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A new perturbation theory for solving the Vlasov equation is derived. The theory is especially
designed to cope with time secularities and nonanalyticity in the expansion parameter (the field
strength). The method is based on the use of a statistical set of exact particle orbits instead of the un-
perturbed orbits conventionally used in perturbation solutions of the Vlasov equation. A principal re-
sult of the theory is a modification of the particle-wave interaction and a “broadening” of the
associated resonant denominator (@ — kev)™%. The nature of the time secularities associated with the
streaming modes exp 7k+v{ is discussed. A simple application to velocity-space diffusion and trapping

and its effect on wave growth is described.

1. INTRODUCTION

HE Vlasov equation, together with Maxwell’s

equations, constitute a complete plasma de-
scription when particle discreteness (collisional phe-
nomena) can be ignored. For the regime of strong
turbulence, we assume this to be the case. Con-
sequently, the theory of plasma turbulence is con-
cerned with obtaining the solution, in some sense, of
the nonlinear Vlasov equation.

There seems to be no possibility of obtaining, in
any reasonable form, the complete set of such solu-
tions, and indeed they would be no more useful than
the detailed set of solutions to the N-body Liouville
equation. In fact, it is clear that the microstate
solutions to the Vlasov equation ecan exhibit as
detailed a structure as the N-body distribution func-
tions, because the Vlasov distribution function is
capable of being distorted or driven into arbitrarily
fine grain structures. What is needed are ‘‘average”
solutions which emphasize the course grain or mac-
roscopic behavior, and do not delve into the details
of the microstates.

The development of the quasi-linear and mode
coupling theories' ~® has been suecessful in creating
such a theory for weakly turbulent regimes. The
original formulation of this theory was obtained by
an iterative solution of the Vlasov equation; how-
ever, it is now clear that the solutions of the trun-
cated hierarchy equations (such as the BBGKY
equations) constitute an identical theory in the
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limit of zero plasma parameter. This weakly tur-
bulent theory pictures a turbulent plasma as con-
sisting of small amplitude waves which obey linear
wave mechanics, but which interact weakly with
each other and with the average distribution func-
tion. The theory is not a microstate theory. It does
not predict the phases of the waves, and much of the
fine grain phase-space structure of the distribution
function is “averaged out.” However, it is not well
understood what the theory’s region of validity
is or what theory should replace it when it is no
longer valid. The difficulty in answering these ques-
tions is, in part, mathematical, arising from the
perturbation-theoretic nature of the solution.

In deriving a perturbation solution to the Vlasov
equation, two fundamental difficulties arise: (a) non-
analyticity in the perturbation parameter® ¢ (which
is usually proportional to the field strength) and
{b) time-secularities in the individual terms of the
perturbation solution.® To derive a perturbation
theory which successfully copes with these problems,
it is first of all necessary to lump all nonanalytic
dependence on ¢ into the coeflicients of the perturba-~
tion expansion. Secondly, the expansion must be
such that the coefficients are not secular. The desired
expansion should be of the form

2 Ae, D€,

where 4.(¢, ) is of order unity for all time, and the
series converges for all e. Such an expansion is, of
course, not unique, but it does have the property
that, for small ¢, accurate solutions can be obtained
by computing only the first few coefficients 4,. If
this turns out to be a tractable problem, then one has
a useful perturbation theory.

¢ I. B. Bernstein, J. M. Green, and M. D. Kruskal, Phys.
Rev. 108, 546 (1957).
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Existing perturbation theories of the Vlasov equa-
tion do not fully cope with either of the difficulties
just deseribed. In obtaining solutions, one has no
guarantee that all secularities have been removed
or that the expansion even converges. If it is an
asymptotic series, one does not know how accurate
it is. Therefore, it is difficult to ascertain the validity
of the existing weakly turbulent theory. Further-
more, it seems clear that many phenomena, such
as turbulent heating, shock waves, and trapping,
cannot be adequately deseribed. In addition, non-
linear calculations of certain instabilities show that
the growth rate of the unstable wave is either not
suppressed or suppressed at a very large value of the
wave amplitude.'” This raises the possibility that
some other (heretofore excluded) mechanisms may
become important before such large amplitude spec-
trums can develop.

