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Abstract:

The theory of the Rayleigh-Taylor instability of accelerated fluid layers is systematically developed from basic fluid equations. Starting with the
classical potential flow theory for moving contact surfaces, the discussion extends to various fluid systems describing inhomogeneous, viscous,
compressible, and isobaric flows. Thereby an overview on the major stability issues under a broad variety of physical conditions can be given. In
particular, the stability analysis is addressed to layered materials in plane and spherical geometries under various dynamical conditions, to
inhomogeneous media with variable gradients and different boundary conditions, to viscous boundary layers, compressible atmospheres, and to
stationary ablation fronts in laser-driven plasma experiments. The stability theory is further extended to the nonlinear stage of the Rayleigh-Taylor
instability and to a discussion of bubble dynamics in two and three dimensions for closed and open bubble domains. For this purpose simple flow
models are studied that can describe essential features of bubble rise and bubble growth in buoyancy-driven mixing layers.
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1. Introduction
1.1. Rayleigh—Taylor phenomena

The instability of a heavy fluid layer supported by a light one is generally known as Rayleigh—Taylor
(RT) instability. It can occur under gravity and, equivalently, under an acceleration of the fluid system
in the direction toward the denser fluid. A simple example may illustrate typical evolution times for the
overturn of ordinary liquids under the effect of the earth’s gravity. Assuming an acceleration
a=9.8m/s” and a perturbation wavelength A = 1cm, the classical e-folding time 7= VA/V2ma of the
free-surface RT instability would be 0.013 s. Even if an unstable equilibrium would be established, the
instability evolution would be too fast for direct observation. However, the typical finger-like flow
patterns can be nicely modeled, for instance, by Hele—Shaw cells consisting of thin sheets of viscous
fluids inside the gap between two parallel glass plates.

Because of the transient nature of RT instabilities in common situations, its physical significance may
have escaped attention for a long time. Experimental observations of RT instabilities have only started
with the work of Taylor [1] and Lewis [2] about forty years ago, although Rayleigh’s theoretical analysis
[3] dates back to the end of the last century. At present, a number of laboratory experiments with
accelerated liquids have been reported that illustrate the instability evolution under various circum-
stances. In the following, we describe some of these observations.

The first experiments by Lewis [2] have shown three subsequent stages in the evolution of an
unstable air-water interface. The initial phase of exponential growth is followed, first, by a transition
phase of bubble formation and then by an asymptotic stage of rising air columns. One should clearly
distinguish between the instability problem, related to the initial phase, and the mixing problem, related
to the asymptotic phase. In the instability problem, one is mainly concerned with the modification of
instability growth rates by various physical effects. In contrast, the mixing problem is addressed to the
penetration of perturbation fronts through the liquid.

Another series of experiments by Emmons et al. [4] has largely confirmed these findings. In addition,
the effect of surface tension was investigated. Theoretically, it leads to stabilization of perturbations
with wavenumbers larger than the cutoff k. =V pa/T, where p denotes the density and T the surface
tension. The experimental results have indicated the trend toward reduced growth rates close to the
cutoff, although complete stabilization was not observed. This lack of agreement was explained in part
with inaccuracies in the determination of the initial amplitude and in part with nonlinearities. The
experiment was reconsidered by Cole and Tankin [5] with improved accuracy, but with about the same
cutoff behavior.

The instability evolution between fluid layers of nearly the same density has been studied experimen-
tally by Allred and Blount [6]*’ and by Ratafia [7]. The density dependence can be expressed by the
so-called Atwood number (section 3.1) leading to appreciably lower growth rates for fluids with nearly
equal densities. Moreover, the nonlinear evolution of the interface appears more symmetric, showing
mushroom-like flow patterns in both fluids.

The instability of shock-accelerated interfaces has been studied theoretically by Richtmyer [8] and
experimentally by Meshkov [9]. It was found that the long-time evolution of Richtmyer—Meshkov
instabilities can be well described by the model of an impulsive RT instability. It describes constant
velocity growth of initial surface corrugations.

*'Some of Allred and Blount’s results are discussed in ref. [4].
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More advanced stages of intermixing have been observed by Read [10] and by Dikarev and Zatsepin
[11] in the RT case. Similar experiments have been performed by Andronov et al. [12] in the
Richtmyer~Meshkov case. Although a unique picture of mixing layers has not yet emerged, a trend
toward larger bubble structures has been clearly observed. The experiments of Read have even
indicated a simple similarity law for mixing layer growth in proportion to the acceleration distance of
the fluid system.

An overview on characteristic flow patterns in the evolution of RT instabilities is given by the
schematic drawings of fig. 1. In this figure, the heavy (light) fluid is represented by shaded (unshaded)
regions and the kinematical acceleration is directed vertically upward in (a-h) or radially inward in (i).
Normal mode perturbations of the horizontal equilibrium surface give rise to sinusoidal surface
modulations [1] as represented in (a). The fluid interchange decreases the potential energy content of
the system which is the cause of instability. The further upward motion of the lighter fluid assumes the
form of rising gas bubbles with an approximately steady shape [2,4] as illustrated in (b). For
comparison, the evolution of a closed, initially spherical bubble is also shown in (c). These horseshoe-
like deformations are based on incompressible inviscid fluid dynamics [13]. Experimental observations
of underwater bubbles have also indicated the formation of a turbulent wake [14]. Typical features of
the falling heavy fluid are represented in (d—g). In a low-density gas, the fluid particles can closely
approach the stage of free fall. A corresponding contraction of the downward flow gives rise to
needle-shaped spikes [15] as shown in (d). When the flow resistance of the lighter fluid becomes
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Fig. 1. Schematic flow patterns in the evolution of RT unstable two-dimensional flows. A light fluid (blank area) is penetrating a heavy fluid (dashed
area) under the action of an acceleration directed vertically upward in (a-h) and radially inward in (i). (a) Normal mode perturbation, (b}
free-surface bubble. (c) deformation of a spherical gas bubble, (d) falling spike in a medium with negligible density, (¢) falling spike in 2 medium
with finite density, (f) vortices between intermixing fluids with nearly equal densities, (g) anti-spike at the rear side of a thin foil, (h) advanced stage
of intermixing, (i) RT instability of a spherical shell.
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important, as in (€), broadening of the spike tips is observed along with the formation of mushroom-like
vortex motions [16]. These additional structures are commonly attributed to secondary shear flow
instabilities. The pronounced differences between bubbles and spikes disappear for fluids with nearly
equal densities [17]. Corresponding bubble—spike pairs can be recognized in (f). Anti-spikes, of the
form shown in (g), have been observed in fluid simulations [18] at the stable rear side of an accelerated
thin foil. They have been explained theoretically as a result of colliding jets at a cusp point singularity in
the surface equation of thin layers [19]. The advanced stage of intermixing [10] gives rise to much more
complicated flow patterns as illustrated in (h). RT instabilities are also often encountered in spherical
geometries (i). For instance, implosions of inertial confinement fusion pellets are subject to outside
surface instabilities during acceleration and to inside cavity instabilities during deceleration.

Over the past decades, it also became obvious that RT instabilities would play an important role in
many different fields. Their control is of vital interest for a number of technological applications, in
particular in inertial confinement fusion (ICF) devices [18,20-23]. A number of experiments have
demonstrated the physical significance of these instabilities in ICF [24-33]. In some cases, reduced
growth rates, mostly attributed to ablative modifications, have been found. Other examples have been
reported in geophysics, where some ionospheric phenomena, known as equatorial spread F bubbles,
have been explained in the RT context [34-36]. In astrophysics, certain chain-like globules (elephant
trunks) in the interstellar medium show close resemblance with RT flow patterns [37]. It is therefore
believed that RT instabilities can occur in accelerated gas clouds, driven for instance by new-born stars
[38] or supernova events [39, 40]. Other astrophysical RT instabilities have been discussed for magnetic
field-supported accretion disks in neutron stars [41] and for collapsing stellar cores [42, 43] due to an
intense release of neutrinos.

1.2. Historical background

Since we are not primarily concerned with historical developments, it may be of general interest to
first mention some of the original works that have largely contributed to our present understanding of
the subject.

More than 100 years ago, Lord Rayleigh (1883) has published his classical treatment [3] entitled
“Investigation of the Character of the Equilibrium of an Incompressible Fluid of Variable Density”. It
was motivated as an illustration of the theory of cirrus clouds but it is not specific for this case. The
work describes the linear stability eigenvalue problem for incompressible fluids under gravity. The
general stability criterion for incompressible inviscid fluids is discussed and particular perturbation
solutions for exponential density variations are derived. It is remarkable that even a transcendental
dispersion relation, describing the stability of exponential transition profiles, was already fairly
completely analysed in this original work.

Rayleigh was probably the first to pose the stability problem in a general manner and to recognize its
principal significance for atmospheric stratifications. At his time, stable surface waves had already been
well understood theoretically. The mathematical description of surface waves between superposed
liquids of different densities may be largely due to Stokes (1847) [44]. Some early observation of the
density dependence of the oscillation period was apparently made by Benjamin Franklin (1762) [44],
who compared the behavior of oil-water and air—water interfaces.

In later works, some of the idealizations of the inviscid incompressible fluid model have been
overcome. Schwarzschild (1905) [45] has established the basic criterion for stability against convection
in compressible atmospheres. Harrison (1908) [46] included the effect of viscosity in the treatment of



202 H.J. Kull, Theory of the Rayleigh-Taylor instability

superposed fluid layers and Rayleigh (1916) [47] could explain the onset of Boussinesq convection by
including viscosity and thermal conductivity.

Apart from these and other early studies of gravitational instabilities, the modern developments have
started with the work of Taylor (1950). In a companion work by Taylor [1] and Lewis [2], the basic
physical importance of RT instabilities for accelerated fluid layers could first be demonstrated. The
theoretically predicted instability growth rates proved in excellent agreement with laboratory experi-
ments. Furthermore, the subsequent stage of rising upstanding gas columns could be observed. The rate
of rise of these gas columns could be explained by similar laws as for underwater bubbles and for
bubbles rising in cylindrical tubes [14]. These findings have been highly influential for the future
developments.

In the succession of Taylor’s work, the instability theory was rapidly developed in various directions
to include, for instance, surface tension and viscosity [48], magnetic fields [49], spherical geometries
[50-52], finite-amplitude perturbations [53], and bubble theories [54-56]. There exist already excellent
reviews of parts of the instability theory, especially those by Chandrasekhar [57] and by Birkhoff [58].
Chandrasekhar’s work gives an overview on the linear theory for incompressible continuous media.
Birkhoff’s report describes the principle instability problems in potential flow theory along with a
discussion of possible solution methods for linear and nonlinear evolution. Unfortunately, the latter
work has not been published and existing copies of the original manuscript are quite cumbersome for
reading. The textbook of Drazin and Read [59] represents another valuable introduction to hydro-
dynamic instabilities. However, there is only little overlap with the present RT problem, since this work
has been largely devoted to the topics of thermal instabilities and shear flow instabilities.

1.3. Synopsis

Over the past years, growing interest in RT instability came, on the one side, from the rapid
developments in computational fluid dynamics and, on the other side, from various important
applications, especially in ICF. This may partly justify to reconsider a classical subject of hydrodynamic
stability theory from the viewpoint of present knowledge and current interest. Clearly, there is a
profound scientific motivation for a better understanding of the many physical, mathematical and
computational problems in this field. We only mention the multi-dimensional nonstationary character of
these instabilities, the statistical nature of buoyancy-driven intermixing, and the great complexity in the
physics of real systems, including interstellar clouds, supernova remnants, solar atmospheres, fusion
plasmas, and many others.

It would be virtually impossible to give a complete account on all present investigations. The
interested reader is therefore referred to a number of articles which cover broader topics in this field. A
review of the present research status with emphasis on nonlinear evolution and mixing has been given
by Sharp [60]. Computational methods and their applicability to RT problems have been discussed by
Glimm et al. [61] and by Buchwald [62]. Stability and symmetry issues in ICF have been summarized,
for instance, by Gardner et al. [63] and by Holstein and Meyer [64]. Some simplified model calculations
of ICF related instabilities have been presented by Jacobs [65] and by Gupta [66]. A number of
important achievements will be missing in this review, especially those related to MHD stability theory,
to magnetic confinement in axisymmetric toroidal systems, or to computational methods. However,
most of these subjects require special expertise and are frequently beyond the scope of a first principles
analysis.

This work is addressed to a self-contained systematic presentation of the elementary theory of RT
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instabilities. The perspective is to introduce the basic physical phenomena from first principles with a
minimum of physical, mathematical, and computational complications. The search for approximations,
leading to representative soluble problems for otherwise complicated fluid motions, may be one of the
guiding principles in this work. Often an accuracy of results is intended which would not be justified
from purely practical considerations. The purpose is to help improve the evidence for the underlying
physical laws and to provide some standards for testing general computational methods. Of course, such
an approach will necessarily have some limitations. In a few cases, the uncertainties of the theoretical
approximations may raise additional questions. Sometimes, the simplicity of the physical assumptions or
the nature of particular solutions may be too specific. However, it is the hope that the present work can
provide a useful introduction to the subject and some guidance for future research in this field.

A large part of the present review is based on potential flow theory. It may provide the most
immediate approach to interfacial instabilities and to the subsequent stage of bubble evolution. The
classical potential flow theory of surface waves is of course well known and one of the most complete
presentations may have been given by Lamb [44]. However, classical treatments have been mostly
limited to linear perturbations of plane layers. Except for Birkhoff’s unpublished work [58], there seems
to be no systematic review of the stability problems in different geometries and beyond the linear stage.
In the present discussion the emphasis may also be somewhat different. It lies more on the physical
aspects rather than on the mathematical theory of conformal mapping methods.

The basic potential flow equations for moving fluid boundaries will be introduced in section 2. The
mathematical formulation of the boundary value problem for potential flows will be the basis for many
stability results in later sections. It is therefore recommended as an introductory part to the nonspecial-
ized reader.

The major topic of section 3 is a review of the RT instability theory for arbitrarily stratified media in
plane geometry. The stratified fluid model provides an alternative to the more conventional inhomoge-
neous fluid descriptions and may be of particular interest for the design of multi-shell ICF pellets. It was
first studied shortly after Rayleigh's work by Webb and Greenhill [67, sect. 15]*). However, only
recently definite results have been obtained from this theory in the ICF context by Mikaelian [68]. In
the present work, the equivalence of the stratified fluid problem with Rayleigh’s eigenvalue equation is
also demonstrated in the continuum limit. As special cases, the discussion includes Taylor’s model for
an accelerated foil of finite width and the extension to three superposed layers with arbitrary densities.

Another type of stability problem concerns the amplification of symmetry perturbations on spherical-
ly converging shells. The spherical shell problem is discussed in detail in section 4, based on some early
work on cavity stability by Birkhoff {50, 51] and by Plesset [52], and on some recent treatment of finite
thickness shells by Book and Bodner [69].

Section 5 addresses the dynamics of rising bubbles in RT mixing layers. The weakly nonlinear stage
of bubble formation is described in terms of nonlinear perturbation theory. The further evolution of
single coherent bubbles is studied for some representative cases. Some insight can be gained through
simple modeling assumptions which appear to be rather accurate in many cases. If these approximations
are accepted, then one can even derive scaling laws for mixing regions which appear well consistent
with present observations.

In section 6, the more classical subject of RT instabilities in inhomogeneous fluids is described. As a
general property of the eigenvalue problem, the inversion symmetry of the eigenvalue spectrum, first
noticed by Mikaelian [68], will be proved in general. In addition, specific growth rate calculations for

*) The work of R.R. Webb (1884) is mentioned on page 82 of ref. |67].
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exponential transition profiles are presented which can illustrate the relationship between surface and
internal modes.

The influence of viscosity is examined in section 7. The stability problem for an accelerated viscous
shear layer will be treated in the long-wavelength approximation. This discussion includes both viscous
shear flow instabilities and viscous RT instabilities. Its purpose is to illustrate the effects of shear flow,
buoyancy and viscosity within a single model. For a more detailed discussion of the viscous flow theory
the textbook by Drazin and Reid [59] is particularly recommended.

In section 8, the effects of compressibility are treated for ideal fluids with a general equation of state.
The stability criterion for convective instabilities is derived from an energy principle which can also
explain both stabilization and destabilization by compressibility. In addition, the normal mode analysis
for RT instabilities in ideal fluids is described and a general perturbative treatment of compressibility is
given.

Section 9 is concerned with the stability behavior of accelerated ablation fronts. This subject is of
considerable importance for RT-type instabilities in ICF. The possibilities of ablative stabilization of RT
instabilities have been rather controversial for a long time, which excludes definite conclusions at
present. However, to the extent of the physics described, a consistent picture of steady ablation in ideal
plasmas has emerged. An isobaric flow model of this instability will be discussed, which has been found
in good agreement with a number of previous works.

Table 1 gives a survey on the different kinds of fluid descriptions in the present study of RT-type
instabilities. Potential flow theory provides the simplest framework being of considerable interest for
the nonlinear stages of instability evolution. Incompressible inhomogeneous flows can account for
internal rotational modes driven by noncolinear pressure and density gradients or by viscosity. Ideal
fluid flow can model the behavior of RT instabilities in compressible media. The isobaric flow model
applies to subsonic ablation fronts where mass and heat flow are essential features.

Finally, it is noted that major topics of this article are based on previous work by the present author.
In parts, these results have already been published, presented at conferences, or summarized for review
purposes [70-72]. In particular, contributions to the theory of bubble dynamics [73-75], to ablative RT
instabilities [76,77], and to the stability of spherical shells [78] are mentioned. In addition, many
original results have been rederived, often by simpler approaches, to give a systematic presentation of
the subject in this work.

Table 1
Fluid models and their major predictions for RT instabilities. (v is velocity, p is mass density, s is specific entropy, w is specific enthalpy, ¢ is heat
flow, d/dt is time derivative along fluid trajectories)

Model Basic assumptions Predictions

Potential flow Vov=Vxuv=0, Surface modes at plane and spherical boundaries, harmonics, bubbles, spikes
p = const.

Incompressible flow V.o=0, Vxv#0, Internal rotational modes, damping by finite gradients and by viscosity
dp/dt=0

Ideal fluid flow Vov#0, Vxv#0, Convective instabilities, destabilization by expansion, stabilization by compressional work
ds/de=0

Isobaric flow ds/dt = (ds/dp| ,)dp/dt#0, Ablative instabilities, stabilization by inhomogeneities, mass flow, and thermal diffusion

V-(pwo+¢q)=0
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2. Potential flow model

An elementary description of RT instability can be given in terms of potential flow theory. It
provides a well-known framework for the study of surface modes and has been the basis of many
classical stability results. Important aspects of this approach are that the most severe interfacial
perturbations can be isolated by this model, giving usually an upper bound on instability growth.
Furthermore, it pertains to nonlinear evolution in a relatively simple manner.

In this section, the basic equations governing potential flows with moving boundaries will be
outlined. First, the boundary-value problem for an arbitrary contact discontinuity between two fluids is
introduced. Then, the mathematical model is specialized to linear perturbations about plane and
spherically symmetric boundaries. The common aspects of the different geometries are emphasized by
first deriving the general linearized boundary conditions and then performing the specific mode
expansions. These equations will be applied to the stability analysis of various fluid systems in the
following sections.

2.1. Basic equations

2.1.1. Kinematics

Let v(x, t) denote the velocity field of a uniform inviscid fluid of constant density p. In the RT
instability, fluid motions are considered to be two-dimensional and they arise from small initial
perturbations of an equilibrium state where the fluid is at rest. Under these conditions, the flow can be
assumed irrotational at least in the linear approximation. Inspection of the linearized vorticity equation
(section 6.1) shows that the vorticity field is necessarily time-independent, J(V X v)=0. Even if
vorticity is present in the initial conditions, it can be neglected after a short initial period in comparison
with the unstable irrotational flow. We remark that there is a basic difference to shear flow instabilities
where vorticity can be driven by the velocity shear of the basic flow.

Incompressible irrotational motions are subject to the constraints

Viv=0, Vxv=0. (2.1)
Alternatively, a scalar potential ¢ can be introduced through the relations,

v=Vp, A¢=0. (2.2)
The description of the motion of fluid boundaries is partly a kinematical problem. Let S(x, ) = 0 denote

the surface equation of a boundary moving with the fluid in a given flow field. Its evolution is then
governed by the quasi-linear first-order partial differential equation,

IS +v-VS=0. (2.3)

Using the method of characteristics, solutions can be found by calculating the trajectories of surface
particles. Here and in the following, it is understood without explicit notation that flow variables in
surface equations are evaluated on the surface.



206 H.J. Kull, Theory of the Rayleigh-Taylor instability

2.1.2. Dynamics

The dynamics of the flow can be described by the conventional momentum conservation law for fluid
particles. If each fluid particle is subject to a conservative force field —VU and to a scalar pressure p, its
motion is governed by the Euler equation,

d
pav=—Vp—pVU, (2.4)
where d/dt=4,+ vV denotes the time derivative along particle trajectories. We will be mostly
interested in constant accelerations of fluid layers. If a denotes the magnitude of the acceleration along
the y direction, one can set

U=ay. (2.5)

Physically, eq. (2.5) can describe either a fiuid layer accelerated toward the positive y direction or a
fluid layer subject to gravitational acceleration along the negative y direction. One should notice,
however, that the equivalence between gravity and inertial forces applies only under constant
acceleration. For instance, the gravitational instability of a fluid sphere is different from the instability
of a spherically converging shell. Inserting v = Vi in eq. (2.4) there follows immediately the integrated
form

p(do+ 3> +U)+p=C1). (2.6)

This is a version of Bernoulli’s equation which defines the pressure variations inside the fluid. The
function C(t) can be chosen for convenience corresponding to a particular gauge of the velocity
potential ¢.

2.2. Contact discontinuities

2.2.1. Continuity conditions

The simplifying assumptions (2.1) apply only to the interior domain of a uniform inviscid fluid.
Within the boundary layer between two potential flow regions one has to consider the complete
conservation laws of fluid dynamics. It is well known that the theory of ideal fluid flow admits the
existence of contact discontinuities [79], which are moving passively within the fluid. There is no mass
flow across a contact discontinuity and, in the absence of surface tension, it exerts no forces on its
surroundings. More precisely, contact discontinuities are defined by the continuity conditions,

[v.]=0, [p}=0, 27

for the normal component of the fluid velocity v, = d,¢ and the pressure, respectively. The square
brackets represent the jump of the argument across the boundary. Using eqgs. (2.3) and (2.6), these
continuity conditions can be expressed as

IS+v-VS=0, (2.8a)

[p(3,¢ + 10 + U)] = [C(D)] = C(1) . (2.8b)
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These equations are often referred to as kinematical and dynamical boundary conditions, respectively.
We remark that (2.8a) has to be satisfied at both sides of the boundary thus representing actually two
constraints. These imply the continuity of v, since VS is directed along the surface normal and S(x, ¢)
denotes the same function in both fluids. The time function C in (2.8b) is usually chosen to be zero with
possible exceptions for steady flow problems. The two potentials ¢ of both fluids and the surface S have
to be determined in accordance with these three boundary constraints. They determine the evolution of
an arbitrary contact discontinuity in potential flow theory.

The boundary value problem (2.8) is rather complex and, in general, solutions can only be found by
numerical computations. Boundary integral techniques have proved particularly successful in dealing
with a number of surface problems [13, 15, 18]. Only in few special cases, analytic results can be
obtained. The main approaches for these theoretical investigations will be briefly summarized in the
following.

2.2.2. Initial-acceleration problem

The initial acceleration of a fluid globule in an extended fluid can be treated by a linear
boundary-value problem which is similar to the classical boundary-value problems for dielectrics. The
initial-acceleration potential ¢ = J,¢ satisfies the continuity conditions

[p®]=~[plU . [4,P]=0, (2.9)

where 4, is the derivative in the direction of the surface normal. These conditions follow from egs. (2.8)
if the fluid is considered at rest. This approach is limited to a short initial period. Nevertheless, some
interesting conclusions have been drawn from this model by Birkhoff [58]. It was found that spherical
and ellipsoidal surfaces are accelerated rigidly while this is not true for closed surfaces of other shapes.
The initial-acceleration problem for spherical bubbles will be discussed to some extent in section 5.2.

2.2.3. Free-surface problem

Another important special case is represented by a surface separating a fluid from a gas of negligible
density. Setting the density of the gas equal to zero, Bernoulli’s equation (2.6) yields spatially constant
pressure inside the gas region and the boundary conditions (2.8) become

aS+v-VS=0, (2.10a)
de+iv'+U=0. (2.10b)

At cach instant of time, eq. (2.10b) describes a linear boundary value problem for the potential d,¢ on
the instantaneous surface S. A continuous sequence of such problems has to be solved to determine the
time evolution. The time-dependent free-surface model will be examined by the method of least-
squares approximation in section 5.1.

As a special case of egs. (2.10), the steady flow problem

W+ U=0, v-v§5=0, (2.11)

describes the rise of open-ended bubbles in channels or tubes. Even this comparatively simple case
leads to considerable mathematical difficuities. A discussion of the steady-state bubble theory is
presented in section 5.3.
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2.2.4. Perturbation problem.

Only few evolution problems can be solved generally by analytic methods. Therefore these problems
are of considerable importance in gaining an understanding of more complicated flows. A general
approach is given by perturbing a known solution of high symmetry and studying the growth of surface
perturbations in the linear approximation. This method applies in particular to plane, cylindrical and
spherical boundaries. The basic perturbation equations are summarized in the following. The major
perturbation results will be discussed in detail in the subsequent sections 3 and 4. Extensions to
nonlinear perturbation methods are demonstrated in section 5.1.

2.3. Perturbations

2.3.1. Plane boundaries

Let us illustrate the foregoing remarks in the simplest case of a plane contact discontinuity. The
unperturbed flow consists of two superposed fluid layers with an interface at y =0 (fig. 2). We assume
an acceleration g along the y direction and a uniform flow velocity v in the x direction. Small departures
from the steady-state configuration are described by a potential perturbation 8¢ and a surface
perturbation S = {(x, ) — y =0. The boundary conditions (2.8) are now expanded about y =0 and
linearized in the perturbations. This procedure yields

9,{ +vd,{—3d,60=0, (2.12a)
[p(d,6¢ +vd, 8¢ +al)] =0, (2.12b)
evaluated at the plane y =0.

2.3.2. Spherical boundaries

Although the extension to spherical symmetry is straightforward, a few basic differences should be
noticed in advance. Firstly, the acceleration can no longer be simply expressed by an equivalent gravity.
We therefore omit the gravitational potential U and consider the acceleration problem explicitly. The
treatment of the gravitational case is due to Kelvin and can be found in the textbook of Chandrasekhar
[57]. Secondly, a tangential flow discontinuity, as shown in fig. 2, would be inconsistent with the basic
assumption of irrotational flow. As a consequence, we restrict attention to purely radial motions in the
basic flow. This excludes, for instance, the instabilities of Taylor-Couette flow between rotating
cylinders, a subject which has also been extensively discussed elsewhere [57]. Finally, the incompres-

Fig. 2. Instability of a plane contact discontinuity. Surface perturbations y = {(x) can grow by the KH instability if v, # v, or by the RT instability if
p,> p, and an acceleration a is applied in the direction toward the denser fluid.
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sibility assumption requires a void inside the sphere. We therefore consider only the free-surface
problem. A generalization to finite densities has been given by Plesset [52], however, at the expense of
assuming a flow singularity at the origin.

Let us now derive the free-surface conditions for the potential perturbations on spherically
symmetric boundaries. The derivations can be given in complete analogy for plane (6 = 1), cylindrical
(8 =2), and spherical (8 = 3) symmetry. More specifically, the unperturbed surface is the 5-dimensional
sphere r = R(t), where R(¢) describes an arbitrary radial motion. For § =1 the radius r is identified with
the y coordinate. The perturbed flow is written in the form

e=qfr,t)+d¢, S=R(t)+{-r, (2.13)

where ¢, (r,t) represents the spherically symmetric basic flow, 8¢ the perturbation, and ¢ the
corresponding surface displacement. We will also take into account a small nonuniformity in the applied
pressure by writing p = p,(¢) + 8p for the surface pressure. The perturbation 3p may be produced in the
surrounding gas and enters in this model as a prescribed function.

Firstly, we consider the dynamical boundary condition. At the perturbed surface, Bernoulli’s
equation (2.6) assumes the form

p(3,0 + 30", _ g, + Py +0p=C(1) . (2.14)

Expanding this equation up to first order in the perturbations and subtracting the radially symmetric
part, one obtains the expression

p(98¢ + v,9,8¢) + pd, (3,0, + 1ug)l +8p =0, (2.15)

evaluated on the unperturbed sphere r = R with v, = d,¢, = R. This equation can be further simplified
by expressing the velocity potential in terms of the normalized coordinate » = r/R and noting that

a['n = atlr + Rnar|t N (216)
As a result of this change of variables one obtains,

(33¢ + v, 9,80)|,.x = J, 0|

=17

1,2 " (2.17)
3,(d,¢, ivo)lrzR = (9tv()|~r,=1 =R.
Inserting eq. (2.17) into eq. (2.15) yields,
d,9¢|,., + RL+3plp=0. (2.18a)

This equation has basically the same form as eq. (2.12b) for plane geometry. In the co-moving frame,
defined by the coordinate =1, the shell acceleration appears as an effective gravity. Differences
between the geometries will arise, however, because of different forms of the potential perturbations
inside a half-plane, a circle, and a sphere. One should also notice that both the acceleration and the
pressure nonuniformity can have an arbitrary time-dependence.
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The second boundary condition is easily obtained by inserting the surface expression of eq. (2.13)
into the kinematical boundary condition (2.10a). The linearized equation becomes

5,0~ (8,0,)L = 9,80 =0, (2.18b)

on the sphere r=R. Comparing this equation with the corresponding equation (2.12a) in plane
geometry, one can recognize an additional term for converging geometries. It arises from the radial
variation of the unperturbed flow velocity. Such a variation is required to conserve the mass flux across
the sphere with area ~R°~". Equations (2.18a) and (2.18b) represent the basic perturbation equations
for an accelerated interface that will be analyzed in the subsequent chapters.

2.3.3. Flow potentials

We now have to look for solutions of eq. (2.2) that satisfy boundary conditions on a plane, a circle,
and on a sphere. The method of separation of variables provides well-known function systems that are
known to be complete on these boundaries. We will only give a brief summary of the basic potentials to
be used in this work and refer to the mathematical literature [80] for more detailed discussions.

The spherically symmetric flow depends only on the radial coordinate. The corresponding potentials
are easily obtained from eq. (2.2),

¢,=RRy foré=1,
¢,=RRInn for8=2, (2.19)
¢,=— RR/m for6=3.

They describe a uniform stream in one dimension and source flows in two and three dimensions. The
flow velocity

vy = d,¢,= Ry 7" (2.20)
is directed radially and conserves the mass flux ~v,r®~" through spherical shells.
The perturbations will be treated as being two-dimensional, depending on the Cartesian coordinates
x, y in the plane case and on the polar coordinates r, @ in the cylindrical and spherical geometries. In
the linear approximation, the assumption of two-dimensional flow represents only a restriction for the
cylindrical geometry. Here, we neglect perturbations along the cylinder axis by restricting attention to
simple flute modes. The symmetry of the plane and spherical geometries assures that normal mode
growth will not depend on a second angle.
For a plane boundary, one may consider a Fourier expansion with respect to the x coordinate. In the
expansion of the complex velocity potential W= 8¢ + i8¢, each term has the general form

W(k)=(Ae ™™ + Be“)e™, (2.21)
with a constant wave number k and time-dependent amplitudes A and B. These potential perturbations

will often be called surface modes, because they are exponentially damped toward the interior of the
fluid. The boundary conditions at infinity are A =0 for y— —% and B =0 for y > x.
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A physical interpretation of surface modes may be given in terms of evanescent sound waves.
Writing the sound wave dispersion relation in the familiar form,

o’ =k + k), (2.22)

and solving for the normal component of the wave number, there follows

k,=*Vo'lc’ -~ k. (2.23)

For large sound velocities, ¢’ — o, wave propagation is no longer possible but instead evanescent modes
can exist. Asymptotically, they approach the potential flow solutions.

In the cylindrical and spherical geometries analogous expansions exist, however, with the basic
difference that the wave numbers are no longer constants. Actually, the arc length r® has to be
identified with the x coordinate, indicating wave numbers of the form k(r)=j/r. Assuming this
dependence, the potential (2.21) may be generalized to the form

b = A1) exp( - [ k(2) dz)5,(6) = A1 75,6 (2.24)

The angular parts g,(@) and the corresponding powers j can be found from the solution of the Laplace
equation. There follows the familiar result,

g =sin(l0@),cos(1@), for6=2; g =P(0), for6=3, (2.25a)
where P/(@) denotes the Legendre polynomials. The possible j values are
j=14L-1, foré6=2; j=I+1,-1, for6=3, (2.25b)

corresponding to radially decaying and growing solutions, respectively. These formulas complete our
survey on the mathematical background of the potential flow model of RT instability.

3. Stability of plane boundaries

In this section, we are concerned with applications of potential flow theory to the stability of
accelerated plane layers. Firstly, the stability of a single plane interface is outlined, leading to the
classical growth formula for the combined RT and KH instabilities. The RT instability is further
illustrated for a variety of different acceleration laws, including the impulsive acceleration model of the
Richtmyer—Meshkov instability. The analysis of a single unstable interface is then extended to layers of
finite width where Taylor’s free-surface model is presented. Finally, the general stability eigenvalue
problem for multi-layered fluid systems is reviewed. As an illustration of the theory a three-layer
model, displaying essential features of accelerated foils and anti-mix-layers, is discussed.
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3.1. Instability principles

Two of the most important principles of interfacial fluid instabilities can be inferred from the model
of a single plane interface as shown in fig. 2. These are the Kelvin—-Helmholtz (KH) instability of a
tangential flow discontinuity and the Rayleigh-Taylor (RT) instability of a density discontinuity
accelerated normally toward the denser fluid. Both principles arose from the classical studies of Stokes,
Helmholtz, Kelvin, Rayleigh and others in the second half of the 19th century. Many results of this
early period, concerning potential perturbations at a plane interface, have been summarized by Lamb
[44].

