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This paper deals with the ground state of an interacting electron gas in an external potential v(r). It is
proved that there exists a universal functional of the density, Ft I (r) g, independent of v(r), such that the ex-
pression E—= fs(r)n (r)dr+Ft I(r)j has as its minimum value the correct ground-state energy associated with
s(r). The functional FLn(r)j is then discussed for two situations: (1) n(r) @san(r), 8/ao((1, and
(2) a(r) = q (r/ra) with p arbitrary and 1'p ~~. In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented.

INTRODUCTION
' '

&~IJRING the last decade there has been considerable
progress in understanding the properties of a

homogeneous interacting electron gas. ' The point of
view has been, in general, to regard the electrons as
similar to a collection of noninteracting particles
with the important additional concept of collective
excitations.

On the other hand, there has been in existence since
the 7920's a different approach, represented by the
Thomas-Fermi method' and its re6nements, in which
the electronic density n(r) plays a central role and in
which the system of electrons is pictured more like a
classical liquid. This approach has been useful, up to
now, for simple though crude descriptions of inhomo-
geneous systems like atoms and impurities in nietals.

Lately there have been also some important advances
along this second line of approach, such as the work of
Kompaneets and Pavlovskii, ' Kirzhnits, ' Lewis, ' Baraff
and Borowitz, ' Bara6, ' and DuBois and Kivelson. ' The
present paper represents a contribution in the same area.

In Part I, we develop an exact formal variational
principle for the ground-state energy, in which the den-
sity tz(r) is the variable function. Into this principle
enters a universal functional PLtr(r)), which applies to
all electronic systems in their ground state no matter
what the external potential is. The main objective of
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theoretical considerations is a description of this
functional. Once known, it is relatively easy to deter-
mine the ground-state energy in a given external
potential.

In Part II, we obtain an expression for FLnj when tr

deviates only slightly from uniformity, i.e. , n(r)=1'cp
+ts(r), with ts/tss —& 0; In this case FLej is entirely
expressible in terms of the exact ground-state energy
and the exact electronic polarizability n(g) of a uniform
electron gas. This procedure will describe correctly
the long-range Friedel charge oscillations' set up by
a localized perturbation. All previous refinements of the
Thomas-Fermi method have failed to include these.

In Part III we consider the case of a slowly varying,
but +of necessarily almost constant density, tr (r)
= p(r/rs), rs —&oo. For this case we derive an expansion
of F)trj in successive orders of rs ' or, equivalently of
the gradient operator V acting on e(r). The expansion
coeKcients are again expressible in terms of the exact
ground-state energy and the exact linear, quadratic,
etc. , electric response functions of a uniform electron
gas to an external potential w(r). In this way we recover,
quite simply, all previously developed refinements of
the Thomas-Fermi method and are able to carry them
somewhat further. Comparison of this case with the
nearly uniform one, discussed in Part II, ,also reveals
why the gradient expansion is intrinsically incapable
of properly describing the Friedel oscillations or the
radial oscillations of the electronic density in an atom
which reQect the electronic shell structure. A partial
summation of the gradient expansion can be carried
out (Sec. III.4), but its usefulness has not yet been
tested.

I. EXACT GENERAL FORMULATION

I. The Density as Basic Variable

Ke shall be considering a collection of an arbitrary
number of electrons, enclosed in a large box and moving

' J. Friedel, Phil. Nag. 45, 155 (1952).
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under the influence of an external potential v(r) and
the mutual Coulomb repulsion. The Hamiltonian has
the form

H= T+V+U,
where'0

where Pfn] is a universal functional, valid for any
number of particles" and any external potential. This
functional plays a central role in the present paper.

With its aid we define, for a given potential v(r), the
energy functional

~~i*(r)~~i (r)dr,
2

(2) E„gn]=— v (r)I(r)dr+ FLN]. (10)

V= v(r)i(*(r)P(r)dr,

P*(r)P*(r')f (r')P (r)drdr'

Clearly, for the correct is(r), E„ge] equals the ground-
state energy E.