In order to provide a more rigorous basis from
which to construct a general theory of nonlinear
plasma behavior, an improved plasma perturbation
theory is essential. Towards this end, an exact and
convergent perturbation theory is presented in the
following pages. The basis of this theory consists
in using a statistical ensemble of particle orbits
instead of the unperturbed orbits usually employed
in plasma perturbation theory. In the conventional
perturbation theory, particles with unperturbed
orbits of wvelocity v moving through the wave
exp (tke-r — fot) give rise to the familiar resonant
denominator 1/(k-v — «) of plasma physics. This

resonance is, of course, fundamental to the damping

and growth of waves in both the linear and the
weakly turbulent nonlinear theories, because it de-
scribes the resonant (as well as the nonresonant)
interaction of wave and particle, and the energy
exchange between them. A principal result of the
new theory is a modification of this resonance,
The theory can be interpreted in terms of a ‘‘test-
wave model.”” In this model, one studies the propaga-
tion and the inferaction of a few “test” waves
coexisting with a set of random phase “background
waves.” The initial phases of all the background
waves are averaged over, so that only the initial
phases of the test waves enter. It turns out that the
effect of the background waves can be incorporated
in the theory by using the (perturbed) trajectories
of particles moving in the random phase background
waves. This is the origin of the statistical ensemble
of trajectories. The effects of the test waves are
obtained by a simple perturbation theory using the

" F. C. Hoh, Phys. Fluids 8, 969 (1965).
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perturbed trajectories. One then computes the prop-
agation characteristics of single test waves, the in-
teraction between two test waves, three test waves,
and systematically builds up a description of all
the waves in a system. One can prove that this
scheme actually converges to the exact solution!

In Sec. II, we establish the validity of the test-
wave model, In Sec. III, we use the model to derive
a general solution to the Vlasov equation in terms
of the solution to the random phase background wave
problem. In Sec. IV, this general solution is written
in terms of the ensemble average solution to the ran-
dom phase problem. In Secs. VI and VII, the en-
semble average solution is investigated. And in
Secs. V and VIII applications to plasma turbulence
are discussed.

H. THE DEPENDENCE OF THE DISTRIBUTION
FUNCTION ON THE PHASES OF THE
ELECTRIC FIELD

The method we employ for solving the Vlasov—
Mazxwell equations consists of two distinet pieces.
First, we assume knowledge of the electric field
E(r, ¢) (for simplicity we neglect the magnetic field,
which may be treated in a manner similar to E) and
endeavor to find the resulting particle motion; i.e.,
given E(r, £), we shall find the distribution function
f(r, v, t) from the Vlasov equation:

9 3 3
[b-t + v'b_r' + ﬁ;E(r? t) 'E]f(ry v, t) = 0. (2'1)

As a second step we must, of course, require that the
f so determined does, in fact, produce the assumed
E. We must, in other words, impose self-consistency:

d

2B, 0 = 4mg [ avi,v, 0. @2
Again, for simplicity, we include only the longitudi-
nal field. We assume the plasma to be a cube of
volume L*

The spatial dependence of the electric field may be
expanded in a Fourier series:

Ek, 5= ; &, 8, &« =Ey(}) exp (tker+ 46y,
©2.3)

f& v, ) = X fulv, ™. 2.4
The phases i will be referred to as “initial phases,”
since the phase of &;(f) relative to &4(f,) does not
depend on By, but the phase of &(t,) does contain
Bx as an additive constant.

As L — o the amplitude &, need not become
continuous function of k. For this reason, it is more
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convenient to use a Fourier series than a Fourier
integral.

As a first step we are interested in obtaining the
time dependence of f, given the initial value of f
and the electrie field for all £&. Obviously f depends
on the phase factors exp (¢8x) which contain the
initial phases of the electric field. Furthermore, §
must be a periodic function of each 8, with period
27, and therefore f has a Fourier series expansion in
each By:

+ o

>

nhonks, 0 e mes

f= exp (nxBi + tMuBur + +++)

“Flng, nxr, +++). (2.5)

The exponent in (2.5) contains the complete set of
phases B, and hence the expansion coefficients
F(ny, +++) do not depend on any of the initial
phases. At { = {,, / cannot depend on the initial
phases of the electric field so that

F(ng, nee, +++ , &) = 0, unless ny, ngr, -+ = 0.

Although the derivation of this equation is trivial,
its implications are not. To understand this, we
observe that if (2.5) is averaged over some set of
initial phases By, the coeflicients F are unaffected,
and the phase-factor product in front is either un-
affected or averages to zero, depending on whether
or not it contains any of the phases being averaged
over. Thus, the effect on averaging over some of
the initial phases is to eliminate some of the terms
(i.e., those involving the phases which were aver-
aged) in (2.5) and to leave the rest unchanged.

This property of (2.5) suggests that, if we wish to
obtain a particular coefficient, e.g., F(ny = 1), we
may solve a subsidiary, bur simpler, problem instead
of the original one. In this subsidiary problem, we
consider an ensemble of systems in which 8y is the
same in each system, but all other initial phases are
randomly distributed (from 0 to 2x) among the
systems of the ensemble. The Fourier series expan-
sion of ensemble average distribution function ob-
tained in this way will have a term proportional to
exp 1B, and whose coefficient is precisely the same
F(n, = 1) that appears in (2.5). It is, therefore, pos-
sible to obtain the solution to our original problem
by determining each of the /’s in (2.5) by solving a
subsidiary but, as we shall see, less difficult problem.
The fact that the initial phases of the background
waves in the subsidiary problem are uncorrelated
with each other and with the initial value of f does
not prevent the F’s, so calculated from being used
in (2.5) to describe an actual system in which all

1775

the initial phases have some precise relationship
with each other and with f.

