$225 B-$ Winter 2014
REVIEW
Maps of Manifolds

Q $: M \rightarrow \mathbb{M}^{\prime} \quad$ is a map between monitilds
(is a Crop if the comparing nap of Rooldinato)" C_{i}^{r}

$$
\text { so } \left.y \circ p \cdot x^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { s } \mathbb{C}^{n}\right)
$$

Mole s:

- In gal hat one-to-one
- Eves if one-to-one may not have an inverse So it goes one way.
let $f: m^{\prime} \rightarrow \mathbb{R}$ a Lection on m^{\prime}
(a"calar"field")
the ϕ defies a faction on M, $\phi^{*} f$

$$
\phi^{*} f: M \rightarrow R
$$

defied by $\quad M \xrightarrow{\Phi} M^{\prime} \rightarrow \mathbb{R}$
re if $p \in M$ thur $\phi(p) \in M^{\prime}$ and $f(\phi(p)$) is de hud. (This is a "pull-back" of a zeoform)

Go the other direction

Dy mopping curves $\lambda(t)$ i m ito m^{\prime} we can get mops of tangent vectors.
If $T_{p}(m)$ is the tangentspace tom at p then

$$
\theta_{*}: T_{p}(m) \rightarrow T_{\phi(p)}\left(m^{\prime}\right)
$$

This is a liner frastoation betureentle vector spaces: if x^{M} and y^{a} are cordordinats on puttees of $M \times M^{\prime}$, then He curve is $x^{\mu}(t)$, moped ito $y^{a}\left(x^{\mu}(t)\right)$ and

$$
\left.\frac{d y^{a}}{d t}\right|_{0}=\left.\left.\frac{\partial y^{a}}{\partial x^{a}}\right|_{p} \frac{d x^{M}}{d t}\right|_{0}
$$

or $\quad N^{a}=\left.\frac{\partial y^{a}}{\partial x^{\mu}}\right|_{p} M^{\mu}$ whee $\vec{N} \in T_{\left.p_{p}\right)}\left(m^{\prime}\right)$ $\vec{M} \in T_{p}(m)$
so ϕ_{\rightarrow} is Mst the natix $\left.\frac{\partial r^{a}}{\partial x^{\mu}}\right|_{p}$. and me wite $\vec{N}=\phi_{*} \vec{M}$

Since a vector \vec{M} is a directional dervative, we hee $\vec{\mu}(f)$ efied.
A - vectorgives a map of any Retion f at ρ isto a number. If $\vec{M}=\frac{\partial}{\partial t}$ kn $\vec{M}(f)=\left.\frac{A}{\partial t}\right|_{p=\lambda\left(t_{0}\right)}$ ie the denvatie a boj $\lambda(t)$
Explicitly $\left.\frac{d f}{d t}(x \gamma t)\right)=\frac{d f}{\partial x^{n}} x^{\mu}$ so the action of the vector \vec{A} with coirdules am on f is $\vec{A}_{(Q)}=a^{\mu} d$, f / p).

$$
T_{p}(m) \stackrel{\phi_{*}}{\longrightarrow} T_{\phi \rho}(m i) \longrightarrow \text { detes } \vec{N}(f)=\phi_{*} \vec{M}(f)
$$

$$
\left.\vec{M}\left(\phi^{\star} f\right)\right|_{p}=\left.\phi_{*} \vec{M}(f)\right|_{\phi(\varphi)}
$$

check:

Studentis shald alway, flesh at relations interms of coordincte potals, to make sure they inderstand.

Goon to 1 forms: define pull-back

$$
\phi^{*}: T_{\phi(p)}^{\infty}\left(m^{\prime}\right) \rightarrow \tau_{p}^{\star}(m)
$$

by requiring the contraction is mapped parerly: $\phi^{*}: \tilde{\omega} \rightarrow \phi^{+} \omega$

$$
\left(\phi^{*} ; \quad \tilde{\omega}^{*} T_{(q)}^{*}\left(m^{\prime}\right) \quad \rightarrow \quad \rightarrow * \widetilde{\omega} \in T_{1}^{*}(m)\right)
$$

with $\tilde{\omega}\left(\phi_{*} \vec{M}\right)=\phi^{*} \tilde{\omega}(\vec{M})$

$$
\begin{aligned}
& T_{p} \xrightarrow{\phi_{x}} T_{p(p)} \\
& M \xrightarrow{\infty} M^{\prime} \\
& T_{p}^{*} \phi^{*} T_{p}^{*}(p)
\end{aligned}
$$

