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This paper uses the method of kinematic waves, developed in part I, but may be read 
independently. A functional relationship between flow and concentration for traffic on 
crowded arterial roads has been postulated for some time, and has experimental backing (§2). 
From this a theory of the propagation of changes in traffic distribution along these roads may 
be deduced (§§2, 3). The theory is applied (§4) to the problem of estimating how a ‘hum p’, 
or region of increased concentration, will move along a crowded main road. I t  is suggested 
that it will move slightly slower than the mean vehicle speed, and that vehicles passing 
through it will have to reduce speed rather suddenly (at a ‘shock wave’) on entering it, but 
can increase speed again only very gradually as they leave it. The hump gradually spreads 
out along the road, and the time scale of this process is estimated. The behaviour of such 
a hump on entering a bottleneck, which is too narrow to admit the increased flow, is studied 
(§5), and methods are obtained for estimating the extent and duration of the resulting 
hold-up.

The theory is applicable principally to traffic behaviour over a long stretch of road, but the 
paper concludes (§6) with a discussion of its relevance to problems of flow near junctions, 
including a discussion of the starting flow at a controlled junction.

In  the introductory sections 1 and 2, we have included some elementary material on the 
quantitative study of traffic flow for the benefit of scientific readers unfamiliar with the 
subject.

1. I n t r o d u c t io n

A new problem, which has arisen in the twentieth century, is how to organize road 
traffic so that the full benefits of our increased mobility can be enjoyed at the 
lowest cost in human life and capital. The problem has many sides—constructional, 
legal, educational, administrative. The early lines of attack were largely intuitive. 
But, more recently, there has been an increasing tendency to adopt scientific 
methods, and try  to assess the relative merits of different lines of attack by means 
of controlled experiments. This has been done both by the various authorities 
responsible for road lay-out, administration and propaganda, and also, more 
comprehensively, by organizations like the Road Research Laboratory in Great 
Britain, and the Bureau of Public Roads (formerly the Public Roads Administra­
tion) in the U.S.A. (Glanville 1953 ; Smeed 1952).

An important branch of the subject, with repercussions on all the other branches, 
is the quantitative study of traffic flow. An account of the experimental methods 
employed in this field has been given by the head of the traffic-flow section at the 
Road Research Laboratory (Charlesworth 1950). They include methods for 
measuring the means and standard deviations of vehicle speed at a point or journey 
time over a stretch of road, and for measuring the flow (number of vehicles passing 
a given point per unit of time). Attempts to correlate these variables for roads of 
particular mean width, mean curvature, etc., are made. Also, traffic performance
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is studied before and after some change in road conditions, and statistical technique 
is used to find out whether the change significantly reduces journey times or 
accidents. Extensive researches on similar lines are carried out in the U.S.A., 
notably by the Division of Highway Transport Research, and by certain university 
departments such as the Post-graduate School of Highway Engineering at Yale.

In contrast to the well-developed character of traffic flow as an experimental 
science, theoretical approaches to the subject are in their infancy. Wardrop (1952) 
has given a valuable account of such theoretical investigations as have been made. 
He emphasizes the need for theoretical ideas to be used in conjunction with 
experimental data and the experience of individuals. I t is well known, of course, 
in all branches of science and technology, that judicious use of theoretical ideas 
can save a lot of time by suggesting how experimental results obtained under one 
set of conditions can be extrapolated to another set of conditions. For example, 
theory may suggest in what form a set of results should be graphed, to give a curve 
likely to vary as little as possible with change of conditions. I t  may also suggest 
what things can most usefully be measured.

The theories which Wardrop (1952) describes are, as might be expected, 
statistical. First, the kinds of mean values which can be taken are discussed— 
for example, a * space mean ’ over a length of road, or a 4 time mean ’ over an interval 
of time at a fixed point. The space-mean speed (which we use in this paper) is the 
length of road divided by the average journey time of vehicles traversing it. I t  is 
also the ratio of the flow (vehicles per hour) to the concentration (vehicles per 
mile). The time-mean speed is somewhat greater because fast vehicles pass a fixed 
point more frequently (relative to their distribution in space) than slow vehicles.

Wardrop discusses the effect of increase of flow on overtaking. The number of 
‘desired overtakings ’ might be expected to increase as the square of the flow, so 
evidently, beyond a certain value of the flow, the proportion of desired overtakings 
which are possible must decrease. (For detailed observations on this point, see 
Norman, 1942.) This would clearly cause a reduction of mean speed with increase 
of flow, which is observed. He discusses also how traffic with uniform origin and 
destination may be expected to distribute itself over alternative routes, and he 
gives useful applications of the ‘theory of queues’ to the problem of delay at 
traffic lights (see also Tanner 1953).

In this paper we introduce a quite different method, suggested by theories of the 
flow about supersonic projectiles and of flood movement in rivers. I t is the method 
of kinematic waves, introduced in part I (Lighthill & Whitham 1955) ; however, it 
is not essential to have read part I to understand the account which follows.

Now, a theoretical approach to road-traffic problems using methods from fluid 
dynamics is limited in advance to a restricted range of problems. Other ranges 
undoubtedly require statistical treatment of the kind described above, based on 
the theory of queues or the general theory of ‘ stochastic processes5 (random time 
series). The ‘continuous-flow’ approach represents the limiting behaviour of a 
stochastic process for a large ‘population’ (total number of vehicles), and is there­
fore applicable to large-scale problems only—principally to the distribution of 
traffic along long, crowded roads.
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This ‘ arterial road ’ problem is an important one, however, which would be almost 
impossible to treat by purely statistical methods (though it may later be found 
desirable to use the present approach only as a first approximation, passing to 
higher approximations by means of a suitable blend with statistical ideas). To 
illustrate the theory, we use it to predict (§4) the progress of a traffic ‘hum p’in 
a long main road (due to a period of increased inflow at the main feed point), and 
(§5) the extent of the hold-up which results when such a hump passes through 
a bottleneck, which is too narrow to admit the increased flow. We also apply 
the method (§6) to junctions, especially controlled junctions, on long main 
roads.

The fundamental hypothesis of the theory is that at any point of the road the 
flow q (vehicles per hour) is a function of the concentration k (vehicles per mile). 
The evidence for this is discussed at length in §2. The hypothesis implies, as was 
shown in part I, that slight changes in flow are propagated back through the 
stream of vehicles along ‘kinematic waves’, whose velocity relative to the road is 
the slope of the graph of flow against concentration. A driver experiences such 
a wave whenever he adjusts his speed in accordance with the behaviour of the car 
or cars in front of him—for example, on observing a brake light, or an opportunity 
to overtake. I t  was seen also in part I that kinematic waves can run together to 
form ‘kinematic shock waves’, at which fairly large reductions in velocity occur 
very quickly. These too are very common on roads, notably at the rear of a traffic 
‘hum p’, and behind a bottleneck.

The properties of kinematic shock waves, and of continuous kinematic waves, 
will be derived again, by purely descriptive arguments, in §2. The more mathe­
matical derivation, which some readers may prefer, will be found in § 1 of part I.

The later sections are devoted to examples of the kinds already mentioned. The 
predictions are found to agree qualitatively with experience, but the extent of 
quantitative agreement is not yet known. Experiments to determine this are 
being planned.

I t  should be mentioned that essentially the same methods and results apply 
to pedestrian traffic of a congested character. The bottleneck theory (§5) is 
particularly relevant to the movement of crowds through passages. However, the 
following exposition is confined to the more serious problem of vehicular traffic flow.

2 . T h e  f l o w -c o n c e n t r a t io n  c u r v e

Although the flow q and the concentration k have no significance except as 
means, the purpose of the theory is to ask how they vary in space and time. 
However, on a long crowded road this is reasonable, since the means can be taken 
over relatively short distances or time intervals, and we are interested in variations 
over much greater distances and times.

