by a function which decreases faster than
any polynomial in 1/K .

(d) For the brave only! – Find the O
(

K−1
)

term in the expansion for lnK!.

Solution :

(a) Setting x = K(t+ 1), we have

K! = KK+1 e−K

∞
∫

−1

dt (t+ 1)K e−t ,

hence f(t) = ln(t+ 1)− t.

(b) The Taylor expansion of f(t) is
f(t) = − 1

2 t
2 + 1

3 t
3 − 1

4 t
4 + . . . .

(c) Retaining only the leading term in the Taylor expansion of f(t), we have

F (K) ≃
∞
∫

−1

dt e−Kt2/2

=

√

2π

K
−

∞
∫

1

dt e−Kt2/2 .
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Writing t ≡ s+ 1, the remainder is found to be

R(K) = e−K/2

∞
∫

0

ds e−Ks2/2 e−Ks <

√

π

2K
e−K/2 ,

which decreases exponentially with K , faster than any power.

(d) We have

F (K) =

∞
∫

−1

dt e−
1

2
Kt2e

1

3
Kt3− 1

4
Kt4+...

=

∞
∫

−1

dt e−
1

2
Kt2
{

1 + 1
3Kt3 − 1

4Kt4 + 1
18K

2t6 + . . .
}

=

√

2π

K
·
{

1− 3
4K

−1 + 5
6K

−1 +O
(

K−2
)

}

Thus,
lnK! = K lnK −K + 1

2 lnK + 1
2 ln(2π) +

1
12K

−1 +O
(

K−2
)

.
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(1.6) The probability density for a random variable x is given by the Lorentzian,

P (x) =
γ

π
· 1

x2 + γ2
.

Consider the sum XN =
∑N

i=1 xi , where each xi is independently distributed according to P (xi). Find the proba-
bility ΠN (Y ) that |XN | < Y , where Y > 0 is arbitrary.

Solution :

The distribution of a sum of identically distributed random variables, X =
∑N

i=1 xi , is given by

PN (X) =

∞
∫

−∞

dk

2π

[

P̂ (k)
]N

eikX ,

where P̂ (k) is the Fourier transform of the probability distribution P (xi) for each of the xi. The Fourier transform
of a Lorentzian is an exponential:

∞
∫

−∞

dx P (x) e−ikx = e−γ|k| .

Thus,

PN (X) =

∞
∫

−∞

dk

2π
e−Nγ|k| eikX

=
Nγ

π
· 1

X2 +N2γ2
.

The probability for X to lie in the interval X ∈ [−Y, Y ], where Y > 0, is

ΠN (Y ) =

Y
∫

−Y

dX PN (X) =
2

π
tan−1

(

Y

Nγ

)

.

The integral is easily performed with the substitution X = Nγ tan θ. Note that ΠN (0) = 0 and ΠN (∞) = 1.
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(1.7) Let P (x) = (2πσ2)−1/2 e−(x−µ)2/2σ2

. Compute the following integrals:

(a) I =
∞
∫

−∞

dx P (x)x3.

(b) I =
∞
∫

−∞

dx P (x) cos(Qx).

(c) I =
∞
∫

−∞

dx
∞
∫

−∞

dy P (x)P (y) exy . You may set µ = 0 to make this somewhat simpler. Under what conditions

does this expression converge?

Solution :

(a) Write
x3 = (x− µ+ µ)3 = (x− µ)3 + 3(x− µ)2µ+ 3(x− µ)µ2 + µ3 ,

so that

〈x3〉 = 1√
2πσ2

∞
∫

−∞

dt e−t2/2σ2
{

t3 + 3t2µ+ 3tµ2 + µ3
}

.

Since exp(−t2/2σ2) is an even function of t, odd powers of t integrate to zero. We have 〈t2〉 = σ2, so

〈x3〉 = µ3 + 3µσ2 .

