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1 Background

In 1934, Fermi [1] proposed a method to describe high lying atomic states by
replacing the complex effects of the core electrons with an effective potential
described by the pseudo-wavefunctions of the valence electrons. Shortly after,
this pseudopotential (PSP), was realized by Hellmann [2] who implemented it
to describe the energy levels of alkali atoms. Despite his initial success, further
exploration of the PSP and its application in efficiently solving the Hamiltonian
of periodic systems did not reach its zenith until the middle of the twenti-
eth century when Herring [3] proposed the orthogonalized plane wave (OPW)
method to calculate the wave functions of metals and semiconductors. Using
the OPW, Phillips and Kleinman [4] showed that the orthogonality of the va-
lence electrons’ wave functions relative to that of the core electrons leads to a
cancellation of the attractive and repulsive potentials of the core electrons (with
the repulsive potentials being approximated either analytically or empirically),
allowing for a rapid convergence of the OPW calculations.

Subsequently in the 60s, Marvin Cohen expanded and improved upon the
pseudopotential method by using the crystalline energy levels of several semicon-
ductor materials [6, 7, 8] to empirically obtain the potentials needed to compute
the atomic wave functions, developing what is now known as the empirical pseu-
dopotential method (EPM). Although more advanced PSPs such as the ab-initio
pseudopotentials exist, the EPM still provides an incredibly accurate method
for calculating optical properties and band structures, especially for metals and
semiconductors, with a less computationally taxing method. Such calculations
are even efficient enough that EPM calculations can be performed on personal
computers.

Cohen’s development of the EPM was key to understanding the optical re-
sponse function of solids and has led to breakthroughs in the study of semi-
conductor materials. This is partly the reason why semiconductors are one of
the most well understood class of materials today. This achievement and its
profound impact in the field of solid state physics earned Cohen the Buckley
Prize in 1979.
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2 Building up to the empirical pseudopotential

We begin with Herring’s development of the orthogonalized plane-wave (OPW)
method for solving the eigenfucntions and energy values for an electron in the
periodic field of a crystal. In his method, if the crystal wave functions are
expanded in plane waves, the periodic boundary conditions at the surface of the
unit cell are automatically satisfied such that a good crystal wave function is
obtained with enough plane waves are used. But to include the radial nodes of
the valence wave functions in the core, calculations become impractical as many
plane waves are needed. To resolve this issue, the wave function of the valence
electron is orthogonalized to the actual core electron wave function which adds
a linear combination of core orbitals to each plane wave, thus giving us a plane
wave that allows for rapid convergence, the orthogonalized plane-wave:

ψα = φα +
∑
n

aαnφ
n
α (1)

Here, ψα is the true wave function, φα is a basis function resembling the combi-
nations of plane waves, φnα is a sum of the smooth wave function and occupied
core states, the superscript n refers to the core electron levels and aαn is a con-
stant that ensures orthogonality at every core level, i.e.:∫

drφn∗α ψα = 0 (2)

and hence:
aαn = −

∫
drφn∗α eik̇r (3)

For brevity, we will define two orthogonal wave functions with the following
convention: −(φα, φ

n
α).

As Phillips and Kleinman [4] later pointed out, orthogonalization will lead to
a loss in spherical symmetry for the core wave functions, making the solution to
Herring’s equation overly complicated and difficult to calculate. As a solution,
φα was orthogonalized to the core wave functions instead, allowing for a more
simple solution to the eigenfunctions and energy. φα describes the smooth
part of the symmetrized combinations of the Bloch functions and contains the
repulsive potential and depends on the core wave functions and valence wave
functions in the core region. φα can be used to derive the repulsive portion of
the core potential which consequentially, the orthogonality of the valence wave
function leads to a cancellation of the core repulsive and attractive potentials.
As a result, the orthogonal part of the OPW equation is simplified, leading to
rapid convergence. To obtain this repulsive potential, we substitute Equation 1
into Schroedinger’s general equation:

Hψα = Eψα (4)

to obtain:
Hφα +

∑
n

aαnHφ
n
α = Eφα + E

∑
n

aαnφ
n
α (5)
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and solve for Eφα (where Hφnα = Enφnα) to get:

Hφα +
∑
n

aαn(En − E)φnα = Eφα (6)

If we define the repulsive potential of the core electrons as:

V αr =
∑
n

aαn(En − E)φnα/φα (7)

and substitute the repulsive potential back into Equation 6, we will obtain:

(H + V αr )φα = Eφα (8)

which is the new wave function for φα, the pseudowavefunction, where E is still
the true energy eigenvalue of the true wave function. This equation is equivalent
to the OPW equations when φα is used in Vr. In addition, under the condition
of OPW we can substitute 3 into 7 to write the repulsive core potential more
explicitly as:

V αr =
∑
n

(E − En)(φα, φ
n
α)φnα/φα (9)

Furthermore, if we separate the Hamiltonian into kinetic energy and a long
range attractive potential (V αc ):

H = p2/2m+ V αc (10)

we can rewrite 8 as:

(p2/2m+ V αc + V αr )φα = (p2/2m+ V α)φα = Eφα (11)

where V α is the pseudopotential with a weak potential that is almost cancelled
out near the core and a weak attractive region further away from the core.
The cancellation of repulsive and attractive core potentials is more explicitly
proven by Cohen and Heine [5] in a publication following the work of Phillips
and Kleinman. This simplified OPW solution to the wave function was not only
applicable to crystals, but to molecules as well.

Despite its success, the OPW based pseudopotential developed by Phillips
and Kleinman does not have wider applications as a computational tool for
obtaining properties such as electronic band structures of materials. However,
because the empirical pseudopotential method fits observed properties from ex-
periments, it is able to incorporate implicitly complex many body interactions
via the fitting process, allowing for accurate determination of electronic band
structures. We shall see that by qualitatively estimating this repulsive poten-
tial by empirical means, Cohen was able to produce an incredibly accurate and
efficient pseudopotential.
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3 The empirical pseudopotential

The repulsive potential described by Phillips and Kleinman can be obtained em-
pirically by fitting the pseudopotential atomic form factor with observed prop-
erties such as atomic energy levels, optical properties or Coulomb potentials.
Cohen’s most important contribution in the field of computational chemistry
and semiconductors stems from the development of EPMs using form factors
fitted from experimentally observed band splitting values. The majority of this
paper will primarily focus on this aspect of Cohen’s work. The potential can
then be used to solve a host of problems such as the band structure of semicon-
ductors.

Since the purpose of Cohen’s derivation of the EPM was to obtain the band
structures of semiconductors. In this context, the pseudopotential V α will be a
crystal potential represented by a linear superposition of atomic potentials:

V (r) =
∑
R,τ

Va(r−R− τ) (12)

with R and τ being the lattice vector and basis vector respectively. Using the
reciprocal lattice vector (G), Equation 12 can be rewritten as:

V (r) =
∑
G

Va(G)S(G)eiĠr (13)

where S(G) is the structure factor, the descriptor for the crystal structure:

S(G) =
1

Na

∑
τ

e−iGτ̇ (14)

and V (G) is the pseudopotential atomic form factor, the primary property to
fit using experimental quantities which has the following equation:

V (G) =
1

Ωa

∫
Va(r)exp(−iĠr)d3r (15)

From Bloch theorem, we can use k as a quantum number and Equation 12 to
write the pseudowavefunction φα which is now ψn,k and the band energy En(k)
as a solution to Schrodinger’s equation:

[
p2

2m
+ V (r)]ψn,k(r) = En(k)ψn,k(r) (16)

It is important to note that the pseudopotential should be modeled as a
nonlocal potential to account for the difference in a potential’s strength for
electrons with a different quantum number l. A much deeper discussion of this
issue is tackled by Chelikowsky and Cohen [9] in a later publication that resolved
some discrepancies found in the local potential discussed here. Amazingly, the
nonlocal pseudopotential was even able to predict bonding properties from the
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calculated charge density of various semiconductors years prior to experimental
confirmation. However, for most semiconductors, only l=0,1,2 are significant
and electrons with these angular momentums are not as affected if nonlocality
is not taken into account and so for our purposes, the nonlocal pseudopotentials
will not be discussed here in detail.

