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next section) appears because of the four-wave processes and can take waves
out of resonance if the set of wavevectors is discrete, owing to a finite box
size (it is a mechanism of instability restriction for finite-dimensional systems
like an oscillator — swing frequency decreases with amplitude, for instance).
If, however, the box is large enough, the frequency spectrum is close to con-
tinuous and there are waves in resonance for any non-linearity. In this case,
the saturation of instability is caused by renormalization of the damping and
pumping. The renormalization (increase) of y;, appears because of the waves
of the third generation that take energy from ai,a,. The pumping renormal-
ization appears because of the four-wave interaction, for example, (3.25) adds
—ia§ f Tiozaaza4d(K — k3 —Ky) dkydky to ai.

3.3 Non-linear Schrodinger equation (NSE)

This section is devoted to a non-linear spectrally narrow wave packet. Con-
sideration of the linear propagation of such a packet in Section 3.1.4 taught
us the notions of phase and group velocities. In this section, the account of
non-linearity brings equally fundamental notions of the Bogoliubov spectrum
of condensate fluctuations, modulational instability, solitons, self-focusing,
collapse and wave turbulence.

3.3.1 Derivation of NSE

Consider a quasi-monochromatic wave packet in an isotropic non-linear medi-
um. Quasi-monochromatic means spectrally narrow, that is the wave amplitudes
are non-zero in a narrow region Ak of k-space around some Ko. In this case the
processes changing the number of waves (like | - 2+3 and 1 = 2+3+4) are
non-resonant because the frequencies of all waves are close. Therefore, all the
non-linear terms can be eliminated from the interaction Hamiltonian except H4
and the equation of motion has the form

)
~5at£ +iwga; = —i/ Tk123a1‘a2a36(k +k; —ky —k3) dk;dk,dks. (3.27)

Consider now k =Kkg + q with ¢ < ko and expand, similar to (3.13),
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where v=0dw/0dk at k =ky. In an isotropic medium w depends only on modulus
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Let us introduce the temporal envelope a () =exp(—iwot)¥r(q,t) into (3.27):

2
q|w q v
- ”2 = ]Wq /1//1 VoY3d(q+q1 — 42 —q3) dq;dqpdqs.
We assumed the non-linear term to be small, 7' |ay |>(Ak)*¢ < wy, and took it at
k = ko. This result is usually represented in r-space for y (r) = [ ¢, exp(iqr) dq.
The non-linear term is local in r-space:

/dl‘ldrzdrﬁﬁ*(l’l)w(l‘z)l/f(lb)/dqu1dQ2dQ33(Q+Q1 —q2—q3)
x exp|i(qurs) —i(qar2) —i(gars) +i(ar) |

= f drydradrsy* (0) ¥ (0) ¥ (r3)3(ry —1)8(ry —0)3(rs — 1) = [/ |*y,

and the equation takes the form

3y Ay i’ %Y v
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Here the term v 9, is responsible for propagation with the group velocity, @”d.,
for dispersion and (v/k)A for diffraction. One may ask why in the expansion
of wk 4 we kept the terms both linear and quadratic in small g. This is because
the linear term (which gives d1//dz in the last equation) can be eliminated
by the transition to the moving reference frame z — z — vr. We also renormalize

the transversal coordinate by the factor \/kow” /v and obtain the celebrated
non-linear Schrédinger equation

Y
1—5——!— A?,[f T[>y =0. (3.28)
Sometimes (particularly for 7' < 0) it is called the Gross—Pitaevsky equation

after the scientists who derived it to describe a quantum condensate. This
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equation 1s meaningful at different dimensionalities. It may describe the evolu-
tion of a three-dimensional packet, as in a Bose—Einstein condensation of cold
atoms. When r is two-dimensional, it may correspond either to the evolution of
the packet in a 2D medium (say, for surface waves) or to steady propagation in
3D described by ivyr, + (v/2k) A = T|¥|*, which turns into (3.28) upon
relabelling z — vr. In a steady case, one neglects V.. since this term is much
less than /.. In a non-steady case, this is not necessarily so, since d; and v9,
might be about to annihilate each other and one is interested in the next terms.
And, finishing with dimensionalities, the one-dimensional NSE corresponds to
a stationary two-dimensional case.