A nice trick for evaluating 〈t2k〉:

〈t2k〉 =

∞
∫

−∞

dt e−λt2 t2k

∞
∫

−∞

dt e−λt2
=

(−1)k dk

dλk

∞
∫

−∞

dt e−λt2

∞
∫

−∞

dt e−λt2
=

(−1)k√
λ

dk
√
λ

dλk

∣

∣

∣

∣

∣

λ=1/2σ2

= 1
2 · 3

2 · · ·
(2k−1)

2 λ−k
∣

∣

λ=1/2σ2
=

(2k)!

2k k!
σ2k .

(b) We have

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[

eiQµ

√
2πσ2

∞
∫

−∞

dt e−t2/2σ2

eiQt

]

= Re

[

eiQµ e−Q2σ2/2
]

= cos(Qµ) e−Q2σ2/2 .

Here we have used the result

1√
2πσ2

∞
∫

−∞

dt e−αt2−βt =

√

π

α
eβ

2/4α

with α = 1/2σ2 and β = −iQ. Another way to do it is to use the general result derive above in part (a) for 〈t2k〉
and do the sum:

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[

eiQµ

√
2πσ2

∞
∫

−∞

dt e−t2/2σ2

eiQt

]

= cos(Qµ)

∞
∑

k=0

(−Q2)k

(2k)!
〈t2k〉 = cos(Qµ)

∞
∑

k=0

1

k!

(

− 1
2Q

2σ2
)k

= cos(Qµ) e−Q2σ2/2 .

11



(c) We have

I =

∞
∫

−∞

dx

∞
∫

−∞

dy P (x)P (y) eκ
2xy =

e−µ2/2σ2

2πσ2

∫

d2x e−
1

2
Aij xi xj ebi xi ,

where x = (x, y),

A =

(

σ2 −κ2

−κ2 σ2

)

, b =

(

µ/σ2

µ/σ2

)

.

Using the general formula for the Gaussian integral,

∫

dnx e−
1

2
Aij xi xj ebi xi =

(2π)n/2
√

det(A)
exp

(

1
2A

−1
ij bi bj

)

,

we obtain

I =
1√

1− κ4σ4
exp

(

µ2κ2

1− κ2σ2

)

.

Convergence requires κ2σ2 < 1.
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(1.8) Consider a D-dimensional random walk on a hypercubic lattice. The position of a particle after N steps is

RN =

N
∑

j=1

n̂j ,

where n̂j can take on one of 2D possible values: n̂j ∈
{

± ê1, . . . ,±êD
}

, where êµ is the unit vector along
the positive xµ axis. Each of these possible values occurs with probability 1/2D, and each step is statistically
independent from all other steps.

(a) Consider the generating function SN (k) =
〈

eik·RN

〉

. Show that

〈

R
α

1

N · · ·RαJ

N

〉

=
1

i

∂

∂kα
1

· · · 1
i

∂

∂kα
J

∣

∣

∣

∣

k=0

SN(k) .

For example, 〈Rα
NRβ

N 〉 = −
(

∂2SN (k)/∂kα∂kβ
)

k=0
.

(b) Evaluate SN (k) for the case D = 3 and compute the quantities 〈X4
N 〉 and 〈X2

N Y 2
N 〉.

Solution :

(a) The result follows immediately from

1

i

∂

∂kα
eik·R = Rα eik·R

1

i

∂

∂kα

1

i

∂

∂kβ
eik·R = Rα Rβ e

ik·R ,

et cetera. Keep differentiating with respect to the various components of k.

(b) For D = 3, there are six possibilities for n̂j : ±x̂, ±ŷ, and ±ẑ. Each occurs with a probability 1
6 , independent

of all the other n̂j′ with j′ 6= j. Thus,

SN (k) =
N
∏

j=1

〈eik·n̂j 〉 =
[

1

6

(

eikx + e−ikx + eiky + e−iky + eikz + e−ikz

)

]N

=

(

cos kx + cos ky + cos kz
3

)N

.

