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A generator of a symmetry or supersymmetry of the S-matrix has to have three simple 
properties (see sect. 2). Starting from these properties one can give a complete analysis 
of the possible structure of the pseudo Lie algebra of these generators. In a theory with 
non-vanishing masses one finds that the only extension of previously known relations is 
the possible appearance of "central charges" as anticommutators of Fermi charges. In 
the massless case (disregarding infrared problems and symmetry breaking) the Fermi 
charges may generate the conformal group together with a unitary internal symmetry 
group. 

1. Introduction 

We have chosen the title to indicate the close relationship of  this s tudy to ref. 

[1]. The results o f  the latter paper were generally accepted as the last and most  
powerful  in a series o f  " n o - g o "  theorems,  destroying the hope for a fusion be tween  

internal symmetr ies  and the Poincare group by a relativistic general izat ion o f  SU(6). 

Recent ly  Wess and Zumino  discovered field theoret ical  models  with an unusual 

type o f  symmet ry  (originally called "supergauge s y m m e t r y "  and now "supersym- 

mer ry" )  which connects  Bose and Fermi  fields and is generated by charges trans- 

forming like spinors under  the Lorentz  group [2]. These spinorial charges give rise 

to a closed system of  commuta t i on -an t i commuta t i on  relations, which may  be called 
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a "pseudo Lie algebra"*. It turns out that the energy-momentum operators appear 
among the elements of this pseudo Lie algebra, so that in some sense a fusion be- 
tween internal and geometric symmetries occurs [2,4]. 

The possibility of supersymmetries was not envisaged in [ 1 ]** but most of the 
ideas in [1 ] apply also to this case. We shall use them to determine all supersym- 
merry structures which are allowed in a theory without zero-mass particles and long- 
range forces. 

An equally satisfactory and complete discussion of the zero-mass situation is not 
attempted here. However, the simplest case in which there is no infrared problem 
and no degeneracy of the vacuum will be treated in sect. 5. The allowed supersym- 
metry structure is then much more interesting than in the massive case, because it 
gives a complete fusion between internal and geometric symmetries which is fur- 
thermore essentially unique. 

In assessing the results, one should bear in mind that the scope of this investiga- 
tion is limited in three directions: First, we deal only with visible symmetries, i.e., 
with symmetries of the S-matrix; the fundamental equations may have a higher 
symmetry. Second, all impossibility statements below have to be reexamined when 
infrared problems or vacuum degeneracy occur. Third, we assume that each mass 
multiplet contains only a finite number of different types of particles. This again is 
eminently reasonable in the massive case, but there is one interesting alternative, 
namely to use the supersymmetry structure in the context of an idealization which 
assigns zero mass to all particles. If the total number of particle types is infinite, 
then this idealization is not covered here. With these limitations in scope being un- 
derstood, the conclusions of our analysis may be summarized as follows: the most 
general pseudo Lie algebra of generators of supersymmetries and ordinary sym- 
metries of the S-matrix in a massive theory involves the following Bose type oper- 
ators: the energy-momentum operators Pu ; the generators of the homogeneous 
Lorentz group M u v ;  and a finite number of scalar charges B I. It will involve Fermi- 
type operators, all of which commute with the translations and transform like 
spinors of rank 1 under the homogeneous Lorentz group. Using the spinor notation 
of van der Waerden t ,  we maY divide them into a set QL (L = 1 ..... u; a = 1, 2) and 

oL,  indicating the different transformation character by dotted or undotted a set 
indices. Since the Hermitian conjugate of a supersymmetry generator is again such a 
generator, we can choose the basis of the pseudo Lie algebra so that ~L = (QL)t ,  

ot 

* The spinorial charges may be considered as generators of a continuous group whose parameters 
are elements of a Grassmann algebra [3]. 

