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Quasi-linear Theory - A Mean Field Theory of

Plasma Transport

3.1 The Why and What of Quasilinear Theory

In the first part of the previous chapter, we discussed fluctuations and re-

laxation in a stable plasma, close to equilibrium. Now we embark on the

principal discussion of this book, which deals with the far more difficult,

but also more interesting, problem of understanding the dynamics of a tur-

bulent plasma, far from equilibrium. The first topic in plasma turbulence we

address is quasi-linear theory.

Plasma turbulence is usually thought to result from the nonlinear evolu-

tion of a spectrum of unstable collective modes. A collective instability is

an excitation and a process whereby some available potential energy stored

in the initial distribution function (either in its velocity space structure or

in the gradients of the parameters which define the local Maxwellian, such

as, n(x), T (x), etc) is converted to fluctuating collective electromagnetic

fields and kinetic energy. A simple example of this process, familiar to all, is
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Fig. 3.1. Cartoon showing the evolution of a super-critical gradient to convective

instability and convection rolls to turbulence and turbulent mixing of the temper-

ature gradient.

Rayleigh - Benard (R-B) convection, the mechanism whereby hot air rises on

time scales faster than that determined by molecular diffusion. The starting

point is, unstably stratified air, which contains gravitational potential en-

ergy. R-B convection taps this available ‘free energy’, converting some of it

to convection rolls. The convection rolls, in turn, relax the vertical temper-

ature gradient dT/dz which drives the instability (i.e. in R-B convection,

dT/dz < (dT/dz)crit). Thus, they exhaust the available free energy and so

eliminate the drive of the R-B instability. A cartoon schematic of this pro-

cess is given in Fig.3.1. Examples of paradigmatic velocity space instabilities

are the bump-on-tail (BOT) instability and the current-driven ion acoustic

(CDIA) instability. In the BOT, the free energy is the kinetic energy of the

‘bump’ or weak beam population situated on the tail of the Maxwellian. The

presence of the bump implies an interval of velocity for which ∂〈f〉/∂v > 0,

so that waves resonant in that interval are unstable. The unstable spectrum

will grow at the expense of the free energy in the bump, thus decelerating

it and ‘filling in’ the distribution, so that ∂〈f〉/∂v ≤ 0, everywhere. To

conserve total momentum, heating of the bulk distribution must occur. A

cartoon of this evolutionary process is given in Fig.3.2(a). In the case of
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the CDIA shown in Fig3.2(b), the current carried by the electrons can pro-

duce a region of positive ∂〈f〉/∂v sufficient to overcome the effects of ion

Landau damping, thus triggering instability. The turbulent electric fields

will act to reduce ∂〈f〉/∂v by reducing the shift in, or ‘slowing down’, the

electron distribution function. Again, conservation of momentum requires

some bulk heating and some momentum transfer to the ions. In all cases,

the instability-driven turbulence acts to expend the available free energy, thus

driving the system back toward a stable or marginally stable state, and ex-

tinguishing the instability. Since this evolution occurs on a time scale which

is necessarily longer than the characteristic times of the waves, we may say

that 〈f〉 = 〈f(v, t)〉, so that 〈f〉 evolves on slow time scales. Quasi-linear

theory is concerned with describing the slow evolution of 〈f〉 and its relax-

ation back to a marginally stable state. Quasi-linear theory is, in some sense,

the simplest possible theory of plasma turbulence and instability saturation,

since it is limited solely to determining how 〈f〉 relaxes. While the method-

ology of quasilinear theory is broadly applicable, our discussion will focus

first on its applications to problems in Vlasov plasma turbulence, and later

consider more complicated applications.

In quasi-linear theory, the mean field evolution of 〈f〉 is taken to be slow,

so that

1
〈f〉

∂〈f〉
∂t

$ γk.

Thus, the growth rate γk is computed using the instantaneous value of 〈f〉,

which evolves more slowly than the waves do. So

γk = γk[〈f(v, t)〉]

is determined by plugging 〈f〉 at the time of interest into the linear dielectric
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Fig. 3.2. (a)Sketch of the distribution function for the bump-on-tail instability.

Phase velocities ω/k such that v1 < ω/k < v2 are resonant where ∂〈f〉
/
∂v > 0, so

instability occurs.(b)Sketch of the distribution function for the current driven ion

acoustic instability. Here the electron distribution function has centroid u0 /= 0,

and so carries a net current. Phase velocities vti < ω/k < u may be unstable, if

electron growth exceeds ion Landau damping.

function

ε(k, ω) = 1 +
∑

j

ω2
pj

k

∫
dv

∂〈fj〉/∂v

ω − kv
, (3.1)

and then computing ωk, γk via ε(k, ω) = 0. The equation for 〈f〉 is obtained

by averaging the Vlasov equation

∂f

∂t
+ v

∂f

∂x
+

q

m
E

∂f

∂v
= 0, (3.2a)

and using the separation f = 〈f〉+ δf , so

∂〈f〉
∂t

= − ∂

∂v

〈 q

m
Eδf

〉
. (3.2b)

Note that Eq.(3.2b) constitutes the first of the Vlasov hierarchy, which

couples the evolution of the first moment to the second moment, the evo-

lution of the second moment to the third moment, etc. Quasi-linear theory

truncates this hierarchy by simply approximating the fluctuating distribu-
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tion function f by the linear coherent response f c
k to Ek, i.e.,

δfk = f c
k = −i

q

m

Ek∂〈f〉/∂v

ω − kv
. (3.2c)

Plugging f c
k into Eq.(3.2b) gives the quasilinear equation for 〈f〉 evolution

∂〈f〉
∂t

=
∂

∂v
D(v)

∂〈f〉
∂v

(3.3a)

D(v) = Re
∑

k

q2

m2
|Ek|2

i

ωk − kv + i |γk|
. (3.3b)

Thus, quasi-linear theory is a straightforward application of mean field the-

ory methodology to the problem of 〈f〉 evolution. Note that all noise and

mode-mode coupling effects are neglected, so all fluctuations are assumed

to be eigenmodes which satisfy ω = ω(k). Other parts of f , i.e., the in-

coherent part f̃ in Eq.(2.1), has impact on the relaxation. This effect is

discussed in Chapter 8. The other issue is a truncation of δf at the linear

response. The roles of nonlinear terms mode coupling, etc. will be explained

in subsequent chapters. In this chapter, the ω-subscript is superfluous and

hereafter dropped. In the language of critical phenomena, quasilinear theory

is concerned with the evolution of the order parameter in a phase of broken

symmetry, not with noise driven fluctuations while criticality is approached

from below.

For completeness, then, we now write the full set of equations used in the

quasi-linear description of Vlasov turbulence. These are the linear dispersion

relation

ε(k, ω) = 0, (3.4a)

the equation for the evolution of the electric field energy, which is just

∂

∂t
|Ek|2 = 2γk|Ek|2, (3.4b)
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and the equations for 〈f〉 and D(v), i.e.

∂〈f〉
∂t

=
∂

∂v
D(v)

∂〈f〉
∂v

, (3.4c)

D(v) =
∑

k

q2

m2
|Ek|2

|γk|
(ω − kv)2 + γ2

k

. (3.4d)

Note that the absolute value (i.e. |γk|) is required by causality. Since

D ∼ |γ|, negative diffusion is precluded, even if the modes are linearly

damped. This is physically plausible, since damped waves of finite am-

plitude are quite capable of scattering particles and driving diffusion and

relaxation. Equations (3.4a-3.4d) constitute the famous “quasi-linear equa-

tions”, first derived by Vedenov, Velikov and Sagdeev and by Drummand

and Pine’s in the early 1960’s. The quasilinear theory is implemented by

solving equations (3.4a-3.4d) to describe the relaxation of 〈f〉 to a state

where all γk $ 0. The concomitant evolution and saturation level of |Ek|2

can also be calculated. Figure 3.3 gives a flow chart description of how

Eq.(3.4a-3.4d) might actually be solved iteratively, to obtain an 〈f〉 which

is everywhere marginal or submarginal.

At first glance, the quasi-linear theory seems easy, even trivial, and so

bound to fail. Yet, quasi-linear theory is often amazingly successful! The

key question of why this is so is still a subject of research after over 40

years. Indeed, the depth and subtlety of the quasi-linear theory begin to

reveal themselves after a few minutes of contemplating Eq.(3.4a-3.4d). Some

observations and questions one might raise include, but are not limited to,

i) The quasi-linear equation for 〈f〉 Eq.(3.4c) has the form of a diffusion

equation. So, what is the origin of irreversibility, inherent to any con-

cept of diffusion, in quasi-linear theory? Can Eq.(3.4c) be derived using

Fokker-Planck theory?
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Fig. 3.3. Schematic for implementation of quasilinear theory

ii) D(v), as given by Eq.(3.4d), varies rapidly with v, as for resonant par-

ticles with ω ∼ kv,

D(v) =
∑

k

q2

m2
|Ek|2πδ(ω − kv)

while for non-resonant particles with ω # kv,

D(v) =
∑

k

q2

m2
|Ek|2

|γk|
ω2

.

What is the physics of this distinction between resonant and non-

resonant diffusion? What does non-resonant diffusion mean, in physical

terms?

iii) When and under what conditions does quasi-linear theory apply or

break down? What criteria must be satisfied?

iv) How does quasi-linear theory balance the energy and momentum bud-

gets for fields and particles?
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Fig. 3.4. Possible excitations of unstable CDIA modes, resonating to electrons.

v) How does a spectrum of unstable waves drive 〈f〉 to evolve toward a

marginal state, with γk = 0 for all k.

These questions are addressed in the remainder of this chapter. Applications

to some simple examples, such as the BOT and CDIA instabilities, are

discussed as well.