We shall now show that E,ge] assumes its minimum
value for the correct n(r), if, the admissible functions
are restricted by the condition

We shall in all that follows assume for simplicity that
we are only dealing with situations in which the ground
state is nondegenerate. We denote the electronic density
in the ground state 0' by

which is clearly a functional of v(r).
We shall now show that conversely v(r) is a unique

functional of N(r), apart from a trivial additive constant.
The proof proceeds by reductio ad absurdum'. As-

sume that another potential v'(r), with ground state
4' gives rise to the same density N(r). Now clearly
(unless v'(r) —v(r)=const] 0' cannot be equal to 4
since they satisfy different Schrodinger equations.
Hence, if we denote the Hamiltonian and ground-state
energies associated with 0' and 0' by H, B' and E, E',
we have by the minimal property of the ground state,

E'= (@',H'+') & (+,H'+) = (+, (H+ V' V)%'), —

so that

E'&E+ $v'(r) —v(r)]e(r)dr.

Interchanging primed and unprimed quantities, we find

in exactly the same way that

E&E'+ $v (r) —v' (r)]ti (r)dr.

Addition of (6) and (7) leads to the inconsistency

E+E~ &E+E~

Thus v (r) is (to within a constant) a unique functional
of e(r); since, in turn, v(r) fixes H we see that the full
many-particle ground state is a unique functional of
rs(r).

Ãfm] —= n (r)dr =cV.

It is v ell known that for a system of E particles, the
energy functional of 4'

(12)

has a minimum at the correct ground state 4, relative
to arbitrary variations of 0' in which the number of
particles is kept constant. In particular, let 4' be the
ground state associated with a diferent external po-
tential v'(r). Then, by (12) and (9)

B„L@']= v (r)I'(r) dr+Fc ri'],

)8,$+]= v(r)e(r)dr+FLri].

Thus the minimal property of (10) is established rela-
tive to all density functions I'(r) associated with some
other external potential v'(r). "

If F(1) were a known and sufFiciently simple func-
tional of n, the problem of determining the ground-state
energy and density in a given external potential would
be rather easy since it requires merely the minimization
of a functional of the three-dimensional density func-
tion. The major part of the complexities of the many-
electron problems are associated with the determination
of the universal functional FLn].

3. Transformation of the Functional P/n]

Because of the long range of the Coulomb interaction,
it is for most purposes convenient to separate out from

2. The Variational Principle

Since 4 is a functional of n(r), so is evidently the
kinetic and interaction energy. We therefore define

ro At, oDllc url'its are- use

'~ This is obvious since the number of particles is itself a simple
functional of n(r).

~ We cannot prove whether an arbitrary positive density distri-
bution a'(r), which satisaes the condition J'e'(r)dr=integer, can
be realized by some external potential v'(r}. Clearly, to first order
in R(r), any distribution oi the form n'(r) =no+n(r) can be so
realized and we believe that in fact g,ll, except some patbologicaf
distributions, can be realized,
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F[n] the classical Coulomb energy and write and

1
F[n]=—

2

so that E,.[n] becomes

iz (r)n (r')
drdr'+ G[n],

l
r—r'l

(14)
R(r)dr=0 (23)

Here we clearly must have a formal expansion of the
following sort:

1 n (r)n (r')
E,„[n]= p (r)n(r) dr+ — drdr'+G[n], (15) G[n]=G[np]+ E(r—r')R (r)R (r') drdr'

l
r —r'l

Cz(r, r')=nz(r, r'; r, r') —nz(r, r)nz(r', r'). (17)

Of course nz(r, r) =—n(r).
From (16) we see that we can define an energy-density

functional

g p[n] = z V~V~ 1zz(r)r ) l
g —~

where G[n] is a universal functional like F[n].
Now from the definition of F[n], Eq. (9), and G[n],

Eq. (14), we see that

1 C, (r,r')
G[n]=— V,V,.n~(r, r') l, , dr+ — drdr'. (16)

l
r —r'l

Here n, (r,r') is the one-particle density matrix; and
Cz(r, r') is the two-particle correlation function defined
in terms of the one- and two-particle density matrices as

+ I(r,r', r") R(r) R(r') R(r"} dr dr' dr"+ . . (24)

ln this equation there is no term linear in R(r) since
by translational invariance the coefficient of R(r) would
be independent of r leading to zero, by (23). The kernel
appearing in the quadratic term is a functional of

l
r —r

l

only and may therefore be written as

It(r —r')=(1/~l)Z It(q)e "' "' (25)

g,[n]=gp(np)+ IC(r')R(r+-,'r')R(r ——,'r')dr'+, (26)

The higher order terms will not be further discussed
here.

