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ABSTRACT 

In this paper we use dimensional analysis as a method for solving problems in qualitative physics. We 
pose and solve some of the qualitative reasoning problems discussed in the literature, in the context of 
devices such as the pressure regulator and the heat exchanger. Using dimensional analysis, such 
devices or systems can be reasoned about without explicit knowledge of the physical laws that govern 
the operation of such devices. Instead, the method requires knowledge of the relevant physical 
variables and their dimensional representation. Our main thesis can be stated as follows: the 
dimensional representations of physical variables encode a significant amount of physical knowledge; 
dimensionless numbers provide a representation of the physical processes, and they can be obtained 
without direct, explicit knowledge of the underlying laws of physics. Then, a variety of partial 
derivatives can be computed and used to characterize the behavior of the system. These partials, 
along with some simple heuristics, can be used to reason qualitatively about the behavior of devices 
and systems. Here we present the techniques for dimensional analysis and develop the representation 
and reasoning machinery. 

I. Introduction 

In this paper  we use dimensional analysis as a method for solving problems in 
qualitative physics. We pose and solve some of the qualitative reasoning 
problems discussed in the literature, such as the pressure regulator and the 
heat exchanger.  Using dimensional analysis, such devices or systems can be 
reasoned about without expl ic i t  knowledge of the physical laws that govern the 
operat ion of these devices. Instead,  the method requires knowledge of the 
relevant physical variables and their dimensional representa t ion)  

The physical reasoning problem has usually required a representational 
apparatus that can deal with the vast amount  of physical knowledge that is used 
in reasoning tasks. The programs of both naive physics and qualitative physics 

~We do not make any serious distinctions between physical laws and physical equations, which 
we assume are simply convenient representations of laws. Of course, physical laws are not the 
same as physical knowledge. We make no claim that dimensional analysis works without physical 
knowledge. 
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assume that the amount of knowledge needed for even simple physical tasks is 
quite large [17, p. 1], and as a consequence the representational apparatus that 
is needed for even simple physics problems has proved to be quite complex [9, 
14, 24]. In this paper, we shall take a different approach: we will exploit the 
fact that the information contained in conventional physical representations of 
variables has not only a numerical component but also a symbolic component. 
The numerical component is well-known; it is simply the numerical value of 
some variable measured along some system of units. A force may be in 
poundals ( lbf t / s  2) or a pressure may be in pascals (kg/(m/s2)). To reason 
about the physical variables that the numbers represent, qualitative physics 
assigns qualitative values to them, either directly, or indirectly by using domain 
knowledge to specify and constrain the values the variable may take in a 
particular physical context. 

The symbolic component is less familiar, at least in qualitative physics. It is 
simply the dimensional representation of  physical variables. 2 For example, in the 
most familiar dimensional notation, learned in high-school or college physics, 
force is usually represented as M L T  ~. Such a dimensional representation of a 
variable is subject to a set of laws, and all physical laws are in fact constrained 
by these dimensional principles. The most familiar of these laws is the principle 
of dimensional homogeneity. There is in fact a substantial literature on the 
subject, most of which, however, is not very recent [3-5, 26, 31, 32, 34, 37]. 
The most well-known and widely used result in dimensional analysis is Buck- 
ingham's II-theorem, stated and proved by Buckingham in 1914 [4]. This 
theorem identifies the number of independent dimensionless numbers that can 
characterize a given physical situation. 

Traditionally, dimensional analysis has been used to derive formulas in 
college physics, and for purposes of modeling and similitude in engineering. 
Since then, it has been applied to a fairly diverse set of problems in engineering 
(see, e.g., [26, 37]). The technique's greatest successes have been in fluid 
mechanics, where it has generally been used for problems in modeling and 
similitude. One of the most familiar dimensionless numbers used in such 
modeling is the Reynolds' number, which determines whether a flow is laminar 
or turbulent. 3 Dimensionless numbers and dimensional analysis have been used 
a great deal in both old-fashioned fluid mechanics, as well as in newer physics, 
such as plasma physics and astrophysics [6, 7, 36]. 

Our task, in this paper, is to extend the scope of dimensional analysis and 
develop it as a method for qualitative reasoning about physical devices, 

~Our recognition of the symbolic content  of physical variables is not original; it has already 
made its appearance in A1 as a tool for problem solving and discovery, through the seminal work 
of Mitch Kokar  of Northeastern University [20-23]. We are grateful to Wlodek Zadrozny for 
bringing this work to our attention. Kokar 's  work is discussed in Section 5 of this paper. 

Another  dimensionless number  that is of enormous  importance in physics is the strain on a 
physical e lement ,  traditionally defined as ex/x, where x is some length of the physical element.  
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processes and systems. We carry out this extension by developing conceptual 
machinery for reasoning with dimensionless numbers, which we call regimes, 
using elementary notions about partial differentiation. This extension requires 
that the variables that enter into a particular physical problem, as well as their 
dimensional representations, be known. Using just such knowledge, we have 
been able to pose and solve some of the qualitative reasoning problems posed 
in the literature, such as the pressure regulator [9], the projectile, the spring, 
and the heat exchanger [42]. Our method, we will show, is especially useful for 
tackling qualitative reasoning problems of the following kinds: 

(a) to resolve, under certain circumstances, some of the ambiguities inherent 
in reasoning with a { +, 0, - } qualitative calculus; 

(b) to provide a comparative qualitative representation for a physical 
process; 

(c) to derive the causal structure of the device's behavior, given the inputs 
and the outputs of a device. 

In general, we will develop dimensional analysis as a reasoning method that 
can be used along with any of the various methods that have already been 
proposed, rather than as an exclusionary alternative. Limit analysis, central to 
the qualitative simulation approach, is not addressed [24]. 

The rest of this paper is organized as follows: in the remainder of this 
section, we illustrate the use of dimensional reasoning with a familiar example. 
The example, a simple pendulum, is simply a memory aid, reminding the 
reader of the way the principle of dimensional homogeneity can be used to 
derive physical equations or laws. 

Section 2 discusses the machinery of dimensional analysis, beginning with a 
discussion of the principle of dimensional homogeneity and then presents two 
theorems about dimensions, Bridgman's product theorem [3] and Bucking- 
ham's H - t h e o r e m  [4]. 4 These theorems are used to develop a notation and then 
to show that the dimensionless numbers that are produced are in fact a 
representation of the physical processes going on in the device. Using these 
dimensionless numbers, we develop some machinery using partial derivatives; 
this machinery is the kernel from which we reason about physical devices 
qualitatively. 

Section 3 presents a series of examples from the literature, including the 
pressure regulator of de Kleer and Brown [9], the heat exchanger of Weld [42] 
and the circuit analysis of Williams [44]. Each of these examples are problems 
that can be posed, understood and, within certain limits, solved with dimen- 
sional analysis; furthermore, the examples serve to illustrate different aspects 
of the strengths and weaknesses of dimensional analysis. Our first example in 

4Both these theorems are fairly simple creatures; their proofs, which will be obvious to many, 
are included simply because the original literature may be a little hard to get hold of. 
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this section is the simple block and spring of Weld [42], and we use this to 
illustrate the simplest kind of dimensional reasoning, so-called "intra-regime 
analysis." In this example we also demonstrate that irrelevant variables will not 
affect the result of a dimensional analysis. The second example, the projectile, 
also first used in qualitative physics by Weld, illustrates the inverse problem, 
that of not knowing all the variables that are relevant to a particular situation. 
We show that this situation, a lack of awareness of relevant variables, can yield 
misleading results, but that there are some heuristic cues in a situation that can 
suggest that a problem has in fact been inadequately stated. This example also 
illustrates how an analysis can be extended to include variables that were not 
originally included in the analysis. We use the heat exchanger to demonstrate 
the use of so-called "inter-regime analysis," and the pressure regulator of de 
Kleer and Brown [9] to show how the causal structure of systems with feedback 
can be analyzed using what we term "inter-ensemble analysis." (Our use of all 
these terms is defined in Section 2.3.1). Finally we use an example from circuit 
analysis used by Williams [44] to show how dimensional analysis can be used 
for studying electrical systems. Taken together, these examples illustrate the 
class of problems we mentioned above, viz. resolve ambiguities (the spring), 
provide a compact qualitative representation of physical processes (via the 
projectile and the heat exchanger) and provide a causal understanding of 
feedback devices (via the pressure regulator). 

Section 4 discusses the representational role of dimensional analysis, while 
Section 5 discusses the theoretical relationship of dimensional analysis to other 
work in qualitative physics, and finally some possible applications of the 
technique (Section 6.1). 

Before we proceed, a historical remark is in order. AI is often considered by 
critics to "re-invent the wheel," by ignoring studies and previous results in 
other domains. We don't agree with that view of AI, and we present dimen- 
sional analysis as an example of serious intellectual borrowing, engaging in a 
retrospective similar in spirit to that described by Bobrow [1]. 

1.1. The simple pendulum 

Consider a simple pendulum of the familiar high-school kind, a more or less 
spherical bob at the end of a taut string, hanging freely from a ceiling or other 
horizontal support (see Fig. 1). 

Consider the problem of determining the period of oscillation of the 
pendulum: 

t = f ( m ,  l, g, 0),  (1) 

where the variables represent the physical quantities as shown in Fig. 1. The 
units of the left-hand side of the equation are time units (say seconds), and the 
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Fig. 1. A simple pendulum. 

units of the quantities on the right-hand side are as follows: 

m mass units [M] (say pound-mass), 
l length units ILl  (say feet),  
g acceleration units [ L T  -2] (say feet per second squared), 
0 no dimensions [ ]. 

