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FRACTIONAL BROWNIAN MOTIONS, FRACTIONAL
NOISES AND APPLICATIONS*

BENOIT B. MANDELBROTf AND JOHN W. VAN NESS$

1. Introduction. By "fractional Brownian motions" (fBra’s), we propose to
designate a family of Gaussian random functions defined as follows :1 B (t) being
ordinary Brownian motion, and H a parameter satisfying 0 < H , 1, fBm
of exponent H is a moving average of dB (t), in which past increments of B(t)
are weighted by the kernel (t s)-1. We believe fBm’s do provide useful
models for a host of natural time series and wish therefore to present their
curious properties to scientists, engineers and statisticians.
The basic feature of fBm’s is that the "span of interdependence" between

their increments can be said to be infinite. By way of contrast, the study of
random functions has been overwhelmingly devoted to sequences of independ-
ent random variables, to Markov processes, and to other random functions
having the property that sufficiently distant samples of these functions are
independent, or nearly so. Empirical studies of random chance phenomena often
suggest, on the contrary, a strong interdependence between distant samples.
One class of examples arose in economics. It is known that economic time series
"typically" exhibit cycles of all orders of magnitude, the slowest cycles having
periods of duration comparable to the total sample size. The sample spectra of
such series show no sharp "pure period" but a spectral density with a sharp peak
near frequencies close to the inverse of the sample size [1], [4]. Another class of
examples arose in the study of fluctuations in solids. Many such fluctuations are
called "1 :f noises," because their sample spectral density takes the form k1-H

with , the frequency, 1/2 < H < 1 and H frequently close to 1. Since, however,
values of H far from 1 are also frequently observed, the term "l:f noise" is
inaccurate. It is also unwieldy. With some trepidation due to the availability of
several alternative expressions, we take this opportunity to propose that
"l:f noises" be relabeled as fractional noises (see [13]). A third class of phe-
nomena with extremely long interdependence is encountered in hydrology, where
Hurst [6] found the range (to be defined below) of cumulated water flows to
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Some results of this paper were sketched in [11]. The present paper is based upon (and
supersedes) the following privately circulated IBM reports by B. Mandelbrot: Self-
similar random processes and the range, April 13, 1964, and Self-similar random processes:
extrapolation, interpolation, and decay of perturbations, May 1, 1964.

The reader may wonder why we selected a parameter H in (0, 1) in preference to a param-
eter H’ H 1/2 in (-1/2, 1/2). Many formulas would be simplified using H’ but the state-
ments of Corollaries 3.4 and 3.6 would be made more complicated. This would be bad be-
cause T laws were the rationale behind fBm’s.
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FRACTIONAL BOWNIAN OTIONS

vary proportionately to H with 1/2 < H 1. This fact will be seen in the sequel
to be intimately related to the presence of an infinite span of interdependence
between successive water flows. Hurst’s law is likely to acquire significant
practical importance in the design of water systems/
These and related empirical findings suggest two tasks to the probabilist"

(i) to press the development of the general theory to embrace the new phenomena,
and (ii) to single out and study in detail many specific simple families of random
functions that could in some way be expected to be "typical" of what happens in
the absence of asymptotic independence. The present paper contributes to this
second task. Since our purpose is not to contribute to the development of
analytical techniques of probability, we selected fBm so as to be able to derive
the results of practical interest with a minimum of mathematical difficulty.
Extensive use has been made of the concept of "self-similarity," a form of in-
variance with respect to changes of time scale. A few self-similar processes other
than fBm’s will be considered in passing. From the purely mathematical view-
point, our work has turned out to be largely expository since we discovered
(while writing our paper) that fBm’s have already been considered (implicitly)
by Kolmogorov [7] and others [5], [8], [22, p. 122], [24, p. 262]. These references
contain a wealth of material to which the applications we listed should draw
general interest.

2. The definition of fractional Brownian motion. As usual, designates time,
oo < .( o, and 0 designates the set of all the values of a random function.