Recall $\tilde{\omega}(\vec{N})$ is a number, ie $\tilde{\omega}$ is a map fro $T_{1} \rightarrow R$. (In components $\tilde{\omega}(\vec{N})\left|=a_{\mu}\right| N_{p} \|_{p}$, the index contraction.
Sone texts write $\langle\tilde{\omega}, \vec{N}\rangle$).
So the def above gros the cation of $\phi+\tilde{\omega}$ on vectors M T in in terns of the action of $\tilde{0}$ on vectors $\vec{N} \in T\left(m^{\prime}\right)$.
(In components $\left(\phi^{*} \tilde{\omega}\right) M^{\mu}=\omega_{a} N^{a}=\omega_{a} \frac{\partial y^{a}}{\partial x^{\mu}} M^{\mu}$
that is $\left.\left(\phi^{*} \tilde{\omega}\right)_{\mu}=\omega_{a} \frac{\partial y^{a}}{\partial x^{\mu}}\right)$.
In particular $\quad \varnothing^{*}(d f)=d\left(\phi^{*} f\right)$
(In upponeb of $=f_{1 a} d y^{a} \quad \phi^{*}(d f)$ $f_{1 a} \frac{\partial y^{a}}{\partial x^{n}} d x^{\mu}$ while $d\left(\phi^{*} f\right)=d f(y(x))=\left(\frac{\partial f}{\partial y^{a}} \frac{\partial y^{a}}{\partial x^{\mu}}\right)\left(x^{\mu} \quad-1\right)$.

Clearly this can be extended to tensors of type T_{0}^{r} and T_{r}°

$$
\left.\phi_{*}: T_{0}^{r}(\rho) \rightarrow T_{0}^{r}\left(x_{1}\right)\right)
$$

recall $T \in T_{0}^{\prime}(p)$ paction 1 -forms $T\left(\omega_{1}, \ldots, \omega^{\prime}\right) \in \mathbb{R}$
so $T \rightarrow \phi_{*} T$ by $T\left(\phi^{*} \tilde{\omega}, \ldots, \phi^{*} \tilde{\omega} r\right)=\phi_{*} T\left(\tilde{\omega}, \ldots, \tilde{\omega}^{r}\right)$
And $T \in T_{r}^{0}$ acts on r vectors so $\left.\phi^{*}: T_{r}^{0}\left(\phi, \varphi_{1}\right) \rightarrow T_{r}^{0} \varphi_{p}\right)$

$$
\phi^{*} T\left(\vec{M}_{1}, \ldots, \vec{M}_{r}\right)=T\left(\phi_{*} \vec{M}_{1}, \ldots, \phi_{*} \vec{M}_{r}\right)
$$

In opponents: $T^{a_{1} \cdots a_{r}}=\frac{\partial y^{a_{1}}}{\partial x^{\mu_{1}}}-\frac{\partial y^{a_{r}}}{\partial x_{r}^{\mu_{r}}} T \mu_{1} \cdots \mu_{r}$

$$
\phi^{*}: \quad T_{\mu_{1}} \ldots \mu_{r}=\frac{\partial y^{a_{1}}}{\partial x^{\mu_{1}}} \cdots \frac{\partial y^{a_{r}}}{\partial x^{\mu_{r}}} T_{a_{1}-a_{r}}
$$

Dots Rank: \varnothing is $m \rightarrow m^{\prime}$ is rank k (atp) if the dimension of the tangent space at $\left.\phi \phi_{p}\right) \quad\left(\phi_{\pi}(T,(m))\right.$ is k
Infective \& above is in jectine if if rank =dimension of M

$$
k=n .
$$

(I this case $n \leq n^{\prime}$).
Exercise: If \varnothing is infective then no non-zerovectors in $T_{p}(m)$ are moped to zero by ϕ_{x}

Surective: ϕ is surechne of p if rank of ϕ dimasion of M^{\prime}

$$
k=n^{\prime}
$$

(So thet $n \geqslant n^{\prime}$)
(Immersion
for each $p \in M$ the is $U \subset M$ with $p \in U$

$$
\rightarrow \phi^{-1}: \phi(u) \rightarrow u
$$

(skip immersion itt subtle onlywen ar propetosenoter)
If ϕ is injective $\forall p \in \mathbb{M}$ we say \varnothing is an immersion Cactualy, defin of innosion is gina in ters of existance of differentible innarge of ϕ, adter equivalace of sthents is prowed) $\Rightarrow \phi_{x} \quad i T_{p} \rightarrow \phi_{x}\left(T_{p}\right) \subset T_{\phi(r)}$ is an 1somorphism.

Then $\phi(m) \subset m^{\prime}$ is an n-dimensionel immersed submanipld in m^{\prime} '.

- This is one-oue laclly, bat nay not be so globilly.

An imbedding is, bisically, an immersion, thetis one-one (actilly a homeomorphise on to its maje).