We have

〈X4
N 〉 = ∂4S(k)

∂k4x

∣

∣

∣

∣

∣

k=0

=
∂4

∂k4x

∣

∣

∣

∣

∣

kx=0

(

1− 1
6 k

2
x + 1

72 k
4
x + . . .

)N

=
∂4

∂k4x

∣

∣

∣

∣

∣

kx=0

[

1 +N
(

− 1
6 k

2
x + 1

72 k
4
x + . . .

)

+ 1
2N(N − 1)

(

− 1
6 k

2
x + 1

72 k
4
x + . . .

)2
+ . . .

]

=
∂4

∂k4x

∣

∣

∣

∣

∣

kx=0

[

1− 1
6Nk2x + 1

72N
2k4x + . . .

]

= 1
3N

2 .
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Similarly, we have

〈X2
N Y 2

N 〉 = ∂4S(k)

∂k2x ∂k
2
y

∣

∣

∣

∣

∣

k=0

=
∂4

∂k2x ∂k
2
y

∣

∣

∣

∣

∣

kx=0

(

1− 1
6 (k

2
x + k2y) +

1
72 (k

4
x + k4y) + . . .

)N

=
∂4

∂k2x ∂k
2
y

∣

∣

∣

∣

∣

kx=ky=0

[

1 +N
(

− 1
6 (k

2
x + k2y) +

1
72 (k

4
x + k4y) + . . .

)

+ 1
2N(N − 1)

(

− 1
6 (k

2
x + k2y) + . . .

)2
+ . . .

]

=
∂4

∂k2x ∂k
2
y

∣

∣

∣

∣

∣

kx=ky=0

[

1− 1
6N(k2x + k2y) +

1
72N

2(k4x + k + y4) + 1
36 k

2
x k

2
y + . . .

]

= 1
9N(N − 1) .
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(1.9) A rare disease is known to occur in f = 0.02% of the general population. Doctors have designed a test for
the disease with ν = 99.90% sensitivity and ρ = 99.95% specificity.

(a) What is the probability that someone who tests positive for the disease is actually sick?

(b) Suppose the test is administered twice, and the results of the two tests are independent. If a random indi-
vidual tests positive both times, what are the chances he or she actually has the disease?

(c) For a binary partition of events, find an expression for P (X |A ∩B) in terms of P (A|X), P (B|X), P (A|¬X),
P (B|¬X), and the priors P (X) and P (¬X) = 1 − P (X). You should assume A and B are independent, so
P (A ∩B|X) = P (A|X) · P (B|X).

Solution :

(a) Let X indicate that a person is infected, and A indicate that a person has tested positive. We then have ν =
P (A|X) = 0.9990 is the sensitivity and ρ = P (¬A|¬X) = 0.9995 is the specificity. From Bayes’ theorem, we have

P (X |A) = P (A|X) · P (X)

P (A|X) · P (X) + P (A|¬X) · P (¬X)
=

νf

νf + (1 − ρ)(1− f)
,

where P (A|¬X) = 1 − P (¬A|¬X) = 1 − ρ and P (X) = f is the fraction of infected individuals in the general
population. With f = 0.0002, we find P (X |A) = 0.2856.

(b) We now need

P (X |A2) =
P (A2|X) · P (X)

P (A2|X) · P (X) + P (A2|¬X) · P (¬X)
=

ν2f

ν2f + (1− ρ)2(1− f)
,

where A2 indicates two successive, independent tests. We find P (X |A2) = 0.9987.

(c) Assuming A and B are independent, we have

P (X |A ∩B) =
P (A ∩B|X) · P (X)

P (A ∩B|X) · P (X) + P (A ∩B|¬X) · P (¬X)

=
P (A|X) · P (B|X) · P (X)

P (A|X) · P (B|X) · P (X) + P (A|¬X) · P (B|¬X) · P (¬X)
.

