PHYSICS 210A : STATISTICAL PHYSICS
FINAL EXAM SOLUTIONS

(1) Consider the analog of the van der Waals equation of state for a gas if diatomic particles
with repulsive long-ranged interactions,

where v is the molar volume.

(a) Does this system have a critical point? If not, give your reasons. If so, find (7, p., v.)-
(b) Find the molar energy (7', v).
(c) Find the coefficient of volume expansion v, = v~ (9v/8T'), as a function of v and 7.

(d) Find the adiabatic equation of state in terms of v and 7'. If at temperature 77 a volume
v; = 3b of particles undergoes reversible adiabatic expansion to a volume v, = 5b,
what is the final temperature 7,?

Solution :

(a) Since
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is negative definite, for any 7', there is no critical behavior in this model.
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where we have invoked a Maxwell relation based on dF = —SdT — pdV, we have
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whence (T,v) = w(T) + £. In the v — oo limit, we recover the diatomic ideal gas, hence
w(T) = 3RT and

(b) We have

e(T,v) = 3RT + %

(c) To find a,,setdp =0, where

dp = r dT —
v—2b
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We then have

1 fovY R(v — b)v?
(T v) = v <8T>p RT3 + 2a(v — b)?

Note that we recover the ideal gas value o, = T~! in the v — oo limit. We may also
evaluate the isothermal compressibility,
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In the limit v — oo, we have k;, = v/RT'. Since pv = RT in this limit, k-(T,v — c0) = 1/p,
which is the ideal gas result.

(d) Let s = N, S/N be the molar entropy. Then
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and therefore the adiabatic equation of state is

(v —b) T¥/? = constant

Thus, the result of a reversible adiabatic process must be
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For v; = 3band v, = 5b, find T,, = 272/° T .

(2) Consider a two-dimensional gas of ideal nonrelativistic fermions of spin- and mass m.

()

(b)

(©)

Find the relationship between the number density n, the fugacity z = exp(u/kpT),
and the temperature 7. You may choose to abbreviate A\, = \/27h? /mk,T . Assume
the internal degeneracy (e.g., due to spin) is g.

A two-dimensional area A is initially populated with nonrelativistic fermions of mass
m, spin-4, and average number density n = N/A at temperature 7". The fermions are
noninteracting with the exception that opposite spin fermions can pair up to form
spin-0 bosons of mass 2m and binding energy A. In other words, the fermion dis-
persion is e;(k) = h?k?/2m and the boson dispersion is e (k) = —A + h?k?/4m.
Assuming the reaction {1 +f| = B has achieved equilibrium, find the relationship
between the initial number density n, fugacity z, and temperature 7. Hint: The total
mass density of the system p,,; = mn is conserved. Use this to first find the relation
between the equilibrium densities n;, ny, and n.

Assuming the conditions in (b), in the limit n)\% > 1 at fixed T, what are the fermion
and boson densities n; and ny, to leading order?



(d) Now suppose the initial particles are spin-0 bosons of mass m, which undergo the
reaction 2b = B, where B is a boson of mass 2m. The initial density is again n.
What is the relation between n, T', and 2? What are n, and ny to leading order when
nA3 > 1?

Solution :

(a) For nonrelativistic fermions of mass m and internal degeneracy g in equilibrium,
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Thus, nA% = gln(1 + z). The corresponding result for bosons is nA\% = —gln(1 — 2).

(b) Let z be the fugacity of the fermions and zy be the fugacity of the bosons. Clearly
pg = 2, ie. zg = z%. Due to the reactions, n, and ny are not separately conserved, but
n = n; + 2ny is conserved, hence

nA% =2In(1 + 2) — 4In (1- zZeA/kBT)
Note that ny = —21In (1 — 22eB/ kBT) with the prefactor of 2 arising from my = 2m.

(c) When n)2. > 1, we must have 22e2/fs7 = 17, ie. 2 = ¢=2/2%s7 and therefore, to
leading order,
ng =21In (1 + e_A/%BT) , ng = %n

Le. almost all the fermions pair up into bound boson states.

(d) If the initial particles are spin-0 bosons, then

nA\s = —In(1 — z) — 41ln (1- z2eA/kBT)
When n/\?p > 1, again we have z = e~ A/2k5T and
n,=—1In (1 — e_A/%BT) , ng = 3n

(3) On each site i of a (two-dimensional square) lattice exists a unit vector 7, which can
point in any of four directions: {+&,+y}. These vectors interact between neighboring
sites. Of the 4> = 16 configurations, two have energy —J and the remaining 14 have
energy zero. The nonzero energy configurations for horizontal and for vertical links are
shown here:



Figure 1: For both horizontal and vertical links, there are only two configurations with
energy F;; = —J, depicted here.

Consider a variational density matrix approach to this problem, based on the single site
density matrix

gl(ﬁ):%(l—l-iix)(g +i(1—x)5n _m+%(1—x)5ﬁ,@+i(1—x)5ﬁ,_@ ;

where z is a variational parameter.

(a) What is the allowed range for x? Verify that the density matrix o, is appropriately
normalized.

(b) Taking o,..({n;}) = [I, 0;(n;), find the average energy E. (Please denote the total
number of lattice sites by V.)

(c) Find the entropy S.

(d) Find the dimensionless free energy per site f = F/N.J in terms of the variational
parameter z and the dimensionless temperature 6 = k,7'/.J.