The precise definitions of q and k, at a given point on the road and a given 
time t, are included in the following instructions for measuring them. Draw two 
lines across the road, a short distance da; apart, to form a slice of road with the 
point x  in the middle. Take averages over a time interval of moderate length r,
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with the time * in the middle. The interval r  must be long enough for many
vehicles to pass. Then the flow q is

q = n/r,(1)

where n is the number of vehicles crossing the slice in time r. The concentration is

2d* -
7 & X  ’

(2)

where 2d* means the sum of the times taken by each vehicle to cross the slice. 
Thus k is the average number of vehicles (2 d #/t) on the slice of road, divided by 
the length d r of the slice; in other words, k is the number of vehicles per unit 
length of road.

A third important quantity is 1
(3)1 2d*

This is the ‘space-mean speed’ of Wardrop (1952), being both the ratio of flow to 
concentration and the ratio of length of slice to average crossing time. Thus it is an 
average of vehicle speeds weighted according to the time they remain on the slice 
of road. (If conditions were uniform, on the average, over a much longer stretch 
of road, v would also be the average speed of all vehicles while they remain on that 
stretch; the further averaging with respect to time would then be unnecessary, 
since the fluctuations with time would become small for a long stretch of road. 
This explains the name ‘space-mean speed’.) The time-mean speed, which we 
shall not use, is the unweighted average speed of vehicles crossing the slice, namely 
w-12  (dr/d*). This exceeds v. I f  speeds at a point are measured directly (as by 
a Radar speedmeter), instead of in terms of times, one can still derive the space- 
mean speed (Wardrop 1952) by taking the ‘harmonic’ mean of the observed 
speeds, namely,

n

Most road-traffic observers have concentrated on measuring q and v, as being 
the quantities of greatest practical interest. The concentration k must be obtained 
from such measurements by division. Sometimes, however, k is observed directly 
by taking photographs of the road from above. Such results are sometimes quoted 
in terms of mean * headway ’ (distance between the fronts of successive vehicles in 
the same lane of traffic). The mean headway is Njk, where N  is the number of lanes 
travelling in the direction considered.

Vehicle counts are sometimes made by moving observers, especially (Charles- 
worth 1950; Wardrop & Charlesworth 1954) by observers in cars filtered into the 
traffic. If  an observer moving at uniform speed U records the number of vehicles 
which pass him, minus the number which he passes, and divides the difference by 
the total time of observation (say r), the result is

q - k U .(5)
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(A number qr of vehicles would pass him if he were stationary, but this is reduced 
by k(Ur), namely, the average number of vehicles in the distance U which he
travels.) By measuring expression (5) successively for two values of U (in practice, 
values with opposite signs), q and k may be separately deduced.

This experimental method is closely linked to the basic theoretical idea of this 
paper. Consider two observers moving with uniform speed U, the second starting, 
and remaining, a time r  behind the first.* Suppose now that the flow and con­
centration are changing with time, but that nevertheless the observers adjust 
their speed U so that the number of vehicles which pass them, minus the number 
which they pass, is, on the average, the same for each. Then by (5), is the
same for each, and so .

<•>

where A qand A kare the change in flow and concentration after time r.
Now, in the circumstances mentioned, the number of vehicles between the 

observers must remain the same. But the number of vehicles passing any point 
between the times a t which the observers pass it is Since r  is fixed, it follows 
that the flow q remains unchanged along the path of observers travelling with the 
speed (6).

In other words, when changes of flow are occurring, the waves which carry such 
changes through the stream of vehicles travel a t a velocity given by equation (6). 
This velocity, relative to the road, may, as we shall see, be positive or negative. 
However, it never exceeds + v, the space-mean speed; hence the waves are always 
transmitted backwards relative to the vehicles on the road.

Now, it has been conjectured by many authors that, on any uniform stretch of 
a road, the flow qis a function of the concentration k. If  this is true, equation (6) 
becomes especially valuable, since it shows that small changes of flow are pro­
pagated at the speed ,

* = %  <7>
which is known if k (or q) is known.

The relationship between flow and concentration has usually been stated in 
rather different forms. At low values of the concentration, the mean speed v = qjk 
has been regarded as a function of the flow q (Normann 1942; Normann & Walker 
1949; Glanville 1949, 1951). I t  falls off as q increases, with a slope which is steep 
for narrow roads but more gradual for wide roads. Wardrop (1952) ascribes the 
effects of increased flow, in the main, to increased interference with overtaking, 
which tends to reduce the mean speed to nearer the speed of the slowest vehicles 
on the road. Doubtless, a general sense of the greater possibility of accidents also 
contributes to the reduction in mean speed.

At high values of the concentration, however, most writers have regarded the 
‘mean headway’ Njkas a function of the mean speed At v = 0, the mean

* Im agine them  to  be cyclists on an adjacent cycle track, so th a t they  can m aintain their 
uniform speed U unimpeded, and in tu rn  will not influence the observed traffic flow (we are 
not suggesting this as a  practical method of observation, b u t as a convenient way of thinking 
about the flow).
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headway takes a value (around 17 ft. in Great Britain) only just greater than 
the average vehicle length. As v increases, the mean headway increases almost 
linearly (by about 1-2 ft. for each 1 mile/h increase in speed). Many authors (see, 
for example, Normann & Taragin 1942) have interpreted such results by saying 
that a driver allows just enough headway so that no collision will result if the 
vehicle in front brakes suddenly, and he himSelf brakes after a certain ‘ reaction 
tim e’. Glanville (1949) points out that the observed rate of increase of headway 
with speed would correspond to a uniform braking force, equal for both vehicles, 
and a reaction time of 0-8 s. The reader may easily verify this. Attempts have been 
made to apply such considerations also at low values of the concentration, but 
then the greater freedom to overtake alters the situation completely.

Different experimental methods are appropriate for determining these two 
kinds of relationship. Our contention, however, is that the information obtained 
from these two sources should be combined into a single curve, and that the curve 
which sums up all the properties of a stretch of road which are relevant to its 
ability to handle the flow of congested traffic is a graph of the two fundamental 
quantities, flow against concentration.

The form of such a curve must be as in figure 1. As the concentration tends 
to zero, the flow q must also become zero. Again, in the limiting case of high con­
centration k = kj (j for jam) the vehicles travelling in a given direction are packed 
tight on the part of the road where they are permitted to be; the flow q is then 
again zero. For some value of the concentration between these two extremes, 
the flow q must have a maximum qm, which may be called the capacity of the road.

The deduction in the last paragraph (which a mathematician would call an 
application of ‘Rolle’s theorem’!) does not seem to have been clearly made in the 
traffic-flow literature, except perhaps by Greenshields (1935). Considerable effort 
has been put into finding a suitable definition of road capacity, but it has not been 
noticed that the very simple and relevant one ‘ maximum flow of which the road 
is capable’ is available.*

Experimentally, this was because flow at the particular concentration km corre­
sponding to this maximum flow is not often observed, for reasons which will appear 
later. Flow at smaller concentrations is commonly observed, and described by 
a speed-flow relation. (A description in such terms is inconvenient for the complete 
range of speeds, since there are two speeds for a given value of the flow.) Flow at 
concentrations near to kj is commonly observed, and described by a headway- 
speed relation. (This description is unsuitable at low concentrations because 
headway ceases to have significance when overtakings are prominent.)

To complete the curve satisfactorily, an independent measurement of qm and 
km (flow and concentration for maximum flow) is desirable, since interpolation 
between the two measured parts of the curve is very difficult without knowledge

* Normann (1942) introduced a  ‘theoretical m axim um  capacity ’, obtained by assuming 
th a t the flow a t all concentrations was governed by the theoretical speed-headway curve, 
bu t he points out th a t observed flows are hardly ever more than  about half of th is ‘theoretical 
maximum . The m aximum here discussed, on the other hand, is the  real, experim entally 
determined, maximum. Again, it should not oe confused w ith a  statistical ‘extrem e va lu e’, 
since the flow-concentration curve represents the average relationship between the quantities.
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of some intermediate point. Fortunately, the theory of this paper provides a 
special method of measuring these two quantities, as follows.