Iil. THE TEST-WAVE PROBLEM

We now proceed to obtain the coefficients
F(ng, ny., -++) in (2.5) by solving the subsidiary or
test-wave problem previously described. To begin,
the total set of waves is divided into two sets. One
set is composed of all waves whose wave numbers are
contained in the set (k, k/, ---), corresponding to
the indices of F(ny, ng., -+ -). These are called test
waves. The second set are called background waves
and contain all the remaining waves. As we have
seen, the initial phases of the background waves do
not enter into the calculation of F(ny, ny., ---) and
will be averaged over. In general, we shall consider
only a few test waves, but a large number of back-
ground waves. The Vlasov equation becomes

9 AP K A of _
atf+varf+m§8“ av"'mz:*s“'av‘

sum over back-
ground waves

sum over test
waves

3.1
Now, define the propagation operator U(t, ¢,) as
the solution to

A g AU _
<6t T ar)U + m ‘; Suoy = 0. 3.2)
U(to, to) = I. (3.3)
One can write the solution to (3.1) as
f@, v, 8) = —% f‘ dr ; E(nU(, )
-exp (tk-r + iﬂk)'g—v fe, v, 7)
+ U(tv tO)f(r, v: tO)‘ (3.4)

Let us begin by considering the simple case of a
single test wave &,. We are specifically interested
in the dependence of f on the initial phase 8x of
the test wave. We denote by F(n) exp ing; the sum
of all terms in (2.5) whose 8, dependence is exp ing,.
In other words, we define F(n) to be

Fo) = 5 [ dbe o (—img)y, (359

where

f= f F(n) exp (tnfy).

n=—co

(3.6)

We shall use the brackets { ) to indicate an average
over the phases of the background waves. According
to (2.5),

(Fn)) = Fny). (3.7
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Substituting (3.6) in (3.4) gives

Fn, = L f drEu (N U, ﬂﬂ”-% Fn—1, 7)

i —~ik oy d =
- ;%fhdf (U, e ™3 P+ 1, )

+ Ult, t)YE(n, t) (3.8)
or simply
Fn) = EFn — V) + E*Fin + 1) + Fw)*,  (3.9)

where F(n)® is the last term in (3.8) and where £
and E* are the obvious operators. We shall be inter-
ested in solving this equation in the limit of vanish-
ingly small E,. There are a variety of ways to trans-
form a given problem to achieve this limit without
loss of generality. However, in the present case, it
will suffice to consider a homogeneous turbulent
plasma of dimension L® and then to let L — =, but
keep the energy density Y ..., x |[E.l” finite. In this
limit |E,] — 0, since it is proportional to L™} but
the energy density D .. i |Ex|’ remains constant,
since

3
Zﬁ%f&
all k T

We shall say a quantity is of order E7, 1.e., O(&"),
if it is proportional to (E,|" as |E,| — 0. Accordingly,
in Eq. (3.9), the operators £ and &* are of order E.

The first few equations around n = 0 are

F(=1) = EF(—2) + E*F(0), (3.10)
Foy = EF(-1) + E*FQ) + F0)°,  (3.11)
FQ) = EF0) + E*F(2), (3.12)
F@©) = EF() + EF(3). (3.13)

As explained earlier, only the n = 0 equation has an
initial value (t = ¢,) term, F(0)°, which is of order
zero. By successive substitution, we easily get

Fo) = F0)° + 0E, (3.14)
FQ) = EF(0)° + O&Y, (3.15)
F©@) = EEF©0)° + 0", (3.16)
Fmy = B'FO)° + OE™Y. (3.17)

As E « L' — 0, the second terms in (3.14)-
(3.17) become negligible corrections to the first
terms and may be neglected. This is the same result
that would be obtained for F(n) by solving (3.4),

T. H DUPREE

using ordinary iteration and then picking out all
terms proportional to exp ingy, but eliminating all
those terms which contain £ and E* in the same
product. These latter terms are always at least L™
times smaller (as we have just seen).

