CHAPTER 14

Nonlinear Dispersion and the Variational Method

The nonlinear effects found in the study of water waves are typical of
dispersive systems in general. Periodic wavetrains, similar to those of
Stokes and Korteweg-deVries, are found in most systems and these are the
basic solutions corresponding to the elementary solutions GeF it of
linear theory. In nonlinear theory, the solutions are no longer sinusoidal,
but the existence of periodic solutions in = kx~—wt can be shown explic-
itly in the simpler cases and inferred from the Stokes expansion in others.
The main nonlinear effect is not the difference in functional form, it is the
appearance of amplitude dependence in the dispersion relation. This leads
to new qualitative behavior, not merely to the correction of linear formu-
las. Superposition of solutions is not available to generate more general
wavetrains, but modulation theory can be studied directly. The theory can
be developed in general using the variational approach of Section 11.7. The
formulation will be studied in detail in this chapter and the justification as
a formal perturbation method will be given to complete the earlier discus-
sion. Detailed applications of the theory are then given in Chapters 15 and
16.

Another specific consequence of nonlinearity is the existence of sol-
itary waves. Waves with these profiles would disperse in the linear theory,
but the nonlinearity counterbalances the dispersion to produce waves of
permanent shape. Solitary waves are found, in the first instance, as limiting
cases of the periodic wavetrains, but recent work on their interactions and
their production from arbitrary initial data has shown that their special
structure is of separate importance. We shall return to these topics in
Chapter 17.

For waves of moderately small amplitude in what might be called
“near-linear theory,” further results may be obtained by perturbation
methods based on small amplitude expansions. In particular we may return
to the Fourier analysis description and study the small nonlinear interac-
tions of the Fourier components. The interactions transfer energy between
different components and, through product terms in the equations,
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generate new components from existing ones. These interactions can be
followed effectively when only a few components are involved. We shall
include typical results as appropriate, but the main emphasis is on methods
that extend to the fully nonlinear case. From a Fourier analysis viewpoint,
the nonlinear wavetrains and solitary waves are already quite complicated
distributions of Fourier components with involved interactions maintain-
ing a balance. The developments emphasized here build directly on these
special structures without attempting to disentangle them into their com-
ponents. However, in the near-linear case there are interesting and inform-
ative relations between the two points of view.

14.1 A Nonlinear Klein-Gordon Equation

It is useful to have a simple example to motivate and illustrate the
steps in the development of the general theory. For this purpose a non-
linear version of the Klein-Gordon equation is particularly useful and is
even simpler than the Korteweg-deVries equation, which would be the
other obvious choice. We take the equation

q)lt—q)xx+V/((p)=05 (141)

where V' (@) is some reasonable nonlinear function of @ which is chosen
as the derivative of a potential energy ¥V (g) for later convenience. Equa-
tion 14.1 is not only a useful model; it arises in a variety of physical
situations. This is especially true of the case ¥’ (g)=sin ¢, which almost
inevitably has become known as the Sine-Gordon equation! An account of
the physical problems in which this form arises is given by Barone et al.
(1971), following a briefer version by Scott (1970, p. 250). Its first
appearance is not in wave problems at all, but in the study of the geometry
of surfaces with Gaussian curvature K= — 1. In fact some of the trans-
formation methods developed there have been remarkably valuable in
finding solutions for interacting solitary waves, as will be discussed in
Chapter 17. More recent problems listed by the same authors include:

1. Josephson junction transmission lines, where sin ¢ is the Joseph-
son current across an insulator between two superconductors, the voltage
being proportional to g,.

2. Dislocations in crystals, where the occurrence of sin ¢ is due to
the periodic structure of rows of atoms.

3. The propagation in ferromagnetic materials of waves carrying
rotations of the direction of magnetization.
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4. Laser pulses in two state media, where the variables can also be
described in terms of a rotating vector.

Scott further describes his construction of a mechanical model with
rigid pendula attached at close intervals along a stretched wire. Torsional
waves propagating down the wire obey the wave equation and the pendula
supply a restoring force proportional to sin ¢, where ¢ is the angular
displacement. Scott was able to generate the waves corresponding to many
of the solutions of the Sine-Gordon equation.

Equation 14.1 has also been discussed by Schiff (1951), with a cubic
nonlinearity, and by Perring and Skyrme (1962), with the sin ¢ term, in
tentative investigations of elementary particles.

In this chapter the analysis applies for general V(p) with appropriate
properties. The choice

1
V(e)=59¢’+op*

is both the simplest to bear in mind and the correct expansion in the
near-linear theory for even functions ¥ (¢). The small amplitude expansion
of the Sine-Gordon equation has o= —1/24.

We first check the existence of periodic wavetrains. They are obtained
as usual by taking

p=¥(0), 0=kx—uwt. (14.2)
On substitution we have

(W2 = Kk2) ¥+ V'(¥)=0 (14.3)

and the immediate integral

2 (@ = k) W3+ V(%) = 4. (14.4)

We use 4 for the constant of integration, although earlier it was used to
denote the complex amplitude in linear problems. Only the real amplitude
a will appear in the same context, so there should be no confusion. Here 4
is still an amplitude parameter; in the linear case, ¥ (¥)=41¥? it is related
to the actual amplitude a by 4 = }a>.

