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Chapter 5

Superconductivity

5.1 Basic Phenomenology of Superconductors

The superconducting state is a phase of matter, as is ferromagnetism, metallicity, etc. The phenomenon
was discovered in the Spring of 1911 by the Dutch physicist H. Kamerlingh Onnes, who observed an
abrupt vanishing of the resistivity of solid mercury at T = 4.15K1. Under ambient pressure, there are 33
elemental superconductors2, all of which have a metallic phase at higher temperatures, and hundreds of
compounds and alloys which exhibit the phenomenon. A timeline of superconductors and their critical
temperatures is provided in Fig. 5.2. The related phenomenon of superfluidity was first discovered in
liquid helium below T = 2.17K, at atmospheric pressure, independently in 1937 by P. Kapitza (Moscow)
and by J. F. Allen and A. D. Misener (Cambridge). At some level, a superconductor may be considered
as a charged superfluid. Here we recite the basic phenomenology of superconductors:

• Vanishing electrical resistance : The DC electrical resistance at zero magnetic field vanishes in
the superconducting state. This is established in some materials to better than one part in 1015

of the normal state resistance. Above the critical temperature Tc, the DC resistivity at H = 0 is
finite. The AC resistivity remains zero up to a critical frequency, ωc = 2∆/~, where ∆ is the gap
in the electronic excitation spectrum. The frequency threshold is 2∆ because the superconduct-
ing condensate is made up of electron pairs, so breaking a pair results in two quasiparticles, each
with energy ∆ or greater. For weak coupling superconductors, which are described by the famous
BCS theory (1957), there is a relation between the gap energy and the superconducting transition
temperature, 2∆0 = 3.5 kBTc, which we derive when we study the BCS model. The gap ∆(T ) is
temperature-dependent and vanishes at Tc.

• Flux expulsion : In 1933 it was descovered by Meissner and Ochsenfeld that magnetic fields in
superconducting tin and lead to not penetrate into the bulk of a superconductor, but rather are
confined to a surface layer of thickness λ, called the London penetration depth. Typically λ in on the
scale of tens to hundreds of nanometers.

1Coincidentally, this just below the temperature at which helium liquefies under atmospheric pressure.
2An additional 23 elements are superconducting under high pressure.
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2 CHAPTER 5. SUPERCONDUCTIVITY

Figure 5.1: Left: H. Kamerlingh Onnes. Right: Onnes’ resistivity vs. temperature data demonstrating
the first observed superconductor, Hg (Tc = 4.2K).

It is important to appreciate the difference between a superconductor and a perfect metal. If we
set σ = ∞ then from j = σE we must have E = 0, hence Faraday’s law ∇×E = −c−1∂tB yields
∂tB = 0, which says that B remains constant in a perfect metal. Yet Meissner and Ochsenfeld
found that below Tc the flux was expelled from the bulk of the superconductor. If, however, the
superconducting sample is not simply connected, i.e. if it has holes, such as in the case of a super-
conducting ring, then in the Meissner phase flux may be trapped in the holes. Such trapped flux
is quantized in integer units of the superconducting fluxoid φL = hc/2e = 2.07 × 10−7 Gcm2 (see
Fig. 5.3).

• Critical field(s) : The Meissner state exists for T < Tc only when the applied magnetic field H is
smaller than the critical field Hc(T ), with

Hc(T ) ≃ Hc(0)

(
1− T 2

T 2
c

)
. (5.1)

In so-called type-I superconductors, the system goes normal3 for H > Hc(T ). For most elemental
type-I materials (e.g., Hg, Pb, Nb, Sn) one has Hc(0) ≤ 1 kG. In type-II materials, there are two
critical fields, Hc1(T ) and Hc2(T ). For H < Hc1, we have flux expulsion, and the system is in
the Meissner phase. For H > Hc2, we have uniform flux penetration and the system is normal.
For Hc1 < H < Hc2, the system in a mixed state in which quantized vortices of flux φL penetrate
the system (see Fig. 5.4). There is a depletion of what we shall describe as the superconducting
order parameter Ψ(r) in the vortex cores over a length scale ξ, which is the coherence length of the
superconductor. The upper critical field is set by the condition that the vortex cores start to overlap:
Hc2 = φL/2πξ

2. The vortex cores can be pinned by disorder. Vortices also interact with each other
out to a distance λ, and at low temperatures in the absence of disorder the vortices order into a

3Here and henceforth, “normal” is an abbreviation for “normal metal”.
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Figure 5.2: Timeline of superconductors and their transition temperatures (from Wikipedia).

(typically triangular) Abrikosov vortex lattice (see Fig. 5.5). Typically one has Hc2 =
√
2κHc1, where

κ = λ/ξ is a ratio of the two fundamental length scales. Type-II materials exist when Hc2 > Hc1,
i.e. when κ > 1√

2
. Type-II behavior tends to occur in superconducting alloys, such as Nb-Sn.

• Persistent currents : We have already mentioned that a metallic ring in the presence of an external
magnetic field may enclosed a quantized trapped flux nφL when cooled below its superconducting
transition temperature. If the field is now decreased to zero, the trapped flux remains, and is
generated by a persistent current which flows around the ring. In thick rings, such currents have
been demonstrated to exist undiminished for years, and may be stable for astronomically long
times.

• Specific heat jump : The heat capacity of metals behaves as cV ≡ CV /V = π2

3 k
2
BTg(εF), where g(εF)

is the density of states at the Fermi level. In a superconductor, once one subtracts the low temper-

ature phonon contribution cphononV = AT 3, one is left for T < Tc with an electronic contribution
behaving as celecV ∝ e−∆/kBT . There is also a jump in the specific heat at T = Tc, the magnitude of
which is generally about three times the normal specific heat just above Tc. This jump is consistent
with a second order transition with critical exponent α = 0.

• Tunneling and Josephson effect : The energy gap in superconductors can be measured by electron
tunneling between a superconductor and a normal metal, or between two superconductors sepa-
rated by an insulating layer. In the case of a weak link between two superconductors, current can
flow at zero bias voltage, a situation known as the Josephson effect.
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Figure 5.3: Flux expulsion from a superconductor in the Meissner state. In the right panel, quantized
trapped flux penetrates a hole in the sample.

5.2 Thermodynamics of Superconductors

The differential free energy density of a magnetic material is given by

df = −s dT +
1

4π
H · dB , (5.2)

which says that f = f(T,B). Here s is the entropy density, and B the magnetic field. The quantity H is
called the magnetizing field and is thermodynamically conjugate to B:

s = −
(
∂f

∂T

)

B

, H = 4π

(
∂f

∂B

)

T

. (5.3)

In the Ampère-Maxwell equation, ∇×H = 4πc−1jext + c−1∂tD, the sources of H appear on the RHS4.
Usually c−1∂tD is negligible, in which H is generated by external sources such as magnetic solenoids.
The magnetic field B is given by B = H + 4πM ≡ µH, where M is the magnetization density. We
therefore have no direct control over B, and it is necessary to discuss the thermodynamics in terms of
the Gibbs free energy density, g(T,H):

g(T,H) = f(T,B)− 1

4π
B ·H

dg = −s dT − 1

4π
B · dH .

(5.4)

Thus,

s = −
(
∂g

∂T

)

H

, B = −4π

(
∂g

∂H

)

T

. (5.5)
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Figure 5.4: Phase diagrams for type I and type II superconductors in the (T,H) plane.

Assuming a bulk sample which is isotropic, we then have

g(T,H) = g(T, 0) − 1

4π

H∫

0

dH ′B(H ′) . (5.6)

In a normal metal, µ ≈ 1 (cgs units), which means B ≈ H , which yields

gn(T,H) = gn(T, 0) −
H2

8π
. (5.7)

In the Meissner phase of a superconductor,B = 0, so

gs(T,H) = gs(T, 0) . (5.8)

For a type-I material, the free energies cross at H = Hc, so

gs(T, 0) = gn(T, 0)−
H2

c

8π
, (5.9)

which says that there is a negative condensation energy density −H2
c (T )
8π which stabilizes the superconduct-

ing phase. We call Hc the thermodynamic critical field. We may now write

gs(T,H)− gn(T,H) =
1

8π

(
H2 −H2

c (T )
)

, (5.10)

so the superconductor is the equilibrium state for H < Hc. Taking the derivative with respect to tem-
perature, the entropy difference is given by

ss(T,H)− sn(T,H) =
1

4π
Hc(T )

dHc(T )

dT
< 0 , (5.11)

4Throughout these notes, RHS/LHS will be used to abbreviate “right/left hand side”.
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Figure 5.5: STM image of a vortex lattice in NbSe2 at H = 1T and T = 1.8K. From H. F. Hess et al., Phys.
Rev. Lett. 62, 214 (1989).

since Hc(T ) is a decreasing function of temperature. Note that the entropy difference is independent of
the external magnetizing fieldH . As we see from Fig. 5.4, the derivativeH ′

c(T ) changes discontinuously
at T = Tc. The latent heat ℓ = T ∆s vanishes because Hc(Tc) itself vanishes, but the specific heat is
discontinuous:

cs(Tc,H = 0)− cn(Tc,H = 0) =
Tc
4π

(
dHc(T )

dT

)2

Tc

, (5.12)

and from the phenomenological relation of Eqn. 5.1, we have H ′
c(Tc) = −2Hc(0)/Tc, hence

∆c ≡ cs(Tc,H = 0)− cn(Tc,H = 0) =
H2

c (0)

πTc
. (5.13)

We can appeal to Eqn. 5.11 to compute the difference ∆c(T,H) for general T < Tc:

∆c(T,H) =
T

8π

d2

dT 2
H2

c (T ) . (5.14)

With the approximation of Eqn. 5.1, we obtain

cs(T,H)− cn(T,H) ≃ TH2
c (0)

2πT 2
c

{
3

(
T

Tc

)2
− 1

}
. (5.15)

In the limit T → 0, we expect cs(T ) to vanish exponentially as e−∆/kBT , hence we have ∆c(T → 0) =
−γT , where γ is the coefficient of the linear T term in the metallic specific heat. Thus, we expect γ ≃
H2

c (0)/2πT
2
c . Note also that this also predicts the ratio ∆c(Tc, 0)

/
cn(Tc, 0) = 2. In fact, within BCS theory,

this ratio is approximately 1.43. BCS also yields the low temperature form

Hc(T ) = Hc(0)

{
1− α

(
T

Tc

)2
+O

(
e−∆/kBT

)
}

(5.16)

with α ≃ 1.07. Thus, HBCS
c (0) =

(
2πγT 2

c /α
)1/2

.
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Figure 5.6: Dimensionless energy gap ∆(T )/∆0 in niobium, tantalum, and tin. The solid curve is the
prediction from BCS theory, derived in chapter 3 below.

