
1 Õ f noise from nonlinear stochastic differential equations

J. Ruseckas* and B. Kaulakys
Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania

�Received 20 October 2009; published 8 March 2010�

We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the
power spectral density in any desirably wide range of frequency. Such equations were obtained starting from
the point process models of 1 / f� noise. In this article the power-law behavior of spectrum is derived directly
from the stochastic differential equations, without using the point process models. The analysis reveals that the
power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional
justification of equations, expands the class of equations generating 1 / f� noise, and provides further insights
into the origin of 1 / f� noise.
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I. INTRODUCTION

Power-law distributions of spectra of signals, including
1 / f noise �also known as 1 / f fluctuations, flicker noise, and
pink noise�, as well as scaling behavior in general, are ubiq-
uitous in physics and in many other fields, including natural
phenomena, human activities, traffics in computer networks,
and financial markets. This subject has been a hot research
topic for many decades �see, e.g., a bibliographic list of pa-
pers by Li �1�, and a short review in Scholarpedia �2��.

Despite the numerous models and theories proposed since
its discovery more than 80 years ago �3,4�, the intrinsic ori-
gin of 1 / f noise still remains an open question. There is no
conventional picture of the phenomenon and the mechanism
leading to 1 / f fluctuations are not often clear. Most of the
models and theories have restricted validity because of the
assumptions specific to the problem under consideration. A
short categorization of the theories and models of 1 / f noise
is presented in the introduction of the paper �5�.

Until recently, probably the most general and common
models, theories and explanations of 1 / f noise have been
based on some formal mathematical description such as frac-
tional Brownian motion, the half-integral of the white noise,
or some algorithms for generation of signals with scaled
properties �6–14� and the popular modeling of 1 / f noise as
the superposition of independent elementary processes with
the Lorentzian spectra and a proper distribution of relaxation
times, e.g., a 1 /�relax distribution �15–21�. The weakness of
the latter approach is that the simulation of 1 / f� noise with
the desirable slope � requires finding the special distribu-
tions of parameters of the system under consideration; at
least a wide range of relaxation time constants should be
assumed in order to allow correlation with experiments
�22–28�.

Nonlinear stochastic differential equation with linear
noise and nonlinear drift, was considered in Ref. �9�. It was
found that if the damping is decreasing with increase in the
absolute value of the stochastic variable, then the solution of
such a nonlinear stochastic differential equation �SDE� has
long correlation time. Recently nonlinear SDEs generating

signals with 1 / f noise were obtained in Refs. �29,30� �see
also recent papers �5,31��, starting from the point process
model of 1 / f noise �27,32–39�.

The purpose of this article is to derive the behavior of the
power spectral density directly from the SDE, without using
the point process model. Such a derivation offers additional
justification of the proposed SDE and provides further in-
sights into the origin of 1 / f noise.

II. PROPOSED STOCHASTIC DIFFERENTIAL
EQUATIONS

Starting from the point process model, proposed and ana-
lyzed in Refs. �27,32–38�, the nonlinear stochastic differen-
tial equations are derived �5,29,30�. The general expression
for the SDE is

dx = �2�� −
�

2
�x2�−1dt + �x�dW . �1�

Here, x is the signal, � is the exponent of the multiplicative
noise, � defines the behavior of stationary probability distri-
bution, and W is a standard Wiener process.

SDE �1� has the simplest form of the multiplicative noise
term, �x�dW. Multiplicative equations with the drift coeffi-
cient proportional to the Stratonovich drift correction for
transformation from the Stratonovich to the Itô stochastic
equation �40� generate signals with the power-law distribu-
tions �5�. Equation �1� is of such type and has probability
distribution of the power-law form P�x��x−�. Because of the
divergence of the power-law distribution and the requirement
of the stationarity of the process, the SDE �1� should be
analyzed together with the appropriate restrictions of the dif-
fusion in some finite interval. For simplicity, in this article,
we will adopt reflective boundary conditions at x=xmin and
x=xmax. However, other forms of restrictions are possible.
For example, exponential restriction of the diffusion can be
obtained by introducing additional terms in Eq. �1�,

dx = �2�� −
�

2
+

m

2
� xmin

x
�m

−
m

2
� x

xmax
�m�x2�−1dt + �x�dW .