The solution of (14.4) may be written

v b 4
0—{5((_02_/(2)} f {A_V(\Il)}l/z’ (145)
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and in the special cases where V(¥) is either a cubic, a quartic, or
trignometric, ¥ (f) can be expressed in terms of standard elliptic func-
tions. Periodic solutions are obtained when ¥ oscillates between two
simple zeros of 4 — V(). At the zeros ¥, =0, and the solution curve has a
“maximum or a minimum; these points occur at finite values of #, since
(14.5) is convergent when the zeros are simple. If the zeros are denoted by
¥, and ¥,, we shall take the case

¥ <Y<Y, A-V(¥)>0, w?*—k*>0 (14.6)

for the present. The period in # can be normalized to 27 (which is
convenient in the linear limit) and we then have

ol v
2n={ 5@ =i} %{A—V(\I')}Iﬂ’ (14.7)

where ¢ denotes the integral over a complete oscillation of ¥ from ¥, up
to ¥, and back. The sign of the square root has to be changed
appropriately in the two parts of the cycle. The integral may also be
interpreted as a loop integral around a cut from ¥, to ¥, in the complex ¥
plane.

In the linear case V(¥)=1¥2 the periodic solution is

2
¥ =acosé, A=92—; (14.8)

the amplitude @ cancels out in (14.7), which becomes simply the linear
dispersion relation

w—k?=1. (14.9)

In the nonlinear case, the amplitude parameter 4 does not drop out of
(14.7) and we have the typical dependence of the dispersion relation on
amplitude. '

If the amplitude is small and V has the expansion

V= %(p2+aq)4+-~-, (14.10)
we have
\If=acosl9+%aa3cos30+---, (14.11)

wl—k*=1+30a%+ - -, (14.12)
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gl A0 T B R
A—za +goatt .. (14.13)

These are the Stokes expansions, which may be obtained either by direct
substitution in (14.3)-(14.4) or by expansion of the exact expressions (14.5)
and (14.7) obtained above. It should be noted that a is the amplitude of the
first term in (14.11); it differs slightly from the exact amplitude

a+-é—oa3+~--.

14.2 A First Look at Modulations

In the basic case of one dimensional waves in a uniform medium, we
saw in Chapter 11 that modulations on a linear wavetrain can be described
by the equations

b
o1 +$c__0’ (1414)
8(12 ) DTN b
9+ L (Coa?) =0, (14.15)

where w=w,(k) is given by the linear dispersion relation and Cy=w(k) is
the linear group velocity. (A subscript zero is added now to indicate the
linear values.) The crucial qualitative change of nonlinearity is the depen-
dence of w on a, which couples (14.14) to (14.15). For moderately small
amplitudes, w may be expressed in Stokes fashion as

w=wo(k) +wy(k)a*+---, (14.16)
and (14.14) becomes
ok n i 0k da®
a—t+{wo(k)+w2(k)a2}é;+w2(k)§=o. (14.17)

The important coupling term is w,(k)da?/dx because it introduces a term
in the derivative of a; it leads to a correction O(a) to the characteristic
velocities. The other new term merely corrects the coefficient of the
existing term in dk/9dx and consequently contributes only at the O(a?)
level. Similarly, for small amplitudes, the nonlinear corrections to (14.15)
would be various terms of order a* which would provide corrections of
relative order a” to the coefficients of the existing terms in da/dx and
0k /0x. Therefore in the first assessment of nonlinear effects we can
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proceed very simply, using only the new dispersion relation, and take

0(k) +w2(k) 0, (14.13)

aa ) Za_k

O(k) +w (k =0. (14.19)
By the standard procedure of Chapter 5, the characteristic form of these
coupled equations is found to be

172
" k
o Ll TR (14.20)
wz(k)
on characteristics
d ' 4 " 1/2
—dZ:—=wO(k)t{w2(k)w0(k)} a. (14.21)

It may be verified that additional terms of relative order a® added to
(14.18)—(14.19) contribute terms only of order a* to (14.20)—(14.21).

This simple formulation already shows some remarkable results. In
the case w,wg >0, the characteristics are real and the system is hyperbolic.
The double characteristic velocity splits under the nonlinear correction and
we have the two velocities given by (14.21). In general, an initial distur-
bance or modulating source will introduce disturbances on both families of
characteristics. If the disturbance is initially finite in extent, for example a
bulge on an otherwise uniform wavetrain, it will eventually split into two.
This is completely different from the linear behavior where such a bulge
may distort due to the dependence of Cy(k) on k but would not split.

A second consequence of nonlinearity in the hyperbolic case is that
“compressive” modulations will distort and steepen in the typical hyper-
bolic fashion discussed in Part I. This raises the question of multivalued
solutions and breaking.

When w,w; <0, the characteristics are imaginary and the system is
elliptic. This leads to ill-posed problems in the wave propagation context.
Among other things, it means that small perturbations will grow in time
and in this sense the periodic wavetrain is unstable. The elliptic case turns
out to be not uncommon and the modulation theory provides an interest-
ing approach to some aspects of stability theory.

We might note that for Stokes waves in deep water, the dispersion
relation (13.124) gives

wo(k)=gl/2k1/2, wz(k)=%gl/2k3/2, (14.22)
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so this is an unstable case with wjw,<0. This is surprising in view of the
long history of the problem and the sometimes controversial arguments
about the existence of periodic solutions; throughout these discussions the
instability went unrecognized. For the Klein-Gordon example (14.12), we
have

wR)=(k2+ 1% wk)= %a(k2+ G (14.23)

The sign of wgjw, is the same as the sign of o; the modulation equations are
hyperbolic for ¢ >0 and elliptic for ¢<0. For near-linear waves, the
Sine-Gordon equation has o <0, so that in all the problems governed by
this equation the near-linear wavetrains are unstable.