3.2 Foundations, Applicability and Limitations of Quasi-linear

Theory

3.2.1 Irreversibility

We first address the issue of irreversibility. Generally, quasi-linear theory is

applied in the content of a broad spectrum of unstable waves. Of course,

one important question is “How broad is ‘broad’?”. In the case of the

CDIA system, the unstable spectrum is sketched in Fig.3.4. Note that,

as for any realistic system, k is quantized, so the phase velocities vph,i =
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ω(ki)/ki are quantized, as well. Particle motion in such a wave field is

entirely deterministic, according to Newton’s laws, so that

m
d2x

dt2
=

∑

m

qEm cos(kxm − ωmt) (3.5a)

and if v ∼ ωi/ki, one resonance dominates:

m
d2x

dt2
) qEi cos(kix + (kiv − ωi)t). (3.5b)

Hence, each resonant velocity defines a phase space island, shown in Fig. 3.5.

The phase space island is defined by a separatrix of width ∆v ∼ (qφm/m)1/2,

which divides the trajectories into two classes, namely trapped and circu-

lating. In the case with multiple resonances where the separatrices of neigh-

boring phase space islands overlap, the separatrices are destroyed, so that

the particle motion becomes stochastic, and the particle can wander or ‘hop’

in velocity, from resonance to resonance. In this case, the motion is non-

integrable and, in fact, chaotic. A simple criterion for the onset of chaos and

stochasticity is the Chrikov overlap criterion

1
2
(∆vi + ∆vi±1) > |vph,i − vph,i±1|. (3.6)

Here ∆v is the separatrix width, so that the LHS of Eq.(3.6) is a measure

of the excursion in v due to libration, while the RHS is the distance in

velocity between adjacent resonances. If as shown in Fig.3.6(a), LHS $

RHS, separatrix integrity is preserved and the motion is integrable. If, on

the other hand, LHS# RHS, as shown in Fig.3.6(b), individual separatrices

are destroyed and particle orbit stochasticity results.

It is well known that stochastic Hamiltonian motion in velocity may be de-

scribed by a Fokker-Planck equation, which (in 1D) can be further simplified

to a diffusion equation by using a stochastic variant of Liouville’s theorem,
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Fig. 3.5. (a) Structure of wave-particle resonance in phase space. The separatrix

width is ∆v ∼ (qφi/m)1/2. Particles inside the separatrix (region of libration)

undergo periodic motion on iso-energy contours and so are said to be trapped.

Particles outside the separatrix circulate. (b) For several waves with distinct phase

velocities, multiple resonance islands can co-exist and interact. [Courtesy of Prof.

A. Fukuyama].

because the phase space flow is incompressible on account of the underly-

ing Hamiltonian equations of motion. The resulting equation is identical to
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Fig. 3.6. Multiple separated resonances. Two waves (common in amplitude) with

different frequencies (ω and ω + ∆ω）coexist. When the amplitude is below the

threshold, particles may be trapped in the vicinity of an individual resonance, but

cannot interact with multiple resonances (a) ω2
b/∆ω2 = 0.025. When the amplitude

is above the threshold, particle can stochastically wander or hop from resonance

to resonance. This produces diffusion in velocity (b) ω2
b/∆ω2 = 0.1. [Courtesy of

Prof. A. Fukuyama].

the resonant diffusion equation obtained in quasi-linear theory. Thus, we

see that the fundamental origin of the irreversibility presumed by the quasi-

linear theory is the stochasticity of resonant particle trajectories. While re-

search on the question of the precise wave amplitude necessary for stochas-

ticity is still ongoing, the Chirikov overlap criterion (Eq.(3.6)) is a good

‘working rule’, and so constitutes a necessary condition for the applicabil-

ity of the quasi-linear theory of resonant diffusion. Note that, in contrast

to the presentations given in older texts, no assumption of “Random wave

phases”, or “Random phase approximation”, is necessary, apriori. Particle

orbit stochasticity is the ultimate underpinning of the quasi-linear diffusion

equation.
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3.2.2 Linear response

At this point, the alert reader may be wandering about the use of lin-

earized trajectories (i.e. unperturbed orbits) in proceeding from Eq.(3.5a)

to Eq.(3.5b). Of course, linearization of δf occurs in the derivation of the

quasi-linear theory, as well. This question brings us to a second important

issue, namely that of the spectral auto-correlation time. The configuration

of the electric field E(x, t) which a particle actually “sees” at any particular

x, t is a pattern formed by the superposition of the various modes in the

spectrum, as depicted by the cartoon in Fig.3.2.2(a). For an evolving spec-

trum of (usually) dispersive waves, this pattern will persist for some lifetime

τL. The pattern lifetime τL should be compared to the ‘bounce time’ of a

particle in the pattern. Here the bounce time is simply the time required

for a particle to reverse direction and return to the close proximity of its

starting point. Two outcomes of the comparison are possible. These are

i) τL $ τb → field pattern changes prior to particle bouncing,

(Fig.3.2.2(b)) so that trajectory linearization is valid.

ii) τb $ τL → the particle bounces prior to a change in the field

(Fig.3.2.2(c)) pattern. In this case, trapping can occur,

so linearized theory fails.

Not surprisingly, quasi-linear theory is valid when τL $ τb, so that un-

perturbed orbits are a good approximation. The question which remains is

how to relate our conceptual notations of τL, τb to actual physical quantities

which characterize the wave spectrum.
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Fig. 3.7. (a) Cartoon of instantaneous pattern of electric field which a particle

actually sees. The pattern has an effective duration time of τac. (b) Cartoon

showing that for τac < τb, the E-field pattern a particle sees will change before

the particle bounces, thus validating the use of unperturbed orbits. (c) Cartoon

showing that for τb < τac, the particle will bounce within a field pattern before the

pattern changes. In this case, trapping occurs and the use of unperturbed orbits is

not valid.
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3.2.3 Characteristic time-scales in resonance processes

The key point for determining the value of τL is the realization that wave

dispersion is what limits the pattern lifetime, τL. Note the total electric field

may be written (as before) as

E(x, t) =
∑

k

Eke
i(kx−ωt)

or as =
∑

k

Ek exp[i(k[x− vph(k)t])]

where vph(k) = ω(k)/k. The pattern or packet dispersal speed is ∆(ωk/k),

the net spread in the phase velocities in the packet. The net dispersal rate,

i.e. the inverse time for a wave-packet to disperse one wavelength, then is

just

1/τL = k|∆(ωk/k)|

= k

∣∣∣∣

(
dωk

dk

∆k

k
− ωk

k2
∆k

)∣∣∣∣

= | (vg(k)− vph(k)) ∆k|. (3.7)

Equation(3.7) relates the pattern lifetime to ∆k, the spectral width in k,

and the net dispersion in velocity, which is just the difference between the

phase (vph) and group (vg) velocities. That is, the resonant particle, which

has the velocity vp, feels the difference of phase and group speeds, owing to

the change of phase by wave dispersion (See Fig.3.8.) Note that regardless

of ∆k, τL →∞ for non-dispersive waves. In this case, the pattern coherence

time must necessarily be set by wave steepening and breaking, or some other

strongly nonlinear effect, which is outside the scope of quasilinear theory.

Thus, we conclude that the applicability of quasi-linear theory is limited to

〈f〉 evolution in the presence of a sufficiently broad spectrum of dispersive

waves. Interestingly, despite the large volume of research on the validity
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of quasilinear theory, this seemingly obvious point has received very little

attention. Of course, the quantitative validity of quasi-linear theory requires

that 1/τb < 1/τL, so using

1
τb
) k

√
qφres

m
(3.8)

gives an upper bound on the bounce frequency ∼ 1/τb that is
√

qφres

m
< |vg − vph|. (3.9)

Here φres is the potential of the waves in resonance with the particle. Equa-

tion (3.9) gives an important upper bound on amplitude for the validity of

quasilinear theory. Both Eq.(3.6) and Eq.(3.9) must be satisfied for applica-

bility of the quasi-linear equations.

One can isolate the range where both the Eq.(3.6) and (3.9) are satis-

fied. In the argument deriving Eq.(3.6), one considers the case that the

neighbouring modes kj and kj+1 have a similar amplitude. We also use an

evaluation ωj+1 = ωj + (kj+1 − kj)∂ω/∂k, where ωj is the wave frequency

for kj . The phase velocity for the kj+1 mode, vp,j+1, is given as

vp.j+1 ∼ vp,j + (vp,j − vg.j) (kj+1 − kj) k−1
j .

Thus, Eq.(3.6) is rewritten as
√

eφ

m
≥ |vp,j − vg,j |

(
kj+1k

−1
j − 1

)
. (3.10)

Combining Eqs.(3.9) and (3.10), the range of validity, for the quasi-linear

theory, is given as
|vp − vg|

kL
≤

√
eφ

m
≤ |vp − vg| , (3.11)

where the difference kj+1− kj is given by L−1 (L : the system size). There-

fore, the validity of the quasi-linear theory also requires that the wave length

must be much shorter than the system size.
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Fig. 3.8. Illustration of finite interaction times. Left: Wave packet in the frame of

the resonant particles which are moving at the phase velocity ω/k. When the group

velocity ∂ω/∂k is different from the phase velocity (here, the case of ∂ω/∂k < ω/k

is shown), a wave packet passes by the resonant particle. Therefore, the interaction

time is limited. Right: mis-match of the frequency in the case where modes with

k1, k2 and k1 + k2 are nonlinearly coupling.

