
243 

 

 

Chapter 6 
 

 

1. The greatest deceleration (of magnitude a) is provided by the maximum friction force 

(Eq. 6-1, with FN = mg in this case).  Using Newton’s second law, we find  

 

a = fs,max /m = sg. 

 

Eq. 2-16 then gives the shortest distance to stop: |x| = v
2
/2a = 36 m.  In this calculation, 

it is important to first convert v to 13 m/s. 

 

2. Applying Newton’s second law to the horizontal motion, we have F  k m g = ma, 

where we have used Eq. 6-2, assuming that FN = mg (which is equivalent to assuming 

that the vertical force from the broom is negligible). Eq. 2-16 relates the distance traveled 

and the final speed to the acceleration: v
2 

= 2ax.  This gives a = 1.4 m/s
2
. Returning to 

the force equation, we find (with F = 25 N and m = 3.5 kg) that k = 0.58. 

 

3. THINK In the presence of friction between the floor and the bureau, a minimum 

horizontal force must be applied before the bureau would begin to move. 

 

EXPRESS The free-body diagram for the bureau is shown 

to the right. We denote 

F  as the horizontal force of the 

person, 
sf  is the force of static friction (in the –x direction), 

NF  is the vertical normal force exerted by the floor (in the 

+y direction), and mg


 is the force of gravity. We do not 

consider the possibility that the bureau might tip, and treat 

this as a purely horizontal motion problem (with the 

person’s push 

F  in the +x direction). Applying Newton’s 

second law to the x and y axes, we obtain 

, max

0
s

N

F f ma

F mg

 

 
 

respectively.  

 

 

The second equation yields the normal force FN = mg, whereupon the maximum static 

friction is found to be (from Eq. 6-1) ,max .s sf mg  Thus, the first equation becomes 

F mg mas   0  

 

where we have set a = 0 to be consistent with the fact that the static friction is still (just 

barely) able to prevent the bureau from moving. 

ANALYZE (a) With  s  0 45.  and m = 45 kg, the equation above leads to  

 

 2(0.45)(45 kg)(9.8 m/s ) 198 NsF mg   . 
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To bring the bureau into a state of motion, the person should push with any force greater 

than this value. Rounding to two significant figures, we can therefore say the minimum 

required push is F = 2.0  10
2
 N. 

 

(b) Replacing m = 45 kg with m = 28 kg, the reasoning above leads to roughly 
21.2 10  N.F    

 

LEARN The values found above represent the minimum force required to overcome the 

friction. Applying a force greater than s mg  results in a net force in the +x-direction, 

and hence, non-zero acceleration.  

 

4. We first analyze the forces on the pig of mass m. The incline angle is . 

 

 
 

The +x direction is “downhill.’’ Application of Newton’s second law to the x- and y-axes 

leads to 

sin

cos 0.

k

N

mg f ma

F mg





 

 
 

 

Solving these along with Eq. 6-2 (fk = kFN) produces the following result for the pig’s 

downhill acceleration: 

 sin cos .ka g      

 

To compute the time to slide from rest through a downhill distance  , we use Eq. 2-15: 

 




   v t at t
a

0

21

2

2
. 

 

We denote the frictionless (k = 0) case with a prime and set up a ratio: 

 

t

t

a

a

a

a





2

2





/

/
 

 

which leads us to conclude that if t/t' = 2 then a' = 4a. Putting in what we found out 

above about the accelerations, we have 
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 sin 4 sin cos .kg g      

 

Using  = 35°, we obtain k = 0.53. 

 

5. In addition to the forces already shown in Fig. 6-17, a free-body diagram would 

include an upward normal force 
NF  exerted by the floor on the block, a downward mg


 

representing the gravitational pull exerted by Earth, and an assumed-leftward 

f  for the 

kinetic or static friction. We choose +x rightwards and +y upwards. We apply Newton’s 

second law to these axes: 

0N

F f ma

P F mg

 

  
 

 

where F = 6.0 N and m = 2.5 kg is the mass of the block. 

 

(a) In this case, P = 8.0 N leads to  

 

FN = (2.5 kg)(9.8 m/s
2
) – 8.0 N = 16.5 N. 

 

Using Eq. 6-1, this implies ,max 6.6 Ns s Nf F  , which is larger than the 6.0 N 

rightward force – so the block (which was initially at rest) does not move. Putting a = 0 

into the first of our equations above yields a static friction force of  f = P = 6.0 N.  

 

(b) In this case, P = 10 N, the normal force is  

 

FN = (2.5 kg)(9.8 m/s
2
) – 10 N = 14.5 N. 

 

Using Eq. 6-1, this implies ,max 5.8 Ns s Nf F  , which is less than the 6.0 N rightward 

force – so the block does move. Hence, we are dealing not with static but with kinetic 

friction, which Eq. 6-2 reveals to be 3.6 Nk k Nf F  .  

 

(c) In this last case, P = 12 N leads to FN = 12.5 N and thus to ,max 5.0 Ns s Nf F  , 

which (as expected) is less than the 6.0 N rightward force – so the block moves. The 

kinetic friction force, then, is 3.1Nk k Nf F  .  

 

6. The free-body diagram for the player is shown to the right. NF  is 

the normal force of the ground on the player, mg


 is the force of 

gravity, and 

f  is the force of friction. The force of friction is 

related to the normal force by f = kFN. We use Newton’s second 

law applied to the vertical axis to find the normal force. The vertical 

component of the acceleration is zero, so we obtain FN – mg = 0; 

thus, FN = mg. Consequently, 
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   2

470 N
0.61.

79 kg 9.8 m/s
k

N

f

F
     

 

7. THINK A force is being applied to accelerate a crate in the presence of friction. We 

apply Newton’s second law to solve for the acceleration. 

 

EXPRESS The free-body diagram for the crate is shown to the right. 

We denote 

F  as the horizontal force of the person exerted on the 

crate (in the +x direction), 

f k  is the force of kinetic friction (in the –x 

direction), NF  is the vertical normal force exerted by the floor (in the 

+y direction), and mg


 is the force of gravity. The magnitude of the 

force of friction is given by Eq. 6-2: fk = kFN. Applying Newton’s 

second law to the x and y axes, we obtain 

 

0
k

N

F f ma

F mg

 

 
 

respectively.  

 

ANALYZE (a) The second equation above yields the normal force FN = mg, so that the 

friction is 

   2 20.35 55 kg (9.8 m/s ) 1.9 10 N.k k N kf F mg       

 

(b) The first equation becomes 

F mg mak   

 

which (with F = 220 N) we solve to find 

 

2 2220 N
(0.35)(9.8 m/s ) 0.56 m/s .

55 kg
k

F
a g

m
      

 

LEARN For the crate to accelerate, the condition k kF f mg   must be met. As can 

be seen from the equation above, the greater the value of ,k  the smaller the acceleration 

under the same applied force.  

 

8. To maintain the stone’s motion, a horizontal force (in the +x direction) is needed that 

cancels the retarding effect due to kinetic friction. Applying Newton’s second to the x 

and y axes, we obtain 

0
k

N

F f ma

F mg

 

 
 

 

respectively. The second equation yields the normal force FN = mg, so that (using Eq. 6-2) 

the kinetic friction becomes fk = k mg. Thus, the first equation becomes 
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F mg mak   0  

 

where we have set a = 0 to be consistent with the idea that the horizontal velocity of the 

stone should remain constant. With m = 20 kg and k = 0.80, we find F = 1.6  10
2
 N. 

 

9. We choose +x horizontally rightwards and +y upwards and observe that the 15 N force 

has components Fx = F cos  and Fy = – F sin . 

 

(a) We apply Newton’s second law to the y axis: 

 
2sin 0 (15 N) sin 40 (3.5 kg)(9.8 m/s ) 44 N.N NF F mg F        

 

With k = 0.25, Eq. 6-2 leads to fk = 11 N. 

 

(b) We apply Newton’s second law to the x axis: 

 

  2
15 N cos 40 11 N

cos 0.14 m/s
3.5 kg

kF f ma a
 

     . 

 

Since the result is positive-valued, then the block is accelerating in the +x (rightward) 

direction. 

 

10. (a) The free-body diagram for the block is shown below, with F  being the force 

applied to the block, NF  the normal force of the floor on the block, mg


 the force of 

gravity, and 

f  the force of friction.  

 

We take the +x direction to be horizontal to the right 

and the +y direction to be up. The equations for the x 

and the y components of the force according to 

Newton’s second law are: 

 

cos

sin 0
x

y N

F F f ma

F F F mg





  

   
 

 
Now f =kFN, and the second equation gives FN = mg – Fsin, which yields 

( sin )kf mg F   . This expression is substituted for f in the first equation to obtain  

 

F cos  – k (mg – F sin ) = ma, 

so the acceleration is 

 cos sink k

F
a g

m
      . 
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(a) If 0.600s   and 0.500,k   then the magnitude of f  has a maximum value of  

 

 ,max (0.600)( 0.500 sin 20 ) 0.497 .s s Nf F mg mg mg      

 

On the other hand, cos 0.500 cos20 0.470 .F mg mg     Therefore, 
,maxcos sF f   and 

the block remains stationary with 0a  . 

 

(b) If 0.400s   and 0.300,k   then the magnitude of f  has a maximum value of  

 

 ,max (0.400)( 0.500 sin 20 ) 0.332 .s s Nf F mg mg mg      

 

In this case, ,maxcos 0.500 cos20 0.470 .sF mg mg f      Therefore, the acceleration of 

the block is 

          

 

 2 2

2

cos sin

(0.500)(9.80 m/s ) cos 20 (0.300)sin 20 (0.300)(9.80 m/s )

2.17 m/s .

k k

F
a g

m
     

   



 

 

11. THINK Since the crate is being pulled by a rope at an angle with the horizontal, we 

need to analyze the force components in both the x and y-directions.   

 

EXPRESS The free-body diagram for the crate is 

shown to the right. Here

T  is the tension force of the 

rope on the crate, NF  is the normal force of the floor 

on the crate, mg


 is the force of gravity, and 

f  is the 

force of friction. We take the +x direction to be 

horizontal to the right and the +y direction to be up. 

We assume the crate is motionless. 

 
The equations for the x and the y components of the force according to Newton’s second 

law are: 

cos 0, sin 0NT f T F mg       

 

where  = 15° is the angle between the rope and the horizontal. The first equation gives 

cosf T   and the second gives FN = mg – T sin . If the crate is to remain at rest, f 

must be less than s FN, or T cos  < s (mg – T sin). When the tension force is 

sufficient to just start the crate moving, we must have T cos  = s (mg – T sin ). 

 

ANALYZE (a) We solve for the tension: 
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     2

2
0.50 68 kg 9.8 m/s

304 N 3.0 10 N.
cos sin cos 15 0.50 sin 15

s

s

mg
T



  
    

   
 

 

(b) The second law equations for the moving crate are  

 

cos , sin 0NT f ma T F mg      . 

 

Now f =kFN, and the second equation above gives sin ,NF mg T    which then yields 

( sin )kf mg T   . This expression is substituted for f in the first equation to obtain  

T cos  – k (mg – T sin ) = ma, 

so the acceleration is 

 

 

2 2

cos sin

(304 N)(cos15 0.35 sin 15 )
(0.35) (9.8 m/s ) 1.3 m/s .

68 kg

k

k

T
a g

m

  



 

  
  

 

LEARN Let’s check the limit where 0  . In this case, we recover the familiar 

expressions: sT mg  and  ( ) /ka T mg m  .  

 

12. There is no acceleration, so the (upward) static friction forces (there are four of them, 

one for each thumb and one for each set of opposing fingers) equals the magnitude of the 

(downward) pull of gravity. Using Eq. 6-1, we have 

 
24 (79 kg)(9.8 m/s )s NF mg    

 

which, with s = 0.70, yields FN = 2.8  10
2
 N. 

 

13. We denote the magnitude of 110 N force exerted by the worker on the crate as F. The 

magnitude of the static frictional force can vary between zero and ,maxs s Nf F . 

 

(a) In this case, application of Newton’s second law in the vertical direction yields 

NF mg . Thus, 

 

   2 2

, max 0.37 35kg (9.8m/s ) 1.3 10 Ns s N sf F mg       

 

which is greater than F.  

 

(b) The block, which is initially at rest, stays at rest since F < fs, max. Thus, it does not 

move. 