We shall return to all these questions after the formulation of the
modulation equations has been studied in detail and extended to the fully
nonlinear case.

14.3 The Variational Approach to Modulation Theory

The complete modulation equations are obtained in a particularly
compact and significant form from the variational approach started in
Chapter 11. We first see how to implement it for nonlinear problems using
the Klein-Gordon equation as a typical example. General procedures then
become apparent and we include these in the justification of the method.

In the Klein-Gordon case the periodic wavetrain is described by
(14.4)—(14.5) and involves the parameters w, k, and 4. We need to find the
equations satisfied by these parameters for a slowly varying wavetrain.
Equation 14.1 is the Euler equation for the variational principle

8[[{%¢?- %(pf-— V(q))}dxdt=0, (14.24)

as is easily verified from (11.74). The elementary solution corresponding to
the solution ¢ =acos(#+n) used in linear problems is ¢ ="¥(§). [A phase
shift 7 can be added to (14.5), but it drops out of the modulation
equations.] We therefore calculate the Lagrangian and its average value for
@ =V(60); this is done keeping w, k, and A constant. We have

1 ”
L= 5(&— K)¥2—V(¥),
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and the average value over one period in 8 is

1 27

I=- {%(wz—k%\pg— V(\I')}dﬂ. (14.25)
0

In principle, the function ¥ is known completely from (14.5). However, we
can avoid the integrated form and use (14.4) instead to express L as a
function of w,k,A. We note the successive steps

s e B o

L=Ef0 (w?— k22 df — A

=i(w2—k2)f2”\p d¥—4
27T 0 o

= - (26— K9} (4~ v(w)) 2aw - 4. (14.26)

The final loop integral is a well-defined function of 4, in which ¥ is now
merely a dummy variable of integration. The notation £ (w,k,A4) is re-
served for the final form of L.

When w, k,A are allowed to be slowly varying functions of x and #, we
propose the average variational principle,

8 [ [ L(wk,A)dxdt=0, (14.27)
as before. This is viewed as a variational principle for 8(x,¢) and 4(x,?),
with w= —6,, k= 0,; the variational equations are
0A: £,=0, (14.28)
0 a
: sl =0. 14.
60 5 £ o £,=0 (14.29)

After the variations have been taken, we again work with w,k, 4, and add
the consistency relation

Shp 20 g (14.30)

obtained by eliminating §. The equations and their derivation from (14.27)
are, of course, the same as in the linear case with the minor change of
amplitude variable from a to A. The only new ingredient in the nonlinear
theory is the calculation of £ (w,k,A).
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Equation 14.28 is a functional relation between w, k, 4, which can only
be the dispersion relation. For the Klein-Gordon example with £ given by
(14.26), we confirm that it does indeed give the correct result (14.7). The
system (14.28)—(14.30) is the exact nonlinear form for the modulation
equations tentatively proposed in the approximation (14.18)—(14.19). Be-
fore discussing the properties of these equations and their various ex-
tensions we turn now to the question of how the variational approach may
be justified.

14.4 Justification of the Variational Approach

It will be sufficient to consider in detail the case of one dimensional
waves described by a variational principle

SIfL(q),,q)x,qJ)dxdt=O. (14.31)

The cases of more dimensions, more dependent variables and nonuniférm
media can all be treated similarly. The Euler equation for (14.31) is

0 0

a7 Lt 2-Ly— Ly=0, (14.32)

where the L; denote the derivatives

_aL _ oL
de,’ Feae

_ AL

= (14.33)

L, L,

Equation 14.32 is a second order partial differential equation for ¢(x,?)
and we assume that this has periodic wavetrain solutions of the
appropriate type.

For problems of slow modulations a parameter € will be introduced by
the initial or boundary conditions (as discussed in various cases in Section
11.8); € measures the ratio of a typical wavelength or period relative to a
typical length or time scale of the modulation. We shall eventually suppose
€ to be small, but we make no restriction on the magnitude of the
amplitude, only that its variations are slow.

The first step is to describe a modulated wavetrain precisely. If x and ¢
are measured on the scale of the typical wavelength and period, the slowly
varying quantities are functions of ex,ef; modulation parameters such as k
and w should be functions of this type. Yet ¢ itself varies due to the
relatively fast oscillations as well. To incorporate these requirements, ¢ is
written explicitly as a function of a phase function 8 and of ex,et. Then 6 is
chosen as € " '@(ex,er) to provide the relatively fast oscillation and to give
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the correct dependence of k=6, and w= —§, on ex,et. We therefore take

p=0(6,X,T; ¢, (14.34)
f=¢'O(X,T), X=ex,T=ce. (14.35)

We define
(X, T)=-w(X,T)=0,, k(X,T)=0, (14.36)

as the negative frequency and wave number. (In this general discussion we
work with »= —w to preserve the symmetry between x and ¢.) The scaling
has been arranged so that

_a_?=,,a_q)+eﬁ .a_q)=k§_(b_+§.q_)-
ot od ¥ e 0x 90  oX’

the variations due to the oscillations and to the slow modulations appear
separately.

