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Abstract: This article aims to review Felix Bloch theorem of electron motion in a crystal lattice 

through his seminal paper that has also acted as his Ph.D. dissertation under Werner Heisenberg 
supervision.  Bloch uses the quantum formulation with periodic boundary condition and the 
Fermi statistics of electrons to resolve many of the unexplained phenomena and contradiction 
existing the previous free-electron models. The historical context of the problem and Bloch 
perspective will be addressed first, followed by theory formulation using both the original and 
modern mathematical notation. We then summarize Bloch utilization of the developed theory in 
addressing contemporary dilemmas and setting future predictions on electron motion in 
crystalline lattice. Lastly, we address the shortcoming of this model and the current research 
trends in generalizing it to disordered and quasicrystal systems. 
 

Historical Background:  

After J. J. Thomson discovery of the electron by few years [1], Paul Drude proposed a simple 

model that predicts, to a certain degree of accuracy, the thermal, electric, and optical properties 

of solid-state matter [2]. By applying first-principle kinetic theory of gases to electrons in some 

type metals, the model provided a good explanation of DC and AC conductivity, Hall-effect and 

magnetoresistance phenomena, and fortuitously predicting the Wiedemann-Franz ratio. 

However, it greatly overestimated the specific heat of metals which was not observed 

experimentally. The issue has been rectified by the advent of quantum mechanics where Arnold 

Sommerfeld recognized the need to replace the Maxwell-Boltzmann distribution with Fermi-

Dirac statistics [3]. However, the developed Drude-Sommerfeld free-electron model still makes 

many quantitative predictions that are quite unambiguously contradicted by observation. For 

example, the sign of the Hall coefficient and its dependence on the strength of the magnetic field 

and temperature was inconsistent in certain cases. In addition, The Wiedemann-Franz Law at 

room temperature was inaccurate in an otherwise alkaline metal [4]. Also, it raised fundamental 

questions on what determines the number of conduction electrons in the first place and why in 

some elements it is zero, leading to an insulator. Or more generally why the conduction electrons 

should be treated as an ideal gas in the first place, as Bloch wrote in his memorial notes [5]: 

 

“When I started to think about it, I felt that the main problem was to explain how the 

electrons could sneak by all the ions in a metal to avoid a mean free path of the order of 

atomic distances. Such a distance was much too short to explain the observed resistances, 

https://www.tandfonline.com/doi/abs/10.1080/14786449708621070
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19003060312
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which even demanded that the mean free path become longer and longer with decreasing 

temperature. But Heitler and London had already shown how electrons could jump 

between two atoms in a molecule to form a covalent bond, and the main difference 

between a molecule and a crystal was only that there were many more atoms in a periodic 

arrangement. To make my life easy, I began by considering wave functions in a one-

dimensional periodic potential. By straight Fourier analysis, I found to my delight that the 

wave differed from a plane wave of free electron only by a periodic modulation. This was 

so simple that I didn't think it could be much of a discovery, but when I showed it to 

Heisenberg he said right away, "That's it." Well, that wasn't quite it yet, and my 

calculations were only completed in the summer when I wrote my thesis on "The Quantum 

Mechanics of Electrons in Crystal Lattices." 

Bloch Wave Theorem: 

In principle, electrons moving in a solid is a many-electron problem (electron-electron and nuclei-
electron interaction). Similar to the independent electron approximation adopted previously by 
Drude and Sommerfeld, Bloch assumes that such interactions are lumped into an “effective one-
electron potential,” dramatically reducing the complexity of the model. Therefore, the problem 
is thus simplified to how an independent electron obeys the one electron Schrodinger equation:  
 
 

�̂�𝜓(𝒓) = (−
ℎ2

2𝑚
 ∇2 + 𝑉(𝒓)) 𝜓(𝒓) = Ε𝜓(𝒓) 

 

 ∆𝜓 + 𝜇(𝐸 − 𝑉)𝜓 = 0,    𝜇 =
8𝜋2𝑚

ℎ2     

(1) 

 
Where 𝑉(𝒓) is a periodic potential with the lattice periodicity. Such electrons are known as Bloch 
electrons, and it can be noted that it generalizes the free electron model when the periodicity is 
set to zero. Bloch started by assuming an underlaying translation periodicity of lathe ttice by 
defining the primitive lattice translation wavevector: 
 
