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The one-dimensional Vlasov equation describes the behavior of an incompressible self-interacting
classical fluid which moves in the (g, p) phase plane. This type of phase fluid occurs in many physical
problems and its hydrodynamic properties can be examined from a general point of view. A charac-
teristic feature with initially unstable spatially homogeneous configurations is the development of
stable nonlinear phase structures. Such examples occur as the result of the gravitational Jeans insta-
bility, or the two-stream and negative-mass instabilities of charged-particle beams. These structures
can be related to one another by extending a duality principle due to Dory. The stable cavities in
phase space which have been observed in numerical calculations on the two-stream instability are
compared with stable proton clusters which develop from the negative-mass instability in the mirror

experiment DCX-1.

I. INTRODUCTION

The evolution of a collisionless, classical many-
body system, involving a long-range Hamiltonian
interaction between the particles, can be described
by a distribution funetion f(g:, p;, f) in 2n-dimen-
sional phase space, where # is the number of spatial
dimensions and (g., p;) are the canonical coordinates
and momenta. This function satisfies a Vlasov equa-
tion of the general form'*

.d_fz_—
dt

A clear physical picture of the solution of Eq. (1)
can be obtained, especially for problems requiring
only one space dimension, by imagining f(g:, p:, ?)
to be the density of an incompressible, self-inter-
acting phase fluid which flows in the (g:, p;) phase
space.

Vlasov’s equation can be applied to a number of
problems in plasma physics®* and stellar dynamics®
(for example, a galaxy can often be treated as a
collisionless gas of stars), and also to electron tubes,
microwave devices,® and particle accelerators’ where
space-charge effects are important. There is an ex-
tensive literature on the equilibrium solutions of
the equation, which evidently correspond to station-
ary flows of the fluid in phase space, and also on the
many linearized waves and instabilities which can
be superimposed on these equilibria.”* But, it would
clearly be of interest to develop a general hydro-
dynamic theory for this type of classical fluid,
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capable of treating nonlinear and turbulent flows.

In this paper we should like to discuss some ele-
mentary physical principles which appear to underlie
the nonlinear behavior of phase fluids in the simplest
case n = 1 when the motion can be followed in the
(g, p) plane. Starting from initial configurations
which are fairly uniform but unstable, computer
calculations® have demonstrated the formation of
large-scale persistent structures in the phase plane.
These have been seen in a variety of problems such
as the two-stream instability,’''° the negative-mass
instability,"" and the gravitational Jeans instabil-
ity."> There is also evidence for such structures
in actual experiments with the Brookhaven Cosmo-
tron® and the Oak Ridge DCX-1 mirror ma-
chine,’*'*® where in each case it is the negative-mass
instability that occurs. Although these three in-
stabilities may at first appear unrelated, we shall
develop a nonlinear description that applies equally
to all of them, and compare our computer results
with some of the experimental observations.

A, Self-Interacting Phase Fluid

Vlasov’s equation is formally the same as Liou-
ville’s equation for a single dynamical system with n
degrees of freedom. However, it is necessary to
emphasize that there is a considerable physical
difference between the two cases. In the Liouville
theory, f represents a probability distribution for
a single system (or a frequency distribution for a
large number of identical noninteracting systems),
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and the Hamiltonian H(q;, p;, ¢) is a prescribed
function of its arguments which is independent of f.
In the Vlasov theory, {f may be thought of as a
coarse-grained density average over a macroscopic
region in phase space, containing a large number of
particle points, and it has much the same physical
status as the hydrodynamic density p of a fluid
which is actually composed of individual molecules.
The Hamiltonian H is now a functional of f since
it depends on the self-consistent potential &, which
at each instant is to be calculated from the charge
density of the phase fluid by solving Poisson’s
equation.

B. Step-Function Model

In any real physical problem the density f(g, p)
will vary smoothly over the phase plane, although
it follows from Liouville’s theorem that the density
of each individual element of the moving phase
fluid and the phase space area occupied by the ele-
ment must remain invariant with time. However,
because the nonlinear behavior of a system is often
determined more by the over-all structure of the
distribution function than by its precise details, it
is useful to choose for f(g, p) a step function that
consists of a finite number of regions of f = F, =
constant as in Figs. 1 and 2. The state of the system
at time ¢ is then completely defined by specifying the
boundary curves C;(f) between the different regions.
Given this instantaneous configuration, one can cal-
culate the self-consistent velocity components ¢ and
p at each point on the boundary curves, and so
increment the system in time.

To study nonlinear phenomena in phase space in
their simplest form one can go further, and just
assume that F = 1 in some regions, and F = 0
elsewhere.

C. A Hydrodynamic Analogy

One can usefully compare a charged-particle
phase fluid (where ¢ is the spatial position 2 and
p/m is the particle velocity v), with a two-dimen-
sional liquid in a uniform gravitational field g. The
kinetic energy of the charged particles

im f f v*f(x, v) dx dv )
is analogous to the gravitational energy

g ff Y fe, y) dx dy 3)

of the liquid, where m is the electron mass, f the
fluid density, and y the vertical coordinate. Because
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Fra. 1. A possible generalized step-function distribution.
Each type of cross hatching represents a phase fluid with
constant phase density. The evolution of the over-all system
is determined solely by the dynamics of the boundaries
separating incompressible fluid regions.

the motion is incompressible there is an invariant
function A (f), where A(f) df is the total area occu-
pied by fluid with density between f and f + df. If
the density within a fluid region satisfies

9
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respectively, then the region cannot release any free
energy'®'’’ to drive the system unstable. However,
if there exist regions where the reverse inequality
applies, then these tend to be unstable, and the
fluid tries to find its own level, the charged particles
giving up energy to the electrostatic field, and the
liquid converting gravitational potential energy into
kinetic form. This analogy is enhanced by plotting
v* as the vertical coordinate, in which case light
phase fluid tends to rise and heavy fluid to fall.

The step-function model of a phase fluid which
has also been called the water bag model by De
Packh,® corresponds to a standard assumption used
in ordinary incompressible hydrodynamics, where it
is convenient and physically natural to work with a
liquid of uniform density wherever possible. When
several f values are present in the Vlasov system,

F1a. 2. Simplest phase fluid description of a one-dimensional
gravitational strip or negative mass system. The phase
fluid is a single strip of constant F surrounded on either side
by F = 0 regions.
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Fic. 3. Simplified description of a two-stream instability.
The dynamies of the unstable modes are primarily governed by
the boundaries separating the F, strip. The outer curves
enclosing the Fy s regions only react passively to the inner
ones and induce Debye screening.

the stable configuration of stratified layers with f a
decreasing function of ¢* is quite analogous to a
liquid system such as oil floating on water.

