
PHYSICS 210A : STATISTICAL PHYSICS

FINAL EXAM SOLUTIONS

(1) Consider the analog of the van der Waals equation of state for a gas if diatomic particles
with repulsive long-ranged interactions,

p =
RT

v − b
+

a

v2
,

where v is the molar volume.

(a) Does this system have a critical point? If not, give your reasons. If so, find (Tc, pc, vc).

(b) Find the molar energy ε(T, v).

(c) Find the coefficient of volume expansion αp = v−1(∂v/∂T )p as a function of v and T .

(d) Find the adiabatic equation of state in terms of v and T . If at temperature T1 a volume
v
1
= 3b of particles undergoes reversible adiabatic expansion to a volume v

2
= 5b,

what is the final temperature T
2
?

Solution :

(a) Since
(

∂p

∂v

)

T

= −
RT

(v − b)2
−

2a

v3

is negative definite, for any T , there is no critical behavior in this model.

(b) We have
(

∂ε

∂v

)

T

= T

(

∂S

∂V

)

T

− p = T

(

∂p

∂T

)

v

− p ,

where we have invoked a Maxwell relation based on dF = −SdT − pdV , we have

(

∂ε

∂v

)

T

= −
a

v2
,

whence ε(T, v) = ω(T ) + a
v . In the v → ∞ limit, we recover the diatomic ideal gas, hence

ω(T ) = 5

2
RT and

ε(T, v) = 5

2
RT +

a

v
.

(c) To find αp , set dp = 0 , where

dp =
R

v − b
dT −

[

RT

(v − b)2
+

2a

v3

]

dv .
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We then have

αp(T, v) =
1

v

(

∂v

∂T

)

p

=
R(v − b)v2

RTv3 + 2a(v − b)2
.

Note that we recover the ideal gas value αp = T−1 in the v → ∞ limit. We may also
evaluate the isothermal compressibility,

κT (T, v) = −
1

v

(

∂v

∂p

)

T

=
(v − b)2v2

RTv3 + 2a(v − b)2
.

In the limit v → ∞, we have κT = v/RT . Since pv = RT in this limit, κT (T, v → ∞) = 1/p ,
which is the ideal gas result.

(d) Let s = NAS/N be the molar entropy. Then

ds =
1

T
dε+

p

T
dv

= 1

2
fR

dT

T
+

R

v − b
dv = R d ln

[

(v − b)T f/2
]

,

and therefore the adiabatic equation of state is

(v − b)T f/2 = constant .

Thus, the result of a reversible adiabatic process must be

T2 =

(

v
1
− b

v
2
− b

)2/f

T1 .

For v
1
= 3b and v

2
= 5b, find T

2
= 2−2/5 T

1
.

(2) Consider a two-dimensional gas of ideal nonrelativistic fermions of spin-1
2

and mass m.

(a) Find the relationship between the number density n, the fugacity z = exp(µ/k
B
T ),

and the temperature T . You may choose to abbreviate λT =
√

2π~2/mk
B
T . Assume

the internal degeneracy (e.g., due to spin) is g .

(b) A two-dimensional area A is initially populated with nonrelativistic fermions of mass
m, spin-1

2
, and average number density n = N/A at temperature T . The fermions are

noninteracting with the exception that opposite spin fermions can pair up to form
spin-0 bosons of mass 2m and binding energy ∆. In other words, the fermion dis-
persion is ε

f
(k) = ~

2k2/2m and the boson dispersion is ε
B
(k) = −∆ + ~

2k2/4m.
Assuming the reaction f↑ +f↓ ⇋ B has achieved equilibrium, find the relationship
between the initial number density n, fugacity z, and temperature T . Hint: The total
mass density of the system ρtot = mn is conserved. Use this to first find the relation
between the equilibrium densities n

f
, n

B
, and n.

(c) Assuming the conditions in (b), in the limit nλ2
T ≫ 1 at fixed T , what are the fermion

and boson densities n
f

and n
B

, to leading order?
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(d) Now suppose the initial particles are spin-0 bosons of mass m, which undergo the
reaction 2b ⇋ B , where B is a boson of mass 2m. The initial density is again n.
What is the relation between n, T , and z? What are n

b
and n

B
to leading order when

nλ2
T ≫ 1?

Solution :

(a) For nonrelativistic fermions of mass m and internal degeneracy g in equilibrium,

n = g

∫

d2k

(2π)2
1

z−1 exp(~2k2/2mk
B
T ) + 1

= gλ−2

T

∞
∫

0

dx
1

z−1 exp(x) + 1
= gλ−2

T ln(1 + z) .

Thus, nλ2
T = g ln(1 + z). The corresponding result for bosons is nλ2

T = −g ln(1− z).