Let us consider a simple normal mode analysis of the stability of a plane interface. Normal mode
perturbations with frequency w and wavenumber k are taken proportional to the factor exp(—iw? +
ikx). In linear systems, the frequency is subject to a dispersion relation w = w(k). The system is linearly
unstable, if there exists a positive growth rate n = Im(w) for at least one real value of k.

The potential perturbation (2.21) with A =0 in the lower and B =0 in the upper half-plane is
assumed. With this choice, k is restricted to positive values. Eliminating the surface displacement ¢
from the boundary conditions (2.12), there follow the jump relations,

[0,8¢/0]=0, [wpdp]-[p]ad, dp/o=0, (3.1)

where @ = w — kv. They form a linear system of equations for the potential amplitudes A and B.
Nonvanishing solutions can only exist if the frequency satisfies the dispersion relation

w = kv, +i\ aak + (Buk)’ (3.2)

with
v, =(pv, +p0)(ptp,), u= %(vz_ v,), a=(p,—p)(ptp),

B =2vpp,/(p, +p1)'

The interface is unstable if aak + (Buk)’ > 0. Accordingly, instability can arise from an acceleration
toward the denser fluid (a > 0) or from a tangential flow discontinuity (u # 0). The special case of an
unstable density discontinuity (@ >0, u = 0) is called the RT instability. The instability of a tangential
flow discontinuity (u #0, @ =0) is called the KH instability. The corresponding growth rates are

n=Vaak, n=klul, (3.3)

respectively. The dispersion relation (3.2) becomes particularly simple in a coordinate frame moving
with the mean velocity v, of both layers. In this frame, a purely growing mode with Re(w)=0 is
obtained. The density dependence is expressed by the coefficients a and 8, where a is commonly called
the Atwood number. Equal densities (¢ =0, 8 =1) correspond to pure KH growth, while a free
surface (a =1, B =0) is only subject to RT instability. We also mention that the growth rate increases
indefinitely with k, giving preference to the growth of short-wavelength perturbations. Growth
saturation at large wavenumbers can result from a variety of physical effects such as surface tension,
viscosity, finite density gradients, ablation, and nonlinearities. With the exception of surface tension,
these effects will be treated in detail in the subsequent sections. Surface tension plays no role in present
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ICF applications and has therefore been omitted for simplicity. Likewise, KH instabilities are not
further examined in this review, because of the rather complete discussion in ref. [59]. Only in section 7
shear flow will again be included to demonstrate the close relationship between KH and RT instabilities
in the viscous flow theory.

3.2. Accelerated interfaces

The stability of time-dependent accelerations can no longer be described by constant growth rates.
Instead, the perturbation equations have to be solved for the underlying surface motions and initial
data. This time-dependent stability problem will be addressed in this section. Although the surface
equation of a single accelerated interface is quite simple, it can describe a number of physically
important examples. These include constant, impulsive, transient, and nonuniform acceleration laws.

3.2.1. Surface equation

The boundary conditions (2.18) will now be specialized for a plane boundary of an accelerated fluid
layer in the half-space r > R(¢). The potential perturbation can then be assumed of the form (2.21) with
B =0 and y = r. Noting that n=r/R, the following relations hold:

W= A(t) exp(—kr + i kx) = A(t) exp(— kRn + ikx) ,
(3.4)
GW=—kW . G[(4W)],_g= ~kaW|,_,

With the help of eq. (3.4), one can immediately eliminate the potential from the boundary conditions
(2.18). Noting that d,v, =0, according to eq. (2.20), one obtains the surface equation,

9’¢ —aki =%a . (3.5)

It describes the growth of surface perturbations for a prescribed acceleration law a(t) = R. Nonuniform
acceleration is described by the inhomogeneity 8a = k dp/p. This term will be neglected until the
discussion of nonuniformities in section 3.2.5.

3.2.2. Constant acceleration

The RT instability of accelerated fluid layers has first been demonstrated by Taylor [1] and Lewis [2].
We will briefly summarize the classical instability results.

As already discussed in section 3.1, the growth of the free-surface RT instability under a constant
acceleration a can be expressed by the growth rate n =Vak. The unstable modes can arise from an
initial surface displacement ¢, or from an initial surface velocity d,{,. The corresponding solution of eq.
(3.5) is given by,

£ = ¢, cosh(nt) + n™" 8, sinh(nt) . (3.6)

The RT instability imposes principal limitations on the acceleration of foils by gas and ablation
pressure. If a foil of thickness d has been accelerated over a distance s = at’/2, the growth increment
becomes,

nt = V2ks = \/2kdQ . (3.7)
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The inflight aspect ratio Q = s/d is the basic dimensionless parameter governing foil stability. As a
result of mixing theory (section 5), the typical failure modes can be expected in the wavenumber regime
kd =~ 1-3. Choosing kd =1 and Q =11, eq. (3.7) predicts an amplification of the initial amplitude by a
factor of =100. Depending on the most critical wave numbers and the magnitude of the initial
perturbations, the typical Q values seem limited to =5-15. This rather severe stability constraint may
be considerably relaxed under more realistic conditions. For instance, numerical simulations of
ablatively driven foils have indicated Q =30 or more before foil break-up [18]. Possible stabilization
mechanisms in these cases will be discussed in section 9.

Although the instability mechanism is only dependent on the acceleration distance, the kinetic
energy of the foil depends explicitly on the acceleration. Using the hydrostatic pressure law, p, = pad,
the kinetic energy density of the foil is expressed in the form

E=}pv’=pas=p,Q. (3.8)

The potential advantage of large inflight aspect ratios lies in the better hydrodynamic efficiency for
achieving high energy densities. In ICF applications, the attainable ablation pressures are much smaller
than the required energy for fuel ignition. Therefore most present concepts are based on inflight aspect
ratios in the range 30-100.

3.2.3. Impulsive acceleration.

Another interesting limiting case is given by an impulsive acceleration law: a = Av 8(t), where 8(t)
denotes the delta-function and Av the velocity increment imparted to the undisturbed foil. The solution
of eq. (3.5) predicts a constant perturbation velocity and corresponding linear amplitude growth,

{=4+0,¢+kAv {)t. (3.9)

The velocity increment of the perturbation depends on the initial amplitude and the wavenumber of the
surface corrugations.

The impulsive approximation requires that the acceleration time is much shorter than the e-folding
time of the unstable mode. This approximation applies mainly to long-wavelength modes with
sufficiently small growth rates. Such modes can also reach large amplitudes { ~ k' before saturating
nonlinearly.

The impulsive limit of the RT instability was applied to shock-accelerated interfaces by Richtmyer
[8]. In numerical simulations of the shock problem, the linear evolution law (3.9) could be confirmed.
However, there appears an ambiguity in the initial conditions, which are different immediately before
and after the shock passage. For a shock moving toward the denser fluid, post-shock initial conditions
have led to satisfactory agreement with the impulsive acceleration model. The prediction of a constant
perturbation velocity has been observed experimentally by Meshkov [9]. Shock-induced interfacial
instabilities are generally known as Richtmyer—-Meshkov instabilities.

3.2.4. Exponential acceleration law

The finite duration of acceleration pulses limits the growth of long wavelength perturbations, having
e-folding times longer than the acceleration time. A simple example of a transient pressure pulse is
given by an exponential acceleration law [70],

a(t) = a exp(bt) . (3.10)
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The constant a denotes an initial acceleration at ¢ =0 and the constant b can be positive for growing
pulses or negative for decreasing pulses. In the latter case, a useful interpolation formula between the
limiting cases of constant and impulsive acceleration can be gained. In particular, an analytic expression
for the asymptotic perturbation velocity imparted to the perturbation during the passage of the pulse
will be obtained.

The solutions of eq. (3.5) with an exponential acceleration law (3.10) can be found by a variable
substitution. We define

r=r1,exp(bt/2), 7,=2Vakl/|b|, (3.11)

as a new independent variable with initial value 7,. It varies in the interval 0 <7 <7, for b <0 and in
the interval 7, <7 <o for b>0. Equation (3.5) becomes

Al +rd l—TL=0. (3.12)

Two independent solutions of eq. (3.12) are given by the modified Bessel functions I () and K,(7).
Imposing initial conditions at 7 = 7,, we obtain

{ = [ K, (1) Lo(7) + (1)K (7)] 4, + |[K0(70)10(7) - I()(TO)KO(T)]Iafgo/m} . (3.13)

The second bracket is positive for 7 > 7, and negative for 7 < 7,. Its magnitude has to be taken because
of a corresponding sign change of the constant b. In deriving eq. (3.13) we have also used the relations

L=dl, K=-0dK,, Kl +KI,=1/r, (3.14)

for the first derivatives and the Wronskian, respectively.

The asymptotic limits of large and small 7 values can be analysed in more detail. Large 7 values
describe large growth rates and a corresponding slow time variation of the applied acceleration. Using
for 7, 7,>1 the asymptotic expressions

I, —>V1/27rexp(r), K,—»Vm/2rexp(—7), (3.15)

one obtains from eq. (3.13)

£ =2 ( 4 cosh(z, — 1) +

This result represents the WKB generalization of the solution (3.6) for constant acceleration. The
variable 7 plays the role of the growth increment in the WKB solution.

The opposite limit, 7— 0, describes the time asymptotic response to a transient acceleration pulse
with b <0. Asymptotically, the perturbations grow with constant velocity whose magnitude depends on
the pulse duration. Assuming small arguments, the modified Bessel functions can be approximated in
the form,

f}j—i sinh(|7, — 7|)> . (3.16)

I,—1, 1,->1/2, K,—-In(r/2), K,>1/r. (3.17)
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Neglecting /, in comparison with K, and noting that d,In7= b/2, we obtain from eq. (3.13) the
asymptotic perturbation velocity,

0,{ = Vak 1(1y) 6, + 15(7) 3,4, - (3.18)

It increases monotonically with the parameter 7, that characterizes the pulse length in comparison with
the e-folding time. Limiting forms for small and large parameter values are

3,{ = (ak/|b)¢, + 3,4, for 7, <1,

d,{= (Vak Lt d.8) V1 2ar exp(r,) for7,>1,

respectively. For short pulses or long wavelengths (7, <1), we recover the result (3.9) for impulsive
acceleration. The velocity increment Av = a/|b| is the time integral of a(¢) from t =0 up to ¢ = . For
long pulses or short wavelengths (,> 1), the asymptotic velocity is substantially larger because of the
exponential growth during the acceleration phase.

A specific example of the wavelength dependence of the solution (3.13) can be recognized in fig. 3. It
shows the transition from exponential to linear amplitude growth for three different modes subject to
the same acceleration pulse. The acceleration parameters are a =3.6 x 10'* cm/s”* and b=-10""s"",
corresponding to a flight distance of =16 um in 55 ps. Similar conditions have been assumed for a
0.5 wm thick laser-driven ICF foil in ref. [18], although the present parameters may overestimate the
time dependence of the acceleration. One can recognize an earlier saturation of exponential growth
with increasing perturbation wavelength.

(3.19)
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Fig. 3. Evolution of a sinusoidal surface perturbation { = ¢, cos(kx) under a time-dependent acceleration law, a(f) = 3.6 X 10" exp(—0.1t/ps) cm/s*
The amplitude growth is due to the RT instability (exponential growth) for large mode numbers and due to the Richtmyer—Meshkov instability
(linear growth) for small wavenumbers. One can recognize the suppression of exponential growth with decreasing wavenumbers. (From ref. [70]).
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3.2.5. Nonuniform acceleration

Finally, we wish to examine the role of pressure nonuniformities on the instability evolution. For this
purpose, we assume a constant acceleration a and solve eq. (3.5) with the inhomogeneity da that has
been neglected until now.

In addition to the solution (3.6) of the homogeneous equation, satisfying the initial conditions at
t =0, one has to consider a solution of the inhomogeneous equation with vanishing initial values. Using
the method of variation of constants, this solution is found to be,

! t

(= 21_n (e'” J' e Mdadr—e™ J e" da dt) . (3.20)
¢ 0

If the function da is bounded, |3a| < M, the second integral can be estimated as

t

M
e ™ J'e"' da dt‘ < (3.21)

0

Asymptotically, for nt> 1, its contribution can be neglected in the presence of unstable modes. Looking
now at the first integral in eq. (3.20), we consider two limiting cases.
(i) If da is slowly varying over an e-folding time, it may be replaced by its initial value 8a,, yielding

(= (da,/n*)ye"2. (3.22)
0

(ii) If 3a is only nonzero over a small fraction of the e-folding time, it can be approximated by an
impulse 8a = 8v, 8(¢ — ¢,). This leads to the amplitude

{ = (duy/n) e"' )2 . (3.23)

In both cases, the time asymptotic response is an unstable mode of the homogeneous equation.
Comparing egs. (3.22) and (3.23) with eq. (3.6), one can define effective initial surface perturbations
by setting

(i) &= 8ao/n2 =(dp/py)d ,
(3.24)

(i1) 9,4, =%y, = % pr de,

where the relations 8a = k8p/p and p,= pad have been used. These formulas relate the pressure
nonuniformities to equivalent surface perturbations of a uniformly driven foil. However, this result is
likely to be limited by compressibility effects if the pressure fluctuates appreciably over the passage time
of sound waves across the foil.

3.3. Layers of finite width

The model of a single free surface can readily be extended to fluid layers of finite width. A complete
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solution of this problem has been given in the original work of Taylor [1]. Two important aspects of this
treatment should be mentioned. First, the RT growth rate is found independent of the layer width.
Second, there can be strong interference effects for thin layers between the two surface modes
developing at the front and at the rear side of the foil. Both effects are dependent on the free-surface
assumption and modifications will be discussed in the connection with inhomogeneity effects in sections
3.5 and 6.3. Nevertheless, the free-surface model is often adequate for gas-driven foils and its
predictions are therefore of considerable interest for many applications.

A detailed discussion of Taylor’s free-surface model will be given in the following. The notation is
adopted from the spherical shell problem with the acceleration directed toward the origin. This will be
convenient for comparing results in different geometries.

3.3.1. Normal modes
Consider a plane fluid layer, 0 < r < d, under a constant acceleration a toward the negative r axis. In
accordance with eq. (2.21), a potential perturbation

dp=A,e "+ A4, (3.25)
will be assumed. We define a vector A with components A, , and a vector { whose components are the
displacements {, , at the surfaces =0 and r = d, respectively. Setting again dp =0, the boundary
conditions (2.18), evaluated at both surfaces, become

M-3A-al=0, d,{+kN-A=0, (3.26)

where

_(1 P) _(1 ‘P) _ .k
M—(p 1,N—p 1) p=e .

Eliminating now the displacement vector { from these equations yields

_ 1 0
9’A = —kaM ‘-N-A=—ka<0 _1>-A, (3.27)
where
M*1=A—1< 1 _p>
_p 1

is the inverse and A=1- p° the determinant of M. The instability eigenvalue problem is already
diagonal in the A representation. The normal mode solutions are

A=A1exp($i\/&t)<(l)>, A=A, exp(i@t)(?). (3.28)

They correspond to a stable surface wave arising from the rear side and an unstable RT mode arising
from the front side of the foil, respectively. As already mentioned, the growth rates are independent of
the layer width in this model.
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3.3.2. Initial value problem

The surface perturbations ¢, , are generally superpositions of both types of mode. Each surface is
perturbed by the mode developing at the same surface and by an exponentially damped mode from the
opposite surface. According to eq. (3.26), this superposition can be expressed in the form {=M- X,
where the components of X are proportional to those of A. Choosing static initial corrugations ¢,, X, at
t =0, the evolution equations can be written as,

(=8¢, X=T-X,, (3.29)
where

T=<(C) g), c=cos(Vakt), C=cosh(Vaki),

. -p’C  —plc-0C)
—M-T-M'=4 ‘( cp )
S -p(C—¢) C-p

At late times, when the unstable mode dominates, the surface amplitudes satisfy the relations,

L=DpLy L=A4" o= PLo)C, &= pL = (Lo~ Ply)C (3.30)

At the unstable surface, the amplitude ¢, is increased by the factor

~ 1—e ™ ,/¢L
A7 = pliglly) = TM (3.31)

in comparison with the result for an infinitely thick layer. Especially for thin layers, this factor can
describe an appreciable amplification of the initial amplitude {,,. Only the relative perturbation ¢, — p{,
evolves exactly according to the single mode RT instability. This behavior is an effect of mode
interference in the initial state which will be discussed in more detail in the spherical shell problem.

3.4. Stratified media

We now discuss the stability eigenvalue problem for a stratified medium with an arbitrary number of
interfaces. The characteristic equation for the possible normal mode frequencies and growth rates of
multi-layered fluid systems was first derived by Webb and Greenhill [67, sect. 15]. The unstable roots
are determined by a polynomial of arbitrarily high order and, in general, have to be calculated by
numerical methods. This problem has been studied extensively by Mikaelian for RT instabilities [6§],
for Richtmyer—Meshkov instabilities [81], and for both of these instabilities with the inclusion of surface
tension [82]. In the absence of surface tension, a hidden symmetry of the RT eigenvalue spectrum,
corresponding to a specific inversion of the density profile, could be demonstrated. Furthermore,
explicit growth rate calculations for various multi-layered fluid systems have been presented. The model
can be applied to the design of surface coatings which optimize the surface stability against disruptive
failure modes. Furthermore, it may serve as an approximation method for the investigation of
continuous density profiles.

The instability theory for stratified fluid systems will now be considered. The discussion includes the
stability eigenvalue problem of the RT instability, general properties of its eigenvalue spectrum, the
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relationship with Rayleigh’s eigenvalue problem for continuous media, and specific growth rate
calculations for three layers with two coupled interfaces.

3.4.1. Eigenvalue problem

Let us consider an accelerated stratified medium consisting of N + 1 superposed fluid layers. The
equilibrium fluid configuration and the notation to be used are shown in fig. 4. The layer i has the
density p, and the thickness d,. The normal mode perturbations are taken proportional to exp[i(kx —
wt)] and are required to vanish at both boundaries y, and y,,, of the medium. In particular, these
boundary conditions apply to the localized eigenmodes of an infinite medium if the limits d, — « and
dy.,,— > are considered.

The boundary conditions, to be satisfied at each intermediate interface i, are those of eq. (3.1) with
v =0. The first jump condition in eq. (3.1) requires the continuity of the normal derivative w = d, 8¢.
The potential (2.21) that has continuous normal derivatives w, = w(y,) at y, is defined piecewise for
each layer y,_, <y <y, by the expression,

36 = i (o oshlk(y =3, )] - i coshli(y = )]} EE

This form can also be used for the first and the last layer by setting w, = w,,,, = 0. The boundary values
w, are determined by N continuity conditions,

Lok 8¢], — (ak/w?)[pl,w, =0, (3.33)

following from eq. (3.1) for each interface i. We define an N-dimensional solution vector w with
components w,, ..., w,, ..., w, and rewrite eqs. (3.32) and (3.33) as an eigenvalue problem of the
form

i

YA-w=B-w. (3.34)

The nonvanishing matrix entries of A and B are given by the expressions

Bi=pii—pis
A, =p,, coth(kd,, )+ p;coth(kd;), (3.35)
A=A, =—p/sinh(kd,),
{ p
:a:,> S
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Fig. 4. Equilibrium fluid configuration of an accelerated stratified medium. The system consists of N + 1 superposed fluid layers with N internal
interfaces. It can support 2N normal modes. The number of unstable modes is equal to the number of interfaces with adverse gradients, p,., > p,.
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where the matrix indices can assume values between 1 and N. The possible eigenvalues Y = — w*/ak are
determined by the solubility condition,

det|YA, -~ B,|=0. (3.36)

The reason for using two matrices A and B instead of a single matrix C = B~ - A derives from the fact
that both, A and B are symmetric while C generally is not. Equations (3.34)-(3.36) form the stability
eigenvalue problem for a stratified medium with N interfaces.

3.4.2. Eigenvalue spectrum

Some immediate conclusions concerning the eigenvalue spectrum will now be drawn:

(i) The spectrum consists of N eigenvalues Y, corresponding to 2N eigenfrequencies w. We remark
that N is equal to the number of interfaces inside the medium and represents the degree of the
characteristic polynomial (3.36).

(if) All eigenvalues are real. This follows from the Hermitian form of eq. (3.34) after multiplication
with the complex conjugate eigenvector w*:

_w*B-w _ w-(B-w* _(w’“B-w)*_ .
Y= o Aw " A . (3.37)

For negative eigenvalues, the modes have real eigenfrequencies w = =V~ Yak and are therefore stable.
For positive eigenvalues, unstable modes exist with positive growth rates n =V Yak.

(iii) Marginally stable modes with frequency w—0 can only exist at boundaries between two
adjacent layers approaching the same density. The solutions of eq. (3.34) for Y— 0 require

Bjj =P p].—-)O, w,— 6,,]. s (338)

at one interface j, where §; denotes the unit matrix. In the limit p,,, — p,, the solution vector of the
marginally stable mode has only a single component j, while all other interfaces can be treated as rigid.
The corresponding eigenvalue near marginal stability can therefore be approximated in the form

Y= ﬁ _ Piv1 ™ P
A,  p;,,coth(kd,, )+ p;coth(kd,) -

(3.39)

/I

(iv) The number of unstable modes is equal to the number of interfaces with a density inversion
pi+1 > p;. This assertion may be verified by induction in the following way. Suppose an additional
interface is introduced inside a particular layer by slightly raising the density of the medium above that
interface. This process will not change the number of the already existing unstable modes because an
exchange of stability is only possible by passing through the state of marginal stability (3.38). At the
additional interface, the eigenvalue is given by eq. (3.39). Consequently, the number of unstable modes
increases by one if an interface with p,,, > p, is added.

(v) The equilibrium is stable if and only if p,., < p, for all interfaces. In the short-wavelength limit
each interface can be treated separately and the simple RT growth rate of eq. (3.3) becomes applicable.
Therefore, the criterion p;, | < p, is necessary for stability. According to the present conclusion (iv) the
criterion is also sufficient. Long-wavelength modes, extending over several interfaces, do not provide a
further destabilization of the system.
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We remark that the self-adjoint form of the linear eigenvalue problem and the resulting conclusions
(ii) and (v) are well known from the associated differential operators for continuous media [57].
However, the identification of stable, unstable, and marginally stable modes with discontinuities is
specific for the stratified case.

In addition to these immediate conclusions, an interesting hidden symmetry of the eigenvalue
spectrum was found by Mikaelian [68]. Setting r; = p,/p;, it can be expressed in the following form:

(vi) The eigenvalue spectrum is invariant with respect to an inversion of the density profile according
to the rule:

=y ine, di—=dy, ;. (3.40)

Mikaelian has shown that this transformation leaves the coefficients in the characteristic equation (3.36)
invariant. Since the derivations become extensively long, the reader is referred to the original work for
any details. However, a specific example of inversion symmetry will be given in section 3.5 and a
general proof for continuous density profiles is presented in section 6.

3.4.3. Continuum limit

It may also be instructive to recover the eigenvalue problem for an inhomogeneous medium with a
continuous density variation from the stratified fluid model. Although a positive answer can be found, it
does not appear completely obvious. We remark that the flow inside each layer is irrotational potential
flow, while the global eigenmode has a nonzero vorticity. In the stratified fluid model, this vorticity has
to be generated across the discontinuities.

Consider now a sufficiently fine partition of a continuous density profile p( y) into piecewise constant
layers. The derivative of a function f( y) at the layer i can be defined as,

=(Df +[fl)/d;. (3.41)

This formula takes into account the continuous change Df=(d,f),d; of f inside the layer and its
possible jump [f]; = f(y,+) — f(y,;-) across the interface i. Setting now f = p J,w, the two contributions
in eq. (3.41) become

Df: pzD(&yW) = pz(aiwz)dl = k2 wtdz >

(3.42)
k2
[£1: = klpkbel = =5 [ Jw (d,p),dw, ,
where eqgs. (2.2) and (3.33) have been used. Combining eqs. (3.41) and (3.42) yields
9,p a 9,p
dw+ =g —k2<1+——y—) =0. 3.43
W p W wZ p w ( )

This is the standard form of the RT eigenvalue problem for incompressible fluids with continuous
density variations. It will be further discussed in section 6.
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3.5. Three-layer model

To illustrate these remarks, we now specialize the results to the case of three layers with N =2
interfaces. A discussion of the three-layer model can also be found in Mikaelian’s work [68].

3.5.1. Analytic evaluation
We assume a finite thickness d, = d of the intermediate layer and half-infinite boundary regions,
d, ;—. In this case, the matrices (3.35) reduce to the form

A = 1 <pls +p,C ) )
i 8 -p p,C+p,S/’
A (3.44)
Py~ P 0 )
- |
/ 0 P~ P

where S =sinh(kd) and C = cosh(kd). The eigenvalues of eq. (3.36) are the roots

Y,,=(-g= Vg —4fn)/2f (3.45)
of the quadratic fY* + gY + h =0, with

f=lry+r)S+(L+r,ry)C, g=(1-rurp)($+C),
(3.46)
h=(ry =D, = 1S, r;=plp;.

Already this simple example shows that the analysis becomes greatly complicated in the presence of
a large number of boundary conditions. The result (3.45) can illustrate the general properties of the
eigenvalues described above.

Noting that f >0, the number of positive eigenvalues is found equal to the number of density
inversions. If both density ratios r,, and r;, are smaller than one, both eigenvalues are negative
(g>0, h>0). If only one ratio is larger than 1, the larger eigenvalue Y, becomes positive, while Y, is
still negative (h <0). Finally, if both ratios are larger than 1, both eigenvalues are positive (g <0, h >
0).

One can also recognize that the eigenvalues (3.45) are invariant under an exchange of the density
ratios at the two interfaces: r,,—r;, and r,,— r,,. Although this symmetry is obvious for widely
separated interfaces, it holds more generally for an arbitrary width of the intermediate layer. This
conforms exactly to the inversion invariance (3.40) of the eigenvalue spectrum.

We now discuss the basic limits of thick and thin layers where simple growth rate expressions can be
obtained. Assuming kd > 1, the eigenvalues (3.45) become

Yi=ay, Yi=ay, a;=(ry=1/(r; +1). (3.47)

They describe independent surface modes for the two separated interfaces. In the opposite limit,
kd— 0, the two eigenvalues can be approximated by the expressions,
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-1 -1
]gc:au’ Y0:—§=(r21 )(rs; )kd. (3.48)

2 —
ry—1

The first root becomes independent of the layer width, describing the interface between the boundary
layers in the absence of an intermediate layer. If this mode is stable, the stability of the intermediate
layer can be governed by the second root. Here the growth is largely reduced by the finite layer width.

3.5.2. Numerical evaluation.

The three-layer model can demonstrate some important features of accelerated fluid systems. If the
maximum density is assumed in the intermediate layer (r,, >1,r;,<1), the model describes an
accelerated foil with an unstable front side and a stable rear side. In fig. 5, the growth rate of the

Y —

a)
1.0+ -

08F ra=100 i

0.6 4

N/ Ny
w
[en)

0.4 4
02 F 5 4

0.0 Lol gl v aanl P

| J S LLL

10 | ree=10 B

08} 0.4 i

n/nm

L 0.1 ]
0.4 | .05 4

L oo ]
0.2 0]

0.0 sl Pl 2l Ly

1.2 P

At 20 |
0.8+ = 3.0
0.6 _ /,'::"— """"" 2.0
bora=9 o = B
04 ]

n/ny

0.2 -

-
.en?

0Ll vl el el v
0.00 0.1 1 10
kd

Fig. 5. Stability of a stratified medium with two interfaces separated by a distance d. The instability growth rate » is compared with the growth rate
n,, for a single interface with the density ratio r, = p,/p,. (a) Foil of density p, with a free backside (r;, =0) and a finite density ratio r,, > 1 at the
front side. (b) Same as in (a) but with a finite density ratio r,, <1 at the backside of the foil. (c) Coating layer with two unstable surfaces, r,, > 1 and
73, > 1, between two boundary layers with a fixed density ratio ry, =9. The two growth rates are represented by solid and dashed lines.
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unstable mode is compared with the growth rate n,, = \/ a,,ak that would correspond to an infinitely
thick layer.

In fig. 5a, the background density p, has been set equal to zero and the density ratio r,, at the front
side is varied. One can recognize significant growth reduction for thin layers, depending on the density
of the accelerating medium. A pusher medium with a moderately high density may thus effectively
prevent the growth of long-wavelength modes. The effect disappears for large density ratios, r,;— <, in
accordance with the predictions of the free-surface model (section 3.3).

In fig. 5b, the background density is varied. If r,, = r,,7;, <1, the results are similar to those of fig.
Sa. If ry, >1, the asymptotic behavior becomes different for kd— 0. Here, a finite growth rate is
approached for thin layers, corresponding to an exchange of the unstable root from the branch Y3 to
the branch Y in eq. (3.48). If the background density exceeds the pusher gas density, the growth
reduction effects become reduced.

If both density ratios are larger than one (r,, > 1, r;, > 1), a surface coating in front of an unstable
background surface can be modeled. Such coatings have been called anti-mix layers, preventing the
intermixing at the interface between different media. The intermediate layer reduces the growth rate
ns;, =V ay,ak of the background surface, but at the expense of an additional unstable root.

The variation of the two unstable branches with the layer width is represented in fig. 5c by solid and
dashed lines. As the width of the intermediate layer is increased, the larger growth rate becomes
reduced until the asymptotic values (3.47) for separated interfaces are approached. This limit is reached
to a good approximation when kd =3-5. To obtain the maximum possible growth reduction, the
density ratios at both steps have to be equal, r, =r;, =+v/7;;. The corresponding density of the
intermediate anti-mix layer is p, =/p; p;. This result was first obtained by Mikaelian [68].

The same conclusion can be drawn for an arbitrary number of intermediate layers. For a monotonic
increasing step-profile function with N interfaces, the maximum growth rate will be minimized in the
short-wavelength limit, if all density ratios are chosen to be equal. The corresponding density of the
layer i + 1 is then given by,

pi+1=rpi=rip1’ rzrzlv/ivll' (3.49)

4. Stability of spherical boundaries

Spherical geometries lead to a number of modifications in the analysis of surface instabilities. The
stability criterion becomes much more restrictive in the presence of flow convergence, where even an
unaccelerated surface is unstable. Time-dependence of the basic flow is a generic feature in these
geometries. Conceptually, we no longer analyse the stability of an equilibrium or steady-state, but
consider the evolution of symmetry perturbations for particular symmetric reference flows. In general,
this stability problem can no longer be described by independent normal modes. Perturbation evolution
is therefore much more dependent on particular initial data, shell motions and shell structures.

In this section an overview is given on the stability of spherical cavities and shells under various
circumstances. The unperturbed dynamics of incompressible spherical shells is first summarized as a
reference for the stability analysis. Then, a discussion of the perturbation equation for cavities is
presented, including the major convergence effects, the amplification of cavity oscillations, and
Birkhoff’s stability criterion. The cavity model will be extended to account for spherical shells of finite
thickness. Special attention will be devoted to thin shells, where a number of perturbation results can
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be obtained analytically. The stability of shells of finite thickness is finally illustrated by numerical
calculations for representative implosion models.

4.1. Symmetric shell motions

The motion of spherically symmetric cavities in an infinitely extended incompressible fluid plays an
important role in the theory of cavitation bubbles. This problem has already been studied by Rayleigh
[83]. An introduction to the theory of cavitation bubbles can be found in the textbook by Batchelor
[84]. Generalizations of the cavity model to compressible flows have been discussed by Hickling and
Plesset [85]. Further mass exchange processes have been considered by Prosperetti [86].

The following discussion is addressed to the dynamics of incompressible spherical shells of finite
thickness. As in section 2.3.2, a §-dimensional surface is assumed, where plane (§ =1), cylindrical
(6 =2), and spherical (8 = 3) geometries are included. In this section, only the unperturbed spherically
symmetric basic flows are considered. The shell parameters are indicated in fig. 6, consisting of the
inner radius R,(f), the outer radius R,(¢), the thickness d(t)= R,(¢) — R,(t), and a constant mass
density p. For simplicity of notation, we will often use the abbreviations

RO =R,(1), SO)=R()/R,(1), V(1)=R,(1). (4.1)

The shell is subject to an inside pressure p,(¢) and an outside pressure p,(t). Its motion is therefore
driven by the pressure difference Ap = p, — p,. If Ap =0, the motion is called ballistic [69].

The dynamics of incompressible spherical shells follows from simple conservation laws for its mass
and its energy. Alternatively, dynamical equations for the shell boundaries subject to the applied
pressure can be derived. Both approaches will be outlined and then illustrated by specific examples.

4.1.1. Mass conservation

In the incompressible shell model, mass conservation governs the evolution of the shell thickness.
One can therefore simply relate the motion of the outer surface to the motion of the inner surface.
Using eq. (2.20), the velocity of the outer surface is found to be,

R,=v,(R,)=VS§"". (4.2)

The flux through the inner surface is equal to the flux through the outer surface and the mass integral

Fig. 6. Incompressible shell of density p and thickness d. The dynamics of the shell boundaries R, ,(t) is determined by the pressure difference
Ap = p, (1) — p,(t) between the inner cavity and the outer surroundings. (From ref. [78]).
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R,

M=pf drr5_1=§(Rg—R‘f) (4.3)

Ry

is conserved. The outer radius can therefore be expressed by the inner radius and the corresponding
initial values in the form,

R2=(R30—R70+R?)”6 . (4.4)
Noting eqs. (4.2) and (4.4), it is sufficient to examine the motion of one shell boundary, say R,, only.
4.1.2. Energy conservation

The discussion of shell dynamics is considerably simplified by making use of the energy conservation
law. In the following it is assumed that the surface pressure is prescribed as a function of the shell radius
without having an explicit time-dependence. It is then possible to derive the dynamics from a simple

potential energy expression.
Let us first define the kinetic energy of the shell by the integral

R
T=f dr Lpvir® ™. (4.5)

R,

Inserting eq. (2.20), one obtains the expressions,

1pV*R,-R,), foré=1,
~1pV’R*InS, foré6=2, (4.6)
LpV’R(1-8), fors=3.