By inspection, it is clear that mass units are not needed on the left-hand side 
of (1). Since only one variable in the right-hand side contains the dimension M, 
it can be safely omitted, so that we may rewrite (1) as: 

t = f ( l ,  g, 0 ) .  (2) 

Because the solution has the dimensions of time, l and g enter into the 
equation in such a way that the length dimension must cancel out, so that the 
solution must be of the form 

t = f ( t / g ,  0 ) .  (3) 

0 has no dimensions and can be temporarily ignored, but l /g has the 
dimensions T 2, while the solution has the dimension T ~. Thus, we may rewrite 
(3) as 

t = f ( ( l / g )  ~/2, 0 ) .  (4) 

Finally, since 0 is dimensionless, it can only enter as a product,  so that we may 
finally write the equation 
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t =  4,(0) (5) 

The form of  this expression will be familiar,  f rom high-school  physics; for small 
ampli tudes,  we actually know that: 

~b(0) = 27r. (6) 

This allows us to write the equa t ion  for  the per iod of  oscillation of  a simple 
pendu lum in s tandard form: 

t : 2 r r / k / ~ .  (7) 

F rom (7) we see that  the mass m of  the bob is irrelevant (because 
Ot/Om = 0), and that  the longer  the length, the greater  the per iod of  the bob  
(since Ot/Ol > 0). 

We have now used dimensions  (or units as they are called in high-school 
physics) to derive the form of  an equat ion.  This example illustrates the 
tradit ional  use of  dimensional  analysis in both  physics [3] and in artificial 
intelligence [21]. 

2. Dimensional Analysis 

2.1. Principle of dimensional homogeneity 

Let  

y : ~ a i x  i 
i 

be a physical law or  equat ion.  Then  all the aix i must have the same dimensions 
as y ;  if the a i are dimensionless constants ,  then each of  the xi must  have the 
same dimensions as y. This principle,  which is usually referred to as the 
principle of  dimensional homogeneity is assumed in all of  physics, and is of ten 
not  stated, even in e lementa ry  books  (see, e.g. ,  [13]). The  principle appears  to 
have been first s tated by Four ier  [3, p. 55]. 

Having the same dimensions means  the following: the exponents  of  the five 
basic dimensions that  make  up x~ and y (assuming, for simplicity, that  the a i are 
all dimensionless constants)  must  be the same. 5 This requi rement  about  
exponents  leads to our  first theorem.  

s In this paper, we have assumed five basic independent dimensions, mass (M), length (L), time 
(T), temperature (0) and electric potential (@). Alternate sets of dimensions are possible (such as 
force instead of mass), and there is also some question about temperature as a basic dimension. 
For some particularly dusty correspondence on this matter, see [5, 31, 32, 34]. Most problems do 
not require all five dimensions; instead three or four dimensions are often sufficient. 
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2.2. The early theorems 

The early theory of dimensional analysis is based on two key results--the 
product theorem and Buckingham's //-theorem. In this section we will state 
the theorems and discuss their significance. In the appendix we have included 
suitably annotated versions of the proofs obtained by Bridgman. More sophisti- 
cated proofs using group theory were later obtained by other researchers. 

Product Theorem. Let  a secondary quantity be derived f r o m  measurements  o f  
p r imary  quantities a,  [3, y , .  . . ; assuming absolute significance o f  relative mag- 
nitudes, the value o f  the secondary quantity is derived as: 

C l  a a [ 3 b y  c . . . , 

where C1, a, b, c, . . . are constants [3, 12]. 

The assumption of absolute significance of relative magnitudes requires that 
the ratio of the numbers measuring two physical quantities (e.g. speeds of two 
different particles) must be independent of the units used to measure them. 6 
The product theorem establishes the fact that dimensional representations must 
be multiplicative. If we assume that the primary quantities a, [3, Y . . . .  are 
fundamental, then we can associate basic dimensions such as [M], [L], [T] . . . .  
with them. These dimensions can be understood as corresponding to equival- 
ence classes of units or as qualitative units. Now according to the product 
theorem the dimensional representation of the secondary quantity will have the 
form: 

[ M ] " [ L ] b [ T ] ' . . . .  

Buckingham's H-Theorem. Given measurements  o f  physical  quantities c~, [3, 
y . . . .  such that c~(c~, [3, y . . . .  ) = 0 is a complete  equation, then its solution can 
be written in the f o r m  F(111, I I  2 . . . .  [In_r) = O, where n is the n u m b e r  o f  
arguments  o f  6 ,  and r is the basic n u m b e r  o f  d imensions  needed to express the 
variables c~, [3 . . . .  ; f o r  all i, 11 i is a dimensionless  n u m b e r  [3, 4, 26]. 

Buckingham's theorem rests on the requirement that implicit functions 
characterizing the physical situation, i.e. the physical laws, be complete. 
Buckingham's application of this theorem to different problems is the basis of 
the procedure for computing the dimensionless products H. Using this theorem 
and the related procedure, we develop a method for analyzing physical devices, 
in Section 3. Before we do that we explore these theorems by laying out some 
machinery for partial differentiation of//-expressions. 

OThis assumpt ion is central to all physical measurement .  Its justification or proof is outside the 
scope of this paper. For a comprehensive t rea tment ,  we refer the reader to Ellis [12]. 



80 R. B H A S K A R  AND A. NIGAM 

2.3. The H-calculus 

The set of Hs  that can be used to describe a particular physical situation are 
continuous functions of real variables. It is therefore possible to understand the 
behavior  of the device by computing partials using the form of the Hs.  In this 
section we present the mechanics of these partials. 

2.3.1. Notation and terminology 

A dimensionless product H has the following form: 

/ / i  = yi × ( x , " . . .  xT'r) 

where {x 1 . . . . .  Xr} are the repeating variables, {y~ . . . . .  Y,-r} are the perfor- 
mance variables and {a/t ] 1 ~< i ~< n - r, 1 ~<j ~< r} are the exponents.  

We call the set of variables xj that repeat  in each H the basis. Each 
dimensionless number ,  Hi, refers to a particular physical aspect of the system 
and we shall call it a regime. We shall call a collection of regimes an ensemble. 
If, in a system of n variables and a dimensional matrix 7 of rank r, the ensemble 
of regimes contains n - r regimes, we shall call such an ensemble a complete 
ensemble. If x k is a variable that occurs in both H i and / / j ,  then we shall refer to 
x~ as a contact variable or as a pivot. These two terms will be used inter- 
changeably. 

Thus the regime H i offers us a dimensionally homogeneous  equation con- 
necting the variable Yi with the basis variables x l , . . . ,  x r. For the rest of this 
section we will use the following as the product form relationship obtained 
from the regime: 

Yi = Hi X X l  ai l  " " " X r  Otir 

where l ~ < i ~ < n - r .  

2.3.2. Analysis 

We need machinery for the following kinds of  analyses: 

(1) analysis within a regime, intra-regime analysis, for examining how the 
variables within a regime are related to one another;  

(2) analysis across regimes, inter-regime analysis, to see how different 
regimes are related to one another  through contact variables; 

(3) analysis across ensembles,  inter-ensemble analysis, to reason about  the 
behavior  of a device or system consisting of coupled components  or 
subsystems. 

7The columns of this matrix correspond to the basic dimensions and the rows correspond to the 
variables. The element (i, j )  is exponent  of the j th dimension in the dimensional representation of 
the ith variable. 
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2.3 .2 .1 .  In tra-regime part ials  
From the expression obtained from regime, //;, we can obtain partials of yi 
with respect to x i where xj is a basis variable that occurs in H i. Expressions for 
intra-regime partial derivatives are of the form: 

Oyi/ c)Xj = -- (aijY i ) /Xj  . 

Thus knowing the signs of the exponents,  aq, we can easily determine the signs 
of the intra-regime partials. 

2.3.2.2. In ter-regime part ials  
Inter-regime partials are used to relate performance variables y~ and yj that 
occur in the regimes H i and ~ respectively. An inter-regime partial is defined 
with respect to a contact  variable,  i.e. it only exists when the regimes H i and Hj 
share some variable. The notation for inter-regime partial is: 8 

[Oyi/Oyi] xp , 

where Xp is a contact variable for regimes H i and I/j. If there are several contact 
variables, then we can obtain an inter-regime partial for each. Intuitively, the 
inter-regime partial models the changes in Yi and yj in response to a change in 
the contact variable Xp, all other variables remaining constant. Inter-regime 
partials can be related to intra-regime partials as discussed below. 

Earlier we saw that each regime specifies a dimensionally homogeneous 
equation for its performance variable. Thus using the contact variable Xp, we 
can obtain an equation relating Yi and yj and hence obtain the inter-regime 
partial: 

[ayi/  OyjlXp = (aip/ajp)(  y i / y j )  . 

From the regimes H i and ~ we can compute the following partials: 

Oy i~ OXp = -- Yi aip/Xp , 

ay j /  OXp = - yj  ~jp/xp . 

Thus the inter-regime partial is the ratio: 

Oy i~ OXp 

a y /  OXp - (a ,p /ajp)(  y , / y j )  . 

This result can also be obtained using more rigorous arguments. 