4 The empirical pseudopotential method for semi-
conductors

We will demonstrate Cohen’s method for deriving the EPM with a binary crys-
talline semiconductor material, GaAs, and afterwards, we will simplify the de-
rived pseudopotential for the case of an elemental crystalline system. We begin
by defining the terms from Equation 13 and split the product of the structure
and form factor into a symmetric and antisymmetric form for convenience:

V (r) =
∑
G

(V SG (G) cos Gτ̇ + VA
G(G)i sin Gτ̇)eiĠr (17)

with the form factors V SG and V AG simply being the sum and differences of the
atomic pseudopotential form factors respectively:

V SG =
VGa(G) + VAs(G)

2
, V AG =

VGa(G)− VAs(G)

2
(18)

where the atomic pseudopotentials can be described by Equation 15. Note that
for an elemental crystalline solid, the antisymmetric form factor becomes 0 and
as such, Equation 17 becomes:

V (r) =
∑
G

(V SG (G) cos Gτ̇)eiĠr (19)

The basis vectors τ if defined for a binary crystal of the Fd3̄m spacegroup
which is composed of two fcc crystals shifted by (1/4, 1/4, 1/4)a with a being
the lattice constant. For convenience, we set the origin of the crystal between
the two fcc structures at τ = (1/8, 1/8, 1/8)a.

Next we select a number of symmetric and antisymmetric Vi(G) with G 6= 0
to describe the form factor for each type of atom. Figure 1(a) (which is just
Figure 1(b) after a Fourier transform is applied), will show that V (q) dissipates
relatively quickly, typically with q = G for the first three values of G. As such
we will select three V (G) with G2 = 3, 8, 11 (in units of (2π/a)2) to describe
the pseudopotential of our semiconductor (however, many of the symmetric and
antisymmetric form factors will just become 0 in the end).

5



(a) Reciprocal space (b) Real space

Figure 1: Plot of the pseudopotantial in reciprocal space (1(a)) and real space
(1(b))

There are a few methods of selecting the initial form factors. For example, a
model pseudopotential can be used to make an initial guess of V (G). Alterna-
tively, one can estimate V (G) by extrapolating from known form factors. For
example, one can estimate the form factor of Sn (VSn(G)) by average VIn(G)
and VSb(G) if their atomic form factor are known. In the study of interest,
Cohen obtained his initial guest using using previously known form functions.
As VGe(G) has already been calculated, VGa(G) and VAs(G) can be extrap-
olated to make an initial guess of the atomic form functions for GaAs. Once
the optimally fitted form functions for GaAs are obtained, VZn(G) and VSe(G)
can be extrapolated to make an initial guess for the form function of ZnSe.
This is repeated for the next row in the periodic table where from VSn(G), one
can extrapolate the form functions needed for InSb and CdTe. This process of
extrapolation is repeated for compounds such as InAs, GaSb and ZnTe where
both VGe(G) and VSb(G) are used to determine an initial guess. Similarly for
InP and AlSb, the form functions can be extrapolated using the known form
functions of Si and Sb.

We note that prior to this current work, Cohen and his colleagues had imple-
mented this method by using the reflectance, photoemission and density of states
of Si [6] to fit his EPM. Similarly, the EPM of Ge and Sb were also obtained
using these experimental parameters. The form factors used to extrapolate the
initial guess of other elements discussed here used the form factors from these
studies. Examples of other calculated parameters used for fitting include the
electron effective mass, optical gaps, modulated reflectivity and full dielectric
function.