3.2.4 Two-point and two-time correlations

In order to place the discussion given here on a more solid foundation, we

now consider the two-point, two-time correlation 〈E(x1, t1)E(x2, t2)〉 along

the particle orbit. Here the brackets refer to a space-time average. The

goal here is to rigorously demonstrate the equivalence between the heuris-

tic packet dispersal rate given in Eq.(3.7) and the actual spectral auto-

correlation rate, as seen by a resonant particle. Now for homogeneous, sta-

tionary turbulence, the field correlation function simplifies to:

〈E(x1, t1)E(x2, t2)〉 = C(x , t ), (3.12)
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Fig. 3.9. Small scale variable and large scale variable for fluctuations.

where

x1 = x+ + x

x2 = x+ − x (3.13a)

and

t1 = t+ + t

t2 = t+ − t (3.13b)

The variables (x , t ) denote the wave phase and (x+, t+) describe the slow

variation of the envelope, as is illustrated in Fig.3.9 schematically. Upon

taking the average over x+, t+, a short calculation then gives

C(x , t ) =
∑

k

|Ek|2 exp[i(kx − ωkt )]. (3.14)

Evaluating x along unperturbed orbits, so that

x− = x0− + vt−, (3.15)
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and assuming, for convenience, a continuous spectrum of the form

|Ek|2 =
E2

0

∆k

[(
k − k0

∆k

)2

+ 1
]−1

(3.16)

then allows us to write the correlation function C(x , t ) in the simple, ex-

plicit form

C(x , τ) =
∫

dk

∆k

E2
0 eikx0−ei(kv−ωk)t

[(
k − k0

∆k

)2

+ 1
] . (3.17)

Here |E0|2 is the spectral intensity, ∆k is the spectral width, and k0 is the

centroid of the spectral distribution. Expanding kv − ωk as

kv − ωk ∼ k0v − ωk0 + ∆(kv − ωk)(k − k0) + · · · ,

the integral in Eq.(3.17) can now easily be performed by residues, yielding

C(x , τ) = 2πE2
0 eikx0 ei(k0v−ωk0

)τ × exp [−∆|kv − ωk|τ − |∆k|x0 ] . (3.18)

As is illustrated in Fig.3.10, Eq.(3.18) is an explicit result for the two point

correlation, constructed using a model spectrum. Equation (3.18) reveals

that correlations decay in time according to

C(x , τ) ∼ exp[−∆|kv − ωk|τ ] (3.19)

that is by frequency dispersion ∆(ωk) and its interplay with particle stream-

ing, via ∆(kv)τ . Note that it is, in fact, the width of the Doppler-shifted

frequency which sets the spectral auto-correlation time, τac. Now,

1/τac = |∆(kv − ωk)| = |(v − vgr)∆k|, (3.20a)

so, for resonant particles with v = ω/k = vph,

1/τac = |(vph − vgr)∆k|, (3.20b)

which is identical to the heuristic estimate of the pattern lifetime given in

Eq.(3.7). Thus, we indeed have demonstrated that the dispersion in the
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Fig. 3.10. An example of the power spectrum of electric field fluctuation, which is

characterized by the peak and width of the wave number (a). Correlation function

is given in (b).

Table 3.1.

1/τac = |(vgr−vph)∆k|
the auto-correlation time or lifetime of the electric

field pattern, as sensed by resonant particles.

γk

the wave growth or damping rate, as

determined by the linear dispersion relation.

1/τb = k

(
qφres

m

)1/2 the ‘bounce’ or ‘trapping time’ for resonant

particles in the total packet potential.

1/τrelax =
1
〈f〉

∂〈f〉
∂t

the rate of slow relaxation of

the average distribution function.

Doppler shifted frequency as ‘seen’ by a resonant particle (moving along

an unperturbed orbit) sets the spectral auto-correlation time and thus the

lifetime of the field pattern which the particle senses.

We now summarize this discussion by reviewing the basic time-scales char-

acteristic of quasi-linear theory, and the relationships between them which

are necessary for the applicability of quasi-linear theory. The basic tempo-

ral rates (i.e. inverse time scales ∼ 1/τ) are summarized in Table 3.1. As

discussed above, several conditions must be satisfied for quasi-linear theory
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to be relevant. These are:

1/τb < 1/τac (3.21a)

for the use of unperturbed orbits (linear response theory) to be valid,

1/τrelax $ 1/τac, γk (3.21b)

for the closure of the 〈f〉 equation to be meaningful,

1/τrelax < γk < 1/τac (3.21c)

for the quasi-linear equations to be applicable.

Of course, the irreversibility of resonant quasi-linear diffusion follows from

the stochasticity of particle orbits, which in turn requires that the Chirikov

overlap criterion (Eq.(3.6)) be met. (see Fig.3.11.) In retrospect, we see that

applicability of the ‘trivial’ quasi-linear theory naively follows from several

rather precise and sometimes even subtle conditions!

3.2.5 Short note on entropy production

At this conclusion of our discussion of the origin of irreversibility in quasi-

linear theory, it is appropriate to briefly comment on entropy. The Vlasov

equation leaves entropy invariant, since entropy

S =
∫

dv

∫
dx s(f),

and

df

dt
= 0

in a Vlasov plasma. The quasi-linear equation involves a coarse graining, as

it describes the evolution of 〈f〉, not f . Hence, it should be no surprise that

quasi-linear relaxation can produce entropy, since such entropy production
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Fig. 3.11. Range of applicability for the quasi-linear theory, Eq.(3.11). Amplitude

is normalized by the particle energy at phase velocity on the horizontal axis. Ver-

tical axis shows the magnitude of dispersion, i.e., the difference between the group

velocity and phase velocity.

is intrinsic to phenomena such as resonant particle heating, etc, which occur

in the course of the evolution and saturation of plasma turbulence. Remem-

ber that the irreversible quasi-linear evolution of 〈f〉 requires the onset of

chaos, Eq.(3.6). A deeper connection between resonant quasi-linear diffusion

and entropy production enters via the requirement that particle orbits be

stochastic. Strictly “stochastic” means that at least one positive Lypunov

exists so the KS (Kolmogorov-Sinai) entropy is positive, i.e. h > 0. Any

definition of dynamical entropy entails the definition of some partition of

phase space, which also constitutes a coarse graining. We see that coarse

graining, and thus entropy production, are intrinsic to the foundations of

quasi-linear theory.
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3.3 Energy and Momentum Balance in Quasi-linear Theory

3.3.1 Various energy densities

It is no surprise that energy and momentum conservation are non-trivial

concerns, since the basic quasilinear equation for D(v), Eq.(3.4d), makes

a clear distinction between resonant and non-resonant particles. Resonant

particles, for which

DR(v) =
∑

k

q2

m2
|Ek|2πδ(ω − kv), (3.22a)

exchange energy with waves irreversibly, via Landau resonance. Note that

the resonant diffusion coefficient does not depend on the wave growth rate.

Non-resonant particles, for which

DNR(v) )
∑

k

q2

m2
|Ek|2

|γk|
(ω − kv)2

, (3.22b)

support the wave by oscillating in it. Their motion is reversible, and their

quiver velocities increase or decrease with the wave amplitude. Hence,

DNR(v) is explicitly proportional to |γk|, in contrast to DR. It is interesting

to note that for ω # kv, the non-resonant diffusion reduces to

DNR =
∑

k

q2

m2

∣∣∣Ẽk

∣∣∣
2 |γk|

ω2

=
(

1
n0m

) ∣∣∣∣
∂

∂t
Ep

∣∣∣∣ (3.23a)

where Ep is the ponderomotive (or quiver) energy density

Ep =
∑

k

1
2

n0q2

m2

∣∣∣Ẽk

∣∣∣
2

ω2
k

. (3.23b)

This observation illustrates that non-resonant diffusion is simply due to re-

versible quivering of particles in the wave field. Thus, non-resonant diffusion

cannot produce entropy. Indeed, to understand non-resonant diffusion and
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energetics in quasi-linear theory, it is important to keep in mind that the

familiar quantity, the total wave energy density W

W =
∂

∂ωk
(ωε)

∣∣∣∣
ωk

|Ek|2

8π
, (3.24)

contains contributions from both the electric field energy density (Eef)

Eef = |Ek|2/8π, (3.25a)

and the non-resonant particle kinetic energy density Enr
kin. This point is il-

lustrated by considering simple Langmuir oscillations of amplitude E0 with

ε = 1−ω2
p/ω2, for which Eef = |E0|2/8π while W = |E0|2/4π. A short calcu-

lation reveals that the remaining contribution of |E0|2/8π is simply the non-

resonant particle kinetic energy density (Enr
kin), which is equal in magnitude

to the Eef for Langmuir waves. This is easily seen, since Enr
kin = (1/2)nm |ṽ|2

and ṽ = qẼ/ωm. Together these give Enr
kin = (1/8)ω2

p

∣∣∣Ẽ
∣∣∣
2
/8πω2, so that

for ω = ωp, the identity Enr
kin = Eef is clear. Indeed, the thrust of this dis-

cussion suggests that since quasi-linear theory divides the particles into two

classes, namely resonant and non-resonant, there should be two ways of bal-

ancing the total energy budget. Below, we show that an energy conservation

relation can be formulated either as a balance of

resonant particle kinetic

energy density
Eres

kin vs
total wave

energy density
W

or of

particle kinetic

energy density
Ekin vs

electric field

energy density
Eef

Momentum balance exhibits similar duality.
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3.3.2 Conservation of energy

To prove conservation of energy between resonant particles and waves, one

must first determine the rate of change of total particle kinetic energy density

Ekin by taking the energy moment of the Vlasov equation, i.e.

∂

∂t
Ekin =

∂

∂t

∫
dv

mv2

2
〈f〉

=
∫

dv qv〈Ẽδf〉
(3.26)

where Eq.(3.2b) is substituted and the partial integration is performed. Be-

cause we are studying the balance in the framework of the quasi-linear the-

ory, δf is approximated by the linear Vlasov response, so Eq.(3.26) gives

∂

∂t
Ekin = −i

∫
dv

vq2

m

∑

k

|Ek|2
(

P

ω − kv
− iπδ (ω − kv)

)
∂〈f〉
∂v

(3.27)

where P indicates the principal part of the integral and the familiar Plemelj

formula has been used to decompose the linear response into resonant and

non-resonant pieces. Choosing the resonant piece, we can express the rate

of charge of resonant particle kinetic energy as

∂

∂t
Eres

kin = −
∫

dv
πq2

m

∑

k

ω

k|k|δ
(ω

k
− v

) ∂〈f〉
∂v

|Ek|2

= −πq2

m

∑

k

ω

k|k|
∂〈f〉
∂v

∣∣∣∣
ω/k

|Ek|2 .

(3.28)

To relate Eq.(3.28) to the change in wave energy density (using Eq.(3.24)),

we may straightforwardly write,

∂W

∂t
=

∑

k

2γk
∂

∂ω
(ωε)

∣∣∣∣
ωk

|Ek|2

8π

=
∑

k

2γkωk
∂ε

∂ω

∣∣∣∣
ωk

|Ek|2

8π
.