SWe use square brackets [ ], to distinguish the notation from the standard partial differential 
notation (ay/ax) . . . . . . . . . .  . The superscript denotes the variable that is not held constant; this is 
different from the usual notation of subscripting all variables that are held constant. 
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2.3.2.3. Inter-ensemble partials 
Inter-ensemble analysis is the generalization of inter-regime analysis. The 
objective is to reason across ensembles. When dealing with a device with 
several components, we obtain an ensemble (of regimes) for each component 
or subsystem. Now in order to reason about the behavior of the entire device 
we need to reason about the coupling, which manifests itself in terms of 
coupling quantities. This knowledge cannot be obtained from dimensional 
analysis; it has to come from clues such as device function and paths. The 
coupling quantities are used to obtain coupling regimes. We illustrate this 
technique using the pressure regulator, in the next section. 

In order to obtain inter-ensemble partials we need contact regimes (a 
generalization of contact variables). Consider two ensembles A and B, regimes 
HAi and //By belonging to these ensembles, and variables Yi and Yi that are 
described by the regimes. Our objective will be to compute the inter-ensemble 
partial Oyi/Oyj. This will require a coupling regime to H c. The inter-regime 
notation can be extended in the obvious way to specify inter-ensemble partials: 

, 11¢, 
[ O Y a i / O Y B / ]  • 

2.3.3. Implications 

We now know how to compute the sign of the partial derivative of performance 
variables with respect to basis variables, groups of basis variables and other 
performance variables. Using the equations developed here we can analyze the 
behavior of any component or process of the device (through intra-regime 
analysis), or the relationship between components or processes (through 
inter-regime and inter-ensemble analyses). 

2.4. Reasoning with dimensionless numbers 

Here we shall make several remarks about the physical role of the dimension- 
less numbers and how they can be used in reasoning. After these remarks, we 
shall use the machinery of this section to solve examples commonly used in the 
qualitative physics literature in Section 3. 

2.4.1. The role of the basis 

The basis plays a crucial role in the construction of regimes. For Buckingham's 
procedure to work, the variables in the basis, r in all, must satisfy the following 
dimensional criteria: 

-Every  dimension that occurs in the dimensional representation of the n 
variables characterizing the system must occur in the dimensional repre- 
sentation of one or more basis variables. 

- T h e  dimensional representations of the basis variables should be linearly 
independent. 
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When reasoning we consider the basis variables to be the independent  
variables. The objective is to compute the direction of change of a performance 
variable in response to a change in the basis variable(s). Another  intuitive 
interpretation is in terms of causality. In this context the exogenous variables 
will usually be in the basis, as discussed in Section 3.7. However,  since the 
basis has to satisfy the dimensional constraints mentioned earlier, it might not 
always be possible to place all the exogenous variables in the basis. In order  to 
reason about change in a performance variable Yi as a result of a change in 
some exogenous variable z j: 

- If zj is in the basis and occurs in H i, then use intra-regime partials. 
- If zj is in the basis but not in Hi, then reason using chains of inter-regime 

partials. 
- If zj is not in the basis, then use the appropriate inter-regime partial linking 

H i and//1.. 

This is the basic kernel of the reasoning strategy. Using it we can reason in 
more complex situations, e.g. with respect to collections of variables rather 
than a single variable, and reason across coupled ensembles. Examples of such 
reasoning will be presented in Section 3. 

2.4.2. The regimes 

Although Buckingham's theorem tells us that it is possible to extract n - r  
dimensionless numbers to represent a physical situation, it does not tell us their 
physical role. In particular, it does not guarantee that each number contains 
only one variable that is not in the basis. Understanding this single-variable 
aspect of dimensionless numbers follows separately and is key to why they can 
be considered to have physical meaning as regimes, and why they can be used 
to reason about the physical situation. This single-variable aspect follows from 
Hall's theorem in combinatorial theory which we present without proof 
[15, 16]. It is this theorem that takes dimensional analysis f rom being a tool for 
modeling problems in engineering to a method for problem solving in artificial 
intelligence .9 

Hall's Theorem. Let I be a finite set o f  indices, I = {1, 2 . . . .  , n}. For each 
i E I, let S i be a subset o f  a set S. A necessary and sufficient condition for the 
existence o f  distinct representatives xi, i = 1, 2 . . . . .  n, x i E S i, x i ~ xj, when 
i ~ j, is condition C: For every k = 1 . . . . .  n and choice o f  k distinct indices 
i ~ , . . . ,  ik, the subsets S i~ , . . .  , Sik contain between them at least k distinct 
elements. 

Buckingham's theorem was published in 1914, and he has no reference to combinatorial theory 
in his paper; Hall's theorem, published some 20 years later, in 1935, has no reference to physical 
implications. 
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Consider a system of r + 2 variables. Let r variables be in the basis, and call 
these variables the xj. Let  the set of  variables in the two regimes H T and H 2 be 
written in the form S ~ = { y ~ , x  l , x  z . . . . .  xr} and S 2 = { y R , x l , x 2  . . . . .  Xr}" 
NOW if the r variables xj are eliminated, we are left with two sets, which are 
both distinct subsets of a set S = {y~, Y2}. Since the set of these two subsets, 
viz. {{yl}, {Y2}}, consists exclusively of sets that are singletons, a system of 
distinct representatives of these two sets is the set S = {y~, Y2} itself. By 
induction, this scheme must extend to any set of n - r variables. Hence each 
regime represents exactly one variable not in the basis. If  a particular H i is held 
constant,  it is possible to see how the variable of interest is related to the other 
variables in the basis. 

3. Qualitative Physics 

This is the long-awaited examples section; we apply the technique of dimen- 
sional analysis to a broad spectrum of problems drawn from the qualitative 
physics literature, such as the pressure regulator [9], springs and projectiles 
[42], heat exchangers [42] and circuit analysis [43]. For some of the examples 
we have included a graphical representat ion of the ensemble (Figs. 3, 5 and 7); 
ensemble structure is discussed in Section 3.6. 

The dimensional analysis consists of the following procedure: 

Step 1. List the n variables that characterize the problem,  and write their 
dimensional representations (e.g. the dimensional representation of force is 
M L T - 2 ) ;  let r be the number  of distinct dimensions that are used)  ° 

Step 2. By Buckingham's  theorem ( n -  r) dimensionless products (later 
referred to as Hs) can be calculated as follows: 

(a) Select r variables to be the basis, x~ . . . . .  Xr; let ~i be the dimensional 
representat ion of x i. 

(b) Each H i, r + l < ~ i < ~ n ,  has the form 

y ix ' ( "  " "  xT" 

and replacing each x and y by its corresponding dimensional representa- 
tion ~ leads to the expression 

a,a~,, . . .  a T ' .  

As 11 i is dimensionless, the exponents of  each dimension must add up to 
zero. This yields (n - r) systems of r equations in r unknowns which can 
be solved to obtain the values of the exponents aij, and hence the 
expressions f o r / / i .  

.~ As mentioned earlier, r is correctly the rank of the dimensional matrix, and in some cases may 
turn out to be less than the number of dimensions. 
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Step 3. We can use the Hs to reason about system and component behavior 
by computing partial derivatives of the form Oyi/Ox j and [ayi/ayj] xk. We can 
also reason about groups of variables. 

This procedure is quite simple--but it should also be quite clear from this 
outline of the procedure that dimensional analysis cannot proceed without 
physical knowledge. The knowledge required is exactly the same as that 
required in any other qualitative reasoning method. What is different is where 
and how this knowledge is represented and organized--the choice of relevant 
variables, and the choice of the basis, because of their dimensionality, con- 
strain the set of behaviors of which the system is capable. The apparent 
simplicity of dimensional analysis stems completely from (i) the familiarity, in 
physics and engineering, of the dimensional representation of a variable and 
(ii) the compactness of the dimensional representation of a set of physical 
variables. This compactness conceals a substantial amount of physical knowl- 
edge in the dimensional representation of a variable. For example, the 
dimensional representation for force implies knowledge of Newton's second 
law (which is often simplified to F = ma).  The dimensional representation of 
force is M L T  -2 precisely because F =  ma. In fact, it is fair to say, from a 
parochial dimensional view, it is possible to characterize Newton's contribution 
as finding out that the dimensional representation of force and gravity are the 
same [27]! 

Equally, it should be quite clear that any of the devices we describe here can 
in fact be modeled differently. If the devices are modeled differently, i.e. 
different inputs, different outputs and different physical conditions are chosen, 
then different behaviors will result. In fact, a different device altogether will 
have been modeled. Like many modeling techniques, dimensional analysis 
offers only minor syntactic checks as to the correctness of the inputs. 

3.1. Horizontal oscillation of a block and spring 

We use the problem discussed by Weld [42]. The device is presented in Fig. 2. 
Once the block is displaced from its rest position, it oscillates about this 
position. The objective is to reason about the behavior of this system in terms 
of the time period of oscillation. The variables describing this problem and 
their associated dimensions are: 

time period t [T],  
mass m [M], 
spring constant K [ M T - 2 ] .  

We have three quantities (t, m and K) and two dimensions (M and T); thus 
we have a single H. As t is the variable of interest, we write H as: 

I I  = tm~K ~ . 
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/ 

Fig. 2. Oscillation of a frictionless block. 

As H is dimensionless, the exponents of the M and the T dimensions should 
each add up to zero. Thus we have the equations: 

M-homogeneity:  a + fl = 0 ,  
T-homogeneity:  1 - 2/3 = 0 .  

Solving these equations for ~ and /3 results in 

/7  = tm I/2K1/2 . 

