Exercises (October 15, 2018):

1. Exercise: Typeset this by changing the default “bullet” symbol twice.

 > The first entry here
 > Then the second
 > etc

 • The first entry here
 • Then the second
 • etc

 Hint: Use \textgreater for “>” and \$\bullet\$ for “•”.

2. Make a tripple nested list.

3. How do you get this default:

 > First level
 * Second level
 • Third level

 Check that it works by typesetting the tripple ensted list of the pervious exercise.

 Hint: Symbols used: \textgreater, \$\star\$, \$\bullet\$.

4. Typeset this:

 First The first entry here
 Second Then the second
 Last Then the last

 with the descriptors “First” in red color, “Second” in blue and “Last” in black.

 Hint: \usepackage{color}
Solutions

Exercise 1: \renewcommand{\labelitemi}{\textgreater}

\begin{itemize}
 \item The first entry here
 \item Then the second
 \item etc
\end{itemize}

\renewcommand{\labelitemi}{\bullet}

\begin{itemize}
 \item The first entry here
 \item Then the second
 \item etc
\end{itemize}

Exercise 2: Here is an example of a triple nested list:

\begin{itemize}
 \item The first entry here
 \begin{itemize}
 \item The first sub-entry here
 \item Then the second sub-entry
 \begin{itemize}
 \item The first sub-sub-entry here
 \item Then the second sub-sub-entry
 \end{itemize}
 \end{itemize}
 \item Return to original list, etc
\end{itemize}

Exercise 3: \renewcommand{\labelitemi}{\textgreater} \renewcommand{\labelitemii}{\star} \renewcommand{\labelitemiii}{\bullet}

Exercise 4: Per the hint place \usepackage{color} in the preamble. Then

\begin{description}
 \item[\color{red}First] The first entry here
 \item[\color{blue}Second] Then the second
 \item[\color{black}Last] Then the last
\end{description}
Exercise (November 5, 2018):

1. Typeset
 \[a = b \quad c = d \quad e = f \]
 \[g = b \quad h = d \quad k = f \]

2. Typeset
 \[a^2 = b^2 + c^2 \]

3. Typeset two of these: \(\varphi, \sigma, \wp, \Xi, \vartheta \)

4. Typeset
 \[F = G_N \frac{m_1 m_2}{r^2} \]

5. Typeset
 \[n_\pm(E, T) = \frac{1}{e^{\frac{E}{k_B T}} \pm 1} = \frac{1}{e^{\hbar \omega / k_B T} \pm 1} \]
 Note: This uses the greek letter \(\omega \) and the symbol \(\hbar \).

6. Typeset
 \[F_{\mu \nu} = [D_\mu, D_\nu] = \partial_\mu A_\nu - \partial_\nu A_\mu = \partial_\mu \partial_\nu A_\nu \]
 Note: This uses the greek letters \(\mu \) and \(\nu \), and the symbol \(\partial \).

7. Typeset these (the first is inline, the next two are separate displayed equations):
 “Taylor expansion \(e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \).”
 \[\int_0^1 \frac{df}{dx} dx = f(1) - f(0) \]
 \[e^{\zeta(n)} = \prod_{n=1}^{\infty} e^{1/n^s} \]
 (This uses the greek letter zeta).
Exercise 1: \begin{align*}
a &= b & c &= d & e &= f \\
g &= b & h &= d & k &= f
\end{align*}

Note: the star in \texttt{align*} is used in order to omit equation numbering.

Exercise 2: \item Typeset

\[
a^2 = b^2 + c^2
\]

Exercise 3: Use package \texttt{wasysym} for \texttt{female}, \texttt{male}, \texttt{taurus}, \texttt{amssymb} for $\texttt{boxminus}$, and \texttt{tipa} for \texttt{textscha}.

Exercise 4: \[
F = G_N \frac{m_1 m_2}{r^2}
\]

Exercise 5: \[
n_{\pm}(E,T) = \frac{1}{e^{\frac{E}{k_B T}} \pm 1} = \frac{1}{e^{\frac{\hbar \omega}{k_B T}} \pm 1}
\]

Exercise 6: \[
F_{\mu\nu} = \{D_\mu , D_\nu\} = \partial_\mu A_\nu - \partial_\nu A_\mu = \partial_{[\mu} A_{\nu]} \]

Exercise 7: ‘‘Taylor expansion $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$.’’

\[
\int_0^1 \frac{df}{dx} dx = f(1) - f(0)
\]
\[
e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s}
\]
Exercises (November 19, 2018):

1. Typeset

\[F = G_N \frac{m_1 m_2}{r^2} \]

2. Typeset

\[n_\pm(E, T) = \frac{1}{e^{\frac{E}{k_B T}} \pm 1} = \frac{1}{e^{\hbar \omega / k_B T} \pm 1} \]

Note: This uses the greek letter \(\omega \) and the symbol \(\hbar \).

3. Typeset

\[F_{\mu \nu} = [D_\mu, D_\nu] = \partial_\mu A_\nu - \partial_\nu A_\mu = \partial_{[\mu} A_{\nu]} \]

Note: This uses the greek letters \(\mu \) and \(\nu \), and the symbol \(\partial \).

4. Typeset these (the first is inline, the next two are separate displayed equations):

"Taylor expansion \(e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \)."

\[\int_0^1 \frac{df}{dx} \, dx = f(1) - f(0) \]

\[e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s} \]

(This uses the greek letter zeta).

5. Typeset these two expressions as separate displayed equations:

\[2 \left[3 \frac{a}{z} + 2 \left(\frac{a}{d} + 7 \right) \right] \quad \quad x^2 \left(\sum_n A_n + 3 \left(b + \frac{1}{c} \right) \right) \]

6. Typeset this, using the \texttt{ multiline*} environment:

\[2 \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{10}} + \frac{1}{2^{11}} \right) = \frac{4095}{1024} \]

7. Make the first entry of Exercise 5 look like this:

\[2 \left[3 \frac{a}{z} + 2 \left(\frac{a}{d} + 7 \right) \right] \]
Exercise 1:
\[
F = G_N \frac{m_1 m_2}{r^2}
\]

Exercise 2:
\[
n_{\pm}(E,T) = \frac{1}{e^{\frac{E}{k_BT}} \pm 1} = \frac{1}{e^{\frac{\hbar \omega}{k_BT}} \pm 1}
\]

Exercise 3:
\[
F_{\mu\nu} = [D_\mu, D_\nu] = \partial_\mu A_\nu - \partial_\nu A_\mu = \partial_{[\mu} A_{\nu]}.
\]

Exercise 4: ‘‘Taylor expansion $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.’’
\[
\int_0^1 \frac{df}{dx} dx = f(1) - f(0)
\]
\[
e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s}
\]

Exercise 5:
\[
2 \left[3 \frac{a}{z} + 2 \left(\frac{a}{d} + 7 \right) \right]
\]
and
\[
\left[\frac{1}{2} - \frac{1}{2} \left(\sum_{n=1}^{\infty} b + \frac{1}{c} \right) \right]_0
\]

Exercise 6:
\[
\begin{multline*}
2 \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} \right) = \frac{4095}{1024}
\end{multline*}
\]

Exercise 7:
\[
2 \Bigg[3 \frac{a}{z} + 2 \bigg(\frac{a}{d} + 7 \bigg) \Bigg]
\]