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the unconstricted arc is approximately proportional to
current while peak current densitics are independent of
current. Then, according to Eq. (3), the pressure avail-
able to produce streaming is proportional to (current),
and according to Eq. (3) the velocities resulting will be
then proportional to (current)!. Since the cross-sectional
area is directly proportional to (current), this suggests
that total flows should increase.as (current).

This simple picture is modified by the fact that as
current increases in this range, temperatures also
increase, so that velocity and heat flow should increase
somewhat faster, while mass flow should increase slower
than suggested by the foregoing. The data show this
trend.

In conclusion it can be said that the magnetically
produced streaming in the high current arc plays an
important role in the over-all behavior of the arc and
makes a very considerable contribution to the heat and
mass transfer of the arc. The mechanism for the heat
transfer appears to be analogous to that observed in
flames.

REED

I would like to thank H. N. Olsen and O. H. Nestor
for supplying unpublished data for this work.

SIMPLE ANALOG EXPERIMENT DEMONSTRATING
ARC PUMPING

A two-dimensional analog experiment was rum in
mercury to demonstrate the pumping which occurs in 2
divergent current path. A flat dish was filled to a depth
of § cm with mercury, and a small area electrode and
large area electrode were connected to a generator to
simulate the geometry existing in the arc (Fig. 6). With
a current of 500 amp passing through the mercury, a
vigorous streaming of mercury away from the small
area electrode, with peak velocities of 5 cm/sec, was
observed. A white powder on the surface shows the
stream lines and velocities in a photograph exposed
% sec. A card was placed on the surface of the mercury
and iron filings sprinkled on the surface to show the
magnetic field lines. This was photographed and the
two pictures superimposed in printing. :

e ——————————
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In What Sense Do Slow Waves Carry Negative Energy?*

P. A. STURROCE
Microwave Laboratory, W. W, Ilansen Laboraleries of Physics, Sionford University, Stanford, California

(Received July 18, 1960)

1t has been found in the theory of electron tubes that, according
to the “small-amplitude power theorem,” the fast and slow space-
charge waves carry positive and negative energy, respectively.
Similar analysis of different systems leads to similar results, leading
one to conjecture that there is some sense in which one might

- assert that, for a wide class of dynamical systems, slow waves

catry negative energy. In a one-dimensional model, “slow” and
“fact” waves in a moving propagating medium refer to waves of
which the phase velocity does or does not change sign, respectively,
on transforming from the moving frame to the stationary frame.
Small-amplitude disturbances of any dynamical system may be
described by a quadratic Lagrangian function, from which one may
form the canonical stress-tensor, elements of which are quadratic

1. INTRODUCTION
ONE of the most illuminating and useful concepts
in the theory of microwave tubes is the so-called
“small-amplitude power theorem”—? which was first
given, in a very restricted form, by L. J. Chu.t It was

found that, in simple cases, it is possible to ascribe to the -

* The research rzorted in this document was supported jointly
by the U. S. Army Signal Corps, the U. 8. Air Force, and the U. S,
Navy (Ofice of Naval Research).

(1;§gi H. Louisell and J. R. Pierce, Proc. LR.E. 43, 425427

3§ A. Haus, Noise in Eleciron Devices, edited by L. D. Smullin
a.nd"I;I:lzs\j Haus (John Wiley & Sons, Inc., New York, 1959),
pp. 77-153. :

p‘ P. A. Sturrock, Ann. Phys_ 4, 306-324 (1958). :

41..J. Chu, paper presented at the Institute of Radio Engineers

ggtitmn Devices Conference, University of New Hampshire, June,
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functions of the variables which appear in the linearized equations
of motion. For any pure wave in this system, the energy density E
and the momentum density P, as they appear in the canonical
stress tensor, are related to the frequency w and wave number k by
E=Jw, P=Jk, where 2xJ is the action density. The rules for
Galilean transformation now show that the energy densities, as
measured in the stationary frame, of fast and slow waves have
positive and negative sign, respectively, if (as is usually the case)
the energy densities of both waves are positive in the moving
frame. Similar arguments explain the signs of the energy density
of the two “synchronous” waves which arise in the analysis of
transverse disturbances of an electron beam in a magnetic field.

particles of a modulated electron beam a “kinetic
power,” the formula for which involves only terms
which appear in the linearized equations for the system,
and which, when added to the Poynting flux of the
associated electromagnetic field, is properly conserved.
In more complicated cases, interaction terms arise.
Certain simple but acceptable models fot electron
beams make it possible to analyze an arbitrary dis-
turbance of a free beam into a “fast wave” and a “slow
wave,” the phase velocities of which are greater and less,
respectively, than the particle velocity. The kinetic
power of the fast wave is positive, that of the slow wave
is negative; since the group velocities have the direction
of the beam velocity, one must conclude that the corre-
sponding energy density of the fast wave is positive,
whereas that of the slow wave is negative. .

s
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SLOW WAVES CARRYING NEGATIVE ENERGY

The small-amplitude power theorem has been the
subject of some controversy which might be dispersed
if it were generally agreed that the power which, in the
‘framework of this theorem, is ascribed to the particle
motion is not necessarily the correct or ‘“physical”
kinetic power of the beam, and that the usefulness of
the theorem does not rest upon the equivalence of these
two quantities. In solving the equations of motion,
terms such as v, appear (where v is velocity) which are
of first order in the amplitude, and also higher-order
terms such as v; which is of second order in the ampli-
tude. Terms such as v, must normally be obtained by
solving nonlinear forms of the equations. It is important
to note that such nonlinear terms are not determined
uniquely by the linear terms: one may either complete
the specification in an arbitrary way or, as is appropriate
in electron-tube problems, by examining the way in
which the wave is set up. It follows at once that we can-
not expect to assert that the physical energy of a slow
wave is negative, only that the energy of a slow wave
generaled in a specified way is negative.