 

(c) By applying Newton’s second law to the horizontal direction, that the magnitude of 

the frictional force exerted on the crate is 21.1 10  Nsf   .  
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(d) Denoting the upward force exerted by the second worker as F2, then application of 

Newton’s second law in the vertical direction yields FN = mg – F2, which leads to  

 

,max 2( )s s N sf F mg F    . 

 

In order to move the crate, F must satisfy the condition F > fs,max  = s  (mg F

or 

  2

2110N 0.37 (35kg)(9.8m/s ) .F     

 

The minimum value of F2 that satisfies this inequality is a value slightly bigger than 

45.7 N , so we express our answer as F2, min = 46 N. 

 

(e) In this final case, moving the crate requires a greater horizontal push from the worker 

than static friction (as computed in part (a)) can resist. Thus, Newton’s law in the 

horizontal direction leads to 

 

2 , max 2110 N 126.9 NsF F f F      

 

which leads (after appropriate rounding) to F2, min = 17 N. 

 

14. (a) Using the result obtained in Sample Problem – “Friction, applied force at an 

angle,” the maximum angle for which static friction applies is 

 
1 1

max tan tan 0.63 32 .s       

 

This is greater than the dip angle in the problem, so the block does not slide. 

 

(b) Applying Newton’s second law, we have  

 

, maxsin 0

cos 0.
s

N

F mg f ma

F mg





   

 
 

 

Along with Eq. 6-1 (fs, max = sFN) we have enough information to solve for F. With 

24  and m = 1.8  10
7
 kg, we find 

 

  7cos sin 3.0 10 N.sF mg        

 

15. An excellent discussion and equation development related to this problem is given in 

Sample Problem – “Friction, applied force at an angle.” We merely quote (and apply) 

their main result: 
1 1tan tan 0.04 2 .s       
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16. (a) In this situation, we take 

f s  to point uphill and to be equal to its maximum value, 

in which case fs, max = 
s NF applies, where s = 0.25. Applying Newton’s second law to 

the block of mass m = W/g = 8.2 kg, in the x and y directions, produces 

 

min 1 , maxsin 0

cos 0
s

N

F mg f ma

F mg





   

 
 

which (with  = 20°) leads to 

 

 min 1 sin cos 8.6 N.sF mg       

 

(b) Now we take 

f s  to point downhill and to be equal to its maximum value, in which 

case fs, max = sFN applies, where s = 0.25. Applying Newton’s second law to the block 

of mass m = W/g = 8.2 kg, in the x and y directions, produces 

 

min 2 , maxsin 0

      cos 0
s

N

F mg f ma

F mg





   

 
 

which (with  = 20°) leads to 

 

 min 2 sin cos 46 N.sF mg       

 

A value slightly larger than the “exact” result of this calculation is required to make it 

accelerate uphill, but since we quote our results here to two significant figures, 46 N is a 

“good enough” answer. 

 

(c) Finally, we are dealing with kinetic friction (pointing downhill), so that 

 

0 sin

0 cos
k

N

F mg f ma

F mg





   

 
 

 

along with fk = kFN (where k = 0.15) brings us to 

 

F mg k  sin cos  b g 39 N . 

 

17. If the block is sliding then we compute the kinetic friction from Eq. 6-2; if it is not 

sliding, then we determine the extent of static friction from applying Newton’s law, with 

zero acceleration, to the x axis (which is parallel to the incline surface). The question of 

whether or not it is sliding is therefore crucial, and depends on the maximum static 

friction force, as calculated from Eq. 6-1. The forces are resolved in the incline plane 

coordinate system in Figure 6-5 in the textbook. The acceleration, if there is any, is along 

the x axis, and we are taking uphill as +x. The net force along the y axis, then, is certainly 

zero, which provides the following relationship: 
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0 cosy NF F W     

 

where W = mg = 45 N is the weight of the block, and  = 15° is the incline angle. Thus, 

FN = 43.5 N, which implies that the maximum static friction force should be  

 

fs,max = (0.50) (43.5 N) = 21.7 N. 

 

(a) For ˆ( 5.0 N)iP   , Newton’s second law, applied to the x axis becomes 

 

| | sin .f P mg ma    

 

Here we are assuming 

f  is pointing uphill, as shown in Figure 6-5, and if it turns out that 

it points downhill (which is a possibility), then the result for fs will be negative. If f = fs 

then a = 0, we obtain  

 

fs = | P | + mg sin = 5.0 N + (43.5 N)sin15° =17 N, 

 

or ˆ(17 N)isf  . This is clearly allowed since sf  is less than fs, max. 

 

(b) For ˆ( 8.0 N)iP   , we obtain (from the same equation) ˆ(20 N)isf  , which is still 

allowed since it is less than fs, max. 

 

(c) But for ˆ( 15 N)iP   , we obtain (from the same equation) fs = 27 N, which is not 

allowed since it is larger than fs, max. Thus, we conclude that it is the kinetic friction 

instead of the static friction that is relevant in this case. The result is  

 
ˆ ˆ ˆi (0.34)(43.5 N) i (15 N) ik k Nf F   . 

 

18. (a) We apply Newton’s second law to the “downhill” direction:   

 

mg sin – f = ma, 

 

where, using Eq. 6-11,  

f = fk =kFN =k mg cos 
 

Thus, with k = 0.600, we have  

 

a = gsin – k cos = –3.72 m/s
2
 

 

which means, since we have chosen the positive direction in the direction of motion 

(down the slope) then the acceleration vector points “uphill”; it is decelerating.  With 

0 18.0 m/sv  and x = d = 24.0 m, Eq. 2-16 leads to  

 



 

  

253 

2

0 2 12.1 m/s.v v ad    

 

(b) In this case, we find a = +1.1 m/s
2
, and the speed (when impact occurs) is 19.4 m/s. 

 

19. (a) The free-body diagram for the block is shown below. 

F is the applied force, 

NF  is 

the normal force of the wall on the block, 

f  is the force of 

friction, and mg


 is the force of gravity. To determine if the block 

falls, we find the magnitude f of the force of friction required to 

hold it without accelerating and also find the normal force of the 

wall on the block. We compare f and sFN. If f < sFN, the block 

does not slide on the wall but if f > sFN, the block does slide. The 

horizontal component of Newton’s second law is F –FN = 0, so FN 

= F = 12 N and  

 

sFN = (0.60)(12 N) = 7.2 N. 

 

The vertical component is f – mg = 0, so f = mg = 5.0 N. Since f < sFN the block does not 

slide. 

 

(b) Since the block does not move f = 5.0 N and FN = 12 N. The force of the wall on the 

block is 

   ˆ ˆ ˆ ˆi j 12N i 5.0N jw NF F f       

 

where the axes are as shown on Fig. 6-26 of the text. 

 

20. Treating the two boxes as a single system of total mass mC + mW =1.0 + 3.0 = 4.0 kg, 

subject to a total (leftward) friction of magnitude 2.0 N + 4.0 N = 6.0 N, we apply 

Newton’s second law (with +x rightward): 

 

total total  12.0 N 6.0 N (4.0 kg)F f m a a      

 

which yields the acceleration a = 1.5 m/s
2
. We have treated F as if it were known to the 

nearest tenth of a Newton so that our acceleration is “good” to two significant figures. 

Turning our attention to the larger box (the Wheaties box of mass mW = 3.0 kg) we apply 

Newton’s second law to find the contact force F' exerted by the Cheerios box on it. 

 
2

W W 4.0 N (3.0 kg)(1.5 m/s )F f m a F      . 

 

From the above equation, we find the contact force to be F' = 8.5 N. 

 

21. Fig. 6-4 in the textbook shows a similar situation (using   for the unknown angle) 

along with a free-body diagram. We use the same coordinate system as in that figure. 
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(a) Thus, Newton’s second law leads to 

 
:     cos    

: sin 0   N

x T f ma

y T F mg




 

  
 

 

Setting a = 0 and f = fs,max = sFN, we solve for the mass of the box-and-sand (as a 

function of angle): 

m
T

g s

 
F
HG

I
KJsin

cos





 

 

which we will solve with calculus techniques (to find the angle m  corresponding to the 

maximum mass that can be pulled). 

 

dm

dt

T

g
m

m

s

 
F
HG

I
KJ cos

sin





0  

 

This leads to tan  m s  which (for  s  0 35. ) yields m  19 . 

 

(b) Plugging our value for m  into the equation we found for the mass of the box-and-

sand yields m = 340 kg. This corresponds to a weight of mg = 3.3  10
3
 N. 

 

22. The free-body diagram for the sled is shown below, with F  being the force applied to 

the sled, 
NF  the normal force of the inclined plane on the sled, mg


 the force of gravity, 

and 

f  the force of friction.  

We take the +x direction to be along the 

inclined plane and the +y direction to be in its 

normal direction. The equations for the x and 

the y components of the force according to 

Newton’s second law are: 

 

sin 0

cos 0
x

y N

F F f mg ma

F F mg





    

  
 

 
Now f =FN, and the second equation gives FN = mgcos, which yields cosf mg  . 

This expression is substituted for f in the first equation to obtain  

 

(sin cos )F mg      

 

From the figure, we see that 2.0 NF   when 0  . This implies sin 2.0 N.mg    

Similarly, we also find 5.0 NF   when 0.5  :  

 

5.0 N (sin 0.50cos ) 2.0 N 0.50 cosmg mg       
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which yields cos 6.0 N.mg    Combining the two results, we get  

 

 
2 1

tan 18 .
6 3

       

 

23. Let the tensions on the strings connecting m2 and m3 be T23, and that connecting m2 

and m1 be T12, respectively. Applying Newton’s second law (and Eq. 6-2, with FN = m2g 

in this case) to the system we have 

 

 
3 23 3

23 2 12 2

12 1 1

k

m g T m a

T m g T m a

T m g m a



 

  

 

 

 

Adding up the three equations and using 1 2 3, 2m M m m M   , we obtain  

 

2Mg – 2k Mg – Mg = 5Ma . 

 

With a = 0.500 m/s
2
 this yields k = 0.372.  Thus, the coefficient of kinetic friction is 

roughly k = 0.37. 

 

24. We find the acceleration from the slope of the graph (recall Eq. 2-11): a = 4.5 m/s
2
.  

Thus, Newton’s second law leads to  

 

F – k mg = ma, 

 

where F = 40.0 N is the constant horizontal force applied. With m = 4.1 kg, we arrive at 

k =0.54. 

 

25. THINK In order that the two blocks remain in equilibrium, friction must be present 

between block B and the surface.   

 

EXPRESS The free-body diagrams for block B and for the knot just above block A are 

shown below. 

T1  is the tension force of the rope pulling on block B or pulling on the knot 

(as the case may be), 

T2  is the tension force exerted by the second rope (at angle  = 30°) 

on the knot, 

f  is the force of static friction exerted by the horizontal surface on block B, 

NF  is normal force exerted by the surface on block B, WA is the weight of block A (WA is 

the magnitude of m gA


), and WB is the weight of block B (WB = 711 N is the magnitude of 

m gB


). 
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For each object we take +x horizontally rightward and +y upward. Applying Newton’s 

second law in the x and y directions for block B and then doing the same for the knot 

results in four equations: 

1 ,max

2 1

2

0

0

cos 0

sin 0

s

N B

A

T f

F W

T T

T W





 

 

 

 

 

 

where we assume the static friction to be at its maximum value (permitting us to use Eq. 

6-1). The above equations yield 1 s NT F , N BF W and 1 2 cosT T  . 

 

ANALYZE Solving these equations with s = 0.25, we obtain 

 

2 1
2

sin tan tan tan

(0.25)(711 N) tan30 1.0 10  N
A s N s BW T T F W        

   
 

 

LEARN As expected, the maximum weight of A is proportional to the weight of B, as 

well as the coefficient of static friction. In addition, we see that AW  is proportional to 

tan  (the larger the angle, the greater the vertical component of 2T  that supports its 

weight).   

 

26. (a) Applying Newton’s second law to the system (of total mass M = 60.0 kg) and 

using Eq. 6-2 (with FN = Mg in this case) we obtain   

 

F – kMg = Ma    a= 0.473 m/s
2
. 

 

Next, we examine the forces just on m3 and find F32 = m3(a + kg) = 147 N.  If the algebra 

steps are done more systematically, one ends up with the interesting relationship: 

32 3( / )F m M F (which is independent of the friction!). 