(b) Let z be the fugacity of the fermions and z
B

be the fugacity of the bosons. Clearly
µ
B
= 2µ, i.e. z

B
= z2. Due to the reactions, n

f
and n

B
are not separately conserved, but

n = n
f
+ 2n

B
is conserved, hence

nλ2
T = 2 ln(1 + z)− 4 ln

(

1− z2e∆/k
B
T
)

.

Note that n
B
= −2 ln

(

1− z2e∆/k
B
T
)

with the prefactor of 2 arising from m
B
= 2m.

(c) When nλ2
T ≫ 1, we must have z2e∆/k

B
T = 1−, i.e. z = e−∆/2k

B
T , and therefore, to

leading order,

nf = 2 ln
(

1 + e−∆/2k
B
T
)

, nB = 1

2
n .

I.e. almost all the fermions pair up into bound boson states.

(d) If the initial particles are spin-0 bosons, then

nλ2
T = − ln(1− z)− 4 ln

(

1− z2e∆/k
B
T
)

.

When nλ2
T ≫ 1, again we have z = e−∆/2k

B
T , and

nb = − ln
(

1− e−∆/2k
B
T
)

, nB = 1

2
n .

(3) On each site i of a (two-dimensional square) lattice exists a unit vector n̂i which can
point in any of four directions: {±x̂,±ŷ}. These vectors interact between neighboring
sites. Of the 42 = 16 configurations, two have energy −J and the remaining 14 have
energy zero. The nonzero energy configurations for horizontal and for vertical links are
shown here:

3



Figure 1: For both horizontal and vertical links, there are only two configurations with
energy Eij = −J , depicted here.

Consider a variational density matrix approach to this problem, based on the single site
density matrix

̺1(n̂) =
1

4
(1 + 3x) δn̂ , x̂ + 1

4
(1− x) δn̂ ,−x̂ + 1

4
(1− x) δn̂ , ŷ + 1

4
(1− x) δn̂ ,−ŷ ,

where x is a variational parameter.

(a) What is the allowed range for x? Verify that the density matrix ̺1 is appropriately
normalized.

(b) Taking ̺var
(

{n̂i}
)

=
∏

i ̺1(n̂i) , find the average energy E. (Please denote the total
number of lattice sites by N .)

(c) Find the entropy S.

(d) Find the dimensionless free energy per site f ≡ F/NJ in terms of the variational
parameter x and the dimensionless temperature θ ≡ k

B
T/J .

(e) Find the Landau expansion of f(x, θ) to fourth order in x. Hint:

(1 + ε) ln(1 + ε) = ε+ 1

2
ε2 − 1

6
ε3 + 1

12
ε4 − 1

20
ε5 + . . . .

(f) Based on the fourth order Landau expansion of the free energy, sketch the equilib-
rium curve of x versus θ and identify the location(s) any and all phase transitions, as
well as their order(s).

Solution :

(a) The density matrix is non-negative definite, which entails x ∈
[

− 1

3
, 1

]

. Since the trace
is Tr ̺1 =

∑

n̂ ̺1(n̂) = 1, it is properly normalized.

(b) The Hamiltonian for this system is written

Ĥ = −J
∑

〈ij〉∈X

(

δn̂
i
,x̂ δn̂

j
,x̂ + δn̂

i
,−x̂ δn̂

j
,−x̂

)

− J
∑

〈ij〉∈Y

(

δn̂
i
,ŷ δn̂

j
,ŷ + δn̂

i
,−ŷ δn̂

j
,−ŷ

)

,
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where X is the set of x̂-directed links and Y is the set of ŷ-directed links. We can associate
to each site i the two links to its north (ŷ) and to its east (x̂). There are then four nonzero
energy configurations to account for, each with energy −J , as depicted in the above figure.
From our variational density matrix, three of these configurations occur with probability
[

1

4
(1− x)

]2
, and one with probability

[

1

4
(1 + 3x)

]2
. Thus, the total energy is

E = Tr
(

̺var Ĥ
)

= −3NJ × 1

16
(1− x)2 −NJ × 1

16
(1 + 3x)2 = −1

4
NJ (1 + 3x2) .

(c) The entropy per spin is given by

s/k
B
= −Tr ̺1 ln ̺1 = −3× 1

4
(1− x) ln

[

1

4
(1− x)

]

− 1

4
(1 + 3x) ln

[

1

4
(1 + 3x)

]

= −3

4
(1− x) ln(1− x)− 1

4
(1 + 3x) ln(1 + 3x) + ln 4 .

The total entropy is N = Ns. Note that in the disordered phase, where x = 0, the entropy
per spin is s = k

B
ln 4.