In vibration problems for ordinary mechanical systems, x is absent
and the method amounts to distinguishing two time scales explicitly. It has
become known as “two-timing,” which is a colorful and convenient name
even when “double-crossing” x variations are also involved. The art of
two-timing lies in the fact that although one starts and ends with the
correct number of independent variables, the expanded form can be used
to advantage at intermediate steps. In the present case ¢ is ultimately a
function of x and ¢ through (14.35), but in appropriate parts of the analysis
® is treated as a function of the three variables 8, X, T independently. In
the usual two-timing procedures, the extra flexibility allows the suppression
of secular and other terms. Its use in conjunction with variational prin-
ciples will be different but equivalent.

The geometrical optics (WKBJ) type of expansion discussed in Sec-
tion 11.8 is equivalent to choosing

P(x,1)~e O D ey (ex,et) (14.37)
from the outset. The two-timing version would work with
@(0,X,T;e)~e”"2€"A,,(X,T) (14.38)

to the same ultimate ends. In either case, the exponential dependence on ¢
is limited to linear problems. For nonlinear problems, the counterpart
would be to take an expansion

®(0,X,T; e)~ S " @™ (6,X,T), (14.39)
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and determine the functions ®" successively. However, in the equivalent
variational approach we make no such initial expansion; we work with
(14.34)—(14.36) directly and avoid much of the tedious manipulation of the
 more standard perturbation procedures.
When (14.34) and (14.35) are substituted into the basic Euler equation
(14.32) we have
3Ly -y SRl Bl

VW-HW-H(—GF‘HW_%:O’ (14.40)

where the arguments of the L; are given by
L=L(v®,+ Dy, k®,+ Dy, @), (14.41)

The relation #=¢~'O(X,T) was used to obtain (14.40), but it is now
dropped. This is the crucial step in two-timing. Equation 14.40 is now
considered as an equation for the function ®(8,X,T) of three independent
variables 6, X, T. The equation also involves the function (X, T') through
its derivatives »=0,, k=0, the original relations of ®,» and k to the
argument # in @ are also dropped. It is clear that if satisfactory solutions
for ®(A,X,T) and O(X,T) can be found, then ®(e~'0,X,T) solves the
original problem. The extra flexibility in the choice of &(X,T) is used to
assure satisfactory behavior of ®(8,X,T).

The choice of ©(X,T) will appear in different ways depending on the
particular variant of the method, but they are equivalent. Here we shall
impose from the outset the requirement that ® and its derivatives be
periodic in #. [Other variants leave ®(X,T) open at first, find unwanted
secular terms proportional to # in the general expression for @, and
eliminate them by the choice of ®.] The period may be normalized to 27,
so we impose the condition that ® and its derivatives be 27-periodic in 6.
To implement this condition, we note that (14.40) may be written in
conservation form as

80{(1’L +kL,)®,— L}+e ((Do )+£ ((IJ,,Lz) =0. (14.42)

Then, on integration from #=0 to 27, the contributions of the first term
cancel, from the periodicity requirement, and we have

ad
. f ®,L, d0+8X2 f ®,L,df=0. (14.43)

Equations 14.40 and 14.43 are the two equations for ®(6,X,7) and
(X, T).
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It is a remarkable and surprising fact that these equations for ® and ©
are just the variational equations for the variational principle

1 27
8f[ﬁfo L(v®,+ B kD, + Dy, D)dBdX dT=0.  (14.44)

Variations 8§ ® lead to

3 di: il

@L‘I’a*— -é?Lq,T"I' aL¢X—L¢=0

in the usual way, and with the particular form of L in (14.44) this is seen to
be (14.40). Variations §© give

=0, (14.45)

where
S 27
L=— | L(v®,+e®,,k®;+ecDy,®)db; (14.46)
0

this is (14.43). But, most striking of all, (14.44) is just an exact form of the
average variational principle! Not only do we justify the variational
approach, we obtain a powerful and compact basis for the entire perturba-
tion analysis. Strangely enough, we have made no explicit assumption so
far that e is small. It is implicit, however, in the choice of the functional
form of ® and the requirement that ® be periodic in 6.

In the lowest order approximation to (14.44), we have

8 [[L@dxadr=0, (14.47)

o 27
LO= - [TL{(r0P k0,2 db. (14.48)
0

The variational equations are

580 S {yLO+kLP} - LO=0, (14.49)
50: 9 o4 3 fo-o; 14.50
' s e e i

these are the lowest order approximations to (14.40) and (14.45), of course.
Since X, T derivatives of ®® do not occur in (14.49), it is effectively an
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ordinary differential equation for ®® as a function of §. An immediate
first integral [the corresponding approximation to (14.42)] is

{VL1(0)+L50)}¢§0)—L(0)=A(X,T). (1451)

Equations 14.49 and 14.51 are just the ordinary differential equations
describing the uniform periodic wavetrain, but with the difference that the
parameters »,k,4 are now functions of X,7. The dependence on @ is
exactly the same as in the periodic wavetrain; the dependence of »,k,4 on
X,T provides the modulation. The explicit separation of # from X,T
automatically allows integrations with respect to # in which »,k, 4 are held
fixed; integrations such as those in (14.25) and (14.26) are now seen to be
in this sense.