�2�

Here, m is some parameter.*julius.ruseckas@tfai.vu.lt
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Equation �1� with the reflective boundary condition at xmin
and xmax can be rewritten in a form that does not contain
parameters � and xmin. Introducing the scaled stochastic vari-
able x→x /xmin and scaled time t→�2xmin

2�−2t one transforms
Eq. �1� to

dx = �� −
�

2
�x2�−1dt + x�dW . �3�

The scaled Eq. �3� has a boundary at x=1 and at

� =
xmax

xmin
. �4�

Further, we will consider Eq. �3� only. In order to obtain 1 / f�

noise we require that the region of diffusion of the stochastic
variable x should be large. Therefore, we assume that �	1.

III. POWER SPECTRAL DENSITY FROM
THE FOKKER-PLANCK EQUATION

According to Wiener-Khintchine relations, the power
spectral density is

S�f� = 2�
−





C�t�ei�tdt = 4�
0




C�t�cos��t�dt , �5�

where �=2�f and C�t� is the autocorrelation function. For
the stationary process, the autocorrelation function can be
expressed as an average over realizations of the stochastic
process,

C�t� = 	x�t��x�t� + t�
 . �6�

This average can be written as

C�t� =� dx� dx�xx�P0�x�Px�x�,t�x,0� , �7�

where P0�x� is the steady-state probability distribution func-
tion and Px�x� , t �x ,0� is the transition probability �the condi-
tional probability that at time t the signal has value x� with
the condition that at time t=0 the signal had the value x�.
The transition probability can be obtained from the solution
of the Fokker-Planck equation with the initial condition
Px�x� ,0 �x ,0�=
�x�−x�.

Therefore, for the calculation of the power spectral den-
sity of the signal x we will use the Fokker-Planck equation
instead of stochastic differential Eq. �3�. The Fokker-Planck
equation corresponding to the Itô solution of Eq. �3� is
�41,42�

�

�t
P = − �� −

�

2
� �

�x
x2�−1P +

1

2

�2

�x2x2�P . �8�

The steady-state solution of Eq. �8� has the form

P0�x� = �
� − 1

1 − �1−�x−�, � � 1,

1

ln �
x−1, � = 1.
 �9�

The boundary conditions for Eq. �8� can be expressed using
the probability current �42�

S�x,t� = �� −
�

2
�x2�−1P −

1

2

�

�x
x2�P . �10�

At the reflective boundaries xmin=1 and xmax=� the probabil-
ity current S�x , t� should vanish, and, therefore, the boundary
conditions for Eq. �8� are

S�1,t� = 0, S��,t� = 0. �11�

A. Eigenfunction expansion

We solve Eq. �8� using the method of eigenfunctions. An
ansatz of the form

P�x,t� = P��x�e−�t �12�

leads to the equation

− �� −
�

2
� �

�x
x2�−1P� +

1

2

�2

�x2x2�P� = − �P��x� , �13�

where P��x� are the eigenfunctions and ��0 are the corre-
sponding eigenvalues. The eigenfunctions P��x� obey the or-
thonormality relation �42�

�
1

�

e��x�P��x�P���x�dx = 
�,��, �14�

where ��x� is the potential, associated with Eq. �8�,

��x� = − ln P0�x� . �15�

It should be noted that the restriction of diffusion of the
variable x by xmin and xmax ensures that the eigenvalue spec-
trum is discrete. Expansion of the transition probability den-
sity in a series of the eigenfunctions has the form �42�

Px�x�,t�x,0� = �
�

P��x��e��x�P��x�e−�t. �16�

Substituting Eq. �16� into Eq. �7� we get the autocorrelation
function

C�t� = �
�

e−�tX�
2 . �17�

Here,

X� = �
1

�

xP��x�dx �18�

is the first moment of the stochastic variable x evaluated with
the �-th eigenfunction P��x�. Such an expression for the au-
tocorrelation function has been obtained in Ref. �43�. Using
Eqs. �5� and �17� we obtain the power spectral density

S�f� = 4�
�

�

�2 + �2X�
2 . �19�

This expression for the power spectral density resembles the
models of 1 / f noise using the sum of the Lorentzian spectra
�15–18,27,28,44,45�. Here, we see that the Lorentzians can
arise from the single nonlinear stochastic differential equa-
tion. Similar expression for the spectrum has been obtained
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in Ref. �14� where reversible Markov chains on finite state
spaces were considered �Eq. �34� in Ref. �14� with −�k,m
playing the role of ��.