(d) The dimensionless free energy per site f = F/NJ is then

f(x, θ) = f0 −
3

4
x2 + 3

4
θ(1− x) ln(1− x) + 1

4
θ(1 + 3x) ln(1 + 3x) ,

with f
0
= −1

4
− θ ln 4. The condition ∂f/∂x = 0 yields the self-consistent mean=field

equation,

x = 1

2
ln

(

1 + 3x

1− x

)

.

Figure 2: x(θ) for problem 3.
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(e) Using

(1 + ε) ln(1 + ε) = (1 + ε)
(

ε− 1

2
ε2 + 1

3
ε3 − 1

4
ε4 + . . .

)

= ε+ 1

2
ε2 − 1

6
ε3 + 1

12
ε4 − 1

20
ε5 + . . . ,

we obtain
f(x, θ) = f0 +

3

2

(

θ − 1

2

)

x2 − θx3 + 7

4
θx4 +O

(

x5
)

.

(f) Writing f ≡ f0 +
1

2
ax2 − 1

3
yx3 + 1

4
bx4 , we have a = 3θ− 3

2
, y = 3θ, and b = 7θ . The first

order transition occurs for a = 2y2/9b = 2

7
θ. Thus,

3θc −
3

2
= 2

7
θc ⇒ θc =

21

38
.

Note that θc > 1

2
, i.e. the first order transition preempts what would have been a second

order transition at θ = 1

2
(a = 0). The value of x(θ−c ) is xc = 3ac/y = 2

7
. Please note that

this value of θc pertains only to the truncated fourth order Landau expansion of the free
energy. In general, one must find the nontrivial (i.e. x 6= 0) solution of the simultaneous
equations f(x, θ) = f

0
and ∂f/∂x = 0 for the two unknowns θ and x to obtain the critical

values (θc, xc) at the first order transition. In fact, it is easy to check that the solution is
θc =

2

3 ln 3
≈ 0.6068 and xc =

2

3
.

(4) Provide brief but accurate answers to each of the following:

(a) For a single-component system, the Gibbs free energy G is a function of what state
variables? Write its differential and all the Maxwell equations resulting from consid-
eration of the mixed second derivatives of G.

(b) A system of noninteracting spins is cooled in a uniform magnetic field H
1

to a tem-
perature T1 . The external field is then adiabatically lowered to a value H2 < H1 .
What is the final value of the temperature, T2 ?

(c) For a two-level system with energy eigenvalues ε1 < ε2 , the heat capacity vanishes
in both the T → 0 and T → ∞ limits. Explain physically why this is so. What will
happen in the case of a three-level system?

(d) Sketch the phase diagram of the d = 2 Ising model in the (T,H) plane. Identify the
critical point and the location of all first order transitions. Then make a correspond-
ing sketch for the d = 1 Ising model.

Solution :

(a) The Gibbs free energy G = E − TS + pV is a double Legendre transformation of the
energy E. Thus G = G(T, p,N), with

dG = −S dT + V dp+ µdN .
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Figure 3: Sketches for problem 4 solutions. (a) Phase diagram of the two-dimensional
Ising model. The red line is a line of first order transitions. The black dot is the critical
point (Tc,Hc) with Hc = 0. (b) Phase diagram for the one-dimensional Ising model. The
critical temperature has collapsed to Tc = 0. There is a first order transition as a function
of H at Hc = 0 and fixed temperature T = 0.

We then have the Maxwell relations
(

∂S

∂p

)

T,N

= −

(

∂V

∂T

)

p,N

,

(

∂S

∂N

)

T,p

= −

(

∂µ

∂T

)

p,N

,

(

∂V

∂N

)

T,p

=

(

∂µ

∂p

)

T,N

.

b) For noninteracting spins, the only energy scale in the Hamiltonian is provided by H ,
hence the entropy is of the form S(T,H,N) = Ns(H/T ) and therefore if dS = 0, assuming
as always dN = 0 for spins, we have that H/T is constant. Therefore H1/T1 = H2/T2 and

T2 = T1 ·
H2

H
1

.

(c) The occupation probabilities are Pn = e−βεn/(e−βε
1 + e−βε

2). At low temperatures,
P1 ≈ 1 and P2 ≈ 0, hence E = P1 ε1 + P2 ε2 ≈ ε1. This pertains so long as k

B
T ≪ ε2 − ε1 ,

in which case C = ∂E/∂T ≈ 0. In the opposite limit k
B
T ≫ ε2 − ε1 , both P1 ≈ P2 ≈ 1

2
,

and E ≈ 1

2
(ε

1
+ ε

2
). Again, changing T has very little effect, and C ≈ 0. The same

considerations apply for any system comprised of a finite number of energy levels.

(d) See Fig. 3. In d = 2 dimensions, there is a critical point at (Tc,Hc), with Tc > 0 and
where, by symmetry, Hc = 0. For T < Tc, there is a line of first order transitions at H = 0.
In d = 1 dimension, the critical temperature collapses to Tc = 0.
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