5.3 London Theory

Fritz and Heinz London in 1935 proposed a two fluid model for the macroscopic behavior of super-
conductors. The two fluids are: (i) the normal fluid, with electron number density nn, which has finite
resistivity, and (ii) the superfluid, with electron number density ns, and which moves with zero resis-
tance. The associated velocities are vn and vs, respectively. Thus, the total number density and current
density are

n = nn + ns

j = jn + js = −e
(
nnvn + nsvs

)
.

(5.17)

The normal fluid is dissipative, hence jn = σnE, but the superfluid obeys F = ma, i.e.

m
dvs
dt

= −eE ⇒ djs
dt

=
nse

2

m
E . (5.18)

In the presence of an external magnetic field, the superflow satisfies

dvs
dt

= − e

m

(
E + c−1vs ×B

)

=
∂vs
∂t

+ (vs ·∇)vs =
∂vs
∂t

+∇
(
1
2v

2
s

)
− vs × (∇× vs) .

(5.19)
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We then have
∂vs
∂t

+
e

m
E +∇

(
1
2v

2
s

)
= vs×

(
∇× vs −

eB

mc

)
. (5.20)

Taking the curl, and invoking Faraday’s law ∇×E = −c−1∂tB, we obtain

∂

∂t

(
∇× vs −

eB

mc

)
= ∇×

{
vs ×

(
∇× vs −

eB

mc

)}
, (5.21)

which may be written as
∂Q

∂t
= ∇× (vs ×Q) , (5.22)

where

Q ≡ ∇× vs −
eB

mc
. (5.23)

Eqn. 5.22 says that if Q = 0, it remains zero for all time. Assumption: the equilibrium state has Q = 0.
Thus,

∇× vs =
eB

mc
⇒ ∇× js = −nse

2

mc
B . (5.24)

This equation implies the Meissner effect, for upon taking the curl of the last of Maxwell’s equations
(and assuming a steady state so Ė = Ḋ = 0),

−∇2B = ∇× (∇×B) =
4π

c
∇× j = −4πnse

2

mc2
B ⇒ ∇2B = λ−2

L B , (5.25)

where λL =
√
mc2/4πnse

2 is the London penetration depth. The magnetic field can only penetrate up to a
distance on the order of λL inside the superconductor.

Note that
∇× js = − c

4πλ2L
B (5.26)

and the definition B = ∇×A licenses us to write

js = − c

4πλ2L
A , (5.27)

provided an appropriate gauge choice for A is taken. Since ∇ · js = 0 in steady state, we conclude
∇ ·A = 0 is the proper gauge. This is called the Coulomb gauge. Note, however, that this still allows
for the little gauge transformation A → A + ∇χ , provided ∇2χ = 0. Consider now an isolated body
which is simply connected, i.e. any closed loop drawn within the body is continuously contractable to
a point. The normal component of the superfluid at the boundary, Js,⊥ must vanish, hence A⊥ = 0 as
well. Therefore ∇⊥χ must also vanish everywhere on the boundary, which says that χ is determined up
to a global constant.

If the superconductor is multiply connected, though, the condition ∇⊥χ = 0 allows for non-constant
solutions for χ. The line integral of A around a closed loop surrounding a hole D in the superconductor
is, by Stokes’ theorem, the magnetic flux through the loop:

∮

∂D

dl ·A =

∫

D

dS n̂ ·B = ΦD . (5.28)
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On the other hand, within the interior of the superconductor, since B = ∇ × A = 0, we can write
A = ∇χ , which says that the trapped flux ΦD is given by ΦD = ∆χ, then change in the gauge function
as one proceeds counterclockwise around the loop. F. London argued that if the gauge transformation
A → A+∇χ is associated with a quantum mechanical wavefunction associated with a charge e object,
then the flux ΦD will be quantized in units of the Dirac quantum φ0 = hc/e = 4.137 × 10−7 Gcm2. The
argument is simple. The transformation of the wavefunction Ψ → Ψ e−iα is cancelled by the replacement
A → A + (~c/e)∇α. Thus, we have χ = αφ0/2π, and single-valuedness requires ∆α = 2πn around a
loop, hence ΦD = ∆χ = nφ0.

The above argument is almost correct. The final piece was put in place by Lars Onsager in 1953. Onsager
pointed out that if the particles described by the superconducting wavefunction Ψ were of charge e∗ =
2e, then, mutatis mutandis, one would conclude the quantization condition is ΦD = nφL, where φL =
hc/2e is the London flux quantum, which is half the size of the Dirac flux quantum. This suggestion was
confirmed in subsequent experiments by Deaver and Fairbank, and by Doll and Näbauer, both in 1961.

De Gennes’ derivation of London Theory

De Gennes writes the total free energy of the superconductor as

F =

∫
d3x fs + Ekinetic + Efield

Ekinetic =

∫
d3x 1

2mnsv
2
s (x) =

∫
d3x

m

2nse
2
j2s (x)

Efield =

∫
d3x

B2(x)

8π
.

(5.29)

But under steady state conditions ∇×B = 4πc−1js, so

F =

∫
d3x

{
fs +

B2

8π
+ λ2L

(∇×B)2

8π

}
. (5.30)

Taking the functional variation and setting it to zero,

4π
δF

δB
= B + λ2L ∇× (∇×B) = B − λ2L ∇2B = 0 . (5.31)

5.4 Ginzburg-Landau Theory

The basic idea behind Ginzburg-Landau theory is to write the free energy as a simple functional of
the order parameter(s) of a thermodynamic system and their derivatives. In 4He, the order parameter
Ψ(x) = 〈ψ(x)〉 is the quantum and thermal average of the field operator ψ(x) which destroys a helium
atom at position x. When Ψ is nonzero, we have Bose condensation with condensate density n0 = |Ψ|2.
Above the lambda transition, one has n0(T > Tλ) = 0.
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In an s-wave superconductor, the order parameter field is given by

Ψ(x) ∝
〈
ψ↑(x)ψ↓(x)

〉
, (5.32)

where ψσ(x) destroys a conduction band electron of spin σ at position x. Owing to the anticommuting
nature of the fermion operators, the fermion field ψσ(x) itself cannot condense, and it is only the pair
field Ψ(x) (and other products involving an even number of fermion field operators) which can take a
nonzero value.

5.4.1 Landau theory for superconductors

The superconducting order parameter Ψ(x) is thus a complex scalar, as in a superfluid. As we shall see,
the difference is that the superconductor is charged. In the absence of magnetic fields, the Landau free
energy density is approximated as

f = a |Ψ|2 + 1
2b |Ψ|4 . (5.33)

The coefficients a and b are real and temperature-dependent but otherwise constant in a spatially homo-
geneous system. The sign of a is negotiable, but b > 0 is necessary for thermodynamic stability. The free
energy has an O(2) symmetry, i.e. it is invariant under the substitution Ψ → Ψ eiα. For a < 0 the free
energy is minimized by writing

Ψ =

√
−a
b
eiφ , (5.34)

where φ, the phase of the superconductor, is a constant. The system spontaneously breaks the O(2)
symmetry and chooses a direction in Ψ space in which to point.

In our formulation here, the free energy of the normal state, i.e. when Ψ = 0, is fn = 0 at all temperatures,
and that of the superconducting state is fs = −a2/2b. From thermodynamic considerations, therefore,
we have

fs(T )− fn(T ) = −H
2
c (T )

8π
⇒ a2(T )

b(T )
=
H2

c (T )

4π
. (5.35)

Furthermore, from London theory we have that λ2L = mc2/4πnse
2, and if we normalize the order pa-

rameter according to
∣∣Ψ
∣∣2 = ns

n
, (5.36)

where ns is the number density of superconducting electrons and n the total number density of conduc-
tion band electrons, then

λ2L(0)

λ2L(T )
=
∣∣Ψ(T )

∣∣2 = −a(T )
b(T )

. (5.37)

Here we have taken ns(T = 0) = n, so |Ψ(0)|2 = 1. Putting this all together, we find

a(T ) = −H
2
c (T )

4π
· λ

2
L(T )

λ2L(0)
, b(T ) =

H2
c (T )

4π
· λ

4
L(T )

λ4L(0)
(5.38)

Close to the transition, Hc(T ) vanishes in proportion to λ−2
L (T ), so a(Tc) = 0 while b(Tc) > 0 remains

finite at Tc. Later on below, we shall relate the penetration depth λL to a stiffness parameter in the
Ginzburg-Landau theory.
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We may now compute the specific heat discontinuity from c = −T ∂2f
∂T 2 . It is left as an exercise to the

reader to show

∆c = cs(Tc)− cn(Tc) =
Tc
[
a′(Tc)

]2

b(Tc)
, (5.39)

where a′(T ) = da/dT . Of course, cn(T ) isn’t zero! Rather, here we are accounting only for the specific
heat due to that part of the free energy associated with the condensate. The Ginzburg-Landau descrip-
tion completely ignores the metal, and doesn’t describe the physics of the normal state Fermi surface,
which gives rise to cn = γT . The discontinuity ∆c is a mean field result. It works extremely well for
superconductors, where, as we shall see, the Ginzburg criterion is satisfied down to extremely small
temperature variations relative to Tc. In 4He, one sees an cusp-like behavior with an apparent weak di-
vergence at the lambda transition. Recall that in the language of critical phenomena, c(T ) ∝ |T − Tc|−α.
For the O(2) model in d = 3 dimensions, the exponent α is very close to zero, which is close to the mean
field value α = 0. The order parameter exponent is β = 1

2 at the mean field level; the exact value is
closer to 1

3 . One has, for T < Tc,

∣∣Ψ(T < Tc)
∣∣ =

√
−a(T )
b(T )

=

√
a′(Tc)
b(Tc)

(Tc − T )1/2 + . . . . (5.40)

5.4.2 Ginzburg-Landau Theory

The Landau free energy is minimized by setting |Ψ|2 = −a/b for a < 0. The phase of Ψ is therefore
free to vary, and indeed free to vary independently everywhere in space. Phase fluctuations should cost
energy, so we posit an augmented free energy functional,

F
[
Ψ,Ψ∗] =

∫
ddx

{
a
∣∣Ψ(x)

∣∣2 + 1
2 b
∣∣Ψ(x)

∣∣4 +K
∣∣∇Ψ(x)

∣∣2 + . . .
}

. (5.41)

Here K is a stiffness with respect to spatial variation of the order parameter Ψ(x). From K and a, we
can form a length scale, ξ =

√
K/|a|, known as the coherence length. This functional in fact is very useful

in discussing properties of neutral superfluids, such as 4He, but superconductors are charged, and we
have instead

F
[
Ψ,Ψ∗,A

]
=

∫
ddx

{
a
∣∣Ψ(x)

∣∣2 + 1
2 b
∣∣Ψ(x)

∣∣4 +K
∣∣∣
(
∇+ ie∗

~c A
)
Ψ(x)

∣∣∣
2
+ 1

8π (∇×A)2 + . . .
}

. (5.42)

Here q = −e∗ = −2e is the charge of the condensate. We assume E = 0, so A is not time-dependent.