If  a stream of vehicles is stopped, as at a traffic light, and then started again 
after a considerable delay, as when the lights go green, a system of waves is 
emitted.* Each carries a particular value of the flow and concentration and 
hence also a particular value of the wave velocity c, and propagates with this 
uniform velocity, some forwards and some backwards (see §6 below). One wave 
alone remains stationary at the original stopping-point. Now this wave has c = 0, 
so by (7) it corresponds to a value of k for which dq/dk = 0, namely, to km, for 
which qis a maximum. This shows that the mean flow and concentration measured

2000

concentration, k (vehicles/mile)

Figure 1. A flow-concentration curve.

at the stopping-point itself (after the stream of vehicles has started up, and before 
all those slowed down by the original stoppage have passed through—the need for 
these restrictions will become clear in §6) are the required quantities qm and km.

A typical flow-concentration curve constructed in the manner indicated is shown 
in figure 1. The full line on the left is derived from speed-flow data, that on the 
right from headway-speed data, and the central point (qm, km) from measurements 
at the stopping-point after a long line of traffic had been stopped and then allowed 
to flow forward freely again. The curve refers to a certain one-way three-lane 
section of the Great West Road, and the speed-flow data were obtained during 
the period of peak evening traffic between 5 and 7 o’clock. The authors are grateful 
to the Director of the Traffic and Safety Division, Road Research Laboratory, for 
permission to use the unpublished results displayed on this curve.f

* A really long lane of vehicles m ust be stopped if the theory is to be applicable, as will 
appear later (§6).

f  Mr W ardrop has recently indicated to the  authors th a t he would now consider a rather 
lower value (say 3200) more typical of the flow qm past a stopping point on this particular 
stretch of road th an  the earlier value (round 4700) supplied to the authors and quoted in 
figure 1. However, R .R .L . measurements for single-lane traffic yield values of qm of 1500 v/h., 
so th a t values of around three times this would be expected for three-lane traffic. I f  they 
were no t observed, the cars were probably not filling the three available lanes when stopped. 
The flow qm will be achieved only if all available lanes are fully used.
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Another method of deriving the curve was used by Greenshields (1935), who 
plotted v = qjk against k for one-lane traffic, as in figure 2, and drew a straight line 
through his points. This involved a rather drastic interpolation since there is a large 
intermediate range where there are no points, and where in fact the true curve 
probably lies below the straight line. However, the method gives a simple and 
probably not too inaccurate result, which led to the predicted existence of a 
maximum flow on any road much earlier than had been inferred elsewhere, as 
mentioned above. Greenshields introduced a ‘kink’ at the top of his graph, to

M. J. Lighthill and G. B. W hitham

concentration per lane (vehicles/mile)

Figube 2. Two examples of a speed concentration curve, a, G reenshields; 
b, Road Research Laboratory (see figure 1).

make the speed flatten out at the independently determined ‘free speed’ for the 
road. A flat portion like this must be expected on any speed-concentration curve, 
since the mean speed will be unaffected by concentration below a certain limiting 
value. On a wide road like that of figure 1 this limit may be as much as 50 vehicles 
per mile.

One may use the word ‘ crowded ’ to describe road conditions on which the con­
centration exceeds this limit. Then a road is crowded if any increase in concentra­
tion will lead to a reduction in mean speed. The theory of this paper is applicable 
only to long, ‘crowded’ roads.

For comparison with Greenshields’s result the curve corresponding to figure 1 is 
also shown in figure 2, with the densities divided by 3 to allow for the greater 
number of lanes. In comparing the two curves, one must bear in mind the 
differences between English and American driving habits and vehicle lengths.

The two curves are shown also in figure 3, as flow-concentration curves per lane 
of traffic. That of Greenshields is the arc of a parabola with vertex upwards. 
A portion of the arc near the origin is replaced by a chord through the origin. This 
corresponds to a range of non-‘ crowded ’ conditions, in which the mean speed is 
constant.

To conclude this section it may be noted that the flow-concentration curve for 
a particular stretch of road may vary from time to time (especially with the day 
of the week, but also with the time of day), owing to changes in the proportion 
of commercial vehicles on the road, or in the quantity of traffic travelling in the
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opposite direction. Some care is therefore needed in specifying the conditions 
under which a particular determination of the curve has been made. Again, the 
variations along a given road, due to differences of width, gradient, curvature, 
population density, etc., between different stretches of the road, may be very 
great. The velocity of a wave in any one stretch of road, however, will be given by 
the slope of the flow-concentration curve for that particular stretch of road, as the 
argument leading to equation (6) makes clear. The use of the theory in such cases 
is possible, therefore, and will be fully illustrated in §5.

s  1000

concentration per lane (vehicles/mile)

F igure 3. Flow-concentration curves per lane of traffic, a, Greenshields; 
b, R oad Research Laboratory.

3. U s e  o f  t h e  f l o w -c o n c e n t r a t io n  c u r v e

To make practical use of the flow-concentration curve for a particular stretch 
of road, a geometrical expression of the results of §2 is often valuable.

First, note that, corresponding to any point on the curve, the space-mean speed 
v = q/k (under the conditions represented by that point) is the slope of the radius
vector from the origin (figure 4). The speed c = of waves carrying continuous
changes of flow through the stream of vehicles is the slope of the tangent to the 
curve at the point (figure 4). This slope is the smaller,* provided that the mean 
speed decreases with increase of concentration; in other words, if the road is 
‘ crowded ’. For we can write

which is less than v if dv/dk is negative. The velocities c and v are equal only at 
low concentrations, below the limit (mentioned in §2) at which significant inter­
action between different vehicles on the road first occurs. At such concentrations, 
dv/dk — 0.

To express velocities as slopes in this way is convenient if conditions on a road 
are to be represented in a space-time diagram. If  the road is represented as

* Meaning th a t waves travel backwards relative to  the mean vehicle flow.
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stretching up the paper, with time travelling to the right, then a path on this 
diagram, representing the motion of a wave or of a vehicle, will have a slope dx/dt 
equal to the velocity. Since lines of equal slope are parallel, it follows that a mean 
vehicle path on this diagram must be parallel to the radius vector from the origin 
to the relevant point on the flow-concentration curve, while a wave must be 
parallel to the tangent to the curve.

A second use of the flow-concentration curve refers to discontinuous waves. 
These are likely to occur on any stretch of road when the traffic is denser in front, 
and less dense behind. For waves on which the flow is less dense travel forward

M. J. Lighthill and G. B. W hitham

concentration, k

Figure 4. Use of the flow-concentration curve. Slope of radius vector (a) gives 
average velocity of vehicles; slope of tangent (b) gives wave velocity.

Figure 5. Use of flow-concentration curve to  predict the local 
conditions near a shock wave.

faster than, and hence tend to catch up with, those on which the flow is denser. 
When this happens a bunch of continuous waves can coalesce into a discontinuous 
wave, or ‘shock wave’. When vehicles enter this their mean speed is substantially 
reduced very quickly. The wave is not totally discontinuous of course, but its 
duration is not much longer than the braking time that each vehicle needs to make 
the required reduction of speed.

The speed of a discontinuous wave, or shock wave,* is given by (6) as Ag/A&, 
the slope of the chord joining the two points of the flow-concentration curve which 
represent conditions ahead of and behind the shock wave. (Note that the argument

* In  future we shall prefer the la tte r name, suggested by the very strong analogy with 
shock waves in gases.
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leading to (6) is applicable, provided that the time interval r  between the two 
observers exceeds the duration of the shock wave. The number of vehicles between 
two observers with the shock wave between them can remain constant only if they 
travel at the speed of the shock wave.)