Averaging the initial phases of the background
waves in (3.14)—(3.17), produces the following coefli-
cients that appeared in (2.5):

P, = 0) = (FO) = U )ft),  (3.18)
Fiu = 1) = (F) = =% f dr Bu(r)
-<U(t, r)e“‘"-g; U(r, to)>f<to), (3.19)
Flny = 2) = (F(2))

2 t 7
=L [ ar [ dr Bu(Bulr)

.<U(t, r)eik'r'% U(r, T')eik.r'g; U+, to)>f(to)-
(3.20)

As used in (3.18)~(3.20), U is the solution of (3.2)
with all waves except the test wave 8,. However, as
L — o, we can include all waves in computing U
when it appears inside the average brackets, since
the addition of a finite number of test waves will
produce a vanishingly small change in U as L — o,

One can easily generalize the argument to show
that the leading contribution to F(ny, - - , ny) is
obtained by iterating Eq. (3.4) with the set of test
waves (8, -+ , &) and treating all other waves
as background waves. All terms containing E, . E#. .,
where E... is a test wave, must be omitted. Each
term in the iterated solution is averaged over the ini-
tial phases of the background waves. F(ny, -« - , nx/)
is the sum of the coefficients of all terms whose initial
phase dependence is exp imfx + --- -+ tny-Bi.
The coefficient F(ny, - - - , ny.) is of order Fr&* ¥k’
and the omitted corrections are of order Y _ ;0. [Ex++|*
times smaller or less. If all background waves were
test waves, l.e., if one does perturbation theory with
unperturbed orbits, it is well known that these
correction terms are of order Za,, « |Ex|” times the
“leading” term and cannot be neglected, since
D ett x |Ex|® remains constant as [Ey] = L7F — 0.
However, in our case, by puftting all the waves
(except a few test waves) into the operator U as
background waves, the correction to the leading
term is of order Y_,... |Ex|® which vanishes as L™°
as L — o,

To obtain f(r, v, {) one may, according to (2.5),
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sum all the coefficients obtained in the manner just
described. This produces the following series for f:

e, v, 1) = U ) = L [ dr 3B
coxp (180U, -2 UGr, 19 Yt

2 t T
+ %fo d'rfo @' T 3 BB (r)

k=-k’

-exp (1B + 16x)
LU, e L v, e L v z)>
y 7 v T, T v y Vo,

fllo) + -0 . (3.21)

The U operator appearing in (3.21) is the solution
to (3.2), which, in the limit L — «, may be
considered to include all waves, test as well as back-
ground. As pointed out earlier, the addition of a
finite set of test waves in the defining equation for U/
will not change U in the limit L — <, since the wave
amplitudes vanish as L%,

The averages appearing in (3.21) are over the
initial phases of all waves, assuming they are un-
correlated.

Ult, 1) = U ) — L f " dr 2 B

- exp (Zﬁk){(U(ti T»Bik.r'ag‘; <L’Y(7'r tO)) -
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As an alternate way of viewing the solution (3.21)
to the Vlasov equation (3.1), consider the equation

o 9 g N
EY + v or -+ g a;‘ E, exp (Zk-r + 1ay) e
—q— . . . af(i—l)
+ o % Ey exp (ker + i8) =5 — = 0. (3.22)

The set of waves has been included twice, once with
the actual phases 8. and once with another set of
phases ax. (3.21) can be obtained by iterating this
equation as indicated by the superseripts to obtain
f, discarding all terms which contain both exp 78x
and exp —iB; as factors, and finally averaging each
of the remaining terms over ay. The first set of waves
in (3.22) accounts for phase independent effects and
the second set for phase dependent effects.

IV. AN EXPANSION FOR U(t, t,)

If the initial value f(t,) is deleted from the right-
hand side of (3.21), then the right-hand side may
be equated to the operator U. This equation is a
nonlinear integral equation for U. If this equation is
iterated, we obtain an expansion of the ensemble
average quantities appearing in the integrands in
powers of E, and (U):

t T
%fr dr’ f a3 BB ()

S er s iker O N —iker 9 Tt
(U, TN 2 (UG, D) e (U, 7 2 (UG, 1) + }

2 t T
+ L[ ar [ 0 £ 5 BB ()

ks—kt

-exp (iBx + iﬂk'){(U(t, T))e'lk'r'% (U(r, T'))@fk)'r-%r UG ) + -+ } + .

It is not difficult to prove that this expansion con-
verges if the operator 8/av(U({, t,)) is bounded in
the following sense:

[ ar 2w, om

gf v (', 1) lmax hl < =.  (4.2)

In (4.2) g(t, &) is a function, not an operator. k is an
arbitrary bounded function, and |max & is its maxi-
mum value as a function of r and v. For instance, if
{U) were the diffusion operator

.1

Dt — ty)]? f dv, exp [—Hﬂ

it would clearly be bounded in the sense of (4.2). On
the other hand, if (IU) were the unperturbed orbit
operator

f dv() B(V — Vo),

then (8/8v)(U) would not be bounded, and the series
would not converge. It is for essentially the same
reason that the conventional iterative solution of
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the Viasov equation using unperturbed orbits does
not converge.