 

(b) As remarked at the end of our solution to part (a), the result does not depend on the 

frictional parameters.  The answer here is the same as in part (a). 
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27. First, we check to see if the bodies start to move. We assume they remain at rest and 

compute the force of (static) friction which holds them there, and compare its magnitude 

with the maximum value sFN. The free-body diagrams are shown below.  

 

 
 

T is the magnitude of the tension force of the string, f is the magnitude of the force of 

friction on body A, FN is the magnitude of the normal force of the plane on body A, m gA


 

is the force of gravity on body A (with magnitude WA = 102 N), and m gB


 is the force of 

gravity on body B (with magnitude WB = 32 N).  = 40° is the angle of incline. We are 

told the direction of 

f  but we assume it is downhill. If we obtain a negative result for f, 

then we know the force is actually up the plane. 

 

(a) For A we take the +x to be uphill and +y to be in the direction of the normal force. The 

x and y components of Newton’s second law become 

 

sin 0

cos 0.
A

N A

T f W

F W





  

 
 

 

Taking the positive direction to be downward for body B, Newton’s second law leads to 

W TB   0 .  Solving these three equations leads to 

 

sin 32 N (102 N)sin 40 34 NB Af W W        

 

(indicating that the force of friction is uphill) and to 

 

cos (102 N) cos 40 78NN AF W      

 

which means that  

fs,max = sFN = (0.56) (78 N) = 44 N. 

 

Since the magnitude f of the force of friction that holds the bodies motionless is less than 

fs,max the bodies remain at rest. The acceleration is zero. 

 

(b) Since A is moving up the incline, the force of friction is downhill with 

magnitude k k Nf F . Newton’s second law, using the same coordinates as in part (a), 

leads to 
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sin

cos 0
k A A

N A

B B

T f W m a

F W

W T m a





  

 

 

 

 

for the two bodies. We solve for the acceleration: 

 

    

   2

2

32N 102N sin 40 0.25 102N cos 40sin cos

32N+102N 9.8 m s

3.9 m s .

B A k A

B A

W W W
a

m m

       
 



 

 

The acceleration is down the plane, i.e., 2 ˆ( 3.9 m/s )ia   , which is to say (since the 

initial velocity was uphill) that the objects are slowing down. We note that m = W/g has 

been used to calculate the masses in the calculation above. 

 

(c) Now body A is initially moving down the plane, so the force of friction is uphill with 

magnitude k k Nf F . The force equations become 

 

sin

cos 0
k A A

N A

B B

T f W m a

F W

W T m a





  

 

 

 

which we solve to obtain 

 

    

   2

2

32N 102N sin 40 0.25 102N cos 40sin cos

32N+102N 9.8 m s

1.0 m s .

B A k A

B A

W W W
a

m m

       
 



 

 

 

The acceleration is again downhill the plane, i.e., 2 ˆ( 1.0 m/s ) ia   . In this case, the 

objects are speeding up. 

 

28. The free-body diagrams are shown to the right, 

where T is the magnitude of the tension force of the 

string, f is the magnitude of the force of friction on block 

A, FN is the magnitude of the normal force of the plane 

on block A, m gA


 is the force of gravity on body A 

(where mA = 10 kg), and m gB


 is the force of gravity on 

block B.  = 30° is the angle of incline. For A we take 

the +x to be uphill and +y to be in the direction of the 

normal force; the positive direction is chosen downward 

for block B. 

 
Since A is moving down the incline, the force of friction is uphill with magnitude fk = 

kFN (where k = 0.20). Newton’s second law leads to 
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sin 0

cos 0

0

k A A

N A

B B

T f m g m a

F m g

m g T m a





   

 

  

 

 

for the two bodies (where a = 0 is a consequence of the velocity being constant). We 

solve these for the mass of block B. 

 

 sin cos 3.3 kg.B A km m       

 

29. (a) Free-body diagrams for the blocks A and C, considered as a single object, and for 

the block B are shown below.  

 

 
 

T is the magnitude of the tension force of the rope, FN is the magnitude of the normal 

force of the table on block A, f is the magnitude of the force of friction, WAC is the 

combined weight of blocks A and C (the magnitude of force 

Fg AC  shown in the figure), 

and WB is the weight of block B (the magnitude of force  

Fg B  shown). Assume the blocks 

are not moving. For the blocks on the table we take the x axis to be to the right and the y 

axis to be upward. From Newton’s second law, we have 

 

       x component:            T – f = 0 
 

        y component:     FN – WAC = 0. 

 

For block B take the downward direction to be positive. Then Newton’s second law for 

that block is WB – T = 0. The third equation gives T = WB and the first gives f = T = WB. 

The second equation gives FN = WAC. If sliding is not to occur, f must be less than s FN, 

or WB < s WAC. The smallest that WAC can be with the blocks still at rest is  

 

WAC = WB/s = (22 N)/(0.20) = 110 N. 

 

Since the weight of block A is 44 N, the least weight for C is (110 – 44) N = 66 N. 

 

(b) The second law equations become  

 

                     T – f  = (WA/g)a  
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 FN – WA  = 0 

              WB – T = (WB/g)a. 

 

In addition, f = kFN. The second equation gives FN = WA, so f = kWA. The third gives T 

= WB – (WB/g)a. Substituting these two expressions into the first equation, we obtain 

 

WB – (WB/g)a – kWA = (WA/g)a. 

Therefore, 

     2

2
(9.8 m/s ) 22 N 0.15 44 N

2.3 m/s .
44 N + 22 N

B k A

A B

g W W
a

W W

 
  


 

 

30. We use the familiar horizontal and vertical axes for x and y directions, with rightward 

and upward positive, respectively. The rope is assumed massless so that the force exerted 

by the child 

F  is identical to the tension uniformly through the rope. The x and y 

components of 

F  are Fcos and Fsin, respectively. The static friction force points 

leftward. 

 

(a) Newton’s Law applied to the y-axis, where there is presumed to be no acceleration, 

leads to 

sin 0NF F mg    

 

which implies that the maximum static friction is s(mg – F sin ). If fs = fs, max is 

assumed, then Newton’s second law applied to the x axis (which also has a = 0 even 

though it is “verging” on moving) yields 

 

cos        cos ( sin )  0s sF f ma F mg F          

 

which we solve, for  = 42° and s = 0.42, to obtain F = 74 N. 

 

(b) Solving the above equation algebraically for F, with W denoting the weight, we obtain 

 

(0.42)(180 N) 76 N
  .

cos sin cos (0.42) sin cos (0.42) sin

s

s

W
F



      
  

  
 

 

(c) We minimize the above expression for F by working through the condition: 

 

2

(sin cos )
0

(cos  sin )

s s

s

WdF

d

   

   


 


 

 

which leads to the result  = tan
–1

 s = 23°. 

 

(d) Plugging  = 23° into the above result for F, with s = 0.42 and W = 180 N, yields 

70 NF  .  
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31. THINK In this problem we have two blocks connected by a string sliding down an 

inclined plane; the blocks have different coefficient of kinetic friction.     

 

EXPRESS The free-body diagrams for the two blocks are shown below. T is the 

magnitude of the tension force of the string, 
NAF is the normal force on block A (the 

leading block), 
NBF  is the normal force on block B, 


f A  is kinetic friction force on block 

A, 

f B  is kinetic friction force on block B. Also, mA is the mass of block A (where mA = 

WA/g and WA = 3.6 N), and mB is the mass of block B (where mB = WB/g and WB = 7.2 N). 

The angle of the incline is  = 30°. 

 
 

For each block we take +x downhill (which is toward the lower-left in these diagrams) 

and +y in the direction of the normal force. Applying Newton’s second law to the x and y 

directions of both blocks A and B, we arrive at four equations: 

 

 sin

      cos 0

 sin

      cos 0 

A A A

NA A

B B B

NB B

W f T m a

F W

W f T m a

F W









  

 

  

 

 

 

which, when combined with Eq. 6-2 ( A kA NAf F where k A = 0.10 and B kB NBf F fB 

where k B = 0.20), fully describe the dynamics of the system so long as the blocks have 

the same acceleration and T > 0. 

 

ANALYZE (a) From these equations, we find the acceleration to be 

 

2sin cos 3.5 m/s .k A A k B B

A B

W W
a g

W W

 
 

  
       

 

 

(b) We solve the above equations for the tension and obtain 

 

   
(3.6 N)(7.2 N)

 cos 0.20 0.10 cos30 0.21 N.
3.6 N 7.2 N

A B
k B k A

A B

W W
T

W W
  

 
      

  
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LEARN The tension in the string is proportional to ,k B k A   the difference in 

coefficients of kinetic friction for the two blocks. When the coefficients are equal 

(
k B k A  )the two blocks can be viewed as moving independent of one another and the 

tension is zero. Similarly, when 
k B k A  (the leading block A has larger coefficient than 

the B), the string is slack, so the tension is also zero.  

 

32. The free-body diagram for the block is shown below, with F  being the force applied 

to the block, 
NF  the normal force of the floor on the block, mg


 the force of gravity, and 


f  the force of friction. We take the +x direction to be horizontal to the right and the +y 

direction to be up. The equations for the x and the y 

components of the force according to Newton’s second 

law are: 

cos

sin 0
x

y N

F F f ma

F F F mg





  

   
 

 

Now f =kFN, and the second equation gives FN = mg 

+ Fsin, which yields  

 

( sin )kf mg F   . 

 

This expression is substituted for f in the first equation to obtain  

 

F cos  – k (mg + F sin ) = ma, 

so the acceleration is 

 cos sink k

F
a g

m
      . 

 

From the figure, we see that 23.0 m/sa   when 0k  . This implies 

 

23.0 m/s cos .
F

m
  

We also find 0a   when 0.20k  : 

 

  2 2 2

2

0 cos (0.20) sin (0.20)(9.8 m/s ) 3.00 m/s 0.20 sin 1.96 m/s

1.04 m/s 0.20 sin

F F

m m
F

m

  



     

 

 

 

which yields 25.2 m/s sin .
F

m
  Combining the two results, we get  
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2

2

5.2 m/s
tan 1.73 60 .

3.0 m/s
 

 
     
 

 

 

33. THINK In this problem, the frictional force is not a constant, but instead proportional 

to the speed of the boat. Integration is required to solve for the speed.  

 

EXPRESS We denote the magnitude of the frictional force as ,v  where   70 N s m . 

We take the direction of the boat’s motion to be positive. Newton’s second law gives 

 

.
dv dv

v m dt
dt v m


      

Integrating the equation gives 

 
0 0

 
v t

v

dv
dt

v m


    

 

where v0 is the velocity at time zero and v is the velocity at time t. Solving the integral 

allows us to calculate the time it takes for the boat to slow down to 45 km/h, or 0 / 2v v , 

where 0 90 km/hv  . 

 

ANALYZE The integrals are evaluated with the result 

 
0

ln
v t

v m

 
  

 
 

 

With v = v0/2 and m = 1000 kg, we find the time to be  

 

0

1 1000 kg 1
ln ln ln 9.9 s.

2 70 N s/m 2

m v m
t

v 

     
           

    
 

 

LEARN The speed of the boat is given by /

0( ) t mv t v e  , showing exponential decay 

with time. The greater the value of , the more rapidly the boat slows down.  

 

34. The free-body diagrams for the slab and block are shown below.  
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
F  is the 100 N force applied to the block, 

NsF  is the normal force of the floor on the slab, 

NbF  is the magnitude of the normal force between the slab and the block, 

f  is the force 

of friction between the slab and the block, ms is the mass of the slab, and mb is the mass 

of the block. For both objects, we take the +x direction to be to the right and the +y 

direction to be up. 

 

Applying Newton’s second law for the x and y axes for (first) the slab and (second) the 

block results in four equations: 

                     

 0

              

         0

s s

Ns Ns s

b b

Nb b

f m a

F F m g

f F m a

F m g

 

  

 

 

 

 

from which we note that the maximum possible static friction magnitude would be 

 
2(0.60)(10 kg)(9.8 m/s ) 59 N .s Nb s bF m g     

 

We check to see if the block slides on the slab. Assuming it does not, then as = ab (which 

we denote simply as a) and we solve for f: 

 

f
m F

m m

s

s b








(40

40
80

 kg)(100 N)

 kg 10 kg
 N  

 

which is greater than fs,max so that we conclude the block is sliding across the slab (their 

accelerations are different). 