This is exactly the formula used in part (b).
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(1.10) Let p(x) = Pr[X = x] where X is a discrete random variable and both X and x are taken from an ‘alphabet’
X . Let p(x, y) be a normalized joint probability distribution on two random variables X ∈ X and Y ∈ Y . The
entropy of the joint distribution is S(X,Y ) = −∑x,y p(x, y) log p(x, y). The conditional probability p(y|x) for y
given x is defined as p(y|x) = p(x, y)/p(x), where p(x) =

∑

y p(x, y).

(a) Show that the conditional entropy S(Y |X) = −
∑

x,y p(x, y) log p(y|x) satisfies

S(Y |X) = S(X,Y )− S(X) .

Thus, conditioning reduces the entropy, and the entropy of a pair of random variables is the sum of the
entropy of one plus the conditional entropy of the other.

(b) The mutual information I(X,Y ) is

I(X,Y ) =
∑

x,y

p(x, y) log

(

p(x, y)

p(x) p(y)

)

.

Show that
I(X,Y ) = S(X) + S(Y )− S(X,Y ) .

(c) Show that S(Y |X) ≤ S(Y ) and that the equality holds only when X and Y are independently distributed.

Solution :

(a) We have

S(Y |X) = −
∑

x,y

p(x, y) log

(

p(x, y)

p(x)

)

= −
∑

x,y

p(x, y) log p(x, y) +
∑

x,y

p(x, y) log p(x)

= S(X,Y )− S(X) ,

since
∑

y p(x, y) = p(x).

(b) Clearly

I(X,Y ) =
∑

x,y

p(x, y)
(

log p(x, y)− log p(x)− log p(y)
)

=
∑

x,y

p(x, y) log p(x, y)−
∑

x

p(x) log p(x)−
∑

y

p(y) log p(y)

= S(X) + S(Y )− S(X,Y ) .

(c) Let’s introduce some standard notation1. Denote the average of a function of a random variable as

Ef(X) =
∑

x∈X

p(x)f(x) .

Equivalently, we could use the familiar angular bracket notation for averages and write Ef(X) as
〈

f(X)
〉

. For
averages over several random variables, we have

Ef(X,Y ) =
∑

x∈X

∑

y∈Y

p(x, y) f(x, y) ,

1See e.g. T. M. Cover and J. A. Thomas, Elements of Information Theory , 2nd edition (Wiley, 2006).
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et cetera. Now here’s a useful fact. If f(x) is a convex function, then

Ef(X) ≥ f(EX) .

For continuous functions, f(x) is convex if f ′′(x) ≥ 0 everywhere2. If f(x) is convex on some interval [a, b], then
for x1,2 ∈ [a, b] we must have

f
(

λx1 + (1− λ)x2

)

≤ λ f(x1) + (1− λ) f(x2) .

This is easily generalized to

f
(

∑

n

pn xn

)

≤
∑

n

pn f(xn) ,

where
∑

n pn = 1, which proves our claim - a result known as Jensen’s theorem.

Now log x is concave, hence the function f(x) = −log x is convex, and therefore

I(X,Y ) = −
∑

x,y

p(x, y) log

(

p(x) p(y)

p(x, y)

)

= −E log

(

p(X) p(Y )

p(X,Y )

)

≥ − logE

(

p(X) p(Y )

p(X,Y )

)

= − log

(

∑

x,y

p(x, y) · p(x) p(y)
p(x, y)

)

= − log

(

∑

x

p(x) ·
∑

y

p(y)

)

= − log(1) = 0 .

So I(X,Y ) ≥ 0. Clearly I(X,Y ) = 0 when X and Y are independently distributed, i.e. when p(x, y) = p(x) p(y).
Using the results from part (b), we then have

I(X,Y ) = S(X) + S(Y )− S(X,Y )

= S(Y )− S(Y |X) ≥ 0 .

2A concave function g(x) is one for which f(x) = −g(x) is convex.