(This 0 belongs to a sample space 2.) The ordinary Brownian motion, B (t, ),
of Bachelier, Wiener and Lvy is a real random function with independent
Gaussian increments such that B(t, ) B(tl, ) has mean zero and variance
It -tll, and such that B(t, ) B(t, ) is independent of B(t4, )
B(ta, ) if the intervals (t, t.) and (ta, t4) do not overlap. The fact that the

standard deviation of the increment B(t T, o) B(t, ), with T > 0, is
equal to T1/ is often referred to as the "T1/2 law."

DEFINITION 2.1. Let H be such that 0 H 1, and let b0 be an arbitrary
real number. We call the following random function BH(t, o), reduced fractional
Brownian motion with parameter H and starting value b0 at time 0. For > 0,
B(t, o) is defined by

BH(0, ) b0,

B.(t, o) B.(O, o)

1
r(H + 1/2) {f_o [(t- s)"-1 (--s)"-’] dB(s,o)

+ f. (- )/-’ e(,

Footnote added in proof. Papers [15], [16] and [17], written after the present work was
submitted, carry out in considerable detail the application of fBm’s to hydrology, as first
suggested in [11]. In particular, the mathematical appendix to [16] contains a number of
complements to the present work. The body of [16] gives a number of graphical illustrations
we consider striking.D
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424 BENOIT B. IVIANDELBROT AND JOHN W. VAN NESS

(and similarly for < 0). The integration is taken in the pointwise sense (as well
as the mean square sense) by using the usual methods involving integration by
parts. Note that if bo O, Bin(t, ) B(t, ). For other values of H, BH(t, )
is called a fractional derivative or integral of B(t, ) in the sense of Weyl [21].
FBm’s really divide into three very different families corresponding, respec-

1tively, to0 <: H< 1/2,1/2 < H< 1, andH .
Paul Lvy [9, p. 357] briefly commented on a similar but better known moving

average of B(t, oo), namely, the Holmgren-Riemann-Liouville fractional in-
tegral"

1 fo s)H-lB(t’ ) F(H + 1/2)
(t riB(s, o),

where H may be any positive number. This integral puts too great an importance
on the origin for many applications, which is why Weyl’s integral was introduced
(see comments in Zygmund [25, XII.8]).

If B(t, ) is replaced by a complex-valued Brownian motion, the integral
that now defines B will yield the complex fractional Brownian motion.

3. SeN-similarity properties.
DE’INI:rION 3.1. The notation {X(, )} - {Y(t, )} will mean that the two

random functions X(t, ) and Y(t, ) have the same finite joint distribution
functions (a fortiori, the same state space).
DEFINITION 3.2. The increments of a random function IX(t, ) oo

< < oo will be said to be self-similar (s-s) with parameter H (H >= 0) if for
any h > 0 and any t0,

(3.1) {X(t0 + r, ) X(to, )} = {h-"[X(to + hr, ) X(to, )]}.

The following obvious theorem motivated the introduction of fBm.
TEo 3.3. The increments of fBm, B(t, ), are stationary and s-s with

parameter H.

The introduction of r(H / -) as denominator has the following motivation: it insures
that, when H 1/2 is an integer, a fractional integral becomes an ordinary repeated integral.
Note also that the definition of Bg is mde more symmetric by writing it as the following
convergent difference of divergent integrals"

B(, ) B(, )
r(H / 1/2)

For every to, this definition means that, when is restricted to >= to, X(t, ,) X(to,
is "semistble stochastic process" in the sense of Lumperti [8]. Semistbility is
weaker than the property of s-s increments. For example, LSvy’s Riemnn-Liouville
frctionl integral of B(t, ) is semistable for ll H > 0.

If X(t, oo) is semistble with prmeter H nd hs sttionry increments, then X(t,
is the restriction to ->_ 0 of process with s-s increments with prmeter H.

