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My first contact with the electron theory of metals was in Sommerfeld’s department
at Munich, where | was a student from October 1926 to Easter 1928. These were my
third to fifth semesters as a student, and | was only beginning to acquire an under-
standing of physics, and of the new quantum and wave mechanics.

Sommerfeld was then developing his approach to electrons in metals, with some
assistance from two American visitors, W. V. Houston and C. Eckart. | heard him
give a series of lectures summarising the problems, and his results, even before the
papers were published/J)

Sommerfeld was very much at home with the classical Lorentz-Drude theory,
and familiar with the experimental data, which produced such a mysterious mixture
of confirmation (Wiedemann-Franz ratio, ‘normal’ Hall effect, and many of the
thermoelectric and thermomagnetic coefficients) and utter contradiction (para-
magnetism, specific heat, temperature dependence of resistivity). Pauli had shown(@@
that the application of Fermi statistics to the conduction electrons had resolved the
paradox of paramagnetism. Nobody seemed worried at the time about the existence
of diamagnetic metals; it was known that the ion cores would be diamagnetic.

Sommerfeld built on Pauli’s idea, and showed that Fermi statistics would also
account for the absence of an observable electronic specific heat, and this was the
greatest success of his approach. He showed that the specific heat of a degenerate
Fermi gas would be proportional to T, and should be observable at very low tem-
peratures. It was gratifying that the constancy of the Wiedemann-Franz ratio
could still be accounted for, although on the face of it it had appeared to require
a classical specific heat, and that the numerical value, which differed a little from
the classical value, fitted the data even better.

His theory failed to account for the temperature dependence of the resistivity,
and for the magnetoresistance. The latter is now known to depend essentially on
variations in the electron mobility. Sommerfeld thought of resistance in terms of
a constant mean free path. This made the collision time, and hence the mobility,
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inversely proportional to the velocity. Since even in a degenerate Fermi gas there
is a small spread of velocities of conducting electrons around the Fermi velocity,
he could obtain a small spread of collision times, and hence a small magneto-
resistance, several orders of magnitude less than the observed effect.

He followed the classical ideas by thinking of the electrons as free, except for
collisions with atoms (therefore the magnitude of the mean free path required to
explain the observed conductivity, even larger than in the classical picture because
ofthe greater velocity, was another paradox). He also ignored the mutual interaction
of the electrons. This had always been done in the classical theory, since electron-
electron encounters conserve the total electron momentum, hence the total current,
and thus do not contribute to the resistance. | do not recall Sommerfeld mentioning
this argument explicitly, but it is always clearly stated in the classical treatments,
and there was no reason why he should have taken a different point of view.

As a very junior theoretician | listened to Sommerfeld’s exposition and was duly
impressed, but was not yet at the stage of criticizing or questioning the assumptions.
It was characteristic of Sommerfeld’s positive attitude that one learnt more about
the successful solution of difficulties than about the mysteries that remained. He
was completely fair in listing the contradictions - it was just a matter of emphasis.

When at Easter 1928 Sommerfeld left for a sabbatical year, | joined Heisenberg’s
group at Leipzig, where Felix Bloch had just completed his treatment of electrons
in periodic potentials® and his explanation of the order of magnitude and tempera-
ture dependence of the resistivity in terms of lattice vibrations. Bloch also did not
worry about the electron-electron interaction - | do not know whether he recalled
the old arguments that it should not matter, or whether he was simply content to
extend the theory by taking in one more factor which had previously been ignored,
without necessarily including everything.

My first substantial research assignment in Leipzig was to see whether Bloch’s
starting-point of independent electrons (‘electron orbitals’ we would say today)
was unavoidable, and how far one could get if one started from a Heitler-London
model (which Heisenberg was about this time applying to ferromagnetism). Today
it would be obvious to any undergraduate that there could not be any conductivity
in the Heitler-London model unless it is supplemented by ionized states, in which
some atoms have more, and others fewer, than their normal complement ofelectrons.
But at the time this conclusion was not obvious to me, and evidently not to Heisen-
berg. It took some struggle with exchange integrals for a many-body system before
I concluded that, at least in the linear chain | was using as a model, the only way
a current could be obtained was by all electrons making a quantum jump simul-
taneously, and for a macroscopic dimension this makes the rate astronomically small.

