Brownian Motion and
Langevin Equations

1.1 Langevin Equation and the Fluctuation-
Dissipation Theorem

The theory of Brownian motion is perhaps the simplest approximate
way to treat the dynamics of nonequilibrium systems. The fundamen-
tal equation is called the Langevin equation; it contains both frictional
forces and random forces. The fluctuation-dissipation theorem relates
these forces to each other. This theorem has many important and far-
reaching generalizations. For the present, we focus on the most ele-
mentary version of the theorem.

The random motion of a small particle immersed in a fluid is called
Brownian motion. Early investigations of this phenomenon were made
on pollen grains, dust particles, and various other objects of colloidal
size. Later it became clear that the theory of Brownian motion could
be applied successfully to many other phenomena, for example, the
motion of ions in water or the reorientation of dipolar molecules.

In particular, the theory of Brownian motion has been extended to
situations where the “Brownian particle” is not a real particle at all, but
instead some collective property of a macroscopic system. This might
be, for example, the instantaneous concentration of any component of
a chemically reacting system near thermal equilibrium. Here the irreg-
ular fluctuation in time of this concentration corresponds to the irreg-
ular motion of the dust particle. This kind of extension is of the greatest
importance and will be discussed in depth later.
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While the motion of a dust particle performing Brownian motion
appears to be quite random, it must nevertheless be describable by the
same equations of motion as is any other dynamical system. In classi-
cal mechanics, these are Newton’s or Hamilton’s equations.

Consider the one-dimensional motion of a spherical particle (radius
a, mass m, position x, velocity v) in a fluid medium (viscosity 7).
Newton’s equation of motion for the particle is

dv
S Eota f), 1.1
m dr (1) ( )

where F,,,(?) is the total instantaneous force on the particle at time .
This force is due to the interaction of the Brownian particle with the
surrounding medium. If the positions of the molecules in the sur-
rounding medium are known as functions of time, then in principle, this
force is a known function of time. In this sense, it is not a “random
force” at all. An example that illustrates this point, a Brownian par-
ticle coupled to a heat bath of harmonic oscillators, will be dis-
cussed later.

It is usually not practical or even desirable to look for an exact
expression for Fy,,(f). Experience teaches us that in typical cases, this
force is dominated by a frictional force —{v, proportional to the veloc-
ity of the Brownian particle. The friction coefficient is given by Stokes’
law, { = 67tna. If this is the whole story, the equation of motion for the
Brownian particle becomes

dv
A 5 1.2

and, as a linear first-order differential equation, it has the familiar
solution

V() = e 4™ (0). (1.3)

According to this, the velocity of the Brownian particle is predicted to
decay to zero at long time. This cannot be strictly true because the mean
squared velocity of the particle at thermal equilibrium is (v*).q = KT/m,
so that the actual velocity cannot remain at zero. Evidently, the assump-
tion that Fi,(f) is dominated by the frictional force must be modified.

The appropriate modification, suggested by the observed random-
ness of an individual trajectory, is to add a “random” or “fluctuating”
force OF(f) to the frictional force, so that the equation of motion
becomes

dv

ms = ~(v+ 8F (). (1.4)
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This is the Langevin equation for a Brownian particle. In effect, the
total force has been partitioned into a systematic part (or friction) and
a fluctuating part (or noise). Both friction and noise come from the
interaction of the Brownian particle with its environment (called, for
convenience, the “heat bath”). Because of this, one should not be sur-
prised to find that there is a fundamental relation between friction
and noise; this will be demonstrated shortly.

There are two basic views of the nature of the fluctuating force. In
the more-commonly presented view, the fluctuating force is supposed
to come from occasional impacts of the Brownian particle with mole-
cules of the surrounding medium. The force during an impact is sup-
posed to vary with extreme rapidity over the time of any observation,
in fact, in any infinitesimal time interval. This clearly cannot be strictly
true in any real system. Then the effects of the fluctuating force can be
summarized by giving its first and second moments, as time averages
over an infinitesimal time interval,

(6F@))=0,  (SF(t)SF(t’))=2Bé(t—1t"). (1.5)

B is a measure of the strength of the fluctuating force. The delta func-
tion in time indicates that there is no correlation between impacts in
any distinct time intervals dt and df'. The remaining mathematical spec-
ification of this dynamical model is that the fluctuating force has a
Gaussian distribution determined by these moments.

The other view can be illustrated by the analogy of random number
generators in computers. These algorithms are deterministic; that is, if
the same seed in used in repetitions of the algorithm, the same sequence
of numbers is generated. Yet the sequence generated by a good algo-
rithm is “random” in the sense that it satisfies various statistical
requirements of randomness for almost all choices of seed. The output
of a random number generator is used as input to other programs, for
example, Monte Carlo integration. The results are generally indepen-
dent of the initial seed; only the statistical distribution of random
numbers is important. In the same way, the randomness of Brownian
noise is fully determined by the initial state of the heat bath. The
results of a calculation using the Langevin equation are expected to be
independent of the initial state and to involve only the statistical
distribution of the noise. In this view, the averages in eq. (1.5) come
from averages over initial states. A later section shows how all this
can come from a simple harmonic oscillator model of a Brownian
heat bath.