When the solution of (14.51) is combined with (14.47)—(14.48), we
have exactly the variational approach proposed earlier. It is now justified
as the first approximation in a formal perturbation scheme.

In the actual use of the method there is an important question of
technique to be explained in general terms. As it stands (14.51) can be used
to determine both the function ®© and the dispersion relation between
v,k,A. [See (14.5) and (14.7) for the Klein-Gordon example.] The manipu-
lations in (14.26) show that by limited use of (14.51) in (14.48) the explicit
determination of ®® (which is just ¥ changed to the expanded notation)
can be avoided and the dispersion relation can be incorporated as an
additional variational equation derivable from (14.47). This is much to be
preferred. For then the form of the average Lagrangian is simplified and,
more importantly, a// the equations relating the slowly varying parameters
v,k,A are collected in the variational principle. The question is how to
describe this procedure in general terms. The problem is how to extract
from (14.51) enough information on the functional form of ®® and not
use complete information on the dispersion relation. We now show how
this may be done.

14.5 Optimal Use of the Variational Principle

In the linear case there is no difficulty in separating the functional
form of ®© from the dispersion relation. We know in advance that the
solution of (14.49) or (14.51) will take the form

P =gcos(f+1),

where a(X,T) is the amplitude related to A(X,7) and used instead of it.
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The phase parameter n(X,7) will drop out in forming the average
Lagrangian (14.48) and plays no role in this lowest order approximation.
This rather trivial information on ®© is the only information extracted
from (14.51) and does not include the dispersion relation. When this ®© is
substituted in (14.48) we have the function

27
L(v,k,a)= %fo L(—vasinf, — kasin#,acosf ) df

for the average Lagrangian.
In the near-linear case there is also no difficulty. We may use the

Stokes expansion
@Y =gcos(0+n)+a,cos(8+mn,)+ascos(0+mn;)+ -

as the required form of ®@ without including the dispersion relation. The
relations of a,,a;,...,M,5,M3,..., to a and m may be taken from (14.49) or
(14.51), or they may be left arbitrary and also determined from the
variational principle. For example, in the Klein-Gordon problem with
V(e) given by (14.10), we take

@ =gcosf+aycos30+ascos 50+ - - -

(It is easy to see in advance that the odd cosine terms are sufficient.)
Then*

27
FO— %f {%(vz_ K2)0P — %q,(on_ od)“”“}de
0

i 5 3oa’ I e
=Z(v —k*—1a*— 2 + 203—ana3 + -
Variation with respect to a; shows that a;= § 0a® in agreement with (14.11).
On resubstitution of this expression for a; in L@ we have

L(v,k,a)= %(vz— k2 —1)a*— %oa“— —31302a6+ cee (14.52)

Variation of @ now gives the dispersion relation (14.12).

In the fully nonlinear case it is harder to disentangle the functional
form of ®© from the dispersion relation. However, it can be done by use
of a Hamiltonian version of the equations.

*A term proportional to (»2—k?—1)a? is omitted because the subsequent equations show
that (»2— k2—1)=0(a?).
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Hamiltonian Transformation.

The transformation will be applied here only to the lowest order
approximation in (14.47)-(14.51), so to ease the notation we drop the
superscript zero on all quantities. The idea is to eliminate the quantity &,
in favor of dL/d®, just as ¢ is eliminated in favor of a generalized
momentum p=09L /93¢ in ordinary mechanics. A new variable is defined
by

e SRS ) (14.53)

3P,
and the Hamiltonian H(I1, ®; »,k) is defined by

H=<I)95%—L=CD9(VL,+kL2)—L. (14.54)

From the transformation alone we have

ad oH
T iog
and (14.49) provides
LR e 01
i (14.56)

These replace the second order equation (14.49) for ® by two first order
equations for ® and II. The variational principle (14.47) may now be

written with

27

e [ 010, 748, (14.57)
2a Jo

Moreover, there is an important extension. In the original form the
variation § @, is tied to §®; hence 611 is tied to the variation of ® through
(14.53), and (14.55) is a consequence of the transformation not a varia-
tional equation. However, we simply observe that both (14.55) and (14.56)
follow from (14.57) if ® and IT are allowed to vary independently. We are
therefore free to make this extension. The next thing to note is that (14.51)

is just the energy integral

H(IL®; n,k)=A(X,T) (14.58)
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for (14.55) and (14.56). Moreover, in this form it provides only the function
I(®;v,k,A).

Without using the relation of IT to ®,, which has now been turned into one
of the variational equations, there is no way to deduce the dispersion
relation as well. This achieves the required separation of (14.51) into
information about the form of solutions (now provided by the dependence
of IT on ®) and the dispersion relation. Finally, since the stationary values
of (14.57) are known to satisfy (14.58), we may restrict the variations to
functions which already satisfy (14.58). Then (14.57) may be evaluated as

£ (v,k,A)= 51;9SH(¢;V,k,A)dq>—A, (14.59)

and II(®;»,k,A4) is the function determined from (14.58). The variational
principle becomes
 8f [e(rka)dxdT=0.
The variation with respect to A is the only remnant of the variations of ®
and II. The variational equations are now
04: £, =0,

; d R s
CR 3T & X £, =0,
and the consistency relation

%__al=o
e T L

is added. These are the equations (14.28) — (14.30) with » = — w.
In the Klein-Gordon example,

L=~ (12— k*)®3— V(®),

N | —

the Hamiltonian transformation is

st de
1= 8@0—(” k*)®,,

H=<p,,§TL)0 e %(uz—k2)"n2+ V(®).
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The integral H= A is solved as

=202 - k3)} (4 - v@)}'"",
and

B=§1;96Hd®—/1

=51;{2(V2—k2)}‘/2gﬁ{/1— V(@) ?dd - 4,

in agreement with (14.26).

