
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS
HW ASSIGNMENT #4 SOLUTIONS

(1) For a noninteracting quantum system with single particle density of states g(ε) = Aεr

(with ε ≥ 0), find the first three virial coefficients for bosons and for fermions.

Solution :

We have

n(T, z) =
∞∑
j=1

(±1)j−1Cj(T ) zj , p(T, z) = kBT
∞∑
j=1

(±1)j−1 zj j−1Cj(T ) zj ,

where

Cj(T ) =

∞∫
−∞

dε g(ε) e−jε/kBT = AΓ (r + 1)

(
kBT

j

)r+1

.

Thus, we have

±nvT =
∞∑
j=1

j−(r+1) (±z)j

± pvT /kBT =

∞∑
j=1

j−(r+2) (±z)j ,

where
vT =

1

AΓ (r + 1) (kBT )r+1
.

has dimensions of volume. Thus, we let x = ±z, and interrogate Mathematica:

In[1]= y = InverseSeries [ x + x^2/2^(r+1) + x^3/3^(r+1) + x^4/4^(r+1) + O[x]^5 ]

In[2]= w = y + y^2/2^(r+2) + y^3/3^(r+2) + y^4/4^(r+2) + O[y]^5 .

The result is
p = nkBT

[
1 +B2(T )n+B3(T )n2 + . . .

]
,

where

B2(T ) = ∓2−2−r vT

B3(T ) =
(

2−2−2r − 2 · 3−2−r
)
v2
T

B4(T ) = ±2−4−3r 3−r
(

23+2r − 5 · 3r − 2r 31+r
)
v3
T .
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(2) Consider a gas of particles with dispersion ε(k) = ε0 |k`|5/2, where ε0 is an energy scale
and ` is a length scale.

(a) Find the density of states g(ε) in d = 2 and d = 3 dimensions.

(b) Find the virial coefficients B2(T ) and B3(T ) in d = 2 and d = 3 dimensions.

(c) Find the heat capacity CV (T ) in d = 3 dimensions for photon statistics.

Solution :

(a) For ε(k) = ε0 |k`|α we have

g(ε) =

∫
ddk

(2π)d
δ
(
ε− ε(k)

)
=

Ωd
(2π)

∞∫
0

dk kd−1 δ
(
k − (ε/ε0)1/α/`

)
αε0`

α kα−1

=
Ωd

(2π)d
1

αε0`
d

(
ε

ε0

)d
α
−1

Θ(ε) .

Thus, for α = 5
2 ,

gd=2(ε) =
1

5πε0`
2

(
ε

ε0

)−1/5

Θ(ε) , gd=3(ε) =
1

5πε0`
3

(
ε

ε0

)1/5

Θ(ε) .

(b) We must compute the coefficients

Cj =

∞∫
−∞

dε g(ε) e−jε/kBT =
Ωd

(2π)d
1

αε0`
d

∞∫
0

dε

(
ε

ε0

)d
α
−1

e−jε/kBT

=
Ωd Γ(d/α)

(2π)d
1

α`d

(
kBT

jε0

)d/α
≡ j−d/α λ−dT ,

where

λT ≡
2π`[

Ωd Γ
(
d
α

)
/α
]1/d( ε0

kBT

)1/α

.

Then

B2(T ) = ∓ C2

2C2
1

= ∓2−
(
d
α

+1
)
λdT

B3(T ) =
C2

2

C4
1

− 2C3

C3
1

=

[
4−

d
α − 2

3 · 3
− d
α

]
λ2d
T .
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We have α = 5
2 , so d

α = 4
5 for d = 2 and 6

5 for d = 3.

(c) For photon statistics, the energy is

E(T, V ) = V

∞∫
−∞

dε g(ε) ε
1

eε/kBT − 1
=

V Ωd ε0

(2π`)d α
Γ
(
d
α + 1

)
ζ
(
d
α + 1

)(kBT

ε0

)d
α

+1

Thus,

CV =
∂E

∂T
=

V Ωd kB

(2π`)d α
Γ
(
d
α + 2

)
ζ
(
d
α + 1

)(kBT

ε0

)d
α

.

(3) At atmospheric pressure, what would the temperature T have to be in order that the
electromagnetic energy density should be identical to the energy density of a monatomic
ideal gas?