17



(1.11) The nth moment of the normalized Gaussian distribution P (x) = (2π)−1/2 exp
(

− 1
2x

2
)

is defined by

〈xn〉 = 1√
2π

∞
∫

−∞

dx xn exp
(

− 1
2x

2
)

Clearly 〈xn〉 = 0 if n is a nonnegative odd integer. Next consider the generating function

Z(j) =
1√
2π

∞
∫

−∞

dx exp
(

− 1
2x

2
)

exp(jx) = exp
(

1
2j

2
)

.

(a) Show that

〈xn〉 = dnZ

djn

∣

∣

∣

∣

∣

j=0

and provide an explicit result for 〈x2k〉 where k ∈ N.

(b) Now consider the following integral:

F (λ) =
1√
2π

∞
∫

−∞

dx exp

(

− 1

2
x2 − λ

4!
x4

)

.

The integral has no known analytic form3, but we may express the result as a power series in the parameter
λ by Taylor expanding exp

(

− λ
4 ! x

4
)

and then using the result of part (a) for the moments 〈x4k〉. Find the
coefficients in the perturbation expansion,

F (λ) =

∞
∑

k=0

Ck λ
k .

(c) Define the remainder after N terms as

RN (λ) = F (λ)−
N
∑

k=0

Ck λ
k .

Compute RN (λ) by evaluating numerically the integral for F (λ) (using Mathematica or some other numeri-
cal package) and subtracting the finite sum. Then define the ratio SN (λ) = RN (λ)/F (λ), which is the relative
error from the N term approximation and plot the absolute relative error

∣

∣SN (λ)
∣

∣ versus N for several values
of λ.(I suggest you plot the error on a log scale.) What do you find?? Try a few values of λ including λ = 0.01,
λ = 0.05, λ = 0.2, λ = 0.5, λ = 1, λ = 2.

(d) Repeat the calculation for the integral

G(λ) =
1√
2π

∞
∫

−∞

dx exp

(

− 1

2
x2 − λ

6!
x6

)

.

(e) Reflect meaningfully on the consequences for weakly and strongly coupled quantum field theories.

3In fact, it does. According to Mathematica, F (λ) =
√

2u
π

exp(u)K
1/4

(u), where u = 3/4λ and Kν(z) is the modified Bessel function. I

am grateful to Prof. John McGreevy for pointing this out.
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Solution :

(a) Clearly

dn

djn

∣

∣

∣

∣

∣

j=0

ejx = xn ,

so 〈xn 〉 =
(

dnZ/djn
)

j=0
. With Z(j) = exp

(

1
2j

2
)

, only the kth order term in j2 in the Taylor series for Z(j)

contributes, and we obtain

〈x2k 〉 = d2k

dj2k

(

j2k

2k k!

)

=
(2k)!

2k k!
.

(b) We have

F (λ) =
∞
∑

n=0

1

n!

(

− λ

4!

)n

〈x4n 〉 =
∞
∑

n=0

(4n)!

4n (4!)n n! (2n)!
(−λ)n .

This series is asymptotic. It has the properties

lim
λ→0

RN (λ)

λN
= 0 (fixed N ) , lim

N→∞

RN (λ)

λN
= ∞ (fixed λ) ,

where RN (λ) is the remainder after N terms, defined in part (c). The radius of convergence is zero. To see this,
note that if we reverse the sign of λ, then the integrand of F (λ) diverges badly as x → ±∞. So F (λ) is infinite for
λ < 0, which means that there is no disk of any finite radius of convergence which encloses the point λ = 0. Note
that by Stirling’s rule,

(−1)n Cn ≡ (4n)!

4n (4!)n n! (2n)!
∼ nn ·

(

2
3

)n
e−n · (πn)−1/2 ,

and we conclude that the magnitude of the summand reaches a minimum value when n = n∗(λ), with

n∗(λ) ≈ 3

2λ

for small values of λ. For large n, the magnitude of the coefficient Cn grows as |Cn| ∼ en lnn+O(n), which dominates
the λn term, no matter how small λ is.