F r o m / 7  = t V ' K / m  we compute  the following partial differentials: 

Ot/Om > 0 ,  Ot/OK < O. 

Hence we can reason that a heavier mass will oscillate with a larger time period 
while a stiffer spring will cause the mass to oscillate with a smaller t ime period. 
Combined effects of K and m can also be argued, e.g. if m increases and K 
decreases, t will increase since both changes exert a positive influence on t. 
Alternately combined effects of K and m can be reasoned about  using the 
partials 

Ot /O(K/m)  < O, O t / O ( m / K )  > O. 

This ability to reason about  combinations is important ,  for, thus, under 
certain conditions, we are able to eliminate one of the basic ambiguities of the 
qualitative calculus. If a [+,  0, - ]  scale is used, then it is not possible to 
compute  any relationship of the form [ x l ] -  [x2], given that [Xl] = + and 
[x2] = +.  Here  we have two ways of resolving such problems. Firstly, as 
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discussed above, we can group the variables K and m together as K / m  and 
reason using the partial a t / a ( K / m ) .  Alternately, we can compute the total 
derivative of t with respect to time (we use the symbol r for time) as: 

dt  Ot d m  Ot d K  

dr  Om d r  + OK dT 

Substituting the expressions for partials of t we obtain that dt/d-c is positive if: 

d m /  d-c m - - >  
dK/d . r  K " 

We could have used as an additional variable, g, the acceleration due to 
gravity, especially if we were taking a cue from the case of the simple 
pendulum in Section 1. This would introduce an additional variable, the 
acceleration due to gravity, g, with dimensions [LT-2] .  Now we have four 
quantities and three dimensions, so that we still have only one H, which is of 
the form 

t m " K ' g  ~ . 

Note that g introduces dimension [L] that does not occur in the dimensional 
representation of any of the other  variables. Hence it will not have any effect 
on the expression for the H. The reader may verify the fact that inclusion of g 
will lead to the solution: a = - ½,/3 = ½ and 3' = 0. The apparent implication is 
that the variable g is not relevant to this problem. 

3.2. Motion of a projectile 

A projectile is shot vertically with a certain initial velocity v. It rises to a 
certain height and then falls back to earth. The objective of this example is to 
reason about the height attained and the times of rise and fall. The relevant 
variables and dimensions in this case are: 

time of rise t 1 [ T ] ,  
time of fall t 2 [ T ] ,  
acceleration due to gravity g [ L T - 2 ] ,  
maximum height h [ L ] ,  
initial velocity v [ L T - 1 ] .  

In this case, we have five quantities and two dimensions (L, T);  thus using 
Buckingham's theorem we can compute t h r e e / / s .  As t~, t 2 and h (i.e. time of 
rise, time of fall, and maximum height attained, respectively) are the variables 
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7r  I = tlg/V 
g , v  

g ~  ~'3 = hg/vz 

J r2: t2g/v 

Fig. 3. The projectile ensemble. 

of  interest,  we choose  g and v as the basis (Fig. 3). The  resulting Hs are: 

H1_ t~g H~-  t2g H3 hg 
u u o 

Now we can reason about  the behavior  of  the system using the following 
partials: 

Otj > 0 ,  Ot~ Oh 
--= > 0 ,  - - > 0 ,  

Ov Ov Ov 

at~ < 0 ,  0 t 2 < 0 ,  Oh < 0 .  
Og Og Og 

Thus if the initial velocity of  the projecti le  is increased,  the rise t ime, the fall 
t ime and the height  a t ta ined all increase,  i.e. Av > 0 leads to At~ > 0, At 2 > 0 
and Ah > 0. 

Wha t  happens  if the initial character izat ion is incomple te?  Let  us assume 
that  on initial analysis, g was not  included in the list of  quantit ies.  Now we are 
left with the variables t~, t z, h and v. Since t], t 2, h are the variables of  interest ,  
only v is available for  the basis. Since two dimensions  are involved,  L and T, 
the basis must  have at least two variables. Thus  we have an incomplete  
specification. 

N o w  let us try to model  the projecti le  p rob lem more  realistically by 
introducing air resistance. '] We already have g which can be thought  of  as 
gravitat ional  force per  unit mass. Say we do not  wish to in t roduce mass (and 
hence  a new dimension) ,  then we can think of  air resistance as force per  unit 
area per unit mass. Also  we need  to in t roduce the surface area of  the 

I1  • - • This generahzatlon was suggested by Sesh Murthy. 
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project i le)  2 So we add the following quantities: 

air resistance r [ L - I T - 2 ] ,  
surface area S [L2] .  

This leads to two new dimensionless products ru4/g 3 and Sg2/v 4. These can be 
combined into a single product: 

114 = rSIg. 

Using H~ and H 4 we can obtain the inter-regime partial: 

[at~/a(rS)] ~ < o .  

From this inter-regime partial we can reason that A(rS )>0  will lead to 
At~ < 0. Thus a projectile with a larger surface area will have a shorter rise 
time. Also a projectile travelling in medium with greater air resistance per unit 
mass per unit area will have a shorter rise time. A more elaborate model would 
also be able to relate the air resistance with the speed of the projectile. Here 
again the essence of our technique has been based on the partial of the variable 
of interest with respect to a suitable group of variables. We have also shown 
how to add variables of interest to a dimensional analysis; this addition is 
modular. 

3.3. A simple heat exchanger 

We consider a simple heat exchanger (similar but not identical to that used by 
Weld [42]) that consists of a pipe immersed in a coolant chamber (see Fig. 4). 
Hot  oil flows through the pipe and is cooled by the fluid in the coolant 
chamber,  e.g. water. In this example we wish to reason qualitatively about the 
drop in temperature of the hot oil, i.e. how much it has cooled. 

The system may be characterized by the following variables: 

COOLANT 

Tin ~ T o u t  

HOT OIL 

" ~ T  
Fig. 4. A simple heat exchanger. 

12Of course, knowing that S is an interesting variable itself requires knowledge. This kind of 
knowledge, about how to decide on the variables of interest, is outside the scope of this paper. 



90 R. B H A S K A R  AND A. N1GAM 

density of oil p [ML ~], 
heat transfer area A [L2], 
velocity of oil u [LT l] ,  
oil temperature at inlet T~,, [0], 
oil temperature at outlet T,,o, [0], 
thermal conductivity 

of pipe material k [MLT 30-J]. 

In this case, we have six quantities and four dimensions; choosing p, A, k 
and Ti° as the basis leads to the following two Hs (Fig. 5): 

Tout / a l / 2 \ 1 / 3  

The following partials can be computed: 

(1) aTou,/OT~o > 0 ,  from H,; 
(2) av/OT~, > 0 ,  f rom/ /2 .  

We shall now reason about the impact of various parameters on Tou ,, the 
temperature of the oil as it leaves the exchanger. In general, Tou , < Tin as oil 
loses some heat as it flows through the heat exchanger. However, Tou t itself can 
change, while still remaining less than Tin. If Tou t increases then we say that the 
"oil exits hotter ,"  i.e. the oil loses less heat in the exchanger. Alternately if 
Tou t decreases then we say that the "oil exits cooler." 

What happens if the velocity of oil is increased, i.e. Av > 0 ?  From the 
partials we know:~3 

Tout 
71"1  = m 

Tin 

Fig. 5. The heat exchanger ensemble. 

a3For clarification, d T,,u, = dT~n(OTou,/OT~. ) and dv = (Ov/Op) dp + (c~v/OA) dA + 
(Or~Ok) dk + (Ov/OT~.)dT~.. Now, setting dp, dA and dk all equal to 0, we have: dTout/dv = 
(OT,,JOT~.)/(Ov/OT+.). 
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[ c3T°ut] Ti"- OT°ut/OTin 3>0. 

Ov Ov / cg Tin 

Hence Av > 0 will lead to ATou , > 0 or the oil exits hotter. 
What happens if the thermal conductivity of the pipe material is increased, 

i.e. Ak > 0? In this case, k is in the basis and it does not occur in/ /1.  Thus we 
need to obtain the inter-regime partial 0 Tout/cgk. We modify the basis replacing 
v by k; this change results in H i which takes the form: 

/7~ = k( Ti,/pv3A '12) . 

Now we can compute the inter-regime partial [cgToJOk] % as 

 7 ou,l L° 
< 0 .  

aklaTin 

Hence Ak 3> 0 will lead to A Tou t < 0 or the oil will exit cooler (having lost more 
heat through improved thermal conduction). 

We have presented here a very simple model of a heat exchanger. A more 
elaborate model would consist of two ensembles corresponding to the hot and 
cold sides of the heat exchanger. These ensembles would be coupled by a / 7  
which is the ratio of rates of heat loss and gain respectively. Another aspect of 
the model presented above is that we used a single variable which contains only 
the length dimension--heat  transfer area A [L 2]. If we introduce variables such 
as length of the exchanger, pipe thickness and pipe diameter--all  with dimen- 
sional representation [L] - - then  some additional knowledge would be needed. 
This is a consequence of the fact that dimensional analysis cannot be used to 
distinguish between variables of identical dimensionality. 

3.4. The pressure regulator 

The function of the pressure regulator is to maintain a constant pressure at the 
output. We shall analyze this device in terms of two components--a pipe with 
an orifice and a spring valve assembly (see Fig. 6). Each of these components 
will be modeled as an ensemble using dimensional analysis. The objective of 
this example is to demonstrate how we reason across coupled ensembles. 