We will assume that the spectrum [E.|* is such
that (8/0v){U(, t,)} is bounded. In qualitative terms,
this simply means that the solution to (6.1) is a
continuous funetion for ¢ > {,. The details of the
convergence of (4.1} and its relation to the spectrum
will be deferred to a later paper.

{(4.1) provides an explicit expression for the actual
“microstate” solution operator U{§, {), provided
that we know (U(Y, 4,)). (U} is the ensemble average
solution to a simpler but related problem in which
the field phases are random and uncorrelated. The
averaged operator (U) is a “maecroscopic”’ quantity
and does not have the intricate, phase dependent
structure that the microstate operator U has.

V. SELF-CONSISTERCY

Substituting (4.1) into Poisson’s equation (2.2),
one obtains a nonlinear integral equation for E(x, )

; ik & (0)
= tang [ db [right-hand side of (4.DIf(r,v, 4. (5.1

The solution of Eq. (5.1) is evidently very compli-
cated. In the remaining pages, we shall confine
ourselves to a few approximate considerations to
illustrate some aspects of the statistical trajectory
method. Consider the “linear”’ portion of (5.1), i.e.,
the first two terms on the right-hand side. The
remaining nonlinear terms lead to mode coupling
effects which we will not consider.

The Fourier transform of f{r, v, t) is defined in
(2.4). For the kth mode, the first two terms are

Ek (t)eik'r
X [ av [ ar B, A)er 2l

41m

9’"‘ [ & W, . 62

If the (U(t, 7)) operator were the usual “‘unper-
turbed” orbit operator that replaces r with r —
v{t — 7), then {5.2) would reduce to the customary
Iinearized equation for E.{f) obfained from the
Vlasov equation by the usual perturbation method.
In this case, if E4() « exp (—iwl) (v = real), one
obtains in the usual way that the real part of the
time integral in (5.2) is proportional to §(kev — ),
and the wave growth rate is given by

1

Bl = [ av sty - o W05

6.3

T. H. DUPREE

The delta funetion in the integrand is characteristic
of the linear picture of particle-wave resonance.
As we shall see in the following seetion, the statistical
trajectory leads to a resonance of finite width due
to particle trapping. The broadening of the resonance
can have a decisive effect on wave growth.

V1. THE DETERMINATION OF ()

The equation for {f) is obtained by ensemble
averaging (3.2). We include all waves in the sum
over wave numbers, We obtain

( + v ar)(f} + gg‘;' 2(&f)=0. 61
If we impose the initial condition
ffo) = 8(r — 10) &(v — o), (6.2)

then (f(t)) becomes a Green’s function, and the
operator {U{t, &,)) can be written

W, ) = [ ax, [ av o).

Substituting f [as given by (2.5)] into (8.1), it is
obvious that only the term proprotional to exp (—48x)
can contribute to (6.1), because of the phase average.
According to (4.1), this term is

8.3

Fln = —1) exp (=ig) = ~L f drELu(?)

, _iker O
-exp (—iB (U, 7))e ™ e (D) + OLE). (6.4)
Substituting this expression into (6.1) and neglecting
terms of order LE°, we obtain

( + V'“)(f) - 2.4 f dr E Ex(DE_u(n)e™"

v m

_iker O
(U e = (). (6.5)
We now assume that, in the integrand of (8.5), we
can make the replaeement

U, M T ) = LU, ™1 L ).
6.6)
The replacement of 3/8v{f(r)) by 8/av{f(t)} is
based on the fact that the integrand is nonzero in
only a small interval around ¢ = 7, and that {f) does
not change significantly during this interval. This
is one of the conventional arguments used to derive
the Fokker-Planck equation.® The neglect of the
operator {U(t, 7)) on (3/8v){f} is based on approxi-

# 8. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1043).
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mately the same argument, i.e., (U) does not change
(8/9v){f) significantly during the time interval that
the integrand is nonzero.

One ordinarily bases these approximations on the
peaking of the autocorrelation function

Zk Ek(t)E_k(T) att{ = 7.

The width of this peak is the autocorrelation time
74¢. However, when the spectrum of the electric
field is narrow, the width of the autocorrelation of
the field is not, in which case we shall assume that
e’* " (U(t, ))e”**" provides the required limitation
of the 7 integration to a small region around ¢ = 7.
The width of this function is called the trapping
time 7;z and is defined following Eq. (7.7). Ob-
viously, these approximations are valid only for a
sufficiently smooth dependence of {f(r, v, #)) on r
and v, for otherwise (f(r, v, t)) will change signifi-
cantly in a time equal to the width of the resonance.