 

(a) Using f = k NbF the above equations yield 

 
2

2(0.40)(10 kg)(9.8 m/s ) 100 N
6.1 m/s .

10 kg

k b
b

b

m g F
a

m

  
     

 

The negative sign means that the acceleration is leftward. That is, 2 ˆ( 6.1 m/s )iba    

 

(b) We also obtain 

 
2

2(0.40)(10 kg)(9.8 m/s )
0.98 m/s .

40 kg

k b
s

s

m g
a

m


       

 

As mentioned above, this means it accelerates to the left. That is, 2 ˆ( 0.98 m/s )isa    
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35. The free-body diagrams for the two blocks, treated individually, are shown below 

(first m and then M). F' is the contact force between the two blocks, and the static friction 

force 

f s  is at its maximum value (so Eq. 6-1 leads to fs = fs,max = sF' where s = 0.38). 

 

Treating the two blocks together as a single system (sliding across a frictionless floor), 

we apply Newton’s second law (with +x rightward) to find an expression for the 

acceleration: 

F m a a
F

m M
  


total     

 

 
 

This is equivalent to having analyzed the two blocks individually and then combined 

their equations. Now, when we analyze the small block individually, we apply Newton’s 

second law to the x and y axes, substitute in the above expression for a, and use Eq. 6-1. 

 

F F ma F F m
F

m M

f mg F mgs s

    


F
HG

I
KJ

    

' '

'

     

     0 0

 

 

These expressions are combined (to eliminate F') and we arrive at 

 

F
mg

m

m M
s






F
HG

I
KJ 1

 = 24.9 10 N . 

 

36. Using Eq. 6-16, we solve for the area 
2

2

t

m g
A

C v
 which illustrates the inverse 

proportionality between the area and the speed-squared. Thus, when we set up a ratio of 

areas – of the slower case to the faster case – we obtain 

 

A

A

slow

fast

 km / h

160 km / h

F
HG

I
KJ 

310
375

2

. .  
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37. In the solution to exercise 4, we found that the force provided by the wind needed to 

equal F = 157 N (where that last figure is not “significant’’). 

 

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the 

ground (which actually is relative to the moving stone, but we assume the stone is 

moving slowly enough that this does not invalidate the result): 

 

2

3 2

2 2(157 N)
90 m/s 3.2 10  km/h.

(0.80)(1.21kg/m )(0.040 m )

F
v

C A
      

 

(b) Doubling our previous result, we find the reported speed to be 6.5  10
2
 km/h. 

 

(c) The result is not reasonable for a terrestrial storm. A category 5 hurricane has speeds 

on the order of 2.6  10
2
 m/s. 

 

38. (a) From Table 6-1 and Eq. 6-16, we have 

 

v
F

C A
C A

mg

v
t

g

t

  
2

2
2

  

 

where vt = 60 m/s. We estimate the pilot’s mass at about m = 70 kg. Now, we convert v = 

1300(1000/3600)  360 m/s and plug into Eq. 6-14: 

 

D C Av
mg

v
v mg

v

vt t

 
F
HG
I
KJ 

F
HG
I
KJ

1

2

1

2
22

2

2

2

  

 

which yields D = (70 kg)(9.8 m/s
2
)(360/60)

2
  2  10

4
 N. 

 

(b) We assume the mass of the ejection seat is roughly equal to the mass of the pilot. 

Thus, Newton’s second law (in the horizontal direction) applied to this system of mass 

2m gives the magnitude of acceleration: 

 

a
D

m

g v

v
g

t

 
F
HG
I
KJ 

2 2
18

2

.  

 

39. For the passenger jet D C Avj j 1
2 1

2 , and for the prop-driven transport 21
22t tD C Av , 

where 1  and 2  represent the air density at 10 km and 5.0 km, respectively. Thus the 

ratio in question is 

  

  

232

1

22 3
2

0.38  kg/m 1000  km/h
2.3.

0.67  kg/m 500  km/h

j j

t t

D v

D v




    
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40. This problem involves Newton’s second law for motion along the slope. 

 

(a) The force along the slope is given by  

 

  2

sin sin cos (sin cos )

(85.0 kg)(9.80 m/s ) sin 40.0 (0.04000)cos 40.0

510 N.

g NF mg F mg mg mg            

  



 

 

Thus, the terminal speed of the skier is  

 

3 2

2 2(510 N)
66.0 m/s.

(0.150)(1.20 kg/m )(1.30 m )

g

t

F
v

C A
    

 

(b) Differentiating tv  with respect to C, we obtain 

 

3/ 2 3/ 2

3 2

2

21 1 2(510 N)
(0.150)

2 2 (1.20 kg/m )(1.30 m )

(2.20 10  m/s) .

g

t

F
dv C dC dC

A

dC



  

 

 

 

41. Perhaps surprisingly, the equations pertaining to this situation are exactly those in 

Sample Problem – “Car in flat circular turn,” although the logic is a little different.  In the 

Sample Problem, the car moves along a (stationary) road, whereas in this problem the cat 

is stationary relative to the merry-go-around platform.  But the static friction plays the 

same role in both cases since the bottom-most point of the car tire is instantaneously at 

rest with respect to the race track, just as static friction applies to the contact surface 

between cat and platform.  Using Eq. 6-23 with Eq. 4-35, we find  

 

s = (2R/T )
2
/gR = 42

R/gT 
2
. 

 

With T = 6.0 s and R = 5.4 m, we obtain s = 0.60. 

 

42. The magnitude of the acceleration of the car as it rounds the curve is given by v
2
/R, 

where v is the speed of the car and R is the radius of the curve. Since the road is 

horizontal, only the frictional force of the road on the tires makes this acceleration 

possible. The horizontal component of Newton’s second law is f = mv
2
/R. If FN is the 

normal force of the road on the car and m is the mass of the car, the vertical component of 

Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the maximum value of static 

friction is  

fs,max = s FN = smg. 

 

If the car does not slip, f  smg. This means 
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2

    .s s

v
g v Rg

R
     

 

Consequently, the maximum speed with which the car can round the curve without 

slipping is 

 
2

max (0.60)(30.5 m)(9.8 m/s ) 13 m/s 48 km/h.sv Rg     

 

43. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v
2
/R, 

where v is the speed of the cyclist and R is the radius of the curve. Since the road is 

horizontal, only the frictional force of the road on the tires makes this acceleration 

possible. The horizontal component of Newton’s second law is f = mv
2
/R. If FN is the 

normal force of the road on the bicycle and m is the mass of the bicycle and rider, the 

vertical component of Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the 

maximum value of static friction is  

 

fs,max = s FN = smg. 

 

If the bicycle does not slip, f  smg. This means 

v

R
g R

v

g
s

s

2 2

  


    .  

 

Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can 

round the curve without slipping is 

 
2 2

min 2

(8.1 m/s)
21 m.

(0.32)(9.8 m/s )s

v
R

g
    

 

44. With v = 96.6 km/h = 26.8 m/s, Eq. 6-17 readily yields 

 
2 2

2(26.8 m/s)
94.7 m/s

7.6 m

v
a

R
    

 

which we express as a multiple of g: 

 
2

2

94.7 m/s
  9.7 .

9.80 m/s

a
a g g g

g

  
    
   

 

 

45. THINK Ferris wheel ride is a vertical circular motion. The apparent weight of the 

rider varies with his position.    

 

EXPRESS The free-body diagrams of the student at the top and bottom of the Ferris 

wheel are shown next: 
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At the top (the highest point in the circular motion) the seat pushes up on the student with 

a force of magnitude FN,top, while the Earth pulls down with a force of magnitude mg. 

Newton’s second law for the radial direction gives 

 
2

,topN

mv
mg F

R
  . 

At the bottom of the ride, ,bottomNF  is the magnitude of the upward force exerted by the 

seat. The net force toward the center of the circle is (choosing upward as the positive 

direction): 
2

,bottomN

mv
F mg

R
  . 

 

The Ferris wheel is “steadily rotating” so the value 2 /cF mv R  is the same everywhere.  

The apparent weight of the student is given by 
NF .   

 

ANALYZE (a) At the top, we are told that FN,top = 556 N and  mg = 667 N. This means 

that the seat is pushing up with a force that is smaller than the student’s weight, and we 

say the student experiences a decrease in his “apparent weight” at the highest point. Thus, 

he feels “light.” 

 

(b) From (a), we find the centripetal force to be 

 
2

,top 667 N 556 N 111 N.c N

mv
F mg F

R
       

 

Thus, the normal force at the bottom is  

 
2

,bottom 111 N 667 N 778 N.N c

mv
F mg F mg

R
        

 

(c) If the speed is doubled,  
2(2 )

4(111 N) 444 N.c

m v
F

R
     

 

Therefore, at the highest point we have  
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,top 667 N 444 N 223 N.N cF mg F       

 

(d) Similarly, the normal force at the lowest point is now found to be 

 

,bottom 444 N 667 N 1111 N.N cF F mg       

 

LEARN The apparent weight of the student is the greatest at the bottom and smallest at 

the top of the ride. The speed v gR  would result in ,top 0NF  , giving the student a 

sudden sensation of  “weightlessness” at the top of the ride.  

 

46. (a) We note that the speed 80.0 km/h in SI units is roughly 22.2 m/s.  The horizontal 

force that keeps her from sliding must equal the centripetal force (Eq. 6-18), and the 

upward force on her must equal mg. Thus,  

 

Fnet = (mg)
2
 + (mv

2
/R)

2 
  = 547 N. 

 

(b) The angle is  

tan
1
(mv

2
/R)(mg) = tan

1
v

2
/gR= 9.53º 

 

as measured from a vertical axis. 

 

47. (a) Eq. 4-35 gives T = 2R/v = 2(10 m)/(6.1 m/s) = 10 s. 

 

(b) The situation is similar to that of Sample Problem – “Vertical circular loop, Diavolo,” 

but with the normal force direction reversed.  Adapting Eq. 6-19, we find  

 

FN = m(g – v
2
/R) = 486 N  4.9  10

2
 N. 

 

(c) Now we reverse both the normal force direction and the acceleration direction (from 

what is shown in Sample Problem – “Vertical circular loop, Diavolo”) and adapt Eq. 6-19 

accordingly.  Thus we obtain  

 

FN = m(g + v
2
/R) = 1081 N  1.1 kN. 

 

48. We will start by assuming that the normal force (on the car from the rail) points up. 

Note that gravity points down, and the y axis is chosen positive upwards. Also, the 

direction to the center of the circle (the direction of centripetal acceleration) is down. 

Thus, Newton’s second law leads to 
2

.N

v
F mg m

r

 
   

 
 

 

(a) When v = 11 m/s, we obtain FN = 3.7  10
3
 N.  
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(b) 
NF  points upward. 

 

(c) When v = 14 m/s, we obtain FN = –1.3  10
3
 N, or  | FN | = 1.3  10

3
 N. 

 

(d) The fact that this answer is negative means that 
NF  points opposite to what we had 

assumed. Thus, the magnitude of 
NF  is | |NF  1.3 kN and its direction is down. 

 

49. At the top of the hill, the situation is similar to that of Sample Problem – “Vertical 

circular loop, Diavolo,” but with the normal force direction reversed.  Adapting Eq. 6-19, 

we find  

FN = m(g – v
2
/R). 

 

Since FN = 0 there (as stated in the problem) then v
2
 = gR.  Later, at the bottom of the 

valley, we reverse both the normal force direction and the acceleration direction (from 

what is shown in the Sample Problem) and adapt Eq. 6-19 accordingly.  Thus we obtain  

 

FN = m(g + v
2
/R) = 2mg = 1372 N  1.37  10

3
 N. 

 

50. The centripetal force on the passenger is 2 /F mv r . 

 

(a) The slope of the plot at 8.30 m/sv   is 

 

8.30 m/s 8.30 m/s

2 2(85.0 kg)(8.30 m/s)
403 N s/m.

3.50 mv v

dF mv

dv r 

     

 

(b) The period of the circular ride is 2 /T r v . Thus,  

 
22 2

2

2 4
,

mv m r mr
F

r r T T

  
   

 
 

 

and the variation of F with respect to T while holding r constant is 

 
2

3

8
.

mr
dF dT

T


   

The slope of the plot at 2.50 sT   is 

 
2 2

3

3 3
2.50 s 2.50 s

8 8 (85.0 kg)(3.50 m)
1.50 10 N/s.