The above point may be clarified by consideration
of an ideal experiment. Let us accept that an appropriate
coupler, excited in a certain way, will give rise to a slow
wave on an electron beam and will, in the process,
extract energy from the beam; this is one argument used
by Pierce’ to demonstrate that slow waves carry
negative energy. Now consider a more complicated
coupler in which the rf energy extracted from a beam in
setting up the slow wave is converted to dc and then
used to accelerate the beam. Such a coupler excites a
slow wave with the same “small-amplitude” parameters,
but in this case we should ascribe zero physical power to
the slow wave since the coupler has neither added
power to nor removed power from the beam. The
analysis of Walker,® which aims at demonstrating the

equivalence of the small-amplitude power theorem with -

the “physical” power theorem, contains an undeter-
mined constant, the presence of which represents the
impossibility of determining second-order quantities
uniquely from first-order quantities. It is commonly
believed that the ncgative-energy attribute of slow
waves is peculiar to systems in which the vibratory
motion is parallel to the dc velocity. Pierce” makes this
assertion but points to what appears to be a counter-
example: the experiment performed by C. C. Cutler,
C. F. Chapman, and W. E. Mathews® on coupled
torsional vibrations of the rims of two bicycle wheels
rotating at different speeds. The instability of this
system lends weight to the belief that slow waves in a
moving medium capable of transverse vibrations again
has negative energy in some sense, although one can see
that the physical energy of any such disturbance must
be positive. ’

As we have seen in discussing space-charge waves, we

‘{. R. Pierce, Bell System Tech. J. 33, 1343-1372 (1954).
s L. R. Walker, J. Ap{)l. Phys. 26, 1031-1033 (1955).

7J. R. Pierce, J. Appl. Phﬁs. 25, 1790-183 (1954).

W, E. Mathews, Proc. LR.E. 39, 1044-1051 (1951).
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should not expect the physical energy of slow waves to
be negative, although this may be so in particular
propagating systems when the wave is excited in 2
particular way. We should therefore not be deterred
from looking for a sense in which a slow wave can carry
negative energy even in a system such as that considered
in the previous paragraph. Indeed, the fact that one
would wish to ascribe such an energy to a wave which
is determined only in linear approximation requires that
we look for an appropriate generalization of the small-
amplitude power theorem rather than investigate the
physical power of a class of propagating systems.

That such a generalization exists has been pointed out
elsewhere.? It is possible to set up a small-amplitude
energy theorem for any dynamical system, that is, for
any system which may be described by an action
principle. The Lagrangian function describing such a
system may be expanded in a series of homogeneous
polynomials in the dynamical variables representing
the disturbance of the system from its quiescent state:

J A JONT JONE Jc RNy (1)

Since the term L®© is independent of the dynamical
variables, it may be ignored. Since the quiescent state,
described by setting all dynamical variables equal to
zero, is a solution of the Euler-Lagrange equations, we
may ignore L®) also. The lowest-order nonvanishing
term is therefore L® which yields the linearized
equations for the system. The fact that we have found
a Lagrangian function to describe the “linear” system
makes it possible to obtain, by standard procedures,
conservation theorems for this system. It has been
shown? that on¢ may assign a complete stress tensor to
the small-amplitude disturbances of an arbitrary electro-
dynamical system: this leads to the familiar small-
amplitude power theorem as a special case. We shall
show that it is this generalization of the small-amplitude
energy theorem, applicable to any dynamical system,
which enables us to assert that all slow waves carry
negative energy.

II. THE SMALL-AMPLITUDE STRESS TENSOR

Consider a continuous dynamical system described
by the action principle

5 f Ldxdt=0, @

where the Lagrangian density £ is expressible as

( des do )
L£=L ¢a; Y y ,) Xs §,
dt

Xr

€)

in terms of the dynamical variables ¢a(xr,/). We write
x,(r=1, 2, 3) for the spatial variables and reserve the
partial differential sign for functional differentiation
as in 9£/9.. We may now introduce the following

Downloaded 12 Nov 2008 to 132.239.66.164. Redistribution subject to AIP license or copyright; see http:/ijap.aip.org/jap/copyright.jsp
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variables which are canonically conjugate 0 ¢q
| ae ag
= na N e
8(dpa/dt) 8(dga/dxy)

Then the Euler-Lagrange equations® derivable from
(2) are

)

a,t

adlla
dt r

dna_ r aee
= ®)
dx, O¢a

We may now form from the Lagrangian function the
canonical stress tensor'® which has the following
components

