Lecture 1 - Buckingham Pi Theorem

- Systematics of Dimensional Analysis

- Context: Drag

- Here consider systematics of dimensional analysis: scaling arguments.

- Why scaling?

 - Real problems - nonlinear
 - Many degrees freedom

 - Need estimation (guided to computation)
 - Computers are poor at asymptotics
 - But asymptotic Fundamentals

- Common issues:
 - Concept in
 - Self-similarity - problems where phenomena look the same over broad range of scales
 - E.g., heat wave, turbulence

- Scaling relations constitute "the answer"
→ emergent scale ⇒ i.e. nonlinear dynamics defines new scale⇒ e.g. Reynolds scale i.e. usually lin vs nonlinear balance.

→ new physics ⇒ it happened!

→ boundary layers ⇒ transition between scaling regimes different

⇒ no slip b.c. \(\frac{\partial u}{\partial y} = 0 \) sur.

⇒ potential flow far from body

⇒ boundary layer near body viscosity important

⇒ different scalings which must be matched.

⇒ Basic Question:

⇒ How formulate systematic of dimensional analysis? Limitations?

⇒ When might it fail?
Discuss in context of familiar example:

Drag on sphere in Fluid? Body

\[\vec{F}_d \]

\[\vec{V} \]

Preliminaries

- How is drag quantified, i.e., sure kept?
 - Drag coefficient speed
 - \[C_D = \frac{F_d}{\frac{1}{2} \rho V^2 A} \]
 - Coefficient
 - Surface area
 - \[C_D = C_D(Re, Ma, shape...) \]

"Idea of \(C_D \):

\[P \approx \rho V^2 A (At) \]

Change in momentum pressure - force/area

but \(C_D \approx \frac{P}{At} \) of ball
What really is drag?

Consider frame where:

- Body fixed
- Fluid moving

Drag = rate of removal of momentum from moving fluid by immersed body

Removal → Transmission in boundary surface layer

→ No-slip condition / viscosity leaves wake → water acts to fill in dead region
\[\frac{d}{dt} \mathbf{F} \sim \rho A \mathbf{u}^2 \]
\[\sim C_D \rho A \mathbf{u}^2 \]

- \(C_D \) captures additional physics
- Why additional physics? \(\rightarrow \) see \(\mathbf{3} \)
- (Why not formula valid?)

\(\Rightarrow \)
- drag \(\Rightarrow \) wake
- ahead behind asymmetry

\(\Delta \) wake

- wake \(\Rightarrow \) irreversibility
- see big contrast

- wake is consequence of
- no-slip b.c.

\[\partial_\tau \mathbf{u}_t (\mathbf{x}) = 0 \]

- (a potential flow) \(\nabla^2 \phi = 0 \)

\(\mathbf{u}_t \) can be large \(\Rightarrow \) no wake

\[\Delta \mathbf{u}_1 \ni \Delta \mathbf{u}_2 \quad \Delta \mathbf{u} \ni \Delta \mathbf{u}_2 \text{ definition} \quad \text{same upstream downstream} \]
Ideal Fluid

Euler eq.
Reversible

Viscous Fluid
NS Eq.
Irreversible

vs -> clearly different
- wake and thus drag are due to
 \[\text{viscosity} \]
 \[\text{irreversibility} \]
 \[\text{verticality} \]
 \[\text{highlight role of B.L. around object} \]

A.B. highlights role of boundary layers → drag can be independent of Re, but viscosity needed to satisfy b.c.

- additional physics → model

Model → Navier-Stokes Equation

\[\rho \left(\partial_t + \mathbf{V} \cdot \nabla \right) \mathbf{V} - \nabla P = \mu \nabla^2 \mathbf{V} \]

advection, linear, 2nd order

nonlinear \[\nu = 0 \text{ is singular} \]
Compressible NS Eqn:

\(\frac{\partial u}{\partial t} = -\nabla p + \rho \nabla \cdot \nabla u + (y + u) \frac{\partial u}{\partial x} \)
\[S = \text{const}, \quad ds = 0 \]

\[\Rightarrow \frac{dP}{
ho} =
\text{Vol} - \text{IdS} = d\omega \]

- Mostly
 - \(\rho \cdot \nabla = 0 \) \text{ determines pressure}
 - \(\rho \cdot \nabla = 0 \) \text{ need eqn. state.}

\text{Key Parameters}

\[\frac{\rho \cdot \omega}{\sigma} = \text{Reynolds}\ # \]

\[\Rightarrow \text{Re} \sim \frac{\nu \cdot L}{\omega} \]

expresses ratio of nonlinear inertial term to linear, diffusive term.