Figure 5 illustrates the use of the flow-concentration curve to predict conditions 
near a shock wave. The shock wave is shown as a heavy line on the space-time 
diagram on the right. Ahead of it the flow is denser and the waves (plain lines) are 
drawn parallel to the tangent to the flow-concentration curve at A . Behind it the 
concentration is less and the waves travel faster; they are drawn parallel to the 
tangent to the curve at B. The shock wave, generated by the running together of 
these waves, travels at an intermediate speed, and must be drawn parallel to the 
chord AB. The mean vehicle paths (not shown) would be parallel to the radius 
vectors OB (behind the shock wave) and OA (ahead of it).

4. T h e  p r o g r e s s  o f  a  t r a f f ic  h u m p

As a first illustration of the method we apply it to a problem where the road is 
uniform, so that all stretches of it have the same flow-concentration curve. In these 
circumstances, each continuous wave is propagated at a constant velocity c, since 
q is constant along it. In  a space-time diagram the wave paths are straight lines, 
each parallel to the tangent to the flow-concentration curve at the corresponding 
point.

The source of traffic is taken to be at one end of the road, and we consider the 
case when the inflow rises to a peak and then falls to its original value, producing 
a traffic hump.* The rise and fall of inflow can be easily measured by an observer 
at the feed point. A problem of some importance is then : How can the behaviour 
of the hump as it passes down the road be predicted in advance? For example, 
when will it reach a given point ? Will it spread out, or become more concentrated, 
and how fast? How will it affect average journey times?

The wave theory gives convenient answers to these questions. Figure 6 shows 
the wave pattern in a space-time diagram. The wave path starting from the feed 
point at any time is parallel to the tangent to the left-hand part of the flow- 
concentration curve at the point which corresponds to the inflow at that time.The 
waves travel more slowly inside the hump than outside it. Hence the wave paths 
in figure 6 ‘ fan out ’ at the front and become concentrated at the rear, where they 
must ultimately run together.

I t  must be emphasized that the fines drawn are ‘ waves ’ (fines of constant flow, 
and hence also, for a uniform road, fines of constant mean speed) and not vehicle 
paths. Vehicles go (on the average) faster than the waves, and most vehicles 
starting at the rear of the hump will in time get through it. On entering the hump 
a driver has to slow down fairly rapidly (since the fines of constant speed are

* Traffic hum ps (regions of increased concentration) generated in way have con­
centrations remaining solely on the  left-hand half of the flow-concentration curve. B ut humps 
a t  the  much higher concentrations corresponding to the right-hand half have similar pro­
perties ; the only im portant difference is th a t the waves travel backwards relative to the road. 
Examples of hum ps of this kind occur below, especially in the theory of bottlenecks (§5).
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bunched together on the right of figure 6), but on leaving it he can increase his 
mean speed only slowly as he traverses the fan of waves on the left.

Figure 6 gives a clear answer to the question of the speed of the front of the 
hump, which turns out to be the wave velocity associated with conditions in front 
of it. Note that this may be considerably less than the space-mean speed (which 
in turn is less than the time-mean speed) of the vehicles in this region. The other 
questions noted above can be answered only after the path of the shock wave, 
which results from the running together of the waves at the rear of the hump, has 
been determined.
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feed point

normal inflow increased inflow normal inflow
time (scale of order Ih)

Figure 6 . Wave forms in traffic hump.

The shock wave starts at the point where two waves first run together, and its 
progress after that is governed by the simple law stated in § 3 : a t each point of 
the shock, the two waves which meet there are represented by two points on the 
flow-concentration curve, and the shock wave path must be drawn parallel to the 
chord joining those points. This gives a straightforward geometrical step-by-step 
method for constructing the path of the shock wave.

In practice it is convenient to note that the slope of the chord is approximately 
the mean of the slopes of the tangents at its end-points, so that the speed of the 
shock wave is approximately the mean of the speeds of the waves running into 
it from either side. This approximation is exact for a parabolic arc with vertical 
axis, such as Greenshields’s flow-concentration curve (figure 3). For other smooth 
curves with nothing approaching a vertical tangent, the approximation is still 
fairly good, as the known series for the slope of the chord,

)(9)

shows. In view of the approximate character of the whole theory, the additional 
approximation is probably worth making wherever it will make an effective 
simplification.

I t  certainly makes the shock wave easier to draw in by eye, as no further 
reference to the flow-concentration curve is then necessary. One has simply to
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draw a path on the space-time diagram whose slope at any point is the mean of 
the slopes of the waves running into it from either side. This process is illustrated 
in figure 7 ; it can be mastered with only a little practice.

As an alternative, or as a check, one has the analytical solution for the shock 
path (Whitham 1952) which again is based on the approximation noted above. 
This also can be expressed as a geometrical construction, as follows.* Given the

distance car p a th  shock

FD B

increased inflownormal
inflow

normal inflow

Figube 7. Progress of traffic hum p with time.

variation with time t of the inflow rate observed at the feed point, plot a graph 
(figure 8) with the corresponding wave velocity c (the slope of the flow-concentra­
tion curve for the observed value of the inflow) as ordinate, and its product with 
the time, ct, as abscissa. Then the time at which the shock wave first appears is

* The present problem is somewhat simpler than  th a t treated  by W hitham  (1952), in 
which our ordinate c, the ra te  of change of x  w ith respect to  on a  wave, is replaced by F(y), 
the  ra te  of change of ar — x  with respect to k r i ; and in which the abscissa is y, the value of x  
when r = 0. The analogous abscissa in our problem is evidently the value of — when 0. 
For the wave which passes x  =  0 a t tim e t, w ith velocity c, this is Readers of p art I  should 
note th a t another approach, in which c-1 and not c replaced F(y), was found convenient 
there (§4); however, th a t approach cannot be used if the flow-concentration curve has 
a  stationary point.

22 Vol. 2 2 9 . A.
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given by the reciprocal of the slope of the tangent to this graph at its right-hand 
point of inflexion A ; the value of c (or t)at A  also determines, through its velocity 
(or time of origin, respectively), on which wave the shock wave first forms. To 
determine the further progress of the shock wave, draw chords on the graph 
(e.g. BC, DE, FG) which cut off lobes of equal area above and below between them
and the curve. Then the slope of any one of these chords is the reciprocal of the 
time at which the shock wave absorbs the two waves on which c and t have the 
values corresponding to the end-points of the chord.

I t  is evident from this construction that the shock wave initially grows in 
strength, the maximum increase in concentration at the shock wave occurring 
when one of the end-points of the chord is somewhere near the bottom of the graph 
(see BC in figure 8, and also in figure 7, where the wave corresponding to each point 
in figure 8 is marked with the same letter, so that points on the shock in figure 7 
are marked exactly like the chords in figure 8 which correspond to them). At this 
time vehicles entering the hump suffer instantaneously almost the full reduction 
of speed associated with it. The path of such a vehicle is indicated by the broken line.
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F igube 8. Geometrical construction for the shock wave.

As time goes on, however, the left-hand end-point in figure 8 penetrates farther 
and farther into the front part of the hump, so that the shock wave absorbs, one 
after another, all the waves on which there is substantially increased density. 
When this process is completed, the hump has disappeared and what remains of 
the shock wave is negligibly weak. This happens after a time equal to the reciprocal 
of the slope of FG (figure 8), where Fis a point at which c is sufficiently near to 
the value it takes on the left of the graph. Note, however, that the section of road 
satisfying the conditions postulated may in many cases come to an end before the 
hump is dispersed in this way.