In the summer of 1928 | was fairly sure about this conclusion. | spent the summer
vacation in England, mostly as a tourist, but | visited Cambridge and called on
Dirac, whom | had met. He introduced me to R. H. Fowler. When Fowler heard |
was from Leipzig, he asked me to talk to the Kapitza Club about Bloch’s work. At
that time neither my English nor my command of physics was really adequate for
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this, but it did not occur to me to refuse, and | did my best. But, more relevant to
the present story, he also introduced me to one of his research students, W. H.
McCrea (now a distinguished astrophysicist), who was also thinking about con-
ductivity using what he and Fowler called the Heitler-London model. Actually
this@ was a one-electron tight-binding model with two centres of force.

On my return to Leipzig the project was abandoned, and Heisenberg suggested |
looked at the ‘anomalous’, i.e. positive, Hall effect. | tackled this on the basis of
Bloch’s theory of electrons in periodic fields, and first had to convince myself that
the effect of the magnetic field on the wave vector of the electron was the same as
for a free electron of the same velocity, but that the mean velocity of the electron
was given by dE/dk, and therefore different from that for a free electron of the
same k, if the energy function E(k) was different. It was obvious, in particular,
that in Bloch’s tight-binding model the energy would flatten off near the band edge,
so that the current would there go to zero. Thus for an electron near the band edge
an electric field could cause a decrease, rather than an increase, in the velocity in
the field direction. One’s first shock on seeing this result is the fear that it might
lead to a negative conductivity. One soon realizes, however, that for an ensemble
of electrons in statistical equilibrium the positive acceleration of the electrons near
the bottom of the band outweighs the negative acceleration of those near the top,
until for a full band the current just vanishes.

At this point one was close to an explanation of the positive Hall effect, subject
only to the proof that the rate of change of the wavevector in the magnetic field
is still given by the Lorentz force. At this point | cheated a little by disregarding
inter-band terms, which for the purpose in hand were unimportant, but in other
problems can cause headaches.

So the explanation of the positive Hall effect came out without much difficulty.
I recall a comment by Heisenberg that this was similar to the situation in atomic
spectra (pointed out, I think, by Pauli) where an atom with one, or a few, electrons
missing from a closed shell was dynamically similar to one with just one, or a few,
electrons in that shell, except for some signs. My memory is confused, however, on
the question whether this comment was made when Heisenberg suggested the
problem to me, or when | showed him the answer. In other words, | am not clear
whether Heisenberg had, with his usual powerful intuition, guessed in advance how
the solution would come out. | reported previously that he had, but I am now
rather doubtful whether this was right.

In any event it was gratifying to have solved one of the remaining mysteries.
| wrote a paper on the subject,® which was not too clearly written, and also gave
a talk to a conference, of which a summary is published.*6*It contains a sketch of
the Fermi surface for a two-dimensional square lattice for the case of an almost
empty, and an almost full band with tight binding. In the latter case the boundary
consists of circular quadrants inside the four corners of the square which forms the
Brillouin zone for that case. In the longer paper there is also the remark that the
conductivity vanishes for a full band.
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This seems relevant to another question on which my memory fails to serve,
namely when and how it was first realized that a filled band would give an insulator.
In retrospect it seems to be an obvious consequence of the existence of bands, at
least in the tight-binding limit, and particularly obvious from the arguments
sketched above. It seems almost incredible that this point could have been missed,
but I have no clear recollection of when | became aware of it, and it is certainly not
mentioned in any paper of that time.