(2.50 s)T T

dF mr

dT T

 

 

       

  

51. THINK An airplane with its wings tilted at an angle is in a circular motion. 

Centripetal force is involved in this problem. 
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EXPRESS The free-body diagram for the airplane of mass m 

is shown to the right. We note that 
lF  is the force of 

aerodynamic lift and 

a  points rightwards in the figure. We 

also note that | | /

a v R 2 . Applying Newton’s law to the axes 

of the problem (+x rightward and +y upward) we obtain 
2

sin

cos

l

l

v
F m

R
F mg









 

 

 

Eliminating mass from these equations leads to tan 
v

gR

2

. The equation allows us to 

solve for the radius R. 

 

ANALYZE With v = 480 km/h = 133 m/sand = 40°, we find  

 
2 2

3

2

(133 m/s)
2151 m 2.2 10  m

tan (9.8 m/s ) tan 40

v
R

g 
    


. 

 

LEARN Our approach to solving this problem is identical to that discussed in the Sample 

Problem – “Car in banked circular turn.” Do you see the similarities? 

 

52. The situation is somewhat similar to that shown in the “loop-the-loop” example done 

in the textbook (see Figure 6-10) except that, instead of a downward normal force, we are 

dealing with the force of the boom 

FB  on the car – which is capable of pointing any 

direction. We will assume it to be upward as we apply Newton’s second law to the car (of 

total weight 5000 N): BF W ma   where /m W g  and 2 /a v r  . Note that the 

centripetal acceleration is downward (our choice for negative direction) for a body at the 

top of its circular trajectory. 

 

(a) If r = 10 m and v = 5.0 m/s, we obtain FB = 3.7  10
3
 N = 3.7 kN.  

 

(b) The direction of 

FB is up. 

 

(c) If r = 10 m and v = 12 m/s, we obtain FB = – 2.3  10
3
 N = – 2.3 kN, or |FB | = 2.3 kN. 

 

(d) The minus sign indicates that 

FB  points downward. 

 

53. The free-body diagram (for the hand straps of mass m) is the view that a passenger 

might see if she was looking forward and the streetcar was curving towards the right (so 

a  points rightwards in the figure). We note that | | /


a v R 2  where v = 16 km/h = 4.4 m/s. 

 

Applying Newton’s law to the axes of the problem (+x is rightward and +y is upward) we 

obtain 
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2

sin

cos  .

v
T m

R
T mg









 

 

We solve these equations for the angle: 

 
F
HG
I
KJ

tan 1
2v

Rg
 

which yields  = 12°. 

  

54. The centripetal force on the passenger is 2 /F mv r . 

 

(a) The variation of F with respect to r while holding v constant is 
2

2

mv
dF dr

r
  . 

 

(b) The variation of F with respect to v while holding r constant is 
2mv

dF dv
r

 . 

 

(c) The period of the circular ride is 2 /T r v . Thus,  

 
22 2

2

2 4
,

mv m r mr
F

r r T T

  
   

 
 

 

and the variation of F with respect to T while holding r constant is 

 
32 3

2

3 2

8
8 .

2

mr v mv
dF dT mr dT dT

T r r




 

  
       

   
 

 

55. We note that the period T is eight times the time between flashes ( 
1

2000
  s), so T = 

0.0040 s. Combining Eq. 6-18 with Eq. 4-35 leads to 

 

F = 
4m2R

 T
2   = 

4(0.030 kg)2(0.035 m)

 (0.0040 s)
2   = 2.6  10

3
 N . 

 

56. We refer the reader to Sample Problem – “Car in banked circular turn,” and use the 

result Eq. 6-26: 

 
F
HG
I
KJ

tan 1
2v

gR
 

 

with v = 60(1000/3600) = 17 m/s and R = 200 m. The banking angle is therefore  = 8.1°. 

Now we consider a vehicle taking this banked curve at v' = 40(1000/3600) = 11 m/s. Its 
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(horizontal) acceleration is 2  /a v R  , which has components parallel the incline and 

perpendicular to it: 
2

| |

2

cos
cos  

sin
sin .

v
a a

R

v
a a

R








 


 

 

 

These enter Newton’s second law as follows (choosing downhill as the +x direction and 

away-from-incline as +y): 

| |sin    

   cos

s

N

mg f ma

F mg ma



 

 

 
 

and we are led to 
2

2

sin cos /
.

cos sin /

s

N

f mg mv R

F mg mv R

 

 





 

 

We cancel the mass and plug in, obtaining fs/FN = 0.078. The problem implies we should 

set fs = fs,max so that, by Eq. 6-1, we have s = 0.078. 

 

57. For the puck to remain at rest the magnitude of the tension force T of the cord must 

equal the gravitational force Mg on the cylinder. The tension force supplies the 

centripetal force that keeps the puck in its circular orbit, so T = mv
2
/r. Thus Mg = mv

2
/r. 

We solve for the speed: 

 
2(2.50 kg)(9.80 m/s )(0.200 m)

1.81 m/s.
1.50 kg

Mgr
v

m
    

 

58. (a) Using the kinematic equation given in Table 2-1, the deceleration of the car is 

 

 2 2 2

0 2 0 (35 m/s) 2 (107 m)v v ad a      

 

which gives 25.72 m/s .a    Thus, the force of friction required to stop by car is 

 

 2 3| | (1400 kg)(5.72 m/s ) 8.0 10 N.f m a     

 

(b) The maximum possible static friction is  

 
2 3

,max (0.50)(1400 kg)(9.80 m/s ) 6.9 10 N.s sf mg     

 

(c) If 0.40k  , then k kf mg and the deceleration is ka g  . Therefore, the speed 

of the car when it hits the wall is  
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 2 2 2

0 2 (35 m/s) 2(0.40)(9.8 m/s )(107 m) 20 m/s.v v ad      

 

(d) The force required to keep the motion circular is 

 

 
2 2

40 (1400 kg)(35.0 m/s)
1.6 10 N.

107 m
r

mv
F

r
     

 

(e) Since ,maxr sF f , no circular path is possible.  

 

59. THINK As illustrated in Fig. 6-45, our system consists of a ball connected by two 

strings to a rotating rod. The tensions in the strings provide the source of centripetal force.  

 

EXPRESS The free-body diagram for the ball is shown below. 

Tu  is the tension exerted 

by the upper string on the ball, 

T  is the tension in the lower string, and m is the mass of 

the ball. Note that the tension in the upper string is greater than the tension in the lower 

string. It must balance the downward pull of gravity and the force of the lower string. 

 
We take the +x direction to be leftward (toward the center of the circular orbit) and +y 

upward. Since the magnitude of the acceleration is a = v
2
/R, the x component of 

Newton’s second law is 

T T
mv

R
u cos cos ,  

2

 

 

where v is the speed of the ball and R is the radius of its orbit. The y component is 

 

T T mgu sin sin .    0  

 

The second equation gives the tension in the lower string: T T mgu   / sin .  

 

ANALYZE (a) Since the triangle is equilateral, the angle is  = 30.0°. Thus 

 

 
2(1.34 kg)(9.80 m/s )

35.0 N 8.74 N.
sin sin30.0

u

mg
T T


    


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(b) The net force in the y-direction is zero. In the x-direction, the net force has magnitude 

 

 net,str cos (35.0 N 8.74 N)cos30.0 37.9 N.uF T T        

 

(c) The radius of the path is  

 

 cos (1.70 m)cos30 1.47 m.R L      

 

Using Fnet,str = mv
2
/R, we find the speed of the ball to be 

 

net,str (1.47 m)(37.9 N)
6.45 m/s.

1.34 kg

RF
v

m
    

 

(d) The direction of net,strF is leftward (“radially inward’’). 

 

LEARN The upper string, with a tension about 4 times that in the lower string ( 4uT T ), 

will break more easily than the lower one.   

 

60. The free-body diagrams for the two boxes are shown below. T is the magnitude of the 

force in the rod (when T > 0 the rod is said to be in tension and when T < 0 the rod is 

under compression), 
2NF  is the normal force on box 2 (the uncle box), 1NF  is the the 

normal force on the aunt box (box 1), 

f1  is kinetic friction force on the aunt box, and 


f2  

is kinetic friction force on the uncle box. Also, m1 = 1.65 kg is the mass of the aunt box 

and m2 = 3.30 kg is the mass of the uncle box (which is a lot of ants!). 

 

 
 

For each block we take +x downhill (which is toward the lower-right in these diagrams) 

and +y in the direction of the normal force. Applying Newton’s second law to the x and y 

directions of first box 2 and next box 1, we arrive at four equations: 

 

 

2 2 2

2 2

1 1 1

1 1

sin

cos 0

sin

cos 0

N

N

m g f T m a

F m g

m g f T m a

F m g









  

 

  

 
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which, when combined with Eq. 6-2 (f1 = 1FN1 where 1 = 0.226 and f2 = 2FN2 where 

2 = 0.113), fully describe the dynamics of the system. 

 

(a) We solve the above equations for the tension and obtain 

 

T
m m g

m m




F
HG

I
KJ  2 1

2 1

1 2 105 (  N.  ) cos .  

 

(b) These equations lead to an acceleration equal to 

 

a g
m m

m m
 





F
HG

I
KJ

F
HG

I
KJ sin cos . .

 
2 2 1 1

2 1

362 m / s2  

 

(c) Reversing the blocks is equivalent to switching the labels. We see from our algebraic 

result in part (a) that this gives a negative value for T (equal in magnitude to the result we 

got before). Thus, the situation is as it was before except that the rod is now in a state of 

compression. 

 

61. THINK Our system consists of two blocks, one on top of the other. If we pull the 

bottom block too hard, the top block will slip on the bottom one. We’re interested in the 

maximum force that can be applied such that the two will move together. 

 

EXPRESS The free-body diagrams for the two blocks are shown below.  

 

  
We first calculate the coefficient of static friction for the surface between the two blocks. 

When the force applied is at a maximum, the frictional force between the two blocks 

must also be a maximum. Since tF 12 N of force has to be applied to the top block for 

slipping to take place, using ,max ,t s s N t s tF f F m g    , we have 

 

2

12 N
0.31

(4.0 kg)(9.8 m/s )

t
s

t

F

m g
    . 
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Using the same reasoning, for the two masses to move together, the maximum applied 

force would be 

( )s t bF m m g   

 

ANALYZE (a) Substituting the value of 
s  found above, the maximum horizontal force 

has a magnitude  
2( ) (0.31)(4.0 kg 5.0 kg)(9.8 m/s ) 27 Ns t bF m m g      

 

(b) The maximum acceleration is  

 

2 2

max (0.31)(9.8 m/s ) 3.0 m/ss

t b

F
a g

m m
   


. 

 

LEARN Slipping will occur if the applied force exceeds 27.3 N. In the absence of 

friction ( 0s  ) between the two blocks, any amount of force would cause the top block 

to slip.  

 

62. The free-body diagram for the stone is shown to the right, 

with F  being the force applied to the stone, 
NF  the downward 

normal force of the ceiling on the stone, mg


 the force of gravity, 

and 

f  the force of friction. We take the +x direction to be 

horizontal to the right and the +y direction to be up. The 

equations for the x and the y components of the force according 

to Newton’s second law are: 

 

cos

sin 0
x

y N

F F f ma

F F F mg





  

   
 

 

Now ,k Nf F  and the second equation gives sin ,NF F mg   which yields 

( sin )kf F mg   . This expression is substituted for f in the first equation to obtain  

 

F cos  – k (F sin mg ) = ma. 

For 0a  , the force is 

.
cos sin

k

k

mg
F



  





 

 

With k = 0.65, m =5.0 kg, and = 70º, we obtain F = 118 N. 

 

63. (a) The free-body diagram for the person (shown as an L-shaped block) is shown 

below. The force that she exerts on the rock slabs is not directly shown (since the 

diagram should only show forces exerted on her), but it is related by Newton’s third law) 

to the normal forces 1NF  and 2NF  exerted horizontally by the slabs onto her shoes and 
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back, respectively. We will show in part (b) that FN1 = FN2 so that we there is no 

ambiguity in saying that the magnitude of her push is FN2. The total upward force due to 

(maximum) static friction is 
  
f f f 1 2  where 1 1 1s Nf F  and 2 2 2s Nf F . The 

problem gives the values s1 = 1.2 and s2 = 0.8. 

 
 

(b) We apply Newton’s second law to the x and y axes (with +x rightward and +y upward 

and there is no acceleration in either direction). 