Regarding the hump as a region of increased concentration, it may be asked
how the excess of vehicles can effectively vanish in this way. The answer is tha t
the region of increased concentration spreads backwards (relative to the front of
the hump, which has a constant mean speed), so that the excess of vehicles is
dispersed over a constantly increasing length of road. A quantitative estimate of
the process may be obtained if one knows the duration, say T, of the increased
inflow at the feed point, the wave velocity c0 outside the hump and the lowest
value, say cv  of the wave velocity inside the hump. Then the shock wave is at its
strongest at a time about „

co-*
2(c0 —Cj) (10)
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after the time of maximum inflow. At this time (corresponding to BC* in figures 7 
and 8) the hump has hardly spread backwards at all; it has simply altered its 
shape so tha t the increase of concentration is sudden and the subsequent decrease 
is spread over the whole length of the hump. Later, the decrease of wave velocity 
a t the shock wave becomes a small quantity 8 after a timef

_  co(co ~ ci) 
2

and the length of the hump is then about

1 —  {co(co — Ci)

( 11)

( 12)

which may be compared with its original length c0 T.
I t  is interesting to compare this result with the results of ordinary diffusion 

processes. I t  corresponds to a diffusion coefficient of the order of c0(c0 —q) T, 
namely, the product of the length of the hump and the maximum reduction in 
wave velocity within it. By comparison, any diffusion which may be present due 
to statistical fluctuations with a mean free path, or due to a dependence of mean 
flow on concentration-gradient as well as on the concentration itself (see part I, 
and §6 below), would have a diffusivity independent of the length of the hump. 
This indicates tha t diffusion by the wave process described in the present section 
will a t any rate be predominant for sufficiently long humps—in other words that, 
for sufficiently ‘long, crowded roads’, the present theory is appropriate.

5. A THEORY OF BOTTLENECKS

We now consider a typical problem where the capacity of the road varies along 
it. We suppose that some bottleneck is present, where the maximum possible flow 
qm falls to a lower value than on the main part of the road. Then, presumably, the 
whole flow-concentration curve is reduced in its vertical scale. (It may well be 
reduced in horizontal scale too (that is, kj may become less), but figures 9, 11 and 13 
illustrating the theory have actually been drawn for the case where this does not 
happen.) The local minimum value of qm may be called the capacity of the bottleneck.

We consider first a stream of vehicles approaching the bottleneck at a flow rate 
which remains always less than its capacity. Then each vehicle suffers simply 
a temporary reduction in speed as it passes through. The waves are also reduced 
in speed while in the bottleneck. For the flow q remains constant on any wave, 
as was shown in §2 independently of whether the flow-concentration curve varies 
with position. Hence (figure 9) conditions on a wave as it passes through the 
bottleneck are represented by points of flow-concentration curves all at the same 
horizontal level. Since the tangent to the lower curves at a given horizontal level 
has a smaller slope, the wave velocity is reduced inside the bottleneck, and the

* The quantities c0, cx and T  are indicated in figure 8, and it is evident th a t the slope of 
BG  is approxim ately th e  reciprocal of (10).

t  The area of the hum p in figure 8 is about £(c0 — cx) c0T , and this will be equal to the area 
above FG, namely, \SH, where <-1 is the slope of FG, if (11) holds. Here c0 — 8 is the value 
of c a t F.

22-2
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wave paths behave as in figure 10. Under the conditions illustrated in this figure 
the delay to each vehicle is relatively small.

Next, we consider the more serious hold-up resulting when, as time goes on, the 
oncoming flow rate increases above the capacity of the bottleneck. Waves then 
turn back before reaching the centre of the bottleneck and form a shock wave. 
This passes back down the main road and forces vehicles to pile up behind the 
bottleneck at a rate given by the difference between the oncoming flow and its 
capacity. In practice, the oncoming flow would exceed the capacity of the bottle-

M. J. Lighthill and G. B. W hit ham

q speed of wave in m ain road

speed of same wave a t 
centre of bottleneck

flow-concentration 
curve on m ain road

flow-concentration 
curves inside bottleneck

Figure 9. V ariation of flow-concentration curve in a bottleneck.

distance

m ain road

Ut.---- 1-------c.----- --------------------------------------------------------- tim e
Figure 10. Passage of waves through a bottleneck, the capacity of which

exceeds the incoming flow rate.

neck only for a finite time, during which the oncoming traffic is in the form of 
a hump. An important question is the duration of the hold-up resulting from the 
passage of a given traffic hump through the bottleneck. This will be solved by 
a detailed study of the shock wave paths.

To understand the formation of the characteristic * bottleneck shock wave note 
that no wave carrying a flow exceeding the capacity of the bottleneck can possibly 
pass through it, since the flow must remain constant on the wave, and such a large 
flow is impossible in the centre of the bottleneck. I t  is not important at which 
precise point of the bottleneck the wave turns back, but theoretically (if the flow- 
concentration curve varies continuously through the bottleneck) it should do so 
at the point where the flow carried by the wave is the maximum possible flow;
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for here only is the wave velocity (slope of the tangent to the flow-concentration 
curve) zero. In figure 11, this point is B ; the slope of the tangent at C indicates 
the speed at which the wave will come out of the bottleneck again. Compare the 
points A, B, Cin figure 12, which shows in a space-time diagram the turning back
of such a wave. For short bottlenecks, the details of the predicted flow within the 
bottleneck could not be relied on. However, the qualitative fact that the wave 
turns back, and its progress beyond C, are predictions on which greater reliance 
can be placed.

q velocity w ith which wave enters bottleneck

velocity w ith 
which it leaves it

Figure 11. Illustrating  the  ‘reflexion’ of a  wave from a bottleneck.

last wave w ith flow <  capacity 
of bottleneck

m ain road

bottleneck

m ain road

Figure 12. Form ation of shock wave in the front of a  hum p 
as it  enters a bottleneck of inadequate capacity.

The need for waves to intersect is at once evident from figure 12, where the 
beginning of the resulting shock wave is sketched in. This shock wave involves 
a reduction of flow, so its velocity (the slope of the chord joining points on the 
flow-concentration curve corresponding to conditions in front and behind) must be 
backwards relative to the road. As soon as it passes back out of the bottleneck, it 
must reduce the oncoming flow to almost exactly the capacity of the bottleneck. 
This is because waves carrying flows less than this have passed through, and waves 
carrying greater flows have turned back and been absorbed by the shock wave, so
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that only waves carrying flows approximately equal to the capacity of the bottle­
neck remain in its neighbourhood. Those just behind it are travelling backwards, 
corresponding to a point (e.g. B  in figure 13) on the right-hand half of the flow- 
concentration curve for the main road, at a flow level corresponding to the capacity 
of the bottleneck. The speed of vehicles in the slow crawl up to the bottleneck is 
given by the slope of OB. Conversely, the waves just ahead of the bottleneck are 
travelling forwards, corresponding to a point (e.g. F  in figure 13) on the left-hand 
half of the curve. Thus, vehicles after passing through the bottleneck are able to 
accelerate up to a mean speed given by the slope of OF.

M. J. Lighthill and G. B. W hitham

q average vehicle speed in oncoming flow

oncoming flow 
in hum p

capacity of 
bottleneck shock velocity

average vehicle 
speed in ‘crawl’ 
behind shock 
wave

normal inflow

Figure 13. Illustrating  ‘craw l’ produced by bottleneck and its final resolution.

The growth of the queue of crawling vehicles behind the bottleneck is easily 
calculated from the shock-wave path. For example, at a point where the oncoming 
wave carries a flow specified by the point A  in figure 13, the shock-wave velocity is 
the slope of A B *

How will the deadlock be resolved? Evidently the shock wave will continue to 
move backwards until the point A  falls below the level of B, in other words, until 
the oncoming flow starts being less than the capacity of the bottleneck. If  this 
improved state of affairs continues for long enough, the shock wave will move far 
enough forward to pass through the bottleneck. On doing so it will greatly increase 
its speed, for conditions downstream of the bottleneck are respresented by the 
point F  in figure 13, so that the shock-wave speed will be the slope of a chord such 
as CF. Thus, after it has passed back through the bottleneck, the shock wave will 
be just like the ordinary shock wave in the rear of any traffic hump (§4).

