
PHYSICS 210A : STATISTICAL PHYSICS
FINAL EXAM SOLUTIONS

(1) Provide clear, accurate, and brief answers for each of the following:

(a) A particle in d = 3 dimensions has the dispersion ε(k) = ε0 exp(ka). Find the density
of states per unit volume g(ε). Sketch your result. [4 points]

(a) Inverting the dispersion relation, we obtain k(ε) = a−1 ln
(
ε/ε0

)
Θ(ε − ε0). We then

have

g(ε) =
k2

2π

dk

dε
=
k2

2π
· 1

aε0e
ak
.

Thus,

g(ε) =
1

2π2a3

1

ε
ln2

(
ε

ε0

)
Θ(ε− ε0) .

Figure 1: Density of states for problem 1(a).

(b) What is the Maxwell construction? [4 points]

(b) The Maxwell construction is a fix for the van der Waals system and other related
phenomenological equations of state p = p(T, v) in which, throughout a region of
temperature T , the pressure as a function of volume p(v) is nonmonotonic. This is
unphysical since the isothermal compressibility κT = − 1

v
∂v
∂p becomes negative, which

signals an absolute thermal instability, known as spinodal decomposition. The regime
of instability is even larger than this, however, because of the possibility of phase
separation into regions of different bulk density. The situation is depicted in Fig. 2. To
remedy these defects, one replaces the unstable part of the p(v) curve with a flat line
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extending from v = v1 to v = v2 at each temperature T in the unstable region, such
that

p(T, v1) = p(T, v2) =
1

v2 − v1

v2∫
v1

dv p(T, v) .

Figure 2: The Maxwell construction corrects a nonmonotonic p(v) to include a flat section,
known as the coexistence region, which guarantees that the Helmholtz free energy of the
system is at a true minimum. The system is absolutely unstable between volumes vd and
ve. For v ∈ [va, vd] of v ∈ [ve, vc], the solution is unstable with respect to phase separation.

(c) For the free energy density f = 1
2am

2 − 1
3ym

3 + 1
4bm

4, what does it mean to say that
‘a first order transition preempts the second order transition’? [4 points]

(c) In the absence of a cubic term there is a second order transition at a = 0, assuming
b > 0 for stability. The ordered phase, for a < 0, has a spontaneous moment m 6= 0.
When the cubic term is present, a first order (i.e. discontinuous) transition, where m
jumps from 2y

3b , takes place at a = 2y2

9b > 0 .. Thus, as a is decreased from large
values, the first order transition takes place before a reaches a = 0, hence we say that
the second order transition that would have occurred at a = 0 is preempted. Typically
we write a ∝ T − T 0

c , where T 0
c is what the second order transition temperature

would be in the case y = 0.

(d) A system of noninteracting bosons has a power law dispersion ε(k) = Akσ. What is
the condition on the power σ and the dimension d of space such that Bose condensa-
tion will occur at some finite temperature? [4 points]

(d) At T = TBEC, we have the relation

n =

∫
ddk

(2π)d
1

eε(k)/kBTBEC − 1
.
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If the integral fails to converge, then there is no finite temperature solution and no
Bose condensation. For small k, we may expand the exponential in the denominator,
and we find the occupancy function behaves as kBTBEC/ε(k) ∝ k−σ. From the inte-
gration metric, in d-dimensional polar coordinates, we have ddk = Ωd k

d−1 dk, where
Ωd is the surface area of the d-dimensional unit sphere. Thus, the integrand is pro-
portional to kd−σ−1. For convergence, then, we require d > σ. This is the condition
for finite temperature Bose condensation.

(e) Sketch what the radial distribution function g(r) looks like for a simple fluid like
liquid argon. Identify any relevant length scales, as well as the limiting value for
g(r →∞). [4 points]

(e) See Fig. 3. Note that g(∞) = 1, and g(r) = 0 for r < a, where a is the hard sphere
core diameter.

Figure 3: Pair distribution functions for hard spheres of diameter a at volume filling frac-
tion η = π

6a
3n = 0.49 (left) and for liquid Argon at T = 85 K (right).