(c) Results are plotted in fig. 3.

It is worth pointing out that the series for F (λ) and for lnF (λ) have diagrammatic interpretations. For a Gaussian
integral, one has

〈x2k 〉 = 〈x2 〉k · A2k

where A2k is the number of contractions. For a proof, see §1.4.3 of the notes. For our integral, 〈x2 〉 = 1. The number
of contractions A2k is computed in the following way. For each of the 2k powers of x, we assign an index running
from 1 to 2k. The indices are contracted, i.e. paired, with each other. How many pairings are there? Suppose we
start with any from among the 2k indices. Then there are (2k − 1) choices for its mate. We then choose another
index arbitrarily. There are now (2k − 3) choices for its mate. Carrying this out to its completion, we find that the
number of contractions is

A2k = (2k − 1)(2k − 3) · · · 3 · 1 =
(2k)!

2k k!
,

exactly as we found in part (a). Now consider the integral F (λ). If we expand the quartic term in a power series,
then each power of λ brings an additional four powers of x. It is therefore convenient to represent each such
quartet with the symbol ×. At order N of the series expansion, we have N ×’s and 4N indices to contract. Each
full contraction of the indices may be represented as a labeled diagram, which is in general composed of several
disjoint connected subdiagrams. Let us label these subdiagrams, which we will call clusters, by an index γ. Now
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Figure 3: Relative error versus number of terms kept for the asymptotic series for F (λ). Note that the optimal
number of terms to sum is N∗(λ) ≈ 3

2λ .

suppose we have a diagram consisting of mγ subdiagrams of type γ, for each γ. If the cluster γ contains nγ vertices
(×), then we must have

N =
∑

γ

mγ nγ .

How many ways are there of assigning the labels to such a diagram? One might think (4!)N · N !, since for each
vertex × there are 4! permutations of its four labels, and there are N ! ways to permute all the vertices. However,
this overcounts diagrams which are invariant under one or more of these permutations. We define the symmetry
factor sγ of the (unlabeled) cluster γ as the number of permutations of the indices of a corresponding labeled
cluster which result in the same contraction. We can also permute the mγ identical disjoint clusters of type γ.

Examples of clusters and their corresponding symmetry factors are provided in fig. 4, for all diagrams with
nγ ≤ 3. There is only one diagram with nγ = 1, resembling ©•©. To obtain sγ = 8, note that each of the circles
can be separately rotated by an angle π about the long symmetry axis. In addition, the figure can undergo a
planar rotation by π about an axis which runs through the sole vertex and is normal to the plane of the diagram.
This results in sγ = 2 · 2 · 2 = 8. For the cluster ©•©•©, there is one extra circle, so sγ = 24 = 16. The third
diagram in figure shows two vertices connected by four lines. Any of the 4! permutations of these lines results
in the same diagram. In addition, we may reflect about the vertical symmetry axis, interchanging the vertices, to
obtain another symmetry operation. Thus sγ = 2 · 4! = 48. One might ask why we don’t also count the planar
rotation by π as a symmetry operation. The answer is that it is equivalent to a combination of a reflection and a
permutation, so it is not in fact a distinct symmetry operation. (If it were distinct, then sγ would be 96.) Finally,
consider the last diagram in the figure, which resembles a sausage with three links joined at the ends into a circle.
If we keep the vertices fixed, there are 8 symmetry operations associated with the freedom to exchange the two
lines associated with each of the three sausages. There are an additional 6 symmetry operations associated with
permuting the three vertices, which can be classified as three in-plane rotations by 0, 2π

3 and 4π
3 , each of which can

also be combined with a reflection about the y-axis (this is known as the group C3v). Thus, sγ = 8 · 6 = 48.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible numbers of clusters
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Figure 4: Cluster symmetry factors. A vertex is represented as a black dot (•) with four ‘legs’.

at each order:

F (γ) =

∞
∑

N=0

1

N !