As remarked earlier, the particle’s velocity decays to zero in the
absence of noise, but this cannot be so. At thermal equilibrium, we
must require that (v?)., = kT/m. The Langevin equation, which is a



6 NONEQUILIBRIUM STATISTICAL MECHANICS

linear, first-order, inhomogeneous differential equation, can be solved
to give

v(t) = e %"y (0) + j(;dt'e—a:—m/m 6F(1")/m. (1.6)

(Appendix 1 deals with solutions of equations of this kind.) The first
term gives the exponential decay of the initial velocity, and the second
term gives the extra velocity produced by the random noise. Let us use
this to get the mean squared velocity. There are three contributions to
v(£)% the first one is

e 25/"v(0)’ (1.7)

and clearly decays to zero at long times. There are two cross terms, each
first order in the noise,

2v(0)e /[ dt'e =/ 5F () m. (1.8)

On averaging over noise, these cross terms vanish. The final term is
second order in the noise:

jo' dt'e-“'-”/'"ap(t')jo' dt"e S Im SEe™ m?. (1.9)

Now the product of two noise factors is averaged, according to eq. (1.5),
and leads to

_[)'dt’e‘“‘""/ - 'Cdt"e‘g("'")/ m2B8(t’ —1”)/m?. (1.10)

The delta function removes one time integration, and the other can be
done directly. The resulting mean squared velocity is

(v(e)?) = e 20m(0)* + C%(l e im) (1.11)

In the long time limit, the exponentials drop out, and this quantity
approaches B/{m. But in the long time limit, the mean squared
velocity must approach its equilibrium value k7/m. Consequently
we find

B = CkT. (1.12)

This result is known as the Fluctuation-dissipation theorem. It relates
the strength B of the random noise or fluctuating force to the magni-
tude ¢ of the friction or dissipation. It expresses the balance between
friction, which tends to drive any system to a completely “dead” state,
and noise, which tends to keep the system “alive.” This balance is
required to have a thermal equilibrium state at long times. Many
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variations on the fluctuation-dissipation theorem will be encountered
in the following pages.

1.2 Time Correlation Functions

The Langevin equation can be used to calculate various time correla-
tion functions. This section provides an introduction to these important
quantities.

Equilibrium statistical mechanics is based on the idea of a statistical
ensemble. We learn that the thermodynamic properties of a gas, for
example, can be found by calculating the partition function of a statis-
tical ensemble. We learn that the spatial structure of a liquid can be
described statistically by a pair correlation function.

Nonequilibrium statistical mechanics is based on the same idea of a
statistical ensemble. A fundamental difference, however, is that while
there is only one equilibrium state, there are many nonequilibrium
states. There is no unique “partition function” to use as a starting point
for calculating transport properties. Time correlation functions play the
same role as partition functions and spatial pair correlation functions
in nonequilibrium statistical mechanics. Many properties of systems
out of equilibrium, for example, coefficients of viscosity, thermal con-
ductivity, diffusion, and conductivity, are determined by time correla-
tion functions. They also provide a useful way to interpret experiments
on neutron and light scattering, optical spectroscopy, and nuclear mag-
netic resonance.

We encounter a time correlation function whenever we analyze the
statistical behavior of some time-dependent quantity A(f) measured
over a long time. The quantity A(f) could be, for example, the intensity
of light scattered by fluctuations in a liquid, or it could be the velocity
of a single particle followed in a computer simulation of a liquid. The
first stage in the analysis is to time-average the quantity itself,

(A)= % [} deac. (1.13)

Then we subtract the average to get the fluctuation 6A4,
OA(t) = A(t) - (A). (1.14)

One often observes that fluctuations at different times are correlated
(in the same way that molecules in a liquid are spatially correlated).
The time-averaged product of two fluctuations at different times,

C(t) = % jo " dsGA(s) SA(t + 5), (1.15)
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is called the time correlation function (TCF) of 6A. The conventional
mean squared fluctuation, the time average of fluctuations at the same
time, is C(0).

If the system under investigation is ergodic (generally assumed
without proof), a long time average is equivalent to an equilibrium
ensemble average. This is where the methods of statistical mechanics
come in. Just as we get a pressure by calculating the partition func-
tion of a statistical ensemble instead of making a long time average
of a single sample, we get a time correlation function by calculating
an ensemble average of the product of two fluctuations instead of
its long time average. In an equilibrium ensemble, there is no special
initial time, and C(f) depends only on the difference ¢ between the
two times.

While we based the definition of C(#) on a record of the time depen-
dence of A(f), of the sort that might be produced, for example, by a
computer simulation, many experiments actually generate the Fourier
transform of the time correlation function directly. Generally, the
Fourier transform of any time correlation function,

Co =] _dte™C), (1.16)

is called its spectral density. If we know the spectral density, we can
recover the time dependence of the correlation function by Fourier
inversion. For example, the optical absorption spectrum of a system as
a function of frequency is related to the time correlation function of its
total electric dipole moment. This connection will be treated later.

Velocity Correlation Function

Perhaps the simplest example of a time correlation function is the
velocity correlation function of a single particle in a fluid, (v(t)v(?)),
where v(¢) is the velocity of that particle at time . One reason for inter-
est in this time correlation function is its connection with the self-
diffusion coefficient D. There are many ways to show this connection.
A particularly easy one starts with the one-dimensional diffusion equa-
tion for the space (x) and time (f) dependence of the concentration C(x,
t) of a tagged particle,
2

iC(x, t)=Dj—C(x,t). (1.17)

ot x?
Suppose that the tagged particle starts out initially at x = 0. Then the
concentration will change from an initial delta function in x to a spread-
out Gaussian function of x. By symmetry, the mean displacement is
zero. The mean squared displacement at time ¢ can be found by multi-
plying the diffusion equation by x* and integrating over x,
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-gt—(xz) =J.dxx2 g;C(x, 1)
= DJ‘dxx2 a C(x,1t)
ox?
=2D[dxC(x,1)=2D. (1.18)

The last line comes from integrating by parts and by recognizing that
the concentration is normalized to unity. On integrating over time, this
result leads to the well-known Einstein formula for diffusion in one
dimension, {(x?) = 2Dx.

