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The aim of this paper is to provide the user with tools for the solution of linear differential equations 
with random coefficients. Only analytic methods which lead to expressions in closed form for first 
and second order moments and probability distributions of the solution are considered. The paper 
deals both with approximate methods which require the existence of a small (or large) dimensionless 
parameter and with the method of model coefficients, where the true coefficients of the stochastic 
equation are replaced by random step functions with the same first and second order moments and 
probability distributions, chosen in such a way that the equation can be solved analytically. The 
second procedure does not rely on the existence of a small parameter. 

1. INTRODUCTION 

Consider a linear system subject to time dependent 
stochastic perturbations (both in the external forces and 
in the parameters). The evolution of such a system is 
governed by a set of linear differential equations with 
random coefficients (stochastic equations) of the form 

i,j = 1, ... ,n, (1. 1) 

where W is an element of a probability space n, the Xj 
describe the state of the system in an n- dimensional 
space and where the parameters (coeffiCients) Mj.(w; t) 
and the forces F j (w; t) are prescribed stationary 'ran­
dom functions of the time variable t. To simplify the 
notation, w will usually be omitted. In addition to Eq. 
(1. 1), a set of initial conditions is given (usually non­
random) 

Xi(W;O) = X? (1. 2) 

Examples of physical applications of linear stochastic 
differential equations are mentioned in the concluding 
section. Broadly speaking, by "solving" a stochastic 
equation we mean finding the statistical properties of 
the solution. Notice that most of the material covered 
in this paper can be extended to linear stochastic opera­
tional differential equations involving time dependent 
stochastic operators in an abstract finite- or infinite­
dimensional space. However, the more difficult problem 
of stochastic partial differential equations is not 
covered here (see, e.g., Refs. 1-3). 

When dealing with the linear stochastic equation (1. 1), 
it is convenient to introduce the Green's function G 
satisfying an equation which in matrix notations reads 

.!!:.... G(t, t') = M(t)G(t, t'), 
dt 

G(t' ,t') = I, (1. 3) 

where I is the identity matrix. In terms of G, the solu­
tion of Eq. (1. 1) with the initial condition (1. 2) may be 
written 

X(t) = G(t, 0) X(O) + fot G(t, t') F(t')dt'. (1. 4) 

The aim of this paper is to present the reader with a 
variety of methods which have proved to be useful in 
dealing with physical applications. We shall concentrate 
on analytic methods leading to exact or approximate 
solutions in closed form. Questions of existence, unique-
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ness, measurability, stability, etc., will not be considered 
here. 4 ,5,6 

It is useful to distinguish between two approaches: 
one either tries to find an approximate solution of the 
stochastic equation using the true random coeffiCients, 
or to find an exact solution using a model (e. g. , a Mar­
kov process) for the random coefficients. 

In Sec. 2, various approximation methods will be re­
viewed and their validity discussed. This includes the 
Born approximation, the static apprOximation, the Bour­
ret and related approximations (diffusion and Hashmin­
skii limits, Kraichnan direct interaction approximation). 
The concept of Kubo number, a measure of the effect of 
the stochastic perturbation over one correlation time, 
is introduced. 

In Sec. 3, it is shown that the mean Green's function of 
a linear stochastic differential equation can be obtained 
explicitly for a rather large class of random coefficients 
called kangaroo processes (KP) for which the Single time 
probability distribution and the two-time second order 
moments can be chosen in a rather arbitrary way. Par­
ticular attention is given to the validity of the approxima­
tion procedure where the true coefficients of a stochastic 
equation are replaced by KP coefficients. 

In Sec. 4, the calculations are extended to second order 
moments and probability distributions of the solution, and 
also to the inhomogeneous case. Nonlinear stochastic 
differential equations are also briefly considered in con­
nection with the Liouville equation approach. It is also 
shown that for certain conservative systems, the asymp­
totic probability distribution of the Xj(t) for t ~ co can be 
obtained explicitly from ergodic theory. 

Sections 2,3 (excepting part C), and 4 (excepting part 
A) can be read independently. 

Finally, we mention that, as far as the result are con­
cerned, there is quite a bit of overlap between this paper 
and other papers on linear stochastic differential equa­
tions, 7.8 especially in Sees. 1B and 3A. The distinctive 
features of this paper are that 
(i) many results usually obtained by Fokker- Planck 
techniques are here derived simply by averaging the 
equations and using the semigroup property of the 
Green's function; 
(ii) a large class of exactly soluble equations is obtained; 
(iii) the ranges of validity of the various methods are 
carefully examined and a guide for the user is given in 
the last section. 

Copyright © 1974 by the American Institute of Physics 524 
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525 A. Brissaud and U. Frisch: Linear stochastic differential equations 

2. APPROXIMATION PROCEDURE FOR 
LIMITING CASES. 

A. Short time perturbation expansions: The Born and 
mean Born 

We start from Eq. (1. 3) for the Green's function, 
written as 

:t C(t,t')=[Mo +M1 (t)]C(t,t'), C(t',t')=l, (2.1) 

where we have separated the stationary random matrix 
M(t) into its mean value Mo and its fluctuating part 
M 1 (t); Eq. (2. 1) is easily recast into the following integ­
ral form 

C(t t') = eMo(t-t') + ft eMo(t-t")M (t")G(t" t')dt" (2.2) 
, t' 1, 

which, when iterated, yields the well-known von Neumann 
series 

To study the convergence of this expanSion, we assume 
that M 0 and M 1 (t) are operators acting in a normed 
space. The norm of the vector X is denoted II X II. 
Furthermore, we assume that 

(2.4) 

This condition is satisfied if, e.g., Mo is anti-Hermitian 
or dissipative. In the rest of this paper we shall de­
note by a the order of magnitude of the fluctuations of 
the coefficients of the stochastic equation (1. 1). This 
can be measured, e. g. , by the largest dispersion of the 
coefficients of M(t) assumed to be finite. To avoid un­
necessary complications, we assume in this section, the 
much stronger condition 

II Ml (t) II ~ a (2.5) 

almost surely and for any t. It is then easily seen that 
the norm of the nth term in the perturbation expansion 
(2. 3) is less than 

It - t'l n an,. 
n. 