Under a local transformation Ψ(x) → Ψ(x) eiα(x), we have

(
∇+ ie∗

~c A
)(
Ψ eiα

)
= eiα

(
∇+ i∇α+ ie∗

~c A
)
Ψ , (5.43)

which, upon making the gauge transformation A → A − ~c
e∗ ∇α, reverts to its original form. Thus, the

free energy is unchanged upon replacing Ψ → Ψeiα and A → A− ~c
e∗ ∇α. Since gauge transformations

result in no physical consequences, we conclude that the longitudinal phase fluctuations of a charged
order parameter do not really exist.
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5.4.3 Equations of motion

Varying the free energy in Eqn. 5.42 with respect to Ψ∗ and A, respectively, yields

0 =
δF

δΨ∗ = aΨ+ b |Ψ|2 Ψ−K
(
∇+ ie∗

~c A
)2

Ψ

0 =
δF

δA
=

2Ke∗

~c

[
1

2i

(
Ψ∗

∇Ψ−Ψ∇Ψ∗)+ e∗

~c
|Ψ|2A

]
+

1

4π
∇×B .

(5.44)

The second of these equations is the Ampère-Maxwell law, ∇×B = 4πc−1j, with

j = −2Ke∗

~2

[
~

2i

(
Ψ∗

∇Ψ−Ψ∇Ψ∗)+ e∗

c
|Ψ|2A

]
. (5.45)

If we set Ψ to be constant, we obtain ∇× (∇×B) + λ−2
L B = 0, with

λ−2
L = 8πK

(
e∗

~c

)2
|Ψ|2 . (5.46)

Thus we recover the relation λ−2
L ∝ |Ψ|2. Note that |Ψ|2 = |a|/b in the ordered phase, hence

λ−1
L =

[
8πa2

b
· K|a|

]1/2
e∗

~c
=

√
2 e∗

~c
Hc ξ , (5.47)

which says

Hc =
φL√

8π ξλL

. (5.48)

At a superconductor-vacuum interface, we should have

n̂ ·
(
~

i
∇+

e∗

c
A
)
Ψ
∣∣
∂Ω

= 0 , (5.49)

where Ω denotes the superconducting region and n̂ the surface normal. This guarantees n̂ · j
∣∣
∂Ω

= 0,
since

j = −2Ke∗

~2
Re
(
~

i
Ψ∗

∇Ψ+
e∗

c
|Ψ|2A

)
. (5.50)

Note that n̂ · j = 0 also holds if

n̂ ·
(
~

i
∇+

e∗

c
A
)
Ψ
∣∣
∂Ω

= irΨ , (5.51)

with r a real constant. This boundary condition is appropriate at a junction with a normal metal.
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5.4.4 Critical current

Consider the case where Ψ = Ψ0. The free energy density is

f = a |Ψ0|2 + 1
2 b |Ψ0|4 +K

(
e∗

~c

)2
A2 |Ψ0|2 . (5.52)

If a > 0 then f is minimized for Ψ0 = 0. What happens for a < 0, i.e. when T < Tc. Minimizing with
respect to |Ψ0|, we find

|Ψ0|2 =
|a| −K(e∗/~c)2A2

b
. (5.53)

The current density is then

j = −2cK

(
e∗

~c

)2( |a| −K(e∗/~c)2A2

b

)
A . (5.54)

Taking the magnitude and extremizing with respect to A = |A| , we obtain the critical current density jc:

A2 =
|a|

3K(e∗/~c)2
⇒ jc =

4

3
√
3

cK1/2 |a|3/2
b

. (5.55)

Physically, what is happening is this. When the kinetic energy density in the superflow exceeds the
condensation energy density H2

c /8π = a2/2b, the system goes normal. Note that jc(T ) ∝ (Tc − T )3/2.

Should we feel bad about using a gauge-covariant variable like A in the above analysis? Not really,
because when we write A, what we really mean is the gauge-invariant combination A + ~c

e∗ ∇ϕ, where
ϕ = arg(Ψ) is the phase of the order parameter.

London limit

In the so-called London limit, we write Ψ =
√
n0 e

iϕ, with n0 constant. Then

j = −2Ke∗n0
~

(
∇ϕ+

e∗

~c
A
)
= − c

4πλ2L

(
φL

2π
∇ϕ+A

)
. (5.56)

Thus,

∇× j =
c

4π
∇× (∇×B)

= − c

4πλ2L
B − c

4πλ2L

φL

2π
∇×∇ϕ ,

(5.57)

which says

λ2L ∇2B = B +
φL

2π
∇×∇ϕ . (5.58)

If we assume B = Bẑ and the phase field ϕ has singular vortex lines of topological index ni ∈ Z located
at position ρi in the (x, y) plane, we have

λ2L ∇2B = B + φL

∑

i

ni δ
(
ρ− ρi

)
. (5.59)
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Taking the Fourier transform, we solve for B̂(q), where k = (q, kz) :

B̂(q) = − φL

1 + q2λ2L

∑

i

ni e
−iq·ρi , (5.60)

whence

B(ρ) = − φL

2πλ2L

∑

i

niK0

( |ρ− ρi|
λL

)
, (5.61)

where K0(z) is the MacDonald function, whose asymptotic behaviors are given by

K0(z) ∼
{
−C− ln(z/2) (z → 0)

(π/2z)1/2 exp(−z) (z → ∞) ,
(5.62)

where C = 0.57721566 . . . is the Euler-Mascheroni constant. The logarithmic divergence as ρ → 0 is an
artifact of the London limit. Physically, the divergence should be cut off when |ρ − ρi| ∼ ξ. The current
density for a single vortex at the origin is

j(r) =
nc

4π
∇×B = − c

4πλL

· φL

2πλ2L
K1

(
ρ/λL

)
ϕ̂ , (5.63)

where n ∈ Z is the vorticity, and K1(z) = −K ′
0(z) behaves as z−1 as z → 0 and exp(−z)/

√
2πz as z → ∞.

Note the ith vortex carries magnetic flux ni φL.

5.4.5 Ginzburg criterion

Consider fluctuations in Ψ(x) above Tc. If |Ψ| ≪ 1, we may neglect quartic terms and write

F =

∫
ddx

(
a |Ψ|2 +K |∇Ψ|2

)
=
∑

k

(
a+Kk2

)
|Ψ̂(k)|2 , (5.64)

where we have expanded

Ψ(x) =
1√
V

∑

k

Ψ̂(k) eik·x . (5.65)

The Helmholtz free energy A(T ) is given by

e−A/kBT =

∫
D[Ψ,Ψ∗] e−F/T =

∏

k

(
πkBT

a+Kk2

)
, (5.66)

which is to say

A(T ) = kBT
∑

k

ln

(
πkBT

a+Kk2

)
. (5.67)

We write a(T ) = αt with t = (T − Tc)/Tc the reduced temperature. We now compute the singular
contribution to the specific heat CV = −TA′′(T ), which only requires we differentiate with respect to T
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as it appears in a(T ). Dividing by NskB, where Ns = V/ad is the number of lattice sites, we obtain the
dimensionless heat capacity per unit cell,

c =
α2ad

K2

Λξ∫
ddk

(2π)d
1

(ξ−2 + k2)2
, (5.68)

where Λ ∼ a−1 is an ultraviolet cutoff on the order of the inverse lattice spacing, and ξ = (K/a)1/2 ∝
|t|−1/2. We define R∗ ≡ (K/α)1/2, in which case ξ = R∗ |t|−1/2, and

c = R−4
∗ ad ξ4−d

Λξ∫
ddq̄

(2π)d
1

(1 + q̄2)2
, (5.69)

where q̄ ≡ qξ. Thus,

c(t) ∼





const. if d > 4

− ln t if d = 4

t
d
2
−2 if d < 4 .

(5.70)

For d > 4, mean field theory is qualitatively accurate, with finite corrections. In dimensions d ≤ 4, the
mean field result is overwhelmed by fluctuation contributions as t → 0+ (i.e. as T → T+

c ). We see that
the Ginzburg-Landau mean field theory is sensible provided the fluctuation contributions are small, i.e.
provided

R−4
∗ ad ξ4−d ≪ 1 , (5.71)

which entails t≫ tG, where

tG =

(
a

R∗

) 2d
4−d

(5.72)

is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely t≫ tG,
is known as the Ginzburg criterion. The region |t| < tG is known as the critical region.

In a lattice ferromagnet, as we have seen, R∗ ∼ a is on the scale of the lattice spacing itself, hence tG ∼ 1
and the critical regime is very large. Mean field theory then fails quickly as T → Tc. In a (conventional)
three-dimensional superconductor, R∗ is on the order of the Cooper pair size, and R∗/a ∼ 102 − 103,
hence tG = (a/R∗)

6 ∼ 10−18 − 10−12 is negligibly narrow. The mean field theory of the superconducting
transition – BCS theory – is then valid essentially all the way to T = Tc.