<

dba
T“=Zu Ha,gjd*;— £,

doa
Ttr = Z Ha,f'_-—',
e al

i . (6)
T.= Z Ha.t":,

Xr

dda
Tr.t = Z Ha.l—'—"' £6ra~
° dx,

It is convenient to introduce the following symbols:
E= Tu, S,= Ttr, Po=— Tr!; (7)

E s the energy density, S, the energy-flow (or “power”)
vector, P, the momentum density, and —T,, the
momentum flow tensor. We may verify from (5) that
the following relations are satisfied

dE ds, 8%

= ®
a:'l T dx, ot ,

épP, aTr,, 9L
=2 —. )

di *dx, Ox,

We see from (8) that if the Lagrangian function does
not depend explicitly on time, energy is conserved;
similarly, we see from (9) that if the Lagrangian func-
tion does not depend explicitly on any spatial coordi-
nate, the corresponding component of momentum is
conserved.

We now wish to consider wave propagation in such
a continuous dynamical system. We suppose the system
to be time-independent and uniform in one or more
spatial coordinates. We may remove other coordinates
from the problem by an appropriate normal-mode
analysis. We now consider a wave-like solution of the

9 H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1950}, Sec. 11-2.

WL. Landau and E. Lifschitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company Inc., Reading, Massa-
chusetts, 1942), Sec, 4-7.

P. A. STURROCK

equations, for which every dynamical variable is
expressible as a function of the combination 3, k., —w!
of period 2r in this argument. In the particular case
which is of interest to us (that the Lagrangian function
is quadratic in its arguments), these periodic functions
will be circular functions.

It has been shown elsewhere!! that, for such a wave
propagating in such a medium, the mean values of the
energy density and momentum density are related to a
quantity 2xJ, the “action density,” in the following way

E=Ju, P,=Jk,. (10)

The quantity J is obtained by introducing a phase
angle x into the expression for the wave function, for
instance by replacing w? by wi-+x, and then evaluating
the expression

1 3¢ '
J=— f S T, (11)
27 a ok .

The relations (10) involving the wave energy density
and momentum density, which are identical in form
with the familiar relations of quantum mechanics be-
tween energy and frequency, momentum, and wave
vector,'2 enable us to establish a sense in which slow
waves carry negative energy.

1II. SLOW WAVES AND NEGATIVE ENERGY

In order to obtain an appropriate generalization of the
idea of “fast” and “‘slow” waves, we consider a convecled
propagating medium. From now on, we consider only
one spatial coordinate z. We introduce primed quanti-
ties, such as ', for quantities referred to a frame of
reference which is convected along with the medium.
We retain unprimed quantities for measurements with
respect to a fixed frame, and suppose that the medium
is moving with velocity v in the z direction. Then the
time and space coordinates of the two frames are

related as follows
1=, z=g'4t,

(12)

so that frequencies and wave numbers are related as
follows
(13)

We now consider the energy and momentum densities
in the two frames. According to (10), the following
relations should hold

E=Ju,
El=lel,

w=u'+ok, k=k.

P=Jk, l

14)
p=Jr.l (

The usual rules for transformation of a stress tensor on

1P, A, Sturrock, “Field-theory analogs of the Lagrange and
Poincaré invariants,” Microwave Laboratoty Report M.L. 689
(Stanford University, Stanford, California, 1960).

11, I. Schiff, Quantum Mechanics (McGraw-Hill Comapany,
Inc., New York, 1955), p. 17.
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SLOW WAVES CARRYING NEGATIVE ENERGY

_going to a moving coordinate system ' require that
P=P', E=E'+oP (15)

The relations (15) are indeed compatible with (13) and
(14), and show that
J=J. ~(16)

If we denote by # the phase velocity of a wave, so that
u=w/k, W=d'/¥, an
the second of the relations (15) may be rewritten as

w
E=—F'.
“I

(18)

. Now consider two waves, with the same wave
. number, which propagate in opposite directions with
respect to the moving reference frame; then #'>0 for
the “forward” wave and #'<O0 for the “backward”
wave. If v> | 4’|, both waves appear to be going forward
in the fixed frame of reference; one is a “fast wave,”
traveling faster than the convected medium, and the
other is a “slow wave,” which travels slower than the
medium. It we assume that, when looked at from the
comoving frame, the medium looks the same for a wave
traveling to the right as for a wave traveling to the left,
E’ will have the same value for both waves, if they have
the same amplitude. Hence we see that the energy of
the fast wave E; and the energy of the slow wave, E,,
will be given by

v+ v—u

E/~—F. E~——2F. - (19)
% %

We see that the fast and slow waves do indeed have
energies of opposite signs with respect to the fixed
coordinate system. It will frequently, but not invariably,
be true that E’ gives the correct expression for the
physical energy density in the frame moving with the
medium; in this case, E’ must be positive. We then see
from (19) that the fast wave carries positive energy and
the slow wave carries negative energy. It is interesting to
note from the second of rélation (19) that if the con-
vected velocity is not great enough to convert the back-
ward wave of the moving frame into a forward wave of
the fixed frame, then the slow wave (which is now a
backward wave) has positive energy.