Diffeomorphism: one-to-one mop $\phi: M \rightarrow m^{\prime}$ uth unvere $\phi^{-1}: M^{\prime} \rightarrow M$.

Ten $n=n^{\prime}=k, \phi$ is injective and surgective.
Thimi If ϕ_{x} is injective and sugectreatp then there is an open $U C M, p \in U+\phi: U \rightarrow \phi(U)$ is a diffeomophism.

Thet is if $\phi_{x}: T_{p} \rightarrow T_{(\varphi)}$ is an somophism
then of is a lad deffeomorphism.
with a diffeomorphisn we can go with $C_{*}: T_{p}(m) \rightarrow T_{c p}\left(m m^{\prime}\right)$ ad with $\left(\varnothing^{-1}\right)^{*}: T_{p}^{*}(m) \rightarrow T_{\psi(p)}^{*}\left(m^{\prime}\right)$

So for any teusor "Ts

$$
\left.T\left(\tilde{\omega}^{1}, \ldots, \tilde{\omega}^{s}, \vec{M}_{1}, \ldots, \vec{M}_{r}\right)\right|_{p}=\phi_{*} T\left(\varphi^{-1}\right)^{*} \tilde{\omega}_{1},-\left(\phi^{-1}\right)^{*} \tilde{\omega}^{s}, \phi_{*} M_{1}, \phi_{-} M
$$

Difteren traton wThat a connection
Two tyres and naturally;

- Extenur denvative
- Lae Renvatine

Extenor denvative $d: \Omega_{s} \rightarrow \Omega_{s+1}$
Ω_{s} : I ineerspace of s-forms $\tilde{a}=a_{\mu_{1} \ldots \mu_{n}} d x_{\mu_{1}} \ldots d x^{\mu_{n}}$
($\Omega, \subset T_{s}^{0}$, is the totally antisymmetic $T_{;}^{\circ}$ teusors).
Reall if $\tilde{4} \times \tilde{b}$ are $p<$ qform, $\hat{a}_{\wedge} \wedge \tilde{b}=(-1)^{\text {iq }} \tilde{b} \wedge \widetilde{a}$.
d ach by

$$
\begin{aligned}
d \tilde{a} & =d g_{\mu_{1} \ldots \mu_{3}} \wedge d x^{\mu_{1}} \wedge \ldots d x^{\mu_{3}} \\
& =\frac{\partial q_{\mu_{1}}-\mu_{3}}{\partial x^{2}} d x^{\sigma} \wedge d x^{\mu_{1}} \ldots \lambda d x^{\mu_{3}}
\end{aligned}
$$

Exercise: show

$$
\begin{aligned}
& \text { - this is indeord a } F_{s+1}^{o} \text { (tensor) Cobrias from first line). } \\
& \text { - } d(a \wedge \bar{b})=d \hat{a} \wedge \bar{b}+(-1)^{5} a \wedge d b \quad \text { if a is ans-form } \\
& -d(d \tilde{A})=0 \\
& -d\left(\phi^{*} \hat{a}\right)=\varnothing \times(d \hat{a})
\end{aligned}
$$

Useful integraton psulti (reminder)
if ϕ is a diffeomorphism $\quad \int_{m} \tilde{a}=\int_{m^{\prime}=\phi(m)} \theta_{x} \tilde{a}$
and \tilde{a} is an u-form and \tilde{a} is an n-form

$$
(n=\operatorname{dim} m)
$$

If \hat{b} is an $n-1$ form

$$
\int_{o m} \tilde{b}=\int_{m} d \tilde{b} \quad \text { stoke's theonem. }
$$

Lie denvatre
lext
Thn.
(Fudetilh \Leftrightarrow curver(t) (Fualfeers)

Whath locilly, wih coordinter $x^{4 \prime}, \lambda(1)$ is $x^{\text {th }}$ t) anduith tayent $\frac{d x^{\mu}}{d t}$; so the thoren above is the statert of unques of solution of

$$
\left.\frac{d x^{\mu}(t)}{d t}=M^{\mu}(x / t)\right)
$$

$\lambda(1)$ is the integnl curre of \vec{M} "
Given \vec{M} we can constuct a diffeomorphism ϕ_{t} of M into itself (actally fron small opon neishborhadso $U \rightarrow p$ nom m), thit maps p isto the point alog the curve a distance pannetert away

(Note ϕ_{t} fors a one panmeter local gap of diffeomedphisu.

$$
\left.\phi_{t+s}=\phi_{t} \circ \phi_{s}=\phi_{s} \circ \phi_{t} \quad \phi_{-t}=\left(\phi_{t}\right)^{-1} \quad \phi_{0}=e \operatorname{isih} t y\right)
$$

Fron Q_{t} costat $\varphi_{t *}: T_{i}^{\prime}(p) \rightarrow T_{i}^{r}\left(\ell(p)^{\prime}\right)$

$$
\left.\left.T\right|_{p} \phi_{R} T\right|_{\phi(p)}
$$

Skee ϕ_{t} is a dtteorophish, $\phi_{t x}$ is as isomedphimm, we can directly appae $\Phi_{t \pm}$ with T. Retre Lie dusatre at phy

$$
\mathcal{L}_{\vec{M}} T=\lim _{t \rightarrow 0} \frac{1}{t}\left[\phi_{t \times} \pi_{p}-T_{p}\right]
$$

Note: bithets.