These considerations enable the course of the hold-up, and its approximate 
duration, to be determined graphically if the approaching hump is known, for 
example, if the variation of flow with time has been measured at some upstream 
point. The situation is little changed if there is already a shock wave in the rear 
of the approaching hump, as is likely in practice to be the case. When this meets 
the ‘bottleneck shock wave’, the two shock waves ‘unite’, a familiar process in

* The fact th a t increases of concentration from values well below Jcm to values well above 
it are normally made (as here) by means of shock waves, explains why (as noticed in § 2) the 
m axim um  flow qm of a road is not often observed.
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gas dynamics. No alternative behaviour is possible, as whatever they become has 
got to change the flow and concentration from their values behind the hump shock 
wave to the values associated with the bottleneck crawl. This could not be done 
by means of two shock waves, for example, because the one behind, which has to 
make the first increase of concentration, would have a greater speed than the one 
in front, which is responsible for the final increase to the crawl concentration; 
this relationship between speeds follows inevitably from the fact that the flow- 
concentration curve is convex upwards, but, on the other hand, is geometrically 
impossible since both waves must start at the same time.

distance

of oncoming traffic hum p.

The case when a bottleneck crawl is resolved by the union of the shock wave in 
the rear of the approaching traffic hump with the ‘bottleneck shock wave’ is 
illustrated in figure 14. The path of the shock wave formed by this union is easily 
traced, since it is still governed by the condition that the flow in front of it is equal 
to the capacity of the bottleneck—the concentration taking the greater of the two 
values compatible with this flow rate upstream of the bottleneck, and the lesser 
one downstream of it. I t  is important to notice that the only data required for 
estimating the course of a bottleneck hold-up in this manner are the flow-con­
centration curve for the main road, the capacity of the bottleneck, and the 
variation of inflow with time measured at some upstream point.

As a final theoretical point, it may be noted that the flow near the bottleneck 
during the crawl is steady. I t  has often been remarked that the increase of speed 
on the passage of vehicles (or crowds) through a bottleneck under steady con­
ditions is similar to the effect of a Laval nozzle on the flow of a gas. The above 
analysis shows how close the similarity is. Upstream of the bottleneck the waves
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are propagated upstream (as sound waves can be in subsonic flow); downstream 
of it they are propagated downstream (as sound waves must be in supersonic flow). 
As the centre of the bottleneck is approached, the mean speed v is increased, and 
the wave velocity relative to the mean vehicle speed (namely, v — c) is decreased, 
so that both are equal, just as the fluid velocity equals the velocity of sound in the 
throat of a Laval nozzle. The only essential difference* between the two situations 
is that the gas is able to transmit disturbances forwards as well as backwards 
relative to the mean flow. I t  is this that made the above analysis of the transients 
in the traffic flow problem so much easier than it is in the problem of the Laval 
nozzle, f

On a road with several bottlenecks in rapid succession, the one with least 
capacity will define the greatest flow possible under steady conditions. An inflow 
of vehicles exceeding this capacity can only pile up in a continually increasing 
‘ queue ’ or ‘ crawl ’ in front of the bottleneck system. In the steady part of the 
flow, the flow q is uniformly equal to the capacity of this narrowest bottleneck, 
while the concentration k takes the larger value appropriate to this flow upstream 
of that bottleneck, and the smaller value downstream.

The transients could easily be worked out in this problem. As a hump enters 
the system of bottlenecks, a shock wave is first formed at the narrowest one (at 
least if the flow increases slowly enough), and begin to move upstream. If  there 
is a slightly wider bottleneck farther upstream, a shock wave might later form 
there too, perhaps before the first shock wave had reached it. However, in due 
course the first shock wave would catch it up, as its speed backwards is greater, 
and so the two would unite into a single shock wave reducing the oncoming flow 
to the capacity of the narrowest bottleneck.

6 . S o m e  n o t e s  o n  t r a f f ic  fl o w  a t  ju n c t io n s

In this section we attempt a preliminary study of how the method of this paper 
might be used to predict traffic behaviour at road junctions of various kinds. 
First, we consider junctions which are not ‘controlled’ (either by police or by 
traffic lights).

The simplest junctions are those where minor roads introduce new traffic on to, 
or abstract traffic from, such a long arterial road as has been considered in the 
preceding sections. This is normally achieved without significant impedance to the 
traffic on the major road. Vehicles wishing to enter it have to wait until they can 
do so without causing obstruction. Vehicles leaving the major road have often to

* A less essential, though more spectacular, difference is th a t in the  traffic problem the 
typical ‘ unchoked ’ flow is to tally  supersonic, instead of to tally  subsonic. B u t in bo th  problems 
both possibilities exist.

t  Students of gas dynamics m ay wonder, on reading this, whether a  rough approxim ation 
to  the calculation of transients in a Laval nozzle m ight no t be made by regarding them  as 
kinematic waves, on the approxim ation (accurate only for steady flow) th a t the  stagnation 
enthalpy is everywhere constant. This is found to give the wave velocity as v — a2jv instead 
of v — a (where a is the local speed of sound), so th a t its quantita tive value would be small, 
bu t it m ight indicate qualitative behaviour reasonably correctly.

M. J. Lighthill and G. B. W hitham
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slow down, or even stop for a time, before they can leave it, but they usually 
signal their intention in time to enable vehicles behind to pass them on the 
appropriate side with little loss of speed.

The effect of such a junction on a wave moving past it along the major road, is 
then to change the flow carried by the wave by an amount equal to the ‘ mean net 
inflow ra te ’ from the minor road. This rate is defined as the difference between 
inflow and outflow, smoothed (as a function of time) by averaging it over such 
a time r  as was considered in § 2. If  the road is ‘ crowded ’, in the sense defined in § 2, 
the change in flow will change also the speed c of the wave, as well as the mean 
vehicle speed v. In  a space-time diagram, therefore, the waves bend slightly at 
junctions (backwards where the net inflow is positive, forwards where negative). 
These rules enable the arterial road theory of §§ 4 and 5 to be corrected for minor 
inflows and outflows at junctions.

However, there is a limit to the amount of inflow (especially) which is possible 
under those conditions. Further, this limit becomes more and more reduced as 
the flow on the major road increases. These are truisms. I t  might be thought, 
however, tha t the limit was just that increase of flow which would be required to 
raise the flow on the major road to the maximum possible. The real limit, however, 
is always much less than this. For inflow under most conditions can occur only 
when gaps in the traffic pass the junction. As the flow increases, such gaps become 
rarer and rarer, and for large enough flows, but still well below the capacity of the 
road, the gaps may be too rare to permit any significant inflow at all.

At cross-roads, where some traffic on the minor road seeks to cross the major 
road, a closely similar limit exists on the total flow originating from the minor road. 
(This is the sum of the inflow and the cross-over flow.) Evidently, if the minor 
road carries a flow exceeding this limit, the major road may act for the time being 
as an effective bottleneck, for the flow on the minor road, which could then be 
treated by the theory of §5.

I t  will now be clear why stoppages occurring at junctions under heavy flow 
conditions can often be resolved by sending a policeman to control the junction. 
If he stops successively the traffic on the major, and then on the minor, road, the 
flow originating from each will be approximately the maximum for the road during 
nearly all the period when the other road is stopped (see §2 above, and also the 
discussion which follows). The total flow can therefore be made fairly near to this 
maximum (or, if the capacities of the roads are different, to a weighted mean of 
them), and this will be greater, as just explained, than what can be achieved under 
uncontrolled conditions. To achieve best results, the policeman gives each road 
a time allocation proportional to the flow originating from it. Where traffic lights 
are installed, one can allocate times on the basis of a mean ratio of flows over an 
extended period, or else use a vehicle-actuated system of a type calculated to give 
a better approximation to the optimum at any instant.