IV. DISCUSSION

It must be emphasized that the relations (10), whick
make it possible to assign negative energy to slow waves
in a general way, hold for the energy and momentum of
a wave as defined by the small-amplitude stress tensor,
In the case that the exact equations for the system are
linear, it is not in general true that the canonical stress
tensor is identical with the physical stress tensor.
Nevertheless, the mean values of these quantities are

B P. M. Morse and H. Feshbach, Methods of Theoretical Physics
1 (McGraw-Hill Company, Inc., New York, 1953), pp. 98-100.

2055

identical™ under conditions which lead to the action re-
lation (10); moreover, it may happen that certain
contributions to the canonical stress tensor can be
directly related to physically significant quantities—
such as Poynting flux.

We see from (10) that evaluation of the small-ampli-
tude energy and momentum densities is a simpler
process than evaluation of the corresponding nonlinear
quantities, since all components may be derived from
the one quantity J. Formula (11) for J is usually simpler
to evaluate than corresponding direct expressions for E
and P,. Indeed, we may write down simple expressions
for the remaining terms S, and T, of the stress tensor.
If, as we are here assuming, 8£/d/ and 8£/dx, vanish,
we may use the properties of group velocity':" to es-
tablish from (8) and (9) the following relations

Ow w
S,=E—, T;,=—P—.

: (20)
ok, ok,

Hence, by combining (10) and (20), we may write down
the following expressions relating the sixteen compo-
nents of the stress tensor to the action density

E=Jo  S;=Jwdu/6k,,

(21)
P,=Jk,, T.,=—Jk.00/0k,. .

There are a few further points which should be noted
concerning the relationship of the small-amplitude
stress tensor, the canonical stress tensor and the
physical stress tensor. In setting up the canonical stress
tensor for small-amplitude disturbances of electro-
dynamical systems, the usual difficulty was found to
arise, that formulas for components of the tensor were
gauge-dependent. It was therefore expedient to modify
the canonical tensor by adding a term which did not
impair the conservation relations (8) and (9). The neces-
sary transformation is of a type!! which does not invali-
date the relation (21).

The negative energy carried by slow space-charge
waves explains the operation of traveling-wave tubes®;
it also explains the difficulty of removing noise from the
slow wave of an electron beam? In looking for a
mechanism for removing this noise, one might direct
attention to the physical energy represented by the slow
wave of a beam but this would be inadvisable. The
problem of removing noise is simply the problem of
coupling different types of electrodynamic systems, a
problem which may be discussed by means of the
linearized equations. Study of the small-amplitude
energy theorem therefore provides information about

~ this coupling problem; study of the physical stress

tensor, on the other hand, provides information also
about nonlinear effects of the wave equations and
coupling mechanisms which are irrelevant to the
problem of noise removal, '

M L. Brillouin, Wave Propagation in Perivdic Structuves (Mec-
Graw-Hill Company, Inc., New York, 1946).
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It has been noticed!s that the formulas for kinetic
power of an electron beam can yield the correct expres-
sion for the physical power lost by an electron beam in
an electron tube, and it is interesting to see when and
why this is so. Suppose that the beam enters the inter-
action region with power S, ; and that the input coupler
introduces an electromagnetic field with power Sy.i;
suppose also that the beam leaves the interaction region
with power Ss,7 and that the output coupler removes
field power Sy, ;. The equation of conservation of energy
requires that

Sp.i+S7i=Se.r+S7.1- (22)

We first interpret (22) as relating the “physical”
powers involved. However, we may set up an analogous
relation between the powers assigned to the beam and
field by the small-amplitude energy theorem

So.i+Srd=So./+S./. (23)

(If the beam is initially unmodulated, S3,/=0.) In the
usual statement of the small-amplitude energy theorem
for electron tubes,'? the expression for the power of an
electromagnetic field alone gives correctly the physical
power carried by this field; hence

S; /=S85 S;/ =8 (24)

We note that interaction terms in the expressions for
energy flow do not appear in our equations since we are
evaluating the power carried by various components of
the system outside of the interaction region. We now
see from (22), (23), and (24) that

Sb.r—Ss,:=Ss,1~Ss., (25)

which states that the physical power lost by the beam is
equal to the power loss as evaluated by the small-
amplitude power theorem. We can see that it is generally
true that if an electrodynamic system interacts with an
“external” field for a finite length of space or time, the
small-amplitude formulas give correctly the loss of
power or energy by this system.

It is interesting to return to consideration of trans-
verse torsional waves in a moving medium. The analysis
of Sec. IIT would lead us to assign negative canonical
energy to slow waves in such a system. This is com-
patible with results of the experiment of Cutler,
Chapman, and Mathews.® However, Pierce’ has stated
that “an analysis shows that when a torsional wave on a
fixed rod is coupled purely by couples about the axes
to the slow torsional wave on a parallel rod moving
axially with the respect to the first, no gaining wave
results.” Pierce resolves the discrepancy between this
statement and the experiment referred to by pointing
out that the interaction mechanism in the experiment
involves longitudinal forces. If, on the other hand, one
looks for a resolution of this paradox within the frame-
work of the small-amplitude energy theorem, one is led
to conjecture that the mathematical model considered

18 M. Chodorow, private communication.

P. A. STURROCK

by Pierce was not a valid model of a dynamical system in
that the equations were not derivable from 2 Lagrangian
function.