This work was complete by the spring of 1929, and since at that time Heisenberg
went on sabbatical leave, | moved to Zurich to work with Pauli. Here | left metals
for a while, since Pauli suggested to me the problem of heat conduction in non-
metallic crystals, under the influence of the anharmonic forces. This was a problem
which, at least at high temperatures, could be treated classically. Pauli had been
interested in this problem and had looked at the related question of the absorption
of sound waves because ofanharmonicity. The abstract ofa talk he gave to a meeting
is published,(? and the answer given there is wrong (probably the only error in
print under Pauli’s name) because it gives a finite damping in a linear chain, for
which in fact the three-phonon processes, which he was studying, do not occur.
He showed me a few pages of notes on this problem, to start me off. Apart from this
guidance | looked at the problem from first principles, and this was probably
fortunate, because there were a number of different wrong approaches in the
literature, and it was less confusing to find the solution first, and then discover
where others had gone wrong.

This led to the concept (and the ugly word) of Umklapp processes, and to the
prediction of the exponential rise of the heat conductivity at low temperatures,®
verified only in 1951 by Berman.© In many ways my paper did not dispose of the
problem. For example, it failed to point out that a ‘pure’ substance, to show the
exponential rise, had to be also isotopically pure. This omission made the experi-
mental discovery of the effect more difficult. Other, more sophisticated parts of
the problem are still not completely sorted out. | submitted a thesis on this topic
to Leipzig (my one semester in Zurich not being an adequate residence qualification
there) and returned to Zurich as Pauli’s assistant.

| then started thinking further about electrons in metals. | felt uncomfortable
about having, in my work on the Hall effect, relied on the flattening of the energy
surface near the band edge, a result then known only in the tight-binding limit,
which was not realistic for conduction electrons. It seemed obvious that in the
opposite limit of free electrons this effect was absent, and one therefore did not
know what was happening in the intermediate case. It suddenly dawned on me
that, if a weak potential was added as a small perturbation, there would be band
gaps near the Bragg reflexions, and that the energy surface there had zero slope,
though, for a very weak potential this flattening was confined to a very narrow
region near the edge, and the slope returned to its free-electron value more rapidly
the weaker the potential.(10

Few pieces of work have given me as much pleasure as this discovery, which
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required only a few lines of calculation, both because it satisfied me that the nature
of the Bloch bands was now qualitatively the same all the way from tight binding
to almost free electrons, and because of the neat method of approximation | had
invented. This was, of course, not new, being the standard technique of dealing
with the anomalous Zeeman effect, but | was quite ignorant of this. | was satisfied
with solving the one-dimensional case, but Brillouin took over the idea and dis-
cussed the general three-dimensional problem in depth, which became the theory
of Brillouin zones.(0)

At the same time | started worrying about the conservation of wavevector
(pseudomomentum as we say today) in metals. |1 had found that in non-metallic
crystals at low temperatures, when Umklapp processes were rare, it was difficult
to get rid of the phonon drift caused by a temperature gradient. In a metal the
electric field caused an electron drift, which in electron-phonon collisions tended
to be passed on to the phonons. What mechanism restores the phonons to equili-
brium ?

Bloch had by-passed this problem by assuming that the phonon distribution is
always in thermal equilibrium. How far was this justified? | set up a Boltzmann
equation for electrons and phonons, allowing for their interaction. For an electron
band which is about half full, so that neither the number of electrons nor that of
holes is small, or in the presence of several partly filled bands, there is no difficulty
in generating Umklapp processes, even at low temperature, and one still finds
Bloch’s Thlaw for the low-temperature resistivity. | first found T4,(12) because of
an invalid approximation, and had to correct this in a later paper.(13 The factor of
the TEBw could be similar to Bloch’s or different, according to whether phonon-
phonon interactions or electron-phonon interactions were dominant in keeping the
phonons in equilibrium.

However, in metals in which the Fermi surface did not touch the zone boundary,
the theory predicted an exponential rise of the electric conductivity at low tempera-
ture. | was worried by the fact that such a behaviour had never been seen. | was
aware of the fact that electron-electron collisions could also cause Umklapp
processes, and the criterion for this was somewhat less restrictive than for the
electron-phonon interaction. Roughly speaking, it would be sufficient if the dia-
meter of the Fermi surface was at least one-half of that of the Brillouin zone. But
it was known that the contribution of electron-electron collusions to the resistivity
was proportional to T2; if these collisions were vital to give a finite resistivity it
was hard to believe that one would still finda 5law.