Definition 3.2 could apparently be generalized by replacing the h-H in (3.1) by A(h).
However, A (h) must stisfy A(h’h") A(h’)A (h"). If A (h) is mesurble, or stisfies some
such condition, one must hve A(h) h- s postulated.D
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FRACTIONAL BROWNIAN MOTIONS 425

COROLLARY 3.4. A T law for the standard deviation of B can be stated as
follows"

E[U,(t + T, o) B,(t, )]2 T2,V,,(3.2)

where

V. [F(H + 1/2)]- {I s)’-] ds + -).
A quantity which is very important in many applications (see below) is the

sequential range.
DEFINITION 3.5. Let X(t, ) be a real-valued random function. Its sequential

range is defined to be

M(t, T, ) sup IX(s, ) X(t, o)] inf IX(s, ) X(t, )].

Also define M(T, ) as M(0, T, ). If X(t, ) has continuous sumple puths (us
does B, by Proposition 4.1) and and T are finite, one can of course replace
sup by max and inf by n.
CononY 3.6. A T" law for the sequential range of a process of s-s incre-

ments can be stated as follows" if X(t, ) has s-s increments with parameter H, then

M(T, ) T’M(1, ).
If, for example, X(t, ) B(t, ) so that H , then T-M(t, T, ) has

distribution independent of both and T (which has been clculated by Feller
[2]).

3.1. Some partial converses.
PROPOSITION 3.7. If X(t, ) has s-s and stationary increments and is mean

square continuous, then 0 <= H < 1.
Proof. By Minkowski’s inequality, for any rl and r2 > 0,

{E[X(t + TI + r) X(t)]} 11 _-< {E[X(t + T + T) X(t + r)]} 1/

-t- {E[X(t + r) X(t)l} 1.
By hypothesis, there is a constant V such that

E[X(t + T, ) X(t, 0)] Vr’.
Therefore,

v/[ + ] - __<. v[" + ,-’],

which implies H < 1. Mean square eontinuity requires H >= 0.
POOSON 3.8. IfX(t, o) is a nonconstant Gaussian random function satisfy-

ing the conditions of Proposition 3.7, then it must be fBm.
Proof. A Gaussian process is determined by its eowriance nd mean properties.

3.9.. Digressiort corteerairtg some nort-Gaussiart self-similar processes. X(t,
o) my stisfy the conditions of Proposition 3.7 without being Gaussin. This
is indicated by an example given by Rosenblatt [19, pp. 434-435].D
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42 BENOIT B. MANDELBROT AND JOHN r. VAN NESS

If the requirement of continuity is abandoned, many other interesting self-
similar processes suggest themselves. One may for example replace B(t) by a
non-Gaussian process whose increments are stable in the sense of Paul Lvy.
Such increments necessarily have an infinite variance. "Fractional Lvy-stable
random functions" have moreover an infinite span of interdependence.

3.3. Digression concerning data analysis: Hurst’s empirical results concerning
M T, ). Our original motivation in singling out fBm came from some empirical
results concerning M due to Hurst [6]. This author studied the records of water
flows through the Nile and through other rivers, the price of wheat and other
physical series such as rainfall, temperatures, pressures, thickness of tree rings,
thickness of varves (stratified mudbeds) and sunspot numbers.

His empirical conclusion is, in the first approximation, that the range is propor-
tional to T, where 1/2 < H < 1. This was a source of great surprise for statis-
ticians because models such as

Z(t, ) ] r(s, ) ds,

where Y(s, ) is stationary with summable covariance function, have a sequential
range asymptotically proportional to /. Thus, as may be seen in the discus-
sions of his papers, Hurst’s findings led some commentators to conclude that
the river flows cannot be represented by stationary stochastic processes. As is
shown in the next section, the existence of fBm with 1/2 < H < 1 indicates that
this conclusion is not necessarily correct. We shall, however, have to return to
Hurst’s evidence because his empirical evaluation actually deals with the se-
quential range after removal of the sample mean (see 5.10).