Oscillations in both the phase fluid and the liquid
arise from energy changes due to distortion of the
boundary curves. If 8f/3v° < 0, only stable plasma
oscillations can be supported and these are similar
in many respects to stable gravitational waves, for
example, on the surface of water or at the interface
between two fluids of different density. On the other
hand, if 8f/0v* > 0 as in the two-stream instability,
we have a situation which corresponds to the Ray-
leigh~Taylor instability of a liquid boundary.

It should, however, be stressed that although this
hydrodynamic analogy is useful, it is not exact,
and it should not be confused with a more formal
vortex analogy which is briefly mentioned in Sec. V.

D. Applications of the Model

The step-function model of the Vlasov equation,
which corresponds to

A(f) = kZ A, 5(f - Fk)r (6)

has been used several times in the past, often inde-
pendently, for both theoretical and computational
investigations on a range of different physical prob-
lems.

Nielsen, Sessler, and Symon’ used such a model
as one approach to a linear stability analysis, to
show that the negative-mass instability can arise in
high-energy particle accelerators. In their case ¢ is
an angular coordinate 8 about the machine, and p is
a suitably normalized angular-momentum variable.
As has been mentioned, these instabilities are ex-
pected to evolve into the persistent nonlinear states
which have been observed in the Cosmotron'® and
DCX-1."*'" Dory" treated the negative-mass in-
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stability numerically, and found that the proton
phase fluid clustered together in agreement with the
experiments.

Hohl and Feix'® studied the relaxation of a one-
dimensional, nonequilibrium gravitational system,
and showed that the bulk of stars eventually form
a stable equilibrium ecluster. Finally, Berk and
Roberts® treated a two-stream plasma instability
where two interpenetrating electron beams com-
prise the F = 1 region, and enclose a uniform F = 0
region (see Fig. 3). In this case the F = 0 regions
coalesce into an array of persistent structures of
roughly elliptical shape. These regions of reduced
density in (p, ¢) space will be referred to as cavities
or holes. In these two problems the canonical co-
ordinates are just the usual particle position and
velocity.

E. Duality Principles

To explain these physical similarities, we shall
extend a duality principle first proposed by Dory,’
and in Sec. II show that the mathematical deserip-
tions of all these systems are almost identical. Dory
exhibited a formal duality between the negative-
mass instability and the F = 0 region of the two-
stream problem. The dynamics of these two systems
are invariant to a mathematical transformation
that maps one system into the other; namely, a
simultaneous change of the sign of the mass, and
an interchange of the F = 0 and F = 1 regions in
phase space. In a similar way, the gravitational and
negative mass systems are dual to each other by
virtue of a simultaneous change in sign of both the
mass and the force.

There is evidently some slight lack of corre-
spondence, because the two outer F' = 0 regions of
the gravitational and negative-mass problems trans-
form into F = 1 regions that extend to v = £
in the two-stream problem. However, we can, in
fact, show that the two outer curves of the two-
stream problem play only a limited role. To a good
approximation, they merely exert a screening effect
on the Coulomb fields of the holes, modifying the
attraction by a factor exp (—«z), where x = w,/d
corresponds to the Debye wavenumber, w, =
(4wne’/m)** is the plasma frequency, and o is the
thermal spread. The nonlinear behavior of the un-
stable distribution can, therefore, be rather accu-
rately related to that of a single gravitating strip,
with Poisson’s equation replaced by

e

== — &P = 4wp.
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With the help of these duality principles, we see
that the large-scale hole structures that develop in
the nonlinear two-stream problem (Fig. 4) can be
interpreted in several different ways. For example,
it is found, perhaps somewhat surprisingly, that
holes of like (positive) charge attract each other.
We can explain this phenomenon first of all by
realizing that the boundaries of the holes are de-
termined by negatively charged electrons, and that
these are indeed attracted toward neighboring posi-
tively charged regions. Secondly, the holes have an
effective negative mass and hence must move in the
opposite direction to the applied force. Finally, be-
cause of the duality principle, the holes behave as
gravitational bodies which attract one another
through a Debye-shielded Coulomb force.

F. Structure of the Paper

The various duality principles are discussed in
more detail in Sec. II, where it is also shown how
the unstable configurations are related to stable
wave phenomena such as plasma oscillations. In
Sec. I1I we discuss the experimental situations in
which persistent nonlinear structures have been ob-
served, and examine to what extent they can be
approximated by our phase fluid model. Section IV
interprets and compares the nonlinear structures ob-
served in DCX-1 and the Cosmotron with the non-
linear phase space structures that arise in compu-
tations with the two-stream instability.

In the concluding section we indicate how the
theoretical model can be used in general statistical,”
thermodynamical,'® and energetic'” descriptions of
phase-space fluids. Further, we briefly mention the
close analogy that exists between the motion of an
incompressible phase-space fluid and the two-di-
mensional vortex flow of an incompressible hydro-
dynamic fluid.

II. DUALITY PRINCIPLES

The duality between the two-stream instability
and the negative-mass instability was first shown
by Dory."” Because the Jeans instability of a one-
dimensional gravitational system is also dual to
the two-stream, and is the easiest to envisage physi-
cally, we first consider the equations for a gravita-
tional phase fluid whose distribution is shown sche-
matically in Fig. 2. The fluid has density F = 0 in
regions 0 and 2, and F = 1 in region 1. The particle
density p(r) is determined by integration with re-
spect to v, and depends only on the position of the
boundary curves. Provided that the two curves v;{z)
are single-valued, the density is
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Frc. 4. Schematic diagram of a hole equilibrium. Each bound-
ary contour coincides with a constant energy contour.

p(x) = g_; ; Af; vy, )

where Af; = F; — F,_, is the discontinuous jump
in f at a boundary, and n,, # are normalization
factors for the density and thermal velocity, re-
spectively.

The boundary curves move according to

dv; _ (2 i)
(at o oz Vi

E? =
where ® is a normalized potential determined by
Poisson’s equation

P
= _53:— ’ ©

(10)

Here, v is the gravitational charge (y* = Gm®, where
G is the universal gravitational constant), and m is
the mass of the particles comprising the phase fluid.