3.4.1. Pipe orifice ensemble 

The pipe with an orifice is a familiar system in fluid mechanics; the pertinent 
quantities are as follows: 

outlet pressure Pout  [ML-IT-2] ,  
orifice flowrate Q [L3T-1] ,  
inlet pressure Pin [ML-1T-2],  
orifice opening Aope, [L2], 
fluid density p [ML-3]. 
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PISTON 

SPRING /llllllllll~~/l/lll, 
P'n' U P ou, 

, ~  ORIFICE /ll//I///I/lll/l///lll/ll// 
Fig. 6. The pressure regulator. 

Us ing  (Pin,  Aopen, P) as the basis we can obtain the following Hs (Fig. 7): 

Qpl/Z Qpl/Z P o u !  
H A 1  = 1/2 ' / / A 2  - -  

A open Pin Pin 

From this ensemble the intra-regime partials oQ/Opi ., OQ/aAopcn, and 
aPout/Op~ . are all positive. Hence the inter-regime partial [OPout/OQ] r~° is also 
positive. If the input pressure p~, increases, Ap~. > 0 ,  then from the intra- 
regime partials we can infer that the flowrate Q and outlet pressure Po,t will 
increase. Similarly if the orifice opening A,,pe. decreases then we can conclude 
that Q will increase. Lastly, since the inter-regime partial [Opo.JOq] p~" is 
positive, an increase in Q will lead to an increase in Pout. 

3.4.2. Spring valve ensemble 

Now we analyze the spring valve assembly as a separate component. Pressure 
is applied to a piston that is connected to a spring. The quantities that 
characterize this system are: 

spring displacement x [L] ,  
pressure P [ML IT 2], 
spring constant K [MT-2].  

From these quantities we can obtain: 

HBI = xP/K . 
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Ensemble A 
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"/PAl = 

_O pl/2 

A~n ~ 

Pin 

'/I'A2 = 

Pout/Pin 

I ~C2 = X/ I1 
i 

I 
i 
I 

L . . . . .  

f-- . . . .  

Ensemble B 

XBI= 

_xP 

K 

I 
L lrc; = P/Pout 

Fig. 7. Inter-ensemble analysis of the pressure regulator. 

Here  we have used P and K as the basis; even though three dimensions 
appear ,  the rank of the dimensional matrix is in fact two. ~4 (There  is a simple 
intuitive argument  for this; the combinat ion [MT -2] appears  both in P and K, 
thus it can logically be seen as a single dimension.) The essential behavior  that 
we are interested in follows from the intra-regime partial Ox/OP which is 
negative. As the pressure P applied on the piston increases, x decreases. 

3.4.3. Coupling the ensembles 

We now consider the coupling of the two components  of the pressure reg- 
ulator. The information needed for coupling the ensembles comes in two 
f lavors- - topology and geometr ic  constraints. Coupling regimes are closely tied 
to the connections between components  and thus are ratios of pert inent 

~4 The dimensional matrix here is 

- - 1  

0 

The third column is a multiple of the first column. In more intuitive physical terms it is possible to 
characterize the system using two dimensions, viz. [L] and [MT-2]. 
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quantities with identical dimensionality modulo exponent.  In this example 
there are two coupling regimes: 

IIc~ = P/Poo, //c2 - -  tAI/2 , - -  X / ~ l o p e n  • 

The regime//C1 c o m e s  from the connection that transmits the outlet pressure 
in the pipe to the piston in the spring valve assembly. Thus OP/OPout is positive; 
so an increase in Pout leads to an increase in P. The second coupling regime, 
//c2, encodes the geometric constraint that motion of the piston affects the 
orifice opening; more specifically as the spring is compressed, the orifice 
reduces. This behavior is captured by the partial Ox/OAopen which is positive. 
Dimensional analysis requires that the coupling quantities are not linearly 
independent;  additional information is needed,  as we saw above, to ensure that 
the coupling regimes produce partials consistent with the topology and 
geometry. 

3.4.4. Behavior o f  the pressure regulator 

The function of the device is to maintain outlet pressure Pout at some constant 
value p . .  Based on the machinery developed so far, we will now reason that 
the pressure regulator will exhibit the following behavior: 

An increase in Pin leads to an increase in Pout (from //A2)" This 
increase in Pout leads to an increase in P in the spring valve 
ensemble (from coupling regime Ilcl ). The increase in P causes x to 
decrease (from / /a t ) .  This time using the coupling regime //ca, 
decrease in x leads to a decrease in Aooe,. NOW in the pipe orifice 
ensemble, this decrease in A open leads to a decrease in Q. Finally 
through the inter-regime partial [OPout/oQ] p~°, the decrease in Q 
leads to a decrease in Pout. Thus we have derived the feedback 
behavior, i.e. an increase in Pout eventually leads to a decrease in 
Pout. This might seem like a contradiction but is not; we are talking 
about changes in Pout at temporally distinct points. 15 

A similar account can be developed for the case where the initial disturbance 
was a decrease in P~n. The purpose of the account was to show how to reason 
about instantaneous changes that eventually culminate in equilibrium behavior. 
As with the other examples, we have chosen to present a simple characteriza- 
tion. A more detailed model would take into account aspects such as the 
viscosity of the fluid, and its effect on the pressure drop in the orifice. Another  
variant would be to study the flow under supersonic or choked conditions. 

15 Our use of leads to in the above account is an informal encoding of the temporal aspect of the 
behavior. 
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3.5. Circuit analysis 

We now move on to the domain of electrical circuits and systems. Two 
different systems of dimensions have been used for electrical quantit ies--  
M L T Q  and L T I ~ .  The Q, I, and q~ dimensions stand for charge, current and 
electric potential respectively. For this paper we will adopt the L T I ~  system. 

A simple resistor-capacitor circuit is analyzed [44]. It consists of a resistor 
and a capacitor connected in parallel. The voltage drop across the circuit is V~. 
and the currents in the resistor and capacitor components are I R and I c 
respectively. We will model the resistor and capacitor ensembles separately and 
then couple them. We will also see how different special laws can be derived by 
setting t h e / / s  to specific values. 

The quantities characterizing the resistor ensemble are: 

resistor current I R [ I ] ,  
voltage drop V i. [ ~ ] ,  
resistance R [ I -  lq~]. 

Using R, and IR as the basis, we obtain the following dimensionless product: 

//1 = IRR/Vi ,  • 

//1 captures the essence of the resistor model; in fact setting its value to 1 
leads to the resistor model. Also we can obtain the intra-regime partials: 

alRlaR < 0 ,  alR/aVi, > 0 ,  alala(Vi , IR ) > O. 

The capacitor ensemble is characterized by the following quantities: 

rate of change of voltage drop Vi, [ ~T-1 ]  , 
capacitance C [ Tlqb - 1], 
capacitor current I c [I] .  

Using I c and C as the basis we obtain the following dimensionless product: 16 

/ / 2  = 

Here again sett ing/I2 to 1 leads to the capacitor model. From this dimen- 
sionless product we can compute intra-regime partials such as af ' i , /aC < O. 

Finally we need to couple the resistor and capacitor ensembles. This is 

~6This is another example where the rank of the dimensional matrix is two even though three 
dimensions are used to characterize the system. 
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accomplished using the simple dimensionless product: 

Setting //3 to - 1  yields the Kirchhoff Current Law for the circuit. This is 
additional knowledge that is not discovered automatically. Now we can use the 
coupled ensembles to make inferences of the following form: 

From //1, an increase in Vin leads to an increase in I R. Since the 
coupling regime ~ is set to - 1 ,  an increase in I R leads to a 
decrease in ./c. Eventually, from H2, decrease in I c leads to a 
decrease in Vin. 

An interesting aspect of the resistor-capacitor circuit is the time taken to 
discharge the capacitor, i.e. the time for the capacitor current to fall to some 
specified near-zero level. Let  this time be denoted by the variable r. Using the 
circuit parameters R and C as the basis, we can obtain the dimensionless 
product 7/RC. From this it follows that O'c/O(RC) is positive. This enables us 
to reason about the effects of changes in R and C on the variable ~-. 

This problem illustrates how setting a p a r t i c u l a r / / t o  an interesting value in 
the domain can yield interesting results, such as the Kirchhoff Current  Law. 

3.6. Structure of ensembles 

In this section we review the structure of the ensembles that were derived for 
the different examples. The discussion is focused on ensembles produced for 
the projectile, heat exchanger and pressure regulator. We will also use the 
ensemble structure to show what kinds of partials need be computed. 

Ensemble structure is represented as an undirected graph (see Figs. 3, 5 and 
7) where each node is a H;  for ease of understanding we have included the 
expression for the H in the node and the quantity of interest (also referred to as 
the performance variable) has been underlined. The edges encode the exist- 
ence of contact variables and the labels are the contact variables themselves. 

The projectile ensemble (Fig. 3) is fully connected,  i.e. every regime has an 
edge to every other regime, and each edge is labeled by the entire basis, i.e. 
the variables g and v. All partials of interest can be computed directly as 
intra-regime partials since all the basis variables occur in each of the regimes. 