A pure 1 / f� power spectrum is physically impossible be-
cause the total power would be infinity. It should be noted
that the spectrum of signal x, obeying SDE �3�, has 1 / f�

behavior only in some intermediate region of frequencies,
fmin� f � fmax, whereas for small frequencies f � fmin the
spectrum is bounded. The behavior of spectrum at frequen-
cies fmin� f � fmax is connected with the behavior of the au-
tocorrelation function at times 1 / fmax� t�1 / fmin. Often
1 / f� noise is described by a long-memory process, charac-
terized by S�f��1 / f� as f →0. An Abelian-Tauberian theo-
rem relating regularly varying tails shows that this long-
range dependence property is equivalent to similar behavior
of autocorrelation function C�t� as t→
 �46�. However, this
behavior of the autocorrelation function is not necessary for
obtaining required form of the power spectrum in a finite
interval of the frequencies which does not include zero
�47–49�.

From Eq. �19�, it follows that if the terms with small �
dominate the sum, then one obtains 1 / f2 behavior of the
spectrum for large frequencies f . If the terms with 1 / f� �with
��2� are present in Eq. �19�, then at sufficiently large fre-
quencies those terms will dominate over the terms with 1 / f2

behavior. Since the terms with small � lead to 1 / f2 behavior
of the spectrum, we can expect to obtain 1 / f� spectrum in a
frequency region where the main contribution to the sum in
Eqs. �17� and �19� is from the large values of �. Thus we
need to determine the behavior of the eigenfunctions P��x�
for large �. The conditions when eigenvalue � can be con-
sidered as large will be investigated below.

B. Eigenfunctions of the Fokker-Planck equation

For ��1, it is convenient to solve Eq. �13� by writing the
eigenfunctions P��x� in the form

P��x� = x−�u��x1−�� . �20�

The functions u��z� with z=x1−� obey the equation

d2

dz2u��z� − �2� − 1�
1

z

d

dz
u��z� = − �2u��z� , �21�

where the coefficients � and � are

� = 1 +
� − 1

2�1 − ��
, � =

�2�

�� − 1�
. �22�

The area of diffusion of the variable z=x1−� is restricted by
the minimum and maximum values zmin and zmax,

zmin = ��1−�, � � 1,

1, � � 1,
� zmax = �1, � � 1,

�1−�, � � 1.
� �23�

The probability current S��x�, Eq. �10�, rewritten in terms of
functions u�, is

S��z� =
1

2
�� − 1�z��−��/��−1� �

�z
u��z� . �24�

Therefore, the boundary conditions for Eq. �21�, according to
Eq. �11� are u���1�=0 and u����1−��=0. Here, u���z� is the de-
rivative of the function u��z�. The orthonormality relation
�14� yields the orthonormality relation for functions u��z�,

1 − �1−�

�� − 1��1 − ���1

�1−�

z��−��/�1−��u��z�u���z�dz = 
�,��.

�25�

The expression �18� for the first moment X� of the stochastic
variable x evaluated with the �-th eigenfunction becomes

X� =
1

1 − �
�

1

�1−�

z1+�−�/1−�u��z�dz . �26�

C. Solution of the equation for eigenfunctions

The solutions of Eq. �21� are �50�

u��z� = z��c1J���z� + c2Y���z�� , �27�

where J��z� and Y��z� are the Bessel functions of the first
and second kind, respectively. The coefficients c1 and c2
needs to be determined from the boundary and normalization
conditions for function u��z�. The asymptotic expression for
the function u��z� is

u��z� � c�z�−1/2�−1/2 cos��z + a�, �z 	 1. �28�

Here, a is a constant to be determined from the boundary
conditions and c� is the constant to be determined from the
normalization �25�.