 

1 2

1 2

0

0

N NF F

f f mg

 

  
 

 

The first equation tells us that the normal forces are equal FN1 = FN2 = FN. Consequently, 

from Eq. 6-1, 

1 s 1

2 s 2

N

N

f F

f F








 

we conclude that 

s 1

1 2

s 2

.f f




 
   
 

 

Therefore, f1 + f2 – mg = 0 leads to 

 

s 1

2

s 2

1 f mg




 
   

 

 

 

which (with m = 49 kg) yields f2 = 192 N. From this we find 2 2/ 240 N.N sF f    This 

is equal to the magnitude of the push exerted by the rock climber. 

 

(c) From the above calculation, we find 1 s1 288 NNf F   which amounts to a fraction 

 

f

W

1 288

49 9 8
0 60 b g b g. .  

or 60% of her weight. 
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64. (a) The upward force exerted by the car on the passenger is equal to the downward 

force of gravity (W = 500 N) on the passenger. So the net force does not have a vertical 

contribution; it only has the contribution from the horizontal force (which is necessary for 

maintaining the circular motion). Thus 

F Fnet  N.  210  

 

(b) Using Eq. 6-18, we have 

 

(210 N)(470 m)
44.0 m/s.

51.0 kg

FR
v

m
    

 

65. The layer of ice has a mass of 

 

 3 5

ice 917 kg/m  (400 m 500 m 0.0040 m) 7.34 10  kg.m       

 

This added to the mass of the hundred stones (at 20 kg each) comes to m = 7.36  10
5
 kg. 

 

(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the 

ground (which actually is relative to the moving stone, but we assume the stone is 

moving slowly enough that this does not invalidate the result): 

 

   
   

5 2

3 2
ice ice

0.10 7.36 10 kg 9.8 m/s
19 m/s 69 km/h.

4 4 0.002 1.21 kg/m 400 500 m

kmg
v

C A






   


 

 

(b) Doubling our previous result, we find the reported speed to be 139 km/h. 

 

(c) The result is reasonable for storm winds. (A category-5 hurricane has speeds on the 

order of 2.6  10
2
 m/s.) 

 

66. Note that since no static friction coefficient is mentioned, we assume fs is not relevant 

to this computation. We apply Newton's second law to each block's x axis, which for m1 

is positive rightward and for m2 is positive downhill: 

 

 T – fk  =  m1a 

                m2g sin – T  =  m2a 

 

Adding the equations, we obtain the acceleration: 

 

2

1 2

sin km g f
a

m m

 



 

For fk = kFN = k m1g, we obtain  
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2 2

2(3.0 kg)(9.8 m/s )sin30 (0.25)(2.0 kg)(9.8 m/s )
1.96 m/s

3.0 kg 2.0 kg
a


 


. 

 

Returning this value to either of the above two equations, we find T = 8.8 N. 

 

67. Each side of the trough exerts a normal force on the crate. The first diagram shows 

the view looking in toward a cross section.  

 

 
The net force is along the dashed line. Since each of the normal forces makes an angle of 

45° with the dashed line, the magnitude of the resultant normal force is given by  

 

2 cos45 2Nr N NF F F   . 

 

The second diagram is the free-body diagram for the crate (from a “side” view, similar to 

that shown in the first picture in Fig. 6-51). The force of gravity has magnitude mg, 

where m is the mass of the crate, and the magnitude of the force of friction is denoted by f. 

We take the +x direction to be down the incline and +y to be in the direction of NrF . Then 

the x and the y components of Newton’s second law are 

 

   x:        mg sin  – f = ma 

 y:    FNr – mg cos  = 0. 

 

Since the crate is moving, each side of the trough exerts a force of kinetic friction, so the 

total frictional force has magnitude  

 

 2 2 / 2 2k N k Nr k Nrf F F F      

 

Combining this expression with FNr = mg cos  and substituting into the x component 

equation, we obtain  

mg mg masin cos  2 . 

 

Therefore a g k (sin cos )  2 . 

 

68. (a) To be on the verge of sliding out means that the force of static friction is acting 

“down the bank” (in the sense explained in the problem statement) with maximum 
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possible magnitude.  We first consider the vector sum F  


 of the (maximum) static 

friction force and the normal force.  Due to the facts that they are perpendicular and their 

magnitudes are simply proportional (Eq. 6-1), we find F  


 is at angle (measured from the 

vertical axis)  =  + s, where tans = s (compare with Eq. 6-13), and  is the bank 

angle (as stated in the problem).  Now, the vector sum of F  and the vertically downward 

pull (mg) of gravity must be equal to the (horizontal) centripetal force (mv
2
/R), which 

leads to a surprisingly simple relationship: 

tan = 
2 2/mv R v

mg Rg
   . 

 

Writing this as an expression for the maximum speed, we have  

 

1

max

(tan )
tan( tan )

1 tan

s
s

s

Rg
v Rg

 
 

 

 
  


 

 

(b) The graph is shown below (with  in radians):  

 

 
 

(c) Either estimating from the graph (s = 0.60, upper curve) or calculated it more 

carefully leads to v = 41.3 m/s = 149 km/h when  = 10º = 0.175 radian.  

 

(d) Similarly (for s = 0.050, the lower curve) we find v = 21.2 m/s = 76.2 km/h when  = 

10º = 0.175 radian. 

 

69. For simplicity, we denote the 70° angle as  and the magnitude of the push (80 N) as 

P. The vertical forces on the block are the downward normal force exerted on it by the 

ceiling, the downward pull of gravity (of magnitude mg) and the vertical component of 
P (which is upward with magnitude P sin ). Since there is no acceleration in the vertical 

direction, we must have 

sinNF P mg   

 

in which case the leftward-pointed kinetic friction has magnitude 
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f P mgk k  ( sin ).  

 

Choosing +x rightward, Newton’s second law leads to 

 

P f ma a
P u P mg

m
k

kcos
cos ( sin )

   
 

   
 

 

 

which yields a = 3.4 m/s
2
 when k = 0.40 and m = 5.0 kg. 

 

70. (a) We note that R (the horizontal distance from the bob to the axis of rotation) is the 

circumference of the circular path divided by 2; therefore, R =  0.94/2= 0.15 m.  The 

angle that the cord makes with the horizontal is now easily found:  

 

 = cos
1

(R/L) = cos
1

(0.15 m/0.90 m) = 80º. 

 

The vertical component of the force of tension in the string is Tsin and must equal the 

downward pull of gravity (mg).  Thus,  

0.40 N
sin

mg
T


  . 

 

Note that we are using T for tension (not for the period). 

 

(b) The horizontal component of that tension must supply the centripetal force (Eq. 6-18), 

so we have Tcos = mv
2
/R.  This gives speed v = 0.49 m/s. This divided into the 

circumference gives the time for one revolution: 0.94/0.49 = 1.9 s. 

 

71. (a) To be “on the verge of sliding” means the applied force is equal to the maximum 

possible force of static friction (Eq. 6-1, with FN = mg in this case):  

 

fs,max = smg = 35.3 N. 

 

(b) In this case, the applied force F  


 indirectly decreases the maximum possible value of 

friction (since its y component causes a reduction in the normal force) as well as directly 

opposing the friction force itself (because of its x component).  The normal force turns 

out to be  

FN = mg – Fsin 

 

where = 60º, so that the horizontal equation (the x application of Newton’s second law) 

becomes  

Fcos – fs,max= Fcos – s(mg – Fsin) = 0      39.7 N.F   

 

(c) Now, the applied force F  


 indirectly increases the maximum possible value of friction 

(since its y component causes a reduction in the normal force) as well as directly 

opposing the friction force itself (because of its x component).  The normal force in this 

case turns out to be  
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FN = mg + Fsin, 

 

where = 60º, so that the horizontal equation becomes  

 

Fcos – fs,max= Fcos – s(mg + Fsin) = 0     320 N.F   

 

72. With = 40º, we apply Newton’s second law to the “downhill” direction:   

 

mg sin – f  =  ma, 
 

      f = fk =k FN  =k mg cos 

 

using Eq. 6-12.  Thus,  

a = 0.75 m/s
2
 = g(sin – k cos) 

 

determines the coefficient of kinetic friction: k = 0.74. 

 

73. (a) With = 60º, we apply Newton’s second law to the “downhill” direction:   

 

 mg sin – f  =  ma 

           f = fk =k FN =k mg cos. 

 

Thus,  

a = g(sin– k cos) = 7.5 m/s
2
. 

 

(b) The direction of the acceleration a  is down the slope. 

 

(c) Now the friction force is in the “downhill” direction (which is our positive direction) 

so that we obtain  

a = g(sin + k cos ) = 9.5 m/s
2
. 

 

(d) The direction is down the slope.  

 

74. The free-body diagram for the puck is shown on the right. 

NF  is the normal force of the ice on the puck, 

f is the force of 

friction (in the –x direction), and mg


 is the force of gravity. 

 

(a) The horizontal component of Newton’s second law gives –f 

= ma, and constant acceleration kinematics (Table 2-1) can be 

used to find the acceleration. 
 

Since the final velocity is zero, v v ax2

0

2 2   leads to a v x  0

2 2/ . This is substituted 

into the Newton’s law equation to obtain 
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  

 

22

0
0.110 kg 6.0 m/s

0.13 N.
2 2 15 m

mv
f

x
    

 

(b) The vertical component of Newton’s second law gives FN – mg = 0, so FN = mg which 

implies (using Eq. 6-2) f = k mg. We solve for the coefficient: 

 

  2

0.13 N
0.12 .

0.110 kg (9.8 m/s )
k

f

mg
     

 

75. We may treat all 25 cars as a single object of mass m = 25  5.0  10
4
 kg and (when 

the speed is 30 km/h = 8.3 m/s) subject to a friction force equal to  

 

f = 25  250  8.3 = 5.2  10
4
 N. 

 

(a) Along the level track, this object experiences a “forward” force T exerted by the 

locomotive, so that Newton’s second law leads to 

 
4 6 5    5.2 10 (1.25 10 )(0.20) 3.0 10  NT f ma T         . 

 

 (b) The free-body diagram is shown next, with  as the angle of the 

incline. The +x direction (which is the only direction to which we will 

be applying Newton’s second law) is uphill (to the upper right in our 

sketch). Thus, we obtain 

 sin  = T f mg ma   

 

where we set a = 0 (implied by the problem statement) and solve for 

the angle. We obtain  = 1.2°.  

 

76. An excellent discussion and equation development related to this 

problem is given in Sample Problem – “Friction, applied force at an angle.” Using the 

result, we obtain  

 
1 1tan tan 0.50 27s       

 

which implies that the angle through which the slope should be reduced is  

 

 = 45° – 27°  20°. 

 

77. We make use of Eq. 6-16 which yields 

 

2mg

CR
2  =  

2(6)(9.8)

(1.6)(1.2)(0.03)
2  = 147 m/s. 
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78. (a) The coefficient of static friction is s = tan(slip) = 0.577 0.58 . 

 

(b) Using  

mg sin – f = ma 
 

         f = fk =k FN =k mg cos 

 

and a = 2d/t
2
 (with d = 2.5 m and t = 4.0 s), we obtain k = 0.54. 

 

79. THINK We have two blocks connected by a cord, as shown in Fig. 6-56. As block A 

slides down the frictionless inclined plane, it pulls block B, so there’s a tension in the 

cord.   

 

EXPRESS The free-body diagrams for blocks A and B are shown below: 

  
Newton’s law gives  

 sinA Am g T m a    

 

for block A (where = 30º).  For block B, we have 

 

k BT f m a   

Now the frictional force is given by ,k k N B k Bf F m g   . The equations allow us to 

solve for the tension T and the acceleration a.  

 

ANALYZE (a) Combining the above equations to solve for T, we obtain 

 

     2(4.0 kg)(2.0 kg)
sin sin30 0.50 (9.80 m/s ) 13 N.

4.0 kg 2.0 kg

A B
k

A B

m m
T g

m m
     

 
 

 

(b) Similarly, the acceleration of the two-block system is  

 

2 2sin (4.0 kg)sin30 (0.50)(2.0 kg)
(9.80 m/s ) 1.6 m/s

4.0 kg 2.0 kg

A k B

A B

m m
a g

m m

   
   

  
. 

  

LEARN In the case where 90    and 0k  , we have  
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,A B A

A B A B

m m m
T g a g

m m m m
 

 
 

 

which correspond to the Sample Problem – “Block on table, block hanging,” discussed in 

Chapter 5. 