** Spinorial charges were considered but prematurely discarded in [5 ]. 
# ec~13 = -eflot; e ~[3 = -e f l~;  e 12 = e21 = 1 (same for dotted indices). (a~ )a  ~ = (1,ai); (~)&/3 = 

(1, - o i l  a #v = l i ( a ~ a U  - aU a ~) and a I~u = l i(al~ a v - a v a/~). A quick orientation about this 
formalism may be obtained from [6]. The conventions adopted there are, however, slightly 
different from ours. 
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which is equivalent to a Majorana condition in a four-spinor notation. 
The algebra of  these quantities can be reduced to the following form*: 

(Ok' O ~  } = ea3 ~l (aI)LM BI =-- e~3 z LM ' ( I .  1) 

where 

[z LM, GI = 0 (1.2) 

for all G in the pseudo Lie algebra, 

= ( 1 . 3 )  

[Q~, BI] = ~ s  LM r~M (1.4) 
M 1 ~a ' 

[Bl, Bm] = i ~ c  k B k ,  (1.5) k tm 

together with the Poincar~ transformation properties of  spinorial and scalar charges: 

[QLa' P ]  = [Bl' Pu] = [Bl' M.~,I = O, (1.6) 

[QL, Muv] _ _ 1  - ~ (ouv )  ~ Q ~ .  (1.7) 

The Ckm in (1.5) are the structure coefficients of a compact Lie group, the s t in (1.4) 
are the (Hermitian) representation matrices of the generators of this group in a v-di- 
mensional representation, the matrices a ! in (1. I) are restricted by a condition (to 
be discussed later) which connects them to the s t (eq. (3.17)) and by eq. (1.2). 

The fact that in a massive theory the only symmetry generators of Bose type 
which do not commute with the whole Poincar6 group, are the vector PU and the 
skew tensor MUV, has been demonstrated from a variety of angles in the past (see 
[1] and [5] and the literature quoted there). The counterpart  of  this fact for Fermi 
type generators is our result that all of  them commute with the translations and 
transform like spinors of  rank 1 under the Lorentz group. Furthermore,  the struc- 
ture relations of  the pseudo Lie algebra are severely restricted. In fact, apart from 
(1.1), all the structural relations which are allowed have already been previously 
found: relation (1.3) in [2,4], relation (1.4) in [7,8]. So there is little additional 
freedom in the supersymmetry scheme, unless one incorporates zero-mass particles. 
In particular, it is not possible in a massive theory to obtain the angular momentum 
or non-central charges (see eq. (1.2)) from ant icommutators  of  supersymmetry 
transformations. 

* All scalar charges can be taken as Hermitian. This is done, and we omit writing down the re- 
lations which can be obtained by taking Hermitian conjugates. 
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In the case of  a massless theory,  we may have the following alternative to the 
above described scheme." The Fermi part of  the ~seudo Lia algebra consists of two 
sets of  spinors of  rank 1, denoted by QL and O (1)L (L ' ..., v) and their conju- 

- L  O(1)L gates Q&, ~& . The anticommutators of these Fermi charges give a set of  Bose 
symmetries which form the Lie algebra o f e  @ ~ .  Here C is the conformal group 
and ~ = U(v) for v 4 : 4  respectively SU(4) for v = 4. The full algebra of internal 
Bose symmetries is the Lie algebra of  ~ ' @  ~" where ~" commutes with all Fermi 
charges and ~ '  is U(v) for v =/: 4 and either U(4) or SU(4) for v = 4. An example of  
this structure for v = 1 was given in [2], compare also [13], for v = 2 in [8]. The 
interesting fact is now, that it is impossible to have both QL and O (1)L without  
getting the full conformal group together with an internal symmetry group, and 
that the latter must be precisely the unitary group U(v), except for v = 4 where it 
may be either U(4) or SU(4). 

2. Assumptions and basic facts 

A generator of  a symmetry or supersymmetry of  S is any operator G in the Hil- 
bert space of  physical states which has two properties: (i) it commutes with the 
S-matrix; (ii) it acts additively on the states of several incoming particles. The second 
of  these requirements can be most conveniently expressed in the following way: 

Let ai*,~in)(p) denote the creation operator of  an incoming particle of type i with 
momentum p and spin orientation r and a!,irn)(p) the corresponding destruction 
operator*. Then 

G = ~ fd3pd3p'a l !~(p ' )Kjs; ir (P ' ,  a in . .  P) i ,r(P), (2.2) 
1,] 
r,$ 

where K is a c-number kernel. If  in the sum over particle types only pairs (i,]) occur 
which refer to particles of  equal statistics (both Bose or Fermi), G is of  Bose type 
and generates an ordinary symmetry;  if only pairs (i, ]) with opposite statistics occur, 
G is of Fermi type and generates a supersymmetry. Since the S-matrix conserves 
statistics, both the Bose part and the Fermi part separately have the proper ty  (i), so 
that we can always take G to be either of  pure Bose or of pure Fermi type. 