We conclude that the perturbation expansion is always 
convergent and that 

C(t, t') = eMo(t-t') + O( It - t' I a); (2.6) 

for moderate values of It - t' I a we can use the Born 
approximation 

C(t, t') = eMo(t-t') + ft~ eMo(t-t1) Ml (t1) eMo(t1-t') dt1 
+ 0[( It - t'l a)2]. (2.7) 

Consider now the mean Green's function (C(t, t'». 
Since (M1 (t» = 0, the second term in Eq. (2. 3) vanishes 
upon averaging. Expanding to second order we obtain 
the "mean Born approximation" 

(C(t t'» R:l eMo(t-t') + ft dt f t, dt eMott-t,) 
, t' 1 t' 2 

X (Ml(tl)eMo(tl-t2) M
l

(t
2

» e Mo (t2- t '). (2.8) 

At first sight, the validity of (2.8) as an approximation 
still requires I t - t' I a« 1. However, let us assume 
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that Ml (t) has a finite correlation time, i.e., that its 
autocorrelation is integrable; define the correlation 
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time T corr as the integral scale of the autocorrelation 
[roughly speaking, Tcorr is the time over which Ml (tl) 
and M1 (t2 ) are appreciably correlated]. Now, we notice 
that the major contribution to the double integral in (2. 8) 
comes from It 1 - t21 ;:; T corr; as a consequence the 
order of magnitude of the second term on the rhs of (2. 8) 
is only a 2T corr It - t' I and not a 2 It - t'12. Hence, the 
validity of the mean Born approximation requires 

a2Tcorr It- t'l« 1, 

which is weaker than It - t'l a « 1 provided that 
It- t'l» T corr ' 

(2.9) 

B. Weak perturbations: Bourret approximation, the white 
noise, and Hashminskii limits 

Clearly, when It - t'l a »1, the perturbation expansion 
is of little use. We now seek an approximate expression 
for (C(t1- t'» valid for arbitrarily large 1 t - t'l. 

Iterating the integral equation (2. 2) once averaging, 
we obtain 

We notice that 

(C(t, t'» = (C(t - t', 0» (2.11) 

which is a consequence of the stationarity of M 1 (t); we 
may therefore as well set t' = 0. Differentiating with 
respect to t, we obtain 

:t (C(t,O» = Mo(C(t,O» + fot(Ml(t)eMoU-t') 

x Ml (t') C(t', 0» dt'. (2.12) 

Bourret9 has proposed the follOwing closure approxima­
tion 

(Ml (t) e
Mo (t -t') Ml (t') C(t', 0» 

R:l (M
l 

(t) e Mo (t -t') Ml (t'» (C(t', 0» , (2. 13) 

originally obtained by him as a first order approxima­
tion on the basis of a diagrammatic expansion; 9 this 
approximation can also be obtained quite differently as 
will be shown below. 

Equation (2. 12) reduces upon use of (2.13) to a 
simple integrodifferential equation for (C(t, 0» which we 
shall call the Bourret equation: 

d
d (C(t, 0» = M 0 (C(t, 0» + f t (M

l 
(t) eMo (t -t') 

t 0 
x Ml(t'»(C(t', 0) dt', C(O,O) = L (2.14) 

Equivalent equations have been proposed by Keller10 

and Frisch 2;closed equations of this type for mean 
quantities are generally called master equations. Notice 
that the Bourret equation is easily solved by Laplace 
transformation. Indeed, defining 

(G(z» = fo co e iz t (C(t, 0» dt 

and 
K(z) = foco e iz t (M1 (t) e

Mot 
M1 (0» dt, 

we obtain 

(G(z» = [- iz - Mo - K(z)p. 

(2. 15) 

(2. 16) 

(2. 17) 
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Now we investigate the validity of the closure assump­
tion (2. 13). Let us assume that 

II G(t, 0) II ~ 1. (2. 18) 

This condition is usually satisfied, since in most applica­
tions Mo + Ml (t) is anti-Hermitian and, hence, G(t, 0) is 
unitary. It is known that any Green's function satisfies 
a semigroup property 

G{t',O) :::;:: G(tf , s) G(s, 0). 

From the preceding section, we have 

G(tf , s) = eMoU'-s) + O(a(tf - s». 

From (2. 18), (2. 19), and (2. 20) we obtain 

G(tf,O) = eMo<t'-s) G(s, 0) + O(a(tf - s». 

Assuming 

a It' - s I « 1, 

(2. 19) 

(2.20) 

(2. 21) 

(2. 22) 

we can write the lhs of (2. 13) in the following form: 

(M1(t)eMo(t-t
f
) M1(t')G(i',0» Rl (M1(t)eMoU-t')Ml(t') 

x eMo<t'-s) G(s, 0». (2.23) 

We now make the fundamental assumption that Ml (i) has 
a finite correlation time T corr ' For 

It' - s I» Tcorr (2.24) 

the stochastic Green's function G(s, 0), which is a func­
tional of M 1 (T) for ° < r < s, is only very weakly corre­
lated to M 1 (tf) and M 1 (t)(i > if). It is therefore legitimate 
to factorize the rhs of (2. 23) to obtain 

(M
1
(t)e Mo (t-t

f
j Ml(tf)G(tf,O» Rl (M

1
(t)e Mo (t-t

f
) Ml(tf» 

x (e Mo (&'-5) G(s, 0» . (2. 25) 

Using again (2. 20), we obtain the desired closure approxi­
mation (2. 13). 

The compatibility of (2. 22) and (2. 24) obviously re­
quires 

K = a Tcorr« 1. (2.26) 

The dimensionless number K, sometimes called the 
generalized Reynolds number, 2 will be called the Kubo 
number I because it was first introduced by KUbo. 11 

In deriving the Bourret equation we implicitly assumed 
t » Tcorr; tUis is indeed a consequence of i> t' > s > ° 
and of (2.24). In fact, the Bourret equation is also valid 
for small times since it can be checked that the pertur­
bation expansion solution of Eq. (2. 14) agrees with the 
mean Born approximation (2.8) up to the order of a2• 

It is interesting to notice that the closure approxima­
tion (2. 13) and the Bourret equation become exact, what­
ever the Kubo number, if M 1 (t) is of the form 

(2. 27) 

where m(t) is a dichotomic Markov process (also called 
random telegraph process) and L1 is a constant matrix. 12 

Recall that the dichotomic Markov process is defined as 
a step function with values ± 1, the transitions occurring 
at Poisson distributed times; this process is a speCial 
case of the KAP introduced in Sec. 3A. 

J. Math. Phys., Vol. 15, No.5, May 1914 
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The Bourret equation (2.14) is a "non-Markovian" 
master equation, i. e. ,the derivative of {G (t, 0» involves 
an integral over past values of the mean Green's function. 
Yet, the Bourret equation can be used as starting point 
for the derivation of various Markovian approximations 
which we shall now consider. 