One may also quite trivially introduce a density
function

such that

1 C, (r—r'/2; r+r'/2)
dr' (18)

where gp(np) is the density function of a uniform gas of
electron density np (kinetic, exchange, and correlation
energy).

G[n] = g,[n]dr.

The fact that g,[n] is a functional of n follows of course
from the fact that 4' and hence e~ and e2 are.

It should be remarked, that while G[n] is a unique
functional of n, g,[n] is of course not the only possible
energy-density functional. Clearly the functionals

2. Expression of the Kernel X in Terms of
the Electronic Polarizability

We shall now see that the kernel IC appearing in
Eqs. (24) and (26) is completely and exactly expressible
in terms of the electronic polarizability n(q). The latter
is defined as follows: Consider an electron gas of mean
density eo in a background of uniform charge plus a
small additional positive external-charge density

i9

g,[n]=g,[n]yP ts, &'&[n], (20) n.„,(r) = (X/Q)g a(q) e-'q'.

Write the electronic density, to first order in X, as

(27)

where the h~') are entirely arbitrary, give equivalent
results when used in conjunction with (19).

The following sections deal with G[n] and g,[n] in
some simple cases.

n(r) = np+ ()/Q)p b, (q)e-'q'.

~(V) —=bz(a)/~(a).

Let us now define the operator

(28)

(29)

n(r) =np+R(r), (21)

R(r)/n, «1 (22)

II. THE GAS OF ALMOST CONSTANT DENSITY

1. Form of the Functionals G[n] and g„[n]
We consider here a gas whose density has the form

Pq=g Ck q Ck,
k

(3o)

~(v) (oI pql n)(nip-. l o)
b~(q) = —(8~) (31)

where c~*, c~ are the usual creation and annihilation
operators. Then, by first-order perturbation theory,
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so that.

(32)

Next we express the change of energy in terms of ct q .

By second-order perturbation theory we have

li'(4z. )' Ia(q) I' (0I p, le)(~el p sl0)jj=ji,s+-
n ~ q4

li'2
I

(q)l'= ~''() — —2 — ~(q),
0 ~ q'

li'2 Ib (q)l'

Fr.o. 1. Behavior
of the electronic po-
larizability n(q), as
function of q (elec-
tronic density =4
&(10"cm ').

1.0

Rtq)

0.5

0
0

I I

1 2
q/qF ~

kg =—(4k p)'i'

wheie 'y is eh
'

th Thomas-Fermi screening constan,

(42)
=~o— (33) and

0 & a(q)q'

m(r)e(r )—drdr'+ G[e7
Ir—r'I

li'4' Ib (q) I' V27r lb (q) I'
+

fl n (q) q' (i q'

1
E= n(r)ri(r)+—

2

+—2 K(q) I
& (q) I' (34)

Comparison of Eqs. (33) and (34) gives

On the other hand, combining Eqs. (15), (24), (25),
and (28) gives

kr q' ) q+2kF
5(q) —= —,'+—1——

I
ln

2q 4k p2/ q
—2k r

(43)

q
—+~: K(q) —+ constXq .

(See Fig. 2.)
The power-series expansion of K q, , ea s o

K(r) = 27r[—cs+ (css —c4)V+ 76(r), 4

which in turn gives

This gives for E(q), by (35),

q
—& 0: K(q) = 2z.[—cs+ (css —c4)q'+ .7; (44)

q
—+ 2kp. dK/dq —++~; (45)

2 (46)

2'
E(q) =-

q' n(q)

G[N7 =G[rrs7+ 27r —cs 8 (r)'dr
(35)

Equivaen y, inl tl
'

terrors of the dielectric constant, +(css—c4)
I
V'n(r) I'dr+, (48)

we may write

e(q) =

2~ 1
E(q)=-

q' e(q) —1

(36)

(37)

i.e, , a gradient expansion.
At this point an important remark must be made.