In addition to the linearized Jeans instability
predicted by Egs. (9) and (10), one may also con-
sider the equilibrium and stability of an isolated
clump of phase fluid, that is, a one-dimensional star
cluster. Provided that the initial gravitational energy
is greater in absolute magnitude than the kinetic
energy, such a cluster can never entirely disinte-
grate; some of the fluid may escape but some must
always remain. On the other hand, it follows from
the virial theorem that in a true equilibrium the
magnitude of the potential energy must be exactly
twice the kinetic energy,” and one is, therefore, led
to examine how the system evolves if this condition
is not satisfied.

This problem has been solved by Hohl and Feix'?
who calculated the shapes, in phase space, of gravi-
tational equilibria formed from uniform-density
phase fluid, and also carried out computer experi-
ments which show how these equilibria develop
from arbitrary initial configurations. If the initial
state is near an equilibrium, thin streams of phase
fluid are ejected from the boundary, and rotate in
a clockwise direction about the center of the clump,



984

giving rise to an apparent vortex motion. The clock-
wise motion occurs because stars on the right-hand
side of the phase plane are attracted to those on
the left, and so their velocity must decrease. They
thus move downward, and eventually to the left.
Similarly, stars on the left move upward, and
eventually to the right. Because the fluid that has
escaped has greater energy than the average, it
lowers the energy density in the main clump, bring-
ing it nearer to equilibrium. In the final state, the
outer boundary of the clump has a roughly elliptical
shape, which corresponds to a stationary particle
orbit, and the clump is surrounded by very thin
spiral arms of ejected material. This process is
closely analogous to the cooling of a liquid by
evaporation, leading to a two-phase equilibrium.

Now consider a fluid with an electronic inter-
action. The interaction constant transforms as
v? — —¢°, but there are two ways in which the
Eqgs. (9) and (10) can remain invariant: either m
must change sign (negative-mass instability), or
Af; must change sign (two-stream instability).

In their linear analysis of the negative-mass in-
stability Nielsen, Sessler, and Symon obtained
equations for the step function distribution equiva-
lent to Egs. (9) and (10) in the frame moving with
the mean speed of the particles, and where the mass
is negative and is given by

1 9F

M= GR 8w ? an

E being the energy of the particles in the beam, o

the angular frequency, and R the radius of the

orbit. Dory'® carried out a nonlinear computer

caleulation for this instability, and showed that the

proton phase fluid condensed into a stationary

cluster, a configuration equivalent to the gravita-
tional cluster obtained by Hohl and Feix.

The situation is slightly more complicated for the
two-stream instability (see Fig. 3), since to change
the sign of Af; we must exchange the F = 0 and
F =1 regions. This system will be the dual of the
others, only to the extent that the outer F = 1
regions of the equivalent gravitational system do
not play a role in the dynamies.

It is now shown that this assumption is valid if
the velocity width of the plasma is much larger
than that of the cavity. If a uniform positive neutra-
lizing background is assumed, so that the self-
consistent equations of motion are Eq. (9) and
Poisson’s equation

az_q) [ 2<{:v_,-A_f,- — 1> ,

W, —
dx’ PN o

(12)
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then if v, and v, are far removed from v, and v,
particles moving on the two outer curves 1 and 4
should respond adiabatically to the potentials set
up by the inner curves 2 and 3. Neglecting the
term 9/d¢ in Eq. (10) for these outer curves, we
find that

2
Ut ) @) = B,

5 (13)

where E, , are the energies of the particles on the
outer curves, which in this approximation are inde-
pendent of x and ¢. If it is assumed that

v2
;—'4 > &(z),

then

V1,4 & Z’:(2E1.4)1/2(1 + 2@) )

If this expression is substituted into Eq. (10), and
the first term is used to cancel the neutralizing back-
ground, Eq. (12) becomes

Ak i (—Af); (15)
dx” 2% 5 e
where
E = ‘i: (1- + —1—) and 7, , = +(2E, )"
2% \5, T o] e b

(If 3, = |5,), then # ~ #, and «* = w?/9” is the square
of the Debye wavenumber.)

Equations (9) and (15) thus represent a descrip-
tion of the two-stream system, in terms of the holes
alone. They are the equations of a gravitating phase
fluid, except for the presence of an extra shielding
term «*®. We, therefore, expect that in the non-
linear phase of the two-stream instability cavities
should be bound by Debye-shielded Coulomb forces.

It should be pointed out that the gravitational
behavior of holes in an electron phase fluid is an
essentially one-dimensional effect. We have seen
that the outer curves distort, in an attempt to
neutralize and screen the charge density produced
by a hole. Because the spatial scale associated with
charge neutralization is a Debye length A\, cavities,
whose equilibrium length A, is caleculated to be
smaller than A, when screening is ignored, remain
essentially unmodified when screening is taken into
account. On the other hand, if A, > )\, in the ab-
sence of screening, then the equilibrium is likely to
be drastically modified or destroyed altogether
when screening is introduced.

We now show that it is only for phase fluids
whose z-space character is essentially one-dimen-
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sional, that A, can be guaranteed to be less than A,
when the spread of the hole velocity is much less
than the thermal velocity of the background plasma.

The Debye length is given by A, « (7/p"*) where
p is the mean particle density, while the size of the
hole (the Jeans length A, of the corresponding
gravitational system), is given by N, « (/0%
where v, is the mean spread of velocity across the
hole, and p, is the spatial density of the displaced
plasma or of the equivalent gravitating fluid. If » is
the number of velocity dimensions in the system, it
follows that for a fixed phase space density p « 7" and

Pn x vh) SO that
)\ .

Thus, it is only for the one-dimensional case, n = 1,
that we are guaranteed that A, << A, if v, < 3. The
gravitational analogy can, therefore, only be applied
to holes in one-dimension-like configurations. Further
calculations are needed to study multidimensional
structures.

Returning to the question of duality, we can
envisage systems which are inverse to those already
discussed. Dual systems are transformed into one
another by changing the signs of two of the param-
eters ¢°, Af;, and m. If only one of the signs were
changed, clusters would repel one another, so that
these systems would be stable in the homogeneous
state of Fig. 2. For an electron phase fluid with
this configuration, e’, Af;, and m are all positive,
and perturbations lead to stable plasma oscillations.
A gravitational example that is dual to these plasma
oscillations is provided by the rings of Saturn.
Here, ¢ — v° = —¢?, while as a consequence of the
conservation of angular momentum, the effective
mass m 1s negative. Saturn’s rings are, therefore,
stable as Maxwell®” showed. If there were holes in
the rings, then Af; — — Af; and so these holes might
cluster together. Perhaps a future space experiment
may verify this.*

Table I lists the eight possible dual and inverse
systems obtained by giving either sign to the three
parameters. The relation between a disturbance
and its inverse is similar to the relation between a
gravitational wave on the surface of a fluid and a
Rayleigh—-Taylor instability, where again the two
regions p = p,, p = 0 have been interchanged.