 𝑻 = 𝑛1𝒂𝟏 + 𝑛2𝒂𝟐 + 𝑛3𝒂𝟑   

 
𝑟𝐺 = 𝑔1𝔞 + 𝑔2𝔟 + 𝑔3𝔠,     𝑔1𝑔2𝑔3 = 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

(2) 

 
Where  𝒂𝟏 ⊥ 𝒂𝟐 ⊥ 𝒂𝟑  𝑎𝑛𝑑 𝑛1, 𝑛2, 𝑛3 ∈  ℤ. Therefore, the lattice potential should also follow the 
same periodicity: 
 
 𝑉(𝒓 + 𝑻) = 𝑉(𝒓) 

 
𝑉(𝔯) = 𝑉(𝔯 + 𝑔1𝔞 + 𝑔2𝔟 + 𝑔3𝔠) 

 

(3) 
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Because the potential is periodic, Bloch followed the approach taken by Max Born and Theodore 
von Kármán in 1912 in their study of the specific heat of solid based on crystalline material [6]. 
By applying a cyclic Born-von Karman boundary conditions, Bloch reasoned that such an 
approach would lead to eigenfunctions with three-fold symmetry, permitting the study of the 
whole lattice behavior by considering its unit cell only. The question that follows naturally is the 
kind of constraints that such boundary condition will imply on the wavefunction in Eq. (1). The 
theorem will be  derived first by Bloch approach and notation and then by Ashcroft/Mermin [7]: 
 
Bloch’s original derivation: 

For the sake of derivation simplicity, Bloch assumed that the bravais vectors of 𝑟(𝔤) are all 
orthogonal to each other. However, the derivation is still valid for any triclinic crystals. Based on 
the assumption, three translation operators on each vector is defined as follow:  
 
 𝑅: �́� = 𝑥 + 𝑎, �́� = 𝑦,                 �́� = 𝑧 

𝑆: �́� = 𝑥,                 �́� = 𝑦 + 𝑏, �́� = 𝑧 
𝑇: �́� = 𝑥,                �́� = 𝑦,                 �́� = 𝑧 + 𝑐  

(4) 

 
Where 𝑎, 𝑏, 𝑐, are the magnitude of the bravais vectors respectively. The eigenfunctions after an 
𝑅, 𝑆, 𝑇  translations can be decomposed to a linear combination of the eigenfunctions at the 
frame of reference as: 
 

𝜓𝜆(𝑥 + 𝑎, 𝑦, 𝑧, 𝐸) = ∑ 𝑎𝑥𝜆

𝑙

𝑥=1

𝜓𝑥(𝑥, 𝑦, 𝑧, 𝐸)  

𝜓𝜆(𝑥, 𝑦 + 𝑏, 𝑧, 𝐸) = ∑ 𝑏𝑥𝜆

𝑙

𝑥=1

𝜓𝑥(𝑥, 𝑦, 𝑧, 𝐸) 

𝜓𝜆(𝑥, 𝑦, 𝑧 + 𝑐, 𝐸) = ∑ 𝑐𝑥𝜆

𝑙

𝑥=1

𝜓𝑥(𝑥, 𝑦, 𝑧, 𝐸) 

 

(5) 

We also note that applying the 𝑅, 𝑆, 𝑇 translation operators 𝑔1, 𝑔2, 𝑔3 times, the eigenvalues of 
the decomposition in Eq. (5) will correspond to (𝑎𝑥𝜆)𝑔1, (𝑏𝑥𝜆)𝑔2, (𝑐𝑥𝜆)𝑔3. Since the eigenfunction 
exhibit three-fold symmetry when (Born-Von Karmen boundary conditions), we expect the 
eigenvalue to be periodic where after a translation of  𝐺1, 𝐺2, 𝐺3, the wavefunction will be the 
same as the one in the frame of reference and the eigenvalue are: 
  
 (𝑎𝑥𝜆)𝐺1 = (𝑏𝑥𝜆)𝐺2 = (𝑐𝑥𝜆)𝐺3 = 𝛿𝑥𝜆 (6) 

