9 Big Ideas

Here we list 9 “big ideas” in fundamental plasma physics from a previous 218A course. These are the key points one should glean from the course.

i) Coulomb force as long range
 a) Screening, λ_D, $n\lambda_D^3 > 1$ for “plasma” state
 b) Difference from hard sphere gas
 c) Infrared divergence – Coulomb logarithm

ii) Waves and Instabilities
 a) Plasma, ion-acoustic, EM
 b) Wave Energy Theorem, Adiabatic Theory for Waves
 c) Negative Energy Waves, Instabilities → how dissipation can be destabilizing
 d) Two Stream Instability - bunching

iii) Nonlinear Waves
 a) Steepening and breaking mechanisms
 b) Collisional and collisionless shocks/solitons
 c) Collisionless shock models

iv) Kinetics
 a) Vlasov Equation from BBGKY hierarchy
 b) Landau Damping
 c) Physics of Landau Damping — phase mixing
 d) Landau Growth, B-O-T instability, CDIA

v) Near Thermal Equilibrium: How to Compute Fluctuation Spectrum
 a) Fluctuation-Dissipation Theorem
 b) Test Particle Model
 c) Equilibrium Fluctuation Spectrum

vi) Transport and Relaxation Near Equilibrium
 a) Diffusion, Central Limit Theorem, Fokker-Planck Eqn.
 b) Boltzmann Eqn. + small momentum transfer → Landau Collision Operator
 Lenard-Balsecu Eqn., via TPM and Relation to Landau Collision Operator
 c) Rosenbluth Potentials and Calculation
 d) Dreicer Field for runaway electrons

vii) Mean Field Theory for Instability Evolution
 a) Quasi-Linear Equations
 b) Relation to Chaos, Time Scales
 c) τ_{ac} vs τ_b, validity of unperturbed orbits
 d) Energy-Momentum Theorems for mean field theory
 e) Bump-on-Tail Saturation
 f) Anomalous Resistivity
viii) **Paradigms of Turbulence**
 a) Nonlinear evolution → turbulence
 b) K41 paradigm → singularity via *enstrophy production* → *cascade*
 c) Langmuir Turbulence → singularity via *collapse* → Disparate Scale Interaction

ix) **Rayleigh-Taylor Instability – A Case Study in Macroscopics**
 a) Release of free energy
 b) Different cases, limits – b.c.’s, profiles, stabilization, dissipation
 c) Linear → nonlinear transition
 d) Nonlinear structure (spike and bubble)