(e) Find the Landau expansion of f(z, ) to fourth order in z. Hint:
(I+e)ln(l+e)=c+ie® - %534—%54— ="+

(f) Based on the fourth order Landau expansion of the free energy, sketch the equilib-
rium curve of x versus 6 and identify the location(s) any and all phase transitions, as
well as their order(s).

Solution :
(a) The density matrix is non-negative definite, which entails = € [ — % ) 1} . Since the trace

is Tro; =Y, 0;(n) = 1, it is properly normalized.

(b) The Hamiltonian for this system is written

ﬁ =—J Z (6’fl“ﬁ? 5"A7«j7‘i3 + 577’ = n —:13 —J Z ;Y n 6 ;=Y dﬁj’_g) ’
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where X is the set of &-directed links and ) is the set of y-directed links. We can associate
to each site ¢ the two links to its north (g) and to its east (). There are then four nonzero
energy configurations to account for, each with energy —.J, as depicted in the above figure.
From our variational density matrix, three of these configurations occur with probability

(21— 2)] ? and one with probability [2(1+3z)] ? Thus, the total energy is

E=Tr(0pH)=-3NJ x (1 —2)? = NJ x &(1+32)> = ~LNJ (1 +32?)

(c) The entropy per spin is given by

$/ky =—Tro;Ing; = -3 x i(l —x)ln [i(l — :n)] — %(1 +32)1n [%(1 + 3@]
=—3(1—2)In(1 —z) — }(1 4 3z)In(1 + 3z) + In4

The total entropy is N = N's. Note that in the disordered phase, where = = 0, the entropy
per spinis s = ky In4.

(d) The dimensionless free energy per site f = F//NJ is then
f(@,0) = fo— 322+ 30(1 —2)In(1 — z) + 20(1 + 32) In(1 + 32) ,

with f, = —% — 0ln4. The condition 0f/0x = 0 yields the self-consistent mean=field

equation,
1+ 3z
_ 1

Figure 2: z(0) for problem 3.



(e) Using

we obtain
f(z,0) = fy+ %(9 - %)3:2 — 023 + £9$4 + (9(3:5)

(f) Writing f = f, + %a:pQ — %yx?’ + %b:p‘l, we have a = 30 — %, y =360,and b = 76 . The first
order transition occurs for a = 2y /9b = % 6. Thus,

3 _ 2 _ 21
30, —3=260, = 0,=2

Note that 6, > 3, i.e. the first order transition preempts what would have been a second
order transition at § = 3 (a = 0). The value of z(f; ) is . = 3a./y = 2. Please note that
this value of 6, pertains only to the truncated fourth order Landau expansion of the free
energy. In general, one must find the nontrivial (i.e.  # 0) solution of the simultaneous
equations f(z,0) = f, and 0f/0x = 0 for the two unknowns ¢ and z to obtain the critical
values (6,,z,) at the first order transition. In fact, it is easy to check that the solution is

crc

0. = 555 ~ 0.6068 and z, = 2.

(4) Provide brief but accurate answers to each of the following:

(a) For a single-component system, the Gibbs free energy G is a function of what state
variables? Write its differential and all the Maxwell equations resulting from consid-
eration of the mixed second derivatives of G.

(b) A system of noninteracting spins is cooled in a uniform magnetic field H; to a tem-
perature 7} . The external field is then adiabatically lowered to a value H, < H,.
What is the final value of the temperature, 7}, ?

(c) For a two-level system with energy eigenvalues ¢, < ¢,, the heat capacity vanishes
in both the " — 0 and 7' — oo limits. Explain physically why this is so. What will
happen in the case of a three-level system?

(d) Sketch the phase diagram of the d = 2 Ising model in the (T, H) plane. Identify the
critical point and the location of all first order transitions. Then make a correspond-
ing sketch for the d = 1 Ising model.

Solution :

(a) The Gibbs free energy G = E — T'S + pV is a double Legendre transformation of the
energy E. Thus G = G(T,p, N), with

dG = =SdT' + Vdp + pdN
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Figure 3: Sketches for problem 4 solutions. (a) Phase diagram of the two-dimensional
Ising model. The red line is a line of first order transitions. The black dot is the critical
point (Tt, H.) with H, = 0. (b) Phase diagram for the one-dimensional Ising model. The
critical temperature has collapsed to 7, = 0. There is a first order transition as a function
of H at H, = 0 and fixed temperature 7' = 0.

We then have the Maxwell relations
(@), (ar) (o)., = (or) (o)., = (3)
dp TN oT o N ’ ON Tp oT N ’ ON Tp op TN

b) For noninteracting spins, the only energy scale in the Hamiltonian is provided by H,

hence the entropy is of the form S(T, H, N) = Ns(H/T) and therefore if dS = 0, assuming

as always dN = 0 for spins, we have that H /T is constant. Therefore H, /T, = H,/T, and
H,

T2:T1‘F
1

(c) The occupation probabilities are P, = e™#n/(e=%51 4 e7F2). At low temperatures,
P, ~1land P, =~ 0, hence £ = P, ¢, + P, ¢y = €,. This pertains so long as k;T" < gy — ¢,
in which case C' = 9E/0T =~ 0. In the opposite limit k,T > e, — ¢, both P, = P, ~ ,
and E ~ 3(g, + &,). Again, changing 7" has very little effect, and C ~ 0. The same
considerations apply for any system comprised of a finite number of energy levels.

(d) See Fig. 3. In d = 2 dimensions, there is a critical point at (7, H,), with 7, > 0 and
where, by symmetry, H, = 0. For T < T, there is a line of first order transitions at H = 0.
In d = 1 dimension, the critical temperature collapses to T, = 0.