(f) ν moles of ideal gaseous argon at an initial temperature TA and volume VA = 1.0 L
undergo an adiabatic free expansion to an intermediate state of volume VB = 2.0 L.
After coming to equilibrium, this process is followed by a reversible adiabatic ex-
pansion to a final state of volume VC = 3.0 L. Let SA denote the initial entropy of the
gas. Find the temperatures TB,C and the entropies SB,C. Then repeat the calculation
assuming the first expansion (from A to B) is a reversible adiabatic expansion and
the second (from B to C) an adiabatic free expansion. [4 points]

(f) Argon is a monatomic ideal gas, thus γ = cp/cV = 5
3 . The adiabatic equation of state

is d(TV γ−1) = 0. The entropy of a monatomic ideal gas is S = 3
2NkB ln(E/N) +

NkB ln(V/N) +Na where a is a constant. During an adiabatic free expansion, ∆E =
Q = W = 0. We can now construct the following table:

(g) Explain how the Maxwell-Boltzmann limit results, starting from the expression for
ΩBE/FD(T, V, µ). [4 points]
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TB TC SB − SA SC − SA

AB free / BC reversible TA (3/2)−2/3 TA νR ln 2 νR ln 2

AB reversible / BC free 2−2/3 TA 2−2/3 TA 0 νR ln(3/2)

(g) We have
ΩBE/FD = ±kBT

∑
α

ln
(
1∓ z e−εα/kBT

)
.

The MB limit occurs when the product z e−εα/kBT � 1, in which case

ΩBE/FD −→ ΩMB = −kBT
∑
α

e(µ−εα)/kBT ,

where the sum is over all energy eigenstates of the single particle Hamiltonian.

(h) For the one-dimensional spin-1 Ising model Ĥ = −J
∑

n Sn Sn+1, where each Sn{−1, 0, 1},
write down the transfer matrix. [4 points]

(h) The transfer matrix is given by

RSS′ = exp(βJSS′) =

 exp(βJ) 1 exp(−βJ)
1 1 1

exp(−βJ) 1 exp(βJ)

 ,

where β = 1/kBT .

(2) The density of states per unit volume for a particle in three space dimensions is

g(ε) =
ε (ε2 + ∆2)

Ω ∆4
Θ(ε) .

(a) What are the dimensions of the constant Ω ? [6 points]

(b) Find the single particle dispersion ε(k). [7 points]

(c) Assuming the particles obey photon statistics find their density n(T ). [7 points]

(d) Assuming the particles are bosons, find the Bose condensation temperature Tc(n).
[7 points]

(e) Assuming the particles are fermions, find the Fermi energy εF(n). [7 points]
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Solution :

(a) [Ω] = V (i.e. volume).

(b) We have

g(ε) dε =
d3k

(2π)3
=

k2

2π2

dk

dε
⇒ d

(
k3

6π2

)
= d

(
1
4ε

4 + 1
2∆2ε2

Ω∆4

)
.

Note that Ω has units of volume. Integrating, we have

1
4ε

4 + 1
2∆2ε2 − ∆4Ωk3

6π2
= 0 ,

with solution

ε(k) = ∆

√[
1 +

(
2Ωk3

3π2

)]1/2
− 1 .

In the limit k → 0, one finds ε(k) = ∆
(

Ω
3π2

)1/2
k3/2.

(c) The photon density is

n =

∞∫
0

dε
g(ε)

eε/kBT − 1
=

1

Ω

∞∫
0

dx
1

ex − 1

{(
kBT

∆

)4

x3 +

(
kBT

∆

)2

x

}

=
Γ(4) ζ(4)

Ω

(
kBT

∆

)4

+
Γ(2) ζ(2)

Ω

(
kBT

∆

)2

,

since
∞∫

0

dx
xp−1

ex − 1
= Γ(p) ζ(p) .

Now Γ(4) = 6, Γ(2) = 1, ζ(4) = π4

90 , and ζ(2) = π2

6 , so

n(T ) =
1

15 Ω

(
πkBT

∆

)4

+
1

6 Ω

(
πkBT

∆

)2

.

(d) The equation for Tc is n(Tc) = n, where n(Tc) is the photon statistics (i.e. µ = 0) density
at T = Tc. Solving the above quadratic equation in T 2, we find

kBTc =
√

5
4

∆

π

√[
1 + 48

5 nΩ
]1/2
− 1 .

(e) We have, for fermions at T = 0,

n =

εF∫
0

dε g(ε) =
1
4ε

4
F + 1

2∆2ε2
F

Ω∆4
,
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and hence
εF(n) = ∆

√[
1 + 4nΩ

]1/2 − 1 .