For t » T corr the Bourret equation can be reduced 
to the following Markovian form, first given by Kubo: l1 

:t (G(t, 0» = (Mo + fooo (M1(s)e
M05 

M 1(0)e- MOS
) dS) 

X (G(t,O», (G(O,0» == I. (2.28) 

To derive Eq. (2. 28) from the Bourret equation (2.4), we 
notice that, as a consequence of K« 1, we have for 
It- tf 1< Tcorr 

G(t'O) Rl e -Mo(t -t') G(t, 0). (2. 29) 

To obtain (2.28) we then put t - t' :::;:: S and integrate 
over s from zero to infinity, rather than from zero to 
t; this is legitimate provided that the covariance of 
M1 (t) is integrable, since the integrand will be negli­
gible for t» T corr' 

The Kubo equation (2. 28) has two limiting cases which 
actually cover all situations as we shall find later. First, 
the white noise limit: write M 1(t) = aMi (t/Tcorr) and 
let Tcorr ~ 0, a ~ co in such a way that a 2 Tcorr ~ D. 
It is easily seen that in this limit the factors e±Mos in 
Eq. (2. 28) cancel out and that the Kubo equation goes over 
into 

:t (G(t,O» = Mo{G(t,O» + D fooo (Mi(s) Mi(O» ds{G(t, 0». 
(2.30) 

Since, in the white noise limit, the Kubo number K = aTcorr 
goes to zero, Eq. (2. 30) becomes exact. (Notice that, 
whereas the amplitude of white noise is infinite, its 
strength, measured by the Kubo number, is zero.) In 
Ref. 13 the reader will find another derivation of a 
master equation equivalent to (2. 30) which uses the 
fact that white noise can be defined as the limit of shot 
noise. 

We turn now to the Hashminskii limit. If we let the 
strength a of the stochastic perturbation go to zero, the 
variations of the Green's function over a finite time 
interval will be entirely due to Mo. We now factor out 
the variation to M 0 by introduCing the "interaction rep­
resentation" 

(2. 31) 

Then, we let t ~ co in such a way that a2 t remains finite; 
this results in a finite variation of (G I)' Indeed, writing 
M1 = aMi and t = T/a2 , we find that in the limit a ~ 0, 
the Kubo equation (3. 28) goes over into the Hashminskii 
equation 

~ (GI(r,O» = H(G/(r, 0» , 
dr 

wherein 

(2. 32) 

H = lim e -MOT/02 fooo (M1 (s) eMos M1'<0) e-MOS) ds e +Mo T/02. 

0->0 (2.33) 
.. f th . -M T/n 2

A +M T/02 LImIts 0 e form llmo-> 0 e 0 e 0 are fre-
quently used in the quantum mechanical theory of S mat­
rices. 14 The existence of the limit requires that M 0 be 
anti-Hermitian; it is then easily checked that H com­
mutes with Mo (hint: take a representation where Mo is 
diagonal). This result greatly simplifies the resolution 
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of the Hashminskii equation. 15 other derivations of the 
Hashminskii equation, based on Fokker- Planck tech­
niques may be found in Refs. 16 and 17. 

Let us now investigate more closely the validity of 
the white noise equation (2. 3D) and the Kubo equation 
(2. 28); we see that the only difference is the drop out 
of the factors e±Mos. Since the integral over s extends 
over roughly one correlation time T corr ' we may 
safely neglect the exponentials if the following condition 
is fulfilled 

II Mo II Tcorr « 1. (2. 34) 

For the Hashminskii limit the problem is somewhat 
more difficult. Consider the Kubo equation (2. 28); the 
first operator Moon the rhs, which is usually anti­
Hermitian, does not contribute to the relaxation of the 
mean Green's function as t ~ <Xl. This relaxation comes 
entirely from the second operator 

(2. 35) 

By dimensional analysis we find that this operator is of 
the order of a2Tcorr' Hence, the relaxation time trel 
must be of the order of (a2Tcorr)-I. If we now rewrite 
the Kubo equation in the interaction representation, we 
obtain 

~ (C I (t, D) = e - Mot Re + Mot (C I (t, D) ) . (2. 36) 
dt 

-M t +M t . 
If t is large enough we can replace e 0 Re 0 by Its 
limit for t ~ <Xl which is precisely the Hashminskii 
operator H (within trivial changes of notations). Now the 
times t of interest are of the order of trel f':j (a2Tcorr)-I, 
hence the condition to be fulfilled is 

(2.37) 

If we recall that K = aT co r« 1, we find that one of the 
two conditions (2. 34) and (2. 37) is automatically satis­
fied; there is even some overlap. We thus arrive at the 
important conclusion that if the Kubo number is small 
and if t » T Corr it is always possible to use one of the 
two white noise and Hashminskii limits. 

Remark: KraichnanI8 has proposed another master 
equation for the mean Green's function called the direct 
interaction equation. With 

.E:.... (C(t,D) = Mo(C(t,D) + f (MI(t)(C(t- t',D) 
dt 0 

x MI (t') (C(t', D) dt'. (2. 38) 

This nonlinear equation is an exact consequence of 
Kraichnan's random coupling model. It can also be ob­
tained from the theory of parastochastic operators. 3 
The usefulness of the Kraichnan equation as an approxi­
mation is questionable. For small values of the Kubo 
number, the Kraichnan equation is equivalent to the much 
simpler Bourret equation, and for large values of the 
Kubo number, it can no longer be used as an approxima­
tion. For linear stochastic ordinary differential equation, 
a much more powerful method will be described in the 
subsequent sections. Nevertheless, the Kraichnan method 
of stochastic models, the essence of which is to intro­
duce an additional stochastic element into the equation 
to make it tractable, remains very useful in dealing with 
nonlinear stochastic equations, particularly in the field 
of turbulence. 19- 2I 

J. Math. Phys., Vol. 15, No.5, May 1974 
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C. Strong perturbations: The static approximation 

The Bourret equation is limited to the case when the 
effect of the stochastic perturbation over one correla­
tion time is weak, i.e., when aTcorr « 1. In the opposite 
case, 

K = aTcorr » 1, (2.39) 

the mean Green's function (CU, D) can be substantially 
affected by the stochastic perturbation for times t satis­
fying 

t« T corr ' (2.4D) 

Since the stochastic operator M(T) undergoes insignifi­
cant changes for D;£ T ;;;; t « T corr ' we may as well 
neglect its time dependence (but not its randomness) and 
integrate Eq. (1. 3) to obtain 

(C(t,D) f':j Cs(t) = (exp{tM}). (2.41) 

C s(t) will be called the static mean Green's function. It 
is often useful to deal with the static resolvent, the Lap­
lace transform of the static Green's function 

(2.42) 

The explicit calculation of G s(z) requires only a matrix 
inversion and an averaging over the probability distribu­
tion of the coefficients of M. 