T
T
T

If the shell moves ballistically, the kinetic energy T is conserved. More generally, one has to include a
potential energy,

W= Wo_‘,’d[(RlR?ﬂﬁ_RzRgAlpz)’ (4.7)
0

arising from the work that is delivered to the shell by pressure forces acting on its surface. Making use
of eq. (4.2) and considering the pressure difference Ap = p,(R,) — p,(R,) = Ap(R) as a known function
of the inner radius, there follows

R(1)

W=Ww,- f dRR*™' Ap(R) . (4.8)

Ry

The total energy E = T + W is conserved during the shell motion. From this energy integral one obtains
immediately the surface velocity V' as a function of the shell radius R. Examples will be given below.
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4.1.3. Dynamics of shell boundaries

A somewhat more systematic treatment of shell motions may be based directly on the dynamical
equation (2.6). Inserting eqs. (2.19) and (2.20) into eq. (2.6) and taking the difference between the
boundary conditions at the inside and the outside shell surface, one can derive an expression for the
pressure difference Ap = p, — p,. For plane geometry, this equation is simply Newton’s law,

MR = Ap, (4.9a)

applied to a fluid element with areal mass density M = pd. In cylindrical and spherical geometry, the
corresponding equations are

(RR+V?*)In(1/8) - V(1 -8y =Aplp, (4.9b)
(RR+3VH(1-8)-Lvis(1- 8" =Aplp, (4.9¢)

respectively. These equations determine the motion for an arbitrarily prescribed pressure law. One can
convince oneself that their energy integrals are identical with the energy conservation law given by eqs.
(4.6) and (4.8). Simplifications can be gained for either thin or thick shells. In the limit of thin shells,
one can recover from eq. (4.9) the equation of motion for the mass element (4.3)

MR=R>""Ap (4.10)

subject to the force R°' Ap. In the opposite limit of thick shells, egs. (4.9b) and (4.9c) reduce to the
cavity equations,

(RR+V)In(1/8)=Aplp (6=2), (4.11a)
(RR+3V?)=Aplp (8=3). (4.11b)

We now discuss some specific shell motions being of particular interest for the stability analysis. Since
the time does not appear explicitly, one can choose the radius R as the independent variable. The
perturbation evolution is then only dependent on the functions V(R) and R(R) that will be provided in
the following. All these examples will be given for the three-dimensional case (6 = 3) only.

4.1.4. Ballistic motion

The ballistic motion of an undriven shell (Ap = 0) is often realized after an initial acceleration phase
when the applied pressure becomes negligibly smail compared with the kinetic energy. It plays
therefore an important role for the study of converging and diverging flows. Using eq. (4.6), the
conservation law for the total energy E becomes,

E=T=1pV’R(1-95). (4.12)

To simplify the notation, we will always choose units of lengths and time such that V=1 at R =1. The
corresponding value of S at R =1 will be denoted as S,. With this convention, ballistic motion is
governed by the relations,
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E=3p(1-35,), (4.132)
1_S 1 )1/2
= * 13
V== s & , (4.13b)
R=-3(VYR)1-4(S+S8*+5%)], (4.13¢)

where eqgs. (4.12) and (4.9¢c) have been used. One can recognize a strong divergence of the surface
velocity for converging flows. The surface acceleration is always directed toward the cavity, indicating
RT stability at the inner shell surface. Nevertheless, cavity oscillations can be amplified due to the
converging geometry as will be discussed below.

For cavities (S, S, <1), the ballistic equation of motion can even be obtained explicitly as a function
of time by integration of eq. (4.13b). Choosing the initial condition R(0) =0, the solution is found to
be,

R=(3|{)**, V=3%RIt, R=-4RI’. (4.14)
Negative times describe imploding and positive times expanding cavities.

4.1.5. Acceleration
Another important case concerns the acceleration of a thin shell from rest toward the shell center.
According to eq. (4.10), constant acceleration of thin shells requires a pressure law,

Ap = —py(R,/R)’, (4.15)

where p, denotes the initial pressure applied to the outside surface at R = R,,. The pressure increases as
R’ to compensate for the decreasing surface area. Using eq. (4.15) in eq. (4.8), the potential energy
becomes,

W=W,+p,R}(R-R,). (4.16)

Assuming that the shell has been at rest, initially, the energy conservation law becomes T + W~ W, =
0, yielding

1pV’R’(1-8) - p,Ri(R,— R)=0. (4.17)

We choose again the normalization convention V=1, S$=§, at R=1 to obtain,

Do= 3 p(l“S*)/R(Z)(Ro_l), (4.18a)
_ l_S* RO_R>1/2
= <(1—S)R3 R,—1/ (4.18b)
N 1-8, 1 3V2< S+S2+S3>
R=- - (1" ,
(1-S)R* 2(R,-1) 2 R 3 (4.18¢)

These equations determine the motion of an accelerated shell subject to the pressure law (4.15).
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4.1.6. Deceleration

Converging shells will compress the internal cavity gas until the pressure has become sufficiently high
to cause deceleration and ultimately stagnation of the inside surface motion. A simple deceleration
model is given by a power law,

Ap=p.(RIR)", (4.19)

where p, denotes the cavity pressure at the stagnation point radius R = R_. If the external pressure is

negligible, the exponent » may be related to an equation of state of the cavity gas. For a polytropic law,

p =const. p”, one has v = 3y. For instance, compression of a degenerate Fermi gas in ICF applications

would correspond to the values y=35/3 and v =5. However, various other choices of » may be of

interest, especially when the external pressure is not negligible during the compression phase.
Evaluating eq. (4.8) with eq. (4.19) leads to the potential energy,

RV
W=W + fi_—; (R =R, for v#3
(4.20)
W=W, - pR'In(RIR,) , for v=3.

The special case v =3 corresponds to isothermal compression with y =1. It can be obtained from the
general expression for v # 3 by taking the limit »— 3. It will therefore not be treated explicitly in the
following.

Proceeding as in the previous examples, we set T+ W—W, =0 and V=1, §=S, at R=1. This
yields,

v=3 p(1-S,)

ps = 2 R3(1 - RV—3) ’ (4213)
l_S 1 Rv—3_R:—3 1/2

V= _< S L ) , (4.21b)

. 1-8, R v-3 3v2< S+Sz+53)

R= 1-5 1- R:—3 2Ru+1 _z R 1 3 . (4.21C)

The acceleration includes a positive repulsive contribution due to the cavity pressure and a negative
ballistic contribution due to the converging geometry.

4.1.7. Implosions

The shell dynamics will now be illustrated for a particular implosion model that will form the basis of
the stability analysis in section 4.4.3. Initially, a thin shell with inner radius R, =2 and aspect ratio
o = R,/d, is assumed. The shell is subject to the acceleration law (4.15) up to the intermediate radius
R = 1. Subsequently, its kinetic energy is transformed into internal energy of an enclosed Fermi gas by
assuming eq. (4.19) with » =5. The inner radius stagnates at R,, having achieved a radial convergence
ratio of € = R,/R..

In fig. 7, we have represented the evolution of the shell boundaries for two different designs with
parameters (a) & = 100, € =40 and (b) & = € = 30. One can recognize an early stagnation of the outer
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Fig. 7. Radius and velocity histories for spherically symmetric shell implosions. A shell with initial aspect ratio &f = R,/d,, is driven by an outside
pressure p,~ R~ from R, up to R,/R=2. Afterwards it implodes against an inside Fermi-gas pressure p,~ R~ and stagnates at a final
convergence ratio 6 = R,/R,. Solid (dashed) lines refer to the inner (outer) surface and the variables are normalized by setting R=V=1 at
R /R.=2. (a) & =100, € =40, (b) & = €=30. (From ref. [78].)

surface after acceleration. In contrast, the inner surface is further accelerated during a ballistic
convergence phase and reaches a peak velocity around 12 prior to stagnation. The maximum velocity
V,, =max|V/|, reached at radius R, follows from the condition R = V= (3,V)V=0. Using eq. (4.21)
and assuming S <1 yields

R, =(w/3)""" R,

RS—3 (V/3)—]. )1/2 |:2 ps <R5>v]1/2
Vo= ((1 - S*) 1- R:~3 (V/3)1/(1—3/y) - § ; k: : (4-22)

The ratio R /R, determines the deceleration distance of the shell and depends only on the pressure
exponent ». Some numerical values are given in table 2. Large values of » describe a sudden
deceleration corresponding to a short deceleration distance. Conversely, small » values can describe
more gradual decelerations over longer distances. The maximum surface velocity V_ increases with the
convergence ratio but decreases with the initial aspect ratio. It is also simply related to the cavity
pressure p_ reached at the stagnation point.

Table 2
Deceleration distance of a stagnating incompressible shell. The cavity pressure is assumed as a power law ~R™" of the inner shell radius. The
exponent » =35 corresponds to a degenerate Fermi gas. The radius R marks the beginning and the radius R, the end-point of the deceleration
phase. (From ref. [71])

v=0 y=0.1 v=0.5 v=1.0 v=3.0 v=350 v=10 y=x
R_/R 4 32 2.0 1.7 1.4 1.3 1.2 1.0

m’ s
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4.2. Cavities

We will now discuss the stability of cylindrical and spherical cavities in an infinitely extended fluid.
The cavity model can provide some insight into the stability of converging flows in the absence of shell
effects. A discussion of the cavity stability problem is contained in two mathematical notes by Birkhoff
[50, 51]. Apparently, the perturbation equations were first derived in an unpublished work by Penney
and Price. A general stability criterion and an explicit solution for cavity oscillations was obtained by
Birkhoff. Plesset [52] derived similar perturbation equations for spherical boundaries between two
incompressible media of different densities. This model, however, requires a mass source or sink at the
origin. One should also notice that the cavity problem is related, although not equivalent, to the
gravitational perturbation problem for spherical bodies. Gravitational oscillations of a liquid globe are
known as Kelvin modes. A detailed discussion of the latter problem has been given by Chandrasekhar
[57].

4.2.1. Surface equation

The perturbation on a spherical cavity can be expanded into trigonometric functions (8 =2) or
Legendre polynomials (6 = 3) as described in section 2.3.3. We assume the single mode perturbations
(2.24) with mode numbers /=1,2,3,... and j=1[+ & — 2. Noting eq. (2.20) and using that

(R4, 8¢)|,_z) = —j 3, 3¢, (4.23)
the boundary condition (2.18b) can be written in the form

d(R3,{)+(8-1) 9,(RL) +) d,8¢],-,=0. (4.24)
Eliminating 8¢ from eqs. (2.18a) and (4.24), there follows

2 R [-1. ] o
&,§+8Ra,§ R {—R ) (4.25)
Equation (4.25) governs the evolution of the surface displacement { for arbitrary radial motions and
mode numbers. One can recognize similarities with eq. (3.5), governing RT instability in plane
geometry, but also major differences because of the variation of the radius with time.
We first attempt to give a more physical interpretation of the convergence effects described by eq.
(4.25). Defining k = j/R and m = pR*"'/k, one can rewrite eq. (4.25) as an equation of motion,

1

ﬁ—%_—z mRk§ = R'SA] Sp s (4.26)

d(mal)—
with a time-dependent mass. Convergence effects are related to the variation of m and k with the
radius. These variations correspond to the time-dependent periodicity length L =27 R and surface area
~R°™" of the system. In addition, geometry effects are present for low / modes. They slightly reduce
the numerical coefficient of the buoyancy term and lead to its elimination for / = 1. This mode describes
translations of the sphere without fluid interchange across the sphere. Being interested in the evolution
of asymmetries, we will assume /> 1 in the following. Also, the external pressure force in eq. (4.26)
will be omitted, in accordance with the discussion in section 3.2.5.
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4.2.2. Unaccelerated motion

A new feature of converging flow consists in the possibility of amplification in the absence of
acceleration. If a cavity implodes with a constant surface velocity V and zero acceleration, R =0, the
perturbed momentum m J,{ is conserved. This conservation law implies that the normalized amplitude
A = (/R grows as a function of the convergence ratio ¢ = R,/R according to the formula

A=q(a,+ s (1-4"1B,). (4.27)

where A,={/R, and B;=4d,{,/V denote initial values at R=R,. For static initial corrugations
(B, =0), the displacement { remains constant but the relative amplitude A still grows in proportion to
the convergence ratio. If, on the other hand, B, # 0, the displacement itself diverges with the inverse of
the surface area and A grows as ¢°. These convergence effects are independent of the mode number.

4.2.3. Cavity oscillations

If the surface is accelerated toward the cavity, surface oscillations can develop. Although the
acceleration is stabilizing, it usually cannot prevent the amplification of the oscillation amplitudes. As
an important example, we consider the ballistic equation of motion (4.14) for three-dimensional
cavities. Inserting this solution into eq. (4.25) yields

I+ ar+ (- =0. (4.28)
Choosing s = In g as the independent variable, the solutions of eq. (4.28) can be expressed in the form
{=e"(C,e™ + Ce™™), (4.29)

with constants C, , and
k=3V25(-1)-1=125Vi-1.

Except for /=1, the exponent « is real. Taking the initial conditions into account and choosing the
same notation as in eq. (4.27), yields the result

A=q""[A,cos(ks) — (A,/4+ B,)k " sin(ks)] . (4.30)

It describes cavity oscillations whose frequencies increase with the square root of the mode number.
This behavior is in accordance with the dispersion relation (3.2) for stable gravity modes. In addition,
eq. (4.30) leads to an amplification of the oscillation amplitudes with the convergence ratio. One should
notice that the amplification factor is independent of the mode number and considerably weaker than
for unaccelerated motion. Acceleration can therefore partly compensate the convergence effects that
are expressed by eq. (4.27).

The evolution of some cavity modes with / =2,4, 8, 16 is represented in fig. 8. The figure shows the
solution (4.30) for the initial amplitudes A,=0.01, B,=0 and for typical convergence ratios of
~25-30. Oscillations can be recognized even for low / modes and the amplitudes can reach critical
values of =0.5-0.7. We remark that the normalized amplitude A = {/R indicates stability failure when
A approaches unity.
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Fig. 8. Surface oscillations of a ballistically imploding spherical cavity in an infinitely extended fluid. The relative surface displacement amplitude
{/R has been calculated from the solution (4.30) with an initial amplitude ¢,/R, =10.01 for different mode numbers /. (From ref. [78].)

4.2.4. Stability criterion
A general stability criterion for the homogeneous part of the differential equation (4.25) has been
proved by Birkhoff [50, 51]. It requires

R<0, RR+(26-1)RR<0, (4.31)

for stability. According to the first condition the acceleration has to be directed toward the cavity,
which avoids Rayleigh-Taylor instability. If the acceleration is assumed constant and negative, the
second condition becomes R > 0. Accordingly, there exist no stable converging flows in this case. The
stability criterion is an immediate consequence of the identity

o+ pIf)=—(plf) o f, (4.32)
derived from eq. (4.26) with

-1 .
p=m&,{, f=—mm2kR.

The displacement remains bounded if both f >0 and 4, f > 0. These conditions are identical with those
stated in eq. (4.31).

4.3. Shell perturbations

Incompressible shells represent a simple but physically instructive model for the stability and
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symmetry issues in ICF implosions. The spherical shell model can describe mutual dependences in the
evolution of outside and inside surface instabilities. The outside RT instability occurs during the
acceleration phase. Its perturbations can penetrate the shell and cause cavity oscillations during the
convergence phase. These are further amplified by an inside RT instability during the deceleration
phase. The stability analysis is considerably more complicated than the analysis for plane layers of finite
width as described in section 3.3. These complications arise from the time-dependent shell dynamics
and require a careful analysis especially for the evolution of low / modes.

The stability of incompressible shells has been examined in the ICF context by Book and Bodner
[69]. In this work, the perturbation equations have been derived and explicit solutions for ballistic
motions of thick and thin shells could be found. Furthermore, rapidly oscillating modes could be closely
approximated by an adiabatic invariant. An extension of the analysis to more general types of shell
motions, shell structures and initial data has been given in ref. [78] by the present author. This work
includes a complete analytic solution of the thin shell problem for arbitrary radial motions and mode
numbers. Some closely related results have also been reported in a recent work by Mikaelian [87] on
incompressible multi-shell systems. Additional viscosity effects have been treated by Chandrasekhar
[88] and by Iooss, Laure, and Rossi [89]. The neglect of compressibility is of course a considerable
simplification for actual applications. However, the stability of compressible self-similar shell solutions
was analysed by Hattori et al. [90] and no sensitive dependence on compressibility was found in this
case. More specific calculations, based on linear perturbation codes of ICF implosions have been
performed by Dufour et al. [91]. Some of the characteristic features of incompressible shell implosions,
such as oscillatory amplification, seem to be present in these stability studies too. More recently,
two-dimensional fluid simulations of the stagnation phase in cylindrical targets have been obtained by
Sakagami and Nishihara [92].

4.3.1. Perturbation equations

For definiteness, we consider in the following a three-dimensional spherical shell whose boundaries
R, , are subject to displacements | ,, respectively. The simpler notation of eq. (4.1) will also be used.
Perturbations are chosen with angular part P,(@) and the corresponding potential (2.24) is written in
the form,

3¢ =(R,/r)"'A, + (r/R,)A, . (4.33)

Imposing the boundary conditions (2.18) on the potential solution (4.33) at both surfaces r=R, ,,
there follows the fourth-order system,

R, 6,{,+2R,{+(I+1)A, - IS4,=0, (4.34a)
R, 4,5, +2R G+ (1+1)S™'A, - 14,=0, (4.34b)
d(A, +SA,)+R (=0, (4.34c)
a(A,+SAN+ R, =0. (4.34d)

These equations govern the evolution of shell perturbations for arbitrary radial motions.
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Some numerical results for typical shell implosions will be presented in section 4.4. In the numerical
treatment, it is advantageous to choose the radius or the convergence ratio ¢ = R /R as the independent
variable. The integration interval 1 < g < € is then known in advance, if an implosion with initial radius
R, and stagnation point radius R, = € R, is considered. The radial dependences of the unperturbed shell
velocities and accelerations follow simply from energy and mass conservation, as discussed in section
4.1. It is therefore not necessary to solve for the explicit time-dependence of the motion. The
transformation to the independent variable g can easily be achieved by noting that

d drd R* d R, d
iq dqdi Ry & gva (4.35)

As a minor drawback of this transformation, the system becomes singular at V=0. One has therefore
to initialize and terminate the calculations with a small nonzero shell velocity. This can be done without
appreciable deviations from the case where the shell is exactly at rest.

4.3.2. Thin shell expansion

Considerable simplification of the general shell problem can be gained in the limiting cases of thick
(8" < 1) and thin (S§'— 1) shells. For thick shells, the outer surface can be considered at rest, while the
inner surface is governed by the cavity equation (4.25). In the opposite limit of thin shells, the evolution
of surface modes can be described by independent second-order equations for each shell boundary. The
derivation of these equations by a systematic expansion procedure will be outlined in this section.

If the shell thickness approaches zero, the boundary conditions at the inner and the outer surface
become identical. To obtain a closed system of equations in this case, one has to consider an expansion
up to first order in the parameter ¢ = (R, — R,)/R,. The motion of the outer surface can be related to
the motion of the inner surface by the following first-order relations,

R,=(1+ &R, (,=C=xeD/2,
. . L ) . (4.36)
R,=S’R=(1-2¢)R, R,=(1-2¢)R+6eR’R.

Here, we have used eq. (4.2) for the spherically symmetric flow and we have introduced the mean and
the relative displacements of the two surfaces,

C=(4L+4)/2, D=(4 -4, (437)

respectively. Both C and D are treated of order O(1). Expanding now egs. (4.34) up to first order
yields

RC+2RC=—-(1+1)A,+IA,, (4.38a)
A +A,=-RC, (4.38b)
RD-RD=-(I+1)(+2)A, - l(I-1)A,—6RC, (4.38¢)

—(21+1)A,=RD +3RC + (I +2)RC. (4.38d)
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Equations (4.38a, b) follow immediately from the leading order of eq. (4.34). Equations (4.38¢, d) are
obtained by taking the difference between the boundary conditions at the inner and the outer surfaces.
Thereby the following expansions have been used

R,8,4,— R, d,{,=e(RD—3RD - RC), R,{,-R,{,=¢(RD+2RC),
R ¢, - R,,, = ¢[RD - (6R*R -2R)C],
lgl 292 [ ( ) ] (439)
—(+DA-8"HA,+ IS -1D)A,=€e[- (I +1)A, - I'4,],
31— 8" A, + (8" = 1)A,] = [(2l +1) A, + IRC + 3(RC + 2CR¥R)] .

Eliminating now the variables A, , from eqs. (4.38), there follows a set of two coupled second-order
equations of the form

RC=RD, RD=R[BD+(+2)(I-1)C]. (4.40)
These equations can be decoupled by the variable transformation

G=D+(-1)C, H=D-(1+2)C, (4.41)
yielding two independent second-order equations,

RG-(I+2)RG=0, RH+(I-1)RH=0, (4.42)

for the variables G and H. The general structure of these equations is analogous to eq. (3.27).
However, the present result is valid for arbitrary radial motions and mode numbers.

4.3.3. Initial values

To satisfy the initial conditions at the shell boundaries, we have to consider a superposition of the
basic solutions. For definiteness, we define a system of fundamental solutions G,, G,, H,, H, of eq.
(4.42) by the canonical initial conditions,

G,=H,=1, G10=H10=0, Gy =Hy =0, G20=H20=1- (4.43)
Setting

() el )

X—(H , T,= 0 H,,)" (4.44)

the solutions of eq. (4.42) can be represented in the form
X=T-X,+T,-X,. (4.45)

The displacement vector ¢, as defined in eq. (3.26), is related to the vector X by a linear but
time-dependent transformation,
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(=M-X, X=M"'-¢, X=M"-{+M"'-¢. (4.46)
Specifically, using eqs. (4.37) and (4.41), one finds

M 1 <1+b -(1—a)>’ M- 1<1+a —(1—a)),

T2+1\1-b -(1+a) Te\l-b —(1+b)

, (4.47)
._1_§5<1 —1)
Mo=2r\ 1)

with a = (I —1)/2 and b = (! +2)/2. The solution for ¢ can now be expressed in terms of the basic
solutions (4.43). Using egs. (4.45), (4.46), there follows

{=M-(T-X,+ Tz'Xo)zM'(T]'Mo_l"' Tz'Mal)'§0+M'T2°M;1'§0- (4.48)
~ To give a specific example, consider a shell, initially at rest, with a corrugated outer surface. Since
R,=d,{,=0, there is no contribution from the solution matrix 7, in this case. The contribution from
T,, with ¢, =0, yields

§ = (Lo/D[(1 = a)(1+ bo)H, — (1 + b)(1 - a,)G ],

&= (Lo/D[(1+ a)(1+ bo)H, — (1= b)(1 - a,)Gy],

(4.49)

with A= (2/ + 1)¢,. The mode amplitudes are enhanced by the large factor A~", It determines the value
from which the Rayleigh-Taylor instability actually grows.

4.3.4. Thin shell solutions

The thin shell approximation has led to the basic evolution equations (4.42) and (4.48). We now
examine their solutions for ballistic and accelerated shell motions.

The acceleration of a ballistically moving thin shell can be obtained from eq. (4.13c) as

R=-3¢RR. (4.50)

Being of order ¢ only, it can be neglected in the thin shell equations. With the help of eqgs. (4.41) and
(4.42), the ballistic motion can be described by the equations

C=D=0, R=0. (4.51)
Accordingly, the perturbations C and D grow with a constant velocity and vary linearly with the radius,
Cc=C,+C,(R-R,)IR, (4.52a)
D=D,+ D,R-R,)/R. (4.52b)

Using an analogous notation as in egs. (4.27), (4.30), the normalized displacement amplitudes follow
from egs. (4.36) and (4.52) to be
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A,=q((Ap+ Ay) /2= (36]2 - 2q3)(A10 —Ay)/2-(1- qu)(Bl(] + B,,)/2
i(‘12_‘13)(310_ B,)/2]. (4.53)

Here, we have used the scaling £ = g’¢, of the expansion parameter with the convergence ratio. One
can recognize a sensitive dependence on the choice of initial conditions. Any perturbation of the shell
thickness grows much faster than a mere distortion of the whole shell. One should also notice, that the
result is limited due to the thin shell approximation (¢ <1) to moderate convergence ratios of the order
g’ <1le,. For larger convergence ratios the amplitude growth saturates and cavity oscillations, as
described by eq. (4.30), will develop.

As a second example, the RT instability of an accelerated thin shell will now be considered. A
constant acceleration a in the direction toward the shell center is assumed and the implosion time
7=V2R/a is used to form a dimensionless time variable x = t/7. The convergence ratio is related to
the variable x by the expression ¢ = 1/(1— x°). Typical acceleration distances are given by the values
g =2 or alternatively x =1/V2=~0.71. With x as the independent variable, the thin shell equations
(4.42) become

1-x)G+2(1+2)G=0, (1-x)H-2(I-1)H=0. (4.54)

The different signs in the equations for G and H lead to qualitatively different solution behavior. While
G describes stable surface oscillations, H has a purely growing solution branch. Physically, these two
modes arise from the stable inner and from the RT unstable outer surface of the shell. We have
calculated some of the basic solutions G, and H, as defined by the initial conditions (4.43). The results
are represented in fig. 9. It can be seen, that the oscillation amplitudes of G, show no amplification and,
actually, are even slightly decreasing with x. On the other hand, the solution H, is monotonically
growing and can lead to strong amplifications for large mode numbers.

For completeness, it is mentioned that the solutions of eq. (4.54) can also be represented by
Legendre functions P,(x), O, (x) of degree v [93]. This representation is obtained by noting that

Y, =(1-x*) 4P, (x), Y,=(1-x")4,0,(x) (4.55)
are solutions of the differential equation [94]

(1-x) Y+ (v +1)Y=0. (4.56)
Solutions of eq. (4.54) can be obtained by choosing the appropriate degree v in eq. (4.56).
Unfortunately, the resulting degree is generally complex and the corresponding functions are not in

common use.
It may also be of interest to compare the exact result with the simpler WKB approximation [95],
G, =(1—-x*)"* cos[V2(T +2) arcsin x] ,
(4.57)
H,~(1-x*)"* cosh[\/2(1- 1) arcsin x] .

The validity of these expressions is generally limited to slowly varying coefficients in eq. (4.54).



240 H.J. Kull, Theory of the Rayleigh-Taylor instability

100

LA AL

e

T
o
-
r

Fig. 9. Evolution of the surface modes G and H of an accelerated thin shell, according to eq. (4.54). The time coordinate is defined as ¢ = xr, where
7="2R,/a is the implosion time under a constant acceleration . With increasing frequencies, the solutions for G correspond to the mode numbers
1=12,4,8,16,40, 60, 80. With increasing amplitudes, the solutions for H correspond to the mode numbers / =2, 4, 8, 16, 20, 30, 40, 50. (From ref.

(78].)

Actually, the WKB approximation proves fairly accurate for x <0.8. The accuracy of the approximation
may be appreciated from the comparison of exact and approximated results presented in table 3.

4.4. Stability results

An overview on the evolution of incompressible shell perturbations under various circumstances is
presented in the following. The computational results describe the full solution of the perturbation
system (4.34) for different shell motions and initial data. We will discuss the stages of ballistic motion,
of acceleration, and of deceleration in typical implosions. The initial aspect ratio of the shell is defined
as o = R,/d,, where R, denotes the initial radius of the inner shell boundary and d, the initial shell

Table 3
Comparison of the WKB approximation (4.57) with the numerical
solution of eq. (4.54). Values of the growing mode H, at x = 0.71 for
different mode numbers /

=2 =4 =8 =16

eq. (4.57) 1.4 2.9 8.0 3
eq. (4.54) 1.6 3.2 8.5 2
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thickness. The final convergence ratio is denoted as € = R,/R, where R represents the stagnation-
point radius of the inner boundary.

4.4.1. Ballistic motion

First, consider a high aspect ratio shell moving with a constant kinetic energy toward the shell center.
The initial shell parameters are: R, =1, V,=—1, and & = 100. This model describes the stability of
converging shells of finite thickness in the absence of an external driver. With increasing convergence
ratios, the shell becomes rapidly thick and reaches the stage of a collapsing cavity. The perturbation
evolution will be described through this transition up to a convergence ratio of 30.

Perturbations have been initialized by imposing surface displacements to both shell boundaries. To
gain some overview on possible evolutions, we discuss three different types of initial conditions:

{o=6o=1, (4.58a)
fo="4=1, (4.58b)
fw=1, £ =0. (4.58¢)

The initial conditions (4.58a) will be called sphericity perturbations, describing deviations from the
spherical shape with unperturbed shell thickness. In contrast, we will call the initial conditions (4.58b)
uniformity perturbations, describing variations in the shell thickness with a fixed average shell radius.
The perturbations of a single surface (4.58c) may be simply called surface corrugations.

The results of case (4.58a) are presented in fig. 10 for a number of different / modes. Here and in the
following, solid lines correspond to the inner and dashed lines to the outer surface. The amplitude
evolution is represented as a function of the convergence ratio on a linear scale in fig. 10a and on a
logarithmic scale in fig. 10b. We make this comparison to familiarize with the logarithmic representation
that will be used in the following. Although the logarithmic scale gives only a poor picture of the
oscillations, it seems to be the best way to display amplitude growth over several decades. Looking at
the logarithmic representation fig. 10b, one should notice that the zeros of the oscillations appear as
narrow spikes and that subsequent half-waves have actually different signs.

The present numerical solution can nicely illustrate the asymptotic results that have been obtained
for thin and thick shells. For small convergence ratios the displacements remain constant, as predicted
by eq. (4.52) for the present initial conditions. With increasing convergence ratios, the cavity
approximation becomes valid and the inner surface starts to oscillate in accordance with the cavity
solution (4.30). Since the perturbations remain static initially, the amplitude of the cavity oscillation is
closely determined by the initial value at R= R,,. In particular, it is nearly independent of the mode
number.

The thin shell solution (4.53) predicts major differences for the evolution of sphericity and
uniformity perturbations. Actually, the initial conditions (4.58b) lead to a completely different picture
of surface evolution. As shown in fig. 11, perturbation growth now starts immediately in the thin-shell
regime and amplifications of the order of 1/, = & = 100 can be obtained. The saturation amplitude of
the cavity oscillations depends considerably on the mode number. The largest amplifications are
reached for low [ modes which saturate more slowly.

The evolution of inside surface corrugations, as described by eq. (4.58c), can be represented as a
superposition of the previous results. As an immediate consequence, the asymptotic amplitudes will be
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Fig. 10. Perturbation evolution for ballistic motion of a spherical shell with initial aspect ratio & = 100. The initial conditions for the surface
displacement amplitudes are {,, = ¢,, = 1. Solid (dashed) lines refer to the inner (outer) shell surface and the perturbation mode numbers are ! =2
4, 8, 16. The displacement amplitudes are represented on (a) a linear scale and (b) a logarithmic scale. (From ref. [78].)

about one-half of those reached in the dominant case (4.58b). To show some additional features, we
display in fig. 12a the evolution of the linear combinations C=({ + {,)/2 (solid line) and
8= ({, — &)/2 (dashed line) and make comparison with the thin shell approximation (dotted and
dot-dashed lines). The ballistic thin shell solution (4.53) stays approximately correct up to convergence
ratios between 2 and 3. This corresponds to the shell thickness parameters £ = g’¢, ~0.08-0.27 or
A=(2[+1)e=0.4-14.

We also show in fig. 12b the growth of the normalized amplitudes A, , = {;,/R,,. The final
amplifications are of the order 10°~10*, For stable performance, these amphtudes should remain smaller
than 1. The allowable initial amplitudes are therefore constrained to =1% of the shell thickness:
Lo<107'R,=10" d These requirements become most stringent for low mode numbers, which
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Fig. 11. Same motion as in fig. 10, with the initial conditions {,, = — {,, = 1. Note the large difference in the amplification of sphericity (fig. 10) and
uniformity (fig. 11) perturbations. (From ref. [78].)
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Fig. 12. Same motion as in fig. 10, with the initial conditions {,, = 1 and {,, = 0. (a) A comparison of the mean displacement C = ({, + £,)/2 and the
relative displacement & = ({; — £,)/2 with the thin shell solution of eq. (4.53) (dotted and dot-dashed lines). (b) Evolution of the relative
displacement amplitudes ¢, ,/R for small (! =2) and moderately large (/= 16) mode numbers.
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saturate more slowly and therefore can reach larger oscillation amplitudes. If the shell is accelerated,
this mode number dependence can be compensated by RT growth, affecting predominantly large mode
numbers. The behavior of accelerated shells will be discussed in the following section.

4.4.2. Acceleration

Some perturbation results for accelerated high aspect ratio shells are now presented. They describe
the RT instability of the outside surface and its penetration to the inside surface. The initial shell
parameters are: R,=2, V,=0, and & =100. The acceleration law (4.15) is applied over a radial
convergence ratio of 2.

As in the previous example, we will consider a set of different initial conditions,

gm =1+ bo s (20 =1~ bo > (459&)
{o=1-ay, &o=1+a,, (4.59b)
§i0=0, =4, (4.59¢)

to demonstrate the evolution of distinct modes and their possible interference. The initial conditions
(4.59a) and (4.59b) impose basically sphericity perturbations, since the shell thickness variations are of
order ¢, only. The distinction between (4.59a) and (4.59b) is required to describe the evolution of the
stable mode G and the unstable mode H independently. In the case (4.59c), sphericity and nonunifor-
mity perturbations are of the same order. Here, the predominant response will come from the shell
nonuniformities.

In the first calculation, the evolution of the stable surface mode G is examined. As follows from eq.
(4.46), the initial conditions (4.59a) correspond to the initial mode amplitudes G, =2/+ 1 and H, = 0.
The computational results are presented in fig. 13a. Comparison is made with thin shell results (dotted
and dot-dashed lines), following from eqs. (4.54) and (4.46). For low mode numbers (/ = 20), one can
recognize excellent agreement between the complete and the approximate solutions. In particular, no
appreciable amplification is observed in both cases. For higher mode numbers (/ = 50), the thin shell
approximation becomes more restrictive and discrepancies can be observed at the outer boundary. The
approximate solution remains still qualitatively correct at the inner boundary, however.