Now we make a statistical mechanical theory of the same quantity.
The net displacement of the particle’s position during the interval from
Ototis

x0)=[ 'dsu(s), (1.19)

where v(s) is the velocity of the particle at time 5. The ensemble average
of the mean squared displacement is

{x?)= <f0t dsiv()f dsyv(s, )> = J:dSJ(:dSz (Ms(s2).  (1.20)

Note that the integral contains the correlation function of the velocity
at times s; and s,. Next, take the time derivative and combine two
equivalent terms on the right-hand side,

%(xz) =2[ ds(u(e)(s)). (121)

The velocity correlation function is an equilibrium average and cannot
depend on any arbitrary origin of the time axis. It can depend only on
the time difference ¢ — s = u, so that

% (x?) = 2]:: ds(v(t = sV(0)) = 2[ du(v(up(0)). (1.22)

The velocity correlation function generally decays to zero in a short
time; in simple liquids, this may be of the order of picoseconds. The dif-
fusion equation is expected to be valid only at times much longer than
a molecular time. In the limit of large ¢, the left-hand side approaches
2D, and the right-hand side approaches a time integral from zero to
infinity, so we have derived the simplest example of the relation of a
transport coefficient to a time correlation function,

D= jo " dr(v(t)v(0)). (1.23)
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The three-dimensional version can be obtained by summing over x, y,
and z displacements and is

D= —;- jﬂ“’ dt(V(t)- V(0)), (1.24)

where V is the vector velocity.

1.3 Correlation Functions and Brownian Motion

The Langevin equation and the fluctuation-dissipation theorem can be
used to find expressions for various time correlation functions.

Velocity Correlation Function

The first example is to obtain the velocity correlation function of a
Brownian particle. In this example, it is instructive to calculate both the
equilibrium ensemble average and the long-time average.

Calculating the equilibrium ensemble average involves both an
average over noise and an average over the initial velocity. The noise
average leads to

(V) poise = €™V (0). (1.25)
Now we multiply by v(0) and average over initial velocity,

(OO, = el (1.26)

This holds only for ¢ > 0 because the Langevin equation is valid only
for positive times.

We expect that the velocity correlation function is actually a func-
tion of the absolute value of ¢, but to see this from the Langevin equa-
tion we have to go to the long time average. This calculation starts with
a record of the time dependence of the velocity v(t) over a very long
time interval 7. Then the velocity correlation function can be obtained
from the long time average,

WEOVE)) g = % i “dsv(t + (' + s). (1.27)

The instantaneous velocity at time ¢ is determined by its initial value
and by an integral over the noise. We assume that the initial time is the
infinite past, so that the contribution from the initial value of the veloc-
ity has decayed to zero, and the instantaneous velocity is determined
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only by the noise. Then with a slight rearrangement of the time inte-
gral, we obtain

v(e) = [ eI SF(t ~u)dufm. (1.28)
Now the velocity correlation function is the triple integral,

VOV e
= rdu, r du,e /M) 1 J-fds L6F(t —uy +5)0F(t —u, +5)
0 0 T%  m?

s j:dul L”duze'“/"*“"'*"z’ —i— jo “ds ;%235(:-u, —t +uy). (1.29)

The product of two random force factors has been replaced by its
average. The integral over s can be done immediately. The delta func-
tion removes another integral, and the last one can be done explicitly,
leading to

A= M ge-ciym 2B
R

(1.30)
Note that when the time correlation function is calculated this way, the
absolute value of the time difference comes in automatically. On using
the fluctuation-dissipation theorem, this leads to the final expression
for the velocity correlation function,

VWV e = k—nf—e'f"""/ e, (1.31)

The time average of the product of two velocities is the same as the
equilibrium ensemble average. This is what one expects of an ergodic
system. One point of this derivation is to show that observation of time
dependent fluctuations over a long time interval can be used to learn
about friction.

Mean Squared Displacement

Another application of the general solution of the Langevin equation
is to find the mean squared displacement of the Brownian particle. The
actual displacement is

Ax(@) = [ (e’ (1.32)

To find (Ax(t)?*).q, we start with
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WO = e mv(0) + [ di'e ISR () m (1.33)

and then do the averages. Since the calculation is just like earlier ones,
it will be left for the reader. The result is

<Ax(t)2> = 2k—T[t—m+ﬂe~¢f/m ] (1.34)
« ¢l ¢ ¢

At short times, the mean squared displacement increases quadratically
with time. This is the inertial behavior that comes from the initial veloc-
ity. At long times, the effects of the noise are dominant, and the mean
squared displacement increases linearly with time,

kT
(Ax(e)) > 2Tt. (1.35)
Einstein’s formula for the mean squared displacement of a diffusing
particle is 2Dt where D is the self-diffusion coefficient of the Brown-
ian particle. Thus we obtain Einstein’s expression for the self-diffusion
coefficient,

_kT
i
When Stokes’ law is used for the friction coefficient, the result is called

the Stokes-Einstein formula. This also is a prototype of may similar
expressions to be encountered later.