III. EXPERIMENTAL INFORMATION AVAILABLE

(16)

Persistent nonuniform structures can be expected
to arise in any of the unstable systems listed in
Table I, but so far as we are aware, they have

985
TasLE I. Dual and inverse systems.
Sign of
Af effective et Physical system
mass
+ + -+ Plasma waves
—- + + Two-stream
instability, holes®
+ — + Ne%atwe mass,
clusters®
- - + Negative mass,
holes
+ + - Gravitational
system®
- + - ?
+ - - Saturn’s rings

!

Holes in Saturn’s
rings®

» Dual systems, unstable in the homogeneous configuration.

only been seen experimentally in devices using
circulating particles, and nearly all the observations
relate to the negative-mass instability. Although
multistream instabilities do occur in linear devices,
these are usually inconvenient for the observation of
persistent structures, because of the short time
which elapses before the beams reach the end of
their path and any moving structure is destroyed.
In principle, it would be possible to use a linear
device with two equal and oppositely directed
beams, as in the computer calculation of Fig. 5, so
that the center of mass remained at rest. However,
even this is less advantageous than the use of circu-
lating beams.

There is one experiment on a circulating electron
beam in a fixed-field betatron in which persistent
signals were observed when dw/dE > 0 so that
the negative-mass instability was necessarily ab-
sent.” This may well have been an example of a
multistream instability, leading to the formation of
persistent cavities in phase space. Unfortunately,
the experimental evidence to support this identifi-
cation is lacking, and the effect could also be at-
tributed to a resistive-wall instability. Even so this
experiment is significant, since it demonstrates that
some mode of collective behavior other than the
negative mass instability can also lead to persistent
nonlinear states.

Returning to the negative-mass instability, we
note that most of the results have been obtained
with protons, since, in general, the electron fre-
quencies are so high that detailed oscilloscope ob-
servations become difficult. Two proton devices will
be discussed, each of which has dw/dE < 0 due to a
negative radial gradient of the magnetic field,
dB/dr < 0. The first is the Cosmotron proton ac-
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celerator in which the negative-mass instability was
first identified and reported in 1961,"* and the
second is the DCX-1 proton injection and trapping
experiment.'*'*®

In both the Cosmotron and DCX-1 the protons
produced stable clusters, bound together by their
mutual repulsive forces. No essential role was played
by the electrons. In the Cosmotron, the electron
density was probably close to zero, and although
electrons were present in DCX-1 and no doubt
modified the electric fields of the proton clusters,
they did not participate in the phenomena in a
central way. A series of experiments'® was carried
out to verify this point. (Mirror traps such as DCX-1
do, of course, show other types of collective be-
havior in which the coupling between protons and
electrons is crucial, but we do not discuss these
modes here.)

There is a different relation between the potential
and the charge distribution in these two devices.
The ratio between the major and minor radii of the
toroidal vacuum tube in the Cosmotron was large,
and the proton ring can be approximated locally
by a straight rod of charge, enclosed by a cylindrical
conducting wall. Then, the potential & = go is
proportional to the local linear charge density o,
where ¢~ is the capacitance per unit length. In
DCX-1 the entire proton ring was enclosed in a
cylindrical vacuum vessel, and the potential at any
point must, therefore, be obtained by integrating
over the entire charge ring [this configuration was
first analyzed by Fowler in an unpublished memo-
randum (see Ref. 15)]. The computer calculations
used yet another relation between the potential
and the charge, since the one-dimensional Poisson
equation corresponds to infinite charge sheets. It
might be thought that these differences would make
comparisons difficult, but we believe that this is not
the case. In the linear regime, the only theoretical
difference between the two extreme cases of a vari-
able line charge, and a set of infinite charge sheets,
lies in the quantitative dependence of the instability
threshold and growth rate on the wavenumber k.
So far as nonlinear phenomena are concerned, the
most significant feature, in all the systems that we
have studied, seems to be that the Hamiltonian
H is a functional of the density f in a two-dimen-
sional phase space, and the exact form of this re-
lationship is less important.

In both the Cosmotron and the DCX-1, normal
operation involved continuous injection for a time
much longer than the growth time of nonlinear
states. For the experiments of interest here, how-
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ever, the proton input time was greatly reduced,
in some cases to a time interval even shorter than
the characteristic growth time for linear instability.
In the Cosmotron the period during which nearly
stationary states could be observed was usually
limited by the slow increase of magnetic field re-
quired for synchrotron operation, while in DCX-1
the time was limited by charge exchange loss of the
trapped protons. Strictly stationary states, signal
generator modes with proton input equal to loss
rate, could also be produced in DCX-1 by a suitable
choice of operating conditions. This was, however,
a special case that we only mention in passing to
emphasize the great stability of nonlinear stationary
configurations. Even with the more usual almost
stationary situation, the variation from the constant
phase density normally assumed in theory was too
slow to disturb the comparison of the experiments
with theory and numerical computation.

The experimentally measured quantity was the
signal produced on an oscilloscope by protons passing
a suitable detector, either of the linear charge density
(Cosmotron), or of the electrostatic or magnetic
field (DCX-1). We assume that in every case to
be discussed here, the signal amplitude is approxi-
mately proportional to the charge per unit orbit
length in the proton distribution.

IV. COMPARISON OF EXPERIMENTAL AND
COMPUTATIONAL RESULTS

In this section we shall first relate the evolution
of single clusters from a ring of charge, to the dual
case of the evolution of holes from a gap in the
phase space distribution. We then present examples
of fully developed holes interacting.

Step 250

In the computer experiments we investigated the
two-stream instability shown in Fig. 5 and observed
the formation of hole structures. For this experi-
ment the distribution funetion for the spatially
homogeneous equilibrium is characterized by

i) = {1, 2/2 < |v| < vo.
0,

We employed periodic boundary conditions over a
length L, [in Fig. 5(a) three periodic intervals are
shown], and perturbed the initial equilibrium with
16 random amplitudes and phases, i.e., the four
longest waves on each curve. Other parameters for
the equilibrium are

vo Af 1 _ 1 _L,
Ar —ar @wAl=g5 AT=g

where Az is the grid used for evaluating Poisson’s
equation. The unstable modes are n = 1, 2, where
the wavenumber is ¥ = 2wn/L,, and the lLnear
growth rates are v/w, = 0.30, 0.315, respectively.