In the modified projectile, where air resistance and surface have been 
included, we introduce an additional regime II4 which is rS/g; this modification 
is not shown in Fig. 3. This new regime will be connected to all the existing 
regimes by edges labeled g. Consider that we need to reason about the effect of 
air restance r on time of rise t 1. The variables t~ and r are performance 
variables in the regimes H~ and //4 respectively. To reason across these 
regimes, we need an edge connecting them; and this is accomplished by the 
inter-regime partial using g as the contact variable. 
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The heat exchanger example presents a simple ensemble (Fig. 5) consisting 
of two regimes and a single contact variable Tin. An extension of such an 
ensemble can be a linear chain of regimes. For instance//2 can be connected to 
another regime, e.g. modeling geometric aspects of the heat exchanger, with 
heat transfer area A as the contact variable. In such a case reasoning across 
regimes that are not immediate neighbors will involve using more than one 
inter-regime partial. 

In general, the regimes in an ensemble must be connected either directly or 
indirectly. Why is an ensemble with a disconnected regime not meaningful? 
Consider an attempt to model a heat exchanger where all variables except two 
do not contain the temperature dimension [0], and the remaining two variables 
are some temperatures T 1 and T 2. Hence T~/T  2 will fall out as a disconnected 
regime. This signals the fact that the problem is underspecified, i.e. we have 
included temperatures but missed quantities that capture the heat transfer 
phenomenon (e.g. thermal conductivity). 

The pressure regulator consists of two connected ensembles (Fig. 7) each 
with two regimes. The inter-ensemble structure is captured by dashed edges 
that encode coupling regimes and are thus labeled. In this example multi- 
ensemble modeling has been used to encode feedback. This requires at least 
two coupling regimes since effects need to be transmitted in both directions. As 
we saw earlier, such information is provided by the topology of component 
interconnection. Thus while coupling ensembles A and B we will need coupling 
regimes with the following flavor: 

-couple a performance variable in A to a basis variable in B; 
-couple a performance variable in B to a basis variable in A. 

The coupling regimes for the pressure regulator accomplish this kind of 
interconnection. Sometimes it might also be useful to couple basis variables 
across ensembles. However, multi-ensemble modeling is not exclusively for 
encoding feedback or interconnection. It can be used for hierarchical refine- 
ment of the initial model. In this case some basis variable x i in ensemble A is 
coupled to a performance variable z~ in a lower-level ensemble B. This 
lower-level ensemble B has a different basis that models the device at a finer 
granularity. In terms of causality, x~ is an exogenous variable with respect to 
the ensemble A. Ensemble B represents the refined model and considers the 
changes that affect this variable. 

3.7. Heuristics for basis selection 

A crucial step in computing the Hs is the selection of r basis variables. In 
principle there are (7) choices; however, many of these do not yield an 
ensemble, i.e. there are fewer equations than there are unknowns. 

We have found the following basis selection heuristics to be useful. These 
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heuristics assume that for all candidates for membership  in the basis, the 
proper ty  that basis dimensions cover the dimensional space of the problem 
holds. 

- A variable of interest, whose behavior  is to be reasoned about,  should not 
be included in the basis. 

- E x o g e n o u s  variables, whenever  possible,  should be included in the basis. 
- Other  things being equal,  dimensional richness (e.g. M L T  -2 is richer than 

L)  is the criterion for including a variable in the basis. 
- G i v e n  several variables with the same dimensional representat ion,  only 

one should be included in the basis. 

Implementing a system for dimensional reasoning is largely a mat ter  of 
selecting the input variables and output  variables that characterize a particular 
device or process. The heuristics that we have listed above are guides to 
implementing device models rather  than heuristics that can be used by a system 
to select basis variables. 

4. Regimes as Representation 

4.1. Regimes as physical process 

A complete  ensemble of regimes represents a physical process, and it is 
possible to produce such an ensemble for any process. 17 If the basis in an 
ensemble is simply the set of exogenous variables, then the individual regimes 
are ways of characterizing the relationship of each of the performance vari- 
ables, the Yi, in terms of the exogenous variables. Thus the regimes can be 
thought of as representing decomposable  subsystems. In this sense, the regimes 
are tertiary variables that use the earlier levels we have defined, where the 
dimensions are pr imary variables and the variables in the system are secondary 
variables. 

Two aspects of Hs  as representat ions are important;  first, they allow a 
certain modulari ty in the analysis. Second, they embody combinatorial  knowl- 
edge among the variables rather  than relational knowledge such as equations. 

Because t h e / / s  are a system of distinct representatives of the subsets of the 
set of variables (see Section 2.4.2), adding variables will add Hs  in a modular  
fashion. This can be understood by reasoning as follows: if a new variable is 
introduced to the problem,  it can either introduce a new dimension or not. 

17 Compare with other uses of the term process. Forbus: "A physical process is something that 
acts through time to change the parameters of objects in a situation." [14, pp. 104-105]; Iwasaki 
and Simon " . . .  mechanism.., to refer to distinct conceptual parts in terms of whose functions the 
working of the whole system is explained. Mechanisms are such things as laws describing physical 
processes or local components that can be described as operating according to such laws." [19, p. 
8] Our conception of a physical process is similarly informal. 
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Case 1. If it introduces a new dimension, then the rank of the dimensional 
matrix, r, increases by 1, n increases by 1, n - r is not increased, therefore no 
n e w / / i s  possible. (Actually, because only one variable has the new dimension, 
it can be directly eliminated, as mass m was eliminated in the simple pendulum 
case, leaving the ensemble unchanged.) 

Case 2. If no new dimension is introduced, n is increased, r is unchanged, 
and n - r is increased by 1. Thus, a new H can be computed. This new variable 
is not needed in the basis, and therefore a new H can be constructed for it. 

The important thing is that new Hs can be added as assumptions are relaxed, 
with no requirements for a cross-product of the partials of the new variable 
with respect to the existing system of differential equations, whether they are 
qualitative, ordinary or partial. 

The second important aspect of the Hs as representation is that they are 
derived from combinatorial knowledge. Relationships between variables are 
not available to the algorithm that computes the Hs. Instead, only combina- 
torial knowledge is available in the form of the set of relevant variables. The 
information about relationships is implicit, being contained in the constraints 
placed by the principle of dimensional homogeneity, the product theorem and 
Buckingham's theorem, on the dimensional representation of each variable. 

4.2. In-principle reducibility 

Unlike many qualitative expressions of physical laws, dimensional analysis does 
not require that numerical information be substituted with nonnumerical, 
qualitative information. Instead, an ensemble of regimes with the appropriately 
chosen variables contains all the physical information that a set of laws and 
geometrical constraints contain. As in many other representations, this re- 
ducibility is an in-principle reducibility, implying that it is often inefficient to 
carry out the reduction, but that it may be done if necessary. Inappropriately 
chosen variable sets can of course lose information. Thus, for example in many 
equilibrium or conservation situations ( ~  + Y =  0 or ~ = Y )  it may be neces- 
sary to have at least one variable that represents A ~  or A¥, so that conserva- 
tion laws may be appropriately represented in the regimes. 

4.3. Conservation of dimensions 

Deriving the ensemble for a physical system does not require any direct or 
explicit knowledge of the laws of physics. Once this physical knowledge is 
available dimensional analysis can be conceived of as a combinatorial exercise 
rather than an equation-based semantic reasoning mechanism. However, the 
constraints on the scheme are derived from the principle of dimensional 
homogeneity. If this principle is derivable from principles of set theory and the 
theory of types, then it is correct to term the exercise mathematical (or 
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• 1 8  
combinatorial .)  However ,  if the principle of  dimensional homogenei ty  or 
dimensional conservation is also a short-hand method for expressing some of 
the conservation laws of physics, then the exercise must be termed physical)  9 
We have, however,  not been able to find any discussion, in the physics 
literature we have examined,  about  the basis of the principle of dimensional 
homogeneity• 

4.4. Power versus generality 

In a paper  for an operat ions research audience in 1969, Newell discussed the 
simplex tableau in terms of a power-genera l i ty  t radeoff  [29]. The task of 
inventing new representat ions and ways of handling them mechanically, Newell 
then implied, were tasks in artificial intelligence. We think the regimes are a 
way of representing physical processes and the partials are mechanical ways of 
handling them. 

Dimensional methods require a special representat ion,  viz. the dimensional 
representat ion of physical variables• This special representat ion is widely 
understood and used in the physical sciences and in engineering, but is still 
quite specialized• Intransmutabil i ty of dimensions is hard to come across in 
fields that are not physical• This specialization, however,  allows the use of 
weak methods that are fairly robust,  such as the weak method called ordinal 
reasoning. 2° This power-genera l i ty  t radeoff  is an important  part  of the appeal 
of the dimensional calculus and makes  it a point or region on the continuum 
between weak and strong methods• 

5. Related Concepts 

In this section we shall discuss how dimensional analysis is related to other 
work on qualitative physics. Our  approach here has been to choose systems 
that are either representative of the field of qualitative physics or are very 
closely related to our approach,  rather  than to be exhaustive. In particular, we 
have left out at least two important  aspects of qualitative physics: diagnosis, 
where we have not discussed the excellent work of Brian Williams and Johan 
de Kleer [11] and order-of-magnitude reasoning of the sort proposed by 
Raiman [30]. These are important  parts of  qualitative physics, but we have not 
yet started to tackle them with dimensional analysis. 

With regard to the theories in qualitative physics we do discuss, our 

~SThis is an unsupported conjecture by us. 
19We are intrigued by the possibility of a relation between dimensional homogeneity and 

conservation laws. For example, it is possible to construct a system of units where G (Newton's 
constant), h (Planck's constant), and c (the velocity of light) can all be set equal to one. Such a 
system of "geometrized units" is used in general relativity [27]. 