(3) Consider the three-state (Z3) clock model, with Hamiltonian

H = −J
∑
〈ij〉

n̂i · n̂j ,

where the interaction is between all unit vectors n̂i and n̂j lying on neighboring sites on
a regular lattice of coordination number z. Each n̂i can take one of three possible values
{ê1 , ê2 , ê3} , where

ê1 = x̂ , ê2 = −1
2 x̂ +

√
3

2 ŷ , ê3 = −1
2 x̂−

√
3

2 ŷ .

In service of analyzing this model, consider the variational density matrix %N (n̂1, . . . , n̂N ) =∏
i %1(n̂i), where the single site variational density matrix is

%1(n̂) =
1 + 2u

3
δn̂,ê1 +

1− u
3

δn̂,ê2
+

1− u
3

δn̂,ê3
,

wjere u is the variational parameter.

(a) What is the allowed range for u? Show that the density matrix is appropriately nor-
malized. [4 points]

(b) Find the variational energy E(u) = Tr (%NH) . [6 points]

(c) Find the entropy S(u) = −kB Tr (%N ln %N ) . [6 points]

(d) Adimensionalize by defining f = F/NzJ and θ = kBT/zJ and find the dimension-
less free energy density f(u, θ). Do you expect a first or second order transition?
Why? [6 points]

(e) Find the self-consistent mean field equation for u. [6 points]

(f) Analyze the model keeping only terms up to order u4 in f(u, θ). Find the location of
the phase transition and remark on whether it is first or second order. [6 points]

The following low order Taylor expansion may prove useful:

(1 + ε) ln(1 + ε) = ε+ 1
2ε

2 − 1
6ε

3 + 1
12ε

4 +O(ε5) .

Solution :

(a) Since %1(n̂) is the probability that a site is in state n̂, and since probabilities are con-
strained to lie on the interval [0, 1], we must have u ∈ [−1

2 , 1]. Clearly we have Tr %1(n̂) =∑3
j=1 %1(êj) = 1, which is the appropriate normalization.
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(b) For any nearest neighbor pair 〈ij〉, the energy is −J if n̂i = n̂j and +1
2J if n̂i 6= n̂j

(since ê1 · ê2 = ê1 · ê3 = ê2 · ê3 = −1
2 ). Remembering that there are 1

2Nz nearest neighbor
links, where N is the number of sites,

E = Tr (%NH) = 1
2Nz Tr

n̂i

Tr
n̂j

(
%1(n̂i) %1(n̂j) (−Jn̂i · n̂j)

)
= 1

2Nz

{(
1 + 2u

3

)2

· (−J) + 2

(
1− u

3

)2

· (−J) + 4

(
1 + 2u

3

)(
1− u

3

)
· (1

2J) + 2

(
1− u

3

)2

· (1
2J)

}
= −1

2NzJu
2 .

Note among two spins, with nine possible configurations, three have energy Eij = −J :

one with n̂i = n̂j = ê1 with probability
(

1+2u
3

)2, and two with n̂i = n̂j = ê2,3 , each with

probability
(

1−u
3

)2. The remaining six configurations all have energyEij = +1
2J . In four of

these, one from n̂i and n̂j is equal to ê1, and the other is either ê2 or ê3. Each occurs with
probability

(
1+2u

3

) (
1−u

3

)
. In the remaining two cases, n̂i = ê2 and n̂j = ê3, or n̂i = ê3 and

n̂j = ê2 , each with probability
(

1−u
3

)2.

An easier way to get this result is to compute

Tr
(
n̂ %1(n̂)

)
=

(
1 + 2u

3

)
ê1 +

(
1− u

3

)
(ê2 + ê3) = u x̂ ,

and thus E = −1
2NzJ 〈n̂〉

2 = −1
2NzJu

2.

(c) The entropy is S = −kB Tr
(
%N ln %N

)
= −NkB Tr

(
%1 ln %1

)
= Ns, with

s(u) = −kB Tr
(
%1 ln %1

)
= − ln 3 + 1

3(1 + 2u) ln(1 + 2u) + 2
3(1− u) ln(1− u) .

(d) Doing the usual thang,

f(u, θ) = −1
2u

2 + θs(u)

= −1
2u

2 + 1
3θ(1 + 2u) ln(1 + 2u) + 2

3θ(1− u) ln(1− u) .

Since f(u) 6= f(−u), there is no Z2 symmetry, and we should expect a cubic term in the
resulting Landau free energy expansion, suggesting a first order transition will preempt
any second order transition in this model.