The behavior of the power spectral density in Eq. �19� as
1 / f� can be only due to terms with large �. Therefore, we
will consider the values of � for which at least the product
�zmax is large, �zmax	1. The first moment of the variable x
in the expression for the autocorrelation function �17� is ex-
pressed via integral �26�. If the condition �z	1 is satisfied
for all z then the function u��z� has frequent oscillations in
all the region of the integration, and the integral is almost
zero. Consequently, the biggest contribution to the sum in
Eq. �17� makes the terms corresponding to those values of �,
for which the condition �z	1 is not satisfied for all values
of z between zmin and zmax. Therefore, we will restrict the
values of � by the condition �zmin�1. Thus we will consider
eigenvalues � satisfying the conditions

1/zmax � � � 1/zmin. �29�

Explicitly, we have conditions 1�����−1 if ��1 and
1 /�1−����1 if ��1.

1 / f NOISE FROM NONLINEAR STOCHASTIC… PHYSICAL REVIEW E 81, 031105 �2010�

031105-3



The derivative of the function u��z�, Eq. �27�, is

u���z� = �z��c1J�−1��z� + c2Y�−1��z�� . �30�

Since we consider the case �zmin�1, then, using Eq. �30�,
instead of the boundary condition u���zmin�=0 we can ap-
proximately take the condition

lim
y→0

�c1J�−1�y� + c2Y�−1�y�� = 0.

If ��1, then we get c2=0; if ��1 then c2=−c1 tan����.
Using those values of the coefficient c2, we obtain the solu-
tions of Eq. �21�

u��z� � �c�z�J−���z� , � � 1,

c�z�J���z� , � � 1.
� �31�

From approximate solution �31�, using asymptotic expres-
sion for the Bessel functions, we can determine the param-
eter a in the asymptotic expression �28�. We obtain that the
parameter a depends on � and does not depend on �.

D. Normalization

Taking �=�� from Eq. �25� we get the normalization con-
dition. Using Eq. �31�, we have

c�
2 1 − �1−�

�� − 1��1 − ���1

�1−�

zJ��
2 ��z�dz

=
1 − �1−�

�� − 1�
c�

2

�1 − ���2�
�zmin

�zmax

yJ��
2 �y�dy � 1.

Taking into account the condition �zmin�1 and replacing the
lower limit of integration by 0, we obtain that the integral is
approximately equal to

�
0

�zmax

yJ��
2 �y�dy �

�zmax

�
.

Here, we assumed that �zmax	1. Therefore, the normaliza-
tion constant c� is

c� ���1 − ��
zmax

� − 1

1 − �1−��� . �32�

IV. CALCULATION OF THE POWER
SPECTRAL DENSITY

A. Estimation of the first moment X� of the stochastic variable
x

The expression �17� for the autocorrelation function con-
tains the first moment X� of the variable x, expressed as an
integral of the function u�, Eq. �26�. Using Eq. �31�, we get

X� �
c�

1 − �
�

1

�1−�

z�−1J����z�dz

=
c�

�1 − �����
�zmin

�zmax

y�−1J���y�dy .

Here,

� = 1 +
� − 3

2�� − 1�
�33�

and “+” sign is for ��1, while “−” is for ��1.
If ��+��0, taking into account that �zmin�1, we can

replace the lower limit of the integration by 0, X�

�
c�

�1−��
1
�� �0

�zmaxy�−1J���y�dy. We get that the integral in the
expression for X� approximately does not depend on the
lower limit of integration �zmin. We can integrate the integral
by parts and use the properties of the Bessel functions to
obtain

X� �
c�

�1 − ������y�−1J���−1��y���zmin

�zmax

� �� + � − 2��
�zmin

�zmax

y�−2J���−1��y�dy� . �34�

Using expression �31� for the function u��z�, the boundary
conditions u���zmin�=0 and u���zmax�=0 leads to

J���−1���zmin� = 0, J���−1���zmax� = 0. �35�

Therefore, the first term in the expression �34� for X� is zero.
If ��

5
2 , taking into account that �zmax	1, we can extend

the upper limit of integration to +
. We get that the integral
for X� approximately does not depend on the upper limit of
integration �zmax.

Therefore, the first moment X� of the variable x is propor-
tional to the expression

c�

�1 − ��
1

�� . �36�

Now we are ready to estimate the power spectral density.

B. Power spectral density

Since �zmax	1, from the boundary condition u���zmax�
=0 using the asymptotic expression �28� for the function
u��z� we obtain the condition sin��zmax+a�=0 and �zmax
=�n−a. Then

�n �
�1 − ��2

2zmax
2 ��n − a�2. �37�

Equation �37� shows that the density of eigenvalues D��� is
proportional to 1 /��. Since the parameter a does not depend
on �, it follows that the density of eigenvalues and, conse-
quently, the autocorrelation function do not depend on the
parameter a.