At first sight, the static approximation is restricted 
to t« T corr ' However, in many problems, the mean 
Green's function is damped by phase mixing or dissipa­
tion for t ~ <Xl. If the damping time is small compared 
to T corr ' the static Green's function can be used to des­
cribe the full relaxation. An example is provided by the 
pseudO-OSCillator discussed in Sec. 3C. 

3. THE METHOD OF MODEL COEFFICIENTS 

From the preceding chapter, we know that the Born 
approximation is limited to short times and that the 
Bourret and static approximation are limited to respec­
tively small and large Kubo numbers. Such approxima­
tions are of no use if the Kubo number is of the order 
of one and if it is necessary to follow the evolution of 
the mean Green's function over times long enough so 
that there is an appreCiable damping by phase mixing. 
There is thus need for a method which puts no restric­
tion on the Kubo number; of course, the results of Sec. 2 
should be recovered in the corresponding limits . 

If we recall that the Bourret equation involves in an 
essential way the two time second order moments (cova­
riance) of the stochastic coeffiCients, whereas the static 
Green's function involves the Single-time probability 
distribution of the coefficients, it is clear that an approxi­
mate master equation for the mean Green's function 
should involve both the probability distribution and the 
covariance. It turns out that it is possible to construct 
a class of stepwise constant Markovian random functions 
with arbitrary probability distributions and rather arbi­
trary covariances. Such functions, when used as coeffi­
cients in a linear stochastic equation, lead to a closed 
analytic expression for the mean Green's function. 

A. The Kubo-Anderson process (KAP) 

The Kubo-Anderson process (KAP) is a stepwise 
constant random function which jumps at randomly 
chosen times between random step-values. The times 
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t1> t2 , • •• will be called jumping times. A more precise 
definition will be given below. The KAP has been intro­
duced in connection with nuclear magnetic resonance22 .23 
and introduced again, in a special case, by Bourret24 as 
a tool for linear stochastic equations (see also Ref. 25). 

Definition: The step-wise constant random function 
m(t) is called a Kubo-Anderson process (KAP) if the 
jumping times ti (i = - <Xl, ••• ,+ <Xl) are uniformly and 
independently distributed in (- <Xl, + <Xl) with density v 
(Poisson distribution) andm(t) is a constant,m(t)=m i , 

for ti ~ t < t i +!; the m~ are independent random vari­
ables with the same probability density P(m). 

We notice that m(t) is a stationary Markov process 
with probability density P(m). Assuming (m) = D for 
simplicity, we obtain for the covariance of m(t) 

(m(t)m(t/» = (m 2 ) e- V I I-t' I. (3. 1) 

We see that for a KAP the probability density P(m) and 
the correlation time 

(3.2) 

may be chosen arbitrary, but not the functional form of 
the covariance, which is always exponential. 

We shall now show that the linear stochastic equation 

d~ G(t, D) = M(t) G(t, D), G(D, D) = I, (3.3) 

can be solved analytically for the mean Green's function 
provided that the coefficients of the stochastic matrix 
are KAP's with all the same jumping-times or, in short, 
when M(t) is a KAP. 

If there is no jumping-time between D and t,M(T) re­
mains constant for D ~ T ~ t and we are back to the 
static case (Sec. 2C). The probability of this event is 
e-vt and the corresponding contribution to (G(t, D» is 

(G(t, D»oo jump = e-vt (e tM ) 

= e-vt G s(t). (3.4) 

In the opposite case, let t' denote the last jumping-time 
before t. It is a well-known property of the Poisson pro­
cess that the probability for this jump to occur between 
t' and t' + dt' is ve-v(t-t') dt'. USing the semigroup prop­
erty of the Green's function, G(t, D) = G(t, t') G(t', D), we 
can write the corresponding contribution to (G(t, D» as 

(G(t, D» jumps = fot ve-v(t -t') (G(t, t'l G(t'D» t' dt' , (3. 5) 

where ( .) I" is a conditional average knowing that a jump 
occurred at t'. Using the fact that M remains constant 
between t' and t and that its value is independent of the 
values of M(T), D -::;. T ~ t', and therefore also independent 
of G(t', D) which is a functional of M(T), we obtain 

(G(t,t')G(t',D»t' = Gs(t- tl)(G(t',D»t" (3.6) 

We claim that 

(G(t',D»t' = (G(t',D». (3. 7) 

Indeed, the knowledge that a jump occurred at t' imposes 
no constraints on previous jumping-times and previous 
values of M(T). Adding the contribution of (3.4) and (3. 5) 
and using (3.6) and (3. 7), we obtain the Kubo-Anderson 
master equation 

(C(t,O)\AP = Cs(t)e-vt + v fot e-vt(t-t') Cs(t- t') 

x (C(t',O)KAP dt'. (3.8) 
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This master equation can be solved for the mean re­
solvent, the Laplace transform of the mean Green's 
function, 

(G(Z»KAP = fooo eizt(G(t,D»KAP dt. (3.9) 

The solution reads 

(G(z»KAP = [1- vGs(z + iv)pGs(z + iv), (3. 1D) 

where the static resolvent Gs(z) is given by Eq. (3.3). 
Another derivation of the master equation may be found 
in Ref. 25 where the KAP is called the Poisson step 
process. 

Equation (3. 1D) constitutes a strikingly simple result: 
the KAP resolvent is an algebraic function of the static 
resolvent; it turns out that in many applications, the quan· 
tity of interest is the resolvent and not the Green's 
function itself. 25.26 

Remark: The KAP can be slightly generalized to 
include the case of jumping-times selected according 
to a compound Poisson process, i.e., when the density 
v(t) is a (deterministic) function of the time. A straight­
forward modification of Eq. (3. 8) yields 

(G(t,D» = Cs(t)exp(- f~ v(T)dT) + fot dt' V(t') 

x exp(- J:~ v( T) dT) C s(t - t'l (C(t ' , D». (3. 11) 

This equation may be useful in the study of nonstation­
ary processes. 

B. The kangaroo process (KP) 

We recall that a KAP has an exponential covariance. 
The study of the problem of stochastic Stark broaden­
ing,25 where the covariance is proportional to lit and 
is not even integrable, has led us to modify the KAP by 
requiring that the frequency of jumping times is a func­
tion v(m) of the value of the process itself. The new 
process is called a "kangaroo process" (KP). 

Definition: A KP is a step-wise constant Markov 
process27 with stationary transition probability given 
for infinitesimal time intervals by 

P Ir(m, At I m ' , D) = {I - v(ml)At}o(m ' - m) 

+ v(m') ilt Q(m), (3. 12) 

where Q(m) is a given probability denSity. 