4. Continuity and differentiation. Since (3.2) tends to zero with r, BH(t, ) is
mean square continuous. This, however, does not tell us anything about the
sample paths.
POPOSITmN 4.1. B(t, o), 0 < H < 1, has almost all sample paths continuous
in any compact set).
Proof. If H > 1/2, the statement follows immediately from (3.2) and a theorem

of Kolmogorov’s (see Love [10, p. 519]). In any case we can choose/ such that
0 </c < H and note that (dropping the ’s in the notation)

r(H + 1/2)likE[ B,(t + r) B,(t)1lk

F(H + 1/2)lkE[ S.(r) B.(O)iX/k,

E [(r s)-- N(s)(-s)-l dB(s)

where N(s) 1 if s =< 0 and zero if s > O. Making a change of variable, the
above becomes

[(1 s)-- N(s)(-s)-] dB(s)

and we again apply Kolmogorov’s theorem.D
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FRACTIONAL BROWNIAN MOTIONS 427

The process BH(t, o) is not mean square differentiable (this follows by an
obvious modification of the next proposition), and it almost surely does not have
differentiable sample paths.
PROPOSITION 4.2. B(t, o) is almost surely not differentiable; in fact,

lim sup
tt

B.(t, o) B,(to, o)

with probability one.
Proof. By (3.1)(take BH(0) 0),

thus,

P{

P{A(t,) >= P{

P{limA(t.)} limP{A(t,,)}

Define the events

o) ’sup B.(s, o)A(t,

For any sequence t $ 0 we have

A (t, o) ::::) A (t.+,, o);

(t to)n-B.(1, o).

BH(1)i > t-a d},

which tends to one as n
Note that the proof goes through under the assumption of self-similarity.

4.1. Fractional Gaussian noises and approximations thereto. It is incon-
venient that fBm does not have a derivative. This difficulty is also encountered,
as is well known, in the case of ordinary Brownian motion. Many methods, not
always rigorous, have been evolved to give meaning to the concept of the ’,’deriva-

tive of Brownian motion," the constructs so obtained being called "white
Gaussian noises." Analogous approaches can be followed with the fractional
Brownian motions and they lead to what may be called "fractional Gaussian
noises."
The most elementary method of circumventing the fBm’s lack of derivative

is to smooth BH and introduce the random function

(4.1)

t+8

B,(t, ,; 6) -1 B,(s, o) ds

6>0,

B, t, o B. to o = to)"- {Bn(to q- 1, o) B( to o)}
to
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4 BENOIT B. MANDELBROT AND JOHN Vo VAN NESS

where

{-1 if 0-< t-<t,
ql (t) otherwise.

The function BH(t, 0; ) does have a stationary derivative, namely,

B,’(t, ; () -l[B,(t -t- , ) B,(t, o)]
(4.2)

B.(s, o) dq(t- s),

which is almost surely continuous, but surely nondifferentiable.
For small enough, BH(t, ) and BH(t, ; ti) are indistinguishable for many

"practical purposes," i.e., excluding the high frequency effects to which the non-
differentiability of B,(t, ) is due (see 7).
One can, thus, proceed step by step, replacing q by ever smoother kernels.

Finally, one could use an infinitely differentiable kernel , which vanishes outside
some finite interval and integrates to one. Then the kth derivative of

is

IB,(s, o)q(t s) ds

1) B,(s, )q() (t s) ds,

which is continuous and stationary for all positive integers/c. Following up this
approach, one can interpret B.’ as being not a random function but a "generalized
random function" in the sense of Schwartz distributions (see Gelfand and Vilen-
kin [3]). For practical purposes, it may be desirable to avoid Schwartz distribu-
tions, and we shall be concerned with determining whether finite differences of
B. are reasonable approximations of B.p.

4.2. Digression concerning some non-Gaussian fractional noises. The non-
Gaussian fractional functions of 3.2 are also, in most cases, nondifferentiable.
But ways may exist of defining a generalized differential, or of defining a differ-
ential after smoothing. Such constructs, when possible, may be called "fractional
non-Gaussian noises." There is no doubt that such noises are required to model
some of the phenomena listed in the Introduction.

5. Some correlations and their applications to the extrapolation and inter-
polation of B,(t, o). We pause to examine certain interesting properties which
fractional Brownian motion has with regard to extrapolation and interpolation.
This will give the reader more feeling for such processes and will help identify
problems for which fBm is a good model.