Another way to think about it is as follows. In dimensions d > 2, for |r| fixed and ξ → ∞, one has5

〈
Ψ∗(r)Ψ(0)

〉
≃ Cd

kBT R
2∗

e−r/ξ

rd−2
, (5.73)

where Cd is a dimensionless constant. If we compute the ratio of fluctuations to the mean value over a

5Exactly at T = Tc, the correlations behave as
〈

Ψ∗(r)Ψ(0)
〉

∝ r−(d−2+η), where η is a critical exponent.
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patch of linear dimension ξ, we have

fluctuations

mean
=

ξ∫
ddr 〈Ψ∗(r)Ψ(0)〉
ξ∫
ddr 〈|Ψ(r)|2〉

∝ 1

R2∗ ξd |Ψ|2

ξ∫
ddr

e−r/ξ

rd−2
∝ 1

R2∗ ξd−2 |Ψ|2 .

(5.74)

Close to the critical point we have ξ ∝ R∗ |t|−ν and |Ψ| ∝ |t|β , with ν = 1
2 and β = 1

2 within mean field
theory. Setting the ratio of fluctuations to mean to be small, we recover the Ginzburg criterion.

5.4.6 Domain wall solution

Consider first the simple case of the neutral superfluid. The additional parameter K provides us with
a new length scale, ξ =

√
K/|a| , which is called the coherence length. Varying the free energy with

respect to Ψ∗(x), one obtains

δF

δΨ∗(x)
= aΨ(x) + b

∣∣Ψ(x)
∣∣2Ψ(x)−K∇2Ψ(x) . (5.75)

Rescaling, we write Ψ ≡
(
|a|/b

)1/2
ψ, and setting the above functional variation to zero, we obtain

−ξ2∇2ψ + sgn (T − Tc)ψ + |ψ|2ψ = 0 . (5.76)

Consider the case of a domain wall when T < Tc. We assume all spatial variation occurs in the x-
direction, and we set ψ(x = 0) = 0 and ψ(x = ∞) = 1. Furthermore, we take ψ(x) = f(x) eiα where α is
a constant6. We then have −ξ2f ′′(x)− f + f3 = 0, which may be recast as

ξ2
d2f

dx2
=

∂

∂f

[
1
4

(
1− f2

)2
]

. (5.77)

This looks just like F = ma if we regard f as the coordinate, x as time, and −V (f) = 1
4

(
1 − f2

)2
. Thus,

the potential describes an inverted double well with symmetric minima at f = ±1. The solution to the
equations of motion is then that the ‘particle’ rolls starts at ‘time’ x = −∞ at ‘position’ f = +1 and ‘rolls’
down, eventually passing the position f = 0 exactly at time x = 0. Multiplying the above equation by
f ′(x) and integrating once, we have

ξ2
(
df

dx

)2
= 1

2

(
1− f2

)2
+ C , (5.78)

where C is a constant, which is fixed by setting f(x → ∞) = +1, which says f ′(∞) = 0, hence C = 0.
Integrating once more,

f(x) = tanh

(
x− x0√

2 ξ

)
, (5.79)

6Remember that for a superconductor, phase fluctuations of the order parameter are nonphysical since they are eliiminable
by a gauge transformation.
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where x0 is the second constant of integration. This, too, may be set to zero upon invoking the boundary
condition f(0) = 0. Thus, the width of the domain wall is ξ(T ). This solution is valid provided that the
local magnetic field averaged over scales small compared to ξ, i.e. b =

〈
∇×A

〉
, is negligible.

The energy per unit area of the domain wall is given by σ̃, where

σ̃ =

∞∫

0

dx

{
K

∣∣∣∣
dΨ

dx

∣∣∣∣
2

+ a |Ψ|2 + 1
2 b |Ψ|4

}

=
a2

b

∞∫

0

dx

{
ξ2
(
df

dx

)2
− f2 + 1

2 f
4

}
.

(5.80)

Now we ask: is domain wall formation energetically favorable in the superconductor? To answer, we
compute the difference in surface energy between the domain wall state and the uniform superconduct-
ing state. We call the resulting difference σ, the true domainwall energy relative to the superconducting
state:

σ = σ̃ −
∞∫

0

dx

(
− H2

c

8π

)

=
a2

b

∞∫

0

dx

{
ξ2
(
df

dx

)2
+ 1

2

(
1− f2

)2
}

≡ H2
c

8π
δ ,

(5.81)

where we have used H2
c = 4πa2/b. Invoking the previous result f ′ = (1 − f2)/

√
2 ξ, the parameter δ is

given by

δ = 2

∞∫

0

dx
(
1− f2

)2
= 2

1∫

0

df

(
1− f2

)2

f ′
=

4
√
2

3
ξ(T ) . (5.82)

Had we permitted a field to penetrate over a distance λL(T ) in the domain wall state, we’d have obtained

δ(T ) =
4
√
2

3
ξ(T )− λL(T ) . (5.83)

Detailed calculations show

δ =





4
√
2

3 ξ ≈ 1.89 ξ if ξ ≫ λL

0 if ξ =
√
2λL

−8(
√
2−1)
3 λL ≈ −1.10λL if λL ≫ ξ .

(5.84)

Accordingly, we define the Ginzburg-Landau parameter κ ≡ λL/ξ, which is temperature-dependent
near T = Tc, as we’ll soon show.

So the story is as follows. In type-I materials, the positive (δ > 0) N-S surface energy keeps the sample
spatially homogeneous for all H < Hc. In type-II materials, the negative surface energy causes the
system to break into domains, which are vortex structures, as soon as H exceeds the lower critical field
Hc1. This is known as the mixed state.
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5.5 Binding and Dimensionality

Consider a spherically symmetric potential U(r) = −U0 Θ(a − r). Are there bound states, i.e. states in
the eigenspectrum of negative energy? What role does dimension play? It is easy to see that if U0 > 0
is large enough, there are always bound states. A trial state completely localized within the well has
kinetic energy T0 ≃ ~

2/ma2, while the potential energy is −U0 , so if U0 > ~
2/ma2, we have a variational

state with energy E = T0 − U0 < 0, which is of course an upper bound on the true ground state energy.

What happens, though, if U0 < T0? We again appeal to a variational argument. Consider a Gaussian or
exponentially localized wavefunction with characteristic size ξ ≡ λa, with λ > 1. The variational energy
is then

E ≃ ~
2

mξ2
− U0

(
a

ξ

)d
= T0 λ

−2 − U0 λ
−d . (5.85)

Extremizing with respect to λ, we obtain −2T0 λ
−3 + dU0 λ

−(d+1) and λ =
(
dU0/2T0

)1/(d−2)
. Inserting

this into our expression for the energy, we find

E =

(
2

d

)2/(d−2)(
1− 2

d

)
T
d/(d−2)
0 U

−2/(d−2)
0 . (5.86)

We see that for d = 1 we have λ = 2T0/U0 and E = −U2
0 /4T0 < 0. In d = 2 dimensions, we have

E = (T0 − U0)/λ
2, which says E ≥ 0 unless U0 > T0. For weak attractive U(r), the minimum energy

solution is E → 0+, with λ → ∞. It turns out that d = 2 is a marginal dimension, and we shall show
that we always get localized states with a ballistic dispersion and an attractive potential well. For d > 2
we have E > 0 which suggests that we cannot have bound states unless U0 > T0, in which case λ ≤ 1
and we must appeal to the analysis in the previous paragraph.

We can firm up this analysis a bit by considering the Schrödinger equation,

− ~
2

2m
∇2ψ(x) + V (x)ψ(x) = E ψ(x) . (5.87)

Fourier transforming, we have

ε(k) ψ̂(k) +

∫
ddk′

(2π)d
V̂ (k − k′) ψ̂(k′) = E ψ̂(k) , (5.88)

where ε(k) = ~
2k2/2m. We may now write V̂ (k − k′) =

∑
n λn αn(k)α

∗
n(k

′) , which is a decomposition

of the Hermitian matrix V̂k,k′ ≡ V̂ (k − k′) into its (real) eigenvalues λn and eigenvectors αn(k). Let’s
approximate Vk,k′ by its leading eigenvalue, which we call λ, and the corresponding eigenvector α(k).

That is, we write V̂k,k′ ≃ λα(k)α∗(k′) . We then have

ψ̂(k) =
λα(k)

E − ε(k)

∫
ddk′

(2π)d
α∗(k′) ψ̂(k′) . (5.89)

Multiply the above equation by α∗(k) and integrate over k, resulting in

1

λ
=

∫
ddk

(2π)d

∣∣α(k)
∣∣2

E − ε(k)
=

1

λ
=

∞∫

0

dε
g(ε)

E − ε

∣∣α(ε)
∣∣2 , (5.90)
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where g(ε) is the density of states g(ε) = Tr δ
(
ε− ε(k)

)
. Here, we assume that α(k) = α(k) is isotropic.

It is generally the case that if Vk,k′ is isotropic, i.e. if it is invariant under a simultaneous O(3) rotation

k → Rk and k′ → Rk′, then so will be its lowest eigenvector. Furthermore, since ε = ~
2k2/2m is a

function of the scalar k = |k|, this means α(k) can be considered a function of ε. We then have

1

|λ| =
∞∫

0

dε
g(ε)

|E|+ ε

∣∣α(ε)
∣∣2 , (5.91)

where we have we assumed an attractive potential (λ < 0), and, as we are looking for a bound state,
E < 0.

If α(0) and g(0) are finite, then in the limit |E| → 0 we have

1

|λ| = g(0) |α(0)|2 ln
(
1/|E|

)
+ finite . (5.92)

This equation may be solved for arbitrarily small |λ| because the RHS of Eqn. 5.91 diverges as |E| → 0.
If, on the other hand, g(ε) ∼ εp where p > 0, then the RHS is finite even whenE = 0. In this case, bound
states can only exist for |λ| > λc, where

λc = 1

/ ∞∫

0

dε
g(ε)

ε

∣∣α(ε)
∣∣2 . (5.93)

Typically the integral has a finite upper limit, given by the bandwidth B. For the ballistic dispersion,
one has g(ε) ∝ ε(d−2)/2, so d = 2 is the marginal dimension. In dimensions d ≤ 2, bound states form for
arbitrarily weak attractive potentials.