Solution :

The pressure is p = 1.0 atm ' 105 Pa. We set

E

V
= 3

2 p =
2π2

30

(kBT )4

(~c)3
,

and solve for T :

T =
1

1.38× 10−23 J/K
·

[
45

2π2
· (105 Pa) ·

(
1970 eV Å · 1.602× 10−19 J

eV
· 10−10 m

Å

)3
]1/4

= 1.19× 105 K .

(4) Consider a two-dimensional gas of fermions which obey the dispersion relation

ε(k) = ε0

(
(k2
x + k2

y) a
2 + 1

2(k4
x + k4

y) a
4
)
.

Sketch, on the same plot, the Fermi surfaces for εF = 0.1 ε0, εF = ε0, and εF = 10 ε0.

Solution :

It is convenient to adimensionalize, writing

x ≡ kxa , y ≡ kya , ν ≡ ε

ε0

. (1)

Then the equation for the Fermi surface becomes

x2 + y2 + 1
2x

4 + 1
2y

4 = ν . (2)

3



In other words, we are interested in the level sets of the function ν(x, y) ≡ x2+y2+ 1
2x

4+ 1
2y

4.
When ν is small, we can ignore the quartic terms, and we have an isotropic dispersion, with
ν = x2 + y2. I.e. we can write x = ν1/2 cos θ and y = ν1/2 sin θ. The quartic terms give a
contribution of order ν4, which is vanishingly small compared with the quadratic term in
the ν → 0 limit. When ν ∼ O(1), the quadratic and quartic terms in the dispersion are of
the same order of magnitude, and the continuous O(2) symmetry, namely the symmetry
under rotation by any angle, is replaced by a discrete symmetry group, which is the group
of the square, known as C4v in group theory parlance. This group has eight elements:{

I , R , R2 , R3 , σ , σR , σR2 , σR3
}

(3)

HereR is the operation of counterclockwise rotation by 90◦, sending (x , y) to (−y , x), and
σ is reflection in the y-axis, which sends (x , y) to (−x , y). One can check that the function
ν(x, y) is invariant under any of these eight operations from C4v.

Explicitly, we can set y = 0 and solve the resulting quadratic equation in x2 to obtain the
maximum value of x, which we call a(ν). One finds

1
2x

4 + x2 − ν = 0 =⇒ a =

√√
1 + 2ν − 1 . (4)

So long as x ∈ {−a, a}, we can solve for y(x):

y(x) = ±
√√

1 + 2ν − 2x2 − x4 − 1 . (5)

Figure 1: Level sets of the function ν(x, y) = x2+y2+ 1
2x

4+ 1
2y

4 for ν = (1
2n)4, with positive

integer n.
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A sketch of the level sets, showing the evolution from an isotropic (i.e. circular) Fermi
surface at small ν, to surfaces with discrete symmetries, is shown in fig. 1.

(5) Consider a set of N noninteracting S = 1
2 fermions in a one-dimensional harmonic

oscillator potential. The oscillator frequency is ω. For kBT � ~ω, find the lowest order
nontrivial contribution to the heat capacity C(T ), using the ordinary canonical ensemble.
The calculation depends on whether N is even or odd, so be careful! Then repeat your
calculation for S = 3

2 .

Solution :

The partition function is given by

Z = g0 e
−βE0 + g1E

−βE1 + . . . ,

where gj and Ej are the degeneracy and energy of the jth energy level, respectively. From
this, we have

F = −kBT lnZ = E0 − kBT ln
(
g0 + g1 e

−∆1/kBT + . . .
)
,

where ∆j ≡ Ej − E0 is the excitation energy for energy level j > 1. Suppose that the
spacings between consecutive energy levels are much larger than the temperature, i.e.
Ej+1−Ej � kBT . This is the case for any harmonic oscillator system so long as ~ω � kBT ,
where ω is the oscillator frequency. We then have

F = E0 − kBT ln g0 −
g1

g0

kBT e
−∆1/kBT + . . .

The entropy is

S = −∂F
∂T

= ln g0 +
g1

g0

e−∆1/kBT +
g1

g0

∆1

T
e−∆1/kBT + . . .

and thus the heat capacity is

C(T ) = T
∂S

∂T
=
g1

g0

∆2
1

kBT
2
e−∆1/kBT + . . .

With g0 = g1 = 1, this recovers what we found in §4.10.6 of the Lecture Notes for the low
temperature behavior of the Schottky two level system.