In order to estimate the sum in expression �17� for the
autocorrelation function, we replace summation by the inte-
gration,

C�t� � � e−�tX�
2D���d� �38�

Such a replacement is valid when �zmax	1. Using the ap-
proximate expressions �32� and �36�, we get the expression
for the autocorrelation function
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C�t� � �
zmax
−2

zmin
−2

�−�e−�td�

= t�−1���1 − �,zmax
−2 t� − ��1 − �,zmin

−2 t�� . �39�

Here, ��a ,z�=�z

ta−1e−tdt is the incomplete Gamma function.

When zmin
2 � t�zmax

2 we have the following lowest powers in
the expansion of the approximate expression �39� for the
autocorrelation function in the power series of t:

C�t� � �
zmax

2��−1�

� − 1
−

tzmax
2��−2�

� − 2
, � � 2

zmax
2 + �� − 1�t + t ln�zmax

−2 t� , � = 2

zmax
2��−1�

� − 1
+ t�−1��1 − �� , 1 � � � 2

− � − ln�zmax
−2 t� , � = 1

1

t1−���1 − �� , � � 1

.

�40�

Here, ��0.577216 is the Euler’s constant. Similar first
terms in the expansion of the autocorrelation function in the
power series of time t has been obtained in Ref. �5�.

Similarly, when �zmax	1, replacing in Eq. �19� the sum-
mation by the integration, we obtain the power spectral den-
sity

S�f� � 4� �

�2 + �2X�
2D���d� . �41�

Equation, similar to Eq. �41� has been obtained in Ref. �8� by
considering a relaxing linear system driven by white noise
�Eq. �27� in Ref. �8��. Similar equation also has been ob-
tained in Ref. �14� where reversible Markov chains on finite
state spaces were considered. In both Refs. �8,14� the power
spectral density is expressed as a sum or an integral over the
eigenvalues of a matrix describing transitions in the system.

Using the approximate expressions �32� and �36�, we get
the equation

S�f� � �
zmax
−2

zmin
−2 1

��−1

1

�2 + �2d� . �42�

When zmax
−2 ���zmin

−2 then the leading term in the expansion
of the approximate expression �42� for the power spectral
density in the power series of � is

S�f� � ��−�, � � 2,

�−2, � � 2.
� �43�

The second term in the expansion is proportional to �−2. In
the case of ��2, the term with �−� becomes larger than the
term with �−2 when zmax

−2 ��. Therefore, we obtain 1 / f�

spectrum in the frequency interval 1����2��−1� if ��1
and the frequency interval 1 /�2�1−�����1 if ��1. It
should be noted that time t and frequency � in our analysis
are dimensionless.

Equation �41� shows that the shape of the power spectrum
depends on the behavior of the eigenfunctions and the eigen-
values in terms of the function X�

2D���. This function
X�

2D��� should be proportional to �−� in order to obtain 1 / f�

behavior. Similar condition has been obtained in Ref. �14�.
Equation �13� for discrete time process and the unnumbered
equation after Eq. �34� for a continuous time process in Ref.
�14� are analogous to the condition X�

2D�����−� since the
density of eigenvalues in Ref. �14� is proportional to
1 / ����x��. Equations �39� and �42� for the power spectral
density and autocorrelation function resembles those ob-
tained from the sum of Lorentzian signals with appropriate
weights in Ref. �27�.

V. NUMERICAL EXAMPLES

If �=3, we get that �=1 and stochastic differential Eq. �1�
should give signal exhibiting 1 / f noise. We will solve nu-
merically two cases: �= 5

2 �1 and �=− 1
2 �1. For the nu-

merical solution, we use Euler-Marujama approximation,
transforming differential equations to difference equations.
Equation �44� with �=5 /2 was solved using variable step of
integration, solution Eq. �45� with �=−1 /2 was performed
using a fixed step of integration.