The justification of  the requirements (i) and (ii) can be given in a variety of  ways. 
In the frame of a local field theory,  the more fundamental requirement would be 
that G induces an infinitesimal transformation of  the basic field quantities 

-+ ~ + e~G~ such that** 

* We use the canonical normalization 

[a!in)(D) a *(in) (q)] - q).  (2.1) t,r - "  ],s =6i]Srs63(P 
** In (2.3) we denote the anticommutator by [...] +, while elsewhere curly brackets {...}are 

used. 
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sa(6(x)) = t [a, e(x)] +_, (2.3) 

is again local. On the right-hand side of (2.3) the ant icommutator  occurs when both 
G and ff are of  Fermi type, the commutator  in all other cases. The usual way to con- 
struct such a G is to start from a conserved local current, 

a . / " ( x )  = o ,  

and define 

(2.4) 

G = rj d3xfO(x) " (2.5) 

XO=t  

Due to (2.4) this yields the same operator for an arbitrary choice of  the time t, and 
hence 5G(~ (x)) is local for arbitrary x. Note that no assumptions about the covariance 
o f j " ( x )  under the Poincare group have to be made at this point,  i.e., ["(x)  need not 
be a four-vector field, and it  may depend not only on the basic fields at the point x 
but also explicitly on the position coordinates*. 

In a massive theory where the assymptotic relations as described in [9] hold, the 
locality of  5 a ~(x)  implies that G has the properties (i) and (ii) (compare [ 10-12 ,  
5]). In fact it also implies a third property:  

(iii) G connects only particle types (i,]) which have the same mass. The kernel 
K in (2.2) is of  the form 

K(p' ,p)  = ~ K(n)(p) 3 n ~(p - p ' ) ,  (2.6) 
n 

where 3 n stands for a monomial in the derivatives a/api and the sum has a finite 
number of  terms. 

It is interesting to note that property (iii) follows on the one hand from the 
locality of  8G~/ as indicated in [10-12 ,  5]**, and that it can also be derived from 
the properties (i) and (ii) and the assumption that the S-matrix is not trivial. This 
was done in [ 1 ]. 

We now look first at those generators which commute with the translations. Let 
us call the set of these c5 (0); for G E d (0) the kernel in (2.2) is of the form 

Kjs ;ir(P, p')  = Kfs ;jr(p) 5 3 (p - p ' ) ,  (2.7) 

and the matrix K does not couple particles with different mass. We shall consider 
the submatrix for one mass multiplet  at a time. This will be meant when we speak 
of the matrix K(p)  below. 

* In that case O#j has to be distinguished from i [P#,j]. This case is important in order to ob- 
tain also those symmetry generators which do not commute with p~z. 

** The quoted discussions are not completely adequate for our purpose here, but can be adapted. 
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For the generators of  Bose type we can take over the analysis in [ 1 ] completely.  
If one assumes particle finiteness and non-triviality of S, one finds: 

(A) a complete basis of  Bose type operators inc5 (0) is given by the energy-momen- 
tum operators pu  and a finite number of  scalar charges Bl, having the commutat ion 
relations (1.5), (1.6). The Lie algebra Z? of  the Bt may be decomposed into a semi- 
simple part /21 with positive definite Caftan metric and an Abelian part .£22 whose 
elements commute also with those of 121. 

For the generators of Fermi type we can take over lemma 5 from [1] in the form: 
(B) if K(p) vanishes for two momenta p and p '  on a mass hyperboloid,  then K(p) 

vanishes for all momenta on this hyperboloid*.  

3. C l a s s i f i c a t i o n  o f  t r a n s l a t i o n  i n v a r i a n t  Fermi type g e n e r a t o r s  

The conclusion (B) above, together with particle finiteness, tells us that there are 
only a finite number of  linearly independent Fermi type generators in cJ (0) since 
the matrix K(p) has finite dimensionality, and according to (B), G is fixed by speci- 
fying two such matrices. Furthermore,  the set j ( 0 )  is stable under homogeneous 
Lorentz transformations. 