P Ir dm is the probability that the kangaroo process at 
time ilt is between m and m + dm knowing that it was equal 
to m' at time D. The meaning of Eq. (3. 12) is clear: 
{I - v(m/) At} is the probability that no jump occurred in 
the time interval (D, ilt) and v(m') ill the probability that 
at last one jump occurred. Immediately after such a 
jump, the probability denSity of m becomes Q(m). We 
stress the fact that Q(m} is not the stationary probability 
density of m(t}. Indeed, the Fokker-Planck equation27 
for the kangaroo process reads 

oat P(m, t) 

= lim {fPtr(m,iltlm',D)P(m',t)dm'-P(m,t)}/ilt 
L>t"'O 
D.t ~o 

= - v(m)P(m, t) + Q(m) f v(ml)P(m ' , t)dm ' . (3.13) 

Hence, the stationary probability density P(m) of met) is 
related to Q(m) by 
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529 A. Brissaud and U. Frisch: Linear stochastic differential equations 

Q(m} = v(m}P(m}! J v(m'} P(m'} dm' = v(m}P(m}!(v). 
(3. 14) 

Next, we evaluate the covariance of a KP. The calcula­
tion of r(t} = (m(t) m(O}) requires the summation of a 
series to take into account the possible occurrence of an 
arbitrary number of jumps between 0 and t. Mter some 
algebra we obtain for the Laplace transform 

(3. 15) 

the following result 

- < m
2 

\ 1 < m \2 
r(z} = v(m} - izls - iz( v(m}![ v(m) - iz ])s v(m) - iz Is' 

(3. 16) 
In many cases, e.g., if P(m} and v(m} are even, we have 

(m!(v(m) - iz»s = 0 or, equivalently, (me-v(m)l)s=O; 

then, the above result simplifies to 

f'{z) < m
2 

> v(m} - iz s 
(3. 17) 

or 
r(t} 1

+00 
m 2 e-v(m)1 II P(m}dm, 

-00 
(3. 18) 

which is just an ordinary variance conditioned by the 
probability e-v(m)1 that no jump occurs between 0 and t. 
The interesting point, about formula (3. 18) is that it can 
easily be inverted: Given P(m} and the covariance r(t}, 
the jumping frequency v(m) can be calculated as follows. 
Assume that v(m} is a monotonic increasing function of 
I m I such that v (co) = co; this is a reasonable assumption 
since in most applications very strong values of the 
stochastic perturbations last only for a very short time. 
Taking v as new integration variable, we obtain 

r(t} = 2 Jv7o) m 2 P(m} ~~ e- V I I I dv (3. 19) 

which is essentially a Laplace integral. A calculation of 
v(m} requires the inversion of the Laplace transforma­
tion and the solution of a simple differential equation. 
An example may be found in Ref. 25 (Sec. 5). In connec­
tion with this inversion, Table I gives some useful re­
sults. Notice that the inversion is not always feasible. 
Indeed, from (3. 18) we see that the derivative of the 
covariance is necessarily discontinuous at the origin; 
we do not know whether this is a sufficient condition for 
inversion. We conclude that it is always possible to 
construct a KP with an arbitrary probability distribution 
and a (quite) arbitrary covariance. 

A linear stochastic equation with KP coefficients can 
again be solved implicitly for the mean Green's function. 
Indeed, the KP resolvent can be put in the following form: 

TABLE 1. Kangaroo process: expression of the jumping frequency 
v(m) in terms of the one-time probability distribution P(m) for 
several types of covariance r KP (t). 

To obtain 
rKP(t) = (m(t)m(O»)KP = 

r(l/n) 

It I lin 

a 2/(1 + I t I) 

a2 1 - I t I e- n 
1 t 1/2 

1 + (2 

a2Itl+e-nltl/2 

1 + t2 

Use 
v(m) = 

(2 J~m 1 m2P(m)dm)" 

( J'" dm) -log 2 m 2P(m)-
1m I a2 

Remarks 

r(·) is the 
gamma func­
tion. P(m) even 

P(m) even 

arc COS(2 J'" m 2p(m)dm\ P(m) even 
Iml a2/ 

arc sin [2 f' m 1 m 2p(m) dml P(m) even 
o a2] 
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(C(Z»KP = (C)s + (vG)s{(v(J- vC»s}-l(vC)s' 

where v denotes v(M} , 

G = {[v(M} - iz] J- M}-l, 
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(3. 20) 

(3. 21) 

and ( ')s denotes the averaging over the stationary dis­
tribution of M (static averaging). Again, the resolvent is 
expressed in terms of purely static quantities. A proof 
of Eq. (3. 20) may be given which parallels the proof for 
the KAP given in Sec. 3A. Another more constructive 
proof will be found in Ref. 25, Sec. 4. 

Remark 1: In some applications the stochastic 
operator M(t} appears naturally as the sum of two (or 
more) processes with quite different correlation times. 
To deal with these Situations, a compound KP has been 
defined and the corresponding mean resolvent has been 
calculated (cf., Ref. 25, Sec. 6). 

Remark 2: The KP has a non-Markovian generali­
zation which allows an arbitrary probability distribution 
for the step-length, still conditioned by the step-value of 
M. Let 

B(M, t} = prob{t i +1 - ti ~ t I M(T} = M for ti < T < t i+1} 
(3. 22) 

be the conditional probability distribution of any step­
length .. Let Q(M} and P(M} denote respectively the proba­
bility density of step-values and of the stationary pro­
cess M(t}; they are related by 

(3. 23) 

where ( .. ')s denotes averaging over P(M). With these 
notations the resolvent is again expressible in closed 
form as 

(C(z» = L z (It 00 C(M, T}dT) + L.[C(M, t}] 

x lLz[(O(t} + %t} C(M, t~ \ -1 L z [C(M, t}] 

with 
C(M, t} = B(M, t}! fo 00 B(M, T} dT 

and 

C. The method of model coefficients used 
as approximation 

(3. 24) 

(3.25) 

(3.26) 

We have seen in Sec. 2 that for weak (resp. strong) 
perturbations, the mean Green's function of a linear 
stochastic equation depends essentially on the covari­
ance (resp. the probability density) of the coefficients. 
The question naturally arises how close the KP solution 
will fit the true solution when the true coefficients are 
replaced by KP's with the same probability distributions 
and covariances. 

Let us first check that the KP solution (3. 20) is in 
agreement with the true solution for short times satis­
fying ta « 1. To the lowest nontrivial order, the mean 
Green's function is then given by the mean Born approxi­
mation (2.8) which involves only the covariance of Ml (t). 
Hence, for short times, the mean Green's function depends 
only on the covariance of Ml (t). 