The interaction of holes was studied numerically
by preparing equilibrium hole structures and bom-
barding them at each other as in Fig. 6 and 7. In
both figures F = 1 for the phase space fluid that
lies outside the holes and within the outer contours,
and F = 0 for the holes. In Appendix A we exhibit
the analytic theory for the construction of an equi-
librium hole from this type of distribution. In both
figures there are 64 grid cells in the basic periodicity
length and initially the x coordinates of the holes
are centered at x = 16Ax and 48 Az. The potentials
at z = 0 and 32z are chosen as zero.

In Fig. 6 the initial velocity v, of the outer con-
tours at x = 0 and r = 32Ax is given by v, =

(otherwise)

Step 500 Step 550

— Do —

N

%

. Fia. 6. An example of a hole-hole
interaction when the relative velocity
between holes is small. Hole attrac-

tion causes coalescence of the main
bulk of the structures, together with swepeés0

Step 900

a background spray from escaping I
regions.
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Fi16. 7. An example of a hole-hole interaction when the
relative velocity between holes is large. The holes pass through
each other with some spray forming from ‘“tidal” deforma-
tions.

+38v,, and the holes initially move with velocities
vy = =£%v, towards each other. The other param-
eters characterizing the equilibrium are v, At/ Az =
0.125, w,Azx/v, = 0.337, ¥ = 0.5 [see Eq. (A2) of
the Appendix for definition of ).

In Fig. 7 the parameters characterizing the equi-
librium are

ve _ 9 wo_ 2

e E30 4, T 3o
Vo At _ w, Ar _ _
= 0.125, S5 = 0426, g0 =01

In comparing the experimental and computational
results, it is to be kept in mind that two quite

H; :l-_-‘-“ 0.28 msec
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different frequencies occur in the experiments, the
gyrofrequency «.; which characterizes the periodic
motion of the charge cluster past the detector, and
the much lower modulation frequency at which the
amplitude of gyrofrequency signal varies during the
time interval before the cluster reaches a stationary
state. This modulation frequency is twice the fre-
quency of phase space rotation of the nonstationary
configuration. Only the phase space frequency ap-
pears in the computational results of Figs. 5 and 6,
because the center of mass of the distribution is at
rest in the coordinate system chosen. However, in
Fig. 7 the holes traverse the periodic space and this
traversal frequency is analogous to the gyrofre-
quency of the physical experiment.

A. Evolution of Clusters and Cavities

Figures 8 and 9 reproduce oscillograms, taken
on two different shots, of the signal amplitudes of
the gyrofrequency w.; and the second harmonic
2w.; that developed after short pulses of injection
into DCX-1. In each case, the injection was termi-
nated before growth from the negative mass in-
stability had perturbed the momentum or charge
density appreciably. The phase density was, there-
fore, known initially, and was approximately uni-
form over phase angle, just as in the initial conditions
for the computer run of Fig. 5.

The main objective of the DCX-1 experiment
was to verify that the linear growth rate agreed with
the one for the negative mass instability, and, in-
deed, satisfactory agreement was found.” However,
at present we are primarily interested in the infor-
mation that these experiments provide about non-
linear behavior. In general, after the charge density
perturbation grows, at first exponentially, it reaches
a limiting amplitude, and then it oseillates in ampli-

——! 0.5 msec l‘—'

Fra. 8. Electrostatic signals from
the Oak Ridge DCX-1 mirror ma-
chine which indicate the formation
of a single cluster from the linearly
stable regime. The modulation of
the signal intensities is attributed
to rotation in phase space of a
cluster.
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J=—0.35 msec

Fia. 9. Electrostatic signals from
the Oak Ridge DCX-1 mirror ma-
chine which indicate the forma-
tion of two clusters from the
linearly unstable regime. The sec-
ond harmonic disappears and the
first harmonic appears when two
clusters coalesce into a single
cluster.

tude while gradually decaying due to loss of trapped
protons by charge exchange.

The simpler situation is that of Fig. 8 which shows
a growth of signal amplitude at the gyrofrequency
w.; only. We attribute this to the development of a
single cluster in the charge ring, revolving about the
magnetic axis. Figure 9 corresponds more closely to
the computer run of Fig. 5, and here, we must assume
that at first two clusters develop in the ring, pro-
ducing a second harmonic signal as they revolve
around the axis at the gyrofrequency, nearly at
opposite ends of a diameter. Subsequently, they
attract one another and coalesce into a single cluster,
as indicated by the disappearance of the second
harmonic and the emergence of the first harmonie.
A corresponding coalescence occurs between step
250 and 400 of the computational results of Fig. 5.

In Fig. 5 we note that after the two cavities have
grown and moved together toward coalescence by
step 350 they have achieved maximum momentum
spread Ap. As they continue coalescing and rotating
about their common center they reach a position of
minimum Ap near step 500 and a maximum again
near step 600. Between step 350 and step 600 the
line of maximum phase space distance across the
configuration has rotated clockwise by approxi-
mately 180°. Maximum Ap extent of the cavity
corresponds to maximum Ap in a charge cluster and
consequently maximum local charge density and
maximum experimental signal (the fact that phase
space behavior of cavities and clusters may be
equated is of course, merely an aspect of the du-
ality discussed in Sec. II). Thus, steps 350 and
600 of Fig. 5 are to be placed in correspondence with
the first two amplitude maxima in the first har-
monic signal of Fig. 9. In general, the Ap maxima
that oceur as cavities or clusters of a nonstationary

4’, 0.5 msec l'—

configuration rotate in phase space are represented
by amplitude maxima in the experimental signal.

We now consider some quantitative aspects to
further support our interpretation that the experi-
mentally observed amplitude modulation is a mani-
festation of phase space rotation of a nonstationary
configuration. First, we examine the relations be-
tween the initial growth time and nonlinear oscilla-
tion period in both the computational and experi-
mental results. Second, we deseribe and discuss the
experimental dependence of amplitude oscillation
period upon cluster charge density.

From intuitive considerations one can expect that
the phase space oscillation frequency should be com-
parable to the linear growth rate. As long as particles
actually sample within a growth time essentially
the same electric field phase as they would in linear
theory this theory is accurate. However, linear
theory must saturate when internal fields grow to a
level that causes the phase of the particles to be
significantly modified in a growth time. The internal
fields have then also reached a level that produces
phase space rotation at a rate comparable to the
linear growth rate.