Although the approximation (6.6) is not very
accurate over the entire range to which we shall
apply it, it appears to be at least qualitatively cor-
rect.

The use of (6.6) converts (6.5) into a diffusion
equation:

[fz +vd - %-D(v)-g'—’;]q(r, v,)) =0, (67)

where
D(v) = % fo dr ; E.(DE_« (N (U(t, T»e_z;;j

If E(r, t) represents a stationary time series, then
(U@, 7)) = (U({t — 7)). In this case the diffusion
coefficient can be written

@ o
D(v) = ;n?‘/; dr

; Eo(T + DE_ (D)™ (U ™.  (6.9)

For ¢t — t, > 74c we can replace the upper limit by

mo

It is revealing to observe that
<U(t)>e—s'k'r - <U(t)e—~1'k-r> — <e—ik'rc(r.v,—t)>' (6.].0)

where r.(r, v, — {) is a trajectory at time —{ with
initial values r, v. Therefore, the integrand of (6.9)
contains an average of an exponential of all tra-
jectories in the ensemble. Also, {exp [—ik-r.(—0)])
satisfies (6.7) with the initial value exp (—ik-r).
Therefore, this equation, together with (6.8) for
D(v), comprises a coupled set determining D(v) and
(exp [—ik-r.(—1)]):
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2

D= fo Car 2 BT+ B () (),
6.11)

[6+vi_i.

—_ . .i —ikerc(—2) —
5 Vo~ 50D 6V](e y=0. (6.12)

It is well known that one of the most persistent
secularities in plasma perturbation theory arises
from the substitution of the particle streaming
modes, f = ¢/ into the acceleration term

(g/m)E-of/av

of the Vlasov equation. The physical origin of this
secularity is the constantly increasing difference
between the trajectory r = vt and the actual particle
orbit, r = r.(¢). The attempt to improve on the orbit
by perturbation theory leads to the secularity. How-
ever, the use of the average trajectory function
{exp —ik-r,(—1)) avoids this problem by summing
such secular terms in closed form. As will become
apparent, the conventional neglect of such streaming
secularities cannot be justified, since the correspond-
ing orbit perturbations are associated with trapping
and other important effects.

In the conventional derivation of D(v), one uses
unperturbed orbits which are equivalent to setting
D(v) equal to zero in (6.12). In this case

<e—a'k-r¢(-:)> — e—ik-rh‘k-vt

(6.13)
If

Ek(t) = Ek(O)e_“”",
then (6.11) reduces to

(6.14)

D) = ri—z Xk; EE_; 6(k-v —w). (6.15)

(The sum, of course, is to be interpreted as an
integral in the limit L — .) This is the standard
Fokker-Planck result for the diffusion coefficient in
velocity space.® The occurrence of the delta function
d(k-v — w) means that the diffusion of particles
of velocity v is caused only by waves whose phase
velocity is exactly v. As we shall see, this result is
valid only in the limit that the wave-energy density
vanishes. For a finite energy density, the delta func-
tion is replaced with a finite width resonance func-
tion. This is the same resonance that occurs in the
formula for wave growth (5.3) and the statistical
trajectory will cause a similar modification there.

VII. THE WAVE-PARTICLE INTERACTION—
APPROXIMATE EXPRESSIONS FOR THE
DIFFUSION COEFFICIENT D(v)

The solution of (6.12) with an arbitrary D(v)
has not been obtained. However, in view of the ap-
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proximate nature of (6.11) and (6.12), an approxi-
mate solution will be adequate for our purpose. We
will consider a one-dimensional problem in which
all E; and k lie along the x axis. If D is not a function
of the velocity u along the z axis (u = v,), then the
solution to (6.12) is simply

—iker (—1} —ikx+ikut—3k2De3
{e Y = ¢ $ .

7.0

We shall assume this result is also approximately
true for velocity dependent D and simply use D(u)
in (7.1). Substituting this into (6.11) and using
(6.13), we obtain an integral equation for D{u).

2 =
D) = “3;5[} dit kz |E, |7 gt emmremimpeaes (7 0y
If we use the notation

Rlku — @, D] = Real [ dt o' e iR e
0 (7.3)

Then, the expression for the diffusion equation be-
comes

2
D) = L5 X Bl Rlku — o, D). (7.4)
As a function of ku — w, R has & maxima at the
origin, where B = (3)1(34°D)". R goes to zero for
ku — w| S (24°D)! and the area under R is =. In
order to deal with {(7.4) in a simple way, we shall
approximate R by the following function:

/2kw
0 by — o] > kw,

where w = (D/3k)! is k™' times the half width of
the resonance function R{ku — o, D). This function
has the same area and approximately the same
height, width, and shape as the actual R function.