\text{Re} < 1 \rightarrow \text{viscous flow - Stokes}

\text{Re} > 1 \rightarrow \text{laminar flow - Blasius}

\text{Re} > 10^5 - 10^6 \rightarrow \text{turbulent flow.}
see especially basic trends

\[C_d \sim \frac{1}{Re} \]

\[F_d \sim \frac{1}{Re} \]

\[\delta_{sw} + \nu \frac{d\delta}{dt} - \frac{\nu}{Re} \]

large Re \rightarrow turbulent

\[C_d \sim Re^{0.5} \rightarrow \text{notable why?} \]

How recover scaling?
Wake structure:

Re < 10
creeping flow

10 < Re ≤ 40
attached vortices

40 < Re < 200,000
vortex tail

Re > 200,000
turbulent wake
Buckingham's Pi Theorem

- E. X. First

- How do dimensional analysis systematically?

1. Identify physically relevant variables

2. Identity variables of these

\[\rightarrow \text{required answer should depend on relevant variables and be listed among.} \]

So, for drag on sphere:

- Steady
- Temp.
- Dim

\[R \rightarrow \text{Length} \quad L \]

\[V \rightarrow \text{Velocity} \quad L/T \]

\[\nu \rightarrow \text{Viscosity} \quad L^2/T \quad \text{Water} \rightarrow 10^{-3} \text{m}^2/\text{s} \]

\[\rho \rightarrow \text{Fluid density} \quad M/L^3 \]
\[F_d \rightarrow \text{drag force} \quad F_d \sim ML^2/T^2 \]

2. Count under dimensions

\[\Rightarrow M, L, T \]

so \(n = 5 \) quantities

\(r = 3 \) independent

\[\Rightarrow \]

3. \(n - r = 2 \) dimensionless ratios possible

\[1 \text{ involves } F_d, \]

\[\Rightarrow \]

\[\Pi \text{ theorem} \]

\[n \rightarrow \text{indep. quantities} \]

\[r \rightarrow \text{indep. dimensions} \]

\[\therefore \quad n - r \text{ dimensionless ratios} \]
\[\Pi_c = \Phi(\Pi_1, \Pi_2, \ldots, \Pi_i, \Pi_{i+1}, \ldots, \Pi_n) \]

i.e. can express dimensionless ratios in terms each other.

Practical Matters:

→ One \(\Pi \) involves answer

→ Other \(\Pi \)'s involve relevant dimensionless parameters in model.

N.B. here - model useful.

→ Use insight # values (i.e. experiment) to eliminate some \(\Pi \) variables

(i.e. \(\ll a \), or \(\gg d \))

back to sphere example:

→ \(2 = \Pi \) variables.

where \(\Pi_1 = \Phi(\Pi_2) \)
\[\pi_1 = \frac{F_d}{\rho_0 A^2 v^2} \rightarrow \text{involves} \] \[
\pi_2 = Re = \frac{vR}{v} \rightarrow \text{suggested as natural} \]

and \(\pi_3 \) theorem \(\rightarrow \)

\[\pi_1 = \pi_1 (\pi_2) = f(\pi_2) \]

\[\boxed{\text{St theorem result}} \]

- basic result
- plausible that drag depends on \(Re \)
- not a unique answer

Now, key step:

- explore asymptotic behaviour, i.e.

\[Re \ll 1, \quad Re \gg 1? \]
$Re \ll 1$

- have $F_d \sim \frac{\rho R^2 V^2}{2} F(Re)$

- $Re \ll 1 \implies$ expect $F_d \sim V$

 i.e. proportional to velocity

so

$F(Re) \sim \frac{1}{Re}$, for $Re \ll 1$

$F_d \sim \frac{\rho R^2 V^2}{2} \frac{1}{RV}$

$F_d \sim \frac{[\rho RV]}{RV} V \sim nRV$

- corresponds to Stokes' (in) flow drag

- general result:

Equation:

$-\nabla P = -\nabla P$
Consider flat plate moving head on:

\[F_t \sim 6\pi MLV \]
\[\eta = \frac{c_0v}{\rho} \]

Show Stokes scaling applies:

\[\eta = \frac{C_0v}{\rho} \]

\[F_t \sim PA - PLw \]

For \(P \):

\[\nu \frac{D^2V}{Dx^2} = -\frac{\nabla P}{\rho} \]

What is the scale? Smaller will dominate gradients:

\[\frac{\rho}{\nu} \sim \frac{V}{w} \]
So \[p \sim \frac{\rho r v}{W} \]

\[F_d \sim pA \sim \rho r v (\frac{y}{y}) \]

\[\sim \left[\text{only} \right] v \]

Show for edge-on incidence - HW!

Now, for \(Re \gg 1 \), expect\[F_d \sim r^0 \]

but

\[F_d \sim \rho v^2 R^2 f(Re) \]

\[\sim \rho v^2 R^2 \left(\frac{Re}{Re^0} \right) \rightarrow \rho v^2 R^2 \]

so \(Re \rightarrow \infty \)

\[F_d \sim \rho v^2 R^2 \]
Note:

- $F(Re) \sim Re^\alpha$ unsure about small corrections to a

- amazing that $F \sim Re^\alpha$ at large Re?

No v dependence!

yet drag requires viscosity ν?

Why?

- on small scales or BL v matters

i.e. $Re = Re_{[scale]}$

\[\frac{vP}{\nu} \]

- but momentum transport to small scales independent of ν (i.e. inertial).
Ex 2

What are the scaling rules for motion of surface ship of length L, speed V? Consider:

- Drag scaling D - assume due to surface water
- Model size dependence $\frac{1}{L}$
- Streamline

Physics: \bigcirc ill with g

Surface ship - modest speed 10-15 m/sec.
- Radiates waves.

So drag mechanism is resistive
i.e. film radiation - induced slowing down of charge.

Now, with gravity:

$$\dot{u} + u \cdot \nabla u = -\frac{\nabla p}{\rho} - g \zeta + \nu \nabla^2 u$$

Parameters:
$V \rightarrow \frac{L}{T}$

$l \rightarrow L$

$\rho \rightarrow \frac{M}{L^3}$

$V \rightarrow \frac{L^3}{T}$

$F_d \rightarrow \frac{ML}{T^2}$

and

$g \rightarrow \frac{L}{T^2}$

$n = 6$

index: $r = 3$ \[M, L, T\]

$\Rightarrow 3 = \pi$ variables

as before:

$\Pi_1 = \frac{F_d}{\rho_0 L^2 V^2}$

$\Pi_2 = \frac{V L}{\nu} \equiv Re$
Need one more dimensionless ratio.

Now: obviously must involve g.

- expect $Re >> 1$.

\[
\begin{align*}
\frac{d_x v}{u} + u \cdot \frac{dv}{dx} &= \frac{-dp}{\rho} - g \frac{z^2}{2} + v \frac{d^2 v}{dx^2}
\end{align*}
\]

\[\Rightarrow\]

\[\frac{\Pi_3}{c} \sim \frac{\rho u}{\nu} \sim \frac{v^2}{\sqrt{g}} \quad \text{Frandel number}\]

\[\sim \frac{v^2}{\sqrt{g}} = \text{Fr}.
\]

Now:

\[\Pi_2 = \Pi_1 \left(\Pi_2, \Pi_3 \right) \]

\[\Rightarrow \quad \frac{F_l}{\rho \nu v^2} \sim f(\text{Re}, \text{Fr})
\]

\[= \sim \left(\frac{\nu L}{V}, \frac{v^2}{\ell g} \right)\]
Now:
\[- \text{Re} \to \infty, \quad F_d \propto \text{Re} \rightarrow \infty \]

\[F_d = c l^3 v^2 \left(\frac{V}{g} \right)^x\]

\[\Rightarrow \] expect \(F_d \) must increase with \(g \)

\[\text{c.e. wave drag increases with } g.\]

\[F_d \propto c l^3 v^2 \left(\frac{V}{g} \right)^{-1}\]

so \(x = -1 \)

\[F_d = c l^3 v^2 \left(\frac{V}{g} \right)^{-1}\]

\[\boxed{F_d \sim \rho c l^3 g}\]
$F = p$ \(\sim \) \(\rho \cdot v \cdot a \)

and scaling \(\sim (\text{size})^3 \)