∑

{mγ}

(4!)NN !
∏

γ s
mγ
γ mγ !

(

− λ

4!

)N

δN,
∑

γ mγnγ

= exp

(

∑

γ

(−λ)nγ

sγ

)

.

Thus,

lnF (γ) =
∑

γ

(−λ)nγ

sγ
,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is instructive to work this out to order
λ2. We have, from the results of part (b),

F (λ) = 1− 1
8 λ+ 35

384 λ
2 +O(λ3) =⇒ lnF (λ) = − 1

8 λ+ 1
12 λ

2 +O(λ3) .

Note that there is one diagram with N = 1 vertex, with symmetry factor s = 8. For N = 2 vertices, there are two
diagrams, one with s = 16 and one with s = 48 (see fig. 4). Since 1

16 + 1
48 = 1

12 , the diagrammatic expansion is
verified to order λ2.

(d) We now have4

G(λ) =
1√
2π

∞
∫

−∞

dx exp

(

− 1

2
x2 − λ

6!
x6

)

=

∞
∑

n=0

1

n!

(

− λ

6!

)n

〈x6n〉 =
∞
∑

n=0

Cn λ
n ,

where

Cn =
(−1)n (6n)!

(6!)n n! 23n (3n)!
.

Invoking Stirling’s approximation, we find

ln |Cn| ∼ 2n lnn−
(

2 + ln 5
3

)

n .

4According to Mathematica, the G(λ) has the analytic form G(λ) = π
√
u
[

Ai
2(u)+Bi

2(u)
]

, where u = (15/2λ)1/3 and Ai(z) and Bi(z) are

Airy functions. The definitions and properties of the Airy functions are discussed in §9.2 of the NIST Handbook of Mathematical Functions.
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Figure 5: Logarithm of ratio of remainder after N terms RN (λ) to the value of the integral G(λ), for various values
of λ.

From the above expression for Cn, we see that the magnitude of the contribution of the nth term in the perturbation
series is

Cn λ
n = (−1)n exp

(

2n lnn−
(

2 + ln 10
3

)

n+ n lnλ
)

.

Differentiating, we find that this contribution is minimized for n = n∗(λ), where

n∗(λ) =

√

10

3λ
.

Via numerical integration using FORTRAN subroutines from QUADPACK, one obtains the results in Fig. 5 and
Tab. 2.

λ 10 2 0.5 0.2 0.1 0.05 0.02
F 0.92344230 0.97298847 0.99119383 0.996153156 0.99800488 0.99898172 0.99958723
n∗ 0.68 1.3 2.6 4.1 5.8 8.2 13

Table 2: F (λ) and n∗(λ) for problem 8d.

The series for G(λ) and for lnG(λ) again have diagrammatic interpretations. If we expand the sextic term in a
power series, each power of λ brings an additional six powers of x. It is natural to represent each such sextet with
as a vertex with six legs. At order N of the series expansion, we have N such vertices and 6N legs to contract.
As before, each full contraction of the leg indices may be represented as a labeled diagram, which is in general
composed of several disjoint connected clusters. If the cluster γ contains nγ vertices, then for any diagram we
again must have N =

∑

γ mγnγ , where mγ is the number of times the cluster γ appears. As with the quartic
example, the number of ways of assigning labels to a given diagram is given by the total number of possible

permutations (6!)N ·N ! divided by a correction factor
∏

γ s
mγ
γ mγ !, where sγ is the symmetry factor of the cluster γ,

and the mγ ! term accounts for the possibility of permuting among different labeled clusters of the same type γ.
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Figure 6: Diagrams and their symmetry factors for the 1
6!λx

6 zero-dimensional field theory.