Where major roads meet at the same level, a roundabout is preferable to a simple 
controlled crossing. For this to remain effective under the heaviest traffic con­
ditions, the circular arcs of road which compose the roundabout should each have 
a capacity equal to one-quarter of the sum of the capacities of the roads radiating
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from it. For on the average each vehicle uses half the total number of arcs, so that 
the average flow in an arc will be half the total inflow, or one-quarter of the total 
flow (inflow and outflow) on all the radial roads. When there are four of these, the 
argument indicates a width for each arc equal to that of one of the radial roads. 
Since excessive width for the arcs reduces safety, it may be that these limits should 
be closely followed.

To conclude the paper, we describe an attempt to discover whether the theory 
can be successfully applied to flows on a small scale, by using it to predict the 
effect on the oncoming flow of the compulsory stops and starts at a controlled 
junction.

First, consider the effect of a sudden stoppage (as when traffic lights turn red) 
on a uniform oncoming flow. I t  sends a shock wave back into the oncoming 
stream, at which the flow is reduced to zero and the concentration increased to 
approximately kp the maximum concentration of which the road is capable. (As 
when the union of two shock waves was discussed in § 2, there is no possibility but 
a single shock wave in this situation, since if there were more than one wave 
involved the velocity forwards of the wave making the first increase in concentra­
tion would have to be greater than that of the others, and this is impossible because 
all originate a t the same place and time, and the first wave must be a t the rear.) 
The speed of the shock wave is the slope of the chord on the flow-concentration 
curve which joins the point representing the oncoming flow to the point 0).

A more difficult question, where the limitations of the theory become apparent, 
is what happens when the traffic is permitted to flow forward again (as when the 
lights turn green; we ignore, to start with, complications due to some vehicles 
seeking to turn right or left at the junction). The solution, when the assumptions 
of the theory are retained without change, will first be given in detail (it was 
already indicated in §2) and afterwards criticized.

The front vehicle can accelerate unhindered to a speed characteristic of an 
unimpeded road, but the theory ignores the time taken for adjustments of speed 
(consequent on changes of concentration) to be made. Hence, it represents the 
front of the stream as moving off instantly at a mean velocity equal to the ‘free’ 
mean speed vF. The wave velocity is also vF, both being the slope of the flow- 
concentration curve at the origin. At the same time a wave starts backwards 
through the stream of waiting vehicles, giving the signal to start. This has a 
(negative) velocity equal to the slope csof the flow-concentration curve at the 
right-hand limit (corresponding to ‘jam ’ conditions). In between these two 
extremes there is room for waves of all intermediate velocities, each carrying 
a corresponding mean vehicle velocity. Since in conditions when the wave velocity 
is greatest in front there is no tendency for waves to run together and form shock 
waves, we may suppose that only continuous waves will be present and so that the 
increase in speed will be achieved through a fan of waves of all possible velocities.

Figure 15 shows the shock wave produced when the lights turn red, and the 
postulated fan of continuous waves appearing when they turn green, in a space- 
time diagram. A typical vehicle path is shown as a broken line. The stationary 
wave which remains at the stopping point is that referred to in § 2; the flow across
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this point is qm. Figure 15 shows also the ‘weakening’ of the shock wave when it 
is caught up by the fan; evidently, its speed must be rapidly reduced when the 
flow behind it begins to climb up the flow-concentration curve.

If  the period of stoppage (‘red period ’) is Tr, and the period of permitted flow 
then on the average the total number of vehicles qi(Tr+ coming up (at the 
inflow rate q{) during the complete cycle will pass across the stopping point during 
the time Tg only if

This sets an upper limit
<li(Tr + Tg)<qmTg

T— g q 
Tr + Tnqm

(13)

(14)

to the inflow (from the road in question) which can be handled by the controlled 
crossing, without leading to a queue of increasing length. This limit (14) is the 
‘ capacity ’ of the controlled crossing, when regarded as a bottleneck.

distance

Figure 15. Uniform incoming flow stopped for a tim e and then started  again.

If  condition (13) is satisfied, that is if the inflow is less than the capacity, then 
the maximum flow qm at the stopping point cannot be maintained during the whole 
period Tg, but only for a reduced period of length Tf  (during which the crossing is 
running ‘full’) given by the equations

qi(Tr + Tf ) = qmT„ T/ = - ~ ~ r  • (15)
9-m 'll

After a time Tf , then, the flow ceases to be that carried by the wave which remains 
a t the stopping point, and this must be because the shock wave in figure 15 has 
moved forward again and passed through the stopping point. This is illustrated in 
figure 16. Behind the shock wave the flow is the undisturbed inflow After 
passing through the stopping point it is just the ordinary shock wave in the rear 
of any traffic hump (§4).

A simple construction for the path of the shock wave is obtained as follows. The 
number of vehicles crossing a wave such as in figure 16 (on which the flow is 
q and the concentration k, and whose speed is c) is (q — kc) t, by § 2, if is the time 
difference between O and A. This number of vehicles must equal the number
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q.(t + Tr) going up to the stopping point in the time t + Tr since the stream was first 
stopped, minus the number k{ ct left at time t in the distance ct between the stopping 
point and A.
Thus (q — kc) t = q^t  +  Tr) — k̂t,(16)

M. J. Lighthill and G. B. W hitham

or q - q t - c i k - k i )'
(17)

This equation can be used, with x = ct, to trace the shock-wave path on the (x, t) 
diagram, if in both k is varied from 0 to kp the corresponding values of q and of 
c = dq/dk being deduced from the flow-concentration curve. (Note that equation
(15) is a special case of (17), with t = Tf , c = 0, q —qm.)

distance

lights

tim e

Figure 16. W ave p a tte rn  for traffic lights of capacity sufficient to adm it
the incoming flow.

If the incoming flow begins to exceed the capacity of the controlled junction, 
the shock waves of figure 16 do not get clear of it in time; each then collides with 
the shock wave sent out at the beginning of the next stopped period. They unite, 
and in turn collide with the next shock wave, and so on. If  the excess incoming 
flow is maintained, these collisions (of shock waves, not cars!) must occur farther 
and farther back, and thus become a less and less significant feature of the 
situation. When this has happened the residual behaviour indicated by the theory 
is quite simple. Each shock wave (figure 17), on being formed at the stopping 
point, reduces the full flow qm to rest. As it moves backwards (e.g. at G) the traffic 
it stops is travelling more slowly. From I) onwards (figure 17) however, it does 
not reduce the flow completely to rest. Finally, at a very large distance behind 
the stopping point (e.g. at A) little reduction in vehicle speed occurs a t shock 
waves and their effect has almost been ironed out into a typical bottleneck crawl.

The quantitative details of this familiar oscillating-speed crawl behind a choked 
controlled junction can be obtained by a device similar to that used above in the 
unchoked case. At a point in figure 17 such as A, a distance x behind the stopping 
point, let the values of k, q and c carried by the waves which run into the shock 
wave at A  be distinguished by suffixes 1 (for the first) and 2 (for the second). Then
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the difference in the number of vehicles crossing the whole of each of these waves 
is equal to the flow across the stopping point during the time in symbols,

(#1  ~  ^ l Cl )   ̂ _  c  J  ~  (#2 ~  ^ 2 C2)  ̂ — C2) =  (^® )

y red y re d /  red '  redre e n greenveen

Figure 17. ‘Craw l’ generated by traffic lights when inflow exceeds capacity.

Note, that the wave velocities cx and c2 are negative, so that the times taken by 
the waves to reach A  are x K ~ c x) and x/( — c2) respectively. Also, since these differ 
by an amount Tr + Tg, we have

x
(-Ci)

X

( Cg)
= Tr + Tg.