(1.36)

Dipole-Dipole Correlation Function

Many time correlation functions are related to spectroscopic mea-
surements. For example, the frequency dependence of the optical
absorption coefficient of a substance is determined by the time
correlation function of its electric dipole moment. The derivation of
this connection, which will be presented in Section 3.2, is an exercise
in applying the quantum mechanical “Golden Rule”. The result of
the derivation is quite simple, especially in the classical limit where
halkT << 1. ‘
Then the absorption coefficient a(w) at frequency w is

27{'&)2[3 = —-iot
— [ ate > (M(0)- M(©)),,. (1.37)

a(w) =

In the coefficient, c is the velocity of light in vacuum, and # is the index
of refraction. M(¢) is the total electric dipole moment of the system at
time . The absorption coefficient is proportional to the spectral density
of the dipole-dipole time correlation function.
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Suppose the system being investigated is a single rigid dipolar mol-
ecule. Then M is just its permanent dipole moment. It has a constant
magnitude u and a time-dependent orientation specified by the unit
vector u(f), so that

(M-M(),, = 1 (u(0)- u(),,. (138)

If the motion is constrained to the xy plane, then it is convenient to
represent the orientational vector by the angle 6,

u(?) = (cos 6(¢), sin 8(t)) — e ™" (1.39)

and the time correlation function of the orientations u(0) and u(¢) in
two dimensions can be written as

(lI(O) . “(t)>eq N (e-—io(O)eiO(t)> (140)

eq”

We can calculate this quantity using the Langevin equation for
rotational Brownian motion. The position x is replaced by the angle 6,
the velocity v by the angular velocity Q, and the mass m by the moment
of inertia 7,

de dQ
o =0, II=—§Q+ OF (1) (1.41)
and
(OF(t)OF(¢')) = 2Lk TS(t —1'). (1.42)

Then, as in eq. (1.34), the equilibrium mean squared change in angle as
a function of time is

<A9(t)z>eq = 25}[1 —é+—é—e“‘¢/”’]. (1.43)

The orientational time correlation function is

C(t) s (e—ie(O)ei9(1)>eq = <eiA9(r)>eq . (1'44)

But A6(7) is linear in the noise and in the initial angular velocity, and
both of these have a Gaussian distribution. (This is explained further
in Appendix 2, which surveys some properties of Gaussian distribu-
tions.) Then A6(7) has a Gaussian distribution with a zero mean value
and a second moment given by eq. (1.43), and we can use the general
formula for any Gaussian average,
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(exp(iax)) =exp(iaf —%az <(x —)?)2>). (1.45)

Then the time correlation function is

1 2
Cle)=exp- (a6() )eq : (1.46)
At long times this decays exponentially,
C(t)aexp(—%zt). (1.47)

1.4 Brownian Motion of Other Variables

The preceding discussion started with the Brownian motion of a heavy
particle, but the ideas have a much wider applicability. Another
example is the kinetics of a first-order isomerization reaction between
two species called A and B. For convenience, we use the same symbols,
A and B, for the total number of molecules of each species that are
present in a unit volume of the system. In a laboratory experiment,
these are macroscopic quantities, perhaps of the order of Avogadro’s
number. The basic rate equations are

dA
I = —k]A =+ sz
% =—k,B+k, A, (1.48)

and they have the equilibrium solutions A.q, Be,. The sum A + B is con-
stant in time, so that we can replace the two equations with a single
one. The deviation of A from equilibrium is denoted by C, and because
of conservation, the deviation of B from equilibrium is —-C,

A=Aq+C, B=B,-C. (1.49)
We use the equilibrium condition,
kiAeq = k2Beq (1.50)

so that the deviation C satisfies

dC
= +k)C. (1.51)
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A macroscopic deviation from equilibrium decays exponentially. Now
we use the “regression hypothesis” of L. Onsager (1931); this asserts
that small fluctuations decay on the average in exactly the same way as
macroscopic deviations from equilibrium. (This is not really a hypoth-
esis—it seems to always be true.) Then the time correlation function of
the equilibrium fluctuations in particle number is

<C(t)C(t,)>(ime = (Cz)eq e—(kl +k)lt-r'| . (1 52)

Equation (1.51) requires that C must decay to zero at long times; but
we know that if this reacting system comes to thermal equilibrium,
there are still thermal fluctuations in C, and in particular the mean
squared deviation (determined by statistical thermodynamics) (C?),, is
of the order of Avogadro’s number and cannot vanish. This situation is
exactly like what we saw in connection with the Brownian particle. To
account for the fluctuations, a “random force” or noise term &F(f) must
be added to the basic kinetic equation,

fi‘f— = —(k; + k;)C + S6F (1), (1.53)

and to have the correct equilibrium behavior, we must impose the
condition

(F()OF (') = 2(ky + k2 (C?),,, 6(t =1). (1.54)

This is evidently another version of the fluctuation-dissipation theorem.
Observation of particle number fluctuations over a very long time can
be used to find a rate constant.

Several Variables

At this point, it should be clear than any linear dissipative equation will
lead to a similar Langevin equation and a corresponding fluctuation-
dissipation theorem. The general treatment is more complex because
of the possibility of both dissipative and oscillatory behavior and will
be handled using a vector-matrix notation. The general treatment will
be followed by an illustrative example, the Brownian meotion of a har-
monic oscillator.