(3.29)

Now, for γk:

ε = 1 +
ω2

p

k

∫
dv

∂〈f〉
ω − kv

, (3.30)
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and

εr (ωk + iγk) + iIm ε = 0, (3.31)

so

γk = − Im ε(
∂εr

/
∂ω

)∣∣
ωk

. (3.32)

Substituting Eq.(3.32) into Eq.(3.29) gives:

∂W

∂t
= −

∑
ωkIm ε (k, ωk)

|Ek|2

4π
. (3.33)

However, from Eq.(3.30) we have:

Im ε (k, ωk) = −
πω2

p

|k|k
∂〈f〉
∂v

∣∣∣∣
ω/k

. (3.34)

Substituting Eq.(3.34) into Eq.(3.33) then gives:

∂W

∂t
=

πq2

m

∑

k

ωk

k|k|
∂〈f〉
∂v

∣∣∣∣
ω/k

|Ek|2 (3.35)

where the density dependence of 〈f〉 has been factored out, for convenience.

Comparing Eq.(3.28) and Eq.(3.35), we see that, within the scope of quasi-

linear theory, we have demonstrated that

∂

∂t
(Eres

kin + W ) = 0 (3.36)

i.e. that energy is conserved between collective modes (“waves”) and res-

onant particles. Equation (3.36) is the fundamental energy conservation

relation for quasi-linear theory.

Several comments are in order here. First, the quasi-linear energy con-

servation relation proved above is just a special case of the more general

Poynting theorem for plasma waves, which states that:

∂W

∂t
+ ∇ · S + Q = 0 (3.37)
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i.e. wave energy density W is conserved against wave radiation (∇ ·S, where

S is the wave energy density flux) and dissipation (Q = 〈E · J〉), where E is

the electric field and J is the current. For a homogeneous system ∇ ·S = 0,

so the Poynting relation reduces to just ∂W/∂t + 〈E · J〉 = 0. Computing

the plasma current Jk using the linear response f̃k then yields an expression

identical to Eq.(3.36). The physics here is a simple consequence of the

fact that only resonant particles “see” a DC electric field, so only they can

experience a time averaged 〈E · J〉.

3.3.3 Role of quasi-particles and particles

A second element of this discussion reveals an alternative form of the energy

theorem. As discussed above, the total wave energy density W may be

decomposed into pieces corresponding to the field energy density (Eef) and

the non-resonant particle kinetic energy density (Enr
kin). In these terms, the

quasi-linear energy conservation theorem can be written as shown below.

We have demonstrated explicitly Eq.(3.36) that:

∂

∂t
W +

∂

∂t
Eres

kin = 0

but also have noted the physically motivated decomposition

W = Eef + Enr
kin

so we have

∂

∂t
(Eef + Enr

kin) +
∂

∂t
Eres

kin = 0.

Then, a re-grouping gives:

∂

∂t
Eef +

∂

∂t
(Eres

kin + Enr
kin) = 0
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where Eres
kin + Enr

kin = Ekin, the total particle kinetic energy density. This we

arrive at an alternative form of the energy conservation theorem, namely

that
∂

∂t
(Eef + Ekin) = 0 (3.38)

i.e. electric field energy density Eef is conserved against total particle kinetic

energy density Ekin from Eq.(3.27) without the (Plemelj) decomposition of

the response into resonant and non-resonant pieces. Returning to Eq.(3.27),

we proceed as

∂

∂t
Ekin = −

∑

k

∫
dv

ω2
p

k
(kv)

|Ek|2

4π

(
1

ω − kv

)
∂〈f〉
∂v

. (3.39a)

Now, using Eq.(3.30) for ε(k, ω) we can write:

∂

∂t
Ekin = −i

∑

k

|Ek|2

4π

∫
dv

ω2
p

k
(kv − ω + ω)

1
(ω − kv)

∂〈f〉
∂v

= −i
∑

k

|Ek|
4π

∫
dv

ω2
p

k

ω

ω − kv

∂〈f〉
∂v

(3.39b)

as energy is real. Since ε (k, ωk) = 0, by definition of ωk, we thus obtain

∂

∂t
Ekin = i

∑

k

|Ek|2

4π
ωk

= −
∑

k

|Ek|2

8π
(2γk) = − ∂

∂t
Eef .

(3.39c)

Thus completes the explicit proof of the relation ∂(Ekin +Eef)/∂t = 0. The

energy conservation laws of quasi-linear theory are summarized in Table 3.2.

As indicated in the table, the two forms of the quasi-linear energy conser-

vation theorem are a consequence of the two possible conceptual models of

a turbulent plasma, namely as an ensemble of either:

a) quasi-particles(waves) and resonant particles, for which ∂(W+Eres
kin)/∂t =

0, Eq.(3.36), is the appropriate conservation theorem,
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or

b) particles(both resonant and non-resonant) and electric fields, for which

∂(Ekin +Eef)/∂t = 0, Eq.(3.38) is the appropriate conservation theorem.

This distinction is possible since non-resonant diffusion can be counted either

as:

a) the sloshing of particles which support the wave energy density

or as

b) part of the total particle kinetic energy density.

While both views are viable and valid, we will adopt the former in this book,

as it is both appealingly intuitive and physically useful.

Finally, we note in passing that it is straightforward to show that the sum

of resonant particle momentum and wave momentum (PW = k (∂ε/∂ω)k |Ek|2 /8π)

is conserved. The proof closely follows the corresponding one for energy,

above. No corresponding relation exists for particles and fields, since, of

course, purely electrostatic fields have no momentum. In this case, the to-

tal particle momentum density is simply a constant. In electromagnetic

problems, where the presence of magnetic fields allows a non-zero field mo-

mentum density (proportional to the Poynting flux), exchange of momentum

between particles and fields is possible, so a second momentum conservation

theorem can be derived.

3.4 Applications of Quasi-linear Theory to Bump-on-Tail

Instability

As a complement to the rather general and theoretical discussion thus for, we

now discuss two applications of quasi-linear theory -first, to the classic prob-
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Table 3.2. Energy balance theorems for quasilinear theory

Particles
Resonant (v = ω/k) → Eres

kin

Non-resonant (v /= ω/k) → Enr
kin

Constituents

Fields

Electric Field Energy Eef

Waves, Collective Modes

→ Total Wave Energy Density (W )

Perspectives
Resonant Particles vs Waves balance

Particles vs Fields balance

Relations and
∂

∂t
(Eres

kin + W ) ≡ 0↔ resonant particles vs waves

Conservation Balances
∂

∂t

(
Ekin + Eef

)
≡ 0↔ total particles vs electric field

lem of the bump-on-tail instability in one dimension and then to transport

and relaxation driven by drift wave turbulence in a 3D magnetized plasma.

We discuss these two relatively simple examples in considerable depth, as

they constitute fundamental paradigms, upon which other applications are

built.

3.4.1 Bump-on-tail instability

The bump-on-tail instability occurs in the region of positive phase velocities

which appears when a gentle beam is driven at high velocities, on the tail

of a Maxwellian. The classic configuration of the bump on tail is shown in

Fig.3.2(a). Based upon our previous discussion, we can immediately write

down the set of quasi-linear equations:

ε (k, ωk) = 0, (3.40a)

∂ 〈f〉
∂t

=
∂

∂v
D

∂ 〈f〉
∂v

, (3.40b)
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D = DR + DNR =
∑

k

q2

m2
|Ek|2

{
πδ(ω − kv) +

|γk|
ω2

}
, (3.40c)

∂

∂t

(
|Ek|2

8π

)
= 2γk

(
|Ek|2

8π

)
. (3.40d)

Initially ε (k, ωk) should be calculated using the distribution shown in

Fig.3.2(a). It is interesting to note that the structure of the bump-on-

tail distribution enables us to clearly separate and isolate the regions of

resonant and non-resonant diffusion and heating, etc. In particular, since

∂ 〈f〉 /∂v > 0 for a velocity interval on the tail, waves will be resonantly

excited in that interval and particles in that region will undergo resonant

diffusion. Similarly, since bulk particles are not resonant but do support the

underlying Langmuir wave, we can expect them to undergo non-resonant

diffusion, which can alter their collective kinetic energy but not their en-

tropy.

3.4.2 Zeldovich theorem

Before proceeding with the specific calculation for the bump-on-tail problem,

it is useful to discuss the general structure of relaxation in a Vlasov plasma

and to derive a general constraint on the evolution of the mean distribution

function 〈f〉 and on its end state. This constraint is a variant of a theorem

first proved by Ya. B. Zeldvich in the context of transport of magnetic

potential in 2D MHD turbulence. Proceeding, then, the Boltzmann equation

says that

d
dt

(δf) = − q

m
E

∂〈f〉
∂v

+ C (δf) (3.41)
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where

d
dt

=
∂

∂t
+ v

∂

∂x
+

q

m
E

∂

∂v

i.e. that fluctuation phase space density is conserved up to collisions (de-

noted by C(δf)) and relaxation of the phase space density gradients. Of

course, total phase space density is conserved along particle orbits, up to

collisions, only. Multiplying Eq.(3.41) by δf and averaging then yields

d
dt

∫
dv

〈
δf2

〉
=

∫
dv

[
− q

m
〈Eδf〉 ∂ 〈f〉

∂v
+ 〈δfC (δf)〉

]
. (3.42)

Here, the average implies an integration over space (taken to be periodic),

so 〈 〉 =
∫

dx, as well as the explicit integral over velocity. Thus, 〈d/dt〉 →

∂/∂t. Furthermore, it is useful for physical transparency to represent C(δf)

using a Crook approximation C(δf) = −ν(δf), so that Eq.(3.42) then be-

comes

d
dt

∫
dv

〈
δf2

〉
=

∫
dv

[
− q

m
〈Eδf〉 ∂ 〈f〉

∂v
− ν 〈δf〉

]
.