One of the most significant features of K(q) is its
singu arity at q=l .' t =2k . This is responsible for the long-
range Friedel oscillations" in E(r),

'

r ~~: E(r) const cos(2krr+ 8)/r'. (49

3. The Nature of the Kernel K

Q(q) = 1+csq'+c4q'+ . . (38)

(39)

(4o)

q
—&0:

q ~ 2k' '. de/dq ~ —oo I

q
—+~: n(q) ~ const/q .

These general properties are exemp i ylified b the random-
phase approximation in which

The polarizability u(q) has the following properties,
as function of q (see Fig. 1)

These obviously lie outside the framewor r of the
power-series expansion (44) of E(q) and hence outside

e gr
met od whichw ynei erh either the original Thomas-Fermi met od

in onl the firstfor the present system reduces to keeping on y e
~44~~~ nor its eneralizations by the addition of

gradient terms, have correctly yielded wave-mec anica
density osci ations, suc
atoms which correspond to shell structure, or the ne e
oscillations in alloys which are of the same general origin.

n(q) = [1+(q'/kp')S(q)7 —' . S. Langer and S. H, Vosko, Phys. Chem. Solids 12, 196
(41) (1960}.



P. HOHEN BERG AN D W. KOHN

the Thomas-Fermi equation

V'v;(r) = (—2 &'/37r)f p —v(r) —v, (r)5'& (58)

10-

FxG. 2. Behavior
of the kernel E'(q),
as a function of q
(electronic density =4
&10"cm 3).

2. The Gradient Expansion

It is well known that one condition for the validity
of the Thomas-Fermi equation is that ri(r) must be a
slowly varying function of r. This suggests study of the
functional Gfej, where e has the form

0
0

with
N(r) = y(r/rp),

ro~~ .

(59)

(60)

III. THE GAS OF SLOWLY VARYING DENSITY

1. The Thomas-Fermi Equation

For a erst orientation we shall derive, from our general
variational principle, the elementary Thomas-Fermi
equation. For this purpose, we use the functional (18)
and in (16) we neglect exchange and correlation effects,
thus setting C2=0. We approximate the kinetic-energy
term by its form for a free-electron gas, i.e.,

It is obvious that this is quite a di6erent class of systems
than that considered in Part 11 (N=ep+n, 8/Np«1),
since now we shall allow q to have substantial varia-
tions. On the other hand, whereas in Part II, rI, could
contain arbitrarily short wavelengths, these are here
ruled out as r0 becomes large.

We now make the basic assumption that for large r0,
the partial energy density g,fnj may be expanded in
the form

g, f&i]=gp(N(r))+g g, (n(r)) Vps(r)

g f&5= i'oft~—(~)]'~,
where the Fermi momentum kl: is given by

k p(n) = (37r'e)'~'.

(50)

(51)

+Z Lg ""(~(r)) V'~(r)V~(r)

+g;,&'&(n(r)) V,V,&i(r)]+ . . (61)

This results in

1 &i(r)&p(r')
Z„fe]= v(r)e(r)dr+- drdr'

2 fr —r'f

+r'p (3~')'" f~(r)]""«(52)

To determine e(r) we now set

(53)8 E„fe]—&i e(r)dr =0,

where p, is a Lagrange parameter. This results in the
equation

m(r')
v(r)+ dr'+-', (3 r')7'"fm(r)]' ' &Ii=0 —(54).