Corresponding results for the unstable surface mode H are presented in fig. 13b. The initial
conditions (4.59b) are equivalent to the mode amplitudes G, =0 and H,= —(2/+ 1). The unstable
outer surface is now well described by the thin shell approximation, while it becomes poor at the inner
surface when surface oscillations develop. Nevertheless, the thin shell approximation can give a
reasonably good estimate for the amplitude of the first cavity oscillation excited by the outside RT
instability.

To discuss the amplification of shell nonuniformities we restrict our attention to the most severe
mode /= 2. In fig. 13c, the evolution of the nonuniformity perturbation (4.59c) is compared with the
evolution of the unstable sphericity perturbation (4.59b). As in the ballistic case (figs. 11, 12), one can
observe strong nonuniformity growth in the thin shell regime, while there is only little amplification of
the unstable RT mode. This surprising behavior is well described by the thin shell solution (4.49).
Accordingly, the asymptotic growth of the average shell radius C can be approximated in the form

Cldy=(H, - G,)/(21 +1)e, . (4.60)
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Fig. 13. Perturbation evolution for an accelerated shell with initial aspect ratio &/ =100. Solid and dashed lines are used as in fig. 10, dotted and
dot-dashed lines refer to the thin shell approximation (4.54). (a) Initial conditions corresponding to the stable surface mode: G, =2/ + 1, H, = 0. (b)
Initial conditions corresponding to the unstable surface mode: G, =0, H, = —(2{ + 1). (c) Comparison of the amplifications by mode interference
(left) and by RT growth (right) for the mode ! = 2. Initial conditions are {,, =0, {,, = d, (left) and G =0, H = —(2] + 1) (right). (From ref. [78].)

In excellent agreement with the numerical result, eq. (4.60) predicts an amplification of ~40 at the end
of the acceleration phase.

Physically, the effect is based on a destructive interference between the stable and unstable modes to
satisfy the initial condition {,, = 0 at the rear side of the shell. The initial perturbation at the front side
is therefore much smaller than the individual mode amplitudes. In the course of time evolution, this

interference is destroyed and the surface deformation is mainly due to the unstable mode amplitude H
(fig. 14).

4.4.3. Shell implosions

Let us finally discuss some stability results for the implosion models described in section 4.1.7. They
combine the different stages of acceleration, ballistic convergence, and deceleration as may be seen
from fig. 7. The two implosion schemes correspond to the parameters (a) & =100, € =40 and (b)
& = € =30. Shell perturbations have been initialized at R = R, by assuming outside surface corruga-
tions ({yo =0, &y = d,).
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Fig. 14. Schematic representation of an initial shell perturbation { as a superposition of the two independent solutions G and H. The left side is
unperturbed because of destructive mode interference. At the right surface, the perturbation is nonzero but significantly smaller than the individual
mode amplitudes. (From ref. [78].)

Results for scheme (a) are presented in fig. 15a, showing the development of both surface
displacements for different mode numbers. At the outside surface, the growth is driven by RT
instability and by mode interference in the acceleration phase. This growth saturates, when the outer
surface is decelerated, and finally stagnates. However, one can recognize considerable overshooting of
the value reached at the end-point of the acceleration phase (¢ = 2). The outside RT instability excites
a cavity mode at the inner surface whose amplitude is further amplified in the final deceleration phase.

Corresponding results for scheme (b) are presented in fig. 15b. Comparing with (a), one can
recognize considerably less amplification for the thicker shell. The design (b) seems more favorable for
a number of reasons. The amplification factor is inversely proportional to the shell thickness, as
described by the formula (4.60). This effect is important when both surface modes are excited.
Furthermore, one can recognize from fig. 7 an earlier stagnation of the outside surface motion which
also affects the saturation level of the outside surface amplitude. Finally, the thicker shell can more
effectively suppress the excitation of cavity modes at the inner surface. The reduced oscillation
amplitudes are particularly impressive for large mode numbers.

5. Bubble rise dynamics

RT instability marks only the onset of a complex interpenetration process, leading ultimately to the
growth of mixing regions between neighboring fluids. On the other hand, the evolution of a free surface
may be largely understood from first principles as an evolution of rising gas bubbles. The study of
bubble dynamics, including various forms of bubble rise and bubble interactions, provides therefore a
unique approach to a basic understanding of mixing-layer growth.

The theoretical description of free-surface flows leads to considerable mathematical difficulties which
have probably not been satisfactorily solved in general. In this chapter, we therefore restrict attention
to rather simple flow models suggested by physical considerations. First, the nonlinear perturbation
theory of the RT instability is reviewed and the formation of bubbles is described. Then, a discussion of
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bubble motions is presented, covering two- and three-dimensional flows around bounded and un-
bounded bubble domains. This analysis summarizes a number of bubble models that have proved
particularly successful in the prediction of bubble parameters. These are the spherical-flow model of
Taylor, the single-mode model first discussed by Layzer, and the source-row model introduced by the
present author. Finally, applications of bubble theory to buoyancy-driven mixing layers are illustrated.

5.1. Nonlinear perturbation theory

In this section, we consider the weakly nonlinear regime of the free-surface RT instability. The
amplitude-to-wavelength ratio is still assumed small such that nonlinearities can be treated perturbative-
ly. The initial-boundary-value problems for the first three perturbation orders are derived and
subsequently solved for different initial conditions. The perturbation approach can explain the
formation of bubble-spike asymmetry and gives some theoretical justification for nonlinear single-mode
descriptions. Its limitations for larger amplitudes will be illustrated by a numerical calculation based on
the method of least-squares approximation.

Nonlinear perturbation theories of the RT instability have been intensively studied in the presence of
surface tension. The prediction of the stability boundary between RT instability and surface tension
stabilization requires sophisticated perturbation methods. In a first treatment of this subject, a regular
third-order expansion was given by Chang [4, 53]. Subsequently, singular perturbation methods have
been introduced by Rajappa {96]. Thereby secular terms could be removed from the expansion for the
stable modes above the instability cutoff. The problem was reconsidered by Kiang [97], and by Nayfeh
[98]. As a major result, it was found that finite-amplitude waves can become nonlinearly unstable.
While Rajappa’s treatment apparently becomes invalid near the cutoff, Kiang and Nayfeh have
obtained agreement in their nonlinear cutoff predictions. More recently, a different perturbation
formula has been presented by Infeld and Rowlands [99], in making use of Witham’s discussion [100] of
nonlinear traveling surface waves. Although these authors may consider different initial and boundary
conditions, their arguments should be taken with caution. As opposed to standing waves growing from
rest, nonlinear traveling wave solutions become complex when the frequency is allowed to be complex.

Omitting the complications of surface tension, the present discussion is entirely based on regular
perturbation theory. The purpose is to study the coupling to harmonics in an early stage of the
instability evolution. In accordance with an earlier work by Leith [101], it is found that single-mode flow
is exact up to third-order perturbation theory. This surprising result is rigorously valid if the evolution
starts from an unperturbed initial surface and time-asymptotically for other initial conditions.

5.1.1. Perturbation expansion
The basic problem of the nonlinear free-surface instability consists in the determination of a potential
o(x, y, t) satisfying the boundary conditions

(ax‘p+ %vz)|y:((x,/)+§(x7 t)=0’ (51&)
d{+tu(x,0)df-v(x, {0)=0, (5.1b)
at the free surface y = {(x, f) at time t. Here, dimensionless variables normalized by the length unit 1/k

and the time unit 1/V ak have been used. In the perturbation approach, the boundary conditions are
expanded about the undisturbed interface, leading to a sequence of potential flow problems with
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boundary conditions on y=0. In principle, each perturbation order can then be solved by a
superposition of normal modes, being complete on a plane surface.

The boundary condition (5.1a) can be rewritten in an alternative form, that is particularly well suited
for the perturbation approach. For this purpose, we use the shorthand notation,

Alx, y,t)],., =0, A=de+iv’+y, (5.2)

and differentiate eq. (5.1a) along the path of surface particles,
d
T [A(x, y,0)|,_,]=(,A+v,dA+v,dA4),_,=0. (5.3)

Substituting now A back from eq. (5.2), there follows a homogeneous boundary condition for the
potential ¢,

F(x’ y’ t)ly={(x.1) = O ’ (54)
with
F=3dp+d¢+dv’ +v-V(3v?).

We now expand F(x, y, t) with respect to y in a Taylor series about y =0, and represent both F and {
by perturbation series,

F=F|y=0+é)yF|y:0§+%ﬁiF’y=()§2+...’
(5.5)
FIZFHE", g:Eé’"E".
n=1

n=1

Ordering with respect to equal powers of ¢ yields up to third-order

Fly:§ = 8F1|y=0 + 52[Fz + (ayFl){l]ly=0 + 53[F3 + (&_VF1)§2 + (ayFZ)g] + %(ﬁiFl)gf].}:O . (5.6)
The advantage of the homogeneous boundary condition (5.6) derives from the fact that the linear part
F, vanishes identically, if it is required to vanish on the surface. This would not be true for the
corresponding part A, of the original inhomogeneous boundary condition (5.2). As a result, the partial
derivatives of F, can be dropped in eq. (5.6), which greatly simplifies the evaluation of nonlinearities.
Using egs. (5.4) and (5.6), the boundary conditions at y = 0 for the first three orders of ¢ follow to be

F1=(9r2(P]+(9y(Pl=0’ (5.7a)
F,=0]¢,+ d,¢,+dv; =0, (5.7b)
Fi+ (8},F2){1 = ‘9124’3 to,pt 29(v,-v,) t v, V(%Uf) + 07y(07;2902 t .0+ dvf)é’l =0. (5.7¢)

In addition to these boundary conditions, initial conditions have to be specified for ¢, and d,¢,. We
will prescribe initial conditions on the first-order displacement ¢, and its velocity 4,¢,. The higher orders
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are set equal to zero, initially: ¢, =d,{,, =0 for n>1. The surface displacement is defined by the
original set of equations (5.1). The expansion of these equations up to third-order is given by,

g +6=0, 44 -3d,¢=0, (5.8a)

Gyt L+ (90, + 101 =0, 44~ d,e v, 4,4~ (d,v,), =0, (5.8b)

dpyt {3t (6,0_”){2 + (é‘,vyz)g1 + %(a,ayvyl)gf tvcv, t %(ﬁyvf)gl =0,

9.4y = 0,03+ U,y 3,4, +0,10,0,+ (0,0, )0, 5) (5.8¢)
~[(6,9,)8 + (9,v,2)¢, + 3(330,)¢1] = 0.

These equations have been commonly used in the perturbation approach. They determine both the
potential and the displacement of each order simultaneously. In the present treatment, the potential is
first determined from the simpler set of boundary conditions (5.7). The more complicated perturbation
system (5.8) is only used when explicit displacement expressions are required.

5.1.2. Harmonics
In previous work, nonlinear perturbation results have been mostly derived for static initial corruga-
tions of the surface. To discuss the dependence on initial conditions, we will consider general sinusoidal
flow perturbations arising either from the displacement or from the velocity of the initial surface.
The first-order solution for the fundamental mode is written in the form

¢, = —[Aexp(t) + Bexp(—t)] exp(—y)cos(x) , (5.9a)
{, =[Aexp(t) — B exp(—t)] cos(x), (5.9b)

with arbitrary constants A and B. Using these expressions, the boundary condition (5.7b) for the
second-order potential becomes,

die, + d,¢,= ~2[A” exp(2t) — B exp(-21)]. (5.10)
With the help of eq. (5.8b), the initial conditions {,, =0 and d,{,, =0 can be expressed as,

9,05 = —[A’+ B+ 3(A— B) cos(2x)], 3,y = (A* = B®)cos(2x), (5.11)
respectively. Solving these equations, yields the second-order result,

¢, = — 3[A” exp(2t) — B* exp(—21)]

— 1[(A* = B*) cosh(V2 t) + V172 (A — B)’ sinh(V2 t)] exp(—2y) cos(2x) , (5.12a)

L, =—4{[Aexp(t) — Bexp(—1)]° - V2(A> — B*)sinh(V2 t) - (A — B)* cosh(V2 t)} cos(2x) .
(5.12b)
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It is important to notice the difference between the different time-dependences in eq. (5.12). In each
perturbation order, there is a driven response, arising from the nonlinearity in the evolution equation,
and a reactive response, resulting merely from specific initial conditions. In mth order, the driven part
will grow as exp(mt) but the reactive part only as exp(v t). In this sense, the nonlinear evolution
appears rather universal and stable against normal mode perturbations ~exp(vmt). Neglecting
reactive terms in the time-asymptotic limit, the dominant part of eq. (5.12) follows to be

o= —3 A" exp(21), (5.13a)
{,— — 5 A” exp(21) cos(2x) . (5.13b)

It is basically independent of the initial conditions, depending only on the unstable mode amplitude A.
Furthermore, the asymptotic flow potential reduces to an unimportant time function, while the surface
displacement becomes already modified by the first harmonic. Accordingly, single-mode flow is
consistent with a nonlinear deformation of the surface. The negative sign of the first harmonic in eq.
(5.13b) describes the onset of bubble-spike asymmetry. The total displacement of the rising fluid
(x =0) is reduced in comparison with the total displacement of the falling fluid (x = 7).

We now discuss in more detail two important special cases. Choosing the initial conditions
A= B=1V/2, the evolution starts from a pure velocity perturbation. In this case, the first harmonic
contribution to the velocity potential (5.12a) vanishes exactly. Up to second order, the corresponding
solution is given by

@ = — 1V sinh(2¢) — V cosh(t) exp(—y) cos(x) , (5.14a)
{ =V sinh(¢) cos(x) — $V*[cosh(2r) — 1] cos(2x) . (5.14b)

We now use this result to determine the third-order potential perturbation. Substituting eq. (5.14) into
eq. (5.7¢) there follows

iyt d,0, = =0, V(3v*) = (d,d,v1)¢, = 4[5 cosh(3r) — cosh(t)]V* cos(x) . (5.15)
The third-order solution, corresponding to the initial conditions,

$0= =0,930=0, 9,53 = R 0, (5.16)

is found to be
@, = {&[cosh(3t) — cosh()] — §¢sinh(¢)} V> exp(—y) cos(x) . (5.17)

It should be noticed that the nonlinear evolution can be consistently described by the fundamental
mode of the flow potential up to third-order. Actually, the third-order provides merely a feedback to
the time dependence of the flow amplitude. Single-mode flows with time-dependent amplitudes will be
further discussed in section 5.3.

To make comparison with previous work, we now specialize to the more usual initial conditions
A= —B=Z]/2, describing static initial corrugations of amplitude Z. Combining eqs. (5.9) and (5.12)
yields
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¢ = — Z sinh(r) exp(—y) cos(x) — § Z*[sinh(2¢) + V2 sinh(V2t) exp(—2y) cos(2x)] , (5.18a)
{ = Z cosh(t) cos(x) — } Z*[cosh(2¢) — 2 cosh(V2 1) + 1] cos(2x) . (5.18b)

These solutions agree up to second-order with the results of Chang [53] and Kiang [97], if surface
tension is neglected there. Proceeding to third-order, the equations for the velocity potential become,

d7 ¢y + d,¢, = {—V2 §[sinh(¢) sinh(V2 £)] + § sinh(3¢) + § sinh(z)} Z* cos(x) ,
(5.19)
3,050=0, d,09=—14Z’[3cos(3x) + cos(x)] .

Their solution includes a third-order contribution to the fundamental mode and an additional second
harmonic,

¢, =3t cosh(z) + 3 sinh(r) + 5 sinh(3t) — V2 cosh(¢) sinh(V2 1)] Z* exp(— y) cos(x)
— 13 77 sinh(V3 1) exp(—3y) cos(3x) . (5.20)

The appearance of secular terms, as represented by the first member in the bracket, is typical for
higher-order perturbations. They can be removed by singular perturbation techniques, although this
procedure has only basic justification for stable bounded solutions. For instance, the present term may
be viewed as a nonlinear correction to the growth rate of the first-order solution,

¢, — —Z sinh[(1 - £ Z*)t] exp(—y) cos(x) . (5.21)
This modification agrees with the more rigorous derivations in refs. [97, 98].

5.1.3. Nonlinear mode interactions

If the initial perturbation consists of a superposition of modes, beat waves can be excited by
nonlinear mode couplings. The appearance of longer wavelengths in the evolution of multiple-mode
problems is of considerable interest, since these modes can become dominant when the growth of the
short-wavelength modes has reached nonlinear saturation. Unfortunately, the stage of saturation can no
longer be described by the perturbation approach.

To demonstrate the principle possibility of nonlinear mode coupling, we allow for a superposition of
two modes in the first-order solution,

@, =—m ' F(t) exp(—my) cos(mx) — n” ' G(t) exp(—ny) cos(nx) ,
(5.22)
{,=m~" ,F(t) cos(mx) + n~' 3,G(t) cos(nx) .

In the second-order, there appears an additional mode with the difference mode number = m — n,
where m > n >/ is assumed. Its potential has the general form

@, = [b(t) + ¢, exp(V11) + ¢, exp(-= VI 1)] exp(-ly) cos(lx) , (5.23)
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consisting of a driven solution b(¢) and the stable and unstable normal modes with amplitudes c, ,. The
boundary condition (5.7b) yields for b the differential equation,

9’b—Ib=-23(FG). (5.24)
Noting that 3°F = mF and 3G = nG, the driven solution can be expressed in the form

b=-n"'FsG. (5.25)
From the initial conditions {,, =0 and 4,{,, = 0 the constants ¢, , are found,

¢, =3[=(Vlinm) 9 F3.G+n"'F3,G+m™'GdF,_,, (5.26)

where the upper sign refers to ¢, and the lower one to c,. In this solution the freely evolving modes may
be more important than the driven one because of the earlier saturation of short wavelength modes.
This temptative interpretation suggests, that the long-time behavior is dominated by the unstable mode
with amplitude c¢,. We remark, that such a mode can only exist if the initial surface displacement is
nonzero, d,F,#0 or 4,G,#0.

5.1.4. Least-squares approximation

With increasing amplitudes, higher-order contributions can no longer be neglected in the perturba-
tion series. The evolution of a larger number of harmonics can be studied numerically by the method of
least-squares approximation. It was first applied to the free-surface problem by Pennington [102]. The
method was reconsidered in ref. [75] with improved computational accuracy.

We first briefly outline the approximation method. According to the discussion in section 5.1.1, the
nth order perturbation solution has the general form

N
o(x, y, )= 20 a,(t) exp(—my) cos(mx) , (5.27)
me
where the amplitudes 4, (¢) contain contributions from various perturbation orders. One should notice
that this representation is not completely general. Even in the limit N— o, it can fail to describe the full
large-amplitude solution. The Fourier representation with respect to the x coordinate will only converge
if the potential has no singularities on each line y = const. It is therefore assumed, that the potential is
analytic in the entire half-plane above the lowest surface point. However, this assumption becomes
violated, if singularities appear in those regions of the half-plane that are not occupied by the fluid.
Despite this principal limitation, it is of interest to see how far the nonlinear evolution can be described
by the series (5.27) if higher-order terms are included.
The method of least-squares approximation determines the mode amplitudes by minimizing the
mean square error on the surface for an expansion of given order. The set of basis functions

fn(x, ¥) = exp(—my) cos(mx) (5.28)

can be orthogonalized on the instantaneous surface x = x(x,, t), y = y(x,,t) by use of the Gram-
Schmidt orthonormalization procedure. This yields a new function system g, (x, y, ), satisfying
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2 m
(&> gj> = P fdxo 8:(x(xy, 1), y(xy, 1), t)gj(x(xO’ 1), y(x45 1), 1) = 8, - (5.29)
0
If the series (5.27) is rewritten in terms of the function set {g, } as

0= 2 ¢ (0gn(x, y,1), (5.30)

the boundary condition (5.1a) assumes the general form

N
> ¢.8,=R(x, ¢, 1) (5.31)
m=0

In this equation, the time-derivative ¢,, appears on the .h.s. only and R represents a known function at
time ¢,

R(xy, ¢, )=~ (2 ¢, 0,8, iy* + y) (5.32)

x=x(xg, 1), y=y(xg. 1) )

Taking projections of eq. (5.31) on the basis functions and adding the equations of motions for the
surface particles yields a closed system of ordinary differential equations,

ém=<gm’R> ’ cm(o)zcmO’ x(xO’t)=ax¢ > x(xO’O)sz’ .)}(x()’ t)=l?y§0’

y(xy, 0) = (x) -

(5.33)

Numerical solutions of the evolution equations (5.33) have been obtained in ref. [75]. An example is
shown in fig. 16, corresponding to the initial values ¢, (0) =0, {,(x) =0.1cos x. This calculation has
been performed with N =11 terms in the expansion (5.30) and with 100 particles distributed at equal
distances over the initial surface. The normal mode spectrum at subsequent times is shown in fig. 16a.
One can recognize that the rate of convergence of successive orders is quite fast at early times (¢ = 0.6
represented by square symbols) but it becomes increasingly worse in the course of time evolution. Note
that the 10th harmonic amplitude grows from the order 10™'' up to the order 107> while the
fundamental mode grows only by somewhat more than a factor of 10. The decrease in the slope of the
mode spectrum is particularly pronounced after the time ¢ =3.0 and leads to computational failure after
the time t=3.6.

Corresponding results for the evolution of the fluid interface are represented in fig. 16b. The heavy
fluid above the interface is pushed by the pressure of a gas below the interface. It can be recognized
that the sinusoidal initial perturbation develops into a rising bubble centered around x =0 and into a
falling spike centered around x = 7. The accuracy of the calculation is believed to be good up to the
time ¢=23.6 where the bubble and spike amplitudes have reached the values 1.01 and -2.20,
respectively. For a comparison with the full numerical solution, a benchmark problem of refs. {15, 103],
corresponding to a larger initial amplitude of 0.5, has also been studied. In this case, the full numerical
solution approaches the asymptotic bubble velocity close to the time ¢ = 2. The same prediction is made
by the present perturbative treatment as can be seen from the data in fig. 22 below.
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Fig. 16. Nonlinear evolution of a sinusoidal surface displacement ¢ = 0.1 cos x in the free-surface RT instability. The units are k™" for the length and
1/Vak for the time. (a) Spectrum of the mode amplitudes c,, for the fundamental mode m =1 and its first ten harmonics m =2~11. Subsequent
times are indicated by different marker symbols as defined at the right margin. (b) Surface displacements at corresponding times. The fluid occupies
the region above the surface line and, for symmetry reasons, only one-half of a wavelength is shown. (From ref. [75].)

Despite the satisfactory explanation of bubble-spike asymmetry, it should be noticed that the
perturbation method is faced with serious difficulties at larger amplitudes. In practice, calculations
cannot be extended beyond a bubble—spike separation of at most half a wavelength. The main reason is
an enormous increase of the exponentials exp(—my) when the spike amplitude exceeds y =—1. In
addition, the series may fail to converge when singularities in the bubble region are encountered.

5.2. Closed bubbles

Free-surface bubbles may be classified according to their topology as open or closed and according to
the number of relevant flow dimensions as two or three dimensional. Closed underwater bubbles have
been studied experimentally by Davis and Taylor [14]. They have the shape of small caps with nearly
spherical top and flat bottom. The top side seems nearly steady while the rear side is subject to rapid
fluctuations caused by complicated wake currents. Open surface bubbles arise as an approximately
periodic two-dimensional structure in the nonlinear RT instability. They approach the form of
open-ended broad columns that are separated by narrow sheets of falling fluid. Experimental evidence
of an asymptotic bubble stage was first gained by Lewis [2] and later confirmed by Emmons et al. [4].
Under more definite conditions, single open bubbles can be prepared and studied in rectangular
channels or circular tubes.

Bubble experiments have indicated close analogies in the dynamics of these bubble structures. In all
cases, an approximately constant rise velocity was observed. Its dependences can be expressed in the
general form

u=FVaL, (5.34)
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where L denotes a characteristic bubble length and F is a dimensionless constant, known as the Froude
number. Frequently, L is chosen to be the radius of curvature, the channel width, the tube diameter, or
the perturbation wavelength. The value of F is the crucial parameter, which depends on the given
circumstances. It can only be found by measurements or detailed calculations. We will derive Froude
numbers for a variety of bubble flows. The underlying approximations will be discussed and the results
are compared with a number of experimental and computational data. The discussion is divided into a
description of closed bubbles, treated in this section, and of open bubbles, presented in section 5.3.

5.2.1. Spherical bubble model

To explain the rate of rise of closed underwater bubbles, Taylor made comparison with the
well-known potential flow around solid spheres [14]. Surprisingly good agreement with measured rise
velocities could be found by assuming pressure equilibrium on the top side of the sphere. Unfortunate-
ly, the observed bubble shapes are quite different from a sphere on their rear sides.

This paradox may be resolved by considering an initial-value problem for spherical bubbles rather
than a steady-state problem. An initially spherical bubble remains nearly spherical for a short time.
Within this initial period, the evolution may be treated perturbatively. The expected evolution for
spherical bubbles is shown schematically in fig. 17. If the sphere is assumed at rest, initially, one has to
solve the initial acceleration problem and, subsequently, the approach toward an asymptotic steady-
state at the top side of the sphere. Alternatively, one may consider an initially moving sphere. For a
proper choice of the initial velocity, steady-state conditions could be maintained on the upper side from
the very beginning. These two approaches will be illustrated in the following. A more complete
computational treatment of the initial-value problem for spherical bubbles at rest has been described by
Baker and Moore [13]. The calculations show a strong distortion of the bubble into a horseshoe-like
shape due to the formation of an upward directed jet at the rear side of the sphere. In the initial phase,
the results for the upper bubble amplitude are in close agreement with the present perturbation results.
However, the asymptotic rise velocity is somewhat larger in these calculations, where it seems to be
influenced by the rear side jet.

We will first discuss the initial acceleration of a spherical bubble at rest as a result of its buoyancy and
its virtual mass. In accordance with Birkhoff’s results, it is found that spherical bubbles experience the
same initial acceleration as rigid spheres. Then, we analyse necessary conditions for steady-state flow at
the top of an initially moving sphere and thereby derive Taylor’s original result. Finally, the transient
evolution from rest up to the final steady-state is described by a simple interpolation formula.

u:ﬂJuR

AP

I

u=(6-1)a

Fig. 17. Expected evolution of an initially spherical underwater bubble. A 8-dimensional spherical bubble at rest experiences an initial acceleration
a = (6 — 1)a and approaches a final rise velocity u = [(8 — 1)/6]VaR. Thereby its shape is flattened at the rear side by wake currents.
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5.2.2. Initial acceleration of spherical bubbles

Consider a spherical bubble in an infinitely extended liquid subject to an acceleration a along the y
direction. The bubble will experience an initial acceleration a with respect to the fluid. Choosing a
reference frame moving with velocity af along the y direction, the boundary conditions at infinity and at
the bubble surface r = R(0, t) = R, + £(0O, t) become

3,¢lyn = —at, (5.352)
[0+ iv°+(a+ a)rcos B]|,_,=0, (5.35b)
(3,4 + R 090 dg{ = 3,¢)|,-5 =0. (5.35¢)

The first two boundary conditions can be somewhat simplified by setting ¢(r, 0, 1) = ¢, (r, O, 1) —
atrcos . In terms of ¢, , these boundary conditions are

3,0 lyn==0, (F¢, + LW+ arcos ©)] _,=0. (5.36)

One should notice that ¢, is the potential in the laboratory frame, but expressed in the coordinates of
the moving frame, and the velocity is still defined in terms of ¢.

During an initial stage, the bubble will stay approximately spherical and we can use a formal
expansion about the initial surface r = R, that is similar to eq. (5.8). The first two perturbation orders
yield

d ,taR,cos ® =0,

(5.37a)
d.{,—d.¢,,tatcos @ =0,

0@, + 30T+ (8,00, +acos @), =0,
. , (5.37b)
08, = 0,0, T Ry g0, 9ol — 3,¢,{,=0.

Using eqs. (2.24) and (2.25) for two- (6 =2) and three- (8§ =3) dimensional flows, the first-order
solution is given by

at Ry 1
(P”‘z_g:—]r‘s_‘()TCOS@’ §1=0, 5_1a=a. (538)

In the first approximation, the induced acceleration field a is homogeneous and the sphere is
accelerated rigidly. This acceleration may be viewed as arising from the buoyancy force ma, where m is
the mass of the fluid displaced by the sphere, and from a virtual inertial mass ym of the bubble inside
the fluid. Setting yma = ma, one finds from eq. (5.38) the inertial coefficient y = 1/(8 — 1). The values
y =1 for cylindrical geometry and y = } for a three-dimensional sphere are exactly those found for solid
bodies with negligible masses [44].

Let us now extend the analysis to second-order. Using eq. (5.38) there follow the relations

Vil,-g, = Ro“(9o0))’], g, = (Batsin @), sin’® =[(6 ~1)/8] (g, - 8,) . (5.39)
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where the angular parts g,(@) have been defined in eq. (2.25a). With these expressions, egs. (5.37b)
become

¢, + 3(8at)’[(5-1)/8)(g,— &) =0, (5.40a)

0,8~ 3,¢,,=0. (5.40b)
Choosing the initial conditions {,(0) = 4,{,(0) =0, the second-order solution is found to be

G2 =808 T & (RYIT)E, &= b8, (5.41)
where

a,=—a,=—4(6-1)8a’t’, b,=—%(5-1)8%"1"R,.
The total acceleration distance at the top side of the bubble then is

h=at’(i—1ta/R) (6=2), h=a’(1-3}ar’/R)) (6=3). (5.42)
The second-order corrections show the trend toward a reduction of the upward acceleration. To

estimate the final steady-state rise velocity, we extrapolate the evolution law (5.42) up to the point
where the acceleration becomes zero. Setting 4 =0 in eq. (5.42) one finds,

at’2R, =%, h=W2VaR,~047VaR, (§=2), (5.43a)
a’2R,=3%, h=%V2\aR,~0.94x H\/aR, (6=3). (5.43b)

In both cases, the acceleration distance is only a small fraction of the bubble radius. Despite our rough
extrapolation, the velocities reached at the end of the acceleration phase are in close agreement with
the steady-state rise velocities that will be derived below.

5.2.3. Asymptotic rise velocity

To analyse the steady flow conditions at the top of a moving sphere, we reconsider the initial-value
problem by assuming an initial velocity u along the y direction. In the bubble rest frame, the initial flow
is given by,

0 =—[r+©®-1)""RIr’ Nucos O, (5.44a)
v,0=0d.¢,=—[1—(R,/r)’]ucos &, (5.44b)
Voo ="' dg@y=[1+(6—1)""(Ry/r)’]usin &, (5.44c)

satisfying the required boundary conditions v, = —u at infinity and v,, =0 on the sphere r=R,. A
schematic drawing of the streamlines of this flow is represented in fig. 18. The bubble surface is
represented by a separatrix between the streamlines of the incident flow at infinity and those passing



H.J. Kull, Theory of the Rayleigh—Taylor instability 259

Uu

¢y Ve

Fig. 18. Streamline pattern around a spherical bubble of radius R. The fluid has the same asymptotic velocity u above and below the bubble. The
flow has stagnation points at the top and bottom points of the sphere.

through the dipole source at the origin. On the surface there are two stagnations points at @ =0 and
O = 7. From a purely kinematical point of view, a steady-surface profile may be expected at the upper
stagnation point, while it would be definitely unstable at the lower one.

For a sufficiently short time interval, the evolution of the potential can be treated perturbatively.
Setting ¢ = ¢, + ¢, in the dynamical boundary condition (2.10b), there follows the first-order equation,

0, + vl +aR,cos ©=0. (5.45)

In contrast to the initial acceleration problem (5.37a), the dynamical pressure and the effective
gravitational potential are now treated in the same perturbation order. On the surface r = R, the
solution for ¢, can be written as a second-order polynomial in the variable z=1—cos ®@. This
representation is convenient, being an expansion about the upper stagnation point. Setting ¢, =
a + Bz + yz°, we obtain from the different powers of z in eq. (5.45),

§ \ 1/ 6 V
d=—aR(,, B=aR0—<ﬁu) s 7=§(5_1u> . (546)

The initial velocity u is now chosen in such a manner, that the flow along the surface remains steady in a
first-order neighborhood of the stagnation point. Setting 8 =0, there follows

u=FVaR,, F=(6—-1)/s. (5.47)

The Froude numbers are F = 3 for the three-dimensional and F = 1 for the two-dimensional case. The
three-dimensional result has first been obtained by Davis and Taylor [14] and seems to be well
confirmed by their experiments. We also mention the rather close agreement with the estimates given
by eq. (5.43).

5.2.4. Transient evolution

With appropriate expressions for the velocity u, the potential (5.44a) can describe the initial
acceleration phase and also the final steady-state. It is therefore a reasonable assumption to use this
form at the bubble head throughout the entire evolution. Although this is not a completely rigorous
procedure, it will lead to a useful closed interpolation formula between the initial and final stages of the
evolution.
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We now evaluate eq. (2.10b) on the sphere r = R, with the potential ansatz,
e=b(t)—[r+(8—1)"Ry/r" Ju(t)cos @ , (5.48)

and expand in the variable z =1 — cos . The boundary condition can be satisfied up to linear order in
z by setting,

.1 . 1 : ( 8 )2 B

b—6_1R0u akR, , 8_1R0u+ e =aR, . (5.49)
While the first equation defines merely the time function b(t) in the potential, the second equation
determines the bubble rise velocity u(t). Assuming for the bubble amplitude h(¢) the initial conditions
h(0) = h(0) =0, the solution of eq. (5.49) becomes

u=h= 5—;— VaR, tanh(8\/a/R, t) , (5.50a)
51
h= i R, In[cosh(8V a/R, t)]. (5.50b)

These interpolation formulas complete our discussion of closed free-surface bubbles in an extended
fluid.

5.3. Open bubbles

The treatment of closed underwater bubbles cannot be completely satisfactory until the fully
developed flow has been described. Instead of analysing this obviously complicated flow, Davis and
Taylor [14] have suggested the simpler problem of open bubbles rising under well-defined steady-flow
conditions in circular tubes. Their ideas have stimulated in many ways the further developments in this
field. In particular, the rise of two-dimensional bubbles in a vertical channel has been discussed
extensively in the literature. We will describe a relatively simple analysis based on the model of periodic
source flows. This approach has the advantage that it demonstrates the existence of exact solutions for
certain acceleration fields. Moreover, a particular solution can be found that approximates closely
presently accepted bubble parameters. The material of this section has first been presented in ref. [74]
and was partly reviewed in ref. [75]. A summary of results from alternative approaches will be given in
section 5.3.6.