Ignoring collisions for the moment, Eq.(3.42) simply states the relation be-

tween mean square fluctuation level and the relaxation of the mean distri-

bution fluctuation embodied by the Vlasov equation, i.e.

df

dt
= 0. (3.43a)

and

f = 〈f〉+ δf (3.43b)

so

d
dt

(〈f〉+ δf)2 = 0. (3.43c)
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Averaging them gives

d
dt

∫
dv 〈δf2〉 = −

∫
dv 〈f〉∂〈f〉

∂t
=

∫
dv 〈f〉 ∂

∂v

〈 q

m
Eδf

〉
(3.43d)

since, of course,

∂〈f〉
∂t

= − ∂

∂v

〈 q

m
Eδf

〉
. (3.43e)

The content of the relation between the LHS and RHS of Eq.(3.43d) is

obvious-relaxation of 〈f〉 drives 〈δf2〉.

Till now, the calculation has been formal, reflecting only the conservative

symplectic structure of the Vlasov-Boltzmann equation, Equation (3.42) is

a structure relating fluctuation growth to transport (∼ q
m〈Eδf〉) and colli-

sional damping. To make contact with quasi-linear theory, we close Eq.(3.42)

by taking δf → f c, the coherent linear response, in 〈Eδf〉. (The role of in-

coherent part f̃ in δf, δf = f c + f̃ , is explained in Chapter 8.) This gives

the Zeldovich relation

∂

∂t

∫
dv 〈δf2〉 =

∫
dv D

(
∂〈f〉
∂v

)2

−
∫

dv ν〈δf2〉 (3.44)

which connects fluctuation growth to relaxation and collisional damping.

Here D is the quasi-linear diffusion coefficient, including both resonant and

non-resonant contributions, i.e.

D = DR + DNR.

3.4.3 Stationary states

The point of this exercise becomes apparent when one asks about the na-

ture of a stationary state, i.e. where ∂〈δf2〉/∂t = 0, which one normally



3.4 Applications of Quasi-linear Theory to Bump-on-Tail Instability 107

associates with instability saturation. In that case, Eq.(3.44) reduces to

∫
dv DR

(
∂〈f〉
∂v

)2

=
∫

dv ν〈δf2〉 (3.45)

which states that fluctuation growth by resonant instability induced relax-

ation and transport must balance collisional damping in a stationary state.

This is the Vlasov analogue of the production-dissipation balance generic

to the mixing length theory and to turbulent cascades. Notice that non-

resonant diffusion necessarily vanishes at stationarity, since DNR ∼ |γ|,

explicitly. With the important proviso that δf should not develop singular

gradients, then Eq.(3.45) states that for a collisionless (ν → 0), stationary

plasma,
∫

dv DR (∂〈f〉/∂v)2 must vanish. Hence either ∂〈f〉/∂v → 0, so that

the mean distribution function flattens (i.e. forms a plateau) at resonance,

or DR → 0, i.e. the saturated electric field spectrum decays and vanishes.

These are the two possible end-states of quasi-linear relaxation. Notice also

that Eq.(3.45) states that any deviation from the plateau or DR = 0 state

must occur via the action of collisions, alone, and so the rate at which this

deviation evolves must be proportional to the collision frequency.

3.4.4 Selection of stationary state

We now proceed to discuss which state (i.e., DR = 0 or ∂〈f〉/∂v = 0) is ac-

tually selected by the system by explicitly calcutlating the time dependence

of the resonant diffusivity.

To determine the time evolution of DR, it is convenient to first re-write

it as

DR = 16π2 q2

m2

∫ ∞

0
dk Eef(k)δ(ω − kv) (3.46)
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where Eef(k) = |Ek|2 /8π. Then we easily see that ∂DR/∂t is given by

∂DR

∂t
=

16π2q2

m2v

(
2γωpe/v

)
Eef

(ωpe

v

)
(3.47a)

where ωk = ωpe. Since γk = γωpe/v = πv2ωpe (∂〈f〉/∂v), a short calculation

then yields

DR(v, t) = DR(v, 0) exp
[
πωpev

2
∫ t

0
dt′

∂〈f〉
∂v

]
. (3.47b)

Using Eq.(3.46) and the expression for γk, we also find that

∂〈f〉
∂t

=
∂

∂t

∂

∂v

[
DR(v, t)
πωpev2

]
(3.48a)

so

〈f(v, t)〉 = 〈f(v, 0)〉+ ∂

∂v

(
DR(v, t)−DR(v, 0)

πωpev2

)
. (3.48b)

Taken together, Eqs.(3.47b) and (3.48b) simply that quasi-linear saturation

must occur via plateau formation. To see this, assume the contrary, i.e. that

DR → 0 as t→∞. In that case, Eq.(3.48b) states that

〈f(v, t)〉 = 〈f(v, 0)〉 − ∂

∂v

[
DR(v, 0)
πωpv2

]
. (3.49)

Since DR(v, 0) = 16π2q2E (ωp/v, 0)
(
m2v

)−1, it follows that

〈f(v, t)〉 = 〈f(v, 0)〉 − ∂

∂v

2Eef (ωp/v, 0)
nmv2/2

(3.50)

so 〈f(t)〉 ∼= 〈f(0)〉, up to a small correction of O(initial fluctuation energy
/

bump energy) × (nb/n), where the bump density nb satisfies nb/n $ 1.

Hence 〈f(v, t)〉 ∼= 〈f(v, 0)〉 to excellent approximation. However, if DR → 0

as t → ∞, damped waves require ∂〈f〉/∂v < 0, so 〈f(v, t)〉 cannot equal

〈f(v, 0)〉, and a contradiction has been established. Thus, the time asymp-

totic state which the system actually selects is one where a plateau forms

for which ∂〈f〉/∂v −−−→
t→∞

0, in the region of resonance.
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Fig. 3.12. The plateau formation process: initial state (a) and final state (b).

To calculate the actual plateau state, it is important to realize that two

processes are at work, simultaneously. First, resonant particles will be

stochastically scattered, so as to drive ∂f/∂v → 0 by filling in lower ve-

locities. This evolution shown in Fig.3.12 is similar to the propagation of a

front of δf from the bump to lower velocities which fall in between the bulk

Maxwellian and the bump-on-tail. The end state of the plateau is shown

in Fig.3.12(b). Second, the non-resonant bulk particles will experience a

one-sided heating (for v > 0, only) as waves grow during the plateau for-

mation process. It is important to realize that this heating is fake heating

and does not correspond to an increase in bulk particle entropy, since it

originates from non-resonant diffusion. The heating is one sided in order

to conserve total momentum between bump-on-tail particles (which slow

down) and bulk particles, which so must speed up.

To actually calculate the time-asymptotic distribution function and fluc-

tuation saturation level, it is again convenient to separate the evolution into

resonant and non-resonant components. The actual saturation level is most

expeditiously calculated using the conservation relation ∂(Eres
kin+W )/∂t = 0.
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This allows us to equate the change in kinetic energy in the resonant velocity

region with the change in the energy of waves in the corresponding region

of k values. Thus

∆
(∫ v2

v1

dv
mv2

2
〈f〉

)
= −2∆

∫ k2

k1

dk Eef (k) . (3.51)

Here v1 and v2 correspond to the lower and upper limits of the range of

instability, and, using k = ωp/v, k2 = ωp/v1, k1 = ωp/v2. The factor of 2

which appears on the RHS of Eq.(3.51) reflects the fact that non-resonant

particle kinetic energy and field energy (Eef) contribute equally to the total

wave energy. Then, assuming the fields grow from infinitesimal levels, the

total saturated field energy is then just
∫ k2

k1

dk Eef (k) = −1
2
∆

(∫ v2

v1

dv
mv2

2
〈f〉

)
. (3.52)

To compute the RHS explicitly, a graphical, equal area construction is most

convenient. Figure 3.13 illustrates this schematically. The idea is that reso-

nant diffusion continues until the upper most of the two rectangles of equal

area empties out, toward lower velocity, thus creating a flat spot or plateau

between v1 and v2. The result of the construction and calculation outlined

above gives the saturated field energy and the distortion of the tail.

To determine the change in the bulk distribution function, one must ex-

amine the non-resonant diffusion equation. This is

∂〈f〉
∂t

=
∂

∂t
DNR

∂〈f〉
∂v

∼=
8πq2

m2

∫
dk Eef (k)

γk

ω2
pe

∂2〈f〉
∂v2

. (3.53a)

Here γk ≥ 0 for modes in the spectrum, so the absolute value is superfluous.

Thus, using the definition of γk, we can write the diffusion equation as

∂〈f〉
∂t

=
(

1
nm

∂

∂t

∫
dk Eef (k)

)
∂2〈f〉
∂v2

. (3.53b)
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Fig. 3.13. Cartoon of initial and final (plateau) distribution function for resonant

region in bump-on-tail instability. Note that quasi-linear diffusion has filled in the

initial ”hollow” and smoothed out the ”bump” centered at v2.

Now, defining

τ (t) =
(

2
n

∫
dk Eef (k, t)

)
(3.54)

reduces Eq.(3.53b) to a simple diffusion equation

∂〈f〉
∂τ

=
1

2m

∂2〈f〉
∂v2

(3.55)

with solution (taking the initial bulk distribution to be Maxwellian)

〈f〉 =
[

m

2π (T + τ (t)− τ (0))

]1/2

exp
[
− mv2/2

(T + τ (t)− τ (0))

]
. (3.56)
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Hence, non-resonant particle of saturation undergo an apparent temperature

increase

T → T +
2
n

∫
dk

[
Eef (k,∞)− Eef (k, 0)

]
(3.57)

so that the bulk electrons appear to be heated by a net increase in field

energy. Of course, as is explained in the begining of this subsection, this

heating is fake, i.e. does not correspond to an increase in entropy, as it

results from non-resonant diffusion. Furthermore it is one sided (i.e. occurs

only for particles with v > 0), as a consequence of the need to conserve

momentum with beam particles which are slowing down. This result may

also be obtained using the conservation relation ∂
(
Ekin + Eef

)
/∂t = 0, and

noting that since in this case ∂
(
Eres

kin + 2Eef
)
/∂t = 0, we have

∂

∂t

(
Enr

kin −Eef
)

= 0 (3.58)

so ∆ (Enr
kin) = ∆

(
Eef

)
, consistent with Eq.(3.57). Note, however, that an

explicit computation of ∆
(
Eef

)
requires an analysis of the distortion of the

distribution function in the resonant region. This should not be surprising,

since in the bump-on-tail instability, the non-resonant particle are in some

sense ‘slaved’ to the resonant particles.