We consider a set of dynamical variables {a,, a,, . . .} denoted by the
vector a, and the Langevin equation

8a,~

= ;9 @i + F(t), (1.55)

or in matrix form,
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da

—=0-a+F(@), 1,

E a+F() (1.56)
in which © is a matrix and F(7) is a random force vector. (To save space,
the extra ¢ will be dropped from &F.) The strength of the noise is given
by

(Fi(OF(t')) =2Bu8(t -1) (1.57)
or
(F@F(@))=2Bs(t-1"), (1.58)

where B is by definition a symmetric matrix.

O can be diagonalized by a similarity transformation. If it has a zero
eigenvalue, the corresponding eigenvector corresponds to a dynamical
constant of the motion. We assume that all such quantities have been
removed from the set a. For a system that approaches equilibrium at
long times, all eigenvalues of ©® must have negative real parts; however,
they can be complex.

To obtain the analog of the fluctuation-dissipation theorem for this
Langevin equation, we integrate, omitting the initial value term that
decays to zero at long times. The result is

a(t) = jo dse'5"° . F(s). (1.59)

Now we form the matrix (a(f)a(?)), giving proper attention to the trans-
pose (denoted by '),

(a(t)a(t))=ﬂdsgds’e("”9 (F(s)F(s"))-e"~"'

= 'dse(=° 2B e, (1.60)

In the limit of very large time, this second moment must approach its
equilibrium value, denoted by M,

(aa),, =M=2L’°dte'9-n-e'6’. (1.61)

To evaluate the time integral, we first construct the symmetrized
quantity ©-M + M-©" and then use the integral representation of M,

©-M+M.O :2j0°°dt@-e'9 B.e®' +2j0"°dte'@ B-e®' .o
=2detie’@ B.e®
0 dt

=(2¢®-B-¢®')_-2B. (1.62)

t=oco
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The upper limit, at infinite time, vanishes because the eigenvalues of ©
all have negative real parts. So we have -derived the fluctuation-
dissipation theorem:

©-M +M-0' = -2B. (1.63)

Note that by their definition as second moments, B and M are sym-
metric, but © is not. According to the last equation, the product ©-M
has a symmetric part that is related to B. But it can also have an anti-
symmetric part that has no relation to B. It has become conventional
to write © in the form

0 =iQ - K. (1.64)
The fluctuation-dissipation theorem requires both a symmetry, involv-
ing K, and an antisymmetry, involving €,

B=K-M=M:-K', (1.65)
and
iQ-M=-M-iQ'. (1.66)

The reason for including the factor i in i Q is that Q itself typically rep-
resents a frequency, so that i Q describes oscillatory motion. The quan-
tity K-M is real and symmetric and describes decaying motion. The
symmetry of K-M is a statement of the “reciprocal relations” found by
L. Onsager (1931).

A good illustration of the many-variable Langevin equation is the
Brownian motion of a harmonic oscillator. We extend the earlier treat-
ment of Langevin equations by adding an elastic force to the frictional
force. The position and momentum of the oscillator are x and p, and
the explicit equations of motion are

dx

it
dt m
%—1—:— =-mo’x-{ —’% + E,(1). (1.67)

The noise in the momentum equation is labeled by a subscript p. Then
the various vectors and matrices are

az(;)’ d .=(F:)(t)) )
M=(<x02) <,?2>)=(kT/(’>n . sz) (L
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as( 2 ) el h) om

On multiplying out the various matrices, it is easy to see that all the
consequences of the fluctuation-dissipation theorem are met.

1.5 Generalizations of Langevin Equations

Nonlinear Langevin Equations

Up to now we have discussed only linear Langevin equations. They
have the great practical advantage that finding analytic solutions is easy.
For example, this is how the fluctuation-dissipation theorem was
derived. But one often encounters nonlinear Langevin equations in
modeling physical problems. A typical example is Brownian motion of
a molecular dipole in a periodic potential U(x) = ucos2x. It is custom-
ary, when constructing nonlinear Langevin equations, to assume that
the friction is still linear in the velocity, and that the noise is related to
the friction by the same fluctuation-dissipation theorem as in the linear
case. Then the equations of motion are

ax _p

dt m

dp p

A _ ey L 1.71
g U’(x) Cm+6F(t), (1.71)

where the force is F(x) =-U’(x), and we have restored the §in the noise
term. An explicit derivation of these equations, starting with a Hamil-
tonian describing interaction of a system with a harmonic oscillator
heat bath, is presented in the following section.

In the linear case, the first moments (x) and (p) obey exactly the same
equations as the unaveraged variables, except that the noise term is
absent. But if the force F(x) is not linear in x, this is no longer true and
the problem is much more difficult. The average equation of motion for
the average momentum (p) is

Ap) _ (- ¢ 2 (1.72)

ar m
and contains the average of the force. It is generally not safe to replace
the average of a nonlinear function by the same function of the average,
(F(x)) # F((x)). (1.73)

This would require, for example, that the mean squared fluctuation of
x must be negligible, and that is not necessarily so. A solution of the
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nonlinear Langevin equation will generally involve all moments of x
and p, (x"p"), and these will all be coupled together.

While nonlinear Langevin equations have a pleasant pictorial
character and are amenable to easy computer simulation (where the
noise is modeled using random number generators), they are very
hard to treat analytically. The most practical approach is to convert

the Langevin equation into a Fokker-Planck equation. This will be
discussed in chapter 2.