w(r)

. a(r)

Different media provide for different signs of the coefficients. Apart from
hydrodynamic applications, the NSE also describes non-linear optics. Indeed,
Maxwell’s equation for waves takes the form [w? — (¢?/n) A]E =0. The refrac-
tion index depends on the wave intensity: n =1+ 2«|E|?. There are different
reasons for that dependence (and so different signs of o may be realized in
different materials), for example: electrostriction, heating and the Kerr effect
(orientation of non-isotropic molecules by the wave field). We consider waves
moving mainly in one direction and pass into the reference frame moving with
the velocity c, i.e. change w — w — ck. Expanding

ck//n=ck,(1—a|E|*) +ck] /2k,
substituting it into
(w—ck —ck//n)(w—ck+ck//n)E =0,

and retaining only the first non-vanishing terms in diffraction and non-linearity,
we obtain the NSE after the inverse Fourier transform. In particular, the one-
dimensional NSE describes light in optical fibres.
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3.3.2 Modulational instability

The simplest effect of the four-wave scattering is frequency renormalization.
Indeed, the NSE has a stationary solution as a plane wave with a renormalized
frequency () = Agexp(—iTAjr) (in quantum physics, this state, coherent
across the whole system, corresponds to a Bose-Einstein condensate). Let us
describe small perturbations of the condensate. We write the perturbed solution
as ¥ = Ae' and assume the perturbation to be one-dimensional (along the
direction which we denote &). Then,

1[/'5 = (Ag +iA(p§)ei‘p 5 ‘tﬁgg— — (Agg +2iA§§05 +iA(pg§ —Agpg‘)ei“’.

Introduce the current wavenumber K = ;. The real and imaginary parts of the
linearized NSE take the form
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We look for the solution in the form where both the amplitude and the phase of
the perturbation are modulated:

A=A—Ajoxexp(ikE —iQt), K ocexp(iké —iQt).
The dispersion relation for the perturbations then takes the form:
Q% =T A2k + "k /4. (3.29)

When Tw” > 0, it is called the Bogoliubov formula for the spectrum of conden-
sate perturbations. We have an instability when 7w” < 0 (the Lighthill criterion).
[ first explain this criterion using the language of classical waves and at the end
of the section I give an alternative explanation in terms of quantum (quasi)-
particles. Classically, we define the frequency as minus the time derivative of
the phase: ¢, = —w. For a non-linear wave, the frequency is generally dependent
on both the amplitude and the wavenumber. The factors 7 and w” are the second
derivatives of the frequency with respect to the amplitude and the wavenumber,
respectively. That is, instability happens when the surface w(k,A) has a saddle
point at k =0 = A. Intuitively, one can explain the modulational instability in
the following way: consider, for instance, ” > 0 and T < 0. If the amplitude
acquires a local minimum as a result of perturbation then the frequency has a
maximum there because 7" < 0. The time derivative of the current wavenumber
is as follows: K; = @¢; = —w¢. The local maximum in w means that K, changes
sign, that is K will grow to the right of the @ maximum and decrease to the
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Figure 3.5 Space dependencies of the wave amplitude, frequency and time deriva-
tive of the wavenumber, which demonstrate the mechanism of the modulational
instability for ®” >0 and T < 0.

left of it. The group velocity o’ grows with K since w” > 0. Then the group
velocity grows to the right and decreases to the left so that the parts separate
(as the arrows show) and the perturbation deepens, as shown in Figure 3.5.

The result of this instability can be seen on the beach, where waves coming to
the shore are modulated. Indeed, for long water waves w; oc+/k so that ” < 0. As
opposed to a pendulum and somewhat counterintuitively, the frequency grows
with the amplitude and 7' > 0; it is related to the change of wave shape from
sinusoidal to that forming a sharpened crest, which reaches 120° for sufficiently
high amplitudes. A long water wave is thus unstable with respect to longitudinal
modulations (Benjamin—Feir instability, 1967). The growth rate is maximal for
k =Ag/—2T /", which depends on the amplitude (Figure 3.6). Still, folklore
has it that approximately every ninth wave is the largest.