Naturally the Hamiltonian transformation can be used also in the
linear or near-linear cases. The expressions for £ may then differ in form
from those obtained previously, but of course the resulting variational
equations are equivalent.

14.6 Comments on the Perturbation Scheme

The usual procedure in applying perturbation methods is to substitute
suitable expansions in powers of € directly into the differential equations of
the problem, obtain a hierarchy of equations for the successive orders, and
then take steps to ensure uniform validity. It was in this manner that the
results of the variational approach were first verified by Luke (1966). The
expansion (14.39) is substituted in the equation for ¢ to give equations that
we may write schematically as

Ey(@P}=0, E {2V, 09} =F,{®®)}, andsoon.

The zeroth equation for ®© is equivalent to (14.49). It is solved for ®©;
the dispersion relation is obtained between »,k, 4, but their dependence on
X, T is undetermined at this level. The equation for & involves only 4
derivatives of ®® and so is effectively an ordinary differential equation. Its
solution has unbounded terms proportional to #, unless conditions are
imposed on F,{®®). These “secular” terms must be suppressed to ensure
uniform validity of the expansion for large #. The required condition on
F {®®) leads to the further equation for »,k,4, which completes the
lowest order solution. In the subsequent equations for the ®™, there are
further parameters and further secular conditions.

The prior requirement that ® be periodic is equivalent to the suppres-
sion of secular terms. Therefore the successive approximations to the
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periodicity condition (14.43) would appear as secular conditions in the
more traditional procedure. We see the advantage of starting from (14.42)
and (14.43) even if that procedure were to be followed. But, better still,
since (14.42) and (14.43) correspond to the variational principle (14.44), the
expansion can be substituted directly in (14.44) and the variational prin-
ciple used to generate both the equations for ®™ and the secular condi-
tions. Thus the variational approach should not be considered as a
separate method. It includes the usual expansion approach, for which it
streamlines the details and allows general results to be formulated.

There are other advantages. The variational principle (14.44) has been
established independently of any assumed form for the dependence on e.
Furthermore, ® may also be allowed to depend on e€; it was taken
independent of e only for simplicity in the initial presentation. We may use
expansions in powers of e for ® or ® or both, but we are also free to take
other forms. For example, in the near-linear case, we may use expansions
in powers of the amplitude, or, what amounts to the same thing, Fourier
series for ®. This will be the choice in the discussion of higher order
approximations in Section 15.5.

14.7 Extensions to More Variables

The extension to more space dimensions is immediate. The plane
periodic wave solutions have ¢=¥(f) where #=40(x,7) depends on a
vector x and the propagation is in the direction of the vector wave number
k=0_ The average Lagrangian becomes £ (w,k,4) and modulations in
space (i.e., slowly curving phase surfaces) also become possible. The
modulation equations are (11.80)-(11.82). The justification of the last
section requires only the obvious changes of replacing x,X,k by x;, X, k;
and performing the corresponding summations when necessary.

The case of a single higher order equation goes through simlarly with
only minor extensions. There will be higher order derivatives in (14.31) and
in all the later steps, but the extensions are straightforward.

The case of more dependent variables requires detailed comment.
First, for a linear system in a set of functions ¢ *X(x, ), periodic wavetrains
may be described by

o' =qa, cosf+b,sind.

The average Lagrangian calculated from this is a function of the two sets
a,, b,, as well as w and k. The corresponding variational principle

aff £(8,,0,,a,b,) dxdr =0 (14.60)
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leads to the variational equations

d d et

EB“’_S_ijkJ_O (14.61)
LT T .
dat  Ox, 3 dx; ~ox,

The set of equations £, = £, =0 are linear and homogeneous (since £ is
quadraticin a,, b,) and they may in general be solved to express the a, and
b, in terms of smgle amplitude a. These expressions may be relnserted into
the Lagrangian to give £ as a function £,(w,k,a), and the modulation
equations are the same as in the single variable case. The substitution is
permissible, since the restricted choice for a, and b, does satisfy the
stationary conditions. The equivalence may also be verified directly, since

° da, P b, 0 0
SET T e e
0a, b,
Po™ Fut 55 Pa + 5 Ba = B

and similarly £, i, = £ - In the course of the substitutions different expres-
sions for £, may result, depending on which relations are chosen, but the
final equations are the same. The justification via two-timing proceeds as
before.