Dropatas.
(1) If $T \in T_{s}^{r}(p) \Rightarrow \mathcal{L}_{\mu} T \in T_{s}^{r}(p)$
(ii) $Z_{\vec{m}}$ is linear
(iii) LA preserves contrations
(iw) $\quad \mathcal{L}_{\vec{m}}(T \otimes S)=\mathscr{L}_{\vec{m}} T \otimes S+T \otimes \mathscr{L}_{\vec{m}} S$
(w) $L_{\vec{M}} f=\vec{M}(f) \quad(f$ a fuctio $f: M \rightarrow \mathbb{R})$.
$\mathcal{Z}_{v} W$
Start from $\underset{\substack{\text { and } \\ \times \mathbb{R}^{n}}}{\longrightarrow} \underset{R^{n}}{\longrightarrow} \underset{\text { y }}{\rightarrow}$
with ϕ_{t} the integral curve of $\left.\vec{V}, \frac{d x^{\mu}}{d t}=V^{\mu}(x / t)\right)$
For small t his is $x^{\mu}(t)=x^{\mu}(0)+t V^{\mu}\left(x^{\nu}(0)\right)$.
Starting from x^{μ}, the coordinate for p, his is $x^{\mu}(t)=x^{\mu}+t v^{\mu}\left(x^{\nu}\right)$.
So $y^{\mu}=x^{\mu}+t V^{\mu}\left(x^{\mu}\right)$ (to order t).
Now for $Z_{V} W$ we need:

So we take the vectorforld \vec{W} at $\phi_{t}(p), W^{\prime \prime}\left(x^{\mu}+t V^{\mu}\right)$ and push forward by $\phi_{-t}:\left(\left.\phi_{t-t} W^{a}\right|_{p}=\left.\left.\left.\frac{\partial x^{a}}{\partial y^{n}}\right|_{\left.d_{+1}\right)}\right|_{d_{t}}\right|_{d_{t}(p)}\right.$, where $x^{a}=y^{a}-t V^{a}(x)$ with y the coordinate of $\phi_{t}(\rho)$.

That is, $\left.\quad \frac{\partial x^{a}}{\partial y^{a}}\right|_{\left.\phi_{t \rho}\right)} \delta_{\mu}^{a}-\left.t v_{i, \mu}^{a}\right|_{\phi((\mu)}$

So inter) of coordinates at p.

$$
\left.\left(\phi_{-t \times} W\right)^{a}\right|_{r}=\left(\delta_{r}^{a}-t V_{r}^{4}(x+t v)\right) W^{M}(x+t V)
$$

Now $\mathcal{L}_{V} W=\operatorname{lom}_{t \rightarrow 0} \frac{1}{t}\left(\left.\left(d_{-x} W^{a}\right)\right|_{\rho}-W_{p}^{a}\right)=V^{\mu} \partial_{\mu} W^{a}-\partial_{\mu} V^{a} W^{\mu}$

Note, with $\vec{V}=V^{N} \partial_{\mu}$ and $\vec{W}=W^{M} \partial_{\mu}$ then

$$
\begin{aligned}
{\left[v^{\lambda} \partial_{\lambda}, w^{\nu} \partial_{\nu}\right] } & =v^{\lambda} \partial_{\lambda} w^{\nu} \partial_{\nu}-w^{\lambda} \partial_{\lambda} v^{\nu} \partial_{\nu}=\left(v^{\lambda} \partial_{\lambda} w^{v}-w^{\lambda} \partial_{\lambda} V^{\nu}\right) \partial_{\nu} \\
\Rightarrow \partial_{\vec{v}} \vec{w} & =[\vec{v}, \vec{w}]
\end{aligned}
$$

Look clowly at $Z_{v}(t)$
Recall $\quad m \rightarrow m^{\prime} \rightarrow \mathbb{R} \Rightarrow \phi^{2} f: m \rightarrow \mathbb{R}$ is $\phi^{*} f=f \circ \phi$ o, $d^{*} f(p)=f(\phi(p))$.