We show now that the KP solution (3. 20) reduces in­
deed to the previously obtained approximations of Sec. 2 
for very weak and very strong perturbations. We recall 
that the strength of perturbations is measured by 
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530 A. Brissaud and U. Frisch: Linear stochastic differential equations 

K = aTcorr ~ a/(v), where a is the order of magnitude 
of the fluctuating part of M(t). We thus obtain the limit 
of very strong perturbations by letting v(M) ~ 0. In this 
limit the KP resolvent (3. 20) reduces obviously to 
G s(z), which is the static resolvent; this is in agreement 
with the result of Sec. 2C. . 

To study the opposite limit, we write 

M(t) = Mo + aMi(t) and v(M) = 7;~rr vf(Mj). (3. 27) 

As in Sec. 2B when deriving the white noise limit, we let 
Tcorr ~ 0, a ~ 00, a2 Tcorr ~ D, and obtain from 
equation (3. 20) 

(G(z»KP = [- izI - Mo - D(Mi2/ vf (M])]-1 

(diffusion limit). (3.28) 

This is equivalent to the following master equation 

.E.. (G(t, O»KP = (Mo + D 1000 

(Mi(r) Mi(O»KP dr) (G(t, O»gp 
dt (3. 29) 
which is identical with the white noise limit (2. 30). 

Remark: The proof given here that the KP is cor­
rect in the limit of weak perturbations relies implicitly 
on the assumption that the covariance of M(t) is integ­
rable. In Refs. 25 and 28, we have checked, in a special 
case, that the KP can still be used as an approximation 
when the covariance is proportional to l/t. 

So far we have only checked the agreement between 
the KP solution and the exact solution in limiting cases. 
In intermediate range of moderate perturbations, it is 
very difficult to draw any general conclusions. Special 
cases have been investigated which show indeed very 
good agreement; in particular, when the KP is applied 
to Stark broadening of spectral lines. 25-28 As a quanti­
tative test for the validity of the intermediate range, we 
have compared the true and KP solutions for a randomly 
frequency modulated pseudo-oscillator satisfying the 
scalar equation 

:t g(t,O) = im(t)g(t, 0), (3. 30) 

where m(t) is a real zero mean value stationary Gaussian 
process with covariance (m(t)m(t f» = a2e-vlt-tfl. 

Equation (3. 30) has an exact solution2 

(g(t, 0» = exp{- K2 [t1 + e- t1 - I]} (3.31) 

with K = a/v and tl = vt. The corresponding exact re­
solvent can be written as 

( 
- 2 ~ (- K2)n 
g(Z»E = eK L..J • 

n~O n!(n - iz + K2) 
(3.32) 

The KP resolvent for the same problem reduces to a 
KAP resolvent, since the covariance of m(t) is an expo­
nential. 

The KP resolvent reads 

(i(z) )KP = (1 - iz - iKm 
1- iz - iKm 

.1 e- m2
/
2 dm . 

1- iz - iKm 
(3. 33) 

The real parts of (i(Z»E and (i(z)KP for z real, i.e., 
the Fourier transform of (g(t,O»E and (g(t,O»KP,have 
been calculated numerically for different values of the 
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Kubo number K and plotted as a function of z: results 
are shown on Fig. 1. For small and large values of K, 
the agreement is almost perfect. In the intermediate 
range K ~ 1 the discrepancy is at most 10%

, 

D. Stochastic equations with Markovian and shot 
noise coefficients. 
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The KAP and the KP processes constitute special 
cases of Markov processes. A general theory can be 
given for linear stochastic differential equations with 
Markovian coefficients,2 based on the fact that the joint 
process {M(t), G(t, D)} is also a Markov process; this 
leads to a Fokker- Planck or a Chapman-Kolmogorov 
equation for the joint probability density. This method 
should not be recommended since it leads to rather 
complicated partial differential or integral equations 
for which closed analytic solutions are generally not 
available. 

Another case worth mentioning has been considered 
by Blume. 29 The coefficients are taken in the form of 
shot noise 

+00 

M(t) = Mo + 6 Mi 6(t - til, (3. 34) 
-00 

where the t;' s are Poisson- distributed with denSity v and 
the M;' s are independent identically distributed random 
matrices. This case, which is very similar to the KAP, 
leads to the following resolvent: 

(G(z» = [- iz - Mo + v(I - (expM» ]-1. 

4. CALCULATION OF VARIOUS STATISTICAL 
QUANTITIES 

(3. 35) 

A. Simultaneous and time-displaced second·order moments 

By second-order moments, we understand the quanti­
ties (Xi(t) XP» or, in short, (X(t) €I X(t». We notice 
that, for zero, the right-hand side in Eq. (1. 1) we have 

(X(t) €I X(t'» = (G(t,O) €I G(tf,O» (XO €I XO), (4.1) 

by definition of the tensor product of two matrices. 

Let us first consider the case of simultaneous mo­
ments, i.e., t = tf. We introduce the double Green's 
function 

g(t, tf) = G(t, tf) €I G(t, tf). (4.2) 

Differentiating (4. 2) with respect to t and using the fun­
damental stochastic equation (1. 3), we find that g(t, tf), 
satisfies another linear stochastic equation, namely 

:t g(t,tf)=~(t)g(t,tf), g(t,t f) = I, (4.3) 

where 

~(t) = M(t) €I 1+ I €I M(t). (4.4) 

Clearly, Eq. (4. 3) is a linear stochastic equation of the 
standard form. Hence, the calculation of simultaneous 
second-order moments has been reduced to the calcula­
tion of first-order moments. 30,31 

The calculation of time- displaced moments of the 
form ( G(t, 0) €I G(tf, 0» is somewhat more involved, ex­
cept when the random coefficients are of white noise 
type (i. e. ,have zero correlation time). Indeed, assuming 
that t :? t', which is no loss of geI1erality, and using the 
semigroup property, we have 

(G(t,O) €I G(t', 0» = (G(t, t') G(t', 0) €I G(t', 0» . (4.5) 
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Using the independence of G(t, t') and G(t' , 0) which are 
functionals of M(T) for t ~ T ~ t' and t' ~ T ~ 0, res­
pectively, we finally obtain 

(G(t,O) 181 G(t' , 0» == (G(t - t ' , 0» ( g (t ' , 0», (4. 6) 

which is a shorthand notation for ( G) 181 I) ( g ) . 
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__ Exact solution 

K= rr/v= 10 
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C 
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FIG. 1. Comparison of the exact mean resolvent and of its KP 
approximation for the randomly modulated pseudo-oscillator defined 
in Section 7. 

a: K = a/v = O. 1: the agreement is perfect. 
b: K = a/v = 1: the discrepancy is at most 10°.(,. 
c: K = a/ v = 10: the agreement is perfect. 