For nonlinear problems, the usual situation concerns a system of
equations with a corresponding Lagrangian L{¢®,,¢®} involving
only the ¢® and their first derivatives. However, it is typ1cal that for some
of the @, only the derivatives appear in L; they are “potentials” in that
only the derivatives ¢,, ¢, represent physical quantities. This requires a
highly nontrivial extension with important mathematical and physical
consequences. In the uniform wavetrain solution any potential variable ¢
must be expressed as

=P x—yt+®(9), O=k-x—owr (14.62)

in order to ensure complete generality. The physical quantities involve only

§=—v—wd,  §=B+kd, (14.63)



504 NONLINEAR DISPERSION Chap. 14

and —v,B represent the mean values. These are important physical
quantities; in water waves they give the mean fluid velocity and mean
height, for example. Moreover, a most important nonlinear effect is the
coupling of modulations in the wavetrain to similar slow variations in these
mean quantities. Thus in the modulation theory the term B-x— yf must be
generalized to a function #(x, ) and y, 8 defined by

y=-8, p=8. (14.64)

The function @ is similar to # and is a pseudo-phase appearing in the
problem. The quantities y and B are a pseudo-frequency and a pseudo-
wave number. Furthermore, each potential ¢ has the term L; missing in its
Euler equation

d 9
e e P (14.65)

in the course of the analysis, this always allows an extra integral and an
extra parameter B to be introduced similar to 4. The triads (y,B, B) are
similar, although subsidiary, to the main triad (w,k,4).

The two-timed form corresponding to (14.62) is

P(x,0)=€¢'OX, T)+D(8,X, T;e),
where

YX.T)=-0,, BX,T)=04, X=ex, T=¢,
and @ is chosen to be periodic in #. For a Lagrangian

L 000 @, B, By,

it may be shown that the two-timed equations and the conditions that ® and
® be 2m-periodic in 8, are equivalent to an exact variational principle
similar to (14.44). To lowest order it is

Sff%fzwL(—w@'g,kéo,d),—y—w@o,ﬁ+k<i>,,)d0dXdT=O. (14.66)
0

The variational equations corresponding to 6® and 8® determine the
functions ® and ® and we have the two integrals

—wL,+k-L,—wL,+k-L)®,— L=A(X,T), (14.67)
1 2 4 5 ]

—wL,+k-L;=B(X,T). (14.68)
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The variations 8® and 8O lead to the two secular conditions

3 3 3
azL axL i o 1 ax

Finally, a Hamiltonian transformation can be introduced as before, based
on generalized momenta dL/d®,, dL/3®,, and (14.67)~(14.68) can be
used to eliminate explicit dependence on ® and ® in favor of including the
parameters 4 and B in the variational principle. We then have

6ffE(w,k,A,y,B,B)dXdT=0, (14.69)
and the variational equations are
£,=0, .£,=0, (14.70)
0 oo leg o O TN L T
-E)_TB“’ ax, £y, =0, Va 4 2%, g =0, (14.71)

together with the consistency conditions

3k aw aBi dy
ok, 9k ;9B
a—,Xj_R=O’ W—W_O (14.73)

Further details of the procedure and examples are given in the original
papers (Whitham, 1965,1967,1970). An application to water waves on
finite depth, where the extra parameters are crucially important, will be
given in Chapter 16.

In this more general case, the energy equation that corresponds via
Noether’s theorem to the invariance of (14.69) with respect to shifts in T is
now

d d
a—T(wa+yBY—E)+a—/\3(—wﬁ,9_—}'ﬁ@)=0. (14.74)

The momentum equation which corresponds to the invariance with respect
to shifts in X is

%(k[ﬂ +B,L.)+ ( KLy — By +£8,)=0.  (1475)

The final extension is to note that if the medium is not constant but
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depends on X,7, these will appear explicitly in the Lagrangian and
therefore in £. But the variational equations (14.70)~(14.73) are un-
changed. The conservation equations (14.74) and (14.75), however, have
terms — £, BX, respectively, on the right hand sides [as may be verified
directly from (14 70)—-(14.73)].

14.8 Adiabatic Invariants

It was remarked previously that the quantities £, £, are analogous to
the adiabatic invariants of classical mechanics. ThlS corrcspondence can
now be explored. In mechanics the setting is the theory of slow modula-
tions for vibrating systems. The only independent variable is time, so in
this case the modulations can be produced only by externally imposed
changes in some parameter A(¢). (This corresponds to a varying medium in
the case of waves.) The classical theory is usually developed by
Hamiltonian methods, which are not directly applicable to waves, but we
may instead derive the simplest of the classical results by the methods
developed here. For an oscillator with one degree of freedom ¢(#) and one
slowly varying parameter A(¢), the variational principle is

1y : %
8];] L(gq,4,\)dt=0,

and the variational equation is

et R (14.76)

This case is covered by the arguments of Sections 14.3 and 14.4 simply by
dropping the dependence on x. But it is useful to note the steps separately
in the usual notation of mechanics. We follow the simple intuitive
approach of Section 14.3; it is justified by Section 14.4.

We first calculate the average Lagrangian for the periodic motion with
A held fixed. If the period is =27/, then

P = 27Tf L. (14.77)
In the periodic motion (A = constant), (14.76) has the energy integral

gL,~ L=E. (14.78)
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This may be solved, in principle, to express ¢ as a function of (g, E,A) and
then the generalized momentum p = L, can also be expressed as

p=p(4,EN).
If (14.78) is used to replace L in (14.77), we have

LI AP
B—zwj;pth E

=%§ﬁp(q,E,>\)dq—E, (14.79)

where §pdq means the integral over one complete period of oscillation [a
closed loop in the (p,q) plane]. We now allow slow variations of A, with
consequent slow changes of » and E, and use the average variational
principle

5["B(V,E,>\)dt=o. (14.80)

It is again crucial to define » as the derivative  of a phase 6(¢) which
increases by a constant normalized amount in one oscillation. This step
looks perhaps less natural than in the waves case, but it becomes clear in
the two-timing. The variations of (14.80) with respect to E and @ give

d
= LR = 4.
Lr =0, = £,=0, (14.81)
respectively. The first of these corresponds to the dispersion relation
(14.28) and the second corresponds to the conservation equation (14.29). In

view of (14.79) we have

1
PR S = 4.82
2 P ¢pdq constant, (14.82)

which is just the classical result of the adiabatic invariant. As the system is
modulated, » and E vary individually but

1
J(V,E)_z—wgﬁpdq (14.83)
remains constant. From (14.79) and (14.81) the period is given by

i %’1 =1, (14.84)
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which is also classical. (An excellent account of the usual theory may be
found in Landau and Lifshitz, 1960b, p. 154.)