Examples of clusters and their corresponding symmetry factors are provided in Fig. 6. There is only one diagram
with nγ = 1, shown panel (a), resembling a three-petaled flower. To obtain sγ = 48, note that each of the petals
can be rotated by 180◦ about an axis bisecting the petal, yielding a factor of 23. The three petals can then be
permuted, yielding an additional factor of 3!. Hence the total symmetry factor is sγ = 23 · 3! = 48. Now we
can see how dividing by the symmetry factor saves us from overcounting. In this case, we get 6!/sγ = 720/48 =
15 = 5 · 3 · 1, which is the correct number of contractions. For the diagram in panel (b), the four petals and the
central loop can each be rotated about a symmetry axis, yielding a factor 25. The two left petals can be permuted,
as can the two right petals. Finally, the two vertices can themselves be permuted. Thus, the symmetry factor is
sγ = 25 · 22 · 2 = 28 = 256. In panel (c), the six lines can be permuted (6!) and the vertices can be exchanged
(2), hence sγ = 6! · 2 = 1440. In panel (d), the two outer loops each can be twisted by 180◦, the central four lines
can be permuted, and the vertices can be permuted, hence sγ = 22 · 4! · 2 = 192. Finally, in panel (e), each pair
of vertices is connected by three lines which can be permuted, and the vertices themselves can be permuted, so
sγ = (3!)3 · 3! = 1296.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible numbers of clusters
at each order:

G(γ) =

∞
∑

N=0

1

N !

∑

{mγ}

(6!)NN !
∏

γ s
mγ
γ mγ !

(

− λ

6!

)N

δN,
∑

γ
mγnγ

= exp

(

∑

γ

(−λ)nγ

sγ

)

.

Thus,

lnG(γ) =
∑

γ

(−λ)nγ

sγ
,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is instructive to work this out to order
λ2. We have, from the results of part (a),

G(λ) = 1− λ

26 ·3 +
7·11·λ2

29 ·3·5 +O(λ3) =⇒ lnG(λ) = − λ

26 ·3 +
113·λ2

28 ·32 ·5 +O(λ3) .
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Note that there is one diagram with N = 1 vertex, with symmetry factor s = 48. For N = 2 vertices, there are three
diagrams, one with s = 256, one with s = 1440, and one with s = 192 (see Fig. 6). Since 1

256 + 1
1440 + 1

192 = 113
28325 ,

the diagrammatic expansion is verified to order λ2.

(e) In quantum field theory (QFT), the vertices themselves carry space-time labels, and the contractions, i.e. the
lines connecting the legs of the vertices, are propagators G(xµ

i − xµ
j ), where xµ

i is the space-time label associated
with vertex i. It is convenient to work in momentum-frequency space, in which case we work with the Fourier

transform Ĝ(pµ) of the space-time propagators. Integrating over the space-time coordinates of each vertex then
enforces total 4-momentum conservation at each vertex. We then must integrate over all the internal 4-momenta
to obtain the numerical value for a given diagram. The diagrams, as you know, are associated with Feynman’s
approach to QFT and are known as Feynman diagrams. Our example here is equivalent to a (0 + 0)-dimensional
field theory, i.e. zero space dimensions and zero time dimensions. There are then no internal 4-momenta to inte-
grate over, and each propagator is simply a number rather than a function. The discussion above of symmetry
factors sγ carries over to the more general QFT case.

There is an important lesson to be learned here about the behavior of asymptotic series. As we have seen, if λ is
sufficiently small, summing more and more terms in the perturbation series results in better and better results,
until one reaches an optimal order when the error is minimized. Beyond this point, summing additional terms
makes the result worse, and indeed the perturbation series diverges badly as N → ∞. Typically the optimal order
of perturbation theory is inversely proportional to the coupling constant. For quantum electrodynamics (QED),
where the coupling constant is the fine structure constant α = e2/~c ≈ 1

137 , we lose the ability to calculate in
a reasonable time long before we get to 137 loops, so practically speaking no problems arise from the lack of
convergence. In quantum chromodynamics (QCD), however, the effective coupling constant is about two orders
of magnitude larger, and perturbation theory is a much more subtle affair.
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