 
Where 𝛿𝑥𝜆 is the identity matrix. Therefore, the eigenvalues are periodic and can be expressed 
as:  
 
 

�́�𝜆𝜆 =  𝑒
2𝜋𝑖
𝐺1

 𝑘𝜆 , �́�𝜆𝜆 =  𝑒
2𝜋𝑖
𝐺2

 𝑙𝜆 , �́�𝜆𝜆 =  𝑒
2𝜋𝑖
𝐺3

 𝑚𝜆  (7) 

https://www.amazon.com/Solid-State-Physics-Neil-Ashcroft/dp/0030839939
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Substituting Eq. (7) back into Eq. (5), we have:  
 

�̀�𝜆(𝑥 + 𝑎, 𝑦, 𝑧, 𝐸) = ∑ �̀�𝑥𝜆

𝑙

𝑥=1

�̀�𝑥(𝑥, 𝑦, 𝑧, 𝐸) =  �̀�𝜆𝜆�̀�𝜆(𝑥, 𝑦, 𝑧, 𝐸) =  𝑒
2𝜋𝑖
𝐺1

 𝑘𝜆  �̀�𝜆(𝑥, 𝑦, 𝑧, 𝐸)  

�̀�𝜆(𝑥, 𝑦 + 𝑏, 𝑧, 𝐸) = ∑ �̀�𝑥𝜆

𝑙

𝑥=1

�̀�𝑥(𝑥, 𝑦, 𝑧, 𝐸) =  �̀�𝜆𝜆�̀�𝜆(𝑥, 𝑦, 𝑧, 𝐸) =  𝑒
2𝜋𝑖
𝐺2

 𝑙𝜆  �̀�𝜆(𝑥, 𝑦, 𝑧, 𝐸)  

�̀�𝜆(𝑥, 𝑦, 𝑧 + 𝑐, 𝐸) = ∑ 𝑐�̀�𝜆

𝑙

𝑥=1

�̀�𝑥(𝑥, 𝑦, 𝑧, 𝐸) =  𝑐�̀�𝜆�̀�𝜆(𝑥, 𝑦, 𝑧, 𝐸) =  𝑒
2𝜋𝑖
𝐺3

 𝑚𝜆  �̀�𝜆(𝑥, 𝑦, 𝑧, 𝐸)  

 

(8) 

Substituting 𝑎𝐺1 = 𝐾, 𝑏𝐺2 = 𝐿, 𝑐𝐺3 = 𝑀, Eq. (8) can be combined to: 
 
 𝜓𝑘𝑙𝑚 (𝑥, 𝑦, 𝑧) =  𝑒2𝜋𝑖 (

𝑘𝑥

𝐾
+

𝑘𝑦

𝐿
+

𝑚𝑧

𝑀
 ) . 𝑢𝑘𝑙𝑚 (𝑥, 𝑦, 𝑧)              𝑄. 𝐸. 𝐷          (9) 

 
 where 𝑢𝑘𝑙𝑚 is a periodic function with the lattice periodicity. 
 
Alternative derivation (Ashcroft): 

The periodic nature implies that the potential can be expanded by the Fourier series: 
 
 𝑉(𝒓) = ∑ 𝑉𝑲 𝑒𝑖𝑲.𝒓

𝑲

 (10) 

 
𝑉𝑲 =

1

𝑣
∫ 𝑉(𝒓)𝑒−𝑖𝑲.𝒓 𝑑𝒓 

(11) 

 
Two important notes to be taken here. First, since the potential 𝑉(𝒓) is real and symmetric for a 
suitable choice of origin, the Fourier coefficients should also be symmetric and real 𝑈−𝒌 = 𝑈𝒌 =
𝑈𝒌

∗.  Second, because the effective potential follows the periodicity of the lattice, we expect it 
Fourier dual to be related to the Fourier dual of the Braves lattice; which is the reciprocal lattice. 
This can be seen by substituting Eq. (10) into Eq. (3), we get: 
  
 𝑒𝑖𝑲.𝑻 = 1 → 𝑲. 𝑻 = 2𝑛𝜋 (12) 

 
Such a perspective has extraordinary consequences of determining the motions of electrons in 
the crystalline material. Thus, all the concepts and mathematics of the reciprocal geometry 
(Brillion zone) will prove to be important in studying the electron motion in crystals [8].  
 