Markovian and Non-Markovian Langevin Equations

The Langevin equations considered up to now are called “Markovian.”
This word, familiar in the theory of probability, has a somewhat differ-
ent usage in nonequlibrium statistical mechanics. It is used here to indi-
cate that the friction at time ¢ is proportional to the velocity at the same
time, and that the noise is delta-function correlated or “white.”
(“White” means that the Fourier transform of the correlation function
of the noise, or its spectral density, is independent of frequency.) Real
problems are often not Markovian. The friction at time ¢ can depend
on the history of the velocity v(s) for times s that are earlier than t.
That is, the friction may have a “memory.” The friction coefficient { is
replaced by a memory function K(t), sometimes called an aftereffect
function, so that the frictional force at time t becomes

(o) = - [_dsK(t - s)vs), (1.74)
or, on changing variables from s to 7 - s,
~0v(f) > - jo " dsK(sW(t - s). (1.75)

If a system of this sort approaches equilibrium at long times, the fluc-
tuation-dissipation theorem must be modified; the noise is no longer
white. Problems of this kind are called non-Markovian.

A simple illustration of how non-Markovian behavior can arise is by
elimination of the momentum in the Brownian motion of a harmonic
oscillator. The starting equations are Markovian,

L0 4

dt m

d

Eltl =-mw’x - C—'% + F,(0). (1.76)

Let us suppose that the momentum vanishes in the infinite past,
p(—) = 0. We solve the second equation for p(r) by integrating
from —oo to ¢,
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p(t)= J‘; dse " (—maw?x(s) + F, (s))
=j;dse'4j/'"(—mw2x(t—s)+ E,(t - s)). (1.77)

When this is put back into the equation for dx/dt, we obtain

dxt) _

= jo " dsK(s)x(t — 5)+ F. (), (1.78)

where the memory function K(s) and the new fluctuating force F,(f)
(with a subscript “,” to distinguish it from the old F,(r)) are given by

K(t) = w?e 1, (1.79)
F.() = [ dse~t/mE,
x(t)-zj'o se M E (¢ — ). (1.80)

At equilibrium, the second moment of x is

kT
mn?’

2y _
(X*)eq = (1.81)
Then the second moment of the new random force can be worked out
explicitly, using the second moment of the old force. (It is important to
remember that ¢ can be either smaller or larger than ¢.) The result of
this somewhat tedious calculation is

(F.0F. @) = (x),, K(t ). (1.82)

This is a non-Markovian version of the fluctuation-dissipation theorem.
The correlation function of the new noise is proportional to the
memory function for the new friction.

In the limit of very large friction, and if we are concerned only with
times much longer than »/{, then the memory function K(s) can be
approximated by a delta function having the same area,

maw?

¢

corresponding to Markovian friction. Then eq. (1.78) becomes an
approximately Markovian Langevin equation for the position x(f).

Whenever variables are eliminated from a Markovian system of
equations, the result is a non-Markovian system. The converse is useful
to keep in mind: If the memory decays exponentially in time, a non-
Markovian system can be changed into a Markovian system by adding
another variable. In the present example, adding a momentum converts
eq. (1.78) into the two-variable Markovian eq. (1.76).

K(s)=2 8(s), (1.83)
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In this treatment of non-Markovian Brownian motion, the “history”
began at t = —oo, and the equations reflected that. It often happens,
however, that the history begins at some specified time ¢ = 0. This could
be, for example, because the system has been prepared in some
state at that time. Then the standard form of linear non-Markovian
equations is very much like those already discussed,

da(t) . ‘
— =a0- jo dsK(s) -a(t — s) + F(t), (1.84)

and the corresponding fluctuation-dissipation theorem is, in matrix
form,

(FOF() =K ~1)-(aa),,. (1.85)

1.6 Brownian Motion in a Harmonic Oscillator
Heat Bath

It is always instructive to look at simple examples, where everything
can be worked out in detail. Here is a derivation of the Langevin
equation for the Brownian motion of an arbitrary nonlinear system
interacting bilinearly with a harmonic oscillator heat bath. This is a
prototype for many statistical mechanical models, both in classical
mechanics and in quantum mechanics. It will appear several times in
later sections.

The main results are an exact Langevin equation, and an explana-
tion of the way in which averages of the random force are handled.
Also we can see how Markovian behavior is an approximation to true
non-Markovian behavior.

The system is described by a coordinate x and its conjugate momen-
tum p. The heat bath is described by a set of coordinates {g;} and their
conjugate momenta {p;). For simplicity, all oscillator masses are set
equal to 1. The system Hamiltonian H; is

p2
H, = =—+UQ), j
5 (x) (1.86)

and the heat bath Hamiltonian Hjp includes harmonic oscillator Hamil-
tonians for each oscillator and a very special coupling to the system,

2 1 3\
Hpg =Z(%+Ew?(‘1/“‘g§x) ) (1.87)

in which @ is the frequency of the jth oscillator and % measures the
strength of coupling of the system to the jth oscillator. Hp consists of
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three parts: The first is just the ordinary harmonic oscillator Hamilton-
ian, specified by its frequencies; the second contains a bilinear coupling
to the system, (Z;yq;)x, specified by the coupling constants; and the third
contains only x and could be regarded as part of the arbitrary U(x). The
bilinear coupling is what makes the derivation manageable.