I was not then aware of the correct explanation: all measurements at these low
temperatures were, until recently, made on specimens whose residual (impurity)
resistance was much higher than the ‘ideal ’ resistivity, and had to be subtracted
from the measured value, assuming additivity according to Matthiessen’s rule.
This rule lacks any rigorous theoretical foundation, and, while it is empirically
quite well satisfied in many circumstances, it is not applicable if the impurities are
sufficient to dispose of the excess pseudomomentum, but matter less for the actual
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mobility of individual electrons. This suggests that for very pure specimens the
resistivity should be substantially less than that computed by Matthiessen’s rule
from less pure samples. This has now been verified/}4)so that the ideas of my 1931
paper have at last found some justification.

I have mentioned the electron-electron interaction, and this may be the place
at which to refer to the question in Mott’s memorandum why this was so generally
ignored. | have already referred to the classical argument that collisions between
free electrons conserve momentum and hence the current. | realized that this
argument was unconvincing, because there was in this respect a complete analogy
between electron-electron and electron-phonon interactions. In the absence of
Umklapp processes both conserve the wavevector (pseudomomentum). Neither
conserves the electric current if the electrons are in Bloch states, but any conser-
vation law causes difficulty in restoring equilibrium, and hence in getting a finite
resistivity. Both interactions can involve Umklapp processes, and then do not
observe any conservation laws (except for energy).

The original reason for neglecting electron interaction was that one was starting
from simple approaches and generalized the model step by step, giving particular
weight to those additional factors that one could see would make a major difference.
The effect of electron-electron interactions on the resistivity would lead, as | have
mentioned, to a Tlw, which had never been observed, and this suggested t
effect was probably small. This was borne out by a crude order-of-magnitude
estimate.

I remember a conversation with Landau in which he explained how to estimate
the contributions of various factors to the resistivity by dimensional reasoning.
This argument, which was more general than my rough estimate, showed indeed
that the electron-electron collisions were negligible, except at temperatures below
those in use at the time. He stressed that this was because in a degenerate Fermi
gas the only permitted transitions were those in which both electrons were initially,
and remained, in the border region of the Fermi distribution, so that the 2factor

was really ( JCcT/E)2, whereas for the phonons the characteristic energy was t
Debye cut-off J& Evidently these ideas were the forerunners of his Fermi-liquid
theory.

All of these discussions relate only to the effect of the electron-electron inter-
action on the irreversible processes, as distinct from its effect on the equilibrium
state of the electron system. One guess, though not pursued in depth at the time,
was that the Bloch wave functions and their energies might retain their meaning,
but that their explicit form would have to be modified (‘renormalized’in modern
terms).

I must confess that | never took too much interest in band calculations or in the
calculation of the electron-phonon matrix elements (about which there was a
separate, but not unrelated, controversy). | preferred to look at results which were
not sensitive to these questions, partly out of laziness but partly out of pessimism
about the possibility of making realistic band calculations, which would have to

2 Vol. 371. A
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take electron—electron forces into account. This pessimism has since proved un-
justified.

An important episode for my understanding of conduction problems arose from
a paper by Kretschmann, (5 who attacked the then accepted theory of conductivity
and claimed that the basis of the papers by Bloch and others was quite wrong.
He had a number of objections which were mostly not very well conceived, but he
claimed, in particular, that in the usual derivation of the Boltzmann equation one
had made unjustified use of perturbation theory. In trying to defend the theory I
therefore set out to prove that perturbation theory was in order, and to my amaze-
ment | found that this was very questionable, if not exactly for the reasons given
by Kretschmann. It appeared that the usual application of Fermi’s ‘golden rule’
depended on the inequality WT Tt

where r is the collision time. This was not satisfied for many metals. For most the
two quantities were of the same order of magnitude. Indeed Landau’s dimensional
analysis made them comparable/16*

This created a dilemma, in which Landau again came to the rescue. He produced
an ingenious argument showing that, at least in situations in which the energy
transfer in collisions was negligible, i.e. both at high temperatures, above the
Debye 0, and also where impurity scattering was dominant, it is sufficient that

Vi<

which is much less restrictive, and holds for all normal metals. For intermediate
temperatures, and for semiconductors, the point is still obscure.