 

80. We use Eq. 6-14, D C Av 1
2

2 , where  is the air density, A is the cross-sectional 

area of the missile, v is the speed of the missile, and C is the drag coefficient. The area is 

given by A = R
2
, where R = 0.265 m is the radius of the missile. Thus 

 

D   
1

2
0 75 12 0 265 250 6 2 10

2 2 3( . ) . . . . kg / m  m  m / s  N3c h b g b g  

 

81. THINK How can a cyclist move in a circle? It is the force of friction that provides 

the centripetal force required for the circular motion.   

 

EXPRESS The free-body diagram is shown below. The magnitude of the acceleration of 

the cyclist as it moves along the horizontal circular path is given by v
2
/R, where v is the 

speed of the cyclist and R is the radius of the curve.  

 

 
 

The horizontal component of Newton’s second law is fs = mv
2
/R, where fs is the static 

friction exerted horizontally by the ground on the tires. Similarly, if FN is the vertical 

force of the ground on the bicycle and m is the mass of the bicycle and rider, the vertical 

component of Newton’s second law leads to 833 NNF mg  . 

 

ANALYZE (a) The frictional force is 
  

22 85.0 kg 9.00 m/s
275  N.

25.0 m
s

mv
f

R
    

 

(b) Since the frictional force sf and NF , the normal force exerted by the road, are 

perpendicular to each other, the magnitude of the force exerted by the ground on the 

bicycle is  
2 2 2 2(275 N) (833 N) 877 N.s NF f F      
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LEARN The force exerted by the ground on the bicycle is at an angle 
1tan (275 N/833 N) 18.3     with respect to the vertical axis.  

 

82. At the top of the hill the vertical forces on the car are the upward normal force 

exerted by the ground and the downward pull of gravity. Designating +y downward, we 

have 
2

N

mv
mg F

R
   

 

from Newton’s second law. To find the greatest speed without leaving the hill, we set FN 

= 0 and solve for v: 

 

2(9.8 m/s )(250 m) 49.5 m/sv gR    = 49.5(3600/1000) km/h = 178 km/h. 

 

83. (a) The push (to get it moving) must be at least as big as fs,max = s FN  (Eq. 6-1, with 

FN = mg in this case), which equals (0.51)(165 N) = 84.2 N. 

 

(b) While in motion, constant velocity (zero acceleration) is maintained if the push is 

equal to the kinetic friction force fk =k FN =k mg = 52.8 N. 

 

(c) We note that the mass of the crate is 165/9.8 = 16.8 kg.  The acceleration, using the 

push from part (a), is  

a = (84.2 N – 52.8 N)/(16.8 kg)   1.87 m/s
2
. 

 

84. (a) The x component of F  


 tries to move the crate while its y component indirectly 

contributes to the inhibiting effects of friction (by increasing the normal force).  

Newton’s second law implies 

 

x direction:  Fcos – fs = 0 
 

           y direction:  FN – Fsin – mg = 0. 

 

To be “on the verge of sliding” means fs = fs,max = sFN  (Eq. 6-1).  Solving these 

equations for F (actually, for the ratio of F to mg) yields 

 

 
cos sin

s

s

F

mg



  



 . 

 

This is plotted on the right ( in degrees). 

 

(b) The denominator of our expression (for F/mg) 

vanishes when  
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1

inf

1
cos sin 0     tans

s

   


  
     

 
 

For 0.70s  , we obtain
1

inf

1
tan 55

s




  
   

 
. 

(c) Reducing the coefficient means increasing the angle by the condition in part (b). 

 

(d) For 0.60s  we have 
1

inf

1
tan 59

s




  
   

 
. 

 

85. The car is in “danger of sliding” down when  

 

 tan tan35.0 0.700.s      

 

This value represents a 3.4% decrease from the given 0.725 value. 

 

86. (a) The tension will be the greatest at the lowest point of the swing.  Note that there is 

no substantive difference between the tension T in this problem and the normal force FN 

in Sample Problem – “Vertical circular loop, Diavolo.”  Eq. 6-19 of that Sample Problem 

examines the situation at the top of the circular path (where FN is the least), and rewriting 

that for the bottom of the path leads to  

T = mg + mv
2
/r 

 

where FN is at its greatest value. 

 

(b) At the breaking point T = 33 N = m(g + v
2
/r) where m = 0.26 kg and r = 0.65 m.  

Solving for the speed, we find that the cord should break when the speed (at the lowest 

point) reaches 8.73 m/s. 

 

87. THINK A car is making a turn on an unbanked curve. Friction is what provides the 

centripetal force needed for this circular motion. 

 

EXPRESS The free-body diagram is shown to the 

right. The mass of the car is m = (10700/9.80) kg = 

1.09  10
3
 kg. We choose “inward” (horizontally 

toward the center of the circular path) as the positive 

direction. The normal force is FN = mg in this 

situation, and the required frictional force is 
2 / .sf mv R  

 

ANALYZE (a) With a speed of v = 13.4 m/s and a 

radius R = 61 m, Newton’s second law (using Eq. 6-18) leads to 
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2 3 2
3(1.09 10 kg)(13.4 m/s)

3.21 10 N .
61.0 m

s

mv
f

R


     

 

(b) The maximum possible static friction is found to be 

 

   3

,max 0.35 10700 N 3.75 10 Ns sf mg     

 

using Eq. 6-1. We see that the static friction found in part (a) is less than this, so the car 

rolls (no skidding) and successfully negotiates the curve. 

 

LEARN From the above expressions, we see that with a coefficient of friction s , the 

maximum speed of the car negotiating a curve of radius R is max sv gR . So in this 

case, the car can go up to a maximum speed of  

 
2

max (0.35)(9.8 m/s )(61 m) 14.5 m/sv    

without skidding. 

 

88. For the m2 = 1.0 kg block, application of Newton's laws result in 

 

 2

2

cos       axis

sin 0       axis  
k

N

F T f m a x

F F m g y





  

  
 

 

Since fk = k FN, these equations can be combined into an equation to solve for a: 

 

 2 2(cos sin )k kF T m g m a        

Similarly (but without the applied push) we analyze the m1= 2.0 kg block: 

1

1

      axis

 0       axis  
k

N

T f m a x

F m g y

 

  
 

Using fk = k NF  , the equations can be combined: 

 

 1 1kT m g m a   

Subtracting the two equations for a and solving for the tension, we obtain 

 

 1

1 2

(cos sin ) (2.0 kg)[cos35 (0.20)sin35 ]
(20 N) 9.4 N.

2.0 kg 1.0 kg

km
T F

m m

    
  

 
 

 

89. THINK In order to move a filing cabinet, the force applied must be able to overcome 

the frictional force. 
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EXPRESS We apply Newton’s second law (as Fpush – f = ma).  If we find the applied 

force 
pushF  to be less than ,maxsf , the maximum static frictional force, our conclusion 

would then be “no, the cabinet does not move” (which means a is actually 0 and the 

frictional force is simply f = Fpush). On the other hand, if we obtain a > 0 then the cabinet 

moves (so f = fk).  For ,maxsf  and fk  we use Eq. 6-1 and Eq. 6-2 (respectively), and in 

those formulas we set the magnitude of the normal force to the weight of the 

cabinet: 556 NNF mg  .  Thus, the maximum static frictional force is 

 

,max (0.68)(556 N) 378 Ns s N sf F mg     . 

 

and the kinetic frictional force is  

 

(0.56)(556 N) 311 Nk k N kf F mg     . 

 

ANALYZE (a) Here we find Fpush < ,maxsf  which leads to f = Fpush = 222 N. The cabinet 

does not move. 

 

(b) Again we find Fpush < ,maxsf  which leads to f = Fpush = 334 N. The cabinet does not 

move. 

 

(c) Now we have Fpush > ,maxsf  which means the cabinet moves and  f = fk = 311 N. 

 

(d) Again we have Fpush > ,maxsf  which means the cabinet moves and  f = fk = 311 N. 

 

(e) The cabinet moves in (c) and (d). 

 

LEARN In summary, in order to make the cabinet move, the minimum applied force is 

equal to the maximum static frictional force ,maxsf . 

 

90. Analysis of forces in the horizontal direction (where there can be no acceleration) 

leads to the conclusion that F = FN; the magnitude of the normal force is 60 N.  The 

maximum possible static friction force is therefore sFN = 33 N, and the kinetic friction 

force (when applicable) is kFN = 23 N. 

 

(a) In this case, P  


 = 34 N upward.  Assuming f  


 points down, then Newton's second 

law for the y leads to 

P – mg – f  =  ma . 

 

if we assume f = fs and a = 0, we obtain f = (34 – 22) N = 12 N.  This is less than fs, max, 

which shows the consistency of our assumption.  The answer is: fs 


 = 12 N down. 
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(b) In this case, P  


 = 12 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (12 – 22) N = –10 N.  Thus, | fs | < fs, max, justifying our assumption 

that the block is stationary, but its negative value tells us that our initial assumption about 

the direction of f  


 is incorrect in this case.  Thus, the answer is: fs 


 = 10 N up. 

 

(c) In this case, P  


 = 48 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (48 – 22) N = 26 N.  Thus, we again have fs < fs, max, and our answer 

is:  fs 


 = 26 N down. 

 

(d) In this case, P  


 = 62 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (62 – 22) N = 40 N, which is larger than fs, max, -- invalidating our 

assumptions.  Therefore, we take f = fk and a  0 in the above equation; if we wished to 

find the value of a we would find it to be positive, as we should expect.  The answer is:  

fk 


 = 23 N down. 

 

(e) In this case, P  


 = 10 N downward.  The above equation (but with P replaced with -P) 

with the same assumptions as in part (a), leads to f = (–10 – 22) N = –32 N.  Thus, we 

have | fs | < fs, max, justifying our assumption that the block is stationary, but its negative 

value tells us that our initial assumption about the direction of f  


 is incorrect in this case.  

Thus, the answer is: fs 


 = 32 N up. 

 

(f) In this case, P  


 = 18 N downward.  The above equation (but with P replaced with –P) 

with the same assumptions as in part (a), leads to f = (–18 – 22) N = –40 N, which is 

larger (in absolute value) than fs, max, -- invalidating our assumptions.  Therefore, we take 

f = fk and a  0 in the above equation; if we wished to find the value of a we would find it 

to be negative, as we should expect.  The answer is:  fk 


 = 23 N up. 

 

(g) The block moves up the wall in case (d) where a > 0. 

 

(h) The block moves down the wall in case (f) where a < 0. 

 

(i) The frictional force fs 


 is directed down in cases (a), (c) and (d). 

 

91. THINK Whether the block is sliding down or up the incline, there is a frictional force 

in the opposite direction of the motion. 

 

EXPRESS The free-body diagram for the first part of this problem (when the block is 

sliding downhill with zero acceleration) is shown next. 
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Newton’s second law gives 

 

 
sin sin 0

cos 0
k k N x

N y

mg f mg F ma

mg F ma

  



    

  
 

 

The two equations can be combined to give 

  

 tan .k    
 

Now (for the second part of the problem, with the 

block projected uphill) the friction direction is 

reversed (see figure to the right). Newton’s second 

law for the uphill motion (and Eq. 6-12) leads to  

 

sin sin

cos 0
k k N x

N y

mg f mg F ma

mg F ma

  



   

  
 

 
 

Note that by our convention, 0xa   means that the acceleration is downhill, and 

therefore, the speed of the block will decrease as it moves up the incline. 

 

ANALYZE (a) Using tank   and cosNF mg  , we find the x-component of the 

acceleration to be   

(tan )( cos )
sin sin 2 sink N

x

F mg
a g g g

m m

  
       . 

 

The distance the block travels before coming to a stop can be found by using Eq. 2-16: 
2 2

0 2f xv v a x   , which yields 

2 2 2

0 0 0

2 2(2 sin ) 4 sinx

v v v
x

a g g 
    . 

 

(b) We usually expect s > k  (see the discussion in Section 6-1). The “angle of repose” 

(the minimum angle necessary for a stationary block to start sliding downhill) is s = 

tan(repose).  Therefore, we expect repose >    found in part (a).  Consequently, when the 

block comes to rest, the incline is not steep enough to cause it to start slipping down the 

incline again. 