In conclusion, let us consider briefly the theory of
transverse-field electron tubes. It has been shown'® that
the motion of a filamentary electron beam in a longi-
tudinal dc magnetic field may be analyzed into four
waves. One pair of these waves, which Siegman terms
cyclotron waves, is similar to space-charge waves in
that one is “fast” and carries positive energy and the
other is “slow” and carries negative energy. This is as
we should expect. The other pair is termed “synchronous
waves” since its phase velocity is equal to the dc beam
velocity. Of these, it is found that one carries positive
energy and the other negative energy, but it is not
immediately obvious from our theory why this should
be so.

The synchronous waves have the form of right-hand
and left-hand helices convected with the beam velocity.
Hence, in the comoving frame, these waves have zero
frequency and hence zero canonical energy. Evaluation
of energy in the laboratory coordinate system therefore
turns upon evaluation of the momentum of the two
waves, which will be the same in the Jaboratory system
and in the comoving coordinate system. However, the
presence of the magnetic field makes the medium
anisotropic so that we cannot assert that the action
densities of the two waves in the comoving frame should
be equal if their amplitudes are equal. This anisotropy
may be removed by going to the Larmor frame,’? which
rotates with half the cyclotron frequency. Hence the
two waves, which were of the form

xtiy=retitt—h (26)
in the original coordinate system, have the form
x'+iy'= e—-ile’tikz',A . (27)

in the comoving Larmor frame if the appropriate trans-
formation is written as

wiy= (+iy)ert, s=gtof, 1=l (28)

If the field is so directed that wy, is positive, the waves
characterized by plus and minus signs may be termed
“antirotating” and “corotating.” We expect both waves
to have energy of the same sign in the Larmor frame so
that the action densities which we should assign to both
waves have the same sign, The momentum in the co-
moving Larmor frame is &£J; this is the same in the’
comoving nonrotating frame and in the stationary
frame. Hence, from (26), the energy densities of the
two waves in the stationary frame are ==Jvk. If, as we
should expect, J>0, we see that the antirotating wave
has positive energy and the corotating wave g has
negative energy. This is in agreement with Siegman’s
analysis.
18 A, E. Siegman, J. Appl. Phys. 31, 17-26 (1960).

17 H. Goldstein, Classical Mechanics (McGraw-Hill Company,
Inc., New_ York, 1950), section 5-8.

Downloaded 12 Nov 2008 to 132.239.66.164. Redistribution subject to AlP license or copyright; see http://jap.aip.org/jap/copyright.jsp



PHYSICS OF PLASMAS 14, 092101 (2007)

Two-stream instability, wave energy, and the energy principle
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A generalized Poynting theorem for a system of uniform electron beams is obtained. Two examples
of the two-stream instability with beams of equal density are used to discuss the relation between
negative wave energy and negative potential energy, which arises in the energy principle of ideal
magnetohydrodynamics. In the first example, v1p>v2p, While in the second example, vy9=-Vj0,
where v, are the equilibrium beam velocities. Both cases can be interpreted in terms of the
energy density arising from the generalized Poynting theorem. The first instability is due to the
coupling of negative and positive energy waves at a frequency k(vio+ Uag)/2. The second instability
is due to the coupling of the same two perturbations, but at zero frequency. In this case, there is no
oscillatory (wave) energy, but the beam electrons still make a negative contribution to the total

energy. [DOI: 10.1063/1.2768016]

1. INTRODUCTION

Two-stream instability is an example of a general class
of instabilities that can occur in a conservative system. Such
instabilities have been referred to as reactive.

Two-stream instabilities and the related beam-plasma in-
stabilities are, of -dourse, very well known. However, they
continue to be of interest in a variety of situations. For ex-
ample, Startsev and Davidson® recently gave a part analyti-
cal, part numerical analysis of a two-stream instability for a
longitudinally compressing charged particle beam. In another
recent study, a Vlasov-Poisson simulation of electron beam
interaction was also described by Silin, Sydora, and Sauver.?

Reactive instabilities can be understood through the use
of conservation theorems,*® which lead to the concept of
negative energy waves. A few years after the introduction of
this concept, the subject of ideal magnetohydrodynamic
(MHD) stability theory was advanced by the discovery of the
energy pr’mciple.7 This principle requires the potential energy
to be negative. A reactive instability occurs when two linear
waves couple (or coalesce) at a critical frequency and where
one of the modes has negative wave energy. On the other
hand, for a stationary equilibrium, an ideal MHD instability
occurs when two modes couple (coalesce) at zero frequency.
For this case, there is no oscillatory (wave) energy, but the
potential energy, as defined by the energy principle, must be
negative. Although both negative wave energy and negative
potential energy arise from conservation theorems, it is not
clear what, if any, is the connection between the two.