→ Blast Wave

Sedov–Taylor Blast Wave

- sudden release of energy
 \(E_0 \gg P_0 \cdot R \cdot t \)
 \(t = t_0 \)
 \(E \gg \text{Rayleigh } R^3 \)

For \(R < R_{\text{max}} \)

- inner scale
 \(p_{\text{inner}} \)

- outer scale
 \(p_{\text{outer}} \)

- blast expands as hemisphere

Blast wave "locks" until

the same between inner and outer structure at \(R_{\text{max}} \)

\(E/R_{\text{max}}^3 \sim P_{\text{amb}} \)

→ self-similar structure
For spherical blast, can write:

\[\partial_r v_0 + v_r \partial_r v_0 = -\frac{dP}{\rho} \]
\[\partial_t \rho + \frac{1}{r^2} (r^2 \rho v_r) = 0 \]
\[\partial_r (r^2 \rho \phi) + v_r \partial_r (r^2 \rho \phi) = 0 \]

Seek \(p(t) \), but self-similarity

\[p(t) = p(t) \rho(t) \rho(r/R(t)) \]

\(t \) blast radius \(\sim \) time \(\Rightarrow \) is re-scaling

\(\Rightarrow \) spatial structure self-similar relative to expanding radius

\(\Rightarrow \) structure re-scaled on time preserving ship.

Simple example: wave eqn:

\[\partial^2 u = c^2 \partial^2_x u \] (1D mean wave)
\[U = \frac{1}{2} \left[F(x-c^t) + F(x+c^t) \right] + \frac{a}{2c} \int_{x-c^t}^{x+c^t} \varphi(s) \, ds \]

c.e. \(x^t \) enter as \(x \pm c^t \) only.

Now, \(\Pi \) thin approach: What is \(\Pi \) radius, in time?

\[R \rightarrow \text{radius} \]
\[L \]

\[V \rightarrow \text{speed of front} \]
\[\frac{L}{T} \]

\[\rho \rightarrow \text{density} \]
\[\frac{M}{L^3} \]

\[p \rightarrow \text{pressure} \]
\[\frac{ML^2}{T^2} \]

\[E \rightarrow \text{energy} \]
\[\frac{ML^2}{T^2} \]

\[\Lambda = 5 \rightarrow 2 \quad \text{and} \]
\[\Lambda = 3 \]

\[\Pi_1 = \frac{R}{U} \rightarrow \text{molecular constant} \]

\[\Pi_2 = \frac{E}{\rho R^2 U^2} \rightarrow \text{dimless ratio for energy} \]
So \[T_1 = F(T_2) \]

i.e. \[\frac{R}{v^+} = F \left(\frac{E}{\rho v^2 R^3} \right) \]

here:

- \[F = \text{const} \sim 1 \quad \text{so} \]
 \[R \sim v^+ \]

- \(\text{F} = \text{const and for energy balance} \)
 \[E = \rho v^2 R^3 \]

So \[v \sim \left[\frac{E}{\rho R^3} \right]^{1/2} \]

and \[R \sim \left[\frac{E}{\rho R^3} \right]^{1/2} \]

\[R^{5/2} \sim \left(\frac{E}{\rho} \right)^{1/2} \]
\[R \sim \left(\frac{E}{E_0} \right)^{1/5} \]

Sedov-Taylor \quad B < 8.5

\text{wave radius}

M.B.:
- Could just put:

\[E \sim \rho R^3 V^2 \sim \rho R^3 \frac{R^2}{t^2} \]

\[P \sim \rho V^2 \sim \rho_0 R^2 / t^2 \]

\[\sim \left(\frac{E}{E_0} \right)^{2/5} \frac{1}{\rho_0 t} \]

\(t \)

\text{dynamic pressure drops with time.}