For transverse propagation of perturbations, one has to replace »” by v/k,
which is generally positive so the criterion of instability is 7 <0 or dw/3]a|*> <0,
which also means that for instability the wave velocity has to decrease with
amplitude. This can be easily visualized: if the wave is transversely modulated
then the parts of the front where the amplitude is larger will move slower and
further increase the amplitude because of focusing from neighbouring parts, as
shown in Figure 3.7.

Let us now find a quantum explanation for the modulational instability.
Remember that the NSE (3.28) is a Hamiltonian system (i, = 8H /3¢ *) with

_1 " 2 4
H—E/(w VY P +T|v| )dr. (3.30)
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Figure 3.6 Disintegration of the periodic wave due to modulational instability as
demonstrated experimentally by Benjamin and Feir (1967). The upper photograph
shows a regular wave pattern close to a wavemaker. The lower photograph is made
some 60 metres (28 wavelengths) away, where the wave amplitude is compara-
ble, but spatial periodicity is lost. The instability was triggered by imposing on
the periodic motion of the wavemaker a slight modulation at the unstable side-
band frequency; the same disintegration occurs naturally over longer distances.
Photograph by J. E. Feir, reproduced from Proc. R. Soc. Lond. A, 299, 59 (1967).

The Lighthill criterion means that the modulational instability happens when
the Hamiltonian is not sign-definite. The overall sign of the Hamiltonian is
unimportant, as one can always change H — —H, t — —t; it is important that
the Hamiltonian can have different signs for different configurations of ¥ (r).
Consider @” > 0. Using the quantum language one can interpret the first term in
the Hamiltonian as the kinetic energy of (quasi)-particles and the second term
as their potential energy. For T < 0, the interaction is attractive, which leads to
the instability. For the condensate, the kinetic energy (or pressure) is balanced
by the interaction; a local perturbation with more particles (higher [yr|?) will
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Figure 3.7 Transverse instability for the velocity decreasing with the amplitude.

make the interaction stronger, which leads to the contraction of perturbation
and further growth of |/ |2.

3.3.3 Soliton, collapse and turbulence

The outcome of the modulational instability depends on space dimensionality.
The breakdown of a homogeneous state may lead all the way to small-scale frag-
mentation or the creation of singularities. Alternatively, stable finite-size objects
may appear as an outcome of instability. As often happens, analysis of conser-
vation laws helps to understand the destination of a complicated process. Since
the NSE (3.28) describes wave propagation and four-wave scattering, apart
from the Hamiltonian (3.30), it also conserves the wave action N = | |¥|?dr,
which one may call the number of waves. The conservation follows from the
continuity equation

210, | )P ="' VWV —y V) = —2div] . (3.31)

Note also the conservation of the momentum or total current, f Jdr, which
does not play any role in this section but is important for Exercise 3.7.

Consider a wave packet characterized by the generally time-dependent size
[ and the constant value of N.

17

T

Since one can estimate the typical value of the envelope in the packet as |/|* =
N/ 19, then H >~ w”NI~2+TN?]~? — remember that the second term is negative
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Figure 3.8 The Hamiltonian 7 as a function of the packet size / under fixed N.

here. We consider the conservative system, so the total energy is conserved yet
we expect the radiation from the wave packet to bring it to the minimum of
energy. In the process of weak radiation, wave action is conserved since it is an
adiabatic invariant. This is particularly clear for a quantum system, like a cloud
of cold atoms, where N is their number. Whether this minimum corresponds to
[ — 0 (which 1s called self-focusing or collapse) is determined by the balance
between |V |? and | |*. The Hamiltonian 7 as a function of [ in three different
dimensionalities is shown in Figure 3.8.