2°The partials are obviously elements in the representation, and the method used to construct 
them is however not a weak method, but instead the strong method known as differential calculus. 
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description of the relationship will necessarily be brief. Our intention is to 
describe the central characteristic of each of these points of view and then 
describe its theoretical relationship with dimensional analysis. 

5.1. Critical hypersurfaces 

Kokar's work on the use of dimensions, dimensional analysis and critical 
hypersurfaces [20-23] is closely related to our work (a hypersurface is an 
expression for a H; a critical hypersurface is a particular value of a H). The 
main similarity is the fact that dimensions and dimensionless numbers play a 
role in both schemes. In spite of this common approach, there are several 
differences, which we enumerate below. We are concerned primarily with the 
symbolic content of ordinary physics; Kokar's concern is with using numerical 
values to establish values in a quantity space. We elaborate, in order to clarify 
the fundamental differences between our approach and his. 

Criticality 
Kokar concentrates on critical hypersurfaces which correspond to a particular 
numerical value of a H. Dimensionless numbers are used similarly in tradition- 
al engineering, for example, a plot of Reynolds' number versus drag coeffici- 
ents [41, p. 217]. Our use of dimensional analysis, however, is independent of 
the actual numerical values of a particular dimensionless number. 

Use of partial derivatives 
We use partial derivatives to reason about physical behavior. Kokar suggests 
that a single partial derivative, if chosen well, will establish a critical hyper- 
surface. Beyond establishing a value for a hypersurface, partial derivatives play 
no role in his scheme. 

The role of  the basis 
Kokar states that the actual choice of basis (the "dimensional base") is not 
important, because any choice will allow the establishment of a critical 
hypersurface. We think that the choice of basis will actually determine the 
utility of a particular ensemble; physical knowledge, represented dimensionally 
in a model, can be used to select exogenous variables for the basis. 

Devices 
Although his analysis is about physical laws and processes, devices themselves 
are not considered. 

Choosing relevant variables 
Kokar is concerned with the "Complete Relevance Problem." We offer some 
clues to it, but it is outside the scope of dimensional analysis. 

Use of the IIs 
Finally, Kokar uses critical hypersurfaces in order to use a quantity space. We 
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reason directly with partial derivatives and do not use a quantity space 
generated in some other representational scheme. 

5.2. Naive physics and qualitative process theory 

Both naive physics [17, 18] and qualitative process theory (QPT) [14] have 
been subject to substantial theoretical development as well as practical explora- 
tion (for example, see [8]), and both have devoted some attention to problems 
of reasoning about fluids. For example, Hayes has argued implicitly that fluid 
flows and the fluids that are actually flowing can be allowed to be conceptually 
distinct entities that may (sometimes) be reasoned about separately from one 
another. This is embodied in the pair of ontologies that have been proposed, 
the piece-of-stuff ontology and the contained-liquid ontology. 

Fluid mechanics in fact also uses two approaches, the so-called control mass 
approach and the so-called control volume approach. It is generally accepted 
that the two approaches are equivalent in a variety of ways, though conversion 
is sometimes tedious. The control mass approach and the control volume 
approach bear a striking resemblance to the piece-of-stuff ontology and the 
contained-liquid ontology. :1 This is not surprising; representations are reflec- 
tive of the phenomena that they represent and Hayes' ontologies, QPT and 
fluid mechanics are all attempting to represent understanding of the behavior 
of the fluids, albeit at different levels, and with different aspirations to 
generality. We think that dimensional calculus can be used in conjunction with 
qualitative process theory, because the representational approaches in both 
schemes are complementary. 

5.3. Confluences 

Regimes and confluences are similar. They are both direct representations of 
physical situations. Further, intra-regime analysis is similar to the component 
heuristic, and inter-regime analysis is similar to the propagation heuristic. In 
general, regimes are derivable from dimensional analysis without explicit 
knowledge of physical laws, while confluences can be considered, at some level 
of abstraction, to be qualitative, specialized restatements of physical laws. 22 In 
general, these restatements cannot be derived, but are carefully crafted. 
Because of this care of crafting, confluences can be made to yield useful and 
relevant results for analyzing and understanding devices, whereas regimes do 
not always necessarily yield useful results [9]. 

:~ In fact, some books on engineering thermodynamics  literally define control mass  as "a  piece of 
matter. '" For example see [33, p. 105]. 

-~-' It is worth noting that a confluence, however,  unlike a physical law, need not be dimensionally 
homogeneous  [9, Footnote  1, p. 8]. 
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5.4. Comparative analysis 

(1) Both DQ analysis and the method of exaggeration need a limited 
amount of equation knowledge, whereas dimensional analysis does not 
[421. 

(2) DQ analysis is not always do-able, while regimes can always be derived. 
On the other hand DQ analysis, where do-able, is guaranteed to be 
useful. An ensemble of regimes may have to be manipulated somewhat 
before its results are useful or relevant. 

(3) Comparative analyses use qualitative differentials, whereas dimensional 
analysis uses conventional partial differentials, and relies on ordinal 
reasoning about these derivatives for its qualitative aspects. 

5.5. Qualitative simulation 

QSIM considers states of systems to be crucial, with attention being paid to 
possible trajectories of states and state transitions [24]. Multiple trajectories 
are possible because the information that is used to compute the states uses 
qualitative landmark values rather than numerical values. Temporal aspects of 
situations become significant. Dimensional analysis, however, does not deal 
directly with time; instead, time has to be dealt with by considering total 
derivatives of the regimes with respect to time. Although we do not believe 
that this calls for much new apparatus in dimensional analysis, we have not 
explored the possibilities of representing time-based behavior with our re- 
gimes. 

5.6. Causal orderings 

Causal orderings are, we believe, important aspects of device behavior. 
Dimensional analysis does not capture this directly, but does offer two 
important pointers. First, the choice of the basis and a subsequent ensemble of 
regimes allow a device to be represented as a collection of subsystems. Second, 
the regimes admit of a causal ordering among themselves, so that it becomes 
appropriate to speak of a causal ordering among subsystems or regimes rather 
than among single variables. This causal ordering cannot however be generated 
from dimensional analysis alone, but must be done using knowledge of the 
device [19]. 

6. Conclusion 

In our lifetimes, the scientific world has been dazzled by the invention of 
chromatography, the code of the double helix, and, in the computer age, the 
marvellous properties of bootstrap methods in statistics. In each case, informa- 
tion has been found in what was felt to be a surprising place. Dimensions of 
variables appeared to us as unlikely and insufficient repositories of the enor- 
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mous amounts of information needed for physical reasoning; the dimensional 
content of ordinary physics has surprised us. In this paper, we have developed 
a calculus for dealing with physical variables symbolically, using the dimension- 
al representation of the physical variables. We have done this by extending the 
technique of dimensional analysis. Using this calculus, we have presented 
analyses of some well-known problems in the qualitative physics literature. The 
technique is useful primarily because it can be applied when no direct 
knowledge of the physical laws of a device is available. 

6.1. Qualitative physics in the real world 

The examples presented in the paper, though representative of qualitative 
physics research, were essentially simple and pedagogical. Even though we did 
not use equation knowledge from the underlying physics, such knowledge is 
simple, available, and used by other researchers. The greatest challenge for 
qualitative physics and artificial intelligence, however, lies in large systems 
where the underlying physics knowledge is either ununderstood or uncom- 
puted. Humans, we believe, have great difficulty performing qualitative 
reasoning about such a system primarily for reasons of scaling and coupling. 

Scaling refers to the enormous number of variables (or quantities), possibly 
several hundred, that characterize the system. A more graphic account of this 
complexity can be witnessed in the profusion of dials, displays, and warning 
lights in the control room of a power plant or the cockpit of a jet fighter. Using 
dimensional calculus, we believe, can render tractable problems of larger 
systems, even if the characteristic equations of the system are not known. 

Qualitative reasoning about large systems often requires one to reason about 
the subsystems and the manner in which they are coupled. Knowledge about 
coupling, such as paths and behaviors, can isolate the quantities that partici- 
pate in the coupling. Applying the dimensional calculus to these quantities can 
then be used to obtain the regimes that couple the subsystems. The pressure 
regulator, presented earlier, demonstrated coupling at the device level. Some 
potential applications of qualitative reasoning using dimensional calculus are 
power plants, process engineering and control systems and electrical machines, 
as well as a variety of other coupled systems, such as technological accidents 
and catastrophes. 

6.2. A remark on ordinal reasoning 

The technique has also revealed to us that it is possible to do ordinal reasoning 
about physical systems, and that much of physical intuition can be captured in 
terms of a set of appropriate partials; to get the partials, it is not always 
necessary to have direct knowledge of the laws of physics. Instead specifying a 
system's input and output variables is sufficient to produce a qualitative 
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understanding of the device. This also suggests that reasoning in physics can be 
accomplished by the same methods that are used to reason in the social 
sciences, such as economics, where ordinal reasoning with partials plays an 
important role. We believe that it is probably quite difficult to distinguish 
between so-called "hard science" and so-called "soft science," on the basis of 
intrinsic distinctions in methods of reasoning or the logic used to reach 
conclusions and form theories. 

6.3. Some difficult questions 

Causal ordering problems 
We have not explored the intimate connection between causal ordering and 
dimensional analysis. Appropriate use of dimensional analysis requires explicit 
representations of causality. We conjecture that exploration of the connections 
between Hall's theorem, Buckingham's theorem and the theorems of causal 
ordering, will yield useful results. 