The extension of the energy principle to nonstationary
equilibria is relevant to contemporary problems, such as
magnetic fusion, since equilibrium flows are widespread and
of considerable interest. This extension is also relevant to
other fields, for example solar physics, space physics, and
astrophysics. Davidson® addressed this question for nondis-
sipative flows in incompressible conservative systems that
include ideal MHD.

In this paper, two-stream instability is revisited in order
to illustrate a number of basic points concerning reactive

1070-664X/2007/14(9)/092101/5/$23.00

instabilities. In addition, a link is noted between the concepts
of a negative energy wave and negative potential energy,
used in the analysis of ideal MHD instabilities. In-conserva-
tive systems possessing free energy, the existence of negative
energy waves is demanded by the appropriate conservation
theorem.” Similarly, the ideal MHD energy principle for sta-
tionary equilibrium can be obtained from a generalized
Poynting theorem.

The reactive instabilities arising from the interaction be-
tween cold electron beams, although much simpler than ideal
MHD instabilities of magnetically confined plasmas, allow
some insight into the link between the two. For two beams,
with equilibrium velocities vy and vy (v19>v2), two-
stream instability occurs at a frequency k(v;o+vy0)/2. The
instability arises when the negative energy slow space-charge
wave on the faster beam couples (coalesces) with the posi-
tive energy fast space-charge wave on the slower beam. For
the special case in which the beams have equal and opposite
velocities, vyo+v0=0, the instability occurs at zero fre-
quency, as in the case of ideal MHD.

In Sec. II, the generalized Poynting theorem for electro-
static fluctuations of a system of cold electron beams is ob-
tained. This allows the identification to be made of the wave
energy density for the unperturbed beam modes. It is dem-
onstrated in Sec. III how the expression for the small signal
energy is able to account for instability for both finite values
of the frequency and for the special case in which Re w=0.
In both cases, solutions of the dispersion relation are ob-
tained that demonstrate explicitly the coalescence (or cou-
pling) of the relevant beam modes. A summary and conclu-
sions are given in Sec. IV.

Il. THE GENERALIZED POYNTING THEOREM

Consider a system of j-electron beams, each of uniform
density njo and velocity vjo=vjoz, where z is the unit vector
along the z axis. There is no equilibrium magnetic field. The
analysis is restricted to one-dimensional, electrostatic pertur-

14, 092101-1
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bations to the uniform equilibrium. The linearized equations
for the beams are

d d e
at+vjoaz Uj]Z=—m_‘El;) (1)
Mz 2 =0 2
ot +ﬁz(njovjlz+njlvj0)— » ( )
ok,
le+€0_n-— '_O (3)
where J]:':—ez (njovj1:+njlvja). (4)

J

Multiply Eq. (1) by m n}ov;l- and the complex conjugate
equation by m,n;,v;, and add, where the * denotes the com-
plex conjugate. Now, multiply Eq. (1) by m,n; ,uﬂ, and the
complex conjugate equation by m,n;vj, and again add.
Combining the resulting pair of equations gives

3 » OU;
2 i1z
—=(njomefvji; )+ (n-rnL v i) +muin
it eivj l 9z jo l i l Jjo _/I oz
»* *
av; du; ov;
2 1z * 1
+mev-a"jl'—l_+’"ero"j1_a"t_z+mera"j1_a‘lt]—z
Z

- £ 3
+1,,0j0) Er. = e(njovji, + 1j10j0) Ey .
(5)

Similarly, multiply Eq. (2) by m,v j,,v;l . and its complex con-
jugate by mv,v;. and add, giving

e(n]ovﬂ,

on; an; d
* j1 j1 i *
mevjp(vj,: +Uj1, . + mgvjoaz (njovjlzvjlz)

7 *
+my; U E(nﬂvﬁ,)=0. 6)

11- (Ujo"jl) + mgU;oUiji,
‘

Now use the relation

r?n onyy val
Ui —L o p—L= 7
(_,l jl) ﬂZ j1 9z ()
and its complex conjugate, to obtain
. z?n! 8n[ « JU Uj1z
Vj1z 9z +Ujz 5z (v,x—",n“"vjl»",;) "1 oz
R
ilz
-n; . 8
il az (8
Combining Egs. (6) and (8),
8n[| ¢9n'! d .
mevjo(v,u oz +Vj, at )"'mevjo‘a—z("jovjlzvjx:)
avf,
+m,vjo (vﬂznjl+vﬂ 1) m,vlc _L—azz
muin; li"— 0. (9)
Jo' 9z

Now add Egs. (5) and (9) giving
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[njome'vﬂzl +m¢vjo( lvjlz+"ﬂvjlz)]

d
2 * ]
+ ";_2[2m¢"jovja|vj1z|2 +mi(v; 1+ Ujlz"jl)]

'1vjo)Elz— e(nj,,vjlz+ njlvj,,)E;z.
(10)

e( ovle

Summing Eq. (10} over all the j species of electron beams
and taking account of Eq. (4), Eqg. (10) can be written

1
2 * *
_2 {2 jo |Ujlzl + Emcvjo(vjlznjl + Uj]nj])}

q 1 *
+ -—-{E [menjolvjlzlz + Emevjo(vﬂznjl

0z j

* 1 *  J
+vj|znjl)]vj0} = E(‘,lelz"'leElz)' (11)