It is convenient to write |E,* as a function of
phase velocity instead of wave number by setting

L/m) |B" = B, dk = k(du/u),  (7.6)

where u = wo/k. We assume the wave spectrum is
centered at &, in wave number space and lies between
the phase velocities u; and u%,. Remembering that
>« — L/x [ dk, we can use (7.5) and (7.6) to write
(7.4) in the form

ku — w| < kw,

R(u — w, D) = (7.5)

e = g [TEL Y @

2m w—w u
The value of D(u) depends critically on the ratio
of two fundamental times scales in the problem.
(a) (3koD)™* = (kow)™* is the time required for a
particle’s position to diffuse over a wavelength k;*.

DUPREE

This is apparent from (7.1). In other words, it is the
time for the particle’s position to become randomized
with respect to wave phases due to its random ac-
celeration. We shall call this the particle ‘“trapping
time’’ 775,

(b) kol(uy — wu,)|”! is the time for the relative
phases of the waves to randomize due to the differ-
ence in phase velocities, |u, — wu,|, of the waves.
This is the autocorrelation time 7. of the electric
field.

The evaluation of the diffusion coefficient from
(7.7) is simple in the two limiting cases:

1. 772 > 74¢. In this case w << Ju, — | and (7.7)
reduces 1o

D@ = T4 B[

(7.8)

This is the conventional result (6.15) for the diffusion
coeflicient.

2. 7rp K 740. In this case w>> |lu, — u, and (7.7)
becomes

2 -1 + o
_ T Q@) ¥ dw’ 2
D(w) 2m’ ( 3k, e U ||

©

20} pe ’ i
g3 du’.
- [2m2l‘c§ o % Ko }E"'tz]

f wy—wSu<u+w,

D@) = 0 otherwise.

(7.9)

The quantity [(du'/u')k, |E, is 87 times the elec-
tric energy density.

As one can glean from (7.7) or (7.9), the quantity
w is the maximum difference between particle ve-
locity and wave-phase velocity for which a particle
can still be diffused by the wave. If the value of D
given by (7.9) is used, one obtains

o= () (G ks emr ]}
(7.10)

One can easily verify that, aside from numerical
factors, this is simply the maximum speed a particle
can have in the wave frame and still be trapped by
a wave of amplitude

[ o, 1E,.,i2]
(the rms value of the actual electric field) and wave-
length k.
On the average, a particle’s velocity will change
by an amount w = (D/3k,)! in a time 7pp =
(k3D/3)7%. Except for a numerical factor, the dif-
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fusion constant can be written w’/r;z, a rather
plausible result.

We have assumed that all waves have real fre-
quencies w. If there is a small imaginary part, w,,
then, as is well known,*"® R has an additional “long
range’’ term w,/(ku — ), and there is a correspond-
ing term added to the diffusion coeflicient for
lu — w/k] > w,

2
g A S
m ; B (ku — w)®

This term describes the nonresonant or adiabatic
interaction between particles and waves. All non-
resonant particles oscillate in the electric field of the
wave with an amplitude proportional to the field
strength. If the field strength increases, the osecil-
lation amplitude increases, and the distribution
function is broadened. Actually, this oscillation
energy is more properly viewed as a part of the total
wave energy.

VIII. SIMPLE APPLICATION TO PLASMA WAVES

We now apply the considerations of the previous
two sections to the quasi-linear portion of the in-
tegral equation for E.(¢), (5.2). Using (6.6), (6.10),
(7.1), and (7.3) in this equation, we obtain the fol-
lowing expression for wave growth in lieu of (5.3):

, 9
5,

B = [ du Rl — o, Do) 2

(8.1)

where w = w,. Thus the statistical trajectory has
replaced the delta-function resonance of (5.3) with
the finite width resonance Rlku — o, D(u)).

Both of these expressions for the rate of wave
energy gain (5.3) or (8.1) can also be obtained by
computing the rate of kinetic energy loss from (f,)
due to the resonant interaction with each wave.
Considering one wave at a time and using (6.7) and
(7.4), we obtain

2

S i) = 2L\, Rlku ~ v, D) 2 (). (8.2
From energy conservation, one knows that half the
kinetic energy gained by (f,) from resonant inter-
action comes from the electric field of the wave. The
other half comes from the kinetic energy of the wave.
Therefore

2;9—;5— [E 2 = —f du nmu’ t<f°>'

The substitution of (8.2) into (8.3) produces the
expression (8.1) for wave growth. If we approximate

(8.3)
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F1g. 1. Wave-
particle resonances it
for a wave of phase
speed w/k.