5.3.1. Steady-state model

If a tube, filled with liquid, is opened at the bottom, a gas bubble will grow hemispherically from
below and rise vertically in the tube. Asymptotically, a steady flow around an axially symmetric bubble
will be established. We will discuss this steady-state problem in plane geometry, assuming a channel of
width D with parallel walls at x = = D/2. The bubble is rising in the y direction with a constant velocity
u = FVaD, where the Froude number F has to be determined.

The mathematical problem can be easily formulated in the following way. We choose a reference
frame moving with the bubble rise velocity u. The bubble surface is denoted as y = {(x). It extends
below the top of the bubble y, = ¢(0) on the axis of symmetry x = 0. Assuming constant pressure in the
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bubble region, the boundary conditions for the velocity potential are

[%vz_*—a(y_yS)”Fé(x):O’ Ulyee ==t Vlieo=0,0io2p2 =0 (5.51)

From the first condition, one can recognize the presence of a stagnation point at y_. Below this point,
the velocity of surface particles increases monotonically with the vertical distance y, — y. This excludes
the possibility of bubble closure at a second stagnation point as in fig. 18. Under steady-flow conditions,
one can expect a contraction of the falling jets with increasing velocities. Asymptotically, the spike
velocity will become nearly uniform and vertical over the spike cross-section. The limiting form of the
spikes can be obtained by assuming mass conservation and free-fall according to the equations

(iD-xyv=1%Du, v’=-2ay. (5.52)
Eliminating v, the surface equation of the falling jet is found to be,

y F’
o= 5.53
D (1-x/iDY -53)
5.3.2. Source rows

We will proceed by modifying Taylor’s spherical bubble model to account for the present boundary
conditions. To avoid bubble closure, we replace the dipole source in Taylor’s model by a single point
source. To satisfy the boundary conditions at the walls of the channel, the model is further extended to

a periodic row of equally spaced sources. We remark that periodic axially symmetric flows satisfy the
rigid wall conditions automatically. If

v,(x==3D)=v (x=1D), v(-x)=-0,(x), (5.54a)
then
v(x=-3D)=v,(x=3D)=v (x=0)=0. (5.54b)

We will first analyse the kinematics of the source flow and then discuss possible dynamical bubble
solutions.

In plane geometry, the complex potential of a single source at the origin has the form,

W,=Inz, (5.55)
where z=x+iy. Now assume sources at the points z=+mD of the real axis with integers m =
0,1,2,... The complex potential of the infinite source row can be evaluated in terms of the variable
t=mz/D as,

=lnt+ i {In(mm — ) + m(mm + {) — In(m’=?)]

( ﬁ[ (1-im’m ) In(sin ¢) . (5.56)
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In the infinite sum, a constant has been subtracted that ensures convergence of the series for t =0. In
the last step, the product representation of sin ¢ by its zeros [93] has been used. For convenience, we
add the constant ¢ = (In2 —im)/2 to eq. (5.56), set k =27/D, and define the velocity potential ¢, and
the stream function ¢, of the row as,

@, = Re{W.+ 1 In2} = ; In[cosh(ky) — cos(kx)] , (5.57a)
¢, = Im{W_— 17} = arctan[cot( 3 kx) tanh(3 ky)] - 3 7. (5.57b)

The source flow (5.57) can be linearly combined with a uniform stream perpendicular to the row
such that the incoming flow at y— « has a uniform velocity u, and the outgoing flow at y — —o another
uniform velocity u, > u,. Such a model will describe the acceleration of the incident fluid over a finite
distance from the initial velocity u, up to the final velocity u,. The asymptotic velocities u, , are related
by mass conservation Du, =du,, where d denotes the width of the asymptotic jet. The ratio
q =u,/u,=d/D describes the contraction of the flow and may vary in the interval 0<q <1. The
velocity u_ of the uniform stream and the velocity u, produced by the source row at y— — can be
expressed in terms of the asymptotic velocities u, , = u, ¥ u, as

u =3y tuy), u =3(uy,—u). (5.58)
With these expressions, the combined flow assumes the final form,

e=—uy+2uelk, g=ux+2uylk. (5.59)

The streamlines of the flow are illustrated schematically in fig. 19. The streamline ¢ = 0 separates the

flow domain of the incident fluid from the bubble region. A straightforward calculation yields the
explicit surface equation,

. ( sin[kx/(1 - q)]

Uy

Uz

J

Fig. 19. Streamline pattern around an open bubble inside a channel of width D. In the source row model, the fluid has constant but different
asymptotic velocities u, and u, above and below the sources, respectively. The flow has a stagnation point at the top of the bubble.
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Expanding (5.60) about x =0, one finds the local approximation,

| P N 1 R 3 1-g¢q

y—ys—ﬁx, B —Elnq, E—ﬁm (561)
5.3.3. Dynamical bubble model

Equation (5.60) describes a one-parameter family of possible bubble shapes. One cannot expect that
these are already dynamically consistent solutions of the boundary-value problem (5.51). The following
dynamical interpretation was therefore suggested [74]. Instead of assuming a uniform acceleration a, we
consider the steady bubble flow in a general gravitational potential U(y) with a = d,U(y,) being the
local acceleration at the top of the bubble. The form of U(y) is not prescribed in advance, but it is
determined self-consistently for the given flow. This procedure yields exact free-surface solutions for
certain nonuniform acceleration fields. By comparing the resulting accelerations, we also obtain a
criterion for choosing approximate solutions for uniform acceleration among the various bubble flows
that may be constructed kinematically.

To make this interpretation precise, the self-consistent gravitational potential is defined as

U(y)z_%vzlx={_l(y)’ (9yU|y=yS=a‘ (562)

This definition is an obvious generalization of the free-surface boundary condition in eq. (5.51). A
unique surface function x = ¢ ~'(y) exists, provided that the vertical distance from the stagnation point
grows monotonically along the surface. This constraint, however, does not seem restrictive for
steady-flow solutions.

Considering now the source flow (5.57)-(5.59), the condition J,U(y,)=a can be satisfied by
choosing the Froude number of the incident flow as '

F=[(1-4¢")/67]"". (5.63)

The gravitational potentials (5.62) are zero at the stagnation point and drop to the constant value
—u3/2 in the asymptotic jet. Some corresponding bubble-potential pairs are shown in fig. 20.

. e T T T ~2.0
0.0 EXPU) 0.5 1.0 00 05 X/m 1.0

Fig. 20. Surface shapes of steady-state bubbles (right) and corresponding gravitational potentials (left). A source is located at x = y =0 and the
curves emanate from the stagnation point at y = —In ¢. The parameter g is varied in steps of 0.1 from ¢ = 0.1 up to g = 0.9. It denotes the ratio of
the contracted spike width to the channel width, being 0.1 for the largest bubble and 0.9 for the smallest bubble of the figure. (From ref. [75].)
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Comparing the potentials for different g values, the best approximation for uniform acceleration is
found by choosing ¢ =0.2 [74]. In this case, the acceleration is nearly uniform up to the asymptotic
free-fall region. Assuming this value, the bubble parameters (5.61) and (5.63) become

F~0226, R/D=1/r~0318, y/D=~0.256. (5.64)

Both the Froude number F and the radius of curvature R are in excellent agreement with the results
that have been obtained by other solution methods. One should also notice that the vertical distance of
the source row from the bubble vertex is only one quarter of the channel width. This may explain the
early failure of perturbation methods in the nonlinear RT instability.

5.3.4. Normal mode expansions

We now compare in more detail the present source solutions with normal mode expansions. Because
of the singularities at y =0, Fourier series will not converge in the entire plane. However, series
representations can be found in the half-planes above and below the source row. In the region y >0,
the Fourier series of the potential (5.57a) is [75]

e = b2+ k(y,+y)~ 2 T exp(-—mky") cos(mkx) (5.65)

m=1
where y' =y —y_ denotes the vertical distance from the bubble maximum. For sufficiently small ¢
values, the Fourier coefficients of subsequent harmonics decrease rapidly and the head of the bubble
becomes well separated from the singularities at y'=—y_. In this limit, the flow can be well
approximated by a single mode or a few modes only. It was shown in ref. [73] that this approach leads
also to acceptable estimates of bubble parameters.
The limit g— 0 is of particular interest, corresponding to the single mode approximation. The bubble
parameters of this flow can be found with the help of egs. (5.61) and (5.63) as

F=1~N67=~0230, R/D=3/27~0477. (5.66)

Comparing with eq. (5.64), it can be seen that the Froude number is well approximated by the single
mode flow. However, the radius of curvature is much more sensitive to the flow model. The larger
value in eq. (5.66) can be understood in terms of the different acceleration fields. In the case where
q =0, the effective gravitational potential (5.62) decreases exponentially and therefore gives rise to a
much stronger contraction of the falling spike. A detailed comparison of the gravitational potentials
near the bubble maximum can be recognized in fig. 21.

5.3.5. Transient evolution

The transition from the linear RT instability to the final steady-state flow can be described rather
accurately by a single mode description. This model has been discussed before in refs. [73, 75] and was
found independently in a former work by Layzer [54]. The single mode approximation is justified
partially by perturbation theory (section 5.1.2) during the initial stage and partially by steady-state
theory (section 5.3.4) in the asymptotic bubble stage. Moreover, its predictions for the bubble
amplitude are in excellent agreement with complete computational solutions [15, 103].

In the following, we use the same dimensionless variables as in section 5.1 and a reference frame
with the origin attached to the bubble vertex. The flow model is written in the form,
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Fig. 21. Comparison of the gravitational potentials (5.62) for 4 =0 and g = 0.2 with the gravitational potential for uniform acceleration (straight
line). The value g =0 corresponds to the single mode approximation. The value ¢ =0.2 provides an excellent approximation for a uniform
acceleration field up to a depth where the spike is nearly freely falling.

¢ =—u[~1+y+exp(-y)cos(x)], (5.67a)
¢ = ulx — exp(~y) sin(x)] . (5.67b)

The bubble velocity u(f) can be an arbitrary time function that is not specified in advance. Despite this
time dependence, the streamlines of the flow remain steady. They are coincident with particle
trajectories and resemble those of fig. 19 with the source placed at y = —». The streamline ¢ =0
represents the separatrix

y = Inf(sin x) /x] . (5.68)

Initially, the fluid is confined to the half-space y > ¢ (x). In the course of time evolution, the fluid is
falling along the streamlines and the separatrix (5.68) becomes the asymptotic surface profile.
In the bubble reference frame, the boundary conditions are

[dt¢+ %v2+(1+u‘)y”y={(x)=07 (ar£+vx o')xg—vy)|y={(x)=0' (569)
Inserting egs. (5.67) in egs. (5.69) yields

u(l1—efcosx)+ 3u’(1-2e“cosx+e )+ (=0,
(5.70)
9 ¢ +ue‘sinxd {—u(l-e*cosx)=0.

In accordance with the steady-state argument (5.62), it is sufficient to satisfy these conditions near the
bubble vertex. Locally, the bubble surface can be expanded in the form y = ~xx%2 with a time-
dependent curvature «(r). Expanding eq. (5.70) up to the order O(x*) yields, for the bubble amplitude
h(t), a system of evolution equations,

h=u, u+ 7T =0. k=(1-3Ku. (5.71)
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These equations may be integrated once. The result is

» 3(1-g) = gl2f(h — hy) = ug(2+ f)]
“= 2+ fg ’

k=3(1-fg), f=1-3k, g=exp[~3(h—h)],

(5.72)

where the index 0 denotes initial values. In the linear approximation, one can easily recover from eq.
(5.71) the amplitude equation 7 —h =0 of the RT instability. For large amplitudes (g<1), the
steady-state values k =1/3 and u=1/V3 are obtained from eq. (5.72). Noting that F = u/V27 and
R/D =1/2m« with the present units, the steady-flow parameters of eq. (5.66) are reproduced.

The evolution of the amplitude 4 and of the Froude number F is shown in fig. 22 for a sinusoidal
initial perturbation ¢, = h,cos x. The present predictions (solid lines) are compared with numerical
calculations (symbols) based on the method of least-squares approximation as discussed in section 5.1.
From this comparison one may conclude, that the single-mode approximation is excellent throughout
the small-amplitude regime and, moreover, it can account accurately for nonlinear saturation of velocity
growth.

5.3.6. Comparison of results
The analysis of bubble dynamics has received considerable attention mainly in the succession of the
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Fig. 22. Evolution of the bubble amplitude /# and velocity u from an initial surface displacement A, cos x. Solid lines refer to the solution of the
nonlinear amplitude equation (5.71) and marker symbols show corresponding results from the least-squares approximation method (section 5.1.4).
The units are k™" for the length and 1/ ak for the time. The complete numerical solution for J, = 0.5 [15, 103] is in close agreement with these
results, showing growth saturation near the time ¢+=2. (From ref. [75].)
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pioneering work of Taylor. We only mention some representative works. Experimental studies have
been reported by Dumitrescu [104], Lewis [2], Davis and Taylor [14], Ratafia [7], and Read [10].
Theoretical bubble models have been developed by Davies and Taylor [14], Fermi [105], Layzer [54],
and the present author [73-75]. Mathematical conformal mapping theories have been presented by
Birkhoff and Carter [55], Garabedian [56], and Vanden-Broeck [106]. Various computational methods
have been applied to the problem. These include particle-in-cell fluid simulations by Harlow and Welch
[107] and by Daly [17], vortex simulations by Baker et al. [13, 15, 108] computations of conformal
mappings by Menikoff et al. [103, 109], and front-tracking methods by Glimm et al. [61].

A number of works have been concerned with the rise of open-ended bubbles as observed in the RT
instability. We first summarize some results for axially symmetric cylindrical bubbles and then discuss
the more extensive literature on axially symmetric plane bubbles.

The cylindrical case has been studied experimentally by Davis and Taylor [14] as well as by
Dumitrescu [104]. Davies and Taylor have measured Froude numbers F=u/VaD in the range
0.33-0.35 using a cylindrical tube with diameter D =7.94cm. They could also verify the free-fall
surface profile of the asymptotic jet below a depth of =0.75D. However, the values of F deduced from
the jet equation (corresponding to eq. (5.53) in the cylindrical case) have been found too large. This
discrepancy was explained by uncertainties in the measurement of thin sheets and by the possible
existence of a boundary layer at the walls of the tube. Dumitrescu found the values F = u/VaD =0.35
and R/D =0.375 and therefore u/VaR=0.57. The last value is only somewhat smaller than the
coefficient 2/3 for spherical underwater bubbles. The experimental resuits may also be compared with
the theoretical estimate F = (.36 that has been derived by Layzer [54] from a single-mode description of
the flow.

The rise of steady plane bubbles was investigated by conformal mapping methods by Birkhoff and
Carter [55]. Their treatment is probably one of the most rigorous attempts to solve the free-surface
boundary-value problem under gravity. The Froude number F=0.226 was obtained for a particular
numerical procedure but the result did depend slightly on the method of evaluation. It was therefore
concluded that F=0.23 = 0.01 within the numerical uncertainties. Unfortunately, consistent predictions
of the curvature could not be obtained in this work. The problem was reconsidered by Garabedian [56]
and more recently by Vanden-Broeck [106]. In these works it is found that steady-state solutions exist
for any Froude number up to a critical value F_. While Garabedian estimated F, = 0.24, the calculations
of Vanden-Broeck gave the critical value F, = 0.36. However, it was also found that the classical values
F=0.23 and R/D =0.32 are approached if an arbitrarily small surface tension is included in the
algorithm.

In another series of papers, the RT initial-value problem has been studied numerically up to the
bubble regime. In one of the first numerical treatments, Harlow and Welch [107] have applied
particle-in-cell methods to the study of the free-surface instability. The bubble-spike structure was
nicely reproduced in these calculations and the bubble parameters could be closely estimated as
F=024 and R/D=0.39. The particle-in-cell approach has been extended by Daly [17] for the
application to two-fluid calculations with surface tension. Their results show broadening and roll-up of
the spike in fluids with finite densities. These calculations correspond closely to experimental observa-
tions by Ratafia [7]. The most accurate results could be obtained with vortex simulations by Baker et al.
[15] and with conformal mapping methods by Menikoff et al. [103]. Starting with several small-
amplitude perturbations, the first treatment gave asymptotic bubble values in the range F = 0.225-0.226
and R/D =0.322-0.318. In the second treatment, the bubble results are similarly F=0.23 and
R/D =0.312.
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Table 4
Summary of bubble parameters for different geometries. (u is rise velocity, a is acceleration, D is bubble diameter, R is
radius of curvature)

Geometry Parameter Method
Closed bubbles cylindrical u=05VaR model: eq. (5.47) [58]
spherical u=1%VaR model: eq. (5.47) [14]
experiment [14]
Open bubbles plane u=0.23VaD =0.4 V4R, model: eq. (5.64) [74]
R=0.32D computation [15, 103]
u=023VaD =033 VaR, model: eq. (5.66) [54, 73]
R=0.48D
u=11VaR experiment [2]
u=(0.2-0.3) VaD experiment (4]
cylindrical u=(0.33-0.35)VaD experiment [14]
u=0.35VaD =0.57VaR experiment [104]
R=0375D
u=036VaD model [54]

The typical bubble parameters are summarized in table 4. Although these results are only
approximate, they should be indicative for two major trends. Firstly, one can recognize that 3D bubbles
rise faster than 2D bubbles. It is therefore expected, that the late time evolution of the RT instability
will be three-dimensional rather than two-dimensional. The three-dimensional bubble flow may have a
more or less regular lattice structure, which, however, has not been investigated in detail so far. Some
three-dimensional calculations have been reported by Davidov [110] and a three-dimensional model was
discussed by Colombant et al. [111]. The latter one is based on a nonlinear solution for thin sheets that
has been found before by Ott [19]. Secondly, it is important to note the increase of the rise velocity with
the bubble dimensions. This dependence suggests a transition to larger bubbles by processes as
competition, coalescence and expansion. This stage is the subject of the statistical mixing theory. Some
basic models of bubble competition and bubble expansion will be described in the following.

5.4. Self-similar evolution

While a rather complete understanding of the single-bubble problem has been gained, the more
complex phenomena of bubble interactions are still under investigation. Mixing experiments by Read
[10] have shown the growth of bubbles from small scales up to the dimension of the accelerated system.
The experimental results could be basically confirmed with different experimental methods by Andrews
and Spalding [112] and with ab initio calculations of the RT mixing problem by Youngs [113].
Theoretical modeling of mixing-layer growth is frequently based on a phenomenological diffusion
approach. It was introduced by Belen’kii and Fradkin [114] and later modified by various authors
[12, 115]. These diffusion models obtain consistency with experimental data by the use of one or more
empirical constants. Another approach, the statistical bubble model, is based explicitly on bubble
dynamics. It was first introduced by Sharp and Wheeler and received renewed attention in the works of
Gardner et al. [16] and Glimm et al. [116]. Some variants of this model have been considered by
Inogamov [117] and by Zufiria [118]. A novel criterion for nonlinear saturation in multi-mode problems
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was introduced by Haan [119]. Other work has been concerned with turbulent energy estimates for the
mixing regime {120, 121].

Self-similarity plays an important role in the evolution of RT mixing layers. In the absence of a
prescribed bubble length-scale, the mixing layer is expected to grow in proportion to the acceleration
distance. This similarity assumption suggests an evolution law k() = cat’, where h denotes the width of
the mixing layer and ¢ an approximately universal similarity constant. According to the experimental
studies [10], the constant ¢ is ~0.058-0.065 for two-dimensional and =0.073-0.077 for three-
dimensional flows. These values correspond to free-surface evolution, where h is measured by the
distance between the front of emerging bubbles and the undisturbed interface. Apparently, the mixing
layer grows with a small fraction of the applied acceleration and with a weak dependence on the
number of space dimensions.

In the following, we will describe three different attempts to derive self-similar evolution laws. These
models may provide some background for future statistical theories. Making simplifying assumptions,
we wish to discuss how predictions support each other and how they differ. First, mode competition in
the linear RT instability is analysed as a particularly simple example. Then, a model of bubble
competition between noninteracting bubbles of various sizes is presented. Finally, the dynamics of
self-similarly expanding bubbles is studied.

5.4.1. Mode competition

A remarkable feature of the RT instability growth rate (3.3) is the absence of a finite wave number
of maximum growth. This difficulty can be resolved by including damping effects as viscosity or surface
tension [57]. However, when these effects are negligible, a different interpretation has to be found.

One way of specifying the dominant mode would be to evaluate the time-asymptotic response in the
RT initial-value problem. Unfortunately, the Fourier-series method is generally not applicable to the
surface evolution even in the linear theory. It leads to ill-defined expressions for the surface
displacement after an arbitrarily small time interval if the initial data are not analytic [122]. To avoid
this problem, the Fourier representation of the velocity potential may be applied to interior points
(y>0) of the fluid, only. The spatial damping of the modes inside the fluid provides the required
convergence of the series. Boundary values have then to be defined by a limiting procedure. For the
present purpose, it is sufficient to examine the propagation of perturbations inside the fluid. Because of
the strong spatial damping of short-wavelength modes, longer wavelengths become more competitive in
the course of time evolution. This mode competition leads to a self-similar evolution law.

Let us assume a fluid layer in the half-space y >0 supported by gas pressure at the surface y =0
under an acceleration a along the y direction. Choosing an interior point x =0, y >0, the growth
amplitude of the velocity potential can be represented as a superposition of unstable modes,

o(3.1)= | dk g, oxplne  ky). (5.73)

Each mode with wave number k evolves with the classical growth rate n = Vak and is spatially damped
toward the interior of the fluid layer y >0. The integral will converge for >0, provided that it is
convergent initially. The wave number of maximum growth k = k_ and the corresponding growth rate
n,=Vak, may be defined by the saddle-point condition d,(nt ~ ky) =0. It leads to the relationship

k.y=in_t=1tatly. (5.74)
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Accordingly, the dominant wavenumber increases with time and decreases with the vertical distance
from the initial surface. For localized perturbations, the mode amplitudes ¢, are slowly varying. In the
time-asymptotic limit where at’/y > 1, one can then evaluate the integral (5.73) by the saddle-point
approximation, yielding

o(y, )= (1/y)(war'ly)' %, exp(at’/4y). (5.75)

With these expressions, one can roughly estimate the growth of the mixing layer. Let us define the
front y=h of the mixing region by a fixed number of e-foldings N = ar’/4h. This leads to the
self-similar scaling relation,

h~(1/4NYat*, k_h~N, (5.76)

where N will be a number of the order of 2-6. The precise value of the similarity constant ¢ =1/4N
cannot be derived from linear theory, although it may be expected much smaller than one. The
following bubble models will lead to a similar scaling as in eq. (5.76) and there the constants will
assume definite values.

The present arguments can also be applied to estimate the critical failure modes that will lead to
breakup of an accelerated foil of thickness d. Using the break-up condition & = d, there follows from
eq. (5.76) the estimate

kd=N, Q=al2d=2N, (5.77)

for the worst wavenumber k_ and the maximum inflight aspect ratio Q, respectively. It is generally
believed that the most critical wavelengths are those in the range k d~1-3. The estimate of the
inflight aspect ratio is probably too pessimistic. It will be improved by nonlinear theory and by the
inclusion of a number of stabilizing effects discussed in section 9.

5.4.2. Bubble competition

The linear theory of noninteracting normal modes can easily be extended to a model of noninteract-
ing bubbles. For this purpose we divide the fluid layer into a large number of vertical channels of
different widths. In each channel, the fundamental mode is excited with a small amplitude at the initial
time ¢ = 0. It will first grow exponentially and finally saturate linearly. The problem is to determine the
maximum amplitude in the whole ensemble at time ¢.

Let us now analyse this problem in detail. The amplitude evolution for the mode with wavenumber k
can be expressed in the general form A(k, 1) = A(7)/k, where 7 =V akt denotes the dimensionless time
variable and A(T) the dimensionless amplitude. We will assume and ultimately verify that the maximum
of A(k,t) with respect to k occurs in the asymptotic bubble stage. The amplitude evolution can
therefore be approximated as

A(k, )=k '(ur ~ B), (5.78)

where u = 1/V'3 denotes the dimensionless bubble rise velocity (5.72). The constant 8 depends only on
the dimensionless initial amphtude A(0)=kA,. It can be calculated from the single-mode equations
(5.71). Specifically, assuming A(0) =0.01, one finds B =2.7. We will take this value for the whole
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Fig. 23. Bubble ensemble in the competition model. The fluid is divided into channels of different widths 277/k where bubbles start rising at t =0
with different initial amplitudes A, = ~B/k. A bubble reaches the perturbation front when its amplitude is equal to A = 8/k. The constant § can
be related to the initial amplitude of sinusoidal surface perturbations and is found to be =~2.7. From this model, there follows a self-similar evolution
law h =0.03ar’ for the maximum amplitude in the bubble ensemble at time ¢.

ensemble. We remark that B can also be viewed as defining a virtual initial bubble amplitude
A, = —B/k if the evolution law (5.78) is extrapolated back to the time 7= 0. The distribution of these
initial amplitudes in the bubble ensemble is illustrated in fig. 23. The largest bubbles rise from the
deepest points but they will ultimately overtake the smaller bubbles because of their larger rise
velocities.

The maximum of the amplitude (5.78) with respect to k occurs when 7= 28/u. Defining the mixing
layer width h by the maximum bubble amplitude with wavenumber k_, there follow the relations,

_ %E)z 1 g5 L
k,= < M ~85.5 el (5.79a)
2
h= Z—B— a’ =~0.03at” , (5.79b)
k. h=pB=217. (5.79¢)

The general form of this result agrees with eq. (5.76). The numerical constants should be quite accurate
for the initial conditions considered. We remark that the amplitude k_h is found to be larger than one.
The amplitude equation (5.78) is therefore well justified by our result. The constant ¢ =0.03 in the
self-similar evolution law appears to be too small by about a factor of two. On the other hand, our
analysis shows that a single-mode worst-wavelength analysis will not be completely wrong in the
description of mixing regions.

As in section 5.4.1, the result can serve as a criterion for foil breakup by setting & = d. In the present
case, we obtain the corresponding formulas,

k d=27, Q=2B/u"~16. (5.80)

As an explicit example, we show in fig. 24 the nonlinear amplitude evolution for different modes as a
function of the inflight aspect ratio Q. The amplitudes have been calculated from eq. (5.71) with initial
Value kA,=0.01. The foil breaklng amplitude A_ is defined slightly different by requiring A (1 -

Ky = d If this condition is satisfied, the thickness of the perturbed foil approaches zero. One can
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Fig. 24. Evolution of single mode perturbations as a function of the wave number &. The result is based on eq. (5.71) with an initial amplitude
kA, =0.01. The time is expressed in terms of the inflight aspect ratio Q = ar’/2d for an accelerated foil of thickness d and the amplitudes have been
normalized by an estimate A, = d/(1 — e ™) for foil breakup. The amplitude maximum follows closely the self-similar evolution law A/d = 0.0620
and kd = 43/Q of the bubble competition model (5.79). (From ref. [75}.)

recognize the shift of the perturbation maximum toward smaller wavenumbers during the evolution.
Foil breaking, A = A_, occurs at about the same parameters as given by eq. (5.80). Minor differences
are due to the different definitions of A_. We have convinced ourselves that the criterion (5.80) is in
excellent agreement with the numerical result.

5.4.3. Bubble expansion

In the preceding analysis we have neglected the influence of the increasing bubble size on the bubble
rise dynamics. We now consider a number of well separated bubbles that can expand sideways over an
appreciable distance before coalescing with neighboring bubbles. In this expansion model, a single
dominant bubble can continuously adjust its size to the optimum value kA = 2.7 found in the preceding
competition model. The question is how expansion affects bubble acceleration.

Now, consider a bubble rising in a vertical channel with a time-dependent width as illustrated in fig.
25. We will assume that the surface shape around the head of the bubble remains self-similar in the
course of time evolution. Measuring lengths in units of the acceleration distance, the bubble wave
number can be expressed in the form k=27/D = 1/ear* with some constant e. Further constants u, c,
and p may be defined through the relations,

u'=uValk, h=cat’®, kh=1Ip (5.81)

for the rise velocity, the bubble amplitude, and the wavelength-to-amplitude ratio, respectively. These
constants are simply related by

c=uvEl2=puld, p=clc. (5.82)

The expression for the similarity constant ¢ has again the same form as in eq. (5.79b). However, in
the present theory, the rise velocity u can be different from its steady-state value. In the following, we
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Fig. 25. Expansion model for accelerated bubble motion. The channel width and the bubble amplitude are assumed to grow in proportion to the
acceleration distance. The bubble acceleration is estimated as a function of the amplitude-to-width ratio.

will estimate possible bubble accelerations as a function of the parameter p. For large amplitudes,
p— 0, the horizontal expansion rate dk~'/dt = pu becomes small in comparison with the vertical rise
velocity. In this limit, the familiar steady-state theory becomes valid. For small amplitudes, p > 1, the
instability is still in the linear stage where the bubble model is no longer meaningful. According to eq.
(5.79¢c), we expect that values around p =1/8 ~0.37 will be a physically reasonable choice.

To determine these constants, one has to consider the free-surface boundary-value problem for the
velocity potential ¢(x, y,t)=(u'/k)P(£,n), where é=kx and n=ky. In a comoving coordinate
frame, with the origin attached to the bubble vertex, the boundary values v, = d,®(n={), v, =
3,P(n={), and @ = (n = {) are found subject to the relations,

p({—§dg/dé)+v,dl/dé~v, =0, (5.83a)
pB3® —2(¢v, +nu, )] + v} + vl + (21’ +p) =0. (5.83b)

The first equation is the kinematical condition for the surface velocity and the second one the dynamical
condition of constant surface pressure. We note that the terms proportional to p arise from the unsteady
motion and are therefore absent in the steady-state theory.

To satisfy the boundary conditions (5.83b) around the top of the bubbles, we follow the procedure
described in section 5.3. Approximating the flow by a source at a distance —In g below the vertex
{=—«&Y2, we find the bubble parameters,

K___1+q 1 /= k(1-q)
l-qg3-p(l-q)° 1=(p2)A-gl+x(1-q]"

The parameter g can be closely determined by minimizing the error of the constant pressure condition
between the stagnation point and the asymptotic free-fall region. For definiteness, this distance is taken
as half a wavelength (|n| = ). We then obtain possible bubbles as a function of the remaining
parameter p. For such adjusted parameter pairs, the similarity constant ¢ can be evaluated by use of eq.

(5.84)
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Table §
Similarity constant ¢ as a function of the parameter p = 1/kh in the
bubble expansion model

p 0.0 0.1 0.3 0.4 0.5 0.6
q 0.2 0.22 0.24 0.26 0.28 0.30
c 0.0 0.009 0.031 0.044 0.060 0.077

(5.82). Results of this procedure are given in table 5. One should notice, that the expected bubble
accelerations are approximately reproduced in the parameter range 0.3 < p <0.6. This seems to be well
consistent with our estimate p =~0.37 for non-expanding bubbles. The experimentally predicted value
¢ ~=0.06 can be obtained by choosing p ~0.5. The shape of some of these bubbles is represented in fig.
26. One can recognize a contraction of the steady-state profile with increasing acceleration.

The expansion model can also be applied to spherically closed bubbles. In this case, the expansion
law can even be derived more rigorously by a first-order perturbation solution. For this purpose, we
reconsider the initial acceleration problem for spherical bubbles of section 5.2. We now wish to discuss
the influence of bubble expansion on the upward acceleration.

In section 4.2.1, we have already derived the first-order perturbation equation (4.26) for an arbitrary
radially symmetric bubble motion r= R(f). In this equation, the effect of an externally applied
acceleration g can be included by setting 8p = pgR cos . The applied acceleration induces the growth
of an I = 1 mode with the surface displacement { = k() cos 0. Specializing eq. (4.26) to this case yields,

L i( d >_ _ R
s-1d\mah)Tme M= (5:85)

where & =2 for two-dimensional and & =3 for three-dimensional flow. For a rigid sphere, R = const.,

T T T T T T

.

Fig. 26. Surface profiles n = {(£) of self-similarly expanding bubbles over one half-period 0< & < of the flow. The distances ¢ = kx and 7 = ky
are measured in units of k' = ph, where & = cat® denotes the bubble amplitude and p = 1/kh a constant wavelength-to-amplitude ratio.
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we recover from eq. (5.85) the inertial coefficient y = 1/(8 — 1) as derived in eq. (5.38). Assuming now
instead self-similar motion, R ~ >, h ~ t*, we obtain from eq. (5.85)

1425 d°
F——l_ F h= g. (586)
The inertia coefficients are now equal to 5 for § =2 and equal to 7/2 for 6 =3. Both values are
significantly larger than for rigid motion because of the increase in bubble volume.

It is not completely obvious how the present simple result can be applied to the RT bubble problem.
We suggest the following construction, which leads to satisfactory agreement with the observed
behavior. We consider a bubble whose unperturbed diameter grows as s =ar’/2. In the laboratory
frame, the bottom of the bubble is assumed at rest and the head of the bubble is viewed as the
accelerated interface. In a coordinate frame where the bubble center is at rest, the effective gravity will
be g = a/2. Using this relation in eq. (5.86) and writing its solution in the standard form & = car’, the
similarity coefficients are found to be ¢=1/20=0.05 for 6 =2 and ¢=1/14=0.07 for § =3. We
remark that both values are in surprisingly good accordance with the above cited experimental values
for mixing-layer growth. In the present derivation, the decisive points are the increase of inertia by
expansion and the redefinition of the effective gravity. Both aspects may be of general importance
under the conditions of accelerated interface growth.

6. Stability of inhomogeneous fluids

The potential flow model, discussed so far, describes the motion of fluid layers with piecewise
constant densities. In the following, we will consider incompressible fluids with continuous density
variations. A basic difference arises from the possibility of vorticity generation in the presence of
noncolinear pressure and density gradients. The evolution of these rotational modes and their
relationship to the surface modes of potential flow theory is the main subject of this chapter.