Next, applying Born-von Karman periodic boundary condition implies a periodic wavevector that 
can also be expanded using Fourier series: 

 
𝜓(𝒓) = ∑ 𝑐𝒒 𝑒𝑖𝒒.𝒓

𝒒

 (10) 

Substituting both, effective potential Eq. (10) and wavefunction expansion Eq. (13) in the time-
independent Schrodinger in Eq. (1), we get:  

https://hal.archives-ouvertes.fr/jpa-00233038/document
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(−

ℎ2

2𝑚
 ∇2 + ∑ 𝑉𝑲 𝑒𝑖𝑲.𝒓

𝑲

− 𝐸) ∑ 𝑐𝒒 𝑒𝑖𝒒.𝒓

𝒒

= 0 
(14) 

 
 
 

∑ (
ℎ2𝑞2

2𝑚
− 𝐸)  𝑐𝒒 𝑒𝑖𝒒.𝒓

𝒒

+ ∑ 𝑉𝑲 𝑐𝒒 𝑒𝑖(𝑲+𝒒).𝒓

𝑲,𝒒

= 0 
(15) 

 
 Changing the index in the second term 𝑲 + 𝒒 → �̀�:  
 
 

∑ 𝑒𝑖𝒒.𝒓 {(
ℎ2𝑞2

2𝑚
− 𝐸)  𝑐𝒒 + ∑ 𝑉𝑲 𝑐𝒒−𝑲 

𝑲

}

𝒒

= 0 (16) 

 
Since Eq. (16) form orthogonal set, all the coefficients must vanish. This can also be represented 
in the following form by changing the indexes again: 
  
 

(
ℎ2

2𝑚
(𝒌 − 𝑲)2 − 𝐸)  𝑐𝒌−𝑲 + ∑ 𝑉�̀�−𝑲 𝑐𝒌−�̀� 

�̀�

= 0 (17) 

 
What needs to be emphasized here that this Eq. (17) is nothing put the Schrodinger equation in 
the momentum space under a periodic potential. This approach of mathematical analysis has 
been used before by Gaston Floquet to relate the class of solutions to periodic differential 
equations [9]. What it means qualitatively is that any specific value of 𝒌, only the coefficients 𝑐𝒌 
that are different by a reciporical lattice 𝑲 vector will sustain. This means that our wavefunction 
with a specific value of 𝒌 can be written as:  
 
 𝜓𝑘(𝒓) = ∑ 𝑐𝒌−𝑲 𝑒𝑖(𝒌−𝑲).𝒓

𝑲

= 𝑒𝑖𝒌.𝒓 ∑ 𝑐𝒌−𝑲 𝑒𝑖𝑲.𝒓

𝑲

 (18) 

 
 𝜓𝑘(𝒓) = 𝑒𝑖𝒌.𝒓 𝑢𝒏,𝒌(𝒓)              𝑄. 𝐸. 𝐷 (19) 

 

Bloch Wave Characteristics:  

From the previous derivation, we note that in a periodic lattice, as the one shown in Fig. 1(a), 
Bloch theorem does not give an explicit solution of the wavefunction 𝜓(𝑟). Nonetheless, it 

confine it to a class of solutions that can be described by a plane waves 𝑒𝑖𝒌.𝒓  modulated by 
periodic functions 𝑢𝒏,𝒌(𝒓) with lattice periodicity,  as shown in Fig. 1(b). 
 

• From Eq. (6) and Eq. (12), the Bloch vector (𝑘) can be always confined in a reciporical 
lattice primitive cell (e.g. ,Brillouin zone) and will be periodic thereafter. 
 

http://www.numdam.org/article/ASENS_1883_2_12__47_0.pdf
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• We note from Eq. (9) or Eq. (19) that at a fixed value of 𝒌, there are infinite solutions 
generated from the many periodic functions  𝑢𝒏,𝒌(𝒓) that satisfy the lattice.  Thus, we 

need two quantum numbers (𝑛 𝑎𝑛𝑑 𝑘) to fully specify a Bloch state.  