To illustrate this point we see that in Fig. 5 the
first harmonic component of Ap has approximately
doubled between step 250 and the first maximum
at step 350, while the initial linear doubling time is
about 50 steps. Since Ap maxima oceur with a
separation of 250 steps, we see that the doubling time
during the final stage of initial growth is twice the
linear time and about half the saturated amplitude
oscillation period. Similar ratios hold for the experi-
mental observation, as illustrated in Figs. & and 9.
Measurements of the Fig. 8 oscillogram and other
concurrent oscillograms give 0.33 msec as the ampli-
tude oscillation period, 0.09 msec as the time from
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half-maximum to first maximum, and 0.04 msec as
the small amplitude doubling time. The ratios of
these times appear to be nearly independent of
whether only a first harmonic grows from a small
perturbation, as in Fig. 8, or whether it forms by
coalescence of two second harmonic clusters as in
Tig. 9, and are characteristic of all data.

In attempting to relate phase oscillation period
to cluster charge density we confront the difficulty
that the numerical dependence obviously depends
upon the exact phase space configuration of the
cluster in question. If, however, some reasonable
assumption is made about the configuration of a
cluster, it becomes possible to calculate how the
ratios of the oscillation periods should depend upon
the corresponding charge density ratios.

In the DCX-1 experiment the angular extent of
the cluster remains constant at 2x, and we assume
that the shape and spatial extent of the potential
function are nearly unchanged during charge decay.
It then follows that the oscillation time varies as the
inverse square root of the maximum potential, just
as the motion of a particle in a large-amplitude wave.

The experimental observations show that norm-
ally the amplitude modulation period increases
monotonically as the mean signal amplitude decays.
It is never possible to follow this increase in period
to a very large ratio in amplitudes because the
depth of the modulation soon becomes too small,
even though the signal amplitude remains well above
the noise level. Comparison of clusters formed follow-
ing different injection pulses is of more uncertain
significance because there is no assurance of similar
cluster shapes. Nevertheless, for a given set of
operating conditions the large-amplitude signals
fairly consistently exhibit shorter amplitude modu-
lation periods. Even over a change of more than a
factor of 20 in charge input and loss rate (resulting
from change in neutral pressure) the relation be-
tween amplitudes and periods is surprisingly uni-
form.

To illustrate numerically we again refer to Figs. 8
and 9. In Fig. 8 the modulation time T' increases
from 0.33 msec to 0.45 msec as the mean amplitude
A decreases from 1.0 to 0.5 V at the oscilloscope
(the signal at the pick-up loop is much less). In
Fig. 9 (oscilloscope gain reduced) the time increases
from 0.20 to 0.25 msec as the mean amplitude de-
creases from 1.9 to 1.4 V at the oscilloscope. Values
of AT in these four cases are 0.33, 0.32, 0.28, and
0.30. Thus, these examples, as well as most others
done, show that the period varies as the square
root of the amplitude.
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The experimental decrease of amplitude modula-
tion with time, until phase motion ceases to be
observable, implies that the cluster approaches a
stationary state in which the phase density is con-
stant along every phase trajectory. In these experi-
ments we find that, in general, the time required to
reach a stationary state is of the order of 10 ampli-
tude oscillation periods, i.e., five complete rotations
of the phase space configuration. This decay may be
aseribed to shearing of the phase fluid, as a conse-
quence of the nonisochronous phase rotation result-
ing from the nonharmonic character of the potential
well. This shearing is evident in all computer runs,
and is even more conspicuous in Fig. 6 than in Fig,. 5.
Without nonisochronism in the rotation period,
leading to the stretching and winding-up of phase
fluid elements, there could be no approach to a true
stationary state. The effeet is particularly important
when two structures coalesce, since a considerable
amount of phase fluid is ejected and subsequently
orbits in the field of the main body, and in Fig. 5
we see that the maximum in Ap at step 600 is al-
ready measurably less than at step 350.

We have thus seen that linear growth is succeeded,
first by a nonlinear limit in which phase oscillations
are directly observable as oscillating signal ampli-
tudes, and then eventually by a metastable station-
ary state. The decay of this metastable state by
particle loss due to charge exchange is, of course, a
peculiarity of the DCX-1 experimental situation,
and is not an intrinsic characteristic of the state
itself.

B. Interacting Clusters and Cavities

It has been shown in Figs. 9 and 5 that two
clusters or two cavities may fuse together, in the
early stages of their evolution toward an eventual
stationary state. A simpler example of a fusion
event is shown in the computer sequence of Fig. 6.
This differs from Fig. 5 in that two distinet fully
developed equilibrium cavities were put in as an
initial condition, so that their subsequent interaction
could be studied independently of the complications
of individual cavity evolution. We see that the
cavities, which initially have a small relative ve-
locity, attract one another and promptly merge into
a single structure. Evidence of hole attraction can
be obtained by observing that two noninteracting
holes would take 768 steps to cross, while in Fig. 6
we see that two holes cross each other after 550
steps. Similar fusion events are observed experi-
mentally with proton clusters.

In experiment, observations as simple as Fig. 6
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are, of course, difficult to obtain. Both the Cosmo-
tron and DCX-1 start with an injection of a uni-
form ring of charge, and we have already interpreted
Fig. 9 as showing that in DCX-1 strong inter-
action leads to fusion that is similar to the computer
run of Fig. 5. In the Cosmotron, however, clusters
interacted more weakly because of wall shielding
and much greater spatial separation, so that there
was time for many fully developed stationary clus-
ters to form. From this multicluster state, which is
partially similar to the initial state of Fig. 6, fusion
of fully developed clusters occasionally occurred
but, because of the weakness of the interaction,
only when two happened to be very close together.

When the two structures have a greater relative
velocity as in Fig. 7 they tend to distort each other
but fusion is less likely to occur. In these figures we
see evidence of hole attraction since it takes about
160 steps for the holes to cross each other instead
of a free streaming time of 192 steps. Evidence of
similar interaction has also been observed in two dif-
ferent experimental situations. In the Cosmotron, it
was found that injection of two distinet momentum
groups of protons resulted in two distinet groups of
proton clusters that did not fuse, but did, in some
cases, become coupled in pairs into closed phase-
space orbits, each cluster retaining its identity and
revolving about the other like the two individuals
of a double star. See for example, Fig. 19 of Ref. 13.
In this case, momentum in phase space is equivalent
to radius in real space, so that viewed in the center-
of-mass frame, the actual orbits resemble orbits in
phase space.