We first introduce the nonlinear evolution equations for two-dimensional incompressible flow in an
inhomogencous medium. Rayleigh’s classical eigenvalue problem for the stability of accelerated fluid
layers is briefly reviewed and a general proof for the inversion invariance of its eigenvalue spectrum is
presented. As an application, the stability of exponential density variations subject to various boundary
conditions is discussed.

6.1. Incompressible flow model

Incompressible motions of an inhomogeneous fluid in an external gravitational potential U(x) are
governed by the set of basic equations

dp/dt=0, V-v=0, (6.1a)
dv/dt=-p ' Vp-VU, (6.1b)

d/dt=4,+v-V. (6.1c)
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In this model, the density is assumed constant along particle trajectories, but it can be different for
different fluid particles.

6.1.1. Hydrostatic equilibrium

We first briefly discuss the equilibrium states in this model. Any steady incompressible flow is subject
to the condition v+ Vp = 0. It excludes the possibility of mass flow along the density gradient. We will
therefore restrict attention to the hydrostatic equilibrium,

v=0, dp=0, Vp=—pVU. (6.2)

Both the pressure and the density have to be constant on equipotential surfaces. In fact, their gradients
are directed along the surface normal direction VU according to the relations,

VUXVp=0, VXVp=VUxWVW=0. (6.3)

The condition of hydrostatic equilibrium assumes therefore the form,

p)=~ | av p(w), (6.4
where the function p(U) can be prescribed arbitrarily.

6.1.2. Two-dimensional flow

The incompressible fluid equations can be further simplified in the case of two-dimensional flow. To
satisfy the incompressibility condition V- v = 0, the velocity field is first expressed by the curl of a vector
potential i,

v=VX . (6.5)

If the flow is uniform along a particular direction specified by the unit vector n, it can be described by
the single component ¢ = n - ¢ according to the relations

nV=0, nXv=nxX(Vxy)=Vy, v=VyXn. (6.6)

The function ¢ is known as the stream function because it is constant along steady streamlines. This
property follows from the identity

v VY=V xn)-Vi=n-(V¥xV)=0. (6.7)
The curl of the velocity field is generally non-zero,
VXxv=—Ayn. (6.8)

According to eq. (6.1b), its evolution is governed by the vorticity equation,

d -2
S a=0,80+ (80,9} =p " (p, ). (69)
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Here we have used the bracket notation,

{f,g}=n-(VfxVg)=4,fd,g-4,8d.f,

with n being normal to the x, y plane. It can be seen that noncolinear pressure and density gradients are
responsible for vorticity generation in inhomogeneous media. Irrotational potential flow is basically
limited to homogeneous conditions. In this spectral context, the stream function ¢ is harmonic (4 = 0)
and it is related to the velocity potential ¢ by the Cauchy-Riemann differential equations,

v=Vo=VyXn. (6.10)

To describe the fluid motion in terms of the variables p and ¢ only, it is necessary to eliminate the
pressure. Using egs. (6.1) and (6.9) yields

p(9,4¢ + {Ad, ¢}) + Vp - (3, Vb + {Vi, ¥}) = {p, U}, (6.11a)
dp+{p,¥}=0. (6.11b)
These equations still describe the full nonlinear evolution of two-dimensional incompressible flow.

6.1.3. Flow perturbations
Consider now an arbitrary hydrostatic equilibrium. Small perturbations can be described by
linearizing eq. (6.11) with respect to 4. This yields

V-(p Vo) + {{p. ¥}, U} =0, (6.12)

where p denotes the unperturbed equilibrium density. The double bracket is proportional to the applied
gravitational acceleration g = —VU. More explicitly, it can be written as,

Up, ¢}, Uy =g (VX (Vo xWy)]. (6.13)
6.2. Stability eigenvalue problem

The gravitational instability of fluid layers with variable density was first analysed by Rayleigh [3].
The classical eigenvalue problem and various extensions have been reviewed in great detail by
Chandrasekhar [57]. The present discussion is mainly concerned with more recent developments. These
include the inversion symmetry of the eigenvalue spectrum [68, 123] and explicit growth rate calcula-
tions for exponential transition layers [68, 124~127].

6.2.1. Normal mode equation

While eq. (6.12) is valid for arbitrary potentials U = U(x, y), we now specialize to the physically
important case U = ay, describing constant acceleration along the y direction. Assuming normal mode
perturbations, ¢ ~ exp[i(kx — wt)], eq. (6.12) becomes

I+ Bay—(1+AB)Y=0, (6.14)
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where n=ky, B =4, plp, and A = ak/w”. This is Rayleigh’s famous eigenvalue equation for the normal
mode growth rates and frequencies of accelerated fluid layers.

6.2.2. Boundary conditions
For a given density profile, the possible eigenvalues A are determined by boundary conditions
imposed on the solution ¢. The most common boundary conditions are

lim () =0, (6.15a)
¥l,-, =0, (6.15b)
(0,4 = Ap)|,_, =0. (6.15¢)

They apply to (a) infinite systems with stable boundary regions and to bounded systems with (b) rigid
walls or (c¢) free surfaces, respectively. In addition, internal interfaces with discontinuous density
variations may be present. Multiplying eq. (6.14) by p and integrating across the interface layer, one
finds the continuity conditions,

[1=0, [p(3,¢ —AP)]=0, (6.16)

with the same notation as in section 2.2.

To illustrate the relationship between the different sets of boundary conditions, we consider an
arbitrary fluid layer 0 <% <h and a boundary medium with constant densities p, for » <0 and p, for
1> h. According to the infinite medium boundary conditions (a), the solution inside the boundary
regions becomes,

b= pO)exp(n),  forn<0, o
b= u(h)exp(h—n), forn>h. '

The rigid- and free-surface problems can now be recovered by the following limiting procedures:

High-density limit: We apply the continuity conditions (6.16) to the interfaces at =0 and n = k& and
perform the limit p, ,— . Using eq. (6.17) for the solutions inside the boundary medium, one is left
with the constraints

(1= 0)%(0)=0, (1+A)y(h)=0 (6.18)

on the boundary values of the solution inside the fluid layer. These constraints can be satisfied in three
different ways by setting

¥(0) = ¥(h) =0, (6.19a)
$(0)=0 and A=-1, (6.19b)

Y(h)=0 and A=1, (6.19¢)
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respectively. The first case recovers the rigid wall condition (6.15b). The other cases yield two further
modes with eigenvalues A = =1. The vanishing of the solution at one boundary only can always be
satisfied, by taking an appropriate linear combination of the two independent solutions of eq. (6.14).
These additional modes correspond to the free-surfaces of the boundary medium at =0 and n=~h
with respect to the low density fluid layer.

Low-density limit: Taking now the opposite limit p, ,—0, the second continuity condition of eq.
(6.16) reduces simply to the free-surface condition (6.15c). In contrast to the previous case, the
low-density limit is equivalent to the free-surface problem. Here, one can also find free-surface modes
with eigenvalues A = *+1. The corresponding solutions are simply ¢ ~exp(*1), satisfying both the
differential equation (6.14) and the boundary conditions (6.15c). We remark that these free-surface
modes exist for any density profile of the fluid layer. This confirms and extends the potential flow result
of section 3.3 that free-surface growth rates are independent of the layer width. Apparently, growth
reductions by inhomogeneity effects require partial stabilization of these modes.

We have seen that the free-surface eigenvalues A= =1 occur both, for high and low density
boundaries. The remaining eigenvalues are in general different. However, there exists a particular class
of density profiles, called inversion invariant profiles, for which the spectrum of all eigenvalues is
exactly the same for high and low density boundaries. This is a consequence of the inversion symmetry
of the eigenvalue problem, which will be discussed in the following.

6.2.3. Inversion symmetry

The inversion theorem was first proposed by Mikaelian [68] for multi-layered fluid systems. A
generalization of this symmetry to continuous density profiles was suggested by Inogamov [123] and
could be verified for a particular class of power-law density profiles. In the following, we will outline a
general proof of the inversion theorem for arbitrary density variation [128].

In analogy to the symmetry transformation (3.40), one expects invariance of the eigenvalues under
an exchange between p(n) and its inversion R(n) = 1/p(—n). However, this symmetry is not explicitly
manifest in the standard form of the differential operator. Substituting in eq. (6.14) p(n) by R(x) and
transforming to the new variables x = —n and W(x) = w(#), one finds

d,p(x) d,p(x)
p(x) p(x)

Since the logarithmic derivative of the density remains invariant under inversion, the first derivative
term of the differential operator has changed its sign.

The eigenvalue operator allows a more symmetric representation as a first-order system in the
variables y, , = w = d,w. The first subscript refers to the upper and the second one to the lower sign.
Setting B= 4, p/2p and A, , = A+ 1, one finds

9w —

I W- (1 +A )w= 0. (6.20)

G, Y12= 2y 12 E B(Ay, + Ayy,). (6.21)

The idea is now to compensate the sign change of the first derivative by an exchange of the dependent
variables under inversion. For this purpose, a further transformation z, ,=+/p y,, is convenient,
because it leads to the same diagonal element A =1+ AB in both equations. Substituting in eq. (6.21)
yields

d.z2,,=+*Az ,£A, Bz, . (6.22)
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One can easily verify that this system remains form-invariant under the following inversion operation,
p(m)—=R(n), x=-n, u,=hkz,, u,=Az,. (6.23)

Specifically, substituting p(7n) by R(n) in eq. (6.22) and performing the given variable transformations,
one obtains the original equations for u, ,(x). Consequently, for any solution of the original problem
there is a corresponding solution of the inverted problem with the same eigenvalue.

If the original eigenfunction satisfies the infinite medium boundary conditions (6.15a), they will also
be satisfied by the transformed eigenfunction. However, some care is required for rigid and free
boundaries. Free boundaries can be replaced by a low-density medium, extending toward infinity. The
same eigenvalue spectrum will be found for the inverted profile with high-density boundary regions. If
these boundary regions are replaced by rigid walls, the free-surface eigenvalues (6.19b) and (6.19¢) are
omitted. As an immediate conclusion, there follows the eigenvalue theorem for inversion invariant
profiles: If the density profile is inversion invariant, the eigenvalue spectrum for free boundaries
consists of the free-surface eigenvalues A =+1 combined with the eigenvalue spectrum for rigid
boundaries.

In addition to the invariance of the eigenvalues, the present treatment shows also how the
eigenfunctions are transformed. We will denote the solutions for p(n) by small and the corresponding
solutions for R(7) by capital letters. Taking the inverse of the two variable substitutions, we obtain for
the solution of the inverted problem,

(awen) = s (0 20) =3 (0 W(G) 620

Up to an arbitrary constant factor, the solution U, ,(x) can be identified with the solution

Z,(x)
(zl(x))zm(i —i)< w(x)) | (6.25)

z,(x) J, w(x)

of the original problem, that satisfies the same equations. Here the variable x is merely a renaming of
the variable 7 used before. Inserting eq. (6.25) into eq. (6.24) there follows

<«9V$(2)> - const f% (3 :D(awpifi)) : (6.26)

This transformation law includes the first derivatives of the eigenfunctions. Inversion invariance appears
therefore naturally in phase space rather than configuration space.

6.3. Exponential density variations

As an explicit example, we now discuss the stability of fluid layers with exponential density
variations. This profile model permits explicit solutions for the evolution of internal modes and
demonstrates their connection with the surface modes of potential flow theory. Particular attention is
devoted to the discussion of density transition layers in an infinitely extended fluid and to its basic limits
of short- and long-wavelength perturbations.
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The model of exponential density variations has been considered in the past by various authors. The
transcendental equation for the growth rates of exponential transition profiles is already part of
Rayleigh’s original work [3]. Explicit evaluations of the model have been discussed by Mikaelian
(68, 124] by Jacobs [125], and by the present author [126]. Discussions of the initial value problem for
diffuse layers have been given by Ott and Russel [127]. Other analytic solutions for finite density
gradients have been obtained, based on moment equations, by Mikaelian [129] and, based on
variational principles, by Munro [130].

6.3.1. Model equations
Inside the layer 0 <7 < h, the density profile is assumed of the form, p = p, exp(8n), with a constant
gradient 8 >0. The general solution of eq. (6.14) becomes,

= Aexp(q,n) + Bexp(q,m), (6.27)

with

q.=-Bl2%z, z=u+iv=V1+A8+B74.

Since the eigenvalues A are real, the branch of the square root is chosen on the positive real axis
(u>0,v=0) or on the positive imaginary axis (u =0, v >0), depending on the sign of the discrimin-
ant. The point z =0 is excluded, because the solution (6.27) would be incomplete in this case. The
boundary conditions restrict the possible z values. The corresponding growth rates n = Im(w) can then
be obtained as

__ B
1+ B%4-27""

1
L= (6.28)

In the following, we will discuss in succession the normal mode solutions corresponding to the boundary
conditions (6.15).

6.3.2. Rigid boundaries
Using egs. (6.15b) and (6.27), one finds the linear system

A+B=0, exp(q,h)A+exp(q,h)B=0. (6.29)

The allowable solutions are given by B=-A4 and z=iv,,, where v, =m#w/h and m=1,2,3,. ..
denotes a positive integer. The corresponding growth rates and eigenfunctions follow to be
n’ B

_a—l; = m > w = exp(—Bn/z) Sln(vm T’) . (6'30)

To discuss the physical dependences of this result, we introduce the gradient scale length L, the layer
thickness d, a density increment C, and a parameter p by the relations

B=1/kL, h=kd, C=3igh="1l[p(h)/p(0)], p=3%3V1+ (7miC). (6.31)



282 H.J. Kull, Theory of the Rayleigh—Taylor instability

The growth rate, given by eq. (6.30), can then be expressed in the form

]

n kL n kL

ak  (kL)*+p*  ValL - VL) +p*

(6.32)

We remark that n increases linearly for kL — 0 and approaches the constant value Va/L for kL — . In
both limits, it stays below the free-surface value. This reduced growth is due to the effect of finite
gradients for short-wavelength modes and due to the stabilizing influence of rigid boundaries for
long-wavelength modes. In the intermediate range of k values the ratio f = n’/ak reaches a maximum
given by

k L=p, k.d=2pC, f.=1/2p. (6.33)

We note that f, cannot be larger than 1 and frequently will be smaller. For instance, choosing the
lowest mode number m =1 and a fairly large density ratio exp(Bh) =50, the above parameters are
given by k L =0.95, k d=3.7, f,=0.53. In the presence of surface modes, these internal modes will
be negligible for most applications.

6.3.3. Free boundaries
Using eq. (6.15¢) together with eq. (6.27), there follows

(C]1 _A)A+(q2”A)B:0,
(6.34)
(g, — A)exp(q,h)A+(q, = A)exp(q,h)B=0.

The possible solutions of eq. (6.34) are restricted by

(9, = (g, — Vlexp(g,h) —exp(g,h)] =0. (6.35)
From the vanishing of the first two factors, the free-surface modes
A==x1, g=exp(xn), (6.36)

are obtained. The vanishing of the third factor leads again to the eigenvalues (6.30) of the rigid-
boundary case. However, the eigenfunctions are now shifted in phase,

¥, = exp(—Bn/2)[ Bv,, cos(v,,n) — (1 + v}, — B/4) sin(v,, )] . (6.37)

We remark that the exponential profile is inversion invariant, satisfying p(n) = 1/p(—n). It provides
therefore an example for the rigid free eigenvalue theorem, discussed at the end of section 6.2.

6.3.4. Transition layers

We now assume homogeneous boundary regions with densities p, for n <0 and p, = p, exp(Bh) for
1> h. In contrast to the previous cases, this model can demonstrate the transition from the surface
modes in the long-wavelength limit to the internal modes in the short-wavelength limit.
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Using egs. (6.17) and (6.27), the continuity conditions (6.16) at the interfaces n =0 and n = h yield
(1-q)A+(1-¢,)B=0, (1+gq,)exp(q,h)A+(1+4,)exp(q,h)B=0. (6.38)

Setting the determinant of the coefficient matrix equal to zero, the variable z is found restricted by

2z
tanh(zh) = —w—7—- . 6.39
an (Z ) B2/4_(1+22) ( )
For each solution of eq. (6.39), the eigenfunctions can be expressed in the form
¥ = exp(—Bn/2)[z cosh(zn) + (1 + B/2) sinh(zn)] . (6.40)

To discuss the possible growth rates, we will first analyse the short-and long-wavelength limits
analytically and then present a numerical evaluation over the whole parameter space.

For short wavelengths, one has the scaling 8—0, z=0(8), h=0(8""). In this limit, eq. (6.39)
reduces to the form tan(vh) = 0. We therefore recover the growth rates of the internal modes (6.30).
Since the wavelengths are assumed short, the result becomes independent of the boundary conditions
used.

6.3.5. Step-profile approximation
The long-wavelength limit requires a more careful treatment. We define the small expansion
parameter ¢ =2/ and set x = ez, C= Bh/2 = h/e. Using this scaling, eqgs. (6.28) and (6.39) become

n’ 2¢
il ek (6.41a)
2ex=(1-x"— ¢) tanh(Cx) . (6.41b)
Expanding the solution x of eqs. (6.41) in powers of ¢ one obtains
x=1-ae, 1-x*=2ae+be’, tanh(Cx)=a - 8Cac, (6.42)
with
exp(Bh)—1 _p,—p
a =tanh(C) = = ,
()= xp(Bm)¥1~ p, 4 p,
8=, tanh(C) =cosh™(C)=1~-a’.
Comparing equal powers of ¢ in eq. (6.41b) yields
aa=1, ab=a-2/a+28Cla". (6.43)
Inserting these expansion coefficients in eq. (6.41a), there follows the growth rate expression,
m_, 2 (l _ ) _
k=% gl )€ (6.44)
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It determines the maximum growth rate of the diffuse boundary model in the long-wavelength limit.
The leading order represents the well-known step-profile result (3.3) for surface modes. In addition, we
have obtained a finite gradient correction to this formula. These corrections become small both, for
small (¢ —0) and large («— 1) density ratios. For a moderate density ratio of p,/p, =20, we have
a =0.90, C =1.5. Choosing for instance 8 = 3, the approximate expression (6.44) yields n’/ak = 0.826.
This value is in close agreement with the exact numerical solution, n’lak = 0.814, for the same
parameters.

The real solutions of the variable z determine the largest values of the growth rate (6.28). Such a
solution exists when (%4 — 1)k >2. This condition is obtained by considering the limit z— 0 in eq.
(6.39). If this condition is not satisfied, for instance when B8 <2, the growth rates will be significantly
reduced in comparison with the step-profile values.

We have calculated numerically the maximum growth rates for different values of 8 and A = In(p,/

> 1
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Fig. 27. RT instability of superposed fluids separated by a transition layer with an exponential density variation. (a) Density profile, (b) typical
eigenfunctions of the most unstable mode for different gradients B, (c) maximum instability growth rate n for different density ratios p,/p, and
density gradients 8. Comparison is made with the step-profile growth rate (dashed curve) which is approached in the long-wavelength
approximation. (From ref. [70].)
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p,)- The results are represented in fig. 27, showing (a) the density profile, (b) typical eigenfunctions,
and (c) maximum instability growth rates. The growth rates are found limited above by the step-profile
result (dashed line). For B <2, the growth rates remain below this limit, demonstrating the growth
reduction effects by finite gradients. The eigenfunctions have a maximum whose position varies with the
density gradient. The eigenfunctions are peaked near the lower boundary for large 8, but they become
shifted toward the middle of the layer for small 8. This behavior explains the strong dependence of the
surface modes on the choice of boundary conditions in comparison with the internal modes, being
always present.

6.4. Single-mode model

We finally give a simple illustration of mixing motions in the RT instability. We consider the passive
motion of fluid particles in the field of a single internal mode. Although the model gives no consistent
dynamical description of nonlinear evolution, it is based on exact particle trajectories and conservation
of both the mass and the total energy of the system.

The passive motion of particles in a single internal RT mode can be described by the system,

b= ut) cos(pr)sin(gy) . v, =, v,=-3,. (6.45)

The stream function follows from eq. (6.30) in the limit of weak density gradients. The time
dependence of the amplitude ¢, is arbitrary. To calculate the particle motions in this flow field, it is
convenient to transform to the variables,

E=px, n=qy+ 72, 7=qu¢0dt. (6.46)
0

Denoting the derivative with respect to 7 by a dot, the transformed equations become,

¥ =—gcos(§)cos(n), &=cos(§)sin(n), 7= —sin(£)cos(n). (6.47)

The streamline (¢, n) = ¢(¢,, n,) through some reference point &, 7, is given by the equation,

cos( £) cos(n) = cos( §,) cos(n,) = C . (6.48)

Some streamlines, obtained for different values of C, are represented in fig. 28. They are periodic and
form closed orbits inside the vorticity cell: ~7/2<¢é<@/2, —w/2<n< /2.
The motion of fluid particles along these streamlines can now be described by the equations

¢ = =sgn(n)Vcos’e ~ C*, 7=Fsgn(¢)Veos’n— C*, (6.49)

where the upper sign corresponds to clockwise and the lower to counterclockwise rotation. According
to eq. (6.47), these signs alternate for subsequent cells both in the ¢ and in the 7 direction. Since ¢ is
related to n by the streamline equation (6.48), it is sufficient to solve the equation for n. The solution
can be expressed in the form
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Fig. 28. Streamlines of the stream function (6.47) expressed in terms of the coordinates ¢ = px, n =gy + w/2 where p and g represent horizontal

and vertical wavenumbers, respectively. The flow pattern corresponds to the eigenmode (6.30) for an exponential density profile with a sufficiently
weak gradient. (From ref. [70].)

sinn=vmsn(r+7, x), sinn,=vE@sn(r, 1), (6.50)

where u =1~ C? and sn denotes the elliptic Jacobi function [93].

To visualize these mixing motions, we have calculated particle trajectories for a number of particles
with different initial conditions. The results can be recognized in fig. 29. The lines correspond to the
position of particles at time 7, having the same initial coordinate 7,. Since the density is constant along
particle trajectories, these lines can also be viewed as iso-density contour lines. Initially, the lines
deform sinusoidally, as predicted by the linear stability theory. At later times, however, strong
intermixing occurs. The contours of two neighboring cells evolve into a mushroom-like flow pattern.
Such vortex motions are characteristic for mixing processes and have been observed both in experi-
ments and in fluid simulations.

In the present model, mixing is basically a result of the different periods of revolution for particles on
different streamlines. In the variable 7, the period of particles on the streamline u is given by

w2

req | 2 (6.51)
5 V91— psinu

It approaches 27 for the innermost (u =0) and « for the outermost streamline (u =1) of the cell.

The time dependence of the flow amplitude has not yet been specified. In principle, it can be chosen
in such a way that global energy conservation results. The increase of kinetic energy is then limited by
the available potential energy of the fluid layer. We illustrate this procedure for the initial small

amplitude regime. Setting , = exp(J n dt), the variations of the kinetic and potential energies are given
by
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Fig. 29. Evolution of iso-density contour lines for passive motion in the flow field of fig. 28. Initially, the contour lines have been assumed horizontal

and a complete spatial period of the flow, consisting of two neighboring vorticity cells with opposed circulations, is presented. The time 7 =27
corresponds to the period of revolution of a fluid particle on the innermost streamline of the cell.
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daT

ar =fdxfdy (1v%6,p + npv?),

U (6.52)

’r =jdxjdy ay d,p =jdxjdy ay[—&y(pvy)]=jdxfdy apv, .
In linear theory the following relations hold,

1

jdxpuy=—;ayp0fdxu§, fdxu2 4,p=0("). (6.53)
The requirement of energy conservation,

d

@ (T+ U)=np0[dxfdy(vi+vi)— % aypﬂfdxfdyvi=0, (6.54)
yields, together with eq. (6.45), the linear growth rate expression

0 2
n=a GPo P (6.55)

Po p2+q2‘

It agrees with the weak gradient limit of the result (6.30) of the normal mode analysis.

7. Stability of viscous fluids

Viscosity presents another source for vorticity generation in incompressible fluids. In contrast to the
rotational modes in inviscid fluids, viscosity acts already in homogeneous fluids and it is responsible for
the dissipation of kinetic energy on small spatial scales. This property is particularly important in
boundary layer flows, in the evolution of homogeneous fluid turbulence, and in the present context, as a
damping mechanism for fluid instabilities.

In the following, the surface instabilities between two uniform fluid layers are examined in the
presence of shear flow, buoyancy and viscosity. A general characteristic equation can be obtained in the
long-wavelength approximation that combines KH-like instabilities of viscous shear flows on the one
side with RT instabilities of accelerated viscous fluids on the other side. These limiting cases are
analysed in more detail and explicit growth rate expressions for these instabilities are discussed.

7.1. Viscous flow model

The growth rates (3.3) for the basic surface instabilities in inviscid fluids are increasing indefinitely
with the wavenumber. This lack of a finite maximum growth rate in the inviscid fluid description can be
overcome by the inclusion of viscosity. As far as RT instability is concerned, the first treatment of
viscosity effects has been given by Harrison [46]. Although this early work has been addressed to stable
gravity waves, the general eigenvalue relation for the surface modes in superposed viscous fluids has
been derived and the limit of small viscosities has been evaluated perturbatively. Later work by
Bellman and Pennington [48] and by Chandrasekhar [57] has led to a rather complete understanding of
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RT instabilities in incompressible viscous fluids, including effects of surface tension and of variable fluid
densities. For superposed fluid layers, explicit growth rate curves have been obtained that could
demonstrate the existence of a maximum growth rate. This case was further studied by Menikoff et al.
[131] over the whole parameter range of densities and viscosities. These authors arrived at a particularly
simple representation of the dispersion relation and thereby they have been able to identify the Atwood
number and a density-weighted average viscosity as the main dependences of the instability growth rate.
In addition to the normal mode analysis, initial value problems for RT instabilities in viscous fluids have
also been studied occasionally [132, 133].

Viscosity in the KH instability has to be regarded under a broader perspective. The simple model of
a contact discontinuity between adjacent fluid layers no longer applies and, instead, parallel shear flows
with continuous velocity profiles have to be considered. There is extensive mathematical literature on
this topic, being largely based on the famous Orr-Sommerfeld equation. An excellent account to the
theory of both, inviscid and viscous flow instabilities can be found in the textbook by Drazin and Read
[59]. 1t also includes many references to the pertinent literature.

After a brief introduction to the viscous flow equations, the present discussion is mainly concerned
with surface instabilities in the long-wavelength approximation. Under this assumption, the interface
between two uniform viscous fluid layers can be idealized as a discontinuity much in the same way as for
inviscid fluid layers. This approach appears therefore particularly instructive for a comparison with
inviscid flow theory presented in section 3.1. As a further application of this model, the possibility of
convective amplification of surface instabilities in moving fluid layers is discussed.

7.1.1. Viscous shear flows
Viscous stresses can often be related linearly to the spatial derivatives of the velocity field. Within
this framework, the stress tensor of an incompressible viscous fluid can be assumed of the form [134]

0; = _paij + n(ﬁxl.v,- + 0x,-vj) ) (7.1a)

where 8, denotes the unit tensor and 7 the coefficient of viscosity. The corresponding fluid equations
for incompressible motions of a nonuniform viscous fluid are given by,

V-vo=0, dp/dt=0, dv/di=p 'V-0-VU. (7.1b)

They replace the system (6.1) in the presence of viscosity. In the special case of a homogeneous fluid
layer with the kinematic viscosity » =n/p, the equation of motion simplifies to the well-known
Navier—Stokes equation

dv/dt=~-V(p/lp+U)+vAv. (7.1¢)

We only remark its basic role for the theory of homogeneous fluid turbulence [135].

As an immediate consequence of viscous stresses, tangential flow discontinuities do no longer exist.
Instead, one has to deal with viscous boundary layers where the flow velocity changes suddenly but in a
continuous manner. Normally accelerated viscous shear layers can be represented in the form,

VU=(0,a,0), v=(vy(y),0,0),
(7.2a)
p=py(y), P=po(y)tex.
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While the density profile p,(y) is arbitrary, the velocity and pressure profiles are given by

cyt+d
7

o= [ay 2L pn=-a[dyn. (1.20)
These are strictly parallel steady-state flows of the system (7.1) with arbitrary integration constants ¢
and d. In the absence of flow (v, =0), one recovers the hydrostatic equilibrium state of the inviscid
theory as presented in section 6.1. In the presence of flow (v, #0), viscosity imposes a constraint on the
velocity profile according to eq. (7.2b). In the past, particular attention has been devoted to KH-type
instabilities of unaccelerated shear flows. These are known as plane Couette flow (¢ =0, a =0) in the
absence of an applied pressure and otherwise as plane Poiseuille flow (¢ #0, a =0).

7.1.2. Perturbations
If each steady flow variable X is subject to a two-dimensional perturbation 8X = 8X(y) exp(—iwt +
ikx) in the x, y plane, eq. (7.1) yields the linear perturbation system

dv, +ikdv, =0, (7.3a)
—iw dp + pydv, =0, (7.3b)

po(~i6 du, + v} 80,) = ik(~dp + 2ikn Bv, ) + {n(dv] +ik du,)}’,
(7.3c)
po(—i@) dv, = ~adp —dp' +ikn(ik dv, +dv;) +2(n dv))’,

where @ = w — kv, and the prime denotes differentiation with respect to the y coordinate.
In deriving eq. (7.3), it was assumed that viscosity perturbations are negligibly small. If A denotes
the shear layer width and ¢ a characteristic perturbation wavenumber, this approximation requires,

dn/m<<dv'/v,~qlddvly, . (7.4)

It applies to so-called Boussinesq fluids, having negligible variations in their thermodynamic properties,
and also to pure hydrostatic equilibria with v, =0. In general, however, the condition (7.4) appears
rather restrictive. If it is not satisfied strong viscous heating ~8n(v;)” and corresponding mass diffusion
will ensue. These effects could probably only be reconciled with each other in a more advanced
compressible theory and they are therefore neglected for the present purposes.

The perturbations of homogeneous steady-state flows with constant densities and velocities can be
obtained most easily from the vorticity equation,

(i@ + v(k® = 92)]V xdv=0. (7.5)

It follows immediately from the curl of the linearized Navier—Stokes equation (7.1c) by noting that
dp =0 for @ # 0 according to eq. (7.3b). For unstable modes with complex frequencies, the condition
o #0 can be assumed without restriction. Looking at eq. (7.5), it can be seen that vorticity
perturbations are generated by viscosity. In addition, irrotational potential flow perturbations can exist
as in the absence of viscosity. The corresponding wavenumbers along the y direction are given by



H.J. Kull, Theory of the Rayleigh-Taylor instability 291

+ Vi —ialv, forVxdw#0; =k, forVxdw=0. (7.6)

Now, consider two superposed homogeneous fluid layers 1 and 2 in the half-spaces y <0 and y > 4,
respectively, separated by an inhomogeneous shear layer of width A. In the upper and lower
half-spaces, the perturbations that converge at infinity (| y]— ®) can be written in the form

dv,=Ae ¥ +Be ™, du,=ide " +i(k/g,)Be ™,
(7.7a)
dplp, = (&,/k)Ae™ (y>4);

dv,=Ce” +De", dv,=-iCe™ ~i(k/q,)De"”,
(7.75)
dplp = (6,/k)Ce™ (y<0),

where the subscripts refer to the flow regions. In eqs. (7.7) the wavenumber of the vorticity
perturbation is defined to be g = (k* —i&/v)'"? and the branch of the square root is chosen such that
Re(g) >0 to ensure convergence at infinity.

7.1.3. Jump conditions

In the inviscid instability theory, the unstable interface between different fluid layers can be simply
idealized as a co-moving contact surface where the continuity conditions (2.7) are known to be satisfied.
The jump conditions (3.1) are then found to hold for inviscid surface modes in the linear approxima-
tion. Unfortunately, a viscous boundary layer cannot be treated in an analogous way as a contact
surface between two viscous fluids. The corresponding continuity conditions would be

[v]=0, (o-n]=0, (7.8)

where the brackets denote jumps across the contact surface and n is the surface normal unit vector of
the surface element. These conditions cannot be satisfied in general by the basic flow (7.2) if the jumps
are evaluated between the boundaries y =0 and y = A4 of the shear layer. Similar arguments apply to
the perturbations. Vortex motion will lead to nonuniformities in the shear layer width and viscous
stresses will contribute to the momentum balance between both fluids. It should therefore be clearly
recognized that the viscous boundary layer plays an active role in the evolution of perturbations in the
neighboring fluids.

The matching relations between the outer solutions (7.7) have to be derived from the viscous flow
equations. This can be accomplished most easily in the long-wavelength approximation where the layer
width A is assumed much smaller than the width of the perturbed flow. In the limit of a vanishing layer
thickness, A— 0, the steady flow gradients p,, and v; diverge. These terms have to be balanced by the
highest derivatives 8p, 8p’, dv;, and dv] of each flow variable in the perturbation system (7.3). The
variation of the lower derivatives 3p, dv,, dv, will remain bounded and that of the functions v, , dv, will
even be continuous across the layer. Using these properties and integrating eq. (7.3) across an infinitely
thin layer 0 <y < A, the following jump conditions are obtained,

{dv, =0, (7.92)

[80,]=0, (7.9b)
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[n(dv] +ik va)] =J, %, (7.9¢)
[29 dv; —dp]=J, dv, , (7.9d)
where

!
Po
T

4 A
si=tim [ dy gy, J,=1lima [ ay
0 0

The first two conditions require the continuity of the perturbed flow at the unperturbed interface.
The displacement { = 6v,/(—iw) of the shear layer boundaries is therefore no longer continuous as in
eq. (3.1). Instead one has the relationship v, {, = v,,{,. For symmetric shear layers with v,, = —v,, it
leads to opposite displacements of equal magnitudes, {; = —¢;.

The last two conditions include the source terms J, , for surface instabilities. In particular, the viscous
RT instability is obtained from a density discontinuity with v, =0, J, =0, and J, = a[p]/iw. The viscous
KH instability follows from a flow discontinuity with p, = const., J, = p[v,], and J, =0.