The equations of motion for the combined Hamiltonian Hs + Hj are
simple:

ac_p  dp__ ( Vi )

dt m’  dt U(x)+2}', 7~ w?

dq; dp;

o P =0l X (1.88)

Suppose that the time dependence of the system coordinate x(r) is
known. Then it is easy to solve for the motion of the heat bath oscilla-
tors, in terms of their initial values and the influence of x(1),

q; () = g;(0)cos w;t + p; (0) S‘““”w,f dsx(s) 2025 (1.89)
I J
Integration by parts leads to a more useful form:
q;t)- 7’—";_x(t) (q, 0)- x(O)) cosw;t + p;(0) Ll
Wj wj j
=% JO ds pn(:) COS(Z?—S}- (1.90)

]

When this is put back into the equation for dp/dt, we obtain the formal
Langevin equation

dap(t) ., ' p(t—s)
— = U0~ jo dsK(s)=—=+ F, ), (1.91)
in which the memory function K(¢) is explicitly

2
K©)=3, T cosat, (1.92)
J

and the “noise” F,(t) is given explicitly by

F©=Y, 7,0) S“‘“”+2 y,(q,(m

e x(O)) cosw;t. (1.93)

J

By carefully choosing the spectrum {®)} and coupling constants {7,
the memory function can be given any assigned form. For example, if
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the spectrum is continuous, and the sum over j is replaced by an inte-
gral, Jdw g(w), where g(w) is a density of states, and if ¥is a function of
o, then the memory function K(t) becomes a Fourier integral,

2
K = [ dog@) X2 coswr (194)

0 w
Further, if g(w) is proportional to @’ and yis a constant, then K(f)
is proportional to &) and the resulting Langevin equation is
Markovian.

The “noise” Fy(f) is defined in terms of the initial positions and
momenta of the bath oscillators and is therefore in principle a known
function of time. However, if the bath has a large number of indepen-
dent degrees of freedom, then the noise is a sum containing a large
number of independent terms, and because of the central limit theorem,
we can expect that its statistical properties are simple.

Suppose, for example, that a large number of computer simulations
of this system are done. In each simulation, the bath initial conditions
are taken from a distribution,

fea(p, q) < exp(~Hp/kT), (1.95)

in which the bath is in thermal equilibrium with respect to a frozen or
constrained system coordinate x(0). Then the averages of g and p are

<q,~ 0)- %x(0)> =0, (p;(0)=0. (1.96)

Since the noise is a linear combination of these quantities, its average
value is zero. The second moments are

<(q,- 0)- Z%x(o)J > = ’;—f (pi(0)°) = kT. (1.97)

J

There are no correlations between the initial values for different js.
Then by direct calculation, using trigonometric identities, one sees
immediately that there is a fluctuation-dissipation theorem,

(F,(0)F,(t") = kTK(t —t"), (1.98)

Because the noise is a linear combination of quantities that have a
Gaussian distribution, the noise is itself a Gaussian random variable. If
the heat bath has been constructed so that the memory function is
a delta function, then the noise is white or Markovian. This model
justifies all the assumptions that were made about Langevin equations
earlier.
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In this example, the fluctuation-dissipation theorem was obtained for
a rather specific kind of initial distribution of states. It may not work
out so simply for a different initial distribution. One must remember
that the distinction between what we call “systematic behavior” and
what we call “noise” can be arbitrary; it depends on how we decide to
define averages. Noise is not an intrinsic property of a material; it is
determined by the experiment used to measure it.

1.7 Heavy Mass in a Harmonic Lattice

Another very instructive model of Brownian motion is due to R. J.
Rubin (1960). The model is a one-dimensional harmonic lattice in
which one particle is much heavier than the rest. The heavy particle
appears to behave like a freely moving Brownian particle with a fric-
tional force proportional to its velocity. This section presents a calcula-
tion of the heavy particle’s velocity correlation function.

All particles except one have the same mass m. The exceptional par-
ticle has mass M. The coordinate and velocity of the jth particle are x;
and v;, where j goes from 0 to N - 1. Periodic boundary conditions are
used, so that xy = x,. Later the limit of very large N will be taken.
Nearest neighbor particles are connected by harmonic springs so that
the energy is

M N- N~
=—w +Zﬂv}. +Z—I£(xj _— (1.99)

The equations of motion are

[m+(M —m)5]0]x] = K(x]'.H —2x] +x]'_1 ). (1100)

The velocity correlation function (VCF), normalized to unity at ¢ =0,
is the equilibrium average

(_w_((t_\))_:;)_(@. (1.101)

Because the equations of motion are linear, the position and veloc-
ity at time ¢ are linear combinations of initial positions and velocities.
The equilibrium average of the product of a coordinate and a velocity
vanishes, and the velocities of different particles are not correlated,
kT

-]—\4_6,'(). (1102)

Cc@)=

(ij0)=O, <VjV0>=

As long as we want only the velocity correlation function, we do not
have to solve the equations of motion for an arbitrary initial condition;
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it is enough to set all initial coordinates and velocities except vo(0) equal
to zero; their contributions will vanish anyway.