Therefore this set is a representation space of  a finite dimensional representation 
of the Lorentz group and can be decomposed into irreducibles. An irreducible re- 
presentation of  the connected component  of the Lorentz group is labeled by a pair 
of  indices (L J'), each integer or half-integer; the corresponding subset of  generators 
consists of  linear combinations of  spinors Qal a2"" ~a t~2" symmetric in the 2j  ., . . . . .  t . . . .  . . "+., 
undotted and the 21 dot ted mdlces. Due to the spm-statlsfics theorem, 2(1 I ) 
must be odd for Fermi-type generators. Now consider the ant icommutator  of  such 
a Q with its Hermitian conjugate Q?. This will again be an element of  d (0), be- 
cause the properties (i), (ii) and (iii), as well as translational invariance are con- 
served**, and it will be of  Bose type. If we take all indices equal, say 
~1 = 0~2 = ,.. = ~1 = '" = ~2j' = 1, then the ant icommutator  will be a component  
B11 ..1; i . . . i  of a spinor with 2j  + 2j '  undot ted and equally many dot ted  indices, 
which is furthermore symmetric in each type of  index. Hence it belongs to the 
irreducible representation (j +j', j +j'). But we know that there are no Bose type 
generators which belong to a representation (j, j) with j > ½. Thus the mentioned 
ant icommutator  must vanish unless the original Q was a spinor (½, 0) or (0 ,3) .  
However, QQt + QtQ = 0 implies Q = 0. Hence no spinors of rank higher than 1 
are allowed and for a spinor Qa of  rank 1 [representation (~, 0)] we must get: 

* Actually p, p' should be so chosen that the elastic scattering does not vanish for a pair of 
particles with these momenta. 

** Note that the property (ii) is conserved for the anticommutator (not for the commutator) 
of two Fermi-type generators. This is the reason why the last part of the analysis in [ 1 ] is 
not applicable to the Fermi-type generators. 
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{Qc~,(Qt~ )y} = c P ~  = c o u  ~ p u ,  

since (½, ½) is the spinorial description of a four-vector and the only four-vectors in 
ci(O) are multiples o f P  u. If Qa • 0 then c ~ O. If we have several spinorial charges, 
say QL, we must have [remember Qa g = (QL)t ] :  

{ Q k '  0 . ~ }  = cLM 0#o~[1Pu ' (3. l) 

where c LM is a positive definite Hermitian numerical matrix, which can be brought 
into the form 

c LM = 6 LM , (3.2) 

by suitable choice of the QL (diagonalization of e LM and normalization). Consider 
now {QL, Qfft}. It also belongs to c5 (0). The antisymmetric part in the indices c~, 3 
is a scalar, which could be a linear combination of  the internal symmetry generators 
B l. The symmetrical part belongs to the representation (1,0) and corresponds to a 
self-dual skew-symmetric tensor. Since there is no such thing in c5 (0), the symmetric 
part must vanish and we can only have 

with 

{Qk ,  Q ~ ) = e ~  ~l (al)LM B l ,  (3.3) 

(al) LM = --(al) ML . (3.4) 

Finally, the commutators [B l, QL]  belong to the (½,0) part oft5 (0) and therefore: 

[0 L S LM glM (3.5) B l ] 
M t • 

Relations (3.1)-(3.5),  together with the structure relations of  the ordinary internal 
symmetries 

[B#Sml = i G e .  8 k , k tm (3.6) 

and the fact that Pu commutes with all B l and Qa, give the structure of  the part of  
our pseudoLie algebra which lies in c5 (0). 

The matrices a l, s l are still restricted by the Jacobi identities*. The one involving 

* If B denotes a Bose and F a Fermi operator, the relevant identities are: 

IB, {F~,F2)I+{F~, [F2,BI}- {F~, IB, Fd}=0,  

[Fb {F 2,F3}] + [F 2, {F 3, Fl} ] + [F3, {F,, F2} l = 0. 