A very different generalization of processes directed towards low-frequency rather than
high-frequency effects is proposed in [14].
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FRACTIONAL BROWNIAN MOTIONS 429

5.1. The correlation between two increments of B(t, o). Let T, T1, and T2
be fixed and nonnegative. Then (dropping the o in the notation) compute
the correlation between the increments of B,(t) over the following time inter-
vals: T/2 to T1 and -T/2 to T2. One has

2E{[Bn(1/2T + TI) B.(1/2T)][B.(--1/2T) B.(--1/2T- T)]}

E[B.(1/2T + TI) B.(-1/2T T)] + E[B.(1/2T) B.(--1/2T)]

E[Bn(1/2T + T) Bn(-1/2T)]- E[B.(1/2T) B.(-1/2T- T)].
Thus, the desired correlation is

(5.1) 1 (T + T + T.)eH+ T- (T + T)’- (T + T.)"
2

If T > 0, we can write S T/T and S. T2/T and we see that the correla-
tion is only a function of the reduced variables S and $2 (as expected rom self-
similarity)"

(5.2) c(&, )
2

For all S and $2, this correlation is positive if 1/2 < H < 1 and negative if
0<H< . This is the first example of a series of distinctions based on the sign
of H 2"

5.2. Strong mixing. Now consider the least upper bound of the absolute
value of the correlation (5.1) over various sets of values of T, T1 and T. Fixing
T1 and T, we see that this absolute value attains a maximum for T 0. Then
varying TI/T2, we see that for T1 T it attains a maximum equal to
12’- 1 I. If T is fixed and >0, 12’- 1 is not an attainable maximum
but remains a least upper bound (corresponding to T T ).

This leads us to Rosenblatt’s [19] condition of strong mixing, a form of asymp-
totic independence. In the Gaussian case, Kolmogorov nd Rozanov showed
that strong mixing requires that a certain maximal correlation coefficient tends
to zero as the distance between the two time points tends to infinity. By self-
similarity and (5.1), that coefficient is bounded below by 12’- 1[ > 0
in the case of fBm. Therefore, strong mixing does not hold for the increments of
fBm, except in the classical Brownian case H 1/2.

Strong mixing was originally introduced as one of several conditions that a
random process must satisfy in order that the central limit theorem be applicable.
This question does not arise here, since the increments of fBm constitute a Gaus-
sian process and satisfy the central limit theorem trivially. The practical impor-
tance of strong mixing is therefore to be found elsewhere. To say that the incre-
ments of a fBm are not strongly mixing happens to be a convenient way of
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40 BENOIT B. MANDELBROT AND JOHN W VAN NESS

expressing the idea that the span of interdependence between such increments
is infinite (see end of 6.3).

5.3. Extrapolation and interpolation of B(t, ) from its values B(0, 0) 0
and B(T, ) with T > 0 to its values for < .< . Recall that if G1 and
G2 are two dependent Gaussian random variables with zero mean, then

(5.3)

Thus, by setting B(0) 0,

(5.4)

B.(T)]
BH(T)

E[BH(t)B(T)]
E[B.(T)]

EBbS(t) -b EB.( T) E[B.(t) BH( T)]
2E[B(T)]

This yields the interpolatory-extrapolatory formula

(5.5) E[B(t) B.( T)]
B,(T) 2T

By defining the "reduced" variable s t/T, (5.5) becomes

ElBa(sT) lB.(T)] 1[
_

1 s 1
B.(T) 2

=_ by definition

(see Fig. 1).
In the case of Brownian motion H 1/2, Q(s) is represented by a kinked

curve made up of sections of straight lines. However, if 1/2 < H < 1, Q,(s)
has a continuous derivative Q.’(s) which satisfies the following"

0 < Q.’(0), Q.’(1) < 1 and Q.’(1/2) > 1.

Finally, for 0 < H < 1/2, Q.(s) is differentiable except at s 0 and s 1, where
it has a cusp.