The equations of motion are conveniently solved by taking Laplace
transforms (appendix 3). The Laplace transform of the jth coordinate
1S

#,(2) = [ dte 'x;(0), (1.103)

and the equations of motion for this special choice of initial condition
are

[m + (M = m)6]0](22£, - 6)‘()V()(0)) = K(.ij;,[ — 2)?, + ,fj_.] ) (1104)

The structure of the potential energy suggests a normal mode trans-
formation to new coordinates g,

1 & 2m .
xk—T—-]\T%qjex 'TV—]k), (1.105)

which has the inverse transformation
1 2w .
=7 ijexp(——ﬁ—]k). (1.106)

After some rearrangement, the transformed equations are

: 1 M M-m
- J. 2 —v(0)- 2*], 1.107
qk «/ﬁz2+w,%[mv°() X ( )
where the normal mode frequencies are
w; = yﬁ(l - cosgn—k (1.108)
m N
A further summation over k leads to
. 1 1 M - . .
Xo=— e [ﬂ vo(0)— = zzxo} (1.109)
NS z°+oiLm m
The sum will be denoted by
A 1 N-1 1
=— : 1.110

This quantity is particularly simple in the limit of large N. Change vari-
ables from k to 6, and replace the sum over k by an integral over 6,
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1
2> + (2K/m)1 - cos6)

A 1 2n
¢(Z)E§;;—J.o do

1 1
-8 = 1111
272 +4K/m ( )

When eq. (1.109) is solved for %, one gets

. (1+Q)
Xo ~_1+Qz2¢3 v (0), (1.112)
where Q is defined as
M-m
Q= o (1.113)

The transform of the velocity is z£, so the transform of the normalized
velocity correlation function is

é)=—1*D 5. (1.114)

"1+ 02%0(2)

In the large N limit, the approximate expression for ¢ found earlier
leads to an algebraic function of z,

- 1+0
S Qz+\z2+4K/m’ (L115)

The short time behavior of C(f) can be found from the large z
expansion,

é(z)=;————+---. (1.116)

(Note the change from m to M, at short times, the inertial motion of
the heavy mass dominates.) Then at short times, C is

K
=1-—1t%+..., 1.117
C(@) Vil ( )

"

The quadratic dependence on ¢ is a natural consequence of time-
reversal symmetry.

The inverse Laplace transform can be found in tables if Q = 0
or 1. Otherwise, there are no known inverse transforms in terms
of standard functions. When Q = 0, one finds the Bessel function of
order 0,
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Ct)=J,2NK[m) (M =m). (1.118)

When Q =1, the result is another Bessel function, of order 1,

_L@NK[m)
C@t)= K (M =2m). (1.119)

After some algebraic rearrangement, the transform of the velocity
correlation function may be written in the memory function form,

Clz)= —i———, k(z)=z* +4K/m - z. (1.120)

z+ %I;(z)

On inverting the transforms, this is equivalent to
2 cipy=-10 [ dsk(s)C(t - s) (1.121)
dt ' M ’ '

and the time dependent k(s) (which does not depend on M) is

4K J,2sNK/m)
; .

m

gis)=

(1.122)

Equations similar to eq. (1.121) occur frequently in nonequilibrium sta-
tistical mechanics. There is a convolution, with a memory function that
has a short life time, in this case of the order of (m/K)'. The convolu-
tion integral has a coefficient that can be very small, in this case of
the order of m/M. In the heavy mass limit, the time derivative of
C(r) is small, and this suggests a Markovian approximation to eq.
(1.121), where C(¢ — s) is replaced by C(¢) and the integral is extended
to infinity,

d m pe
;l—tC(t) ~ —ﬁj; dsk(s)C(t). (1.123)

The infinite time integral is

oo 1
jo dsk(s) = NAK]m = = (1.124)
0
Then the velocity correlation function decays exponentially on a time

scale of the order of M/m ¢t,,

c) ~ exp(—%i). (1.125)



28 NONEQUILIBRIUM STATISTICAL MECHANICS

In problems of this sort, with a short memory and a small coefficient,
one generally finds approximate exponential decay. But one would like
to know what the limitations are on the approximation.
One can always invert a Laplace transform by means of a contour
integral in the complex plane,
£+ oo 1+Q

1
Cit)=— ax .
@ 2mide-i= "~ Qz+z> +4K/m

(1.126)

Evaluating contour integrals is an exercise in complex variable theory.
Rubin has done the complete calculation; we will not repeat it here. He
found that there is a small correction to the exponential decay at very
long times, which is bounded by

mt
C(t)—&xp(-—-]":[—t—o-)

and which decays more slowly than exponentially. The exponential
decay dominates as long as

<2vz
<2 (1.127)

<< -M—lny—to. (1.128)
m m

If M = 10*m, the correction to the exponential has the same order of
magnitude as the exponential after about nine relaxation times.

VA=A A A,
\/ VAVEYA A

Figure 1.7.1 The velocity correlation function C(¢) as a function of time ¢.
Curve A is the Bessel function for equal masses. Curve B is the result of numer-
ical inversion of the Laplace transform when M = 10m. Curve C is the expo-
nential exp(-#/10).
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Sometimes one can invert a Laplace transform numerically (see
Appendix 3). Figure 1.7.1 shows C(¢) for the equal mass case M = m,
where A is Jy(t), B is the numerical inversion for M = 10m, and C is the
exponential exp(-#/10). Note that the asymptotic exponential works
quite well except for small ¢.

The preceding analysis was based on the limit of large N. Two kinds
of correction must be made if N is finite. One is that the magnitude of
the velocity correlation function is changed by terms of the order of
1/N. The other correction limits the time over which the large N limit
applies. When the particle at j = 0 moves, it sends out sound waves that
carry away energy and information. With periodic boundary conditions,
these sound waves will eventually come back to influence that particle;
in mathematical language, the motion is “almost periodic” and has
recurrences. If N is large, recurrences occur only at times very much
longer than the exponential relaxation time. So it is quite reasonable
to take advantage of the large N limit.