(3.7) 

(3.8) 
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BI ' QL,a ( Q y ) t  tells us that 

sLM = gML,  (3.9) 

i.e., that s! is Hermitian. The Jacobi identity involving Bi, Bin, QL tells us that the 
matrices s l form a representation of the Lie algebra of the B l. The remaining three 
identities are 

(Q, Q, Q): ~ (al) KL s NM= ~ ( a l )  LN s KM , (3.10) 
l l 

(Q, Q, Q?): (at)KL ~MN = 0 ,  (3.11) 

(Q, Q, B): (smal)KL -- (smal) LK = i ~ c l n m ( a n )  KL . (3.12) 
n 

Eq. (3.10) is also a consequence of (3.11) with (3.9). For the analysis of  the remain- 
ing relations, we remember, t h a t / 2  = /21 ~ /22 where /21 is semisimple, /22 
Abelian. Consider the elements 

Z KL = ~ ( a l )  K£ B l . (3.13) 
l 

Eqs. (3.6) and (3.12) tell us that the linear span of the Z KL is an invariant subalgebra, 
say /23 C /2. Using in addition (3.11), we see that 

[Z KL, Z MN] = 0 .  (3.14) 

Thus the intersection of /21 and /23 would have to be an Abelian, invariant sub- 
algebra of Z? l which does not exist because /21 is semisimple. Thus /23 C /22, i.e., 

[Z KL, B m] = 0 .  (3.15) 

Finally, eq. (3.11) tells us that Z KL lies in the kernel of the representation s or, in 
other words, by (3.5), that 

[Z KL, a M] = o .  (3.16) " 

Taking (3.15) and (3.16) together, we see that /23 must be a part of the center 
of the whole pseudo Lie algebra. This result has been stated above as eq. (1.2). We 
may write 

/2= / 2 ' , ~ Z ,  

where /2 '  does not contain any central elements. We choose a basis Z .  inIZ, and 
we can replace the right-hand side of  (1.1) or (3.3) by ~;p ec~(ao)LMz p. 

The matrices aO are still restricted by (3.12): putting there I = P and m arbitrary, 
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the right-hand side of  (3.12) is zero, because the structure constant then vanishes. 
Using (3.4), we can now rewrite (3.12) in the form 

s ma  p = a  p t  m , (3.17) 

where 

tm = -- Sm (3.18) 

is the complex conjugate representation of the Lie algebra. This means, that every 
matrix at '  must be an intertwiner of  the representations s and t of  Z?'. This limits 
the number of central charges which can appear in (1.1) and (3.3). To give an ex- 
ample: Suppose that Z~' is the Lie algebra of SU(2) and s its basic two-dimensional 
representation, so that we have two spinors QL (L = 1,2).  Then the complex con- 
jugate representation is unitarily equivalent to s and there is only one linearly in- 
dependent intertwiner between s and t, namely a complex multiple of  the matrix 
e LM. Thus there can be at most two real central charges Z 1, Z 2 in the pseudo Lie 
algebra which are not completely trivial, and (1.1) becomes for this example 

{Qk, Q~W} = earl ~LM(cl Z 1 + i c 2 Z 2 ) .  

4. Symmetry generators which do not  commute with Pu 

Let us call c5 (N) the set of  those symmetry generators for which the kernel (2.6) 
contains only derivatives up to (and including) the order N. An operator which be- 
longs to c5 (N) but not to ~3 ( N - l )  will be called a symmetry of  degree N*. 

The analysis proceeds now from the following observations: 
(a) All symmetries commute with p2  (sect. 2, property (iii))**. 
(b) I f G  Ec~ (N) then [Pu' G] EcJ ( N - l ) .  

This is, because the commutat ion with Pu conserves the three properties (i), (ii), 
(iii) and the order of  the derivatives in (2.6) (or, alternatively, the degree of the 
polynomial o f x  in the current density) is lowered. In fact, the degree of  a symmetry 
is lowered in all cases precisely by one. 

* Such operators arise typically if in (2.5) 

/o(x) ~II(xu) nv 
= ~'n O, n i n 2  n 3  ( x )  , 

where ~'nu are Poincar~ covariant fields and N = sup ~; n w 
** This holds for the restriction of the symmetry operators to the single particle subspace [i.e. 

for the kernel in (2.2)], which we need to consider only and which we also denote by G. 
Furthermore, in the zero-mass case, the discussion refers to a multiplet of particles all of 
which are massless. 
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(c) o_5 (N) contains a finite number of  linearly independent elements because G is 
fixed up to addition of elements from e5 (0) by [Pu, G]. 

c5 (N) is also closed under Lorentz transformations. We can then classify the ele- 
ments of d (N) according to their Lorentz transformation character (/, j ') .  