In the two-timed form (14.59), the quantity IT is defined as 9L /93 ®,,
whereas the generalized momentum p is 9L/ dg,. Since @, =r®y, to lowest
order, we have IT=wp and the expressions (14.59) and (14.79) agree.

It is clear from this comparison that in the case of waves £ is akin to
the adiabatic invariant and that the £, are similar quantities for spatial
modulations. In waves there is no need for an external drain of energy,
since modulations in time can be balanced by modulations in space. If the
medium is not constant, however, we have the additional effect of
parameters analogous to A, but the equation

d d

578“,—5;]8,9 =0 (14.85)

still holds. The equation has become known as the conservation of wave
action. )

In the special case of a wavetrain uniform in space but responding to
changes of the medium in time we have

£, = constant.

Alternatively, for a wavetrain of fixed frequency moving into a medium
dependent on one space dimension x, we have

2, =constant.

These provide simple determinations of the amplitude. In general, modula-
tions in space and time balance according to (14.85) and produce a
propagation of the modulations.

The quantities £, and Bﬁ in (14.71) are similar to £, and £, . They
arise because of the extra dependent variables, just as ordmary dynamlcal
systems (involving only the time) may have further adiabatic invariants
when there are more degrees of freedom. These wave systems have only
one genuine frequency and so correspond to the degenerate cases of equal
frequencies in dynamics.

14.9 Multiple-Phase Wavetrains
The general case of multiply periodic motions in dynamics would be

mirrored in wave theory by wavetrains with more than one genuine phase
function. It is straightforward to extend the formalism to this case but

i
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questions of existence suggest caution. For a two-phase wavetrain, for
example, the starting point would be a quasi-periodic solution

p=Y(4,.0,), 0,=kx—wt, 0, = k,x — w,t, (14.86)

in which ¥ is 27 periodic in both 4, and #,. One would then go on to
handle modulation theory as before. However, even in ordinary dynamics
questions of the existence of quasi-periodic solutions are difficult ones in
the nonlinear case, involving the well-known problems of small divisors, so
there may be considerable difficulties hidden under the formalism. If the
existence of solutions (14.86) and of neighboring modulated solutions is
simply assumed, modulation equations can be developed as before. Ablo-
witz and Benney (1970) and Ablowitz (1971) have pursued some of the
consequences. Delaney (1971) notes that the variational formalism goes
through. If modulated wavetrains can be described by

o=0(0,,0,,X,T;e¢),

9,=¢7'0,(X,T), 0,=¢'0,(X,T),
it is straightforward to show that the two-timed equation for ® and the two
periodicity conditions follows from the variational principle

affEdXdT=0,

hE: 27 27
L= f f L(», @y, + 1,y + @7, k, @y + ky 0y + €D, ®) db, b,
0

=
472 Jy

Modulation equations can then be developed as before.

14.10 Effects of Damping

As in Hamiltonian dynamics, the variational formalism applies natur-
ally to conservative systems; dissipative effects have to be tacked on a little
awkwardly as nonzero right hand sides to the previous equations. How-
ever, various canonical forms can be maintained and the left hand sides
can still be written in terms of the Lagrangian. To illustrate this, we
consider as a specific example the equation

(ptt— (pxx+ V’(q)) R GD((P’(Pt)’

where eD(@,q,) represents small dissipative effects. The two-timed equa-
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tion corresponding to (14.42) is

& {3t vo- oot o)

d
tne {k®F+ €Dy, }

+ e% {(r®;+ePy®,.} —
=—€ePyD(P,vP,+ €D ).
To lowest order, we have
%(VZ— K22+ V(@)= A(X, T) (14.87)
and the periodicity condition

9 PR 20 = —
an »®2dh fkcb b f@eb(cp@,,)da (14.88)

From (14.87), ®, can be expressed as a function of @, », k, 4, and the
integrals in (14.88) can all be written as loop integrals. We have

—B+a

e (14.89)

where
okl 5‘; (2021} " {a-v(®)) a2 4,

as before, and

1
D(v,k,A) = 377(J61:>(<1>,c1>9)ar<1>.
To (14.89) are added

B om0, ;e Lo (14.90)

to complete the set of equations for », k, A. Equation 14.89 shows the loss
in wave action due to dissipation.

Here we have returned to two-timing on the equations but retained
the canonical forms suggested by the Lagrangian for the conservative part.
This is obviously less desirable than two-timing directly some extended
principle. Recently Jimenez (1972) has had some success in deriving results
such as (14.89) by Prigogine’s approach to irreversible systems (Donnelly
et al., 1966).