3.5 Application of Quasi-linear Theory to Drift Waves

3.5.1 Geometry and drift waves

A second, and very important application of quasilinear or mean field the-

ory is to drift wave turbulence. A typical geometry is illustrated in Fig.3.14.

It is well known that a slab of uniformly magnetized plasma (where B =

B0ẑ) which supports cross-field density and/or temperature gradients i.e.

n = n0 (x), T = T0 (x), where n0 and T0 are the density and temperature
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Fig. 3.14. Geometry of magnetized inhomogeneous plasma. The gradients and

magnetic field are in the x-direction and z-direction, respectively. The electron

diamagnetic drift velocity Vde is in the y-direction. Radial and poloidal directions

(r, θ) are also illustrated.

profiles, which parameterize the local Maxwellian distribution function, is

unstable to low frequency (ω < ωci) drift wave instabilities. Such “univer-

sal” instabilities, which can occur either in collisionless or collisional plasmas,

tap expansion free energy stored in radial pressure gradients (i.e. ∂p/∂r)

via either collsionless (i.e. wave-particle resonance) or collisional dissipation.

Indeed, the collisionless electron drift wave is perhaps the simplest kinetic

low frequency instability of the myriad which are known to occur in inhomo-

geneous plasma. A short primer on the linear properties of drift waves may

be found in Appendix. Here, we proceed to discuss the quasilinear dynamics

of the collisionless, electron-driven drift instability.

In the collisionless electron drift instability, the ion response is hydrody-
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namic, while the electrons are described by the drift kinetic equation

∂f

∂t
+ vz

∂f

∂z
− c

B0
∇φ× ẑ ·∇f − |e|

me
Ez

∂f

∂vz
= 0. (3.59)

Equation (3.59) simply states that phase space density f is conserved (i.e.

df/dt = 0) along the drift orbits

dz

dt
= vz,

dvz

dt
= −|e|Ez

me
,

dx

dt
= − c

B0
∇φ× ẑ.

These orbits combine Vlasov-like dynamics along the magnetic field with

E×B drift across the field. Note that the phase space flow for drift kinetic

dynamics in a straight magnetic field is manifestly incompressible, since

∇⊥ ·
(

dx

dt

)
= 0,

and parallel dynamics is Hamiltonian. As a consequence, Eq.(3.59) may be

re-written as a continuity equation in phase space, i.e.

∂f

∂t
+

∂

∂z
vzf + ∇ · (v⊥f) +

∂

∂vz
azf = 0 (3.60a)

where the perpendicular E ×B flow velocity is

v⊥ = − c

B0
∇φ× ẑ (3.60b)

and the parallel acceleration az is

az =
|e|
me

∇zφ. (3.60c)

Assuming periodicity in the ẑ-direction and gradients in x̂-direction, aver-

aging Eqs.(3.60b) then yields the mean field equation for 〈f〉, i.e.

∂

∂t
〈f〉+ ∂

∂x

〈
ṽxf̃

〉
+

∂

∂vz

〈
ãz f̃

〉
= 0. (3.61)
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In this example, we see that the quasinlinear dynamics are necessarily two

dimensional, and evolve 〈f〉 in a reduced phase space of
(
x, v‖

)
, which com-

bines position space (r) and velocity space (vz) evolution. Thus the quasi-

linear evolution involves both a radial flux of particles and energy, as well as

heating in parallel velocity as in the 1D Vlasov example. An energy theorem

may be derived by constructing the energy moment of Eq.(3.61), i.e. taking

an weighted integral (
∫

d3v
(
mev2/2

)
∗) of the drift kinetic equation. This

gives

∂

∂t
〈Ekin〉+

∂

∂r
Qe − 〈EzJz〉 = 0, (3.62a)

where

〈Ekin〉 =
∫

d3v
mev2

2
〈f〉 (3.62b)

is the kinetic energy density,

Qe =
∫

d3v

〈
ṽr

1
2
mev

2f̃

〉
(3.62c)

is the fluctuation included energy flux and

〈EzJz〉 =
∫

d3v mevz

〈
ãz f̃

〉

=
〈
∇zφ

∫
d3v |e|vz f̃

〉 (3.62d)

is the fluctuation-induced heating. Note that in drift kinetics, the only

possible heating is parallel heating. In a related vein, the drift wave energy

density WDW satisfies a Poynting theorem of the form:

∂

∂t
WDW +

∂

∂r
Sr = −

〈
E‖J‖

〉
R

(3.63)

where Sr is the radial wave energy density flux and
〈
E‖J‖

〉
R

is the heating

by resonant particles. Equation (3.63) is seen to be the analogue of the wave
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energy vs. resonant particle energy balance we encountered in 1D, since we

can use Eq.(3.62a) to write

〈EzJz〉R =
(

∂

∂t
〈Ekin〉+

∂

∂r
Qe

)

R

, (3.64)

so that Eq.(3.63) then becomes

∂

∂t
(WDW + 〈Ekin〉R) +

∂

∂r
(Qe,R + Sr) = 0. (3.65)

Likewise, an energy theorem for the evolution of particle plus field energy

may be derived in a similar manner. Interestingly, Eq.(3.65) states that the

volume-integrated wave-plus-resonant-particle energy is now conserved only

up to losses due to transport and wave radiation through the boundary, i.e.

∂

∂t

∫
dr (WDW + 〈Ekin〉R) = − (Qe,R + Sr)|bndry . (3.66)

In general, transport exceeds radiation, except where ñ/n0 → 1, as at the

tokamak edge.

3.5.2 Quasi-linear equations for drift wave turbulence

To construct the explicit quasilinear equation for drift wave turbulence, we

substitute the linear response f c
k to φk into Eq.(3.61), to obtain a mean field

equation for 〈f〉. Unlike the 1D case, here f c
k in deriven by both spatial and

velocity gradients, so

f c
k =

φk

ω − kzvz
Lk 〈f〉 (3.67a)

where Lk is the operator

Lk = − c

B0
kθ

∂

∂r
+

|e|
me

kz
∂

∂vz
. (3.67b)
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Here it is understood that ω = ω (k) – i.e. all fluctuations are eigenmodes.

Then, the quasilinear evolution equation for 〈f〉 can be written as

∂

∂t
〈f〉 = Re

∑

k

Lk |φk|2
(

i

ω − kzvz

)
Lk 〈f〉 (3.68a)

∂

∂t
〈f〉 =

∂

∂r
Dr,r

∂

∂r
〈f〉+ ∂

∂r
Dr,v

∂

∂vz
〈f〉

+
∂

∂vz
Dv,r

∂

∂r
〈f〉+ ∂

∂vz
Dv,v

∂

∂vz
〈f〉

(3.68b)

where the four diffusion coefficients describe radial diffusion, i.e.

Dr,r = Re
∑

k

e2

B2
0

k2
θ |φk|2

i

ω − kzvz
(3.68c)

velocity diffusion, i.e.

Dv,v = Re
∑

k

e2

B2
0

k2
z |φk|2

i

ω − kzvz
(3.68d)

and two cross-terms

Dr,v = Re
∑

k

c

B0

|e|
me

kθkz |φk|2
i

ω − kzvz
(3.68e)

Dr,v = Re
∑

k

c

B0

|e|
me

kθkz |φk|2
i

ω − kzvz
. (3.68f)

In general, some spectral asymmetry i.e. 〈kθkz〉 /= 0 (where the bracket

implies a spectral average) is required for Dr,v /= 0 and Dv,r /= 0. Equation

(3.68b), then, is the quasilinear equation for 〈f〉 evolution by drift wave

turbulence.

It is interesting to observe that the multi-dimensional structure of wave-

particle resonance in, and the structure of the wave dispersion relation

for, drift wave turbulence have some interesting implications for the auto-

correlation time for stochastic scattering of particles by a turbulent fluctu-

ation field. In general, for drift waves ω = ω
(
kθ, k‖

)
, with stronger depen-
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dence of k⊥. Then, modelling

|φk|2 = |φ0|2
(

∆kθ

(kθ − kθ0)
2 + ∆k2

θ

)(
∆kz

(kz − kz0)
2 + ∆k2

z

)
(3.69)

we see that

Dr,r = Re
∫

dkθ

∫
dk‖

∣∣φ
(
kθ, k‖

)∣∣2 c2

B2
0

k2
θ

(
i

ω − kzvz

)

∼= Re |φ0|2
c2

B2
0

k2
θ0

×
{

i

(
ω (kθ0 , kz0) + i

∣∣∣∣
dω

dkθ
∆kθ

∣∣∣∣

+i

∣∣∣∣
dω

dkz
∆kz

∣∣∣∣− kz0vz − i |∆kzvz|
)−1

}
.

(3.70)

Hence, the effective pattern decorrelation rate for resonant particle in drift

wave turbulence is

1
τac

=
{∣∣∣∣

(
dω

dkz
− ω

kz

)
∆kz

∣∣∣∣ +
∣∣∣∣
dω

dkθ

∣∣∣∣ |∆kθ|
}−1

. (3.71)

The constast with 1D is striking. Since particles do not ‘stream’ in the θ

direction, decorrelation due to poloidal propagation is stronger than that due

to parallel propagation, which closely resembles the case of 1D. Usually, the

effective turbulence field will decorrelate by simple poloidal propagation at

vde, and by parallel dispersion at the parallel phase velocity, since dω/dk ∼= 0

for drift waves. Thus, quasilinear diffusion is, in some sense, more robust

for 3D drift wave turbulence than for 1D Vlasov turbulence.