A second situation in which clusters were ob-
served to interact arose in DCX-1, when the two
clusters were created by fission of a single large
cluster. To clarify the experimental ecircumstances,
first consider the growth of the single cluster shown
in Fig. 10. In this case, injection continued long
past the time of small-amplitude exponential growth,
and we see in (a) an approximately linear growth
of signal during charge input, particle trapping occur-
ring both inside and outside the closed phase orbits
of the cluster in an approximately constant ratio.
When the input ceased, the signal decayed from
particle loss, just as in Figs. 8 and 9.

If input had been continued at a suitably reduced
level, the cluster could have been maintained in an
exactly stationary state indefinitely. In fact, such
constant-amplitude stationary-state signal-generator
modes have been produced in DCX-1. When, how-
ever, input continued at the same level the result
was as shown in Fig. 11; the cluster split into two
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_ Fra. 10. Electrostatic signals due to the persistence of a
single stable negative mass cluster in the Oak Ridge DCX-1
mirror machine. Upper trace in (a) indicates duration of
input beam.

clusters with different gyrofrequencies that alter-
nately moved into and out of phase, to produce the
amplitude modulation shown in Fig. 11(b). When
they were 180 deg out of phase, the two clusters
produced the second-harmonic signal shown in
Fig. 11(c), instead of a gyrofrequency signal as in
Fig. 10(c).

The probable explanation for this cluster breakup,
which is typical of DCX-1 observations, is that
there is a limiting charge density above which a
simple one-dimensional representation fails. As the
charge density increases, the distribution spreads in
the z direction parallel to the magnetic field because
of the mutual repulsion of the protons. This spread
moves the protons with larger z-oscillation ampli-
tude toward the mirrors and so into regions of
stronger magnetic field, and therefore, their average
gyrofrequency increases. At the same time, the
longitudinal spread weakens the azimuthal binding
between the proton groups with larger and smaller
z amplitudes. Eventually, when the coupling be-
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Fia. 11. Electrostatic signals due to the persistence of two
negative mass clusters in the DCX-1 mirror machine. Ini-
tially only one cluster is present but above a critical density
two clusters form.

comes too weak to hold the entire cluster together
and force all the protons to revolve at a single fre-
quency, the cluster splits into two, one consisting of
the larger z-amplitude group with greater average
gyrofrequency, and the other consisting of the
smaller-amplitude lower-frequency group. In other
experiments, a frequency increase during cluster
growth followed by a splitting into two frequencies
was observed with the spectrum analyzer, and was
found to be characteristic of negative mass phe-
nomena in DCX-1. For an example of frequency
splitting see Fig. 9 of Ref. 14.

We now discuss the decrease of signal amplitude
in Fig. 11, after the formation of two clusters. If
only particle input and loss were involved, as in
Fig. 10, we should expect the two clusters to grow
individually at the same rate as before fission, since
particle input continued. In fact, at a eritical signal
level the amplitude decayed in about 0.5 msec to a
much smaller fluctuating level that never again,
even though particle input continued, increased to
the maximum reached by the well-organized single-~
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cluster state before fission. We conclude that two or
more clusters interacting may be mutually destrue-
tive. This experimental result is to be compared
with the computer sequence of Fig. 7 in which two
cavities of initially different average momentum,
thus with some relative velocity, pass each other.
The first pass oceurs at approximately step 160 and
the second at approximately step 900. At first, it
appears that there is little effect, but before the
end of the sequence considerable filamentation has
occurred. The inelastic behavior of the collisions
has somewhat modified the collision rate. If the
hole encounters were elastic, the periodicity time
would be 768 steps. As a result of inelastic collisions
the holes lose energy, and as they are holes and not
particles, speed up, so that the new traversal time
is 740 steps. It is evident that the cavities will be
modified substantially in a time that corresponds to
the experimental decay time of 0.5 msec for cluster
disintegration. During the experimental decay inter-
val, input and loss processes changed the proton
density only very slightly, so that for purposes of
comparison with the constant-phase-density com-
puter case the experimental situation may be viewed
as likewise a constant-density case.

In brief, the consequences of the interaction be-
tween two clusters or two cavities depend upon
their relative phase-point momenta. When the aver-
age momenta are nearly equal, they attract and
fuse into one structure; the most stable configuration
is a single cluster or cavity. When their momenta are
sufficiently different, they pass without much mu-
tual disturbance, or in some cases form a bound
structure with separate identities retained. When
their momenta differ too much to allow fusion and
too little to make mutual disturbance negligible,
they tend to destroy each other.

V. CONCLUDING REMARKS

We have seen that a simple phase-fluid model of
the Vlasov equation can be applied to several equiva-
lent physical systems, and that it predicts non-
linear states which are similar to those that occur
experimentally. Further insight into the dynamical
behavior of many-body systems may be gained by
applving general arguments involving energy, sta-
tistical mechanics, and thermodynamics. We briefly
indicate some of these arguments here, and hope to
present them in more detail in a later paper.

It can be shown that an equilibrium structure of a
gravitational phase fluid is a minimum total energy
state (so that any perturbation, under the con-
straint of over-all area conservation, increases the
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energy of the system), and that a negative-mass
cluster and a hole in an infinite electron phase fluid
are maximum total energy states. This guarantees
the stability of each of these structures, since insta-
bility can only arise if the fluid can distort in a
manner that conserves over-all energy; evidently no
motion is permitted if the energy is an extremum.

With this constraint on the energy, one may ask
how an equilibrium configuration is ultimately at-
tained. The clue appears in Fig. 6, where we see the
coalescence of two holes that have bombarded each
other. The new excited state does not have the
proper area—energy relation to enable the hole fluid
to form a new equilibrium. Instead, it is necessary
for the structure to get rid of excess (negative)
energy by evaporating layers from its boundaries.
This evaporated material then orbits in the attrac-
tive field of the main hole, and becomes more and
more randomized as time goes on; eventually, the
system appears to exhibit a two-phase thermo-
dynamic equilibrium.

This picture certainly suggests that a new sta-
tistical formalism is needed, in order to desecribe the
evolution of the holes and of background plasma.
An appropriate form of statistical mechanics has
recently been worked out by Lynden-Bell,”® and
one of the most interesting features is that individual
elements of phase fluid obey a classical exclusion
principle, since no two elements can occupy the
same cell in phase space. The total energy is also
conserved, and if there are only two types of region,
f = 0and f = 1, the Lynden-Bell distribution is
the same as that of Fermi. Our numerical results
are in good qualitative agreement with Lynden-
Bell’s theory when applied to the holes of the plasma
system (rather than to the plasma itself), or equiva-
lently to the phase fluid of a gravitational system, for
which the theory was originally developed.