With an initial estimate of the form factors, we can determine a solution
for Equation 17 for GaAs and subsequently the eigenvalues and wavefunctions,
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ψn,k and En(k), using Equation 11. The eigenvalues and wavefunctions can
then be used to calculate our chosen response function (in this case the energy
band splitting). The fitting of the form function with experimental observations
comes from comparing our calculated energy band splitting to an experimental
value. Exact agreement with values of energy band splitting must be limited
in order to obtain an exact fit with the form factor. As such, only values near
the band gap and splittings of less than 1 eV were used in the fitting process.
These particular values are the most important in a band structure. If we are
unsatisfied with the accuracy of the calculated response functions when com-
pared to experiments, we can alter the form factor and solve for Equation 17 and
subsequently Equation 11 as many times as necessary until good agreement is
found between the experimental and calculated response functions. Techniques
such as machine learning (i.e. genetic algorithms and neural networks) can also
be implemented to automate the process of comparing the response functions
to experiments and modifying the form function. This fitting method to obtain
accurate pseudopotentials is at the heart of EPM.

With the pseudopontential form factor, we can now calculate the different
energy levels needed to build the band structure of semiconductors such as
GaAs. An outline of the entire process used to derive the band structure from
the EPM is summarized in Figure 2.
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Figure 2: Work flow for obtaining the band structure from the empirical pseu-
dopotential.

5 Deriving other forms of the pseudopotential
with EPM

The EPM derived in the previous section can also be used to derive other forms
of the pseudopotential, in particular, the self-consistent ab-initio pseudopoten-
tial.

For EPM, we assumed V (G) represents the total one-electron potential for a
valence electron when it should be self-consistent, that is a new valence electron
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potential should be calculated by the wavefunction from an electronic structure
which is in turn calculated by a previous valence electron potential. This process
is repeated until there is no change in the wavefunction or the valence electron
potential. This is particularly useful in surface and interface calculations where
the electronic charge of the atoms in the surface or interface region will relax
quite a lot. Similar to the feedback loop used to derive the EPM in Figure 2,
the self-consistent pseudopotential will take in an empirical pseudopotential and
solve Schrodinger’s equation to obtain the wave function and charge density and
repeats this process until the wavefunction and charge density no longer vary.

The EPM can also be used to obtain another form of the pseudopotential,
the ab-initio pseudopotential. This particular pseudopotential is useful for to-
tal energy calculations and calculating the structure of solids. This form is in
part based on the self-consistent pseudopotential whereby the pseudowavefunc-
tion is normalized in such a way that there is no change when going from the
pseudowavefunction to the all-electron wavefunction. An energy cutoff is used
to determine how much the normalized pseudowavefunction deviates from the
all-electron wavefunction.

6 Implications of Cohen’s contributions

As mentioned before, Cohen’s work on the EPM provided us with more infor-
mation on the semiconductor class of materials than ever before and it is thanks
to his work that we now know so much about semiconductors and the optical re-
sponse function of solids. Perhaps just as important, the EPM paved the way for
deriving more advanced forms of the pseudopotential such as the self-consistent
and ab-initio pseudopotential. The latter in particular allows for structural re-
laxation and total energy calculations which can provide a host of information
depending on the structure being modeled such as the lattice volume, bulk mod-
ulus and various thermodynamic quantities such as cohesive energy, formation
energy and interfacial properties. The efforts of Cohen and his predecessors
now allow us to not only study molecules, but a broad class of solids, molecules,
clusters, and even quantum confined materials such as nanotubes. The devel-
opment of the ab-initio pseudopotential also paved the way for Density function
theory as a more viable tool in computational chemistry. More recently, thanks
to the development of the EPM, new materials with exotic properties such as
superconductivity can even be predicted [10]. His accomplishments and perhaps
just as important, the implications, earns Marvin Cohen his place in history as
the recipient of the 1979 Buckley Prize.
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