The general case can also be dealt with if we assume 
that M(t) is a KAP. The essential idea is to notice that 
the KAP is a Markov Process. It follows that if M(t') is 
given, the past (T < t') and the future (T > t') become 
independent. If we define the conditional mean Green's 
functions (G(t,t';M)c and (S(t,t';M)c,conditioned by 
M(t' ) == M, we obtain, using (4.6), 

(G(t, 0) 181 G(t', 0» = «G(t, t'; M)c (S (t, t'; M»c) M , (4. 7) 

where ( ')M denotes an averaging over the probability 
distribution of M (static averaging). It remains to calcu­
late the conditional mean Green's function. First, we 
notice that from stationarity 

(G(t, t';M»c = (G(t- t',O;M»c' (4.8) 

Denoting by (C(z;M»c and (g(z;M» the Laplace trans­
forms of (G (t, 0; M» c and (S (t, 0; M)>C , we easily obtain, 
using the same method and notations as in Sec. 2C 

(C(z;M»c = [1- IIG S (z + ill)J-l (- iz + II - ~rL)-l (4.9) 

and, similar ly , 

This method, which is somewhat reminiscent of a method 
introduced by Morrison and McKenna30,31 may lead to 
rather tedious calculations. A much Simpler method is 
described in Ref. 11 for the special case when M(t) is of 
the form 
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532 A. Brissaud and U. Frisch: Linear stochastic differential equations 

M(t) = Mo + m(f) L l , 

where m(t) is a dichotomic Markov process (random 
telegraph process). 

B. I nhomogeneous equations 

In general, because of dissipation, the solution of a 
linear stochastic equation with initial conditions and no 
rhs relaxes to zero as t ~ co (there is, however, a no­
table exception for conservative systems, see Sec. 4C). 
A nonzero stationary solution may be obtained in the 
presence of a random rhs (random driving forces). In 
this section we shall therefore be concerned with the 
inhomogeneous case 

d 
- X;(t) = ~ M;/!)Xj(t) + F;(t); i,j = 1, ... ,no 
df J (4. 11) 
M; .(t) is a stationary random matrix as before, and the 
F Jt) constitute a set of stationary random functions in­
dependent of the M;/f)' S. For the sake of simplicity we 
shall assume that Fi(t) is a real zero mean value white 
nOise, i. e., 

(4. 12) 

where S;j is a constant positive definite matrix. 

In order to get stationary solutions we assume that 
M;/t) has a dissipative part, so that 

lim G iJ· (t, t') = 0, (4.13) 
t- 00 

where Gij(t, t') is the random Green's function defined 
by (1. 3). In terms of the Green's function we may write 
the solution of (4. 11) as 

X;(t) = ~ G ij(t, 0) XJ + J t ~ G ij(t, t') FP') dt'. (4. 14) 
j 0 J 

We shall be interested in the statistical properties of 
X(t) for t ~ co, and especially in the first- and second­
order moments. 

Taking the average of (4. 14) and using (4. 12) and 
(4.13), we obtain 

lim (X.(t» = 0. (4.15) 
t~oo 2. 

Let us now evaluate the time displaced second-order 
moment, 

(4.16) 

From (4. 14), we obtain, using (4. 13) and the indepen­
dence of the Green's function and the driving forces, 

r;j(T) = lim fot fot+T ~ (Gi,.(t,t')Gjm(t + T,t"» 
t-+oo nm 

X (Fn(t')F m(t"» dt'df". (4.17) 

Finally, using (4.12) and the fact that 

(Cin(t,t')Cjm(t + T,t'» = (Cin(s,O)Cjm(s + T,O», 

s = t - t', (4. 18) 

we obtain 

r;/T) = fooo ~ (G;n(s,O)Cjm(s + T,O»ds Snm, (4.19) 
n,m 

which is the desired result. The calculation has been 
reduced to that of the second-order moment of the 
Green's function (see preceding section). 

In the same context another (obvious) result is worth 
mentioning: The mean Green's function is the inter-
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correlation function of the solution and the right- hand 
side when Sij = 0ij , 
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lim (Xi(t + T)F.(t»= (C .. (T». t-+oo J 'J 
(4. 20) 

The main interest of the results (4. 19) and (4. 20) is 
that ri/T) and lim t-+ 00 (Xi(t + T) F .(f» are easily mea­
surable quantities using a time av~rage over a single 
realization, whereas the mean Green's function is not 
directly measurable. 

C. Probability distributions: The Liouville equation 

In this section, we shall consider the following prob­
lem: Let there be given the nonlinear stochastic differen­
tial equation 

d 
dt Xi(w; t) = Ai[m(w; t);Xj ], j = 1, ... ,n, (4.21) 

where Ai is a nonlinear real deterministic function of 
the real (scalar or vector-valued) random function 
m(w; t) and of Xj (j = 1, ... ,n). In addition, we assume 
deterministic real initial conditions Xf, 

Our purpose is to evaluate the joint probability den­
sity P(t;Xl , ... ,Xn) of Xl ,X2 , ••• ,Xn at time f. We 
shall use the so- called "Liouville equation" method 
which reduces the present problem to a linear stochastic 
equation of type studied in previous sections. 

For each realization m(w; f), let us denote by Xi(w; t) 
the solution of Eq. (4. 21). We shall assume existence 
and uniqueness. Let us think of X;(w, t) as a point which, 
starting from X?, moves around in a stochastic fashion 
in an n-dimensional phase space. Introducing the "fine 
grained density," 

p(w; t;Xl'''' ,Xn) = o{Xl - Xl (w; t)} ... o{Xn-Xn(w; t)}, 
(4.22) 

we notice that the joint probability P is the average of 
the fine grained density, i. e. , 

(4. 23) 

which follows immediately from (4. 22). 

From the equation of motion (4. 21), we may derive an 
equation of continuity, or Liouville equation, for the fine 
grained density, which reads 

a n a 
atP+~ ax; [A;{m(w;t),X;}p] = 0. (4. 24) 

To derive the Liouville equation (4. 24), let us intro­
duce an indefinitely differentiable test function 
cp(Xl , ... ,Xn ). Integrating the lhs of (4. 24) after mul­
tiplication by cp, we obtain, using (4. 22), 

(4. 25) 

this quantity vanishes identically because of (4. 21). 
Since this property holds for an arbitrary test function, 
we have proved (4. 24). 

In spite of the fact that it contains partial derivatives, 
the Liouville equation can be treated as a stochastic 
ordinary differential equation since the random function 
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m(w; t) does not depend on Xl"" ,Xn• The calculation 
of the joint probability distribution can now be carried 
out using the same methods as described in previous 
sections. 