This argument of Landau’s(ly) is still essential today. It is now somewhat easier
to visualize in terms of Kubo’s formula, and it is expressed in more highbrow ways
in more recent transport theories, unless the problem is simply ignored, which is
also not uncommon.

In the 1930s we were strongly influenced by the impressive successes of quantum
mechanics in clearing up the basic problems of solid state physics, and this was
probably responsible for a tendency to concentrate on general points of principle
rather than on specific cases. This was certainly the attitude of Pauli, who had,
in a sense, opened up the field with his paper on paramagnetism, and who maintained
an interest in the field to the extent of attending conferences devoted to solid state
theory (e.g. in Geneva in 1934). But as the work became more detailed, and required
more ad hoc assumptions, it seemed to him “dirty physics’.

Perhaps it is typical therefore that, when during the Zurich period, I became
interested in the optical properties of solids,(18 | looked only at the spectra of pure
substances, using the tight-binding model, so that the theory applied strictly only
to the rare-earth salts, or to crystals made of large organic molecules in which the
optically active atoms were well shielded from each other. | was, of course, aware
of the work by Pohl and others on the origin of luminescence and other optical
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phenomena, but since these results depended strongly on the state of purity of the
substance they seemed too complicated for a basic theoretical approach.

What | looked at was the Frenkel exciton, as it is now called, though | believe
I had not read Frenkel’s paper. | was particularly puzzled by the origin of the non-
radiative decay of such excitations, which involved the transfer of energy to the
phonons. One was accustomed to treating such situations by perturbation theory,
treating anharmonic effects as small, and on that basis it seemed impossible to
understand the decay, since the energy of the electronic excitation was much greater
than the maximum phonon energy, so that the decay required the creation of many
phonons in a single event. It took some trouble to appreciate that the forces on the
excited atom would be appreciably different from those on a normal atom, even as
regards the equilibrium configuration, so that a perturbation expansion in terms
of displacements from a common equilibrium made no sense. The situation was
similar to the familiar Franck-Condon treatment for molecules, except that one
was dealing with much more numerous degrees of freedom.

One other worry concerned the magnetoresistance in metals. This was troubled
by two difficulties. One was that all the simple theories, such as Sommerfeld’s,
gave a negligible effect. Similarly, an attempt by Bloch to invoke the paramagnetic
spin reversal of some electrons, which alters the distribution of kinetic energies,
gave an even smaller result. The other problem was that Kapitza’s experiments
gave, for many metals, a resistance which, over a long range, was linear in the
magnetic field, whereas the usual theories always gave an  2law. Thinking about
the field dependence | noticed that the usual approximation of expanding in powers
of H should break down when the Larmor period became shorter than the collision
time, and that for very high fields the resistivity should probably tend to a constant
limit. This argument therefore predicted a point of inflexion, which was going some
way towards Kapitza’s linear law. | was proud of this finding, and announced a
talk on the subject at a conference in Leipzig in 1930.(19 To my embarrassment, |
discovered on the eve of my lecture that, in the model | was using, the coefficient
of my pleasing magnetoresistance law was zero. The presentation of my talk was
thereby made rather difficult.

| found later that the fault was in using an isotropic model in which, crudely
speaking, all electrons had the same mobility, and that anisotropy of the Fermi
surface, for example, would cause differences in mobility, and hence a substantial
magnetoresistance.(@) This had also been found by Bethe, and | do not remember
clearly how far my ideas had been inspired by his paper. One still could not see
why the magnetoresistance in the alkalis was of the same order as in other metals,
although their Fermi surface was suspected, and has since been proved, to be very
accurately spherical. I am not sure who first pointed out that the anisotropy of
the phonon spectrum (which is anisotropic even for long waves in a cubic crystal)
was responsible.

