Homework February 3, 2015 (to be returned on February 10)

1) Consider the random variable X that takes seven possible values with probabilities $\vec{p}=(0.49,0.26,0.12,0.04,0.04,0.03,0.02)$.
(a) Find a binary Huffman code for X; (b) Find the expected code length for this encoding; (c) Find a ternary Huffman code, i.e. using symbols $0,1,2$, for X; (d) Find a ternary code for the case where the seventh event is impossible, i.e. the possible symbols are just six, and the probabilities $\vec{p}=(0.49,0.26,0.12,0.05,0.05,0.03)$. You will run short of symbols and will need a dummy one appropriately placed...

What is the number k of merges for a D-ary code with n (non-dummy) symbols? How many dummy symbols must be included given n and D ?
2) Find a probability distribution $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ such that the Huffman construction can lead to two optimal codes that assign different lengths $\left\{\ell_{i}\right\}$ to the four symbols.
3) Show that the procedure defined by the Shannon-Fano-Elias coding has expected length $<H(X)+2$ bits. Show that the code is prefix-free, namely that the intervals $\left[0 . z_{1} z_{2} \ldots z_{l}, 0 . z_{1} z_{2} \ldots z_{l}+1 / 2^{l}\right)$ defined by the various codewords $z_{1} z_{2} \ldots z_{l}$ (where l denotes their length) are disjoint.
4) Lempel-Ziv coding.

The basic idea for this method of compression is to replace a substring with a pointer to an earlier occurrence of the same substring. This idea is widely used for data compression, e.g. for the compress and gzip commands. We shall discuss here just a few examples. If you are interested in proofs of optimality and performance you can find a detailed discussion in Chap. 13 of Cover and Thomas book.

A string 1011010100010 is parsed into an ordered dictionary of substrings that have not appeared before as follows: $\lambda, 1,0,11,01,010,00,10$, where we include the empty substring λ and the substrings are ordered by the order in which they emerged from the source. After every comma we look ahead until we have found a substring that has not been marked off before. This new substring will be one of those previously marked plus one bit (this is why the λ substring is included). We can then encode the new substring by giving a pointer to the existing substring shorter by 1 bit and by the extra bit by which the new and the old substring differ. If at the n-th bit of the string we have enumerated $s(n)$ substrings we can encode the pointer by a
maximum of $\left\lceil\log _{2} s(n)\right\rceil$ bits.
The code for the above sequence is: $\lambda \mapsto(,) ; 1 \mapsto(, 1) ; 0 \mapsto(0,0)$; $11 \mapsto(01,1) ; 01 \mapsto(10,1) ; 010 \mapsto(100,0) ; 00 \mapsto(010,0) ; 10 \mapsto(001,0)$. The empty symbol does not need any encoding and the first pointer (of the symbol 1 for the string above) is empty because there is just λ as substring in the dictionary. The symbol 00 is for instance encoded as above because the existing substring prefix is 0 (and its pointer is 2, i.e. 010 in binary) and the extra bit is 0 . The encoded string is then 100011101100001000010 , which is actually longer than the original one as no major redundancy was present.
(a) Encode the string 000000000000100000000000 using the basic algorithm described above.