Also if ϕ is a diffeomorphism the $m \underset{\phi^{-1}}{\underset{\leftarrow}{\underset{~}{\leftrightarrows}} M^{\prime}}$ The push forward of the inverse is uss the pull-buck:

$$
\left(\phi^{-1}\right)_{\star} f: m \rightarrow \mathbb{R} \text { is } \quad \phi^{*} f: m \rightarrow \mathbb{R}
$$

For $\mathcal{L u t}^{\prime}$ we need $\left.\left(\phi_{-t y} f\right)\right|_{p}$:

$(\phi+t \pm f)_{p}$ joist say, it i he function that maps p to be inase under of $\phi(p)$

$$
\text { or } \left.f\left(\phi_{t}(p)\right) \Rightarrow \mathcal{Z}_{v}(f)=\frac{1}{t}\left(f\left(\phi_{+p}\right)\right)-f(p)\right)=\frac{1}{t}(f(x+V t)-f(x))=V^{\mu} \partial_{\mu} f
$$

The def of $\mathcal{L v}_{v}: \quad \mathcal{L}_{v} T=\operatorname{lom}_{t \rightarrow 0} \frac{1}{t}\left[\left.\phi_{-t *} T\right|_{p}-\left.T\right|_{p}\right]$
$J_{v} \perp^{\text {recall that }}\left(\phi_{-t}\right)_{x}$ is a push-formad from heverghbothod of $\phi_{t}(p)$ to p. Which is the same as a pull-back from p to $\phi(p)$. Which is the pie above: $\mathcal{Z}_{v}(f)=v^{\mu} \partial_{\mu} f$

$$
\begin{aligned}
& F_{\text {Mill }}, \mathcal{L}_{V}\left(\omega_{\mu} W^{\mu}\right)=V^{\mu} \partial_{\mu}\left(\omega_{\nu} W^{\nu}\right)=\mathcal{L}_{V}\left(\omega_{\mu}\right) w^{\mu}+\omega_{\mu} \mathcal{Z}_{V}\left(w^{\mu}\right) \\
& \partial_{V}\left(\omega_{\mu}\right) w^{\mu}=V^{\mu} \partial_{\mu}\left(\omega_{\nu} W^{V}\right)-\omega_{\mu}\left(V^{\nu} \partial_{\nu} W^{\mu}-\partial_{\nu} V^{\mu} W^{v}\right)=\left(V^{\mu} \partial_{\mu} \omega_{\nu}+\partial_{\nu} V^{\mu} \omega_{\mu}\right) W^{\mu}
\end{aligned}
$$

Cut LI $\overrightarrow{\mathrm{M}} \overrightarrow{\mathrm{W}}$ licitly:
This page (except last line)
 superseded by previous two

Recall

thu $\left.\quad \vec{w}_{p} \rightarrow \phi_{*} \vec{W}\right|_{\varphi_{p}}$
mes $\left.\quad W^{\mu} \rightarrow\left(\phi_{*} W\right)^{a}\right|_{\phi(p)}=\left.\left.\frac{\partial y^{a}}{\partial x^{\mu}}\right|_{p} W^{\mu}\right|_{p}$
Moreover, for our case $\phi_{t *}$ at p is what? Take

$$
\begin{gathered}
m \xrightarrow{\phi_{-t}} m^{\prime} \\
\left.\vec{W}_{\phi(t)} \rightarrow \phi_{t t ⿱} \vec{w}\right|_{p} \\
\left.\left(\phi_{-t+} w\right)^{a}\right|_{p}=\left.\left.\frac{\partial x^{a}}{\partial x^{-}}\right|_{\phi(\varphi)} W^{\mu}\right|_{\phi(p)}
\end{gathered}
$$

But $y^{a}\left(x^{-1}\right)$ is just the shift in coordinates alms the core: x^{a} are the coordinter of p, sites of x^{n}, the coordinates, of $\varphi \in \varphi p$. If the cure is the integral of $\frac{d x^{-n}}{d t}=M^{\mu} \quad(\vec{\mu}$ avectorfolded).
Hen, $x^{\mu}(t)=x^{m}(0)+t \mu^{\mu}$ to order t, and $y^{a}\left(x^{\mu}\right)$, post

$$
x^{\mu}(\theta)=x^{\mu}(t)-\left.t \mu^{\mu} \quad \Phi_{0} \quad \frac{\partial x^{2}}{\partial x^{\mu}}\right|_{q_{t}(t)}=\delta_{\mu}^{2}-\mu_{\mu \mu}^{2} t
$$