D. Asymptotic behavior of linear conservative systems 
from ergodic theory 

Let us come back again to the linear stochastic equa­
tion 

d 
dt X = M(w; t)X, X(O) = XO' (4.26) 

We assume now that X is a vector and M is a random 
matrix in a real n-dimensional space, and that equation 
(4. 26) is conservative in the sense that 

n 

6 X~(t) = const, 
i~l 

(4.27) 

This is obviously equivalent to the requirement that 
M (w; t) be anti symmetric. For convenience, we shall 
assume that 

n 

II XO 112 = 6 I Xi(O) 12 = 1. 
i~l 

(4. 28) 

The phase space of the system under consideration is 
then the n- dimensional unit sphere S. 

Since M(t) is anti symmetric , the mapping X(t') ~ X(t) 
is unitary. Therefore, the motion on the unit sphere S 
preserves the uniform measure dm. This situation is 
reminiscent of a problem in classical statistical mecha­
nics: Given a system of interacting classical particles 
enclosed in a box, it is known that the point representing 
the system in the phase space remains on the energy 
surface, that the motion on the energy surface has an 
invariant measure, and that the point will eventually fill 
up the whole energy surface with a density proportional 
to the invariant measure, provided that a certain condi­
tion of metrical transitivity is satisfied. 32 In statistical 
mechanics, these results are proved by means of the 
Birkhoff ergodic theorem. 33 

Because of these similarities we expect that, under 
certain conditions to be specified later, the point X(w; t) 
will eventually fill up the whole "energy surface" 
II X II = 1 with a uniform density. We do not want, here, 
to go into the mathematical details of the ergodic theory 
of the stochastic equations. We shall just state the main 
conditions to be satisfied by M(w; t), and the results. 

T ABLE II. Range of validity of various approximations for the mean 
Green's function. 

Approximation Condition on Condition 
and equation Kubo number on Further Remarks 
number K = aTcorr t condition (See Sec. 4E) 

Born (2. 7) at « 1 

Mean Born K<1 Kat« 1 
(2.8) K > 1 at « 1 

Bourret (2. 14) (1) 

White noise 
(2.30) K«l II Moll Teorr«l 

t» Teorr 
Hashminskii 

II Moll Teorr»K2 (2.32) 

Static (2.41) t«Tcorr (2) 

KAP (3.10) 
and (3) 
KP (3.20) 
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We require that 

(i) M(w; t) is a stationary ergodic (matrix-valued) 
random function of t; roughly, this means that ensemble 
averages of functionals of M(w; t) are equal to time 
averages. 

(ii) For any Xo on the unit sphere S, and any set A of 
positive measure on the unit sphere, the probability 
that a solution of (4.26), starting from X o' will never 
penetrate A is zero (stochastic metric transitivity). 

It may then be shown that, for any function f (X) which 
is measurable with respect to the uniform measure dm 
on the unit sphere, 

lim .l 
t .... 00 t 

It f[X(w; T))dT = (Is f[X)dm)/( Is dm) o a.s. 

= lim < f[X(w; t))). (4.29) 
t .... 00 

As an illustration of this result, let us calculate the 
asymptotic values of the first and second moment of 
X i ( w; t), assuming that dm is normalized. 

For the first-order moment we obtain 

lim (Xi(w; t) = Is Xidm = 0 
t-+oo 

(4.30) 

from a symmetry argument. 

For the second-order moments we obtain 

lim (X2(W' t) = f X 2dm = .!. f (X2 + '" + X2)dm 
t-+oo " s, n s 1 n 

1 r 1 = - Js dm = - , (4.31) n n 
and 

lim (Xi(w; I)X.(w; I) = 0 if j;" i. 
t-+oo J 

(4. 32) 

It is interesting to notice that the asymptotic distribu­
tion of the "energy" (X~) is simply equipartition. This 
has interesting applications to the energy transfer be­
tween randomly coupled oscillators. 34 

Remark: The above ideas may sometimes be ex­
tended to nonlinear stochastic equations if there is an 
invariant measure. For an application to the stochastic 
Ricatti equation 

dz 
dx + z2 + n 2 (w; x) = O. (4.33) 

which is encountered in the theory of wave propagation 
in a one- dimensional random medium, the reader is re­
ferred to Ref. 35. 

E. A guide for the user 

We give now a few practical indications for the user 
who wants to calculate the mean Green's function of a 
linear stochastic equation. Calculation of other statis­
tical quantities are usually reducible to the former as 
we have seen in Sec. 4. 

First check if the equation falls into one of the 
classes of exactly soluble equations: white nOise, shot 
noise, KAP, KP, Markovian coeffiCients, etc. If it does, 
the equation is usually soluble in closed analytic form 
except for the case of Markovian coefficients where the 
solution of a Fokker- Planck equation is required. If 
not, some approximation procedure must be used. Then, 
separate the stochastic evolution operator into its mean 
part M 0 and its fluctuating part Ml (I). Estimate the 
correlation time T corr and the dispersion of M 1 (I) and 
the norm II Moll. Then, evaluate the dimenSionless 
Kubo number K = aT cor r' Recall that K is a measure 
of the effect of the stochastic perturbation over one 
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correlation time. According to the values of K Table II 
indicates the optimal method(s) for each case. A num­
ber of remarks on this table are in order. 

(1) If the stochastic perturbation is a dichotomic Mar­
kov process [c f. Eq. (2. 27)] the Bourret equation (2. 14) 
is exact. Its solution by Laplace transformation usually 
requires only a little algebra. Notice that the Bourret 
equation may also be considered as a first semiquanti­
tative approach to any stochastic equation by suitably 
adjusting the dispersion and correlation time of a dicho­
tomic Markov process. 

(2) The static approximation describes the full relaxa­
tion of the mean Green's function only if K » 1. 

(3) The KAP and KP approximations should be used 
when a wide range of Kubo numbers is involved (includ­
ing K ~ 1). If a good accuracy is wanted (e.g., in line 
broadening problems) and if the covariance is a suitable 
candidate for the inversion problem, use the KP method. 
If not, in particular, if the covariance of the random co­
efficients is not too well known, use the KAP method with 

v = T~~rr . 

To conclude, we stress that the KAP and KP methods 
are probably the most flexible tools presently available 
when it is required to solve a linear stochastic differen­
tial equation over a large range of values of the Kubo 
number. In contrast to most approximate methods in 
mathematical physics, they do not rely on the existence 
of a small expansion parameter. 

Applications of the methods described in this paper 
to problems of physical interest are discussed in other 
papers. Among the possible fields of application, let us 
mention: Stark broadening,25.28 line formation in tur­
bulent stellar atmospheres,26 stability and Brownian 
motion of linear and nonlinear dynamical systems with 
random parameters,12 energy transfer between ran­
domly coupled dynamical systems,7, 34 and propagation 
of waves in a one- dimensional random 
medium. 2, 7,30,31,35-38 
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