OK, so now let us consider the problem at hand, which is the one-dimensional harmonic
oscillator, whose energy levels lie at Ej = (j + 1

2)~ω, hence ∆j = j~ω is the jth excitation
energy. For S = 1

2 , each level is twofold degenerate. When N is even, the ground state is
unique, and we occupy states | j , ↑ 〉 and | j , ↓ 〉 for j ∈

{
0 , . . . , N2 −1

}
. Thus, the ground

state is nondegenerate and g0 = 1. The lowest energy excited states are then made, at fixed
total particle number N , by promoting either of the | j = N

2 −1 , σ 〉 levels (σ =↑ or ↓) to
| j = N

2 , σ
′ 〉. Accounting for the possibility of spin flips, there are g1 = 4 ways to do this,
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Figure 2: Ground states and first excited states for the S = 1
2 one-dimensional simple

harmonic oscillator.

each of which increases the energy by ∆1 = ~ω (see Fig. 2). When N is odd, we fill one of
the spin species up to level j = N−1

2 and the other up to level j = N+1
2 . In this case g0 = 2.

What about the excited states? It turns out that g1 = 4, as can be seen from the diagrams in
Fig. 2. ForN odd, in either of the two ground states, the highest occupied oscillator level is
j = N+1

2 , which is only half-occupied with one of the two spin species. To make an excited
state, one can either (i) promote the occupied state to the next oscillator level j = N+3

2 , or
(ii) fill the unoccupied state by promoting the occupied state from the j = N−1

2 level. So
g1 = 2 · 2 = 4. Thus, for either possibility regarding the parity of N , we have g1/g0 = 2,
which means

N even : C(T ) =
4(~ω)2

kBT
2
e−~ω/kBT + . . .

N odd : C(T ) =
2(~ω)2

kBT
2
e−~ω/kBT + . . .

This result is valid for N > 1.

An exception occurs when N = 1, where the lone particle is in the n = 0 oscillator level.
Since there is no n = −1 level, the excited state degeneracy is then g1 = 2, and the heat
capacity is half the above value. Of course, for N = 0 we have C = 0.

What happens for general spin S? Now each oscillator level has a K ≡ 2S+1 spin degen-
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Figure 3: Ground states and first excited states for the general S case, with K = 2S+1.

eracy. We may write N = rK + s, where r and s are integers and s ∈ {0 , 1 , . . . , K−1}.
The ground states are formed by fully occupying all | j , m 〉 states, with m ∈ {1, . . . ,K},
from j = 0 to j = r−1. The remaining s particles must all be placed in the K degenerate
levels at j = r, and there are

(
K
s

)
ways of achieving this. Thus, g0 =

(
K
s

)
.

Now consider the excited states. We first assume r > 0. There are then two ways to make
an excited state. If s > 0, we can promote one of the s occupied states with j = r to the
next oscillator level j = r+1. One then has s−1 of the K states with j = r occupied,
and one of the K states with j = r+1 occupied. The degeneracy for this configuration is
g =

(
K
1

)(
K
s−1

)
= K

(
K
s−1

)
. Another possibility is to promote one of the filled j = r−1 levels

to the j = r level, resulting in K − 1 occupied states with j = r−1 and s+1 occupied
states with j = r. This is possible for any allowed value of s. The degeneracy of this
configuration is g =

(
K
K−1

)(
K
s+1

)
= K

(
K
s+1

)
. Thus,

g1 = K

(
K

s+ 1

)
+K

(
K

s− 1

)
,

and thus for r > 0 and s > 0 we have

C(T ) =
g1

g0

kB

(
~ω
kBT

)2

e−~ω/kBT + . . .

= K ·
{
K − s
s+ 1

+
s

K − s+ 1

}
· kB

(
~ω
kBT

)2

e−~ω/kBT + . . .

The situation is depicted in Fig. 3. Upon reflection, it becomes clear that this expression
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is also valid for s = 0, since the second term in the curly brackets in the above equation,
which should be absent, yields zero anyway.

The exceptional cases occur when r = 0, in which case there is no j = r− 1 level to
depopulate. In this case, g1 = K

(
K
s−1

)
and g1/g0 = Ks/(K−s+1). Note that all our results

are consistent with the K = 2 case studied earlier.
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