5.4. Extrapolation for large It I. For the Brownian case H 1/2, we have
that for all > T,

E[B(t, ) B(T, )] B(T,

Thus, the best forecast is that B(t, ) will not change. For 1/2 < H < 1, on the
contrary,

Q.(s) HI s ’-z for s large,

and the extrapolation involves a nonlinear "pseudo-trend" that diverges to
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FRCTIONAL BROIAN MOTIONS 431

H <I O<H< -
0

T

a:O

OH(r,

DH(S’B) 0
=S

0

Fro. 1. Freehand graphs of the shape of several important functions used in the text. The
function QH occurs in the interpolation and extrapolation of BH (5.3). The function CR(r, a)
is covariance of the process of finite differences Bz(t q- a, oa) B(t, oa), where is: a con-
tinuous time (6). The function Dr(s, ) occurs in 6.1. The differences between the two cases
0 < H < 1/2and1/2 < H < larestriking.

infinity. In the remaining case, 0 < H < 1/2,

QR(s) 1/2 for s large,

and the extrapolation has a nonlinear "pseudo-trend" that converges to

1/2[B,(0, o) q- B,(T, o)].

5.5. Extrapolation for large tl when E[B(t, o)] # 0. The problem of "vari-
able trends." In analyzing time series X(t, oo) without "seasonal effects," it
is customary to search for a decomposition into a "linear trend component"
and an "oscillatory component." The former usually is an estimate of

+ ,,
and it is interpreted as due to major "causal" changes in the mechanism generat-
ing X(t, oo). The latter, on the contrary, is taken to be an "uncontrollable"
stationary process, hopefully free of low-frequency components.
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432 BENOIT B. MANDELBROT AND JOHN W. VAN NESS

It is obvious that, in the case of fBm with H 1/2, difficult statistical problems
are raised by the task of distinguishing the linear trend At from the nonlinear
"trends" just described. In reality, fBm falls outside the usual dichotomy be-
tween causal trends and random perturbations.

5.6. Digression concerning data analysis. It is well known to data analysts
that the decomposition into trend and oscillation is difficult. For example, in
ex-post factum analyses of long samples of data, the interpolated trend often
appears to vary between successive subsamples. The usual way out of this
quandary is to assume that there are nonlinear trends or that the series is other-
wise nonstationary. Examples are in the economic literature and in the discus-
sions of Hurst’s work.

However, the same phenomena can also be explained by assuming that
X(t, o) has the overall characteristics of fBm. A confirmation of this conjec-
ture is found in the empirical observation that the estimated spectral density is
very "red" for these series, meaning that, no matter how large the sample dura-
tion T, the spectrum has a large amount of energy in frequencies not much
greater than lIT (see [1] and [4]). Although these two difficulties were ob-
served independently, they are closely related to each other and fBm provides
an excellent context in which to study their interplay.

5.7. Interpolation. In the Brownian case, the interpolate is of course linear.
In the case 1/2 < H < 1 the interpolate has the form in Fig. 1. The slope QH’(s)
has a maximum value at s 1/2 equal to H22-’. This, in turn, is maximum for
H 1/2 log2 e, where it turns out to be 1.06. Thus, QH(s) for 0 < s < 1 is quite
close to linear if 1/2 < H < 1. Lastly, if 0 < H < 1/2, the interpolate has an S-shape
which is inverted with respect to that of the previous case (see Fig. 1).

5.8. The variance of BI(t, o) conditioned by B,(O, o) and B,(T, oo). The
conditional expectation is the interpolate and extrapolate having smallest
variance. The usual formulas for the Gaussian case tell us that given B.(0,
and B.(T, ) the variance of B,(sT, ) is

For s large this tends t0 Vu(Ts). Thus, the standard deviation, ,, is asymp-
totically proportional to s u. Moreover, as s ,

fs- if < H < 1,
E[B(sT,)IB(T,)] if 0 < H < .

Note that this ratio always increases without bound as s increases.