(e) The mean field equation is obtained by setting ∂f/∂u = 0 . Thus,

u = 2
3 θ ln

(
1 + 2u

1− u

)
.

(f) Expanding f(u, θ) to fourth order in the order parameter u, we obtain

f(u, θ) =
(
θ − 1

2

)
u2 − 1

3θu
3 + 1

2θu
4 +O(u5) .
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As predicted, there is a cubic term, hence the second order transition which would have
occurred at θ = 1

2 is preempted by a first order transition. For a quartic Landau free energy
f = 1

2am
2− 1

3ym
3+ 1

4bm
4, the first order transition sets in at a = 2y2/9b. We have a = 2θ−1,

y = θ, and b = 2θ, resulting in θc = 9
17 > 1

2 . The value of u just above the transition is
uc = 3ac/y = 2y/3b = 1

3 .

Note that this result is only valid for the quartic Landau theory, and that to find the location
of the first order transition in the original model, we must simultaneously solve the mean
field equation f ′(u) = 0 and the condition f(u) = f(0). This gives two conditions on the
two unknowns (u, θ) at the first order transition. If we define the function

ψ(u) = ln 3− s(u) = 1
3(1 + 2u) ln(1 + 2u) + 2

3(1− u) ln(1− u) ,

then f(u) = −1
2u

2 + θ ψ(u) and the mean field equation is u = θ ψ′(u). Note that ψ(0) = 0.
Next, we set f(u) = f(0) = 0 to find when the local minimum at nonzero u crosses the axis
and becomes a global minimum. Eliminating θ results in the equation

ψ(u) = 1
2uψ

′(u) .

After obtaining the solution for uc , we substitute into the mean field equation to obtain
θc = uc/ψ

′(uc). For our model, the solution can be found exactly! It occurs for

uc = 1
2 , θc =

3

8 ln 2
= 0.54101 .

Thus the exact value of θc lies above θ = 1
2 , where the coefficient of the quadratic term

in the Landau expansion changes sign, and above the value θTL
c = 9

17 = 0.5294 from the
truncated Landau expansion in which terms beyond O(u4) were dropped.

Indeed, consider a generalized version of our model where e(u) = E/NJz = −κu2 and

s(u) = −
(

1 + (p− 1)u

p

)
ln

(
1 + (p− 1)u

p

)
− (p− 1)

(
1− u
p

)
ln

(
1− u
p

)
.

In the problem studied here, κ = 1
2 and p = 3. From f(u) = e(u)− θs(u) and f ′(u) = 0 one

derives the mean field equation

u = θ

(
p− 1

2κp

)
ln

(
1 + (p− 1)u

1− u

)
.

The exact solution for (u, θ) to the simultaneous equations f(u) = f(0) and f ′(u) = 0 is
found be at

uc =
p− 2

p− 1
, θc =

p(p− 2)κ

(p− 1)2 ln(p− 1)
.

The Landau expansion is found to be

f(u) = −θ ln p+ 1
2au

2 − 1
3yu+ 1

4bu
4 +O(u5)

where

a = (p− 1)θ − 2κ , y = 1
2(p− 1)(p− 2)θ , b = 1

3(p− 1)(p2 − 3p+ 3)θ .
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If we truncate at fourth order, we find a first order transition at

uTL
c =

p− 2

p2 − 3p+ 3
, θTL

c =
12κ

p− 1
· p2 − 3p+ 3

5p2 − 14p+ 14
.

(4) Write a well-defined expression for the greatest possible number expressible using only
five symbols. Examples: 1 + 2 + 3 , 10100 , Γ(99). [50 quatloos extra credit]

Solution :

Using conventional notation, my best shot would be 999
99

. This is a very big number

indeed: 99 ≈ 3.73×108, so 999 ∼ 103.7×108 , and 999
99

∼ 101010
3.7×108

. But in the world of big
numbers, this is still tiny. For a fun diversion, use teh google to learn about the Ackermann
sequence and Knuth’s up-arrow notation. Using Knuth’s notation, described in

http : //en.wikipedia.org/wiki/Knuth′s up−arrow notation ,

one could write 9 ↑99 9, which is vastly larger than the puny 999
99

. But even these num-
bers are modest compared with something called the ”Busy Beaver sequence”, which is a
concept from computer science and Turing machines. For a very engaging essay on large
numbers, see https://www.scottaaronson.com/blog/?p=3445.
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