Heuristics for discovering numerical values for Fls 
The example of the circuit suggests that it is possible to discover interesting 
physical regimes by setting a H to some appropriate value, such as - 1, 0, 1, ~, 
y, etc. We believe that heuristics for setting numerical values will be important 
as dimensional analysis is applied to problems of systems whose physics are 
usually left uncomputed. 

Dimensional intransmutability in nonphysical domains 
We conjecture that dimensional analysis will be applicable in domains where 
much of the knowledge is in the form of relationships between variables whose 
dimensions are intransmutable; the greater the number of such dimensions, the 
easier it is to discover dimensionally rich situations. We have not come across 
such domains, where the intransmutability is as rigid as it is in the physical 
world and the dimensional characterization as obvious. 

Discovering the applicability of dimensional analysis to qualitative physics 
has been an exciting experience; we hope that we have communicated some of 
the excitement to our readers. 

Appendix A. Product and H-Theorem from Bridgman 

In this section we present the product and /7 theorems and their proofs 
according to Bridgman; the material has been drawn from Bridgman's book. 
Other proofs to these theorems can be found in the literature. This material 
has been included for completeness since Bridgman's book may not be easily 
accessible to our readers. We retain Bridgman's notation, but make every 
effort to motivate and clarify the material. All quotes in this section are from 
Bridgman. 
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Bridgman, and others, group physical quantities into two categories--  
primary and secondary. The primary quantities are regarded as "fundamental  
and of an irreducible simplicity." A secondary quantity is derived from 
measurements of associated primary quantities, e.g. 

f(~,/3,...) 

is a secondary quantity derived from the values of the primary quantities a, 
/ 3 , . . . .  For example velocity is a secondary quantity derived from primary 
quantities, distance and time, i.e. velocity is obtained by measuring appropri- 
ate distance and time values. The product theorem shows that the function f is 
in product form. 

Another  important aspect of Bridgman's approach is the rule of  operation by 
which numerical values are assigned to quantities. This covers the notions of 
scale and ratios that are summarized next: 

Scale. A primary quantity a is measured in some units (e.g. feet in case of 
length). If the units are scaled so that the new unit is 1/x of the old unit then 
the new value of the measurement is a '  = a * x. 

Ratio. Consider two different physical situations, e.g. two different rods. 
Let a~ and a 2 be the measurements (e.g. lengths) on a given scale. Now if we 
change the scale and measure the rods, the values are a I and a~. The rule of 
operation requires that: 

alia2 = aila~. 

This rule applies to primary as well as secondary quantities. Bridgman refers to 
this rule as the "absolute significance of relative magnitude." In other  words 
the ratio of viscosity of two liquids will be independent of the units in which 
viscosity is measured. 

A.1. Product theorem 

Assuming absolute significance of  relative magnitudes of  physical quantities, the 
function f relating a secondary quantity to the appropriate primary quantities a, 
/3 , . . .  has the form: 

f =  Ca"~3 b . . .  

where C, a, b . . . .  are constants. 

Proof. Let  us consider two concrete secondary quantities, e.g. kinetic energies 
of two different particles. Let  f(a 1,/3~,...) and f(a 2,/32,.. .)  be quantities 
derived from the measurements of the primary quantities a l, fit, 3q . . . .  and 
a2,/32, 3'2 . . . .  respectively. Note that a I and a 2 are measurements of a 
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corresponding to the concrete situations. Similarly/31 and f12 are measurements 
of /3. Now change the unit measuring a I and a 2 to be 1 / x  as large; the 
corresponding measurements will now be x * at and x * a 2. Similarly change the 
units of/31 and/32 using a factor 1 / y  instead of 1/x ;  and so on for the remaining 
primary quantities. The requirement of absolute significance of relative mag- 
nitudes leads to: 

f ( a l '  /31 . . . .  ) -- f ( x  * a , ,  y */3, . . . .  ) 

f(a2, f12,. • -) f ( x  * a 2, y */32 . . . .  ) 
(A.1) 

for all values of Or,, f l ,  . . . . .  0/2' /32 . . . . .  and x, y . . . . .  
Rewrite this in the form: 

f ( x  * O~l, Y * /3, . . . .  ) = f ( x  * a2, Y*/32 . . . .  ) × 
f ( ~ l '  / 3 1 , ' ' ' )  

f ( ~ 2 ,  /32 . . . .  ) '  
(A.2) 

Differentiate (A.2) partially with respect to x. Then we get 

Of(x  * OL,, y • /3 ,  . . . .  ) Of(x * a 2, y * f12 . . . .  ) 
a' a ( x ,  = 

Setting x, y . . . .  all equal to 1. This leads to: 

Of(a , ,  fl, . . . .  ) / O a ,  Of(a2, /32 . . . .  ) /Oa2 

/ 3 , ,  . . . )  = f( 2, /32 . . . .  ) 

f ( a , , / 3 ,  . . . .  ) X 
/(0~2, /32 , ""  ") " 

(A.3) 

(A.4) 

Holding OL2, /32' ")/2 . . . .  to be constant and varying a , , / 3 , ,  y, . . . . .  we get an 
equation of the form: 

o r  

- cons tant  (A.5) 
f 0a 

1 o f  cons tant  

f 0a 
(A.6) 

A solution to this equation is: 

f =  Cl a . . . .  ,an,, (A.7) 

where C1 is a function of /3  . . . . .  
This process can be repeated to yield the desired form for function f :  

f =  Caaf l  b ' ' ' .  [] (A.8) 
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Based on the product theorem we conclude that dimensional representations 
are multiplicative or in product form. Thus, if the primary quantities have the 
dimensions [L], [T] . . . . .  then the dimensional representation of the sec- 
ondary quantity, as given by the function f is: 

[LI"[T]~.... 

A.2. Buckingham's H-theorem 

I f  dp(a, /3 . . . .  ) = 0 is a complete  equation,  then the solution can be written in the 
f o r m  F(II1, l I  2 . . . . .  Hn_r) = 0, where n is the n u m b e r  o f  arguments  o f  ~b, and r 
is the basic n u m b e r  o f  dimensions needed to express the variables a , / 3  . . . .  ; f o r  
all i, H i is a dimensionless n u m b e r  [3, 4, 26]. 

Proof. (A note of caution for the reader - - the  variables a , /3  . . . .  are not 
pr imary  quantities as in the product theorem. In fact they are the quantities 
that pertain to the situation modeled by the function ~b). 

We shall now establish the notation to be used in the proof. The quantities 
a , /3  . . . .  contain r dimensions in their dimensional representation. For ease of 
understanding we will assume that these dimensions are [L], IT] . . . .  (r in all). 
For the quantity a the exponents in the dimensional representation are 
Oil, o /2 , . . .  , i.e. the dimensional representation of a is [ L ] a l [ T ]  a 2 " ' "  A 
similar notation will be used for /3  and all the other quantities. 

Corresponding to each of the r dimensions are units; the units are 
m~, m 2 . . . . .  We will be modifying the units by scale factors; the scale factors 
for the units ml,  m 2 . . . .  are x~, x 2, . . . .  

Decreasing the units m , ,  m 2, . . .  by the scale factors x~, x 2 . . . .  will, accord- 
ing to the product theorem lead to the pr imed  measurements as shown below: 

~ ¢  ffl ~2 t ~ ~ f l l ~ 2  
~ X  1 X  2 , /3 = . . .  . . . .  " ' "  ~ A I  ~ 2  

Since, ~b(a,/3 . . . .  ) = 0 is a complete equation, it must hold independent  of 
the units chosen to measure a , /3  . . . .  ; hence it follows that 

&(a' ,  B ' , . . . )  = 0  (A.9) 

o r  

O:1 °~2 . . . /~ ,~ l~- f12  ° . . 
~ (OLX1 X2 , ~ 1  ~ 2  , . . . )  = 0 (A.IO) 

Differentiating (A.9) with respect to x~ and setting all the x i to 1 we get: 

04, 04, 
OL10/ ~ - t - / 3 1 ~  - ~  -[- . . . .  0 .  ( A . 1 1 )  
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Now introduce new independent  variables: 

Ol"= olllal , ~ " =  i l l /D1 , • • • • 

In terms of these new variables, (A.11) can be rewritten as 

, ,  o~, 13" O~b 
+ Off'---; + . . . .  O. (A.12) 

Let  ~" be the last of  the n variables a",/3", . . . .  Now introduce a set of 
variables zi such that: 

zi a"l~" = ~"1~" = , z 2 , . . . ,  z n = 1 .  

Now we substitute the z i into the basic function ~b. We then have: 

. . . .  =- z r "  . ~ " ) .  ~ b ( ~ ' ,  ~[~", ~ " )  ~ ( Z l  ~ "  2'~ . . . .  (A.13) 

It can be shown that function ~b is independent  of if". Differentiating tk 
partially with respect to ~'" and using (A.12), we can obtain O~b/0~'" = 0. So ~b is 
a function of n - 1 variables z and we can write an equivalent function: 

1 P ( Z l ,  z 2 , . . .  , Zn_l) = O. (A.14) 

Note  that the arguments,  z i, are dimensionless in the first dimension. Now 
starting with (A. 14) the process can be repeated for each of the remaining r - 1 
dimensions. Each t ime a dimension is eliminated, the number  of arguments in 
the function is reduced by 1. Thus when all the r dimensions have been 
eliminated, we will be left with a function of the form: 

F (  I I ,  , I I 2 , . . . ,  H , _ ,  ) = O . [] 
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