5.9. Conditional s-s property. While on the subject of conditional random
variables we might mention a property which we call conditional self-similarity.
This concept plays an important role in the theory developed in [14]. Let us look
at the random function

U.(h. o; T.B.(T. oo)) T-’{[B.(Th. ) B.(T. o)] Q.(h)B.(T. o)}.
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FRACTIONAL BROWNIAN MOTIONS 433

where the notation in square brackets has the usual meaning, e.g., if
B(T, o) b, then [B(Th, )IB(T, o)] is the restriction of B(Th, ) to
{IB(T, ) b} with the corresponding conditional probability measure.
Since U is Gaussian, it is determined by its mean and covariance matrix. The
former vanishes and the latter is independent of T andB( T, o). This interesting
s-s property differs from that discussed in 3 by the presence of the variable con-
ditioning event B( T, ).
Among the random functions of the form

T-{[B(hT, ) B(T, )] Q(h)B(T, )},

the one with Q(h) Q,(h) has minimum variance and is the only one where
the value is independent of B.(T, ).

5.10. Second data alysis digression concemg Hst’s problem. In Hurst’s
study of the range (as in the study of trends discussed in 5.5) it is impossible to
assume that the mean of X(t, ) is known. If we let B.(0, ) 0 and

.(t. ; A) B.(t. ) + tA

and do not assume that the constant A.is known, we are in a corresponding situa-
tion. If A is unknown, it must be estimated. By symmetry, reasonable estimate is

A= I(T,;A),
which when substituted into the interpolatory-extrapolatory formula yields

[,(hT, ; A) ],(T, ; h)] h.(T, ; A).

In as far as the range is concerned, one is led to consider

Mn*(T, s, ) max [,(hT,

min [(hT,
0hs

which can readily be seen to be independent in distribution of T and to satisfy
the s" law. This helps further explain the empirical finding of Hurst.
The results of 5 could, of course, be easily generalized to cases where the

process is given ut more han two points. The formulas become much more
complicated, but it is worth noting that they again are functions of certain
"reduced" wriables.

6. The derivative of the smooed process B,(t, w; 5). The deriwtive process,
B,(t, ; 5), is itself interesting as a stochastic model. Being stationary, it has a
covariance of the form

C,(; 5) E[B,’(t, ; ) B,’(t + v, ; 5)].

Without loss of generality assume B,(O, ) 0; then

C(r;)= (+ -2 + -1
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434 BENOIT B. ltNDELBROT AND JOHN W. VAN NESS

If

C.(r, 5) V.H(2H 1)l r -.
This has the same sign as H 1/2. It tends to zero as Iv[ , which (by a
theorem of Maruyama [18]) means that B’(t, ; ) is weakly ming and ergodic.
owever, from our remarks in 5, B.(t, ; ) is not strong mixing (this follows
from the representation (4.2)).
For 0,

C(0. ) V’-;
for sm values of r /,

c.(o; ) .(,; ) v.,-’.TM.
if { < H < 1, Cu(r; 6) is positive and fite for all r, and one has

If 0 < H < {, C.(r; 6) changes sign once from positive to negative, a value
of r proportional to , and one has

.. Nalan B’(, ) d B(, ). Given {B(, ), < <
he leasg squares estimate of B( + r, ) is, wih N() defined p. 426,

( + ’ ) r(g + )
[( + ")-’ (- 1)-" g() a(’ )1.

If r > 0, infinitely dNereniable (mean square or a.e.) in r. hus,

a,( + , ) g
( + )-, a(,).a r(g + )

Define the decay kernel D(t, 5) as

[r(H + 1/2)]-t-D.(t; ) I.[r(H + 1/2)]--l[tH--1/$
Then

for 5,
(t-- 5)rz-/] for > 5.