/r —r'f

If we now introduce the "internal" potential

n (r')
v, (r) —= dr', (55)

(56)

(57)

(54) is equivalent to the pair of equations

N(r) = (1/3m ){2'—v(r) —v, (r)5)'&'

VPv;(r) = —4v 0(r) .
From (56) and (57) we can eliminate m(r) and arrive at

Here successive terms correspond to successive negative
powers of the scale parameter rp. Quantities like

gp(e(r)), g;(n(r)) etc. , are functions (not functionals)
of N(r). No general proof of the existence of such an
expansion is known to us, although it can be formally
verified in special cases, e.g., when Gfe(r) 5 can be ex-
panded in powers of fe(r) —Npj. At. the same time,
we know that, for a finite r0, the series does not strictly
converge (see the discussion at the end of Sec. II.3),
but we may expect it to be useful (in the sense of asymp-
totic convergence) for suKciently large values of rp.

Now a good deal of progress can be made, using only
the fact that g,flj is a universal functional of n,
independent of v(r). This requires g,fej to be invariant
under rotations about r. The coeKcients g, ;, (n(r)),
being functions of the scalar e, are of course invariant
under rotations. Hence one 6nds by elementary con-
siderations that g,fnj must have the form

g,fnj= gp(n)+ fgp&'(e) V'm+gpt &(n)(VN Vn)5
+terms of order V~4. (62)

A further simpli6cation results from the fact that we

may eliminate from g,fej an arbitrary divergence
Q,V,h, 'fN] (see the end of Sec. I.3). It is then elemen-
tary to show that g,fnj may be replaced by

g, f&r j=gp(e)+gp "&(N)Ve V&p

+{g "&(e)(V'e)(V'I)+g i'&(n)(V'&i)(VN VN)

+g4'4&(e) (VN Ve)')+O(V P). (63)
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X44r u(q)
e—4$'I

0 ~ q'
(69)

1
n= no+ —Q @bi(q)+X'bo(q)+ ]e-'4', (70)

0 ~

G[n]= g,[n]dr, (64)

Here the subscripts refer to the number of gradient Now let us set
operators (or the order in 1/rp) and the superscripts to
the number of times that n appears to the right of

g &"&(n).

It may be worth recalling that while g„[n] is an
admissible density function in the sense that

IJ =go+ "Pi+~ Po+ ' ' '

it differs from the energy density function g,[n], Eq. Collecting terms of order go l(i $2 we find
(18), by a divergence.

go (no) —iio=0,

(71)

(72)

3. Identi6cation of the CoeKcients of the
Gradient Exyansion

4x 4m—~(q)+ —+gp"+2go "&q'
2 2

+2g4&2&q4+ b((q) =0, (73)

q&0,

g q'+" ~(q)
2m.

(74)
Also clearly

g g
We shall now express the coefficients g„&"&(n) ap-

pearing in Eq. (63) in terms of the expansion coef-
6cients, in powers of q, of the electronic polarizability
a(q), and similar higher order, nonlinear, response
functions. giving

We do this by applying our general expression (63) to
~

I
~ ~ )Q (o&-

the case of a nearly uniform electron gas, considered b, (q) = 1+.
j

— ~qo+
already in Sec. II.2. We go, however, beyond (28) and k 4~) (4~1
write

n(r)=np+ P b((q)e "'+—P b, (q)e-"'+ . (65)
0 0

Similarly, we obtain

pg=o.

The linear- and second-, third-, etc. , order response
functions are then de6ned by the relations

bi(q) =~(q)~(q),

bo (q) = 2 (i (q(,qo) ~(q()~(qp),

f/I

b (q) =E q'+" ~(q')~(q —q').
8x

(73)

If we now expand the response functions in powers of q,
01+q.2=%

etc.

—F„[n]—p n(r)dr =0.
8e

(67)

This gives

Now let us compare these expressions with what one
obtains with the use of (63). We require that

n(q) = 1+c,q'+c4q'+

~(q, q') = 2 2 C-'q'"q ","'j
we can identify the functions g„&"). Thus

gp /4'&I = —co,

go &"/4' = ,' ( c4+co'), ——
g4 /4Ã= o (—co+2coc4 co ) .