$\left.W^{\mu}\right|_{d \in(p)}$ is jut $W^{\mu}\left(x^{\alpha}(t)\right)=W^{\mu}\left(x^{\mu}(i)+t \mu^{\mu}\right)=W^{\mu} p_{p}+t M^{\mu \mu}\left|W_{j \mu}^{\mu}\right|$

$$
\text { so }\left.\phi_{-t^{*}} W\right|_{p}-\left.W\right|_{p}=\left(\delta_{\mu}^{\nu}-\mu_{\mu}^{\nu} t\right)\left(W^{\mu}+t \mu^{2} W_{\mu}^{\mu}\right)-W^{\nu}
$$

$$
\text { and }\left(\mathcal{L}_{\vec{M}} \vec{W}\right)^{\mu}=M^{\nu} W_{\mu}^{\mu}-W^{\nu} M_{, \nu}^{\mu}=[M, W]^{\mu}
$$

In particular, this shows $\mathcal{Z}_{\vec{M}} \vec{W}=-\mathcal{I}_{\vec{M}} \vec{M}$
From this, one con obtains, the actor of $\mathcal{F}_{\bar{m}}$ on otter tensors:

$$
\mathcal{L}_{\vec{M}}(\tilde{\omega} \otimes \vec{W})=\mathcal{L}_{\vec{\omega}} \tilde{\omega} \otimes \vec{W}+\tilde{\omega} \otimes \mathscr{L}_{\vec{\mu}} \vec{W}
$$

now, contracting \Rightarrow The rest of this page has been done above,

$$
\mathcal{Z}_{\vec{\mu}}(\tilde{w}(\vec{n}))=\mathcal{Z}_{\vec{m}} \widetilde{\omega}(\vec{w})+\widetilde{\omega}\left(\mathcal{L}_{\vec{m}}(\vec{w})\right)
$$

Now if we use $\vec{W}=\vec{E}_{\mu}$, a basis vector ne con jet $\mathcal{L}_{\vec{\mu}} \vec{u}$. In p-ticulir, if $\vec{E}_{\mu}=\frac{\partial}{\partial x^{n}}$, the coordinate basis, then $\mathscr{L}_{\vec{\mu}}(\omega)\left(E_{\mu}\right)=\left(\mathscr{L}_{\vec{m}}(\omega)\right)_{\mu}$ the components we are looknjor.

$$
\begin{aligned}
\mathcal{L}_{\vec{m}}\left(\tilde{\omega}\left(E_{\mu}\right)\right)=\mathcal{L}_{\vec{m}}\left(\omega_{\mu}\right) & =\vec{M}\left(\omega_{\mu}\right) \quad(\text { proper }(\omega)) \\
& =\frac{\partial \omega_{n}}{\partial x^{2}} M^{\nu}=\omega_{\mu, \nu} M^{\nu}
\end{aligned}
$$

and $C \mathscr{C M}\left(\mathcal{L}_{\vec{M}}\left(E_{\mu}\right)^{\nu}=\frac{\partial\left(E_{\mu}\right)^{\nu}}{\partial x^{p}} M^{p}-\frac{\partial M^{\nu}}{\partial x^{p}}\left(E_{\mu}\right)^{\rho}=-\frac{\partial M^{\nu}}{\partial x^{\mu}}\right.$ so $\quad \tilde{\omega}\left(\mathcal{L}_{\vec{\mu}}\left(E_{\lambda}\right)\right)^{\nu}=-\omega_{\nu} M_{/ \mu}^{\nu}$

$$
\Rightarrow\left(\mathcal{Z}_{\vec{\mu}}(\tilde{\omega})\right)_{\mu}=\omega_{\mu, \nu} M^{\nu}+M_{\mu \mu}^{\nu} \omega_{\nu}
$$

Exercise: Show

$$
\begin{aligned}
Y_{N} T \mu_{1}^{\mu_{1} \cdots \mu_{k}} \nu_{1} \cdots \nu_{l} & =M^{\sigma} \partial_{\sigma} T \mu_{1} \cdots \mu_{k} \nu_{1} \cdots \nu_{l} \\
& -\left(\partial_{\lambda} M^{\mu_{1}}\right) T^{\nu \mu_{2} \cdots \mu_{k}} \nu_{1} \cdots \nu_{l} \\
& -\left(d_{\lambda} \mu^{\mu_{2}}\right) T^{\mu_{1} \lambda \cdots \mu_{k}} \nu_{1} \cdots \nu_{l} \\
& \vdots \\
& +\left(\partial_{\nu_{1}} \mu^{\lambda}\right) T \mu_{1} \cdots \mu_{k} \nu_{\lambda \nu_{2} \cdots \nu_{l}} \\
& +\left(\partial_{\nu_{2}} \mu^{\lambda}\right) T \mu_{1} \cdots \mu_{k} \nu_{1} \lambda \cdots \nu_{l}
\end{aligned}
$$