3.5.3 Saturation via quasi-linear mechanism

We can obtain some interesting insights into the mechanisms of saturation

of drift wave turbulence by considering the process of 2D plateau formation

in the r, vz phase space for 〈f〉. Initial contours of constant 〈f〉 are shown

in Fig.3.15(a). Evolved level lines, i.e. contours of 〈f〉 for which ∂ 〈f〉 /∂t =
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0, and which thus define the plateau contours of 〈f〉 at saturation of the

instability, are those of which Lk 〈f〉 = 0. Taking kz = ωk /vz , we see that

Lk 〈f〉 =
kθ

Ωe

∂

∂r
〈f〉+ ωk

vz

∂

∂vz
〈f〉 = 0 (3.72)

thus defines the structure of the “plateaued” distribution function. Constant

〈f〉 curves thus satisfy

kθ

ωce

〈f〉
∆x

+
ω

vz

〈f〉
∆vz

= 0 (3.73)

so the level curves of 〈f〉 are defined by

x− kθv2
z

2ωkωce
= const (3.74)

at saturation, The change in level contours is shown in Fig.3.15(b). Note

then that any spatial transport which occurs due to the drift wave turbulence

is inexorably tied to the concomitant parallel heating. This is no surprise,

since the essence of drift wave instability involves a trade-off between re-

laxation of density and temperature gradients (which destabilize the waves)

and Landau damping (which is stabilizing but which also provides the req-

uisite dissipative response in 〈f〉 to produce instability). In particular, any

particle displacement δx from its initial state must be accompanied by a

heating (due to Landau damping) δv2
z , which satisfies:

δx =
kθ

2ωkωce
δv2

z . (3.75)

Since ωk $ k‖vTe, the heating is small i.e. δv2
z ∼ αv2

Te where α $ 1, so

necessarily δx $ Ln – i.e. the maximum displacement is also small, and

considerably smaller than the gradient scale length. Hence, the instability

is quasi-linearly self-saturating at low levels and the resulting particle and/or

heat transport is quite modest. To obtain significant steady state transport,
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Fig. 3.15. Contour of the mean electron distribution function in the phase space

(a). According to the resonance with drift waves, a flattening may occur, and the

modification takes place in the level contours of mean distribution, as is illustrated

by a shaded region (b).

the plateau must either be destroyed by collisions or the distribution must

be externally “pumped” to maintain it as a Maxwellian.

3.6 Application of Quasi-linear Theory to Ion Mixing Mode

A third instructive example of qusilinear theory is that of particle transport

due to the ion mixing mode. The ion mixing mode is a type of negative

compressibility “ion temperature gradient driven mode” which is likely to

occur in collisional plasmas, such as those at the tokamak edge. The mixing

mode is driven by ∇Ti, but also transports particles and electron heat.



3.6 Application of Quasi-linear Theory to Ion Mixing Mode 121

The example of the mixing mode is relevant since it is simple, clear and

illustrates,

a) the application of quasilinear theory to a purely fluid-like, hydrodynamic

instability

b) a possible origin of off-diagonal and even counter-gradient transport pro-

cesses

The aim of this example is to calculate the particle flux induced by the

mixing mode. The quasilinear density flux is simply 〈ṽrñ〉, so the task is

to compute the density response to potential perturbation. In the mixing

mode, electron inertia is negligible, so the parallel electron dynamics preserve

pressure balance, i.e.

∇
(
p̃e − |e|nφ + αT n∇‖T̃e

)
= 0 (3.76a)

where αT is the coefficient for the electron thermal force, or equivalently

∇‖

(
ñe + nT̃e − |e|nφ

)
− αT n∇‖T̃e = 0 (3.76b)

ñe

n
=

|e|φ
Te

− T̃e

T
(1 + αT ) . (3.76c)

To calculate the electron temperature perturbation, we use the temperature

evolution equation

3
2
n

(
∂T̃e

∂t
+ ṽe

d 〈Te〉
dx

)
+ nTe∇‖ṽ‖e = ∇‖nχ‖∇‖T̃e (3.77a)

and the continuity equation

∂ñ

∂t
+ ṽe

d 〈n〉
dx

+ n∇‖ṽ‖e = 0 (3.77b)
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to obtain, after a short calculation
(

T̃e

Te

)

k

=
1

3ω/2 + iχ‖k
2
‖

{
ω∗e

(
3
2
ηe − 1

)
|e|φ
T0

+ ω
ñ

n

}
. (3.77c)

Here χ‖ = v2
Te /νe is the parallel thermal conductivity, ω∗e is the electron

diamagnetic frequency and ηe = d lnTe /d lnne is the temperature gradient

parameters. Equations (3.76c) and (3.77c) may then be combined (in the

relevant limit of χ‖k
2
‖ # ω) to yield the density perturbation

(
ñe

n

)

k

=
|e|φk

Te

{
1 +

i (1 + αT )
χ‖k

2
‖

(
ω − ω∗e +

3
2
ω∗eηe

)}

≈ |e|φk

Te

{
1 +

i (1 + αT )
χ‖k

2
‖

(
−ω∗e +

3
2
ω∗Te

)} (3.78)

since the mixing mode has ω ≈ 0. Here ω∗Te is just the diamagnetic fre-

quency computed with the electron temperature gradient. Thus, the mixing

mode driven particle flux is:

〈ṽrñe〉 = −D
∂ 〈ñ〉
∂x

+ V 〈ñ〉 (3.79a)

where

D = (1 + αT )
∑

k

c2

B2
0

k2
θ |φk|2

χ‖k
2
‖

(3.79b)

V =
3
2

(1 + αT )
∑

k

c2

B2
0

k2
θ |φk|2

χ‖k
2
‖

1
〈T 〉

d 〈T 〉
dx

. (3.79c)

Observe that in this example, the quasilinear particle flux consists of two

pieces, the ‘usual’ Fichian diffusive flux down the density gradient (−D×

∂ 〈n〉 /∂x) and a convective contribution (∼ V 〈n〉). It is especially interest-

ing to note that for normal temperature profiles (i.e. d 〈T 〉 /dx < 0), V < 0,

so the convective flux is inward, and opposite to the diffusive flux! Note

that for |(1 /〈T 〉) (d 〈T 〉 /dx)| > |(1 /〈n〉) (d 〈n〉 /dx)|, the net particle flux

is consequently inward, and “up” the density gradient. This simple example
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is typical of a broad class of phenomena manifested in quasilinear theory

which are classified as off-diagonal, gradient-driven fluxes. Off-diagonal in-

ward flows are frequently referred to as a “pinch”. The temperature gradi-

ent driven pinch described here is sometimes referred to as a thermo-electric

pinch. Pinch effects are of great interest in the context of laboratory plas-

mas, since they offer a possible explanation of profiles which peak on axis,

in spite of purely edge fueling. To this end, note that for V > 0, the par-

ticle flux vanishes for (1 /〈n〉) (d 〈n〉 /dx) = V /D , thus tying the profile

scale length to the inward convective velocity. The allusion to ‘off-diagonal’

refers, of course, to the Onsager matrix which relates the vector of fluxes

to the vector of thermodynamic forces. While the diagonal elements of the

quasilinear Onsager matrix are always positive, the off-diagonal elements

can be negative, as in this case, and so can drive ‘inward’ or ‘up-gradient’

fluxes. Of course, the net entropy production must be positive since re-

laxation occurs. In the case of the ion mixing mode, which is ∇Ti-driven,

the entropy produced by ion temperature profile relaxation must exceed the

entropy ‘destroyed’ by the inward particle flux. This requires

dS

dt
=

∫
dr

{
χi

(
1
〈T 〉

∂ 〈T 〉
∂x

)2

− 〈ṽrñe〉
1
〈n〉2

d 〈n〉
dx

}
> 0, (3.80)

where χi is the turbulent thermal duffusivity. In practice, satisfaction of this

inequality is assured for the ion mixing mode by the ordering χk2
‖ # ωk,

which guarantees that the effective correlation time in χi and the ion heat

flux is longer than that in the particle flux. We remark that the up-gradient

flux is similar to the phenomenon of chemotaxis.
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3.7 Nonlinear Landau Damping

In this chapter, the quasi-linear response of the perturbation to the mean is

explained. The perturbation technique, which is the fundamental element in

the procedure, can be extended to higher orders. The nonlinear interactions,

which include the higher order terms, are explained in the next chapters in

detail. Before going into the systematic explanation of the interactions in

turbulent fluctuations, we here briefly describe the perturbations to higher

orders in fluctuation amplitude [****]. The method, which is based on the

expansion and truncation of higher order terms, has limited applicability

to turbulence. However, this method can illuminate one essential element

in nonlinear interactions, i.e., the Landau resonance of a beat mode. This

process is known as ’nonlinear Landau damping’, and merits illustration

before developing a systematic explanation of coupling in turbulence.

Consider the perturbed electric field (in one dimensional plasma here for

the transparency of the arguments)

d

dt
v =

e

m
E (x, t) =

e

m

∑

k

Ek exp (ikx− iωt) ,

where the frequency ω is considered to satisfy the dispersion relation ω = ωk.

The turbulence is weak, and fluctuations are taken as the sum of linear

eigenmodes. (The case of strong turbulence, in which broad band fluctua-

tions are dominantly excited, is not property treated by these expansions

and is explained in the following Chapters.) The issue is now to derive

the higher order diffusion coefficient in the velocity space D owing to the

fluctuating electric field, by which the mean distribution function evolves

∂ 〈f〉 /∂t = ∂/∂v (D∂ 〈f〉 /∂v). The diffusion coefficient in the velocity
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space is given by the correlation of fluctuating accelerations, i.e.,

D =
∫ ∞

0
dτ 〈F (t + τ)F (t)〉 , F (t) =

e

m
E (x (t) , t) . (3.81)

In the method of perturbation expansions, the correlation 〈F (t + τ)F (t)〉

is calculated by the successive expansion with respect to the amplitude of

electric field perturbation.