Multiplying Eq. (3) by Elz and 1ts comp]ex conjugate equa-
tion by E,, yields

1 . . 1
E(flelz‘*-’lexz)— 2%3;] . (12)

The generalized Poynting theorem for one-dimensional per-
turbations to an equilibrium system consisting of j-electron
beams follows from Egs. (11) and (12),

a 1
3t{§ [anam

1 d
+ anlElzlz} + 5;{2 [menia‘vjlzlz

J

;

1 .
2 * *
elvj,zl + —mgvja(njlvjlz + njlvjlz)]

2

1 N N
+ Emevjo(vjlznjl +vjlznj,)]vj,,} =0. (13)

The equation expresses the conservation of small signal en-
ergy for perturbations to the above system of electron beams.
The first term is the time rate of change of the energy density
and the second term is the energy flow. For electrostatic fluc-
tuations and cold beams, the energy flow is due to the equi-
librium beam velocities. Since the equilibrium is uniform,
averaging over a period of oscillation (or a wavelength)
gives

1
melvlll + meuja( 1)1z

SolElzl + E [

at| 2 2

+njlv;,z)]}=0. 7 (14) .

Denoting the expression inside the curly brackets in Eq. (14)
by &, the small signal energy density, the equation becomes
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¢

—=0. ' 15

Py (15)
The constancy of ¢ implies that instability can only occur
when the system permits some of the contributions to £ to be

pegative.

{i1. SMALL SIGNAL ENERGY AND INSTABILITY

The physical content of Eq. (14) is illustrated in this
section with two specific examples of two-stream instability.
Assuming that all perturbed (small signal) quantities vary as
exp i(kz— wt), Egs. (1) and (2) give

. =i_‘11___ Ey; 16'

Uitz ﬂlj( —} jo)y ( )
ikn;,q;E;,

nji= l")oq[ iz (17)

myw- kv )

With the aid of Eqs. (16) and (17), £ can be written as

1 o’ 2kv 02
- 4 l Ll { j (w—kvjo)2 (w—kvja)3
(18)

The first example of two-stream instability to be considered
is when both streams have the same density and stream 1
moves faster than stream 2,

Case a) W, = Wy =w,; U0 > Uno.

For simplicity, the subscript “0” on the equilibrium beam

velocities is dropped so that v, >v,. The dispersion relation

for this case can be found in most plasma physics text books,
see, e.8., Stix,'? :

2 2

9 19

@ to? @k 4

The unstable solutions for this equation are well known and

are given, for example, in Ref. 10, where the solution for

maximum growth is given as

_ k(v; + Uz) i(i)z ‘

=" x5 (20)
In Ref. 10, it was pointed out that the stable solutions of Eq.
(19) reduce to the fast and slow space-charge waves on the
two beams, which propagate independently for large k. How-
ever, these waves also play a key role in the unstable range
of wave numbers, as will now be demonstrated.

The result given in Eq. (20) can be obtained by recog-
nizing that the space-charge waves on each beam will per-
turb each other. The dispersion relation given by Eq. (19) can
be written as

(0~kvy — w )@~ kv + wp)
X(w=-kvy — wp){w—kva+ @,) = w:. @21

This form is physically revealing, since it suggests that the
instability can be described in terms of the coupling of the
fast and slow space-charge waves carried by the two beams.

Phys. Plasmas 14, 092101 (2007)

The fast space-charge waves are %iven by w=kv;,+w, and
the slow space-charge waves by‘ w=kv; ;- w,. By substi-
tuting the fast space-charge wave frequencies into Eq. (18), it
can be seen that the energy density of the fast waves will
always be positive since w—kv;,>0. On the other hand,
substituting the slow space-charge wave frequencies into Eq.
(18) shows that the slow waves carry negative energy, since
w—kvy ,<0. :

Since vy > v,, instability can be expected when the slow
wave on beam 1 couples to the fast wave on beam 2. The
coupling condition is

kvy - w,=kvy + w,. (22)

In order to demonstrate this, assume a solution of Eq. (21) of
the form

o=kv| - w,+ dw, (23)

Substituting Eq. (23) into Eg. (21), making use of the cou-
pling condition, Eq. (22), and neglecting dw in nonresonant
terms, Eq. (21) reduces to .

1
Hence, Egs. (22)~(24) yield

2
(dw)? ~— =2 S (4)

_ k(v +vy) iw,
w=——"—" £ (25)
in agreement with the exact solution given by Eq. (20). The
wave number at the threshold for instability can be obtained
from the condition that £&=0. Using the coupling condition,
Eq. (22), the frequency w=kv;—w,=kv,+w, is substituted
into Eq. (18) to give '

2k(vl—u2)]. 26)

@p

1

&= 280|51:12[3 -
Hence, the wave number at the threshold for instability
resulting from the quadratic approximation is k=3w,/2(v,
-v,). For comparison, the exact value'® is k=2 2w,/ (v,
-v,). The wave number corresponding to the maximum
growth rate is 3w,/ (v;~v;). The coupling condition, Eq.
(22), which is expected to correspond to maximum growth,
gives the value k=2w,/(v;-v,), which is in fair agreement.