In particular

$$
y_{\vec{\mu}} g_{\mu \nu}=\mu^{\sigma} \partial_{\sigma} g_{\mu \nu}+\partial_{\mu} \mu^{\lambda} g_{\lambda \nu}+\partial_{\mu} \mu^{\lambda} g_{\mu \lambda}
$$

Since these are tensors equators, we ca replace θ by ∇.

$$
\begin{aligned}
& \Rightarrow \chi_{\mu} g_{\mu \nu}=M_{; \mu}^{\lambda} g_{\lambda \nu}+M_{i \nu}^{\lambda} g_{\mu \lambda}=M_{\nu i \mu}+M_{\mu ; \nu} \\
& \quad \text { or } y_{\mu} g_{\mu \nu}=2 M_{(\mu ; \nu)}
\end{aligned}
$$

This is sehel ith. We will we it for symmetres later, but 媬 here is a simple application, Assume the action for $G R$ braks down into

$$
\begin{equation*}
S=S_{G}(9, v)+S_{m}(q, w, \psi) \tag{A}
\end{equation*}
$$

$\psi=$ moltr frelds
$S_{G}=$ "Hilbut"action Cgmes Eiriteris eqs... We'll re this later ncante)
Godr This theay is "d.fteomorphim invariant": tersuimom (MM, gor, ψ) and ($m, \alpha^{*} q_{0}, \phi^{*} \psi$)
represett the same physics. The chanse is Suuder a difteonaupuim

$$
\delta S_{\mu}=\int d x \frac{\delta S_{\mu}}{\delta q_{\nu}} \delta g_{1 \nu}+\int d^{\mu} x \frac{\delta S_{\mu}}{\delta \psi} \delta \psi
$$

Since we corld hae isty=0, δS_{G} can be cousidend separatly (it is invariant by itrelf; the is whe the sepaation essimptionin (A) come in).

But $\frac{\delta S_{M}}{\delta \psi}=0$ for ary variation. So while he we look orly at vaniations fron difteomophisus, that ten vanisles separtoly dor ary variation. left with first tern, we consider diffeomorphisus, genented by a veitor freld U^{μ} :

$$
\begin{aligned}
& \delta g_{\mu \nu}=\delta U g_{\mu \nu}=2 U_{(\mu ; \nu)} \\
& \Rightarrow \delta S_{\mu}=0=\int d^{\mu} x \frac{\delta S_{\mu}}{\delta g_{\mu \nu}} 2 U_{(\mu ; \nu)}=H \int d x \frac{\partial S_{\mu}}{\partial g_{\nu \nu}} U_{\mu, \nu} \\
& \text { or }
\end{aligned}
$$

Droppiy be iurface tern and multiplyiy by $\frac{\sqrt{g}}{\sqrt{-g}}$ wh han

$$
\int d V \quad U_{\mu} \nabla_{\nu}\left[\frac{1}{\sqrt{F_{g}}} \frac{\delta S_{\mu}}{\delta q_{\mu \nu}}\right]=0
$$

进 Stuce this holds for arbilory Un (difteomophisus gementedby arbitry yector frelds) it must be that

$$
\nabla_{\nu}\left(\frac{1}{\sqrt{-g}} \frac{\sigma S_{\mu}}{\delta g_{2}}\right)=0
$$

But $T^{\mu \nu} \equiv \frac{1}{V_{-g}} \frac{\delta S_{\mu}}{\delta g_{a r}} \quad$ is he enesy-momentum tender.

Symmetries, Isommity, Killing Vectors
$\phi: M \rightarrow M$ a difteomouphism, T a tensor.
ϕ is a symmetry of T if

$$
\phi^{*} T=T
$$

T symmetric
Some symmetrizes are discrete. But for continuous symmetries there is a one parameter set of diffeomerphisn ϕ_{t}, and then T is symmetric eft

$$
\mathcal{L}_{u} T=0
$$

Tsymmetic, continuous syuntety.
(Clearly U gevertes the cone, $\left.U=\frac{\partial}{\partial t}\right)$.
Note that one can choose coordinates locally so that t itself is one of the coordinates. In such coordinates

$$
y_{u} T_{\nu_{1} \cdots \nu_{s}}^{\mu_{1}-\mu_{r}}=\partial_{t} T_{\nu_{1} \cdots v_{3}}^{\mu_{1}-\mu_{r}}
$$

so $f_{u} T=0 \Rightarrow$ all components of T are independent of t. (Converse is obviously true!)