5.6 Cooper’s Problem

In 1956, Leon Cooper considered the problem of two electrons interacting in the presence of a quiescent
Fermi sea. The background electrons comprising the Fermi sea enter the problem only through their
Pauli blocking. Since spin and total momentum are conserved, Cooper first considered a zero momentum
singlet,

|Ψ 〉 =
∑

k

Ak

(
c†k↑c

†
−k↓ − c†k↓c

†
−k↑
)
|F 〉 , (5.94)

where |F 〉 is the filled Fermi sea, |F 〉 =
∏

|p|<kF
c†p↑c

†
p↓ | 0 〉 . Only states with k > kF contribute to the RHS

of Eqn. 5.94, due to Pauli blocking. The real space wavefunction is

Ψ(r1, r2) =
∑

k

Ak e
ik·(r1−r2)

(
|↑1↓2 〉 − |↓1↑2 〉

)
, (5.95)

with Ak = A−k to enforce symmetry of the orbital part. It should be emphasized that this is a two-
particle wavefunction, and not an (N +2)-particle wavefunction, with N the number of electrons in the
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Fermi sea. Again, the Fermi sea in this analysis has no dynamics of its own. Its presence is reflected only
in the restriction k > kF for the states which participate in the Cooper pair.

The many-body Hamiltonian is written

Ĥ =
∑

kσ

εk c
†
kσckσ + 1

2

∑

k1σ1

∑

k2σ2

∑

k3σ3

∑

k4σ4

〈k1σ1,k2σ2 | v |k3σ3,k4σ4 〉 c†k1σ1
c†k2σ2

ck4σ4
ck3σ3

. (5.96)

We treat |Ψ 〉 as a variational state, which means we set

δ

δA∗
k

〈Ψ | Ĥ |Ψ 〉
〈Ψ |Ψ 〉 = 0 , (5.97)

resulting in

(E − E0)Ak = 2εk Ak +
∑

k′

Vk,k′ Ak′ , (5.98)

where

Vk,k′ = 〈k↑,−k↓ | v |k′ ↑,−k′ ↓ 〉 = 1

V

∫
d3r v(r) ei(k−k′)·r . (5.99)

Here E0 = 〈F | Ĥ |F 〉 is the energy of the Fermi sea.

We write εk = εF + ξk, and we define E ≡ E0 + 2εF +W . Then

W Ak = 2ξk Ak +
∑

k′

Vk,k′ Ak′ . (5.100)

If Vk,k′ is rotationally invariant, meaning it is left unchanged by k → Rk and k′ → Rk′ where R ∈ O(3),
then we may write

Vk,k′ =

∞∑

ℓ=0

ℓ∑

m=−ℓ

Vℓ(k, k
′)Y ℓ

m(k̂)Y ℓ
−m(k̂′) . (5.101)

We assume that Vl(k, k
′) is separable, meaning we can write

Vℓ(k, k
′) =

1

V
λℓ αℓ(k)α

∗
ℓ (k

′) . (5.102)

This simplifies matters and affords us an exact solution, for now we take Ak = Ak Y
ℓ
m(k̂) to obtain a

solution in the ℓ angular momentum channel:

WℓAk = 2ξk Ak + λℓ αℓ(k) ·
1

V

∑

k′

α∗
ℓ (k

′)Ak′ , (5.103)

which may be recast as

Ak =
λℓ αℓ(k)

Wℓ − 2ξk
· 1

V

∑

k′

α∗
ℓ (k

′)Ak′ . (5.104)

Now multiply by α∗
k and sum over k to obtain

1

λℓ
=

1

V

∑

k

∣∣αℓ(k)
∣∣2

Wℓ − 2ξk
≡ Φ(Wℓ) . (5.105)
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Figure 5.7: Graphical solution to the Cooper problem. A bound state exists for arbitrarily weak λ < 0.

We solve this for Wℓ.

We may find a graphical solution. Recall that the sum is restricted to k > kF, and that ξk ≥ 0. The
denominator on the RHS of Eqn. 5.105 changes sign as a function of Wℓ every time 1

2Wℓ passes through
one of the ξk values7. A sketch of the graphical solution is provided in Fig. 5.7. One sees that if λℓ < 0,
i.e. if the potential is attractive, then a bound state exists. This is true for arbitrarily weak |λℓ|, a situation
not usually encountered in three-dimensional problems, where there is usually a critical strength of the
attractive potential in order to form a bound state8. This is a density of states effect – by restricting our
attention to electrons near the Fermi level, where the DOS is roughly constant at g(εF) = m∗kF/π

2
~
2,

rather than near k = 0, where g(ε) vanishes as
√
ε, the pairing problem is effectively rendered two-

dimensional. We can make further progress by assuming a particular form for αℓ(k):

αℓ(k) =

{
1 if 0 < ξk < Bℓ

0 otherwise ,
(5.106)

where Bℓ is an effective bandwidth for the ℓ channel. Then

1 = 1
2 |λℓ|

B
ℓ∫

0

dξ
g(εF + ξ)∣∣Wℓ

∣∣+ 2ξ
. (5.107)

The factor of 1
2 is because it is the DOS per spin here, and not the total DOS. We assume g(ε) does not

vary significantly in the vicinity of ε = εF, and pull g(εF) out from the integrand. Integrating and solving
for
∣∣Wℓ

∣∣,
∣∣Wℓ

∣∣ = 2Bℓ

exp
(

4
|λℓ| g(εF)

)
− 1

. (5.108)

7We imagine quantizing in a finite volume, so the allowed k values are discrete.
8For example, the 2He molecule is unbound, despite the attractive −1/r6 van der Waals attractive tail in the interatomic

potential.
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In the weak coupling limit, where |λℓ| g(εF) ≪ 1, we have

∣∣Wℓ

∣∣ ≃ 2Bℓ exp

(
− 4

|λℓ| g(εF)

)
. (5.109)

As we shall see when we study BCS theory, the factor in the exponent is twice too large. The coefficient
2Bℓ will be shown to be the Debye energy of the phonons; we will see that it is only over a narrow
range of energies about the Fermi surface that the effective electron-electron interaction is attractive. For
strong coupling,

|Wℓ| = 1
2 |λℓ| g(εF) . (5.110)

Finite momentum Cooper pair

We can construct a finite momentum Cooper pair as follows:

|Ψq 〉 =
∑

k

Ak

(
c†
k+ 1

2
q ↑c

†
−k+ 1

2
q ↓ − c†

k+ 1
2
q ↓c

†
−k+ 1

2
q ↑
)
|F 〉 . (5.111)

This wavefunction is a momentum eigenstate, with total momentum P = ~q. The eigenvalue equation
is then

WAk =
(
ξ
k+ 1

2
q
+ ξ−k+ 1

2
q

)
Ak +

∑

k′

Vk,k′ Ak′ . (5.112)

Assuming ξk = ξ−k ,

ξ
k+ 1

2
q
+ ξ−k+ 1

2
q
= 2 ξk + 1

4 q
αqβ

∂2ξk
∂kα ∂kβ

+ . . . . (5.113)

The binding energy is thus reduced by an amount proportional to q2 ; the q = 0 Cooper pair has the
greatest binding energy9.

Mean square radius of the Cooper pair

We have

〈
r2
〉
=

∫
d3r
∣∣Ψ(r)

∣∣2 r2
∫
d3r
∣∣Ψ(r)

∣∣2 =

∫
d3k
∣∣∇kAk

∣∣2
∫
d3k
∣∣Ak

∣∣2

≃
g(εF) ξ

′(kF)
2
∞∫
0

dξ
∣∣∂A
∂ξ

∣∣2

g(εF)
∞∫
0

dξ |A|2

(5.114)

9We assume the matrix ∂α∂β ξk is positive definite.



5.7. REDUCED BCS HAMILTONIAN 23

with A(ξ) = −C/
(
|W |+ 2ξ

)
and thus A′(ξ) = 2C/

(
|W |+ 2ξ

)2
, where C is a constant independent of ξ.

Ignoring the upper cutoff on ξ at Bℓ, we have

〈
r2
〉
= 4 ξ′(kF)

2 ·

∞∫

|W |
du u−4

∞∫

|W |
du u−2

= 4
3 (~vF)

2 |W |−2 , (5.115)

where we have used ξ′(kF) = ~vF. Thus, RRMS = 2~vF
/√

3 |W | . In the weak coupling limit, where |W |
is exponentially small in 1/|λ|, the Cooper pair radius is huge. Indeed it is so large that many other
Cooper pairs have their centers of mass within the radius of any given pair. This feature is what makes
the BCS mean field theory of superconductivity so successful. Recall in our discussion of the Ginzburg
criterion in §1.4.5, we found that mean field theory was qualitatively correct down to the Ginzburg
reduced temperature tG = (a/R∗)

2d/(4−d), i.e. tG = (a/R∗)
6 for d = 3. In this expression, R∗ should be

the mean Cooper pair size, and a a microscopic length (i.e. lattice constant). Typically R∗/a ∼ 102 − 103,
so tG is very tiny indeed.

5.7 Reduced BCS Hamiltonian

The operator which creates a Cooper pair with total momentum q is b†k,q + b†−k,q , where

b†k,q = c†
k+ 1

2
q ↑ c

†
−k+ 1

2
q ↓ (5.116)

is a composite operator which creates the state |k + 1
2q ↑ , −k + 1

2q ↓ 〉. We learned from the solution to
the Cooper problem that the q = 0 pairs have the greatest binding energy. This motivates consideration
of the so-called reduced BCS Hamiltonian,

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′

Vk,k′ b
†
k,0 bk′,0 . (5.117)

The most general form for a momentum-conserving interaction is

V̂ =
1

2V

∑

k,p,q

∑

σ,σ′

ûσσ′(k,p, q) c
†
k+q σ c

†
p−q σ′ cp σ′ ck σ . (5.118)

Taking p = −k, σ′ = −σ, and defining k′ ≡ k + q , we have

V̂ → 1

2V

∑

k,k′,σ

v̂(k,k′) c†k′σ c
†
−k′ −σ c−k−σ ckσ , (5.119)

where v̂(k,k′) = û↑↓(k,−k,k′ − k), which is equivalent to Ĥred .

