Lectures 7. Maximum likelihood |.
(nonlinear least square fits)

Y2 fitting procedure!



example: testing coin making machine




Model for motivating nonlinear least squares fitting (2 fitting)

Manufacturer prints coins noticing that the printing machine produces biased heads/tails
with a fixed value of p for heads. p(x) is dependent on the machine temperature x. This p
can be measured by tossing n coins from the batch and measuring the binomial
probability p of the batch. For some plotting convenience of the analysis 2p - 0.4 is
determined by measuring 2nnead/n - 0.4 which turns out to be the function of the
temperature where the machine operates (temperature x is recorded for the
measurement). The results also depend on five parameters b1 ... bs of the mechanical
construction of the printing machine. A smart theorist comes up with a model how the
value of p depends on the temperature x and the five parameters b+ ... bs:

. 2
f(x)=2p-0.4 is the L (& — by)
measured value of 2p-0.4 f(z) = b1 exp(—bax) + b3 exp (_§ b2
as a function of 5
temperature x

Manufacturer wants to determine the parameters b+ ... bs so that they can operate the
machine at the temperature where 2p - 0.4 = 0.6 so that p=0.5 and the coins are
unbiased. This will require to fit the five parameters b+ ... bs of the machine based on the
available data at many temperatures. How do we do that?



b2
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Underlying curve is known to
nature, |but not to us! We see
only the red data points.
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Can we do it? How well?

> . .
in some arbitrary units

for example, this rise might be an instrumental or
noise effect, while this bump might be what you
are really interested in
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central limit theorem:
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Weighted Nonlinear Least Squares Fitting
a.k.a. y2 Fitting
a.k.a. Maximum Likelihood Estimation of Parameters (MLE)
a.k.a. Bayesian parameter estimation
(with uniform prior and maybe
some other normality assumptions)

these are not all exactly identical,
but they're real close!

yi = y(x;|b) + e; measured values supposed to be a model, plus
| an error term

e; ~ N(()’ 0'1-) the errors are Normal, either independently
e ~ N(O, Z) or else with errors correlated in some known

way (e.g., multivariate Normal)

We want to find the parameters of the model b from the data.



Data are collected at various temperatures xi.

At each temperature x; the value yi = 2n0heags/n - 0.4 is
measured to approximate 2p - 0.4 from n coin tosses

But Yi has some error €i

What is the error?
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Maximum Likelihood discussion

Fitting is usually presented in frequentist, MLE language.
But one can equally well think of it as Bayesian:

P(b[{y:}) o< P({y:}|b)P(b)

ocHexp 1 (yi_y(xib))z_ P(b)

g;

~ exp 52 (yi - y(ixz-b))g-_ P(b)

o

x exp|—1x*(b)| P(b)

Now the idea is: Find (somehow!) the parameter value b, that
minimizes 2 .

For linear models, you can solve linear “normal equations” or, better,
use Singular Value Decomposition. See NR3 section 15.4

In the general nonlinear case, you have a general minimization problem,
for which there are various algorithms, none perfect.

Those parameters are the MLE. (So it is Bayes with uniform prior.)



Maximum Likelihood discussion

Nonlinear fits are often easy in MATLAB (or other high-level languages) if you
can make a reasonable starting guess for the parameters:

x — by)?
y(wlb) = bl exp(—b2:p) + b3 exp (_% ( b2 4) )
5

2
2 _ yi — y(zi|b)
ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)) .A2)
chisgfun = @(b) sum(((ymodel(x,b)-y) /<ia) A?)

152

bguess = [1 2 .5 3 1.5]

bfit = fminsearch(chisqgfun,bguess)
xfit = (0:0.01:8); 08—“
yfit = ymodel (xfit,bfit);

1

bfit = 1.1235
3.2654

1.

04

Suppose that what we really care about is
the area of the bump, and that the other
parameters are “nuisance parameters”. ~“0 1 2 3 4 5 6 7 8

> increasing temperature x
iIn some arbitrary units




Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

5%\
—%XQ (b) ~ _%X?&ﬂn - %(b —bo)” {%ab@b] (b —by)

So, while exploring the y2 surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then

P(b[{y;}) o< exp [—%(b - bo)sz_l(b - bo)] P(b)

with I

5 _ {1 agxg }— L covariance (or “standard error’) matrix

1 of the fitted parameters
20bob

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal, a very useful CLT-ish result!