Case b) w, = W=, U=V, U=—V.
This is a rather special case in which the two beams again
have equal densities but equal and opposite velocities. The

dispersion relation for this case is

w2 w2

- (w—ll,cv)z_ (w+2v)2=0'

1 @7
The solution can be obtained from the exact result given by
Eq. (20) by putting v;=v, v,=~v, and is

w=2i-2, (28)

2

Note that for this special case, Re =0, which is analogous
to ideal MHD instability. This result can again be obtained in
terms of the coupling of the spgce-charge waves. It is clear
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that for this case there can only be coalescence of roots, and
therefore instability, at zero frequency. The coupling condi-
tion corresponding to Eq. (22) is now

kv — w, =~ kv + @,. (29)
Assuming ‘ .

w=kv-w,+ v (30)
and making use of Eq. (29), Eq. (21) yields the result given
in Eq. (28).

Although there is no oscillatory energy for this case,
since Re w=0, the energy expression given by Eq. (18) still
holds and must take the value £=0, at the threshold for in-
stability. Substituting v,=v, v,=-v in Eq. (18), it can be
seen that there are now two negative contributions to £,

f—l |E 1+ mj Zkvw + w’z’
ST Sln (@—ko) * (o— w0y (or ko)
2
_ 21:1,'14)E . 31)
(w+ kv)?

Imposing the threshold condition w=0, Eq. (31) yields

b= e |E 12(1 2—“’2> (32)
-m—480 lz' T2l

This result gives k= \“‘2wp/ v as the wave number at the in-
stability threshold, which is in agreement with the value ob-
~ tained from the solution of the dispersion relation, given by
Eq. (27). The wave number corresponding to maximum
growth is given by the exact solution of the dispersion
relation'® and is k= y3w,/2v. For comparison, the resonance
condition [Eq. (29)] gives w,/v, in reasonable agreement. It
should be emphasized that the negative contributions to £ in
Eq. (31) still relate to the kinetic energy of the beam elec-
trons. However, at zero frequency these contributions are
equivalent to W <0 in the case of ideal MHD instability.

IV. SUMMARY AND CONCLUSIONS

The generalized Poynting theorem for a system of cold,
uniform electron beams with no equilibrium magretic field
has been derived. This provides the basis for a discussion of
reactive instabilities, which result from the coalescence of
two roots of the linear dispersion relation. The well known
two-streamn instability suggests a possible connection be-
tween negative small signal epergy and negative potential
energy (6W<0) characteristic of ideal MHD instability,
where Re w=0, and for which there is no oscillatory energy.

A reactive instability occurs when two wave modes of
the linear system couple at a critical frequency, where one of
the modes carries positive energy and the other negative en-
ergy. Ideal MHD instabilities are a special case of reactive
instability, and occur when two linear modes couple at zero
frequency for a stationary equilibrium. The ideal MHD en-
ergy principle is restricted to stationary plasmas. Since equi-
librium flows are common to many situations, it would be
useful to have a corresponding result to the energy principle
for nonstationary plasmas.
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Two-stream instability has been discussed for two cases.
In the first, two beams of equal density have drift speeds v,
and v, with v;>v,. Instability is shown to occur when the
negative energy slow space-charge wave carried by the faster
beam couples with the positive energy fast space-charge
wave carried by the slower beam. The requirement that the
frequencies of the two modes should be equal gives the cou-
pling (coalescence) condition, which allows a quadratic ap-
proximation to the dispersion relation, yielding the exact val-
ues of the frequency and maximum growth rate. A value for
threshold wave number for the instability is obtained from
the condition that the total energy is zero at the critical (cou-
pling) frequency. This is compared with the exact result.

In the second case, the two beams of equal density have
equal and opposite drift speeds v{=v and v,=-v. Coales-
cence can only occur in this case at zero frequency, analo-
gous to an ideal MHD instability where there is no oscilla-
tory energy but where 6W <0. For the second example, it is
again shown how the coupling of two beam modes reduces
the dispersion relation to a quadratic approximation, which
nevertheless yields the exact growth rate. The expression for
the nonoscillatory energy density yields the threshold wave
number from the condition that the total energy is zero at
threshold. Again, the wave number for maximum growth is
compared with the wave number obtained from the coupling
condition.

It is worth noting an interesting distinction between the
two cases. For the finite frequency instability (v;>v,), there
is only one negative contribution to the total energy, which
comes, of course, from the negative energy wave on the
faster beam. On the other hand, for the case with equal and
opposite flows (v;+v,=0), both beams give negatlve contri-
butions to the total energy.

Since the generalized Poynting theorem leads to a con-
sistent interpretation of both oscillatory and .nonoscillatory
reactive instabilities for a simple two-beam example, it is
suggested that the corresponding generalized Poynting theo-
rem for ideal MHD for a nonstationary plasma would yield
useful information through the identification of negative en-
ergy waves. For nonstationary equilibria, ideal MHD insta-
bilities will occur at finite frequencies. It should be empha-
sized that the analysis given in this paper applies to the case
in which the beam velocity is much greater than the thermal
spread of the beam.
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