LARGE RESONANCE wmm
AVERAGE 51
STABLE

SMALL RESONANCE wm‘m
AVEKAGE SLOPE

R by (7.5), the expression for the growth rate be-
comes simply

B[

Lol ) -Gl -] oo

Viewed in the light of (8.2), a single wave causes a
diffusion in velocity space to occur. The net flow
for each value of u is in the direction —D(u)(d/0u)
{fo(w)). But, to find the total kinetic energy change
of resonant particles, one must average this expres-
sion over the region of velocity space of width 2w
in which D(u) is nonzero. The finite width is due to
the finite width-resonance function K.

The situation is illustrated schematically in Fig. 1
for a wave of phase speed w/k. For a small resonance
width u, — u,, the average slope is positive so the
net particle flow is towards decreasing «. Therefore
the particles lose energy and the wave will grow.
As the wave grows, the resonance width, 2w, in-
creases. For the larger resonance width w, — u,, the
average slope is negative, and therefore more par-
ticles will diffuse towards increasing u than decreas-
ing u. The energy of the resonant particles will show
a net increase and the wave will damp.

In principle, any instability will ultimately sta-
bilize in the manner if |E,[* becomes large enough.
Of course, some other mechanism may limit the
growth before this can happen.

The three equations (6.7), (7.7), and (8.4) com-
prise a simple set of one-dimensional quasi-linear
equations which inelude trapping:

—2 i
B

EE g’—u D@ ;’—u]m(u» -0, ®9)
D) = }E [* du', (7.7
2 = B ’2—’2— W Gl + ) ~ folw = )],

(8.6)
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where

w = resonance width (D/3k,)}. (8.7)
It is a simple matter to derive the three-dimen-
sional version of these equations. We have purposely
kept the analysis simple and somewhat approximate
so as not to obscure the underlying physics.
To be sure, the considerations of Secs. VI-VIII
are very approximate. However, the purpose is to

T. H. DUPREE

show in a simple way the origin and the nature of
trapping phenomena within the context of Egs.
(5.2) and (6.5). Obviously, it would be desirable
to have a more accurate treatment of these two equa-
tions, as well as mode coupling effects contained
in the nonlinear terms of (5.1).
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The behavior of a magnetohydrodynamic channel, with finite segmented electrodes, when a plasma
in a nonequilibrium state and with tensor conductivity flows through it with constant (uniform)
velocity is presented. The nonequilibrium effect is taken into account by assuming the plasma elec-
trical conductivity to be a linear function of the current density. The problem, which is highly non-
linear, is solved by expanding in powers of the proportionality constant to obtain a recursive set of
linear equations. In this paper only the zeroth- and first-order solutions are presented. They are
obtained numerically. For the cases studied, no shorting due to leakage between adjacent electrodes
exists. Despite this inclusion of the nonequilibrium effect causes a reduction of the Hall (axial)

electric field.

L INTRODUCTION

ANY practical situations exist in which it would
be desirable to have a nonequilibrium plasma
condition in a magnetohydrodynamic channel flow.!
In general, however, such a nonequilibrium condition
is most easily created in a low-pressure plasma (less
than one atmosphere) with a strong magnetic field
(high induced electric field ~uB), so that the Hall
effect must be allowed for. As a result, a Hall current
will flow axially unless the electrodes are segmented
and an axial Hall voltage established. When the
segments are finite there is an interaction between
the extent of segmentation and the nonequilibrium
effect due to the current crowding into one corner
of the electrode. It will be the objective of the
present work to analyze this current distribution
when the electrodes are finite and nonequilibrium
ionization is a factor.
A number of authors have analyzed the current
distribution in a magnetohydrodynamic channel

1 G. W. Sutton and A. Sherman, Engineering Magneto-
hydrodynamics (McGraw-Hill Book Company, Inc.,, New
York, 1965).

with constant ¢ and nonuniform geometry. The end
currents occurring at the channel entrance or exit
were among the first to be considered; the scalar
conductivity case being solved first,” and the tensor
conductivity case being treated later.’’* Then, as it
was recognized that the Hall effect would require
electrode segmentation, this problem was also
treated, again for the tensor conductivity case.’
In all cases, the flow velocity was assumed to be
constant as was the scalar electrical conductivity
and the Hall parameter wr (where w is the electron
cyclotron frequency and r is the mean time between
electron-heavy-particle collisions). As a result, the
equation to be solved in each case was Laplace’s
equation and the problem was a linear one, although
in some cases the boundary condition was an un-
usual one.

In order to include nonequilibrium ionization in

2 ¢. W. Sutton, H. Hurwitz, Jr., and H. Poritsky, Trans.
AIEE Commun. Electron, 80, 687 (1962).
( QZB) Podolsky and A. Sherman, J. Appl. Phys. 33, 1414
1962).
4 G. W. Sutton, J. Appl. Phys. 34, 396 (1963).
5 H. Hurwitz, Jr., R. W, Kilb, and G. W. Sutton, J. Appl.
Phys. 32, 205 (1961).