 

LEARN An alternative way to see that the block will not slide down again is to note that 

the downward force of gravitation is not large enough to overcome the force of friction, 

i.e., ,maxsin k smg f f   .    
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92. Consider that the car is “on the verge of sliding out” – meaning that the force of static 

friction is acting “down the bank” (or “downhill” from the point of view of an ant on the 

banked curve) with maximum possible magnitude.  We first consider the vector sum F  


 

of the (maximum) static friction force and the normal force.  Due to the facts that they are 

perpendicular and their magnitudes are simply proportional (Eq. 6-1), we find F  


 is at 

angle (measured from the vertical axis)  =  + s  where tan s = s (compare with Eq. 6-

13), and  is the bank angle.  Now, the vector sum of F  


 and the vertically downward pull 

(mg) of gravity must be equal to the (horizontal) centripetal force (mv
2
/R), which leads to 

a surprisingly simple relationship: 

 

tan =  
mv

2
/R

mg
   =   

v
2

Rg
  . 

 

Writing this as an expression for the maximum speed, we have 

 

1

max

(tan )
tan( tan )

1 tan

s
s

s

Rg
v Rg

 
 

 

 
  


. 

 

(a) We note that the given speed is (in SI units) roughly 17 m/s.  If we do not want the 

cars to “depend” on the static friction to keep from sliding out (that is, if we want the 

component “down the back” of gravity to be sufficient), then we can set s = 0 in the 

above expression and obtain tanv Rg  .  With R = 150 m, this leads to = 11. 

 

(b) If, however, the curve is not banked (so = 0) then the above expression becomes  

 

 1tan(tan )s sv Rg Rg    

 

Solving this for the coefficient of static friction s = 0.19. 

 

93. (a) The box doesn’t move until t = 2.8 s, which is when the applied force 

F  reaches a 

magnitude of F = (1.8)(2.8) = 5.0 N, implying therefore that fs, max = 5.0 N. Analysis of 

the vertical forces on the block leads to the observation that the normal force magnitude 

equals the weight FN = mg = 15 N. Thus,  

 

s = fs, max/FN = 0.34. 

 

(b) We apply Newton’s second law to the horizontal x axis (positive in the direction of 

motion): 

F f ma t f tk k     18 15 12 2 4. . . .b gb g  
 

Thus, we find fk = 3.6 N. Therefore, k = fk / FN = 0.24. 

 



 

  

295 

94. In the figure below, m = 140/9.8 = 14.3 kg is the mass of the child. We use 

wx  and 


wy  as the components of the gravitational pull of Earth on the block; their magnitudes 

are wx = mg sin  and wy = mg cos .  

 
 

(a) With the x axis directed up along the incline (so that a = –0.86 m/s
2
), Newton’s 

second law leads to 

 

f mk   140 25 086sin ( . )  

 

which yields fk = 47 N. We also apply Newton’s second law to the y axis (perpendicular 

to the incline surface), where the acceleration-component is zero: 

 

140cos25 0     127 N.N NF F      

 

Therefore, k = fk/FN = 0.37. 

 

(b) Returning to our first equation in part (a), we see that if the downhill component of 

the weight force were insufficient to overcome static friction, the child would not slide at 

all. Therefore, we require 140 sin 25° > fs,max = s FN, which leads to tan 25° = 0.47 > s. 

The minimum value of s equals k and is more subtle; reference to §6-1 is recommended. 

If k exceeded s then when static friction were overcome (as the incline is raised) then it 

should start to move – which is impossible if fk is large enough to cause deceleration! The 

bounds on s are therefore given by 0.47 > s > . 

 

95. (a) The x component of F  


 contributes to the motion of the crate while its y 

component indirectly contributes to the inhibiting effects of friction (by increasing the 

normal force).  Along the y direction, we have FN – Fcos – mg = 0 and along the x 

direction we have  Fsin – fk = 0 (since it is not accelerating, according to the problem).  

Also, Eq. 6-2 gives fk = k FN.  Solving these equations for F yields 

 

        
sin cos

k

k

mg
F



  



 . 

 

(b) When 1

0 tan s    , F will not be able to move the mop head. 
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96. (a) The distance traveled in one revolution is 2R = 2(4.6 m) = 29 m. The (constant) 

speed is consequently v = (29 m)/(30 s) = 0.96 m/s. 

 

(b) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to 

 

f m
v

R
ms 

F
HG
I
KJ 

2

0 20( . )  

 

in SI units. Noting that FN = mg in this situation, the maximum possible static friction is 

fs,max = s mg using Eq. 6-1. Equating this with fs = m(0.20) we find the mass m cancels 

and we obtain s = 0.20/9.8 = 0.021. 

 

97. THINK In this problem a force is applied to accelerate a box. From the distance 

traveled and the speed at that instant, we can calculate the coefficient of kinetic friction 

between the box and the floor.   

 

EXPRESS The free-body diagram is shown to the right. We adopt 

the familiar axes with +x rightward and +y upward, and refer to the 

85 N horizontal push of the worker as F (and assume it to be 

rightward). Applying Newton’s second law to the x axis and y axis, 

respectively, produces 

 

, 0.k x NF f ma F mg     

 

On the other hand, using Eq. 2-16 ( 2 2

0 2 xv v a x   ), we find the acceleration to be 

 
2 2 2

20 (1.0 m/s) 0
0.357 m/s .

2 2(1.4 m)
x

v v
a

x

 
  


 

 

The above equations can be combined to give k . 

 

ANALYZE Using k k Nf F , we find the coefficient of kinetic friction between the box 

and the floor to be    
2

2

85 N (40 kg)(0.357 m/s )
0.18.

(40 kg)(9.8 m/s )

k x
k

N

f F ma

F mg


 
     

 

LEARN In general, the acceleration can be written as ( / ) .x ka F m g   We see that the 

smaller the value of k , the greater the acceleration. In the limit 0k  , we simply have 

/ .xa F m  

 

98. We resolve this horizontal force into appropriate components. 



 

  

297 

(a) Applying Newton’s second law to the x 

(directed uphill) and y (directed away from 

the incline surface) axes, we obtain 

 

cos sin

sin cos 0.

k

N

F f mg ma

F F mg

 

 

  

  
 

 
Using fk = k FN, these equations lead to 

 

(cos sin ) (sin cos )k k

F
a g

m
          

 

which yields a = –2.1 m/s
2
, or  |a | = 2.1 m/s

2 
, for k = 0.30, F = 50 N and m = 5.0 kg. 

 

(b) The direction of a is down the plane. 

 

(c) With v0 = +4.0 m/s and v = 0, Eq. 2-16 gives 
2

2

(4.0 m/s)
 3.9 m.

2( 2.1m/s )
x  


 

 

(d) We expect s  k; otherwise, an object started into motion would immediately start 

decelerating (before it gained any speed)! In the minimal expectation case, where s = 

0.30, the maximum possible (downhill) static friction is, using Eq. 6-1, 

 

,max ( sin cos )s s N sf F F mg       

 

which turns out to be 21 N. But in order to have no acceleration along the x axis, we must 

have 

cos sin 10 Nsf F mg     

 

(the fact that this is positive reinforces our suspicion that 

f s  points downhill). Since the fs 

needed to remain at rest is less than fs,max then it stays at that location. 

 

99. (a) We note that FN = mg in this situation, so  

 

fs,max = smg = (0.52)(11 kg)(9.8 m/s
2
) = 56 N. 

 

Consequently, the horizontal force 

F  needed to initiate motion must be (at minimum) 

slightly more than 56 N. 

 

(b) Analyzing vertical forces when 

F  is at nonzero  yields 

 

,maxsin   (  sin ).N s sF F mg f mg F        
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Now, the horizontal component of 

F  needed to initiate motion must be (at minimum) 

slightly more than this, so 

 

cos ( sin )  
cos sin 

s
s

s

mg
F mg F F


  

  
   


 

 

which yields F = 59 N when  = 60°. 

 

(c) We now set  = –60° and obtain 

 
2

3(0.52)(11kg)(9.8 m/s )
1.1 10  N.

cos( 60 ) (0.52) sin ( 60 )
F   

    
 

 

100. (a) If the skier covers a distance L during time t with zero initial speed and a 

constant acceleration a, then L = at
2
/2, which gives the acceleration a1 for the first (old) 

pair of skis: 

a
L

t
1

1

2 2

22 2 200

61
011  

m

s
m / s

b g
b g . . 

 

(b) The acceleration a2 for the second (new) pair is 

 

a
L

t
2

2

2 2

22 2 200

42
0 23  

m

s
m / s

b g
b g . .  

 

(c) The net force along the slope acting on the skier of mass m is 

 

F mg f mg mak knet     sin sin cos   b g  

 

which we solve for k1 for the first pair of skis: 

 
2

1
1 2

0.11m/s
tan tan3.0 0.041

cos (9.8 m/s )cos3.0
k

a

g
 


    


 

 

(d) For the second pair, we have  

  
2

2
2 2

0.23 m/s
tan tan3.0 0.029 .

cos (9.8 m/s )cos3.0
k

a

g
 


     


 

 

101. If we choose “downhill” positive, then Newton’s law gives 

 

m g sin – fk = m a 
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for the sliding child.  Now using Eq. 6-12 

 

fk =k FN =k m g, 

 

so we obtain a = g(sin – k cos) = – 0.5 m/s
2
 (note that the problem gives the direction 

of the acceleration vector as uphill, even though the child is sliding downhill, so it is a 

deceleration). With = 35º, we solve for the coefficient and find k = 0.76. 

 

102. (a) Our +x direction is horizontal and is chosen (as we also do with +y) so that the 

components of the 100 N force 

F  are non-negative. Thus, Fx = F cos  = 100 N, which 

the textbook denotes Fh in this problem. 

 

(b) Since there is no vertical acceleration, application of Newton’s second law in the y 

direction gives 

 

sinN y NF F mg F mg F       

 

where m = 25.0 kg. This yields FN = 245 N in this case ( = 0°). 

 

(c) Now, Fx = Fh = F cos  = 86.6 N for  = 30.0°. 

 

(d) And FN = mg – F sin  = 195 N. 

 

(e) We find Fx = Fh = F cos  = 50.0 N for  = 60.0°. 

 

(f) And FN = mg – F sin  = 158 N. 

 

(g) The condition for the chair to slide is 

 

,max
 where  0.42.

sx s N sF f F     

For  = 0°, we have 

 

,max100 N (0.42)(245 N) 103 Nx sF f     

 

so the crate remains at rest. 

 

(h) For  = 30.0°, we find ,max86.6 N (0.42)(195 N) 81.9 N,x sF f    so the crate 

slides. 

 

(i) For  = 60°, we get ,max50.0 N (0.42)(158 N) 66.4 N,x sF f     which means the 

crate must remain at rest. 

 

103. (a) The intuitive conclusion, that the tension is greatest at the bottom of the swing, is 

certainly supported by application of Newton’s second law there: 
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T mg
mv

R
T m g

v

R
    

F
HG
I
KJ

2 2

 

 

where Eq. 6-18 has been used. Increasing the speed eventually leads to the tension at the 

bottom of the circle reaching that breaking value of 40 N. 

 

(b) Solving the above equation for the speed, we find 

 

240 N
(0.91 m) 9.8 m/s

0.37 kg

T
v R g

m

  
     

   
 

which yields v = 9.5 m/s. 

 

104. (a) The component of the weight along the incline (with downhill understood as the 

positive direction) is mg sin where m = 630 kg and  = 10.2°. With f = 62.0 N, Newton’s 

second law leads to mg f masin   , which yields a = 1.64 m/s
2
. Using Eq. 2-15, we 

have 

80 0 6 20
1

2
164 2. . . .m

m

s

m

s2

F
HG

I
KJ 

F
HG
I
KJt t  

 

This is solved using the quadratic formula. The positive root is t = 6.80 s. 

 

(b) Running through the calculation of part (a) with f = 42.0 N instead of f = 62 N results 

in t = 6.76 s. 

 

105. Except for replacing fs with fk, Fig 6-5 in the textbook is appropriate. With that 

figure in mind, we choose uphill as the +x direction. Applying Newton’s second law to 

the x axis, we have 

sin  where  ,k

W
f W ma m

g
    

 

and where W = 40 N, a = +0.80 m/s
2
 and  = 25°. Thus, we find fk = 20 N. Along the y- 

axis, we have 

 0 cosNy
F F W     

so that k = fk/ FN = 0.56. 

 

 