An isometry is a symmetry of the metric tensor．

$$
\phi^{*} q_{\nu}=g_{\mu \nu}
$$

物 A vector freed \vec{K} that generates an isommety is called a Killing vector freed：

$$
y_{k} g_{\text {suv }}=0
$$ Killing vector

$$
K_{(\mu i v)}=0
$$

One can show the operose：if $k_{\text {surv }}=0$ then $\phi_{t}^{*} q_{10}=q_{10}$ where ϕ_{t} is gewated by mar $K=\frac{d}{\partial t}$ ．This is dove by integration（ca Hawk e Elis）．

Again，one can choose loci coordinates that include t，and Hen g_{μ} is imdeprate of t ．

Now，in port quarter（Schultz，7．4）we saw that the geodesic epation con be unitten in tess of $\vec{\rho}=m \vec{U}$ as

$$
m \frac{d p p}{d \tau}=\frac{1}{2} g_{2 \alpha, \beta} p^{2} p^{\alpha}
$$

so if $g_{y_{\alpha}}$ is independent of one coordinate（say＂t＂），Hen He conrespds $p p$ is corsened，$\frac{d p_{t}}{d \tau}=0$

This con be done is a covariont lagrange as follows: assume Pr satis)res geodesic equation:

$$
p^{\mu} p_{\text {ap }}^{\nu}=0 \quad\left(\nabla_{p p}=0\right)
$$

Hen

$$
p^{\mu} \nabla_{\mu}\left(p^{\nu} K_{\nu}\right)=\rho^{m} p^{\nu} \nabla_{\mu} K_{\nu}+K_{\nu} \mu^{\mu} \nabla_{\nu}^{\nu}=0
$$

But LHS is gust $\frac{d}{d \tau}\left(p^{2} K_{\nu}\right)$ so p pro is constant along particle path \rightarrow a conserved quantity, as be fore.

Exercise: If $K_{\lambda 1-\mu_{t}}$ is a $K_{i l l}$ ing tensor, ie, itsatistrex

$$
\nabla_{i \mu} \mid K_{\left.\mu_{1}-\cdots \mu_{r}\right)}=0
$$

shan that $K_{\mu_{1}-\mu_{r}} p^{\mu_{1}} p^{\mu_{r}}$ is consumed.

We can see this nonegenrally whth our Killy beild lechnalay:
6t

$$
P^{\mu}=T^{\mu \nu} K_{\nu}
$$

thn

$$
\begin{aligned}
P_{i \mu}^{\mu} & =T_{i \mu}^{\mu \nu} K_{\nu}+T^{\mu \nu} K_{\nu ; \mu} \\
& =T^{2 \mu}{ }_{i \mu} K_{\nu}+\frac{1}{2} T^{\mu \nu} K_{(\nu ; \mu)}=0
\end{aligned}
$$

Sithe vector P^{μ} is "censerved oumat". A
Exa-ple: In flat space (which is highly symmetic):
Kilingrectors

$$
\left.\vec{P}(\alpha)=\frac{\partial}{\partial x^{\alpha}} \quad \text { fa veetor for each } \alpha=0,1,3,\right)
$$

Tad

$$
\begin{array}{ll}
\vec{w}_{(i)}=x^{0} \frac{\partial}{\partial x^{i}}+x^{i} \frac{\partial}{\partial x^{0}} & i=1,2,3 \\
\vec{l}_{(i j)}=x^{i} \frac{\partial}{\partial x^{j}} x^{j} \frac{\partial}{\partial x^{i}} & i, j=1,2,3
\end{array}
$$

10-1sommeties gervate 10 parameter 4 -sropp of isomnetios of thut spacetine, the "inhomageneous corentz grop
To see how this works chocre urite componerts out: $\vec{P}_{(\alpha)}^{\mu}=(1,0,0,0) \quad \rho_{(1)}^{\mu}=(0,1,0,0) \cdots\left(p_{(\alpha)}^{\mu}=\delta_{\alpha}^{\mu}\right)$ ($P_{\mu, \nu}^{(\alpha)}=0$ truvally for all (α).
Less huvial: $m_{a)}^{\mu}=\left(x^{\prime}, x^{0}, 0,0\right) \Rightarrow m_{(1) \mu}=\left(-x^{1}, 000\right)$

$$
m_{(i) \mu, \nu}=\left(\begin{array}{cccc}
0 & +1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { so } \quad m_{(1)}(\mu, \nu)=0
$$

It is cleer fro the exauple that spoce-tios moy admit keveal (or none) killiy veators.
Since pres symne by prinstornations gemally form grops (grop nultiplication = coposition of trastometions, $\operatorname{le⿻}_{t} \circ \phi_{0}$). and these are cantinuous traptoctars gearated by \vec{K} 's, we expect theie to bee lie grops, 又 the \vec{K}; to forn Lie algebras. This is indeed the cae, with the are braket beiy ust He conrutator, ie.

$$
\left[k_{1}, k_{2}\right]=\mathcal{L}_{k_{1}} k_{2}
$$