The acceleration at time t, F (t), depends on the location of particle x (t),

through the space dependence of the electric field E (x (t) , t). In the per-

turbation expansion method, the particle orbit is expanded as

x (t) = x0 (t) + x1 (t) + · · · (3.82a)

where x0 (t) is the unperturbed orbit, x0 (t) = x (0)+v (0) t, and x1 (t) is the

first order correction of the orbit due to the electric field perturbation (as

is illustrated in Fig.3.16). Associated with this, the net acceleration, which

particles feel, is given by:

F (x (t) , t) = F (x0 (t) + x1 (t) + · · ·, t)

= F (x0 (t) , t) +
∂

∂x
F (x0 (t) , t)x1 (t) + · · ·, (3.82b)

which can be rewritten as F (t) = F1 (t)+F2 (t)+ · · · in a series of electric

field amplitude. Note that the expansion (3.82a) is valid so long as the

change of the orbit occurs in a time that is much shorter than the bounce

time of particles in the potential trough, τb, i.e., so that

τac << τb,

where τac is the autocorrelation time that the resonant particles feel, τ−1
ac =

(ω/k − ∂ω/∂k)∆k, and ∆k is the spectral width of |Ek|2. If the bounce

time is short, τac > τb, the orbit is subject to trapping, and an expansion

based on the unperturbed orbit is not valid.
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Fig. 3.16. Schematic drawing of the particle orbit in the presence of electric per-

turbations.

The second order term with respect to the electric field, F2 (t), is

F2 =
e

m

∑

k′

ik′x1 (t)Ek′ exp
(
ik′x (0)

)
exp

(
i
(
k′v (0)− ω′

)
t
)
, (3.83)

and the third order term is calculated in a similar way. Noting the fact that

x1 (t) = − e

m

∑

k

Ek
exp (ikx (0))
(kv (0)− ω)2

exp (i (kv (0)− ω) t)

(where the upper limit of time integration is kept), the second order term F2

is the sum of contributions of the beats exp [i ((k ± k′) v (0)− (ω ± ω′)) t].

These beat waves are virtual modes, driven by the nonlinear interaction of

primary modes.

The contribution to the diffusion coefficient from the linear response has

the phase (which particles feel) exp (i (kv (0)− ω) t). Therefore, the quasi-

linear contribution (which is the second order with respect to the electric

field) comes from the resonance

kv (0)− ω = 0, (3.84a)

while the phase of next order correction (the fourth order with respect to
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the electric field) is set by the resonance

(
k ± k′

)
v (0)−

(
ω ± ω′

)
= 0. (3.84b)

The successive expansion provides that the term, which is 2n-th order with

respect to the electric field, originates from resonances

(k1 ± · · · ± kn) v (0)− (ω1 ± · · · ± ωn) = 0. (3.84c)

The 4th order term in the expansion of the total diffusion coefficient, D =

D2 + D4 + · · ·, is given by

D4 =
e4π

m4

∑

k,k′

|Ek|2|Ek′ |2
(

k − k′

(kv − ω) (k′v − ω′)

)2

δ
((

k − k′
)
v −

(
ω − ω′

))
,

(3.85)

where the label of particle velocity v (0) is rewritten as v, and the resonance

condition (3.84b) is give in terms of the delta-function. The resonance occurs

for the particles, which have the velocity at the phase velocity of the beat

wave

v =
ω − ω′

k − k′
. (3.86)

This scattering process is known as nonlinear Landau damping. The change

of kinetic energy Ekin associated with the relaxation of the mean distribution

function at the 4th order of fluctuating field, ∂
∂tE

(2)
kin =

∫
dv m

2 v2 ∂
∂vD4

∂
∂v 〈f〉,

gives the additional higher-order damping of wave energy.

This process is effective in connecting electrons and ions via wave excita-

tions. Waves, which are excited by electrons, are often characterized by the

phase velocity, ω/k ∼ vT,e. For such cases, the phase velocity is too fast to

interact with ions. When the wave dispersion is strong, the resonant velocity

for the beat, (ω − ω′) / (k − k′), can be much smaller than the phase ve-

locity of primary waves, ω/k and ω′/k′. For the beat mode that satisfies the
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Fig. 3.17. Frequencies of the primary modes (k1, ω1, and k2, ω2) and the beat

mode (a). Primary modes satisfy the dispersion but the beat mode does not.

Phase velocities of primary modes and beat mode and the distribution function of

ions (b).

condition (ω − ω′) / (k − k′) ∼ vT,i, strong coupling to ions occurs. Figure

3.17 shows schematically the case where beat mode can resonate with ions.

This nonlinear Landau damping is important in the case that waves have

strong dispersion. Noting the resonance condition Eq.(3.86), the 4th order

term (3.85) is rewritten as

D4 =
e4π

m4

∑

k,k′

|Ek|2|Ek′ |2
(k − k′)6

(k′ω − kω′)4
δ
((

k − k′
)
v −

(
ω − ω′

))
. (3.87)

This result shows that when dispersion is weak so that ω/k∼ω′/k′, the

perturbation expansion is invalid. Compared to the first order term, D2,

the higher order term D4 has a multiplicative factor, which is of the order

of magnitude,
∑
k′
|Ek′ |2(k − k′)6(k′ω − kω′)−4 ∝ τ4

acτ
−4
b . This result shows

that the perturbation theory has the expansion parameter τ2
acτ

−2
b . The

expansion method requires τac $ τb, as was explained earlier in Chapter 3.
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3.8 Kubo number and trapping

Fluctuations in plasmas can lead to random motion of plasma particles,

which may lead to diffusive evolution of the mean distribution. The dif-

fusivity is given by the step size in the jump of orbit and the rate of the

change of orbit. The step size and the rate of change are determined by

various elements in the fluctuation spectrum.

First, the turbulent fields have their own scale and rate, i.e., the auto-

correlation length, λc, and autocorrelation time, τc. The spatial and tem-

poral correlation functions, Cs (∆r) =
〈
Ẽ2

〉−1
L−1

∫ L
0 drẼ (r) Ẽ (r + ∆r)

and Ct (∆τ) =
〈
Ẽ2

〉−1
T−1

∫ T
0 dtẼ (t) Ẽ (t + ∆τ) (where L and T are much

longer than characteristic scales of microscopic fluctuations), decay at the

distances ∆r ∼ λc and ∆τ ∼ τc. These correlation length and correlation

time are those for ’Eulerian’ correlations.

The diffusion is, in reality, determined by the step size (and correlation

time) of particle motion, and not by those of fluctuating field. For the

correlation length (and correlation time) of the particle orbit, the Lagrangian

correlation is the key, and are not identical to those of fluctuating field.

The Kubo number (sometimes referred to as the Strouhal number) is a key

parameter that explains the relation between the Lagrangian correlation of

particles and those of fluctuating field.

Let us consider the E ×B motion of particle under the strong magnetic

field and fluctuating radial electric field, Ẽ. The equation of motion is

written as

d

dt
x = v (x (t) , t) , v (x (t) , t) = − 1

B
Ẽ × b, (3.88)

where b is a unit vector in the direction of strong magnetic field. The

amplitude of perturbation is characterized by the average of the fluctuating
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velocity, Ṽ =
√
〈v2〉. Thus, the fluctuating field is characterized by three

parameters, i.e., amplitude Ṽ , (Eulerian) correlation length and time, λc

and τc. Kubo number is the ratio of the correlation time τc to the eddy

circumnavigation time by the E ×B motion τcir = λc/Ṽ , i.e.,

K =
τc

τcir
=

τcṼ

λc
. (3.89)

When the Kubo number is much smaller than unity, K $ 1, the distance of

the particle motion during the time period 0 < t < τc, τcṼ , is much smaller

than λc. Therefore, particle motion is modeled such that the step size and

step time are given by τcṼ and τc. In contrast, for K > 1, the particle motion

is decorrelated by moving the distance of decorrelation length λc, not by the

decorrelation time of the field τc. In this limit, the fluctuation field stays

(nearly) unchanged during the period of circumnavigation of particles in the

trough of the perturbation potential. Note that K∼1 loosely corresponds

to the mixing length fluctuation level.

The transition of transport from the quasi-linear regime to the trapping

regime is illustrated briefly here. The diffusion coefficient is given by the

Lagrangian correlation of fluctuating velocity along the particle orbit

D =
∫ t

0
dt′

〈
vj

(
x

(
t′
)
, t′

)
vj (x (0) , 0)

〉
, (3.90)

where j = x, y and coordinates (x, y) are taken perpendicular to the strong

magnetic field. In the limit of small Kubo number, K $ 1, where the decor-

relation time of the field is very short, one has 〈vj (x (t′) , t′) vj (x (0) , 0)〉 ∼

〈vj (x (0) , t′) vj (x (0) , 0)〉 ∼ Ṽ 2Ct (t′) for the integrand of Eq.(8.90), and so

one has

D∼Ṽ 2τc =
λ2

c

τc
K2. (3.91)

When the Kubo number becomes larger, the field, which particles feel, is
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decorrelated owing to the motion of particles comparable to (longer than)

the decorrelation length of the field λc. Putting the circumnavigation time

τcir = λc/Ṽ into the step time, one has

D∼Ṽ 2τcir = Ṽ λc =
λ2

c

τc
K. (3.92)

In this case, the diffusivity is linearly proportional to the fluctuation field

intensity, provided that λc and τc are prescribed. The limit of K # 1 is

also explained in the literature. The unit λ2
cτ
−1
c in Eqs.(3.91) and (3.92) are

considered to be the limit of complete trapping: in such a limit, particles are

bound to the trough of potential, bouncing in space by the length λc, and the

bounce motion is randomized by the time τc. In reality, detrapping time of

particle out of the potential trough, τdetrap, and the circumnavigation time

τcir determines the step time (average duration time of coherent motion).

The heuristic model for the step time is τdetrap + τcir,

D∼ λ2
c

τdetrap + τcir
=

λ2
c

τc
K

τcir

τdetrap + τcir
. (3.93)

In the large amplitude limit (large K limit), the circumnavigation time

τcir becomes shorter than the detrapping time, τdetrap. Thus, the ratio

τcir/ (τdetrap + τcir) is a decreasing function of K, and may be fitted to K− γ ,

where γ is a constant between 0 and 1. The theory based on a percolation

in stochastic landscapes has provided an estimate γ = 0.7 [Isichenko]. The

literature [Vlad] reports the result of numerical computations, showing that

the power law fitting K− γ holds for the cases K # 1 while the exponent

depends on the shape of the space-dependence on the Eulerian correlation

function of the fluctuating field.