(76)

(77)

(78)

(79)

(80)

n (r')
v(r)+ dr'+go' go&'&'(Vn—)'

f
r —r'/

—2go &'& V'n+3g4&'&'(Von)'+2g4('&" (Vn)'V'n

+2g4(o&~Vn ~ V (Von)+2g4(o& (VoVon)

+g ( &"(V4n)4+2g "&Vn V'(V'n)'

+g4('&(Vo(Vn)' —2Vn V(Von) —2(V'n)')

—3g4(4)'(V'n)' —4g &'&V'n(Vn)' —4g &4&Vn V(Vn)'

+ .-~=0 (68)

~

Vn ~/n&&k, (n)

i
V,V;ni/i Vni«k, (n).

(81)

(82)

Similarly all other coefficients g„&'&(n) can be expressed
in terms of the expansion coe%cients c„of the linear
polarizability o, (q) of an electron gas of density n.

ln an analogous manner we can express all g„(3) in
terms of c((qi) and n(qi, qo); and generally g„&"& in terms
of n(qi), n(qi, qo, q„ i).

On dimensional grounds we can see from (63) that
the gradient expansion requires
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Both of these conditions are necessary. For while (81)
would admit the case of a nearly uniform gas with a
small but short-wavelength nonuniformity, this and
similar cases are excluded by (82), as they must be.

4. Partial Summation of Gradient Expansion

In the preceding section we have expressed the coef-
ficient g„(2& in terms of the expansion coefficient c, of
the polarizabilityn(q), Eq. (76). However, we may apply
the expression (63) to the special case of the gas of
almost constant density, discussed in Part II.This shows
that the leading term gp(n) and the subsequent sub-
series involving coeAicients g„("(n) may be summed to
yield

g, [n-t=gp(n(r))+ A. „(,i(r')[n(r+ —', r') —n(r) j

where r, is the radius of the Wigncr-Seitz sphere defined

by
s4vrr, s= 1/n. (86)

Other approximations are due to Hubbard, "Nozieres
and Pines "and Gaskell "

b. g„"'(n)

This expression is believed to be reasonably accurate
only for r,(1. At lower densities, such as occur in
metals (2&r,&5), various approximate expressions
have been proposed. One is due to Wigner"

2.21 0.916 0.88
gp(n)- — —— — n.

r.' r, r,+7 8.

These coefficients are all determined in terms of the
electronic polarizability, n(q). For this latter quantity
there is available, at present, a random-phase expres-
sion, Eq. (41), which gives

y [n(r —-', r') —n(r)]dr'+ . (83)

apart possibly from terms of the form of a divergence
or of higher order in the superscript v of g ~'~. Here

27(

n(q) = 1+ $(q)
kg.' kp 2

(88)1 2' 1
&.(.) (r') =—2 —, . ~

—7q ~ r'

en(r) (1)
(84)

and
g

('& 1 1
7

4a 24 kc'kI;2
(89)

g4(2) 1 1
(90)

4' 18O k„'kI, '

Inclusion of the erst of these in the energy expression
agrees with a correction to the Thomas-Fermi energy
functional derived by Kompaneets and Pavlovskii. '

An expression for n(q), allowing in an approximate
manner for exchange effects has been proposed by
Hubbard. "It is

The form (83) of g„has the merit of being exact in both
limiting cases where either the density has everywhere
nearly the same value (see Part II) or is slowly varying.
Its quantitative value for calculating the electronic
structure of actual atomic, molecular, or solid-state
systems is at present uncertain but. is being exaniined.
However, it is already clear that if applied to an atom
it will, unlike the simple Thomas-Fermi theory, yield:
(1) a finite density at the nucleus, and (2) oscillations
in the charge density corresponding to shell structure.

S. Approximate Expressions for the CoefBcients
of the Gradient Expansion

In the previous section we have expressed the coef-
ficients g„("i appearing in the gradient expansion (63)
in terms of properties of the uniform electron gas. We
now collect some results of existing calculations refer-
ring to the uniform electron gas which are useful for
our present purposes.