If Vk,k′ is attractive, then the ground state will have no pair (k ↑ , −k ↓) occupied by a single electron;
the pair states are either empty or doubly occupied. In that case, the reduced BCS Hamiltonian may be
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Figure 5.8: John Bardeen, Leon Cooper, and J. Robert Schrieffer.

written as10

H0
red =

∑

k

2εk b
†
k,0 bk,0 +

∑

k,k′

Vk,k′ b
†
k,0 bk′,0 . (5.120)

This has the innocent appearance of a noninteracting bosonic Hamiltonian – an exchange of Cooper
pairs restores the many-body wavefunction without a sign change because the Cooper pair is a com-
posite object consisting of an even number of fermions11. However, this is not quite correct, because the

operators bk,0 and bk′,0 do not satisfy canonical bosonic commutation relations. Rather,

[
bk,0 , bk′,0

]
=
[
b†k,0 , b

†
k′,0

]
= 0

[
bk,0 , b

†
k′,0

]
=
(
1− c†k↑ck↑ − c†−k↓c−k↓

)
δkk′ .

(5.121)

Because of this, Ĥ0
red cannot naı̈vely be diagonalized. The extra terms inside the round brackets on the

RHS arise due to the Pauli blocking effects. Indeed, one has (b†k,0)
2 = 0, so b†k,0 is no ordinary boson

operator.

Suppose, though, we try a mean field Hartree-Fock approach. We write

bk,0 = 〈bk,0〉+

δb
k,0︷ ︸︸ ︷(

bk,0 − 〈bk,0〉
)

, (5.122)

and we neglect terms in Ĥred proportional to δb†k,0 δbk′,0. We have

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′

Vk,k′

(
energy shift︷ ︸︸ ︷

−〈b†k,0〉 〈bk′,0〉 +

keep this︷ ︸︸ ︷
〈bk′,0〉 b

†
k,0 + 〈b†k,0〉 bk′,0 +

drop this!︷ ︸︸ ︷
δb†k,0 δbk′,0

)
. (5.123)

10Spin rotation invariance and a singlet Cooper pair requires that Vk,k′
= Vk,−k′

= V
−k,k′

.
11Recall that the atom 4He, which consists of six fermions (two protons, two neutrons, and two electrons), is a boson, while

3He, which has only one neutron and thus five fermions, is itself a fermion.
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Dropping the last term, which is quadratic in fluctuations, we obtain

ĤMF
red =

∑

k,σ

εk c
†
kσ ckσ +

∑

k

(
∆k c

†
k↑ c

†
−k↓ +∆∗

k c−k↓ ck↑
)
−
∑

k,k′

Vk,k′ 〈b†k,0〉 〈bk′,0〉 , (5.124)

where

∆k =
∑

k′

Vk,k′

〈
c−k′↓ ck′↑

〉
, ∆∗

k =
∑

k′

V ∗
k,k′

〈
c†k′↑ c

†
−k′↓

〉
. (5.125)

The first thing to notice about ĤMF
red is that it does not preserve particle number, i.e. it does not commute

with N̂ =
∑

k,σ c
†
kσckσ. Accordingly, we are practically forced to work in the grand canonical ensemble,

and we define the grand canonical Hamiltonian K̂ ≡ Ĥ − µN̂ .

5.8 Solution of the mean field Hamiltonian

We now subtract µN̂ from Eqn. 5.124, and define K̂BCS ≡ ĤMF
red − µN̂ . Thus,

K̂BCS =
∑

k

(
c†k↑ c−k↓

)
K

k︷ ︸︸ ︷(
ξk ∆k

∆∗
k −ξk

) (
ck↑
c†−k↓

)
+K0 , (5.126)

with ξk = εk − µ, and where

K0 =
∑

k

ξk −
∑

k,k′

Vk,k′ 〈c†k↑c
†
−k↓〉 〈c−k′↓ ck′↑〉 (5.127)

is a constant. This problem may be brought to diagonal form via a unitary transformation,

(
ck↑
c†−k↓

)
=

U
k︷ ︸︸ ︷(

cos ϑk − sinϑk e
iφ

k

sinϑk e
−iφ

k cos ϑk

) (
γk↑
γ†−k↓

)
. (5.128)

In order for the γkσ operators to satisfy fermionic anticommutation relations, the matrix Uk must be
unitary12. We then have

ckσ = cos ϑk γkσ − σ sinϑk e
iφ

k γ†−k−σ

γkσ = cos ϑk ckσ + σ sinϑk e
iφ

k c†−k−σ .
(5.129)

EXERCISE: Verify that
{
γkσ , γ

†
k′σ′

}
= δkk′ δσσ′ .

12The most general 2× 2 unitary matrix is of the above form, but with each row multiplied by an independent phase. These
phases may be absorbed into the definitions of the fermion operators themselves. After absorbing these harmless phases, we
have written the most general unitary transformation.
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We now must compute the transformed Hamiltonian. Dropping the k subscript for notational conve-
nience, we have

K̃ = U †KU =

(
cos ϑ sinϑ eiφ

− sinϑ e−iφ cos ϑ

)(
ξ ∆
∆∗ −ξ

)(
cos ϑ − sinϑ eiφ

sinϑ e−iφ cos ϑ

)
(5.130)

=

(
(cos2ϑ− sin2ϑ) ξ + sinϑ cos ϑ (∆ e−iφ +∆∗eiφ) ∆ cos2ϑ−∆∗e2iφ sin2ϑ− 2ξ sinϑ cos ϑ eiφ

∆∗ cos2ϑ−∆e−2iφ sin2ϑ− 2ξ sinϑ cos ϑ e−iφ (sin2ϑ− cos2ϑ) ξ − sinϑ cos ϑ (∆ e−iφ +∆∗eiφ)

)
.

We now use our freedom to choose ϑ and φ to render K̃ diagonal. That is, we demand φ = arg(∆) and

2ξ sinϑ cos ϑ = ∆(cos2ϑ− sin2ϑ) . (5.131)

This says tan(2ϑ) = ∆/ξ, which means

cos(2ϑ) =
ξ

E
, sin(2ϑ) =

∆

E
, E =

√
ξ2 +∆2 . (5.132)

The upper left element of K̃ then becomes

(cos2ϑ− sin2ϑ) ξ + sinϑ cos ϑ (∆ e−iφ +∆∗eiφ) =
ξ2

E
+

∆2

E
= E , (5.133)

and thus K̃ =

(
E 0
0 −E

)
. This unitary transformation, which mixes particle and hole states, is called a

Bogoliubov transformation, because it was first discovered by Valatin.

Restoring the k subscript, we have φk = arg(∆k), and tan(2ϑk) = |∆k|/ξk, which means

cos(2ϑk) =
ξk
Ek

, sin(2ϑk) =
|∆k|
Ek

, Ek =
√
ξ2k + |∆k|2 . (5.134)

Assuming that ∆k is not strongly momentum-dependent, we see that the dispersionEk of the excitations
has a nonzero minimum at ξk = 0, i.e. at k = kF. This minimum value of Ek is called the superconducting
energy gap.

We may further write

cos ϑk =

√
Ek + ξk
2Ek

, sinϑk =

√
Ek − ξk
2Ek

. (5.135)

The grand canonical BCS Hamiltonian then becomes

K̂BCS =
∑

k,σ

Ek γ
†
kσ γkσ +

∑

k

(ξk − Ek)−
∑

k,k′

Vk,k′ 〈c†k↑c
†
−k↓〉 〈c−k′↓ ck′↑〉 . (5.136)

Finally, what of the ground state wavefunction itself? We must have γkσ |G 〉 = 0. This leads to

|G 〉 =
∏

k

(
cos ϑk − sinϑk e

iφ
k c†k↑ c

†
−k↓
)
| 0 〉 . (5.137)

Note that 〈G |G 〉 = 1. J. R. Schrieffer conceived of this wavefunction during a subway ride in New York
City sometime during the winter of 1957. At the time he was a graduate student at the University of
Illinois.
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Sanity check

It is good to make contact with something familiar, such as the case ∆k = 0. Note that ξk < 0 for k < kF

and ξk > 0 for k > kF . We now have

cos ϑk = Θ(k − kF) , sinϑk = Θ(kF − k) . (5.138)

Note that the wavefunction |G 〉 in Eqn. 5.137 correctly describes a filled Fermi sphere out to k = kF.
Furthermore, the constant on the RHS of Eqn. 5.136 is 2

∑
k<kF

ξk, which is the Landau free energy of

the filled Fermi sphere. What of the excitations? We are free to take φk = 0. Then

k < kF : γ†kσ = σ c−k−σ

k > kF : γ†kσ = c†kσ .
(5.139)

Thus, the elementary excitations are holes below kF and electrons above kF. All we have done, then, is
to effect a (unitary) particle-hole transformation on those states lying within the Fermi sea.

5.9 Self-consistency

We now demand that the following two conditions hold:

N =
∑

kσ

〈c†kσ ckσ〉

∆k =
∑

k′

Vk,k′ 〈c−k′↓ ck′↑〉 ,
(5.140)

the second of which is from Eqn. 5.125. Thus, we need

〈c†kσ ckσ〉 =
〈
(cos ϑk γ

†
kσ − σ sinϑk e

−iφ
k γ−k−σ)(cos ϑk γkσ − σ sinϑk e

iφ
k γ†−k−σ)

〉

= cos2ϑk fk + sin2ϑk (1− fk) =
1

2
− ξk

2Ek

tanh
(
1
2βEk

)
,

(5.141)

where

fk = 〈γ†kσ γkσ〉 =
1

eβEk + 1
= 1

2 − 1
2 tanh

(
1
2βEk

)
(5.142)

is the Fermi function, with β = 1/kBT . We also have

〈c−k−σ ckσ〉 =
〈
(cos ϑk γ−k−σ + σ sinϑk e

iφ
k γ†kσ)(cos ϑk γkσ − σ sinϑk e

iφ
k γ†−k−σ)

〉

= σ sinϑk cos ϑk e
iφ

k
(
2fk − 1

)
= −σ∆k

2Ek

tanh
(
1
2βEk

)
.