B.’(t, o; 5) D.(t s; 5) dB(s q- 5, o),

which is a one-sided moving average. It follows that the least squares predictor of
B.(t -b r, ; 5) given {B(s, o), --o < s <= t} is

/’( + , o; ) D,( + ; ) a( + , o),

which tends to/g’ (t -b r, o) as 5 --* 0.
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FRACTIONAL BROWNIAN MOTIONS 435

A fundamental relation between the "dynamic" law of relaxation of pertur-
bations D and the "static" law of the distribution of the spontaneous fluctua-
tions as expressed by the covariance CH(t; 6) is the well-known formula:

C.(t; 6) I Dn(s, )D.(s zt- t, it) ds.
ao

6.2. Digression concerning data analysis. A primary reason for the practical
importance of fractional Brownian-motion as a model arises from the fact that
power function decay laws have often been observed by experimentalists. It
seems, in fact, likely that they will be useful even in cases where at present the
exponential law D(s) e-’ is used but has been adopted only because of its
tractability, and because the span of observable events is too short to conclude
reliably otherwise. The exponential decay law arises in the classical case when
X(t, w) is a stationary Markov-Gauss process. Then, the "age of perturbation"
is not important, since for any 0 < t0 < the percentage attenuation between 0
and can be obtained as the product of two independent decaysbetween 0 and
t0, and between t0 and t. Things are very different in the case of fractional
Brownian motion, when the age is critically important in assessing future be:
havior. In economics, for example, an age-dependent law like s- seems prefer-
able to the exponential, both as a law of depreciation or as a way of expressing the
attenuation of the effects of way past "causes." (We say s- and not s-,
because we think of the "derivative" of

6.3. Some conditional expectation least squares predictors. Given B(0, o) 0
and B’ (0, o; ), it is illuminating to resume in terms of C(t, ) certain of the
extrapolation problems discussed in 5. We clearly have

:[B,.’(s,.,; ) B.’(O, ; )] C’.(s; n)
Bn’(O, o; 6) C.(0; 6)"

Integrating .from 0 to we obtain

E[Bn(t. w; i) BH(0. o; i) Bn’(0.w;ti)]
B.’(0. o; 6) C.(0; 6)

Consider, then, the limit for -o o of the expectation written on the left-hand
side. This limit is infinite when 1/2 < H < 1 and it vanishes when 0 < H < -It is interesting in this light to examine briefly a measure of the span of memory
of a process, proposed by G. I. Taylor. [20, p. 425], namely, the integral of the
covariance function. If 1/2 < H < 1, this measure correctly asserts that the
memory of the process is infinite; if 0 < H < 1/2, however, Taylor’s measure
asserts that the memory vanishes, while in fact (as we saw in discussing strong
mixing) it is infinite.

7. The spectra. A very interesting frequency representation of the incre-
ments of fractional Brownian motion was obtained by Hunt [5, p. 67]-

B.(t o) BH(ta o) Vn* (e’’x’’ e"xta)X--xt dB(X. o).
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436 BENOIT B. MANDELBROT AND JOtt W. VAN NESS

where VH* is a constant. This suggests that BH(t, ) has a "spectral density"
proportional to -.-1. Spectral densities of nonstationary random functions are,
however, difficult to interpret. It is tempting to differentiate B. and claim that
B’ has a spectral density proportional to 1-’. If 1/2 < H < 1, this formal density
is such that it becomes infinite for 0.

Spectral densities proportional to kl-.. near k 0, where 1/2 H 1, are very
important in electronics [13]. The proportionality of the spectral density to 1-.
also suggests that there is infinite energy at high frequencies. Both the derivative
B and its spectrum can be interpreted via Schwartz distributions. These are not
needed, however, to examine the spectrum of B.t (t, ; 6).
The spectral density of B.t (t, ; 6) is

G.’(,; 6) 4 Ca(s; 6) cos (2hs) ds

2V.6- [(s + 6)a 2sa + Is 613" cos (2hs) ds.

A sort of self-similarity property of B.’ is expressed by the fact that one can
define a function G* by writing

G.’(X; 6) 2 . .
For small values of k6 one has

Gr*(6x) K.(2-6,)1-t,

K, rH(2H-- 1) [cosr(H- 1)1-1 > 0.
r(2- 2H)

Thus, G’(x; 6) behaves like 2K.VH(2X)1-’. For fixed , > 0, lim0 Ga’(X, 6)
is positive and finite and equal to the formal spectral density of B,’. In other
words, changes in the value of 6 involve detail whose energy is primarily at high
frequencies.
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