When �= 5
2 and �=3 then Eq. �1� is dx=�2x4dt

+�x5/2dW. Using exponential restriction of the diffusion re-
gion, we have the equation

dx = �2�1 +
1

2

xmin

x
−

1

2

x

xmax
�x4dt + �x5/2dW . �44�

The equation was solved using the variable step of integra-
tion, �tk=�2 /xk

3, with ��1 being a small parameter. The
steady-state probability distribution function P0�x� and the
power spectral density S�f� are presented in Fig. 1. We see a
good agreement of the numerical results with the analytical
expressions. The 1 / f interval in the power spectral density in
Fig. 1 is approximately between fmin�2�10−1 and fmax
�2�102. The width of this region is much narrower than

10-16

10-12

10-8

10-4

100

10-1 100 101 102 103 104

P(x)

x

10-5

10-4

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101 102 103 104

S(f)

f(b)(a)

FIG. 1. �Color online� Probability distribution
function P�x� �left� and power spectral density
S�f� �right� for the stochastic process defined by
the stochastic differential Eq. �44�. Dashed green
lines are analytical expression �9� for the steady-
state distribution function P0�x� on the left and
the slope 1 / f on the right. Parameters used are
xmin=1, xmax=102, and �=1.
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the width of the region 1�2�f �106 ��=102� predicted in
the previous section.

When �=−1 /2 and �=3 then Eq. �1� is

dx = − 2
�2

x2 dt +
�

�x
dW . �45�

We used reflective boundary conditions at xmin=1 and xmax
=100. The equation was solved with a constant step of inte-
gration. The steady-state probability distribution function
P0�x� and the power spectral density S�f� are presented in
Fig. 2. The 1 / f interval in the power spectral density in Fig.
2 is approximately between fmin�10−6 and fmax�2�10−4.
The width of this region is much narrower than the width of
the region 10−6�2�f �1 ��=102� predicted in the previous
section.

Numerical solution of the equations confirms the presence
of the frequency region for which the power spectral density
has 1 / f� dependence. The width of this region can be in-
creased by increasing the ratio between minimum and maxi-
mum values of the stochastic variable x. In addition, the
region in the power spectral density with the power-law be-
havior depends on the exponent �: if �=1 then this width
is zero; the width increases with increasing the difference
��−1�. However, the estimation of the width of the region,
obtained in the previous section, is too broad, the width ob-
tained in numerical solutions is narrower. Such a discrepancy
can be explained as the result of various approximations,
made in the derivation.

VI. DISCUSSION

In summary, we derived the behavior of the power spec-
tral density from the nonlinear stochastic differential equa-
tion. In Refs. �29,30� only the values of the exponent of the

multiplicative noise � greater than 1 has been used. Here, we
showed that it is possible to obtain 1 / f� noise from the same
nonlinear SDE for ��1, as well. The analysis reveals that
the power spectrum may be represented as a sum of the
Lorentzian spectra with the coefficients proportional to the
squared first moments of the stochastic variable evaluated
with the appropriate eigenfunctions of the corresponding
Fokker-Planck equation. Nonlinear SDE, corresponding to a
particular case of Eq. �1� with �=0, i.e., with linear noise
and nonlinear drift, was considered in Ref. �9�. It was found
that if the damping is decreasing with increase of �x�, then the
solution of such a nonlinear SDE has long correlation time.

As Eq. �41� shows, the shape of the power spectrum de-
pends on the behavior of the eigenfunctions and the eigen-
values in terms of the function X�

2D���, where D��� is the
density of eigenvalues. The SDE �3� considered in this article
gives the density of eigenvalues D��� proportional to 1 /��.
One obtains 1 / f� behavior of the power spectrum when this
function X�

2D��� is proportional to �−� for a wide range of
eigenvalues �, as is the case for SDE �3�. Similar condition
has been obtained in Ref. �14�.

One of the reasons for the appearance of the 1 / f� spec-
trum is the scaling property of the stochastic differential Eq.
�1�: changing the stochastic variable from x to x�=ax
changes the time-scale of the equation to t�=a2�1−��t, leaving
the form of the equation invariant. From this property it fol-
lows that it is possible to eliminate the eigenvalue � in Eq.
�13� by changing the variable from x to z=�1/2�1−��x. The
dependence of the eigenfunction on eigenvalue � then enters
only via the boundary conditions. Such scaling properties
were used estimating the norm of the eigenfunction and the
first moment X� of the stochastic variable x evaluated with
the �-th eigenfunction. Other factor in obtaining the power-
law spectrum is wide range of the region of diffusion of the
stochastic variable x.
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