(5.143)

Let’s evaluate at T = 0 :

N =
∑

k

(
1− ξk

Ek

)

∆k = −
∑

k′

Vk,k′

∆k′

2Ek′

.

(5.144)



28 CHAPTER 5. SUPERCONDUCTIVITY

The second of these is known as the BCS gap equation. Note that ∆k = 0 is always a solution of the gap
equation.

To proceed further, we need a model for Vk,k′ . We shall assume

Vk,k′ =

{
−v/V if |ξk| < ~ωD and |ξk′ | < ~ωD

0 otherwise .
(5.145)

Here v > 0, so the interaction is attractive, but only when ξk and ξk′ are within an energy ~ωD of zero.
For phonon-mediated superconductivity, ωD is the Debye frequency, which is the phonon bandwidth.

5.9.1 Solution at zero temperature

We first solve the second of Eqns. 5.144, by assuming

∆k =

{
∆ eiφ if |ξk| < ~ωD

0 otherwise ,
(5.146)

with ∆ real. We then have13

∆ = +v

∫
d3k

(2π)3
∆

2Ek

Θ
(
~ωD − |ξk|

)

= 1
2v g(εF)

~ωD∫

0

dξ
∆√

ξ2 +∆2
.

(5.147)

Cancelling out the common factors of ∆ on each side, we obtain

1 = 1
2v g(εF)

~ωD/∆∫

0

ds (1 + s2)−1/2 = 1
2v g(εF) sinh

−1
(
~ωD/∆

)
. (5.148)

Thus, writing ∆0 ≡ ∆(0) for the zero temperature gap,

∆0 =
~ωD

sinh
(
2/g(εF) v

) ≃ 2~ωD exp

(
− 2

g(εF) v

)
, (5.149)

where g(εF) is the total electronic DOS (for both spin species) at the Fermi level. Notice that, as promised,
the argument of the exponent is one half as large as what we found in our solution of the Cooper
problem, in Eqn. 5.109.

13We assume the density of states g(ε) is slowly varying in the vicinity of the chemical potential and approximate it at
g(εF). In fact, we should more properly call it g(µ), but as a practical matter µ ≃ εF at temperatures low enough to be in
the superconducting phase. Note that g(εF) is the total DOS for both spin species. In the literature, one often encounters the
expression N(0), which is the DOS per spin at the Fermi level, i.e. N(0) = 1

2
g(εF).
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5.9.2 Condensation energy

We now evaluate the zero temperature expectation of K̂BCS from Eqn. 5.136. To get the correct answer, it
is essential that we retain the term corresponding to the constant energy shift in the mean field Hamil-

tonian, i.e. the last term on the RHS of Eqn. 5.136. Invoking the gap equation ∆k =
∑

k′ Vk,k′ 〈c−k′↓ ck′↑〉,
we have

〈G | K̂BCS |G 〉 =
∑

k

(
ξk − Ek +

|∆k|2
2Ek

)
. (5.150)

From this we subtract the ground state energy of the metallic phase, i.e. when ∆k = 0, which is
2
∑

k ξk Θ(kF − k). The difference is the condensation energy. Adopting the model interaction potential
in Eqn. 5.145, we have

Es − En =
∑

k

(
ξk −Ek +

|∆k|2
2Ek

− 2ξk Θ(kF − k)

)

= 2
∑

k

(
ξk − Ek)Θ(ξk)Θ(~ωD − ξk) +

∑

k

∆2
0

2Ek

Θ
(
~ωD − |ξk|

)
,

(5.151)

where we have linearized about k = kF. We then have

Es − En = V g(εF)∆
2
0

~ωD/∆0∫

0

ds

(
s−

√
s2 + 1 +

1

2
√
s2 + 1

)

= 1
2 V g(εF)∆

2
0

(
x2 − x

√
1 + x2

)
≈ −1

4 V g(εF)∆
2
0 ,

(5.152)

where x ≡ ~ωD/∆0. The condensation energy density is therefore −1
4 g(εF)∆

2
0, which may be equated

with −H2
c /8π, where Hc is the thermodynamic critical field. Thus, we find

Hc(0) =
√

2πg(εF) ∆0 , (5.153)

which relates the thermodynamic critical field to the superconducting gap, at T = 0.

5.10 Coherence factors and quasiparticle energies

When ∆k = 0, we have Ek = |ξk|. When ~ωD ≪ εF, there is a very narrow window surrounding
k = kF where Ek departs from |ξk|, as shown in the bottom panel of Fig. 5.9. Note the energy gap in the
quasiparticle dispersion, where the minimum excitation energy is given by14

min
k
Ek = EkF

= ∆0 . (5.154)

In the top panel of Fig. 5.9 we plot the coherence factors sin2ϑk and cos2ϑk. Note that sin2ϑk approaches
unity for k < kF and cos2ϑk approaches unity for k > kF, aside for the narrow window of width δk ≃
∆0/~vF . Recall that

γ†kσ = cos ϑk c
†
kσ + σ sinϑk e

−iφ
k c−k−σ . (5.155)

14Here we assume, without loss of generality, that ∆ is real.
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Figure 5.9: Top panel: BCS coherence factors sin2ϑk (blue) and cos2ϑk (red). Bottom panel: the functions
ξk (black) and Ek (magenta). The minimum value of the magenta curve is the superconducting gap ∆0.

Thus we see that the quasiparticle creation operator γ†kσ creates an electron in the state |k σ 〉 when
cos2ϑk ≃ 1, and a hole in the state | −k −σ 〉 when sin2ϑk ≃ 1. In the aforementioned narrow window

|k − kF|<∼∆0/~vF , the quasiparticle creates a linear combination of electron and hole states. Typically
∆0 ∼ 10−4 εF, since metallic Fermi energies are on the order of tens of thousands of Kelvins, while ∆0 is
on the order of Kelvins or tens of Kelvins. Thus, δk <∼ 10−3kF. The difference between the superconduct-
ing state and the metallic state all takes place within an onion skin at the Fermi surface!

Note that for the model interaction Vk,k′ of Eqn. 5.145, the solution ∆k in Eqn. 5.146 is actually discon-

tinuous when ξk = ±~ωD , i.e. when k = k∗± ≡ kF ± ωD/vF. Therefore, the energy dispersion Ek is also
discontinuous along these surfaces. However, the magnitude of the discontinuity is

δE =
√

(~ωD)
2 +∆2

0 − ~ωD ≈ ∆2
0

2~ωD

. (5.156)

Therefore δE/Ek∗
±

≈ ∆2
0

/
2(~ωD)

2 ∝ exp
(
− 4/g(εF) v

)
, which is very tiny in weak coupling, where

g(εF) v ≪ 1. Note that the ground state is largely unaffected for electronic states in the vicinity of this
(unphysical) energy discontinuity. The coherence factors are distinguished from those of a Fermi liquid

only in regions where 〈c†k↑c
†
−k↓〉 is appreciable, which requires ξk to be on the order of ∆k. This only

happens when |k−kF|<∼∆0/~vF , as discussed in the previous paragraph. In a more physical model, the
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interaction Vk,k′ and the solution ∆k would not be discontinuous functions of k.

5.11 Number and Phase

The BCS ground state wavefunction |G 〉 was given in Eqn. 5.137. Consider the state

|G(α) 〉 =
∏

k

(
cos ϑk − eiα eiφk sinϑk c

†
k↑ c

†
−k↓
)
| 0 〉 . (5.157)

This is the ground state when the gap function ∆k is multiplied by the uniform phase factor eiα. We
shall here abbreviate |α 〉 ≡ |G(α) 〉.

Now consider the action of the number operator on |α 〉 :

N̂ |α 〉 =
∑

k

(
c†k↑ck↑ + c†−k↓c−k↓

)
|α 〉 (5.158)

= −2
∑

k

eiα eiφk sinϑk c
†
k↑ c

†
−k↓

∏

k′ 6=k

(
cos ϑk′ − eiα eiφk′ sinϑk′ c

†
k′↑ c

†
−k′↓

)
| 0 〉

=
2

i

∂

∂α
|α 〉 .

If we define the number of Cooper pairs as M̂ ≡ 1
2N̂ , then we may identify M̂ = 1

i
∂
∂α . Furthermore, we

may project |G 〉 onto a state of definite particle number by defining

|M 〉 =
π∫

−π

dα

2π
e−iMα |α 〉 . (5.159)

The state |M 〉 has N = 2M particles, i.e. M Cooper pairs. One can easily compute the number fluctua-
tions in the state |G(α) 〉 :

〈α | N̂2 |α 〉 − 〈α | N̂ |α 〉2

〈α | N̂ |α 〉
=

2
∫
d3k sin2ϑk cos2ϑk∫
d3k sin2ϑk

. (5.160)

Thus, (∆N)RMS ∝
√

〈N〉. Note that (∆N)RMS vanishes in the Fermi liquid state, where sinϑk cos ϑk = 0.

5.12 Finite temperature

The gap equation at finite temperature takes the form

∆k = −
∑

k′

Vk,k′

∆k′

2Ek′

tanh

(
Ek′

2kBT

)
. (5.161)
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It is easy to see that we have no solutions other than the trivial one ∆k = 0 in the T → ∞ limit, for the
gap equation then becomes

∑
k′ Vk,k′ ∆k′ = −4kBT ∆k, and if the eigenspectrum of Vk,k′ is bounded,

there is no solution for kBT greater than the largest eigenvalue of −Vk,k′ .