(i) d = 1. At small [ repulsion dominates with H ~ w”NI~? while attraction
dominates at large [ with H ~ —TN?[~! Itis thus clear that a stationary solution
must exist with / ~” /TN, which minimizes the energy. Physically, the pressure
of the waves balances the attraction force. Such a stationary solution is called a
soliton, short for solitary wave. It is a travelling-wave solution of (3.28) with the
amplitude function just moving, A (x, ) =A(x —ut), and the phase having both a
space-dependent travelling part and a uniform non-linear part linearly growing
with time: ¢(x,#) =f (x —ut) — TA%I. Here, Ay and u are soliton parameters. We
substitute the travel solution into (3.28) and separate the real and imaginary
parts:

//_2T 3 2 / / 2u " 1 gl Af// _ /
& —J(A —AOA)+Af (f —J>, 2 (Af +T>—uA. (3.32)

For the simple case of the standing wave (x =0) the second equation gives f =
const., which can be put equal to zero. The first equation can be considered as
a Newtonian equation A” =—dU /dA for the particle with coordinate A in the
potential U (A) = — (T /2w")(A* —2A%A?) and the space coordinate x replacing
the particle’s time. The soliton is a separatrix, that is a solution that requires
for particle an infinite time to reach zero, or in original terms where A — 0 as
x — %00. The upper part of Figure 3.9 presumes 7 /w” <0, that is a case of
modulational instability. Let me mention in passing that the separatrix also exists
for T/w"” > 0 but in this case the running wave is a kink, that is a transition
between two different values of the stable condensate (the lower part of the
figure). The kink is seen as a dip in intensity ||
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Figure 3.9 Energy as a function of the amplitude of a running wave, and the profile
of the wave. The upper part corresponds to the case of an unstable condensate,
where a steady solution is a soliton, the lower part to a stable condensate, where it
is a kink.

Considering a general case of a travelling soliton (at Tw” <0), one can
multiply the second equation by A and then integrate: W"AYf' = u(A? — A}),
where by choosing the constant of integration we defined Ag as A at the point
where f’ = 0. We can now substitute f” into the first equation and get the closed
equation for A. The soliton solution has the form:

/!

—2T 1/2 i 7
W(x,l)=\/i40cosh—1 (__) Ag(x —ut) | el@—udu/2e ~iTAjt
w

Note that the Galilean transformation for the solutions of the NSE appears as
W (x, 1) = ¥ (x —ut, 1) expliu(2x — ut) /2"]. In the original variable a(r), our
envelope solitons appear as shown in Figure 3.10.

(ii) d =2,3. When the condensate is stable, there exist stable solitons analo-
gous to kinks, which are localized minima in the condensate intensity. In optics
they can be seen as grey and dark filaments in a laser beam propagating through
a non-linear medium. The wave (condensate) amplitude turns into zero in a dark
filament, which means that it is a vortex, i.e. a singularity of the wave phase,
see Exercise 3.6.

When the condensate is unstable, there are no stable stationary solutions for
d =2.3. From the dependence H(l) shown in Figure 3.8 we expect that the
character of evolution will be completely determined by the sign of the Hamil-
tonian at d =2: the wave packets with positive Hamiltonian spread because the
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standing soliton

moving soliton

Figure 3.10 Standing and travelling solitons of the envelope of an almost
monochromatic wave.

wave dispersion (kinetic energy or pressure, in other words) dominates while
the wave packets with negative Hamiltonian shrink and collapse. Let me stress
that this way of arguing based on the dependence H(!) is non-rigorous and
suggestive at best. A rigorous proof of the fact that the Hamiltonian sign deter-
mines whether the wave packet spreads or collapses in 2D is called Talanov’s
theorem, which is the expression for the second time derivative of the packet
size squared, I2(t) = f lezr2 dr. To obtain that expression, differentiate over
time using (3.31), then integrate by parts, then differentiate again:

d’? "
5= —2—3,/V2V(1ﬁ*vw — Y Vy*)dr

=iofd, [r (¥ Vet =¥ V) dr =202 [ 17y ar

+dw”T/|1/f|4dr=4H+2(d—2)a)”T/|¢[4dr.

Consider an unstable case with 7Tw” < 0. We see that indeed for d > 2 one has
an inequality 9,/% < 4w"H so that

(1) <20"H2 + Cit+C,

and for w”H < 0 the packet shrinks to singularity in a finite time (this is the
singularity in the framework of NSE, which is itself valid only for the scales
much larger than the wavelength of the carrier wave 27 /ko). This, in particular,
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describes self-focusing of light in non-linear media. For d =2 and w"H >0, on
the contrary, one has dispersive expansion and decay.