7.2. Viscous surface instabilities
7.2.1. Stability eigenvalue problem
The normal mode frequencies and growth rates of the combined KH and RT instabilities in a viscous
fluid can be obtained from the linear set of equations (7.7) and (7.9). In explicit form these equations
become
A+B=C+D, iA+i(k/q,)B=-iC~i(k/q,)D,
n,(—kA - q,B) —n,(kC+ q,D) — {(n, = m )k +1J}{A + (k/q,)B} =0, (7.10)
2k(n, —m,)(A+ B) + J,(A + (k/q,)B) — (ia,p,/ k) A + (1w, p,/k)C= 0.
Solving the first equation for D and the second one for B, one can rewrite eq. (7.10) in the form
D=A+B-C, B=dA+4d,,C,
(7.11)
(@, +db))A+ (e, +dyb,,)C=0,
where the coefficients are defined by the expressions
a,==2kn,—(q, = k)n, — iy, a,=2k(n,—m,) —iw,p,/k+J,,
by=-mq,~mq, — (kz/%)("’z —n,)—i(kiq)J, b, =2(n,—m)k+(k/q,)];,
¢, =n(q,—k), c,=iop/k, di=-(q,/k)q,+k)/(q,+q,),

d,=—(q,/k)(q,—k)/(q,*+ q) .
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The last member in eq. (7.11) represents two separate equations, one for the first and one for the
second subscript. The solubility condition for these equations assumes the form

(a,+bd)c,—(a,+b,d,)c, +(a,b,~a,b)d,=0. (7.12)
It determines the possible complex eigenfrequencies @ = w(k) of normal mode perturbations. Since the

general expression (7.12) is still rather complex, we will now restrict attention to velocity and density
discontinuities.

7.2.2. Viscous KH instability
Consider first the KH instability of a shear layer in an incompressible fluid of constant density and
viscosity. Setting p, = p, = p, 7, =1, =7 and defining

v,=3(, +v,), u=3v,—v,), N=-i(o—kv) ku,

(7.13)
K=vklu=nklpu, p, =q,,/k=V1+(Nxi)/K,
the coefficients of eq. (7.11) become,
a,=—kn(2+p,—1+2i/K), a,=pu(N+i),
b,=~kn(p, +p, +2i/p,K), b,=0,
(7.14)

¢, =kn(p,—1), ¢,=pu(~-N+i),
d=-p,(p,+D)/(p,+p), dy=—p(p,—1)/(p,+p,).

The dimensionless eigenvalue N can now be obtained explicitly as a function of the dimensionless
parameter K in the following way. Inserting egs. (7.14) into eq. (7.12) yields

p,—p, —1/K+2i/K(p, +p,)+ Nlip,p, —1—2p,/K(p, + p,) +1/K]=0. (7.15)
If this equation is multiplied by p, + p, and eq. (7.13) is used for pf‘z one arrives at the simpler form
(1+iN)Y’p,+ (1 -iN)’p,=4. (7.16)

To eliminate the square roots p, , with the help of the defining equation (7.13), one may take the
square on both sides of eq. (7.16). The resulting equation can be divided by the factor 1+ N to yield

p,p,(1+N)=7-N*>+(N/K)(3— N?). (7.17)
Squaring eq. (7.17) again leads to the polynomial

16(3 - N*)K? +8(5 - 3N*)NK — (1 -3N*)*=0. (7.18)
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If eq. (7.18) is regarded as quadratic in K, one arrives at the two roots
K, =(V3AN-1)Y4V3-N), K,=-(V3N+1)74V3+N). (7.19)

Finally, solving the equations K = K, and K = K, for the eigenvalue N, the four possible solutions of
the polynomial (7.18) are found to be

N,=1V3-3{K=(K*+2V3K)'"?}, N,,=—-1NV3-HK+=(K -2V3K)"*}. (7.20)

One should notice that in the process of squaring equations additional roots have been introduced that
will not satisfy the original equation (7.16). These solutions have to be discarded from eq. (7.20) and
then only one unstable branch is found.

To choose the correct unstable branch, one can restrict attention to the case where u >0 and
therefore also K >0. In accordance with eq. (7.13), a sign change u— —u is accompanied by a sign
change K— ~K and N— —N of both, K and N. This inversion will only lead to an interchange
between the two solutions in eq. (7.20). Assuming now K >0, the unstable branch is given by the
solution N,. The branch N, has to be discarded, as will be shown below, and the remaining branches
N; , have no positive real parts that could lead to instability.

For real values of N, eq. (7.16) can be further simplified to the form

Re{(1+iN)}(X +iY)}=XZ=2, (7.21)
where p, , = X = 1Y are complex conjugate expressions with
X=(INV2K}{K+N+V1+(K+N?}"?, YIX={K+N+\1+(K+N)¥}",

Z=1-N*-2NY/X.

(7.22)

The real part X of p,, has been chosen positive in accordance with the constraint for evanescent
solutions in eq. (7.7). Solutions of eq. (7.21) are distinguished by the requirement Z > 0. Along the two
branches N, ,, a sign change of Z can only occur at the branch-point K =0, N=1/V3, where X
becomes infinite. Near this point, eqs. (7.19) and (7.22) yield the expansion

N=(1+e/V3, K=0("), YIX=(1-1e)V3, Z=-¢. (7.23)

It follows that the condition Z >0 is only satisfied for ¢ <0, corresponding to the lower branch
N=N,<1/V3.

In summary, the KH instability of a viscous shear layer can be described in the long-wavelength
approximation by a complex eigenfrequency w = w, + iw, whose real and imaginary parts are given by

w, = k(v, +v,)/2, @ =Nklv,~v,|/2. (7.24)
The effects of viscosity are expressed by the factor
N=1NV3-HK+(K*+2V3K)'"?} (7.25)

and its dependence on the dimensionless parameter K =2vk/|v, — v,|.
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A peculiarity of this result can be recognized in the limit of vanishing viscosity where K =0 and
N =1/V3. Remarkably, the same growth rate applies to thin inviscid shear layers with a linear velocity
profile and free boundaries, which has been treated by Mjolsness [136]. For this free-surface mode, the
uniform flow regions are not actively involved in the evolution of the intermediate shear layer. On the
other hand, the factor 1/V/3 is absent if the usual KH instability [eq. (3.3)] of a contact discontinuity
between counterstreaming inviscid fluids is considered.

The discrepancy with the conventional KH instability for inviscid fluids seems to be due to different
parameter regimes for the Reynold number R = ud/v and the normalized wavenumber « = kA. The
present long-wavelength approximation corresponds to the parameter range xR ~ (g4)’ <1. In con-
trast, the inviscid theory applies to the opposite range kR > 1, since x may be taken small but finite
while R becomes arbitrarily large.

The instability growth rate (7.24) reaches a maximum that can be readily determined. It is assumed
for K =0.0667, which is the positive root of the quadratic equation,

8V3 K’ +51K-2V3=0. (7.26)
The corresponding mode of maximum instability is given by the values
k,=0.0667ulv, o, =0.014u’lv, (7.27)

where the growth rate o,  is reduced by the factor N =0.209 in comparison with the growth rate (3.3)
for inviscid fluids.

Another important feature of the present result is the stabilization of the flow for large wavenum-
bers. According to eq. (7.19), marginal stability (N=0) is obtained at the cut-off K=K =1/
4V3=0.144. The presence of a cut-off is also a well-known feature of the inviscid theory. Specifically,
the KH instability for an inviscid shear layer with a linear velocity profile cuts off at k = 1.2785. In the
past, the wavenumber of marginal stability has been studied intensively for linear shear layers as a
function of the parameter xR. The present result, x =V K kR = 0.38VkR, becomes valid as an
asymptote to the curve of marginal stability for kR <1. The cut-off x = 1.2785 of the inviscid theory is
approached for kR > 1. A more complete discussion of these issues can be found in the book by Drazin
and Read [59]. The long-wavelength asymptote to the shear layer instability was also derived by these
authors.

7.2.3. Viscous RT instability

In the following, the RT instability of viscous fluids will be illustrated for the simplest case of an
accelerated free surface. Assuming v, = p, =7, =0 for the lower fluid and omitting the subscript 2 for
the upper fluid, the general dispersion relation (7.12) reduces to the simpler form,

a,b,—a,b, =0, (7.28)
where the coefficients are given by,
a,=-2kn, a,=2kn-ipa/k+1J,, J,=-iapla,

Z

b,=-n(q+k’lq), b,=2kn+Jklq.
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From eq. (7.28) there follows

Ln(q’ = k) —4gk™n’ + 9(q° + kK*)(2kn — ipd/k) =0 . (7.29)
Eliminating ¢ with the help of eq. (7.6) yields,

WNV1-ia/vk’ =2 -ialvk’): - alv’k’ . (7.30)
To determine the instability growth rate, eq. (7.30) has to be solved for  together with the constraint
Re(g) >0 for bounded solutions. Without proof, it is noted that only a single unstable branch exists

which has a real growth rate n = —iw. For a further discussion of this solution, it is convenient to define
dimensionless variables by setting

o=wla)"n, k=0"a)"k, 0=«7, s=oli’, y=Vi+ts. (7.31)
In terms of o and «, eq. (7.30) becomes

Ao, k) =4V + alk’ =2+ alk’) + k> =0. (7.32)
In the limits of small and large wavenumbers, one can readily obtain the asymptotic expressions,

k<0.1: o=vk-2k", n=Vak-2vk:
(7.33)
k=25 o=1/2k, n=al2vk,

for the instability growth rate, respectively. They are in excellent agreement with the exact numerical
solution within the given wavenumber limits [57]. At small wavenumbers, viscosity becomes negligible
and the inviscid growth rate (3.3) is approached. At large wavenumbers, the RT instability is strongly
damped by viscosity but, in contrast to the KH instability, no complete stabilization is possible.

In the range of intermediate wavenumbers, the growth rate curve assumes a maximum where

do/dk =—d9,A/d A=0. (7.34)
Using eqs. (7.31) and (7.32), the condition for the maximum growth rate can be written as
A=Q=(y=D(y +y +3y-1)=0,

k' aA=-3Q+4y-D(y +y +y—1/y)=0.

(7.35)

These equations specify the maximum in terms of the variables Q and y. Eliminating Q from eq. (7.35),
yields a single equation for y,

YAy =5yt H3y=y(y +3)(y - 1) =4. (7.36)

It has only one real solution for y > 1. Numerically, one finds



H.J. Kull. Theory of the Rayleigh—Taylor instability 297
. =17059, Q_=8.4652, k,=04907, o, =0.4599, (7.37)

where eqs. (7.36), (7.35) and (7.31) have been used and m refers to the growth rate maximum. The
maximum viscous growth rate is about 2/3 of the corresponding inviscid growth rate, o, = 0.657vk .

The free-surface model of the viscous RT instability can be extended in an analogous way to two
fluids with arbitrary densities and viscosities. Using appropriately scaled variables, the growth rate has
been found remarkably insensitive to variations in the densities and viscosities of both fluids [131].
Specifically, defining dimensionless variables o = (#/a’a’)'*n and « =(¥"/aa)'’k in terms of the
Atwood ratio a =(p, — p,)/(p, + p,) and the average viscosity » = (p, v, + p,»,)/(p, + p,), the vari-
ation of the growth rate maximum (7.37) with density and viscosity has been found limited to

0.478<x_=<0.526, 0.448<0_=<0.5. (7.38)

Corresponding results with the inclusion of surface tension have also been reported in ref. [131].

7.2.4. Spatial amplification

If a fluid layer moves parallel to its surface, RT instabilities can become convectively unstable. This
situation may arise for steady-state flow around free-surface bubbles as described in section 5.3.
Perturbations that become excited at the top side of the bubbles will be carried with the flow along the
bubble surface, eventually reaching large amplitudes in the region of the falling spikes. In this section,
the possibility of convective amplification of RT instabilities is examined. A moving plane layer with a
free surface is considered and both inviscid and viscous amplification factors are derived. The present
criteria for convective instabilities arose from studies in plasma physics and have been reviewed in a
comprehensive form by Bers [137].

Let us first illustrate the role of convective amplification in the inviscid instability theory. If the fluid
layer moves along the x direction with a constant velocity v, the dispersion relation of the free-surface
RT instability becomes

w=kv+iVak . (7.39)

The frequency is simply Doppler shifted with respect to the familiar imaginary part, being valid in the
rest frame of the fluid. Because of the horizontal motion of the fluid layer, a local surface perturbation
will only be present for a transient time at each fixed position in the laboratory frame. Mathematically,
this behaviour is expressed by the fact that the dispersion relation (7.39) has no branch-points with
dw/dk =0 in the physical complex half-plane Re(k)>0. Such instabilities are commonly called
convective.

It is customary to describe convective instabilities by complex wavenumbers and real frequencies.
Solving therefore eq. (7.39) for k yields

k=(alv’){wvla—}Fi(wv/ia— )"} . (7.40)
Complex wavenumbers are indicative for convective instability if the additional constraints

Re(k)>0, Im(k)>0 for Im(w)— +oc, Im(k)<0 for Im(w)=0 (7.41)
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are satisfied. The first condition defines the physical half-plane where the potential perturbations (2.21)
are spatially damped inside the fluid. Comparing with eq. (7.40), one obtains a lower cut-off frequency

©>al2v (7.42)

for convective amplification. Above the cut-off (7.42), the wavenumbers (7.40) are complex and the
upper sign corresponds to a spatially growing mode in the x direction.

A convectively unstable system can be distinguished from a merely impenetrable medium by the
second condition in eq. (7.41). If Im(k) changes its sign as Im(w) varies from +x to 0, spatially
bounded initial perturbations can evolve into unbounded spatially growing modes. This criterion holds
only for the upper sign in eq. (7.40), showing that amplification occurs only in the flow direction.

The spatial growth increment of the inviscid theory, Im(k)x, increases indefinitely with the
frequency. Actually, however, high-frequency oscillations will become strongly damped by viscosity.
This can be shown most easily in the limit of high viscosities where eq. (7.33) yields the asymptotic
result

w=kvt+ial2vk, k=w/v—ia/2ve. (7.43)

The complex wavenumber describes a convectively unstable mode, but its imaginary part now decreases
with increasing oscillation frequencies.

For a rough estimate of the frequency of maximum amplification, one may look for the crossing
point of the asymptotic growth increments. Equating the amplification factors of eqs. (7.40) and (7.43),
one finds

w_ ~va v, k ~()a ' (7.44)

A more complete description of the viscosity effects on the convectively unstable mode could be
based on the general dispersion relation (7.30). It would require an analysis of the complex k roots of
this equation when & = w — kv is substituted and w is taken real. We will not further pursue this case
since the polynomial form is of degree seven and an overview can only be gained by numerical means.

8. Stability of ideal fluids

The ideal fluid model provides a means for the investigation of the stability of compressible
dissipationless fluids. Compressibility affects in an essential way the instability threshold, leading to
Schwarzschild’s stability criterion for convective instabilities. On the other hand, its influence on
free-surface modes with constant surface pressure is by definition small.

The stability of ideal fluid systems has been intensively studied in MHD plasma theory. Based on
these methods, the stability criterion for convective instabilities will be derived from an energy principle
for static equilibria with arbitrary thermodynamic properties. The role of compressibility is shown to be
either stabilizing or destabilizing, depending on the precise definition of the class of comparison
profiles. Finally, the normal mode analysis of RT instabilities is extended to compressible fluids and
thereby a general perturbative treatment of compressibility effects is given.
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8.1. Ideal fluid model

While the incompressibility assumption is often adequate for surface instabilities, it cannot be
applied to equilibria whose variations are governed by the gravitational scale height of the system. This
is typically the case for convective instabilities in compressible atmospheres. Here, a much better
description is given by the ideal fluid equations, being based on adiabatic instead of incompressible
motion of fluid particles.

The ideal fluid model of RT-type instabilities concerns also several issues of more theoretical
interest. These include for instance (i) the stability criterion for convective instabilities, (ii) its
relationship to the energy principle for ideal fluids, (iii) dependences on special material equations
(ideal gas approximation), and (iv) the role of compressibility for instability growth. In the following,
we attempt a careful analysis of these basic aspects. The present discussion is largely based on a
previous stability study [126] whose results have been published in part in [70].

The energy principle analysis of ideal fluid equilibria has been developed in the context of
hydromagnetic stability theory [138]. The present analysis is based on this general framework. Magnetic
fields will not be considered although more general equations of state are permitted. The stability
criterion to be derived was first introduced by Schwarzschild [45] and is well known from the classical
theory of convection [134]. The influence of compressibility on RT instability seems controversial, some
authors claiming stabilization, destabilization or both. A general argument is due to Newcomb [139],
proving destabilization for density profiles in polytrope gases. However, other interpretations seem
possible if the class of comparison states is chosen differently. In particular, it will be shown that
compressibility leads to stabilization if equilibria with a unique functional for the gravitational energy
are compared.

A number of works have been concerned with normal mode analysis of RT unstable compressible
systems. These may be distinguished according to the basic states considered. In an early work,
Skumanich [140] has treated the stability problem for a polytropic atmosphere. Several authors have
investigated the stability of temperature step-profiles including Baker [141], Bernstein and Book [142],
and Kull [126]. The corresponding problem of an entropy step was analysed by Lezzi and Prosperetti
[143]. To the understanding of this author, the isentropic approximation was also implicit in an earlier
treatment by Plesset and Prosperetti [144]. Continuum modes have been treated in the short-
wavelength approximation by Scannapieco [145]. Considerable effort was also spent in stability analyses
of self-similar flows which will not be covered by this article. The interested reader is referred to work
by Book [146], by Book and Bernstein [147], and by Han [148].

8.1.1. Thermodynamic relations
An ideal fluid can be defined by the conservation law for the specific entropy s of fluid particles,

ds/dr=0. (8.1)

This condition neglects dissipation by viscosity and heat conduction but it fully accounts for the finite
compressibility and the inhomogeneity of the medium. Together with the continuity equation for mass
conservation,

dp/dt=~pV-v, (8.2)

it replaces eq. (6.1a) in the incompressible fluid description.
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Many features of convective instabilities in ideal fluids can be established without reference to
particular material properties. To emphasize this general nature of the stability problem, the reader is
first reminded of a few basic thermodynamic relations. These are

_ 95 2_9p _Lovi _ 1| __109s

Cp—TﬁTp’ C—ﬁps’ a_VﬁTp_ pan— VﬁpT,

__lavi Ll 1 ds) _ds) 9T} __ % (8.3)
Vpls papls pc®’ dple 3Tip dpip paT’ ’

dslap|, 1

aslop|,

with ¢, representing the specific heat at constant pressure, ¢ the speed of sound, « the coefficient of
thermal expansion, « the adiabatic compressibility, V= 1/p the specific volume, and T the temperature.
With these definitions, entropy changes can be expressed as,

as s ¢ <dp )
= — +__ = — —— _
ds 7 ,,dp ap pdp aT \ kdp),
iT d (8.4)
_ 95 98 =c L _ P
ds——andT+&p po P p

Previous work on compressible RT instabilities has been mostly limited to the ideal gas approximation.
It is based on the well-known relations,

s=sy=c, In[(p/p)(py/p)’), p=pTIm, me,=1/(y~-1), 5)
8.5
mc,=y/(y-1), a=1/T, «=1/yp, c=yplp,

for an ideal gas with the adiabatic index y and particles of mass m. In the following, these formulas will
be used to establish the stability properties for entropy, density and temperature gradients from the
ideal fluid equations.

8.1.2. Stability eigenvalue equation

Perturbations of a hydrostatic equilibrium state, are conveniently described by a displacement vector
&(x, t) of the fluid particles from their equilibrium position x. If a harmonic time-dependence with
£ ~ exp(—iwt) is assumed, the corresponding velocity, density and pressure perturbations are given by

dv=—iw, dp=-V-(pé),
(8.6)
op = —§°Vp0—czp0V- §=c26p+c2 §-(Vp0—c_2 Voo,

respectively. The pressure perturbation can be obtained most easily from

dp/dt=c"dp/dt=—-cpV-v, (8.7)
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using eqgs. (8.1), (8.2), and (8.4). The simpler relation, p = ¢* 8p, applies only to isentropic fluids
(s, = const.). It will therefore not be used in the following. If eq. (8.6) is inserted into the linearized
Euler equation,

po 9,00=-Vdp—-3pVU, (8.8)
there follows the eigenvalue equation
L-&+p0¢=0, (8.9)

with the linear differential operator

L-¢&= V(Czpo Ve§+&-Vp)+(VU)V-(peé)

(8.10)
= po[c*V(V- €)= V(& -VU)] + V(' — p)IV- € .
The last representation follows with the help of the equilibrium relations (6.2) and (6.3). Before
specializing this equation further to the uniform acceleration case, a few general properties of the
present eigenvalue operator will be briefly mentioned.

8.1.3. Lagrange—Green identity
An important symmetry property of the differential operator L is expressed by the Lagrange~Green
identity,

JdV[v-(L-u)—u-(L~v)]= j dS - [’py(v V- u—uV-v)+ (ux v) X Vp,], (8.11)

v

being valid for arbitrary vector fields u(x), v(x) and for an arbitrary integration volume V with the
surface dV. If the boundary term on the r.h.s. of eq. (8.11) vanishes, on account of specific boundary
conditions, the operator L is called Hermitian. In particular, L is Hermitian for rigid boundaries where
the normal component of the displacement vector is required to be zero. It is also Hermitian for
two-dimensional flows with free boundaries. In this case, the constancy of the surface pressure leads to
the vanishing of the flow divergence, according to eq. (8.7), while the remaining cross-product term in
eq. (8.11) is zero in two dimensions. For any medium with sufficiently extended stable boundary
regions, the choice of rigid boundaries does not seem to be particularly restrictive. Hermiticity of L will
therefore be assumed throughout the following discussion. This property ensures that all eigenvalues w’
are real, corresponding either to stable oscillations (w”>0) or to exponential instability growth
(w?<0).

For definiteness, it is also mentioned that Hermitian operators are not necessarily self-adjoint.
According to modern mathematical terminology, self-adjointness of a Hermitian operator requires a
suitable choice of its domain, imposing important constraints on the allowable boundary conditions
[149]. Only if the more stringent requirement of self-adjointness is met, the completeness of the set of
eigenvectors will be guaranteed.

The above identity (8.11) can be readily derived by the following partial integrations,
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dev-(L-u)=JdVv~[V(u-Vp0+czp(,V-u)+(VU)V- pout]

=—de[(u-Vp0+CpoV'u)V'v-i-pOu'V(U‘VU)]
+st.[v(u-7p0+c2p0 V-u)+puv-VU| (8.12)
=jdv u-[V(c’p, Ve v) = (Vp)V-v—p, V(v-VU)]
+jds'[czpo(vV-u—uV'v)+v”'VPo‘""'Vpo]’

and by further noting that
—p V(- VU) = (Vpy)V v =V(v-Vp,) + (v VU) ¥, ~ (Vp,) V- v

=V(v-Vp,) + VU(v-Vp,) — (Vpy)V- v

(8.13)
=WV(v-Vp,) +VU[(v-Vp,) + p, V- V]
=V(v-Vp,))+VUV-pu.
In eq. (8.13), use has been made of the identity
(v-VU)Vp, = VU -Vpy)=v X (Vp, xVU)=0. (8.14)

8.1.4. Energy principle
The stability of the equilibrium state depends on the sign of the lowest eigenvalue ;. It is therefore
convenient to express the eigenvalue problem by an equivalent variational problem,

W)= min(W/K) . (8.15)

The potential energy functional W and the normalization integral K are defined by the expressions,

W=—%jdV§*-L-§, K=%dep0§*-f. (8.16)

Considering variations of the displacement field and using the Hermiticity property of L, one can
readily recover from eq. (8.15) the original eigenvalue equation (8.9). Since K is always positive, the
equilibrium will be unstable if W can be made negative for some displacement field. The criterion W >0
is both necessary and sufficient for stability in the linear theory. This has been proved in the framework
of MHD theory without the present restriction to harmonic perturbations [138].

To indicate the physical relevance of the energy principle for convective instabilities, the potential
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energy will now be transformed to a different representation. If eq. (8.8) is inserted into eq. (8.16),
there follows

2W=fdv g*-(vap+spVU)=fdv (3p g*-vv—apv-g*)+fds~§*ap. (8.17)

The first term represents the gravitational potential energy associated with the displacement in the
potential U. The remaining two terms are due to pressure perturbations in a compressible medium. One
can attribute a definite sign to these energies if both 8p and V- £* are eliminated from eq. (8.17) with
the help of eq. (8.6). This yields

W=W, +W +W,, (8.18)

with

Wg=*%de%}(f*-Vpo)(g-Vso),

1 , 1 .
Wp=§JdVK|6p| , Wb=§JdS-§ dp .

Here the definitions of eq. (8.3) for the adiabatic compressibility x and of eq. (8.4) for the entropy
gradient Vs, have also been used. Neglecting again the boundary term W,, the finite compressibility of
the medium gives only rise to a positive energy W,. This energy agrees with the well-known expression
for the compressional energy of sound waves. Instability can only result from the gravitational potential
energy W,. Noting that the coefficient of thermal expansion is mostly positive, a > 0, instability requires
parallel pressure and entropy gradients. In this case, a two-dimensional perturbation can be found that
makes W negative. Firstly, the displacement parallel to the gradient is chosen such that W, becomes
negative. Then, the perpendicular component is chosen such that W, =0 by making use of eq. (8.6).
Although this test field may not correspond to the actual minimum, it shows that the minimum has to
be negative.

In conclusion, a hydrostatic equilibrium state will be stable if & >0 and the entropy gradient is
everywhere opposed to the pressure gradient. This criterion plays an important role in atmospheric and
astrophysical applications, where it is generally known as Schwarzschild’s criterion. We remark that the
criterion is in perfect agreement with the energy principle analysis and does not depend on the ideal gas
approximation to the equation of state.

The relationship of Schwarzschild’s stability criterion to the RT instability can be recognized from
eq. (8.4). If the medium is assumed incompressible (k — 0), the entropy gradient becomes antiparallel
to the density gradient. Consequently, stability of an incompressible medium requires parallel pressure
and density gradients.

In problems of thermal convection, it is often the temperature gradient that is externally controlled.
Using egs. (8.4) and (6.2), adverse temperature gradients in the direction of the pressure gradient are
found to be stable, if they do not exceed the instability threshold:

VT|<(aTlc,)VU]. (8.19)

The onset of thermal convection is also often influenced by viscosity and heat conduction. For more
details on thermal instabilities the reader is referred to refs. [57, 59].
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8.1.5. Compressibility effects

The energy principle can help to clarify the somewhat controversial role of compressibility in the RT
instability. One should notice that the question whether compressibility can stabilize or destabilize the
equilibrium state is ill defined, because a unique equilibrium state does not exist. The answer is
therefore partly a matter of definition.

One way of making a meaningful comparison between the stability properties of different media is to
require a unique expression for the gravitational energy W,. This constraint avoids discrepancies due to
different choices of unstable gradients. The corresponding equilibria are defined by the relationship

—(aTpylc,) Vs, = Vo, + (py/c*) VU = (Vpy)..., (8.20)

where (Vp,).. is a prescribed density gradient of the incompressible comparison medium.

Within the chosen class of equilibrium states (8.20), the incompressible one has obviously the largest
instability growth rate. Since W, is independent of «, by definition, and W, increases with «, the
minimum of eq. (8.15) will also increase with . This result conforms to the physical intuition that
compressional work should have a stabilizing influence on instability growth.

However, this interpretation is not the only possible one and an apparently contrary conclusion may
be drawn from a comparison of equilibrium states with equal density gradients, Vp, = (Vp,)... In this
case, compressibility can lower the gravitational energy W, due to the expansion of fluid elements when
displaced against the pressure gradient. If one eliminates &p instead of V- & from eq. (8.17), one arrives
at the alternative form,

W=W, +W,+W,, (8.21)

with

W = % fdv V- &)k, ,

Wo= 1 [V B, (676 o) + 7 £7)+ £(F- £)].

Comparing now equilibrium states with equal density profiles, the energy W, is found independent of
compressibility while the positive energy W, is a decreasing function of compressibility. It then follows
that the minimum eigenvalue (8.15) is also decreasing with compressibility. In this case, the compress-
ible system is found less stable. Again, these conclusions remain valid for arbitrary thermodynamic
systems. The destabilizing role of compressibility for polytrope gases has been emphasized by Book and
Newcomb. The energy principle argument in the form of eq. (8.21) is due to Newcomb [139]. Other
authors may have contributed to the subject as well, but precise criteria are often lacking.

8.2. Uniform accelerations
8.2.1. Normal mode equation

To describe RT instabilities in compressible fluids, one may consider the standard equilibrium state,
Vp, = —p, VU = —p,a Vy, corresponding to a uniform gravitational acceleration a in the direction of
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the negative y axis. The evolution of normal mode perturbations, £ ~exp(ikx — iwt), is conveniently
described in terms of the following set of variables,

n=ky, A=aklo®, B=4d,plp,, e=alc’k=—-kd,p,,
(8.22)
H=p, k™' V- E=r (1§, +3,€).

The quantities 7, A, and B have already been introduced for incompressible fluids in section 6.2.1 and
the compressibility « has been defined in eq. (8.3). The variable II represents the pressure perturbation
at the position of a displaced fluid particle, according to eq. (8.6). Being continuous across a
discontinuity surface, it is particularly useful as a dependent variable. Finally, the parameter ¢ can be
regarded as a dimensionless measure for compressibility effects.

In the present case, the eigenvalue equation (8.9) assumes the simpler form

pow’E — ap, VE, + k VII + (ak/c*)[1Vy =0. (8.23)
Separating the x and y components of eq. (8.23) yields,

A, =3 & +(k~Mklap)[T=0, A '€, -3, & +(klap,)d, I + kI1=0, (8.24)
where £ has been eliminated with the help of eq. (8.22). Taking the linear combinations,

(A7 = ¢, + (klap))(d, T+ MI) =0,
(8.25)
(A" =03, &, + (klap)) (Ao, 1T+ TT) + (A —1/\)kII =0,

of eq. (8.24) and differentiating the upper equation in (8.25) once, there follows a single second-order
equation for the variable II,

91 = B3 IT—[1+AB+(A—1/0)e]lT=0. (8.26)

It represents the desired generalization of Rayleigh’s equation (6.14) to compressible fluids. In the limit
where ¢ — 0, the operator (8.26) becomes identical to the operator (6.20) and it has therefore the same
eigenvalue spectrum as (6.14).

The effects of compressibility are described by the last term in eq. (8.26), which is proportional to &.
Near the instability threshold, where A—>, the dominant contribution is a gradient correction,

B+ e=0,p/py — Ky 3, Py =~ (agT/cC,) 9,5 - (8.27)

It confirms the significance of the entropy gradient (8.4) for the stability of compressible media. In the
absence of acceleration, where A— 0, eq. (8.26) becomes the wave equation for monochromatic sound
waves. The factor /A = w’/(ck)” then gives rise to the familiar sound wave dispersion relation.

Both compressibility effects cancel for the free-surface eigenvalues A = =1. Accordingly, a free
surface of a compressible fluid will basically evolve in an incompressible manner. This justifies the
incompressible fluid description for many applications.



306 H.J. Kull, Theory of the Rayleigh—Taylor instability

The operator (8.26) can also be written in an explicitly Hermitian representation,
LIl =FII (8.28)
by defining

L=9p,' 3, —[1+ABlp,"', F=(A-1/Nep;".

n

Integrating eq. (8.28) across a discontinuity surface, the continuity conditions follow,
[1I]=0, [p;‘(anH+AH)]=0. (8.29)

The first condition describes the continuity of the surface pressure while the second one corresponds to
the continuity of £, as given by eq. (8.25).

8.2.2. Growth rate shift in compressible media

Compressibility effects present often only a small correction to the instability growth rates of RT
instabilities. These corrections can be simply evaluated by perturbation theory. The following treatment
was first described in refs. [126, 70].

Let us compare the instability growth rates of a compressible medium (¢ #0) to those of an
incompressible medium (& = 0) with the same equilibrium density. For sufficiently small values of &, one
may consider the perturbation ansatz, IT=II, + II,, A= A, + A,, L = L, ~ Bp~'A,, where the index 0
refers to a nondegenerate unperturbed solution (¢ =0) and the index 1 to first-order quantities in .
The corresponding perturbation system,

LOHO = O ’ Lonl = (Bp_ll\l + F)Ho ) (830)

will be supplemented by infinite medium boundary conditions, lim, . Il , = 0. The eigenvalue shift A,
is obtained by multiplying the first-order equation with II, integrating over the flow region —x <y <o
and making use of the Hermiticity of L,. This yields,

%:—(1—A;2)#, u=(f dnsp‘lné)/(j dnﬂp“Hé). (8.31)

The corresponding instability growth rate is given by,
n’=—ak/h=ny(1- AJA,) = ni{1+[1— (n)/ak)’]u)} . (8.32)

It shows again the absence of compressibility effects for the free-surface growth rate n, = Vak. For all
growth rates below this value, the shift n, is positive, in agreement with the destabilizing role of thermal
expansion as discussed in section 8.1.5. The condition u >0 for A, <0 can be easily verified by looking
at the quadratic form associated with the unperturbed operator L,. For an assumed growth rate above
the free-surface value, eq. (8.32) would predict a growth rate reduction. This is a clear contradiction to
the energy principle (8.21), and it may therefore be taken as an indirect proof that n, = Vak is the
maximum possible growth rate of the incompressible RT instability.
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8.2.3. Density step-profile

The perturbation treatment can be readily applied to a density step-profile with constant densities p,
for <0 and p, for n>0. The unperturbed incompressible solution,

né=[(p2—p1)/(p2+pl)]ak ) Ho=eXP(‘|ﬂl) ; (8.33)

has been derived in section 3.1. For a compressible medium with the same density profile, the integrals
in eq. (8.31) can be evaluated as

J dn ep ™'} = (alk)(k, + K,) 12,

) o (8.34)
f dn Bp_lﬂf):f dpo po” = (p, = p)/p1p2 5
i o
with the compressibility averages
0 co
K =2 J dn k, exp(2n), K= 2J dn k, exp(=2m)
- 0
of the two regions. Inserting eqs. (8.33) and (8.34) into eq. (8.32) yields
n’= no[1+ 2(alk)(%, + ;) oy pz)z/(pz + pl)z(Pz o)l (8.35)

It describes compressibility effects to first order in k. A qualitatively similar formula has been derived
by Plesset and Prosperetti from a simplified model equation [144]. However, the present result does not
confirm their finding that compressibility effects will disappear for equal sound velocities in both fluids.