To find the critical temperature where the gap collapses, again we assume the forms in Eqns. 5.145 and
5.146, in which case we have

1 = 1
2 g(εF) v

~ωD∫

0

dξ√
ξ2 +∆2

tanh

(√
ξ2 +∆2

2kBT

)
. (5.162)

It is clear that ∆(T ) is a decreasing function of temperature, which vanishes at T = Tc, where Tc is
determined by the equation

Λ/2∫

0

ds s−1 tanh(s) =
2

g(εF) v
, (5.163)

where Λ = ~ωD/kBTc . One finds, for large Λ ,

I(Λ) =

Λ/2∫

0

ds s−1 tanh(s) = ln
(
1
2Λ
)
tanh

(
1
2Λ
)
−

Λ/2∫

0

ds
ln s

cosh2s

= lnΛ + ln
(
2 eC/π

)
+O

(
e−Λ/2

)
,

(5.164)

where C = 0.57721566 . . . is the Euler-Mascheroni constant. One has 2 eC/π = 1.134, so

kBTc = 1.134~ωD e
−2/g(εF) v . (5.165)

Comparing with Eqn. 5.149, we obtain the famous result

2∆(0) = 2πe−C kBTc ≃ 3.52 kBTc . (5.166)

As we shall derive presently, just below the critical temperature, one has

∆(T ) = 1.734∆(0)

(
1− T

Tc

)1/2
≃ 3.06 kBTc

(
1− T

Tc

)1/2
. (5.167)

5.12.1 Isotope effect

The prefactor in Eqn. 5.165 is proportional to the Debye energy ~ωD. Thus,

lnTc = lnωD − 2

g(εF) v
+ const. . (5.168)

If we imagine varying only the mass of the ions, via isotopic substitution, then g(εF) and v do not change,
and we have

δ lnTc = δ lnωD = −1
2 δ lnM , (5.169)

where M is the ion mass. Thus, isotopically increasing the ion mass leads to a concomitant reduction in
Tc according to BCS theory. This is fairly well confirmed in experiments on low Tc materials.



5.12. FINITE TEMPERATURE 33

Figure 5.10: Temperature dependence of the energy gap in Pb as determined by tunneling versus pre-
diction of BCS theory. From R. F. Gasparovic, B. N. Taylor, and R. E. Eck, Sol. State Comm. 4, 59
(1966). Deviations from the BCS theory are accounted for by numerical calculations at strong coupling
by Swihart, Scalapino, and Wada (1965).

5.12.2 Landau free energy of a superconductor

Quantum statistical mechanics of noninteracting fermions applied to K̂BCS in Eqn. 5.136 yields the Lan-
dau free energy

Ωs = −2kBT
∑

k

ln
(
1 + e−E

k
/kBT

)
+
∑

k

{
ξk − Ek +

|∆k|2
2Ek

tanh

(
Ek

2kBT

)}
. (5.170)

The corresponding result for the normal state (∆k = 0) is

Ωn = −2kBT
∑

k

ln
(
1 + e−|ξ

k
|/kBT

)
+
∑

k

(
ξk − |ξk|

)
. (5.171)

Thus, the difference is

Ωs −Ωn = −2kBT
∑

k

ln

(
1 + e−E

k
/kBT

1 + e−|ξ
k
|/kBT

)
+
∑

k

{
|ξk| − Ek +

|∆k|2
2Ek

tanh

(
Ek

2kBT

)}
. (5.172)

We now invoke the model interaction in Eqn. 5.145. Recall that the solution to the gap equation is of the
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form ∆k(T ) = ∆(T )Θ
(
~ωD − |ξk|

)
. We then have

Ωs −Ωn

V
=

∆2

v
− 1

2 g(εF)∆
2

{
~ωD

∆

√

1 +

(
~ωD

∆

)2
−
(
~ωD

∆

)2
+ sinh−1

(
~ωD

∆

)}

− 2 g(εF) kBT ∆

∞∫

0

ds ln
(
1 + e−

√
1+s2 ∆/kBT

)
+ 1

6 π
2 g(εF) (kBT )

2 .

(5.173)

We will now expand this result in the vicinity of T = 0 and T = Tc. In the weak coupling limit,
throughout this entire region we have ∆ ≪ ~ωD, so we proceed to expand in the small ratio, writing

Ωs −Ωn

V
= −1

4 g(εF)∆
2

{
1 + 2 ln

(
∆0

∆

)
−
(

∆

2~ωD

)2

+O
(
∆4
)
}

(5.174)

− 2 g(εF) kBT∆

∞∫

0

ds ln
(
1 + e−

√
1+s2 ∆/kBT

)
+ 1

6 π
2 g(εF) (kBT )

2 .

where ∆0 = ∆(0) = πe−C kBTc.

T → 0
+

In the limit T → 0, we find

Ωs −Ωn

V
= −1

4 g(εF)∆
2

{
1 + 2 ln

(
∆0

∆

)
+O

(
∆2
)
}

(5.175)

− g(εF)
√

2π(kBT )
3∆ e−∆/kBT + 1

6 π
2 g(εF) (kBT )

2 .

Differentiating the above expression with respect to ∆, we obtain a self-consistent equation for the gap
∆(T ) at low temperatures:

ln

(
∆

∆0

)
= −

√
2πkBT

∆
e−∆/kBT

(
1− kBT

2∆
+ . . .

)
(5.176)

Thus,
∆(T ) = ∆0 −

√
2π∆ 0kBT e

−∆0/kBT + . . . . (5.177)

Substituting this expression into Eqn. 5.175, we find

Ωs −Ωn

V
= −1

4 g(εF)∆
2
0 − g(εF)

√
2π∆0 (kBT )

3 e−∆0/kBT + 1
6 π

2 g(εF) (kBT )
2 . (5.178)

Equating this with the condensation energy density, −H2
c (T )/8π , and invoking our previous result,

∆0 = πe−C kBTc , we find

Hc(T ) = Hc(0)

{
1−

≈1.057︷ ︸︸ ︷
1
3 e

2C

(
T

Tc

)2
+ . . .

}
, (5.179)

where Hc(0) =
√

2π g(εF) ∆0.
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T → T−

c

In this limit, one finds

Ωs −Ωn

V
= 1

2 g(εF) ln

(
T

Tc

)
∆2 +

7 ζ(3)

32π2
g(εF)

(kBT )
2
∆4 +O

(
∆6
)

. (5.180)

This is of the standard Landau form,

Ωs −Ωn

V
= ã(T )∆2 + 1

2 b̃(T )∆
4 , (5.181)

with coefficients

ã(T ) = 1
2 g(εF)

(
T

Tc
− 1

)
, b̃ =

7 ζ(3)

16π2
g(εF)

(kBTc)
2

, (5.182)

working here to lowest nontrivial order in T − Tc. The head capacity jump, according to Eqn. 1.44, is

cs(T
−
c )− cn(T

+
c ) =

Tc
[
ã′(Tc)

]2

b̃(Tc)
=

4π2

7 ζ(3)
g(εF) k

2
BTc . (5.183)

The normal state heat capacity at T = Tc is cn = 1
3π

2g(εF) k
2
BTc , hence

cs(T
−
c )− cn(T

+
c )

cn(T
+
c )

=
12

7 ζ(3)
= 1.43 . (5.184)

This universal ratio is closely reproduced in many experiments; see, for example, Fig. 5.11.

The order parameter is given by

∆2(T ) = − ã(T )
b̃(T )

=
8π2(kBTc)

2

7 ζ(3)

(
1− T

Tc

)
=

8 e2C

7 ζ(3)

(
1− T

Tc

)
∆2(0) , (5.185)

where we have used ∆(0) = π e−C kBTc. Thus,

∆(T )

∆(0)
=

≈ 1.734︷ ︸︸ ︷(
8 e2C

7 ζ(3)

)1/2 (
1− T

Tc

)1/2
. (5.186)

The thermodynamic critical field just below Tc is obtained by equating the energies −ã2/2b̃ and −H2
c /8π.

Therefore
Hc(T )

Hc(0)
=

(
8 e2C

7 ζ(3)

)1/2(
1− T

Tc

)
≃ 1.734

(
1− T

Tc

)
. (5.187)

5.13 Paramagnetic Susceptibility

Suppose we add a weak magnetic field, the effect of which is described by the perturbation Hamiltonian

Ĥ1 = −µBH
∑

k,σ

σ c†kσ ckσ = −µBH
∑

k,σ

σ γ†kσ γkσ . (5.188)
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Figure 5.11: Heat capacity in aluminum at low temperatures, from N. K. Phillips, Phys. Rev. 114, 3

(1959). The zero field superconducting transition occurs at Tc = 1.163K. Comparison with normal state
C below Tc is made possible by imposing a magnetic field H > Hc. This destroys the superconducting
state, but has little effect on the metal. A jump ∆C is observed at Tc, quantitatively in agreement BCS
theory.

The shift in the Landau free energy due to the field is then ∆Ωs(T, V, µ,H) = Ωs(T, V, µ,H)−Ωs(T, V, µ, 0).
We have

∆Ωs(T, V, µ,H) = −kBT
∑

k,σ

ln

(
1 + e−β(E

k
+σµBH)

1 + e−βE
k

)

= −β (µBH)2
∑

k

eβEk

(
eβEk + 1

)2 +O(H4) .

(5.189)

The magnetic susceptibility is then

χs = − 1

V

∂2∆Ωs

∂H2
= g(εF)µ

2
B Y(T ) , (5.190)

where

Y(T ) = 2

∞∫

0

dξ

(
− ∂f

∂E

)
= 1

2β

∞∫

0

dξ sech2
(
1
2β
√
ξ2 +∆2

)
(5.191)

is the Yoshida function. Note that Y(Tc) =
∞∫
0

du sech2u = 1 , and Y(T → 0) ≃ (2πβ∆)1/2 exp(−β∆) ,

which is exponentially suppressed. Since χn = g(εF)µ
2
B is the normal state Pauli susceptibility, we have
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that the ratio of superconducting to normal state susceptibilities is χs(T )/χn(T ) = Y(T ). This vanishes
exponentially as T → 0 because it takes a finite energy ∆ to create a Bogoliubov quasiparticle out of the
spin singlet BCS ground state.

In metals, the nuclear spins experience a shift in their resonance energy in the presence of an external
magnetic field, due to their coupling to conduction electrons via the hyperfine interaction. This is called
the Knight shift, after Walter Knight, who first discovered this phenomenon at Berkeley in 1949. The
magnetic field polarizes the metallic conduction electrons, which in turn impose an extra effective field,
through the hyperfine coupling, on the nuclei. In superconductors, the electrons remain unpolarized in
a weak magnetic field owing to the superconducting gap. Thus there is no Knight shift.

As we have seen from the Ginzburg-Landau theory, when the field is sufficiently strong, supercon-
ductivity is destroyed (type I), or there is a mixed phase at intermediate fields where magnetic flux
penetrates the superconductor in the form of vortex lines. Our analysis here is valid only for weak
fields.


