
Homework February 3, 2015 (to be returned on February 10)

1) Consider the random variable X that takes seven possible values with
probabilities ~p = (0.49, 0.26, 0.12, 0.04, 0.04, 0.03, 0.02).

(a) Find a binary Huffman code for X; (b) Find the expected code length
for this encoding; (c) Find a ternary Huffman code, i.e. using symbols
0, 1, 2, for X; (d) Find a ternary code for the case where the seventh event
is impossible, i.e. the possible symbols are just six, and the probabilities
~p = (0.49, 0.26, 0.12, 0.05, 0.05, 0.03). You will run short of symbols and will
need a dummy one appropriately placed...

What is the number k of merges for a D-ary code with n (non-dummy)
symbols? How many dummy symbols must be included given n and D?

2) Find a probability distribution (p1, p2, p3, p4) such that the Huffman
construction can lead to two optimal codes that assign different lengths {`i}
to the four symbols.

3) Show that the procedure defined by the Shannon-Fano-Elias coding
has expected length < H(X) + 2 bits. Show that the code is prefix-free,
namely that the intervals [0.z1z2 . . . zl, 0.z1z2 . . . zl + 1/2l) defined by the var-
ious codewords z1z2 . . . zl (where l denotes their length) are disjoint.

4) Lempel-Ziv coding.
The basic idea for this method of compression is to replace a substring

with a pointer to an earlier occurrence of the same substring. This idea is
widely used for data compression, e.g. for the compress and gzip commands.
We shall discuss here just a few examples. If you are interested in proofs of
optimality and performance you can find a detailed discussion in Chap. 13
of Cover and Thomas book.

A string 1011010100010 is parsed into an ordered dictionary of substrings
that have not appeared before as follows: λ, 1, 0, 11, 01, 010, 00, 10, where we
include the empty substring λ and the substrings are ordered by the order
in which they emerged from the source. After every comma we look ahead
until we have found a substring that has not been marked off before. This
new substring will be one of those previously marked plus one bit (this is
why the λ substring is included). We can then encode the new substring by
giving a pointer to the existing substring shorter by 1 bit and by the extra
bit by which the new and the old substring differ. If at the n-th bit of the
string we have enumerated s(n) substrings we can encode the pointer by a

1



maximum of dlog2 s(n)e bits.
The code for the above sequence is : λ 7→ (, ); 1 7→ (, 1); 0 7→ (0, 0);

11 7→ (01, 1); 01 7→ (10, 1); 010 7→ (100, 0); 00 7→ (010, 0); 10 7→ (001, 0).
The empty symbol does not need any encoding and the first pointer (of the
symbol 1 for the string above) is empty because there is just λ as substring
in the dictionary. The symbol 00 is for instance encoded as above because
the existing substring prefix is 0 (and its pointer is 2, i.e. 010 in binary) and
the extra bit is 0. The encoded string is then 100011101100001000010, which
is actually longer than the original one as no major redundancy was present.

(a) Encode the string 000000000000100000000000 using the basic algo-
rithm described above.

2