8.2.4. Temperature step-profile

An exact solution of eq. (8.26) can be obtained for the interface between two isothermal
atmospheres. Making use of the ideal gas relations (8.5), the equilibrium density at constant
temperature is given by the Boltzmann distribution,

po(n) = p;exp(=b;m), b, =amikT,, (8.36)

where i = 1 refers to the lower half-space, 7 <0, and i =2 to the upper half-space, n > 0. The density
jump at the interface =0 occurs at constant pressure, which determines the ratio

p,lpy=T,/T,=b,/b,. (8.37)
Both isothermal regions are in thermodynamic equilibrium, but instability can result from an interface

with T, > T,.
The coefficients of the differential equation (8.26), 8 = —b and ¢ = b/y, are constants. Assuming
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convergence at infinity, the solutions for both half-spaces are found to be

11, = II, exp(q;7) (8.38)

with

—%b1+VD1’ q2=—%b2—\/D2,

D,=ibl+1—Ab,+(A—1/A)b Iy .

{

q,

Inserting eq. (8.38) into the continuity condition (8.29), there follows

p(q, ) =pi(g +A). (8.39)

Noting egs. (8.37) and (8.38), one obtains the simpler form
~1/A=(b, - b)/(b,VD,+ b,\VD),), (8.40)

which implicitly determines the eigenvalue A. In the limit of weak gradients, where b,—0 and D, — 1,
the r.h.s. reduces to the Atwood number, in agreement with eq. (8.33). Compressibility effects are
most important in the limit of small growth rates. For A— —o and y > 1 one obtains the approximate
result

n 1 b, — b,
Vak Vi—y bVh,+bVE,

From eq. (8.41) one can recognize the decrease of the growth rate with increasing values of y.
According to eq. (8.40), the normalized growth rate n/Vak can be viewed as a function of the
density ratio (8.37), the gradient b, of the lower medium, and of the adiabatic index 7y. These
dependences are illustrated in fig. 30. If vy is kept fixed (fig. 30a), variation of b, shows a reduction of
the growth rates with increasing gradients. The classical result for a density-step profile becomes valid
for weak gradients (b,—0). These density gradient effects have to be clearly distinguished from

D;=-A1-vy" )b, (8.41)

a) Y=5./3. b) by=1.
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v=1
nz °° by=0.001 P e
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Fig. 30. Instability growth rate n for a temperature step-profile in a compressible fluid with adiabatic index y. The density of each layer is given by a
Boltzmann distribution. The density jump across the temperature step is given by the ratio p,/p,. (a) Variation of the density gradient b, inside the
lower fluid for a fixed adiabatic index y =5/3. (b) Variation of the adiabatic index y for a fixed gradient b,.
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compressibility effects. If y is varied (fig. 30b) for a fixed gradient b,, the growth rates become a
decreasing function of y. This behavior confirms the destabilizing role of compressibility on the density
profile.

9. Stability of ablation fronts

In terms of an isobaric flow model, we describe steady ablation fronts and their stability under
acceleration. The RT instability of ablatively accelerated foils is strongly influenced by mass ablation,
heat flow, and inhomogeneities. These effects can significantly reduce the classicial instability growth
rates and lead to stabilization of short-wavelength modes.

9.1. Isobaric flow model

The stability analysis of inhomogeneous static states is now extended to inhomogeneous steady
states. Such flows arise typically as a result of mass ablation if the surface of an accelerated body is
heated up to temperatures that allow the formation of a plasma state. A typical ablation profile is
represented in fig. 31. The slab is heated by an incoming heat flow from the left-hand side up to the
ablation front y,. The front advances inside the slab with a constant velocity v,. In the reference frame
moving with the ablation front, steady-state flow is established. The slab of thickness d is accelerated by
the ablation pressure p, = p,ad.

For most applications, the ablation front can be regarded as a subsonic, approximately isobaric flow
region. Within this region the instability evolution may be well described by an isobaric flow model. A
detailed discussion of the isobaric approximation and the resulting stability analysis has been given in
refs. [76, 77). These works include also detailed comparisons with a number of previous treatments of
laser ablation. In the following, we will only describe the main physical features of the model, omitting
the derivations given in the original work.

9.1.1. Steady ablation
The general framework for the present description of an ablating plasma are the conventional
one-component fluid equations,

Fig. 31. Schematic representation of the ablation front. A steady-state density profile p(y) is established by an incoming heat flow () and an
ablated mass flow (v). The acceleration {(a = —g) of the slab is RT unstable. (From ref. {77].)
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dp+V-pv=0, (9.1a)
p(dv+v-Viv=-Vp-pa, (9.1b)
afp(e+ 1) +V-[(w+iv))pv+q]+pa-v=0, (9.1c)

for the density p, velocity v, pressure p, temperature T, specific internal energy & =c, T, specific
enthalpy w =c,T= ¢+ p/p, and the heat flow ¢q. The plasma is subject to a constant acceleration
a=(0, a,0). The thermodynamic relations are those of an ideal gas with adiabatic index y=5/3,

p=pTim, mec,=1/(y=1), mc,=vy/(y—-1), (9.1d)

where m=m_ A/(1+ Z), and m, denotes the proton mass, A the atomic number, and Z the charge
state of the ion species. Under the conditions of local thermodynamic equilibrium, the heat flow has the
form ¢ = —« VT with thermal conductivity . Specifically, for electronic heat conduction the thermal
diffusivity y = «/pc, is given by the expression [150],

L 4Ty
Z(1+Z) Ap

x=1.0x107y, y; cm’/s, (9.1e)

where A denotes the Coulomb logarithm, y, a Z-dependent numerical constant and the temperature is
taken in electronvolt. For instance, v, = 8 for a fully ionized carbon foil with Z =6 and A =5 for typical
ablation fronts.

The one-dimensional steady-state equations can be written in the dimensionless form,

. d ~
~ ~ — +1= .
= dyv+dyT 1=0, (9.2a)
Frd 55,2 Lapig=c 9.2b
u d}’; y (ZU y)_ ’ ( )

where T=T/ T, v=-v,/v, y= yalvl, w=yalv] and C denotes an integration constant. The
subscript s refers to the isothermal sonic point (v = T./m), which is a singular point of the steady-state
system. We will choose the origin y =0 at the ablation front, where the maximum density is obtained.
The requirement of a continuous subsonic—transonic solution leads to the constraint

p=1+[(y=-DHIG+y)-C (9.3)

between the parameters C and u. As a result, these solutions form a one-parameter family,
distinguished, for instance, by different ablation front densities p,. For all cases of potential interest, the
parameter w is =1, the distance to the sonic point varies between |y|=0.4 and 0.5, and C is
approximately equal to the ablation front temperature T, <1.

A typical result corresponding to an ablation front density of p;, =50 is shown in fig. 32. One can
recognize in fig. 32a the variation of the density, the pressure, the temperature, and the Mach number
M = v/V T/m across the entire ablation region. For typical failure modes, the width of the instability
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Fig. 32. One-dimensional solution of the steady ablation model (9.2) with the ablation front density p, = 50p,. The index s refers to the isothermal
sonic point (M = 1) and the index 1 to the ablation front (maximum density). The profiles of the pressure p, the Mach number M, the temperature
T, and the density p are represented versus the coordinate ¥ = yam/T.. (a) Flow region up to the sonic point, (b) subsonic flow region near the
ablation front. (From ref. {77].)

zone is comparable with the slab thickness. A corresponding section of the ablation front is shown in
fig. 32b. Here, the flow is well subsonic and the pressure varies only weakly in comparison with the
density.

9.1.2. Isobaric approximation

Prior to performing the stability analysis, it is advantageous to introduce a reduced isobaric fluid
description. The main purpose is to avoid the compressibility effects that are known to be negligible in
the classical free-surface RT instability. In addition, the restriction to subsonic fronts offers the
opportunity to study actually a much wider class of steady flow solutions. In the subsonic flow domain,
the sonic-point constraint (9.3) is unimportant, which extends the parameter space of allowable ablation
fronts to arbitrary values of .

The isobaric approximation consists in the neglect of all pressure variations in the energy equation
(9.1c). On the other hand, the pressure gradient is retained in the momentum equation (9.1b). This
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procedure is admissible, since the leading terms in the energy equation are due to density variations,
while all terms of the momentum equation are of the same smallness. The isobaric approximation to the
energy equation can be written in various equivalent forms. Some instructive representations are given
by

V-(pwo-«kVT)=0, (9.4a)
V-(v+ xVlp)=0, (9.4b)
(1/p)dp/dt=V-(xV/p), (9.4¢)
¢,pdT/dt =V-(x VT). (9.4d)

The first expression follows immediately from eqs. (9.1b) and (9.1c), if pressure variations are
negligible. Accordingly, the sum of heat and enthalpy flow forms a conserved energy current in this
model. The second expression can be obtained by dividing by the approximate constant pw = mc, p and
noting that dp/p +dT/T =dp/p=0. It shows that the isobaric flow is no longer divergence-free
because of the thermal expansion of the fluid. Combining this relation with the continuity equation
(9.1a), there follows the diffusion equation (9.4c) for the density. The thermal diffusion is coupled to
the fluid motion by the total derivative (6.1c) along the particle trajectories. Substituting the density by
the temperature, there follows the heat diffusion equation (9.4d).

Well-known special cases, included in the isobaric model, are the classical incompressible fluid model
(x =0) and the Boussinesq model (7 = const.) of thermal convection [57],

V.v=0, dp/di=0, (9.5a)
V=0, c,pdT/di=kAT, (9.5b)

respectively. However, in general neither of these special cases is applicable to the ablation layer
instability.

9.1.3. Isobaric steady-state
The isobaric steady-flow equations can be obtained from eqs. (9.1) and (9.4) in the form

v,=pv,, pT=pT,, «dTldy=c,pv, (T-T)). (9.6)

The index 1 refers again to the maximum of the density profile, which now will be assumed at y — .
We set v, = —v for the flow velocity and « = const. X T”, for the thermal conductivity at_constant
pressure. Deﬁnmg the length unit L, = x,/v, and using dlmensmnless variables of the form X = X X,
and £ =y/L,, the steady-state equatlons become,

o=T=p", dp/dé=p"""(1-p). (9.7)

Density profiles obtained from eq. (9.7) with the initial condition p(0) = 0.99 are presented in fig. 33 for
various values of v. The electronic conduction law (9.1¢) corresponds to » = 2.5. The densities increase
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Fig. 33. Steady ablation profiles of the density p = p/p, versus the coordinate £ = yv,/x, in the isobaric approximation (9.7). The parameter v
describes the temperature exponent of the thermal conductivity at constant pressure; v = 2.5 for classical electronic conduction. (From ref. [77].)

monotonically toward the cold slab, approaching there the asymptotic value p = 1. The instability of
these profiles against acceleration will be localized around the maximum density gradient. If the
gradient scale length is defined as L = p/(dp/dy), its minimum is given by

L=[(1+v»)"Iw']L,, p=vi(1+v). (9.8)

Especially, L =8.12L, and p =0.71 for » =2.5. One can readily convince oneself that these values are
in close agreement w1th the exact ablation proﬁles Using the length units of eq. (9.2) and the
parameters of fig. 32, one finds L=8. 12L,a/v:=8.12uT" =7x 107"

9.1.4. Homogeneous flow perturbations

In the boundary regions ¢ = *x, the steady flow variables vary only weakly in comparison with the
eigenmodes of the stability analysis. We therefore firstly describe the basic types of isobaric flow
perturbations inside a homogeneous medium with constant density p, velocity v, = —v, and thermal
diffusivity y. '

Perturbations of a variable X are denoted as 8X and they are taken proportional to exp(nt + qy +
ikx). The isobaric flow equations admit five independent perturbation solutions, which differ in their
longitudinal wavenumbers q. The linearized form of eq. (9.4c) becomes

[(n —vq) — x(q" — k*))8p=0. (9.9)
It governs the variation of density perturbations, 8p # 0, with the possible roots
2= —vI2x £[(I12x)" + K +nix]'"”. (9.10)

In the absence of flow, v— 0, the perturbations are smoothed by thermal diffusion. The approximate
decay constants,

g,= (kK +nly)"?, (9.11)

have the same magnitude in both directions and are usually of the order of k. Conversely, assuming the
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limit y — 0, one finds from eq. (9.10) the expressions
g, =nlv, qg,=-vly. (9.12)

The first solution arises from the corresponding density transport equation (d/dt) 8p =0. It describes
familiar entropy convection modes in the isobaric approximation. Typically, the mode number g, is also
of the order of k. The second root may be called an ablation mode, describing thermal diffusion toward
y— = against the counterstreaming flow. Its presence leads to a sharp decrease of density perturbations
inside the cold slab. One should notice that the ablation mode varies basically over the minimum
steady-state gradient scale length, g,L ~ 1, and is therefore typically much larger than the transverse
perturbation wavenumber k. This discrepancy in length scales presents one of the major difficulties of
the instability analysis. It puts severe limitations on the validity of discontinuity models and imposes
high demands on the computational resolution of the ablation layer.

Apart from the density perturbations described by eq. (9.9), there can exist additional solutions with
dp = 0. For constant density, we obtain from egs. (9.1a) and (9.1b) the two relations

V-ov=0, (n—-vq)Vxdv=0 (9.13)
for the velocity perturbations dv. They describe a vorticity convection mode,

q,=nlv, (9.14)
and the familiar surface modes,

q,s=*k, (9.15)

of potential flow theory. In summary, the isobaric flow model supports five distinct perturbations, two
associated with the density, one with the vorticity, and two with potential flow. All these perturbations
become linearly coupled across the inhomogeneous ablation region. The problem is to determine the
eigenmodes that are evanescent on both sides of the ablation front.

9.1.5. Stability boundary-value problem

We will only briefly indicate how the eigenmodes and the corresponding growth rates can be
calculated. A rather complete discussion can be found in refs. {76, 77]. The isobaric fluid equations
(9.1a), (9.1b), and (9.4b) have been linearized about the steady state (9.7). This leads to a linear vector
system,

dy/dé=M-Y, (9.16)

with the definitions

p v, —dplp
P50,

y=|8p/p"~2380, +8p ,
Bp-/p—u+2 i

80, + (d/d¢€)(3p/p" ")
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0 -xp 0 —op’"’

—2xlp ap -k —kp'
M=|—0 K 0 _Fﬁp+2

-1/p 0 0 -p’

0 -k 0 K’

, (9.17)

o R oo O

3p=8plp,, dv,,=dv, Jv,, dp=>3dpl/(pv}),
oc=nxvl, k=kxlv,, T'=aylv;.

One should notice that the components Y, of the solution vector Y represent the perturbed fluxes of the
system. These variables are advantageous, since they are only slowly varying even if the density profile
becomes discontinuous. Actually, the matrix M contains no gradient terms, which would diverge in the
steep-profile limit. It can also be recognized that the general instability dispersion relation will be of the
form

o=o(k, I, v). (9.18)

The dimensionless growth rate o depends on the dimensionless wavenumber «x and the parameters I’
and ». These dependences will be addressed in the subsequent discussion.

We consider localized solutions of eq. (9.16), becoming evanescent at infinity £{— *o. These
boundary conditions can be imposed by use of the perturbation solutions discussed in section 9.1.4.
Asymptotically for § — +, the eigenmodes can be represented as a superposition of an ablation mode
(g,) and a surface mode (gq,). Asymptotically for £— —, a representation by an entropy convection
mode (gq,), a vorticity convection mode (q,), and a surface mode (g,) can be chosen. The eigenvalues
o are determined by the requirement that the eigenmodes approach these asymptotes.

9.2. Stability results

The ablative modifications of the classical RT instability will first be illustrated by analytic solutions
for a flow discontinuity. Subsequently, self-consistent results from the numerical stability analysis of
steady ablation profiles are presented. This section concludes with a brief discussion of the literature on
ablative stabilization and growth reduction.

9.2.1. Discontinuity model

We first discuss a simple mathematical model of the ablation front, replacing the steady-state profile
in eq. (9.16) by a flow discontinuity. A detailed analysis of this model has been described in ref. [76]. In
certain limiting cases, simple analytic results can be derived. They describe physically instructive
examples of the ablative stabilization of RT instabilities. Furthermore, these special solutions are
extremely helpful in testing the general numerical eigenvalue analysis. One should notice, that the
present results are rigorous weak solutions of the perturbation system (9.16). Of course, they do not
necessarily describe the stability behavior of the original steady ablation flow. Nevertheless, it may be
expected that the solutions for step-profiles and for self-consistent steady-flow profiles are at least
qualitatively similar. This conclusion will be basically confirmed by our numerical analysis.

The discontinuity model assumes constant flow variables p,, v,, x, in the half-space ¢ >0 and
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P2, Uy, X, 10 the half-space ¢ <0. These are related across the discontinuity ¢ =0 by the continuity
requirements (9.6) for pressure and mass flow. The only profile parameter is therefore the density ratio
R=p,/p,.

The perturbation solutions in both half-spaces can be matched by the continuity condition,

[¥]=0, (9.19)

for the flux vector (9.17). This condition applies for any transition profile, centered around ¢ =0,
provided its width 4 is only a small fraction of the penetration depth ¢~ of the perturbations. Because
of the presence of the steep ablation mode q,=~ —v,/y, = —1/L, inside the cold slab region, the
discontinuity approximation assumes the rather restrictive form A< L,.

Instability dispersion relations, derived from this model, can be recognized in fig. 34. They show the
variation of the growth rate N = n/k,v, as a function of the wavenumber K = k/k,, where k, = aa/v’
and « denotes the Atwood number as defined in eq. (3.2). The different curves correspond to different
profile-steps R and different parameters S = al’, while » = 2.5 is kept fixed. In all cases, the instability

107

1072

107 ¢ /ﬁ\\\\

102p=

L ]

10 107 10'7K 10" 10° 10

Fig. 34. Instability growth rate N = n/k v, versus wavenumber K = k/k, for a flow discontinuity with density ratio R = p,/p,. The wavenumber
k, = aalv! represents the largest cutoff in this model. The different curves correspond to different values of the instability parameter S = al”. They
increase with § in the convection regime § <1, and decrease in the diffusion regime $> 1. (a) § =107, 5x 10 0,01, 0.015, 0.02, 0.03, 0.1; (b)
$=107"107% 2x107% 3x 1073, 5% 107, 0.01, 0.05; (c) 107 107% 2x 107>, 4x 107, 6 x107%, 8 x 107, 5x 107*; (d) § = 0.1, 1, 10, 100, 1000,
10%, 10°. (From ref. [76].)
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growth rates reach a maximum and stabilization is found for sufficiently large K values. The following
limiting cases have been evaluated analytically.

(i) If kx,/v, <1, the thermal diffusion rate is negligible in comparison with the flow convection rate.
This limit leads to the simple dispersion relation

n=—kv,+Vaak, (9.20)

which describes the lower asymptotes (S— 0) in figs. 34a-34c. Here, the RT instability is stabilized by
the downstream flow v,. The growth rate (9.20) becomes zero at the cutoff wavenumber

k,=aalv}. (9.21)

The corresponding cutoff K, = k,/k, = R™* can be clearly recognized in fig. 34.

(ii) If kx,/v,>1 and ky,/v, <1, the discontinuity model describes thermal diffusion in the hot
ablation region, but still flow convection in the cold slab region. Taking this limit, the dispersion
relation can be written as

n=—kv, +Vaak. (9.22)

It has the same form as eq. (9.20), however, stabilization is now due to the upstream flow v,. This gives
rise to the larger cutoff k = k, or equivalently K, =1. Actually, all the cutoff values in figs. 34a-34c are
seen to fall in the interval between the lower boundary K, and the upper boundary K.

(iii) If kx,/v, > 1, thermal diffusion is dominant on both sides of the ablation front. Without further
approximations, the dispersion relation of this special case is still a complicated expression. However,
assuming o« > 1 the corresponding cutoff can be expressed in the simple form

ValL
k,=\/3al8v,x, = \3 ‘; L K,=V3I8T. (9.23)
i

It describes the decreasing sequence of growth rate curves in fig. 34d.

One should notice that the discontinuity model describes an increase of the stability boundary with I
in the convection regime I" < 1, a maximum around I"~ 1, and a decrease in the diffusive regime I' > 1.
This stability behavior will be essentially confirmed by the numerical calculations for self-consistent
ablation profiles.

9.2.2. Self-consistent ablation model

Next, the stability of the self-consistent isobaric steady state (9.7) is discussed, based on the results of
ref. [77]. We consider the dependence of the growth rate curves (9.18) on the parameter I for classical
conduction, » =2.5. Corresponding results are presented in fig. 35. The growth rate curves in fig. 35a
are similar to those of the discontinuity model in fig. 34. The growth is approximately classical at small
wavenumbers and approaches the ablative cutoff at large wavenumbers. The monotonic increase with
the parameter I in fig. 35 is due to the different normalizations of the wavenumbers.

The major result of this treatment is the stability boundary K = K(I") of the cutoff wavenumbers
K = kv?/a as a function of I. It can be recognized in fig. 35b as obtained from the present calculations
(solid curve) and from the discontinuity model of the ablation front (dotted curve). In the latter case a
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Fig. 35. Stability results from the isobaric ablation model with self-consistent steady-flow profiles. (a) Instability dispersion relations o = ¢(«) for
v =2.5 with I" varying between 0.005 and 100. (b) Instability boundary K, and wavenumber of maximum growth K. Comparison is made with the
sharp-boundary result X, for R = 10, the cutoff predictions from ref. [151], and the maximum growth rate from ref. [18]. (From ref. {77].)

step-ratio of R =10 has been chosen. The wavenumber region K > K(I') is stabilized by ablation. We
have also indicated the wavenumbers K, (I") of maximum growth (dashed curve). For K <K _, the
growth is approximately classical. Comparison is also made with a previous stability analysis of steady
ablation flows by Takabe et al. [151] and with a fluid simulation of laser ablation by Verdon et al. [18].
One can recognize rather close agreement of these data with the present isobaric instability description.
However, this consistency of results is only obtained when the proper ablation profile is used. The
step-profile predictions are qualitatively similar, but they can be quantitatively inaccurate.

To illustrate potential applications of these results, one has to relate the wavenumbers to the
thickness d = p,/p,a of the accelerated foil, yielding K = M3kd. Stabilization of the critical failure
modes kd ~1 is limited by the Mach numbers at the ablation surface, leading to the restrictive
constraint K < M* for the instability cutoff. For a specific example one may assume the typical values
kd=2-3, M,=0.1, K=0.02-0.03. Ablative stabilization will be most efficient if these K values lie
above the maximum growth rate K_ in fig. 35b. In principle, this is possible for both small and large I’
values, although the predictions for small I" may depend on extremely steep gradients. Radiatively
driven ICF shells will possibly allow large inhomogeneity scale lengths of the order of L/d
= M;I'~=0.5. Choosing again M, ~0.1, there follows the estimate I" =50 for the instability parame-
ter. In this parameter regime, the critical failure modes K =0.02-0.03 could be close to the ablative
cutoff. Of course, this simple model calculation requires confirmation by more complete fluid
simulations and by experiments.

9.2.3. Bibliographical notes

The stability of accelerated ablation fronts plays an important role in various applications. Although
we are mainly concerned with ablation in the ICF context, it may be of general interest that similar
phenomena in the interstellar medium, in star envelopes, and on the surface of meteorites and re-entry
bodies in the earth’s atmosphere have been discussed. There is also a close relationship in the physics of
ablation layers, flame fronts [152], and thermal convection cells [153].

The interest into ablative stabilization of RT instabilities goes back to the beginnings of laser fusion
research and, since then, has been extensively studied by many groups for more than 15 years. Some
major approaches to this problem have been concerned with (i) physical modeling, (ii) linear stability
calculations, (iii) two-dimensional fluid simulations, and (iv) experiments. In the following, we attempt
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to give an overview on some representative works in each of these categories. At present, such an
overview is necessarily incomplete and the conclusions can only be preliminary.

(i) A number of ablative stabilization mechanisms have been proposed in the past. Although a clear
distinction may not always be possible, the principle physical concepts seem to be based on one of the
following effects: (1) reversed pressure gradients, (2) sonic flow, (3) thermal smoothing, (4) fire-
polishing, (5) flow convection, (6) inhomogeneities. We will briefly discuss these points in turn and
thereby refer to some of the original works.

(1) It has often been argued that ablative instability growth is small, being restricted to a narrow
region of opposed pressure and dersity gradients. Typically, the maximum pressure is assumed
somewhat in front of the maximum density and only inside the region between these maxima opposed
pressure and density gradients exist. However, this argument is based on the stability criterion for a
hydrostatic equilibrium and it is therefore not necessarily valid in the presence of flow. It seems much
more reasonable to assume that the driving source of the instability is the release of effective
gravitational energy under an interchange of the steady-flow density. According to this criterion,
instability would result if the acceleration is directed along the density gradient irrespective of the
direction of the pressure gradient. Looking, for instance, at the pressure and density profiles in fig. 32,
it seems not very likely that the observed instability growth for long-wavelength modes can be caused
by the extremely narrow intermediate layer of opposed pressure and density gradients.

(2) Potential stabilization of RT instabilities by ablation was already recognized in an early
programatic paper on laser fusion by Nuckolls et al. [154]. In the absence of detailed calculations, a
dispersion relation of the general form

w =5k —ak, s=\pip, (9.24)

was postulated. It describes sonic modifications of the incompressible instability growth rate and
predicts stabilization for all wavenumbers kd = 1, where d = p/pa denotes the shell thickness. For most
present designs, this criterion appears to be too optimistic. It is also doubtful whether RT modes can
effectively couple their energy into sound waves. In the absence of flow, compressibility effects can be
shown to vanish for the most important case of free-surface modes. However, there may be applications
of eq. (9.24) in the case of supersonic ablation. For instance, it is known that KH instabilities can be
stabilized by supersonic flow.

(3) Transverse temperature perturbations decay by thermal diffusion at a rate of the order of yk’.
Physically, the transverse heat flow is directed from the areas of increased temperature to the areas of
decreased temperature. Thermal smoothing by transverse conduction is considered highly efficient in
producing the required illumination uniformity on the pellet surface, especially for radiatively driven
shells. On the other hand, the effect on acceleration nonuniformities in the RT instability is less well
understood. In the nonlinear stage of the RT instability, this effect may lead to partial ablation of the
colder spikes. In the absence of flow, the linear conduction effect was analysed by Catto [155] and by
Takabe and Mima [156]. It was found that the RT mode cannot be completely stabilized by this
mechanism, although reduced growth rates of the order of

d, In(p/p'"™)
a ——

n=
Xk’

(9.25)

are obtained at sufficiently large wavenumbers. In the isobaric model discussed above, the diffusive
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regime corresponds to large I' values. Stabilization resuits from the combined effects of diffusion and
convection, as expressed by the cutoff (9.23).

(4) A related, although somewhat different idea, is the fire-polishing effect. While thermal
smoothing is based on transverse heat flow, the fire-polishing effect assumes modifications of the
longitudinal heat flow. The temperature gradients will be steepened at the tip of the spikes in
comparison with the unperturbed steady-state gradient. Consequently, the spikes are expected to be
subject to stronger ablation. This would result in higher ablation pressures and stronger acceleration.
To our knowledge, the fire-polishing mechanism was not analysed in detail in the published literature.
It is discussed qualitatively in the work by Bodner [21] and was apparently suggested in an early work
by Leith. Fluid simulations of laser ablation indicate some saturation of spike growth, but it does not
seem to modify the evolution of bubbles in a significant manner [18].

(5) If the typical ablation velocity v is larger than the typical penetration velocity Va/k of RT
modes, the instability can be stabilized by flow convection. The requirement v =Va/k leads to the
typical cutoff wavenumber k = a/v’. It seems well consistent with most present stability results, if the
velocity v is chosen to be v ~3v,, where v, denotes the velocity at the ablation front. The convective
stabilization mechanism was first discussed by Bodner [21], based on a discontinuity model of the
ablation surface. Similar treatments have been discussed later by various authors [157-159]. An
overview on the different modeling assumptions in these works has been given by Manheimer and
Colombant [159]. While Bodner’s model describes convective stabilization with the upstream velocity
v = v,, the isobaric discontinuity model, described in section 9.2.1, can also account for larger velocities
up to the maximum ablation velocity v = v,.

(6) The effect of density inhomogeneities can be described by the classical instability theory as
discussed in section 6. To stabilize the typical failure modes (kd ~ 1) by density gradient effects, large
inhomogeneity scale lengths of the order of L ~d are required. This could be promising for future
indirect-drive pellet designs with large inhomogeneity scale lengths. To stabilize the growth of
long-wavelength nonuniformities (kd > 1), a low but finite density corona surrounding the pellet could
be advantageous to make use of the thin-shell effects described by the three-layer model in section 3.5.
Instability growth rates for typical shell structures have been calculated by Mikaelian [68] and by
Colombant and Manheimer [160]. The maximum possible reduction effects in inhomogeneous media
have been examined by Munro [130].

(ii) Although the simplifying descriptions of the ablative RT instability have greatly improved the
physical understanding, it also became apparent that only self-consistent stability treatments of
representative ablation flows could lead to definite answers.

Some of the first computational perturbation results have been reported in the year 1974. A linear
stability analysis of a laser-driven spherical implosion by Shiau et al. {161] showed significant growth for
small mode numbers (/= 1-10), while growth reduction could be observed for higher mode numbers
{(I=100). No attempt was made to correlate the observed amplification with RT growth rates, but it
appears much too large to be explained by classical growth increments. The stability of another design
has been studied by Henderson et al. [162], where no appreciable amplification could be found for low /
modes. In a third analysis, the steady-state ablation model was introduced as the basis of the stability
analysis by Brueckner et al. [163]. In a first attempt, stability was found over a wide range of
wavenumbers, but later these calculations have been found in error. Some corrected results showed RT
growth but with significantly reduced growth rates.

The stability of the steady ablation model was analysed more completely by Takabe et al. [151]. In
this work, the relationship between classical and ablative growth rates may have first been demon-
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strated in a convincing manner. At small wavenumbers, the classical RT instability was recovered but at
large wavenumbers an ablative cutoff was obtained. The maximum growth rate was found to be about
one-half of the classical free-surface growth rate. The isobaric ablation model, discussed in section
9.2.2, is an extension of this work to the larger class of ablation fronts distinguished by the parameter I".
Thereby a number of previous results could be explained and represented more systematically.

(iii) Most of the controversial conclusions in the early perturbation treatments could be clarified by
Lindl and Mead [20]. Their work describes the first complete fluid simulation of two-dimensional
instabilities in laser-fusion pellets. It discusses the conflicting requirements between pellet stability and
high gain. The basic stability limitations imposed by the most critical failure modes on the shell aspect
ratio and the pulse shape have been described. No evidence could be found for ablative stabilization in
typical low-adiabat implosions. The stability of the implosion studied before by Henderson et al. [162]
was attributed to a different pulse shape, leading to shock acceleration rather than optimized isentropic
acceleration.

A number of simulation studies of laser ablation has since confirmed the importance of RT-type
instabilities during the acceleration phase. In three independent calculations by McCrory et al. [18],
Emery et al. [22], and Evans et al. [23] ablatively reduced growth rates by a factor of =2 have been
consistently reported. These results appear also in reasonable agreement with the eigenvalue analysis of
the steady ablation model. Some more strongly inhibited growth rates have been reported for shorter
laser wavelengths (0.25 wm) but these findings could not be confirmed in later investigations [164].
More recent calculations by Tabak et al. [165] and Mikaelian [166] have given additional confirmation
for reduced ablative growth rates. Over a wide range of parameters, the calculated growth rates could
be fitted to eq. (9.20) with the values v, = 3v, and v = 0.9. Furthermore, it was demonstrated that the
ablation velocity v, can be varied to some extent by controlled radiation preheat. At higher preheat
levels ablation becomes stronger which correlates well with larger growth reduction effects. The
comparison with the steady-flow results should nevertheless be taken with caution. Steady flow
conditions have not been established convincingly in these calculations and the decisive steady flow
parameters can often not be determined unambiguously with the desired precision. We also mention a
computational study by Atzeni et al. [167], which shows interesting results on bubble evolution in a
nonuniformly driven compressible sphere.

(iv) In the past years, some experiments with laser-driven foils have confirmed the growth of RT
modes under various conditions. Although the diagnostic of the unstable evolution is difficult, much
progress has been made with X-ray backlighting methods. In experiments by Grun et al. [28], 10-11 pwm
thick polystyrene foils have been ablatively driven at a relatively low irradiance of (2-6) X 10'* W/cm®
with 1.053 wm laser light. The initial perturbation was imposed as a square wave profile at the rear side
of the foil with periods of 50, 100, and 150 wm. The longer-wavelength modes grew at their predicted
rates. No growth was observed at 50 pm. This unexpected feature has been partly attributed to
incoherent illumination (ISI) but its significance for ICF is still under investigation {166].

Similar experiments at higher irradiances have been performed by Desselberger et al. [33]. A 16 pm
thick plastic foil was irradiated with 0.53 um laser light at an intensity of 1.5 x 10'* W/cm”. The growth
rates of sinusoidal perturbations with periods of 30,50,70, and 100 pm have been measured. RT
growth was clearly exhibited in all cases, including the 50 wm perturbation. However, the growth rates
have been found surprisingly small, being only a fraction between 0.2 and 0.6 of the free-surface value.
No explanation of this strong growth inhibition could be given by the present computational modeling
of the experiment.

Another experiment was performed with the Nova laser system by Kilkenny et al. [32]. Using 15kJ
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of 0.35um light, foils have been accelerated indirectly by pressures exceeding 1 Mbar. The spatial
resolution was high enough to exhibit some nonlinear features for 50 and 100 um perturbations.
Bubble-spike asymmetry and second harmonic growth was observed. The growth rates could not be
related to simple scaling laws but they have been found in excellent agreement with computer
simulations including the effects of inhomogeneities and ablation.

At present there seems to be general agreement between theory, computations, and experiments on
a significant reduction of the classical RT growth rate in ablatively accelerated targets. To make further
use of the advantages of gradient and flow stabilization, indirect-drive designs with large density
gradient scale lengths and with a tolerable amount of radiation preheat seem promising for achieving
the goal of high gain in future ICF compression expetiments [168].
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