• The previous two points lead to the description of the band structure, which is a plot of 
the Hamiltonian eigenvalues (𝐸𝑘𝑛) of Bloch waves (usually along a symmetry line in the 
first Brillion zone) as can be seen in Fig. 1(c). Various information can be inferred from 
this dispersion relation such as the effective mass, bandgap formation, and material 
electronic and thermal behavior. 

• One of the important constant energy surfaces is Fermi-surface which contain the 𝑘 
vectors with energies equal to that of the chemical potential at zero temperature. In a 
constant potential (as the free-electron model) the fermi-surface take the form of a 
sphere where in than the periodic one (Bloch model) it is severly deformed, as shown in 
Fig. 1(d). 

• We also note that the electron momentum is not simply proportional to 
𝒑

ℎ
 as the case in 

Sommerfeld theory. This is expected since the Hamiltonian does not have complete 
translation invariance under a non-constant lattice potential. Thus, the momentum of a 
Bloch electron, known as the crystal momentum, restrict the allowed energies that an 
electron can have under the application of an external electric field. This has 
consequently lead to the concept of the effective mass, which shown importance in 
calculating many of the electron thermal and electrical properties. 

   
Figure. 1 Bloch Theorem: (a) Periodic lattice and the effective potential, (b) Bloch wave, (c) band structure, 

(d) Brillouin zone and Fermi Surface.  
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Bloch follow-up work  and theorem predictions: 

Right after his derivation, Bloch applied his theory, attempting to resolve the inconsistency in the 

free-electron model:  

• In the Drude model, the resistivity stems from the collisions of electrons with the lattice 

atoms. However, Bloch theorem treats electrons as states, excluding the collision per se 

from its theoretical grounds and include the interaction only as an effective potential. 

Despite the existence of such interaction, once the Bloch wave has a non-vanishing mean 

velocity, it will persist forever. The material resistivity arises only due to lattice defects 

and thermal vibrations. Bloch wrote, “The greatest effort in my thesis was spent on 

calculating the resistivity. Since a perfectly periodic lattice had been understood to present 

no impediment to the current, it was clear that a finite resistance could arise only from 

irregularities and that its temperature-dependence would have to be explained by the 

thermal motion of the ions.” [10].  

• Bloch has also been able to address the specific heat problem at room temperature. He 

has been able to resolve the inconsistency of the specific heat with experimental results 

and showing that it is consistent with Wilson as well as Wiedemann-Franz ratios. 

• Bloch has also evaluated his theorem for two opposite limiting cases; strongly bound and 
weekly bound electrons. He developed the method of Linear Combination of Atomic 
Orbitals (LCAO) in solids, concurrently with Robert Mullikan on monocular orbitals in 1929 
where a simpler version has been developed later by Slater and Kosteon on their “SK tight-
binding approximation” [11]. 

• Later work of Bloch and Zener attempt to describe the oscillatory motion of Bloch 
electrons in a lattice under a constant external force acting on it. However, it was hard to 
be observed due to the electron scattering with lattice defects. However, it has been later 
predicted by Leo Esaki in 1970, and experimentally observed for the first time in a 
superlattice by Jochen Feldmann and Karl Leo in 1992 [12]. 
  

Bloch Theorem and Light: 
Lawrence and William Braggs analyzed crystal structure using x-ray diffraction in 1913 and 
observed an electromagnetic bandgap where certain photonic k-vectors are prohibited due to 
distractive interference. Kogelnik and Shank suggested later building a laser mirror by utilizing 
such a phenomenon and alternating different refractive index materials [13]. Eli Yablonovittch 
has suggested then that if such a photonic bandgap of a laser cavity overlaps with the electronic 
bandgap of the gain material, the spontaneous emission can be completely inhibited, a milestone 
on matter-light interaction and acted as the birth of the photonic crystal field that has been 
subject to rigorous research in the last few decades [14]. Bloch theorem is a general-wave 
theorem that applies similarly to photonic structure and has acted as a powerful tool in analyzing 
and engineering various photonic devices and systems.  

http://rspa.royalsocietypublishing.org/content/371/1744/24
https://journals.aps.org/pr/abstract/10.1103/PhysRev.94.1498
https://www.sciencedirect.com/science/article/pii/003810989290798E
https://aip.scitation.org/doi/pdf/10.1063/1.1661499?class=pdf
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.58.2059
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