Landau had visited Zurich when his results on free-electron diamagnetism were
new. According to his theory the diamagnetism would compensate one-third of the
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Pauli paramagnetism. Some further diamagnetism was due to the ion cores, but
it seemed difficult to explain how the total susceptibility could become strongly
negative, as in Bi. Clearly the assumption of free electrons was not good enough,
and one had to take the periodic potential of the lattice into account. How would
one find the Landau diamagnetism for general Bloch states? This seemed a hard
problem because Landau’s explanation appeared to depend on the discrete nature
of the kinetic energy (at least in the plane perpendicular to the field). One would
thus have to find the actual eigenstates in the periodic potential and magnetic
field. Moreover, collisions would broaden these levels by more than their spacing
if the collision time was shorter than the Larmor period. It was a pleasant surprise(2)
to discover that for statistical equilibrium the collision broadening and other effects
were unimportant,as long as the energies associated with them were small compared
to kT, even if they were larger than the level spacing. This made it possible to give
a general expression for the Landau diamagnetism for any shape of the energy
surface, except for inter-band terms, which were again hopefully regarded as
negligible. For Bi this implied a very sharp curvature of the energy function, and
later H. Jones put forward his model for Bi, which explained this fact.(2)

This led to speculation what would happen in strong magnetic fields at very low
temperatures, and it became evident that one would get an oscillatory behaviour
of the susceptibility, reminiscent of the mysterious effect discovered by de Haas
and van Alphen. Shoenberg has recently drawn my attention to the fact that this
behaviour was already mentioned briefly in Landau’s paper. Landau discounts the
effect as unobservable. Evidently Landau had not heard of the de Haas-van
Alphen experiments, and they never noticed the remark in his paper. Presumably
I never read Landau’s paper carefully, having had its main contents explained by
him before publication, or, if | saw the remark, | accepted Landau’s assurance that
it was unobservable, and promptly forgot it.

To account for the experiments one had to make what seemed rather exotic
assumptions about the shape of the Fermi surface and the occupation numbers in
Bi, and even with that | did not manage to get a quantitative fit because | had not
allowed for the possibility of several degenerate branches of the Fermi surface .3
Nevertheless | was convinced that the explanation was basically right. Numerical
studies by Blackman later gave a better fit.(2) Then Landau showed how to obtain
an approximate answer in closed form.(® The relation of the de Haas-van Alphen
oscillations with the geometry of the Fermi surface was later made transparent by
the beautiful argument of Onsager.@®

My only other major contact with solid state problems in the pre-war days
related to the connection between long-range order and the existence of a sharp
phase transition.J2)My object was to stress the great qualitative difference between
one and three dimensions. The argument also seemed to say that there could not
be a sharp melting point in two dimensions, a result only recently upset by the
work of Kosterlitz and Thouless.

By the mid-1980s | had become interested in other problems and lost touch with
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solid state physics. Work on the Ising model, and on Bethe’s approximation to
ordering in alloys, presumably counts as statistical mechanics rather than solid
state theory.

My only other excursion into problems of solids was rather accidental. Orowan,
who knew much about dislocations, had conceived a model to describe the force
on a dislocation as it moves through the lattice. He found the mathematics trouble-
some, and suggested that I look at it. It was easy enough to formulate the equations
for his model, but they led to a nonlinear integral equation. I knew nothing of
integral equations, let alone nonlinear ones, and was ready to give up. It was clear
physically that the solution to the equation had to be a function that approached a
constant value for large positive argument and the same value with opposite sign
for large negative argument. In other words the behaviour was similar to an arctan.
Just for amusement | inserted an arctan into the equation, and to my great amaze-
ment it turned out to be the solution.@ In the remaining algebra | managed to
lose a factor 2, which appears in a large exponent. This error was corrected many
years later by Nabarro.(® | thought this result should be published by Orowan,
who had invented the physics, or at most as a joint paper. But he refused, and |
did not think the paper important enough to make an issue of it. |1 had presented
it to a meeting in Bristol where, | believe, Orowan was not present. I1f | had foreseen
what rings this small pebble would cause in the pond of dislocation physics | might
have insisted, though this would have landed Orowan with a share of the respon-
sibility for the disastrous factor 2, which makes the ‘Peierls-Nabarro force’ quite
negligible for most purposes.
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