Turbulence with two cascades. As mentioned, any equation (3.27) that
describes only four-wave scattering necessarily conserves two integrals of
motion, the energy H and the number of waves (or wave action) N. For waves
of small amplitude, the energy is approximately quadratic in wave amplitudes,
H~ [ wylar|?dk, as well as N = [ |a;|* dk. The existence of two quadratic pos-
itive integrals of motion in a closed system means that if such system is subject
to external pumping and dissipation, it may develop turbulence consisting of
two cascades.

1 2 3w

/Nn N, Twz N3\

Indeed, imagine that the source at some w, pumps N, waves per unit time. It
is then clear that for a steady state one needs two dissipation regions in w-space
(at some w; and w3) to absorb the inputs of both N and E. Conservation laws

allow one to determine the numbers of waves, N; and N3, absorbed per unit
time in the regions of low and high frequencies, respectively. Schematically,
solving Ny + N3 =N, and o N, + w3N3 = w,N, we get

w3y — wor — W
A R s S+ ) ¥ oo B, A (3.33)
w3 — W] w3 — Wi

We see that for a sufficiently large left interval (when @, < @, < w3) most of the
energy is absorbed by the right sink: wyN2 &~ @3N3. Similarly at w; < w; K w3
most of the wave action is absorbed at small w: N ®N;. When o) < w; K w3
we have two cascades with the fluxes of energy € and wave action Q. The
O-cascade towards large scales is called the inverse cascade (Kraichnan, 1967;
Zakharov, 1967); it corresponds (somewhat counterintuitively) to a kind of self-
organization, i.e. the creation of larger and slower modes out of small-scale fast
fluctuations.” The limit w; — 0 is well-defined; in this case the role of the left
sink can actually be played by a condensate, which absorbs an inverse cascade.
Note in passing that consideration of thermal equilibrium in a finite-size system
with two integrals of motion leads to the notion of negative temperature.®

An important hydrodynamic system with two quadratic integrals of motion is
atwo-dimensional ideal fluid. In two dimensions, the velocity u is perpendicular
to the vorticity w =V x u, so that the vorticity of any fluid element is conserved
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by virtue of the Kelvin theorem. This means that the space integral of any func-
tion of vorticity is conserved, including | w?dr, called enstrophy. We can write
the densities of the two quadratic integrals of motion, energy and enstrophy, in
terms of the velocity spectral density: E = [ |vi|*dk and Q = [ |k x vi|?dk.
Assume now that we excite turbulence with a force having a wavenumber &,
while dissipation regions are at k;,ks;. Applying the consideration similar to
(3.33) we obtain

k3 — k2 o k3 —k}
2k2—k2'

(3.34)

We see that for k; < k; < k3, most of the energy is absorbed by the left sink,
E, ~ E,, and most of the enstrophy is absorbed by the right one, 2, = k2E2 R
Q3= k3 E3. We conclude that conservation of both energy and enstrophy in two-
dimensional flows requires two cascades: that of the enstrophy towards small
scales and that of the energy towards large scales (opposite to the direction of
the energy cascade in three dimensions). Large-scale motions of the ocean and
planetary atmospheres can be considered to be approximately two-dimensional;
the creation and persistence of large-scale flow patterns in these systems is
probably related to inverse cascades.’

3.4 Korteveg—de-Vries (KdV) equation

Here we consider another universal limit: weakly non-linear long waves. More
often than not the dispersion relation of such waves is close to acoustic. We
derive the respective KdV equation for shallow-water waves. We then consider
some remarkable properties of this equation and of such waves.

3.4.1 Waves in shallow water

Linear gravity-capillary waves have w? = (gk +ak?/ p) tanh kh, see (3.12). That
is, for sufficientiy long waves (when the wavelength is larger than both 4 and
Vo /pg) their dispersion relation is close to linear:

2
= TRl - - gy (ﬁ-—i). (3.35)

2 \3 pg

Therefore, one can expect a quasi-simple plane wave propagating in one direc-
tion, like that described in Sections 2.3.2 and 2.3.3. Let us derive the equation
satisfied by such a wave. From the dispersion relation, we obtain the linear part