2 q2 1

n(q) = 1+— + 5(q)
2 q'+kg' kz'

where 5(q) is defined in Eq. (43). This form yields

4x 24 kg 2kp2 k p'

(91)

(92)

gp(n) = 2.21 O.91.6
+0.062 lnr, —0.096+0(r,) n, (85)

rs

'4 M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).

a., gp(n)

This is the sum of the kinetic+exchange+correlation
energy density of a uniform gas of density m. Here one
has available the high-density expansion of Gell-Mann
and Brueckner'4;

For typical metallic densities this has the opposite sign
from the random-phase approximation expression (88).
Thus we see that the lowest nonvanishing gradient cor-
rection to the Thomas-Fermi theory depends quite
sensitively on refinements in the theory of the electronic
polarizability, u(q).

"E.P. Wigner, Phys Rev. 40, 10.02 (1934)."J.Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).
z7 P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958).
"T.Gaskell, Proc. Phys. Soc. (London) 77, 1182 (1961); 80,

1091 (1962),
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IV. CONCLUDING REMARKS

In the preceding sections we have developed a theory
of the electronic ground state which is exact in two
limiting cases: The case of a nearly constant density
(Is=np+rI(r), rI(r)/ep((1) and the case of a slowly
varying density. Actual electronic systems do not belong
to either of these two categories. The most promising
formulation of the theory at present appears to be that
obtained by partial summation of the gradient expan-
sion (Sec. III.4). It has, however, not yet been tested
in actual physical problems. But regardless of the out-
come of this test, it is hoped that the considerations of
this paper shed some new light on the problem of the

inhomogeneous electron gas and may suggest further
developments.
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Scattering of a High-Intensity, Low-Frequency Electromagnetic Wave
by an Unbound Electron*
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"Thomson" scattering of a high-intensity, low-frequency, circularly-polarized electromagnetic wave by a
free electron is considered. We find that by neglecting radiative corrections and pair e6ects, the Feynman-
Dyson perturbation expansion is summable, and the sum can be analytically continued in the form of a sum
of continued fractions. By imposing the boundary conditions that at t =& ~ the photons and target electron
propagate as free particles, we obtain results which differ from those reported by Brown and Kibble and by
Goldman. In particular our results dier in two aspects. The 6rst difference is in the kinematics; namely, we
find no intensity-dependent frequency shift in the scattered photon. The second difference is in the dynamics;
that is, we obtain a different expression for the scattering amplitude. Both of these changes originate in the
choice of boundary conditions. Instead of treating the asymptotic radiation 6eld classically, we choose our
states as linear combinations of occupation-number states. Finally, contact is made with the results of Brown
and Kibble and of Goldman using a mixed set of classical and quantum boundary values.

I. INTRODUCTION

'HE advent of masers and lasers has stimulated a
great deal of interest in the interaction of intense

electromagnetic 6elds with matter. This activity has
been focused on three different aspects of the subject.
First, a great deal of attention has been devoted to the
dynamics of production of high-intensity light. A

*A preliminary version of this work was presented at the
Pasadena Meeting of the American Physical Society, Bull. Am.
Phys. Soc. 8, 615 (1963).

f Present address: Lowell Technological Institute, Lowell,
Massachusetts; on leave from the U. S. Naval Ordnance
Laboratory.

$ National Academy of Sciences —National Research Council
Postdoctoral Research Associate, 1962-64.' J. R. Singer, %users (John Wiley R Sons, Inc. , New York,
1900); F. Schwabl and W. Thirring (to be published); W. E.
Lamb, Jr. , Lecture Notes, Enrico Fermi International School of
Physics, Varenna, 1963 (unpublished).

second area of concentration is the question of proper
description of the electromagnetic radiation emanating
from a laser; i.e. , questions of coherence and correla-
tion. ' And finally, the problem of interaction of laser
light with matter has attracted considerable interest. '
It is this latter question to which we are devoting our-
selves in this paper.

The particular problem of immediate interest is the
effect of the presence of the high-intensity field on the
Compton (Thomson) scattering amplitude. Recall that
the Thomson amplitude describes the scattering of a

' R. Glauber, Phys. Rev. 130, 2529 (1963);E. C. G. Sudarshan,
Phys. Rev. Letters 10, 277 (1963); E. Wolf, Proc. Phys. Soc.
(London) 80, 1269 (1962).

~ J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962); Z. Fried s.nd W. M. Frank,
Nuovo Cimento 27, 218 (1963).