Eliminating x from (18) and (19), we can write the result as

(19)

h <lmTa \
Tr + T j Ic2

1
C2

<lm T0 \
I'r +  I ' J

( 20)

Geometrically, this means that a line drawn across the flow-concentration curve 
a t a level corresponding to the capacity of the controlled junction (figure 18) will 
have the property that tangents drawn to the curve (e.g. A B  and AC, or DE 
and DF) from points on the line have slopes equal to the slopes of waves meeting
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at points on the shock wave (e.g. A  or Din figure 17) where there is a transition 
between the states represented by the two points of contact of the tangents 
(e.g. B  and C, or E  and F). When one of the tangents cannot be drawn, the point F  
(where q — 0 and k = kj) must be used as an end-point instead (see e.g. OH and OF 
corresponding to the point G in figure 17).

The use of the theory on a small scale, which has been illustrated in the above 
discussion of the flow behind a controlled junction, is open to many objections, 
which are discussed below, one by one.

First, the time taken for each vehicle to accelerate to its desired speed is ignored, 
whereas it may not be negligibly small compared with the time scale of the process 
as a whole (say, with the period Tg of permitted flow). This is especially true of the 
front vehicle, which is supposed to pursue a path at constant speed but

M. J. Lighthill and G. B . W hitham

capacity

of traffic 
lights

Figure 18. Geometrical construction for the flow of figure 13.

actually has to accelerate from rest up to this speed, by which time it is a certain 
distance, say vFTt, behind the path in question, and subsequently remains at such 
a distance behind it. This difficulty has been met in earlier, queue-theoretic, 
discussions of traffic light behaviour (Clayton 1941; Wardrop 1952) by regarding 
the vehicle as ‘losing’ a time Tt after the lights have gone green. Its final path is 
that which it would have if it accelerated to speed vF instantaneously after an 
initial delay Tt  I t  is possible, therefore, that the present theory may be reasonably 
correct provided that the period of stoppage Tr is taken to include this Tost tim e’ 
Tt, which must in turn be deducted from the period of permitted flow Tg. The 
‘ lost time ’ is of the order of 5 to 10s. The existence of this lost time is an important 
argument for keeping the periods of stoppage and permitted flow fairly long, so as 
to achieve a total flow at the junction as near to qm as possible. Conversely too 
great a period increases average vehicle delay, and Wardrop (1952) has shown that 
there is in any given case a cycle length which renders this average delay a 
minimum.

A second objection is that the theory ignores the fluctuations in inflow over 
times comparable with Tg or Tr. I t  is just these fluctuations which lead to the 
phenomena (alternating quiet and ‘busy’ periods) studied in the theory of queues. 
Another way of phrasing the objection is to say that the times Tg and Tr are not 
large compared with the time r  needed (§2) to obtain smooth mean values of flow
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and concentration. This objection is certainly valid under relatively easy traffic 
conditions. I t  seems likely, however, tha t when the road is ‘crowded’ in the sense 
used in this paper the general picture of the starting flow given above may be 
relevant, the variations of inflow serving only to alter the positions of the shock 
waves at any instant.

A third objection is tha t certain measurements of traffic stopped and started 
indicate that under these conditions the mean concentration may be far less, and 
the mean speed far greater, for a given mean flow, than the values taken from the 
flow-concentration curve under more nearly steady conditions. Measurements on 
these lines known to the author include an unpublished set made at the Road 
Research Laboratory in 1954 and a study of flow in the road tunnel under the 
Meuse at Rotterdam (Aangenendt, Van Gils & Boost 1951). Both sets of results are 
summarized in figure 19, and a smooth curve drawn through all the points. 
Dr Smeed has suggested to the authors that the cause of the discrepancy might be 
variation in the acceleration of vehicles: if many vehicles in the queue cannot 
match the acceleration of those in front, the mean headway will exceed the minimum 
value tolerable under steady conditions. The present authors regard this and other 
causes mentioned above as serious limitations on the quantitative accuracy of 
their theory, but find the magnitude of the observed departures rather greater 
than they would expect from such a cause. The front vehicles certainly have an 
opportunity to accelerate very fast, which may not be allowed for adequately by 
the theory of Tost tim e’; but in a long queue the acceleration required of the 
vehicles towards the rear is very moderate, and few of them can be incapable of it.

I t  must be remembered, on the other hand, that the mean flows and concentra­
tions recorded in figure 19 were each measured at a fixed point, and according to 
the theory (see, for example, figure 16) the flow and concentration are changing 
so rapidly a t a point that such a method can at most obtain an average of a large 
range of values. The method of measurement (§2) shows tha t in fact a time- 
average of each would be taken. I t  is easy to see that such an averaging process 
would in practice lead to a ‘flow-concentration curve’ somewhat like that of 
figure 19. Far behind the stopping point the mean would be taken over a period 
of very high values of concentration (and low values of flow) and (after the shock 
wave has passed forward) a longer period of very low values of concentration (and 
only moderate values of flow). The means would then be well in the left-hand half 
of the area under the true flow-concentration curve, and near the bottom. But, 
near the stopping point, there would be a longer period before the shockwave moves 
forward, and for much of this period the flow would be near its maximum. When 
averaged with a shorter period of low concentration this would give points in the 
middle of the area under the curve, somewhat below the top.

Future experiments will perhaps show whether or not this is the major cause 
of the discrepancy revealed in figure 19.* In the meantime, it is perhaps worth

* Very recent work by W ardrop has already gone some way towards confirming this. By 
taking means over very short distances (only twice the  headway) and replotting the flow- 
concentration curve, he obtains points lying on a  curve which is a t least parallel (instead of 
perpendicular!) to  the ‘headw ay’ curve of figure 19, although somewhat below it.
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noting one or two directions in which the present theory could be improved in its 
application to small-scale flows. First, there is the * blend with statistical ideas ’ 
suggested in § 1, but this is too difficult to be treated briefly, and the compounding 
of this blend is postponed to a later paper.

A second extension is to exclude a ‘diffusion’ effect due to the fact that each 
driver’s gaze is concentrated on the road in front of him, so that he adjusts his 
speed to the concentration slightly ahead. This gives a dependence of flow on 
concentration gradient, which leads to an effective diffusion exactly as noted in 
part I, §6. Such diffusion ‘spreads o u t’ the shock waves; in fact, drivers do not 
reduce speed instantaneously at shock waves, because they see them coming.

M. J. Lighthill and G. B. W hitham

Figube 19. Observed mean flows and mean concentrations in traffic stopped and started . 
O, R otterdam  tunnel; x , Road Research Laboratory; h, ‘headw ay’ curve.

A third extension is to include an ‘inertia’ effect due to the fact that a driver 
must apply accelerator or brake to reach his desired speed and neither is instan­
taneously effective.

When both the last-named extensions have been applied, one reaches an equation 
of motion of a general form

dq
dt

dq m d2q+Ci +T4 0, ( 21)

where T  is the inertial time constant for adjustments of speed, and D is the 
diffusion coefficient, or decrement of flow for unit concentration-gradient. This is 
very similar to the equation governing waves in rivers (part I) when higher-order 
effects are taken into account. The new terms may be expected to introduce similar 
additional effects in traffic flow on a small scale to those found in certain river flows. 
In particular, something analogous to ‘roll waves ’ might sometimes arise, in which 
a uniform flow is unstable and tends to degenerate into a succession of rapid 
accelerations and even more rapid retardations. This sometimes happens to a long
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convoy of vehicles which are expected to keep in line, even when the front vehicle 
maintains a uniform speed.

The behaviour of the flow behind a controlled junction could in principle be 
evaluated on the basis of an equation such as (21), but until the experimental 
information is clearer such extensions of the theory would seem to be premature.
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