In actual experiments, and in more detailed
theory, energy sources and sinks may be present
that can cause perturbations to grow. Even in our
two-stream calculation we may note that the hole
configuration is strictly not a maximum total energy
state, since it is possible to excite positive-energy
plasma oscillations on the outer curves. However,
since these have phase velocities which are quite
different from those of the negative energy waves
excited at the hole boundaries, the two types of
waves do not couple effectively. Hence, in our com-
puter experiment the holes are stable because the
system cannot coherently transfer energy from the
inner to the outer curves.

In other experiments, energy sinks for the holes
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may be more important. Morse and Nielson® re-
cently performed a two-dimensional caleulation of
the two-stream instability and found that holes
dissipate in the time that it takes thermal particles
to cross their transverse dimension. Hence, one can
probably only expect nonlinear hole structures to
persist in systems where transverse motion is in-
hibited by a magnetic field. Another important as-
pect of the stability of nonlinear structures is their
interaction with slow waves and dissipation mecha-
nisms in the system, e.g., ion acoustic waves and
Landau damping,.

Much of the analysis of this paper can equally
well be applied to the vortex motion of an incom-
pressible two-dimensional hydrodynamic fluid. In
this case the analog to the Vlasov equation is the
equation which governs the advection of the vor-
ticity F = (ov,/dz) — (8v,/9y); i.e.,

dF _ oF aF

=g Fra v

dt =o.

"3, (17)

The two spatial coordinates z and y are canonically

conjugate® to one another since they satisfy the
relations
PR 1 2 — = ¥
v, =2 = ay 7 vy Yy = oz ’ (18)

where the Hamiltonian ¢ is just the velocity stream
function. The velocity, therefore, behaves as an
incompressible phase fluid, and it is only in the
equation that determines ¢ that the vortex system
differs from the Vlasov problem. The stream function
¥ is, in fact, determined by the two-dimensional
Poisson equation

&y Y g,

o T oy (19)

Since z and y now appear in a symmetrical way,
general thermodynamic arguments are easier to
use. Previous numerical studies of systems mathe-
matically equivalent to Egs. (18) and (19) (such as
the Kelvin-Helmholtz instability or diocotron in-
stability” ') show that fluids with a sheared flow
and with velocities initially independent of z, evolve
into vortex structures. The z-y phase space disgrams
are strikingly similar to our z-v diagrams in Fig. 5.
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APPENDIX. HOLE EQUILIBRIA

Here, we construct analytically the hole equi-
libria that were used to form our initial states in
the hole-hole simulation experiments. For our case
both pulse solutions and wave trains (Bernstein—
Greene-Kruskal® modes) exist. Although the forma-
lism we present treats wave trains, the pulse solu-
tions will be emphasized since in our problem the
periodic solutions are essentially just a set of pulses
stacked in an array.

In the wave frame the equilibrium contours in
velocity space, shown in Fig. 12, are also contours
of constant energy. As our origin we select a point
where the velocity space contours peak and at the
troughs we choose ¢ = 0. The contours C, , are then
open-ended contours with velocity

v,4(x) = £{2[E, , — ¢(x)]}1/2)

while contours C,; are of equal negative energy
with velocity

Vg3 = £{—2 [|E2.al -+ ¢(x)]}1/2-
From Eq. (12) we then have
¥ _ 10 (@)

ac’® 2 9¢ \ox
= =50 {01 — 2@ + b — 2@ ~ 2
— 20} ~ @0~k — 26@]),  AD

where

7)?,4 = 2F, 4, vg = —2E,

v

Fia. 12. Schematic phase space diagram used to obtain
analytic equilibrium hole solutions.
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and
o) = {1, T > 0}_
0, z <0

When we introduce the transformations

2¢ WL 2 _

§b=~52—y ?/=1-),

and integrate Eq. (A1), we find

(%) = st + 9 — @ + w0

+ (e: + 97 — (@ + )
— 2(¢ — a3)**0(y — ai)
+ 2(¢0 - a?):—x/z - 3(‘»0 - ’l/o)]y

where ¥y = ¢(y = 0) which must be greater than
zero.

From our assumptions, we have the constraints
that dy/dy vanish where ¢ = 0 and the right-hand
side of (A2) must be greater than zero between the
zeros of 3y/dy. The first constraint yields

0‘3 = ¢ — (%)2/3[@1 + ¢o)3/2 - af
+ (a4 _l_ ¢0)3/2 _ Ofi _ 3¢0:l2/3.

The second constraint also limits the choice of
parameters, and for example, yields the condition
a; -+ o, > 2. Further, the parameters cannot violate
the condition o2 > 0.

If we choose parameters to satisfy all constraints,
then from (A2) we can solve for ¢ by quadrature
and find

(A2)

(A3)

oy
v=, vavta =
The condition for a single pulse is oy + ay = 2
since it then follows that for small ¥(¥ K o’ ),
(8¢/9y)? = ¢*/a,o, and, therefore, from (A4) we
see that L — . If we solve for ¥ outside the hole
when ¢ < o? ,, we find

b= wew (~l=g),

(A5)
where ¥, is a constant that can be determined from
the exact solution of (A4) and y, is the point where
Y(@.) = o (f af K o, then ¢, = af). Hence,
outside the hole, plasma shielding causes the po-
tential to decay exponentially.

In preparing pulse equilibria for computer experi-
ments, Eq. (A4) is integrated with o, -+ @ = 2.
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Once the potentials are known the velocity space
contours can be formed. A negligible error arises
near the ends of the pulse since in the computer
experiments the pulse is of finite size.
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A method for obtaining an approximation to the large-time behavior of instabilities which are
represented by multidimensional Fourier integrals of a type which arises in dispersion relation studies
is discussed. Applications to moving striations, the beam-plasma instability, and to the ion-cyclotron
resonance instability are given and the results compared with those of other methods.

I. INTRODUCTION

Propagation characteristics of instabilities have
been discussed by several authors using an approxi-
mation in which the growth rate is replaced by its
osculating parabola at an absolute maximum, and
the frequency by its tangent line at that point.'~®
In this paper we give an extension of this method to
the treatment of instabilities u(x, f) which are repre-

sented by multidimensional Fourier integrals of the
form

u(x, ) = fk g8 exp [pM@): + kx| dk (1)
and a diseussion of the conditions under which this

approximation leads to a correct asymptotic ex-
pansion in the sense of Poincaré. These conditions