4.1. Bose symmetries o f  degree 1 

Here [Pu' G] CcJ (°). Since all Bose symmetries in o5 (0) belong either to (½, ½) or 
(0, 0), G can belong only to (1, ½), (0, 0), (1 ,0) ,  (0, 1), (1, 1). The last four can be 
combined into a general second rank tensor Tuv. The first is a vector V u. Then we 
must have 

[P~' Vv ] = guv ~l cl B l , 

[Po, Tuvl = icPoguv + ib+(gmaPv -govP,  + ieo•,vPa) 

+ ib  (gouP~, - go P - - ieoouvP~)  + ia(gouPv+goP u - ½gu~Po), (4.1) 

where the four terms on the right-hand side correspond respectively to the parts 
(0, 0), (1 ,0) ,  (0, 1), (1, 1) of Tuv and c l, c, b +, b - ,  a are numerical constants. The 
commutativity of G with p2 gives 

/ ~  1 2 • p2 
0 = P~ ClB I , 0 = ia (2PuP v - ~ g ~ v e  ) ,  0 = tcg~v • 

Thus 

c I = O ,  a = 0 ,  and for m 24 :0  also c = 0 .  

The second and third terms in (4.1) agree up to the numerical factors with the 
commutators between P ,  and the (1 ,0)  respectively (0, 1)-parts of the angular 
momenta  Muv. Since d (0) does not contain any skew tensor, the irreducible parts 
of T,v Tvu are nmltiples of those of  Muv. 

Thus we have the result 
(A) In the massive case all Bose symmetry generators of degree 1 are linear com- 

binations of  Muv. 
(B) For zero-mass one may have in addition one scalar element D E c5(1) with 

commutation relations 

[Pu, DI = iPu • (4.2) 

By this D is fixed up to an additive scalar from c5 (0). 

4.2. Bose symmetries o f  degree 2 

Since the Bose part of c5 (1) contains at most the covariants (0, 0), (1, 0), (0, 1). 
the Bose part ofc5 (2) can contain at most (½, ½), (~-, ½), (½, ~). 
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The case (~, 1) may be ruled out as follows (see appendix for definitions of  
Pat}, Mala2 and their commutation relations): 

[P/),  A3,, ~,23,3;..?] = f ~  e e ~qM273  0~')" 1 

(where the sum runs over the permutations of ")'1, ")'2, T3), is the only possible co- 
variant ansatz. This yields 

[ P l ] J l ,  [ P z ~ 2 , A r 2 v 3 ; . ~ ] ] = - 2 i f ~  e2.~, CO, IT2  e~2 ,~e3 ,3~  1 . 

Now this quantity should be symmetric under the simultaneous interchange 
51 ~ ct2, fil ~/32 (Jacobi identity). Specializing to the choice 71 = 72 = 73 = 1, 
c~ 1 = c~ 2 = 2, 5'1 = fil = I and/)2 = 2, this symmetry requirements becomes 

- 1 2 i f P l i = O ,  i.e., f = 0 .  

A corresponding argument rules out the case (½, ~). 
For a (½, ½) covariant K u we have the ansatz 

MK• [P ,  K v] =a guvD + b Muv+ c euvKx 

We look at the Jacobi identity involving Pu' Pv, Kp and find with the help of  (4.2) 
that c = 0, b = - a .  The existence of  D 4= 0 is therefore a necessary condition for 
the non-vanishing of  K v. 

Result: (C) In the massive case there is no Bose symmetry of  degree 2. 
(D) For zero-mass, if there is a D E c5(1) then there may be a K v E o3 (2), whose 

commutator with Pu may be normalized to 

[Pu' Kv] = 2 i(guvD - Muv ) . (4.3) 

By (4.3), K v is only fixed up to an additive multiple ofP u. We shall make use of  
this freedom below. 

4.3. Bose symmetries o f  degree N > 2 

By the same technique one finds 
(E) No Bose symmetry of  degree 3 exists and hence no Bose symmetry of any 

higher degree. 
We only indicate the steps of  the argument. A G of  degree 3 can only be a com- 

ponent of  a general tensor Auv , whose commutator with Po will be of  the form 
(4.1) with K replacing P. Commuting again with Pa, the result sould be symmetric 
in O, o (Jacobi identity). Evaluating the expressions, using (4.3), one finds that 
this requires the vanishing of  all coefficients, i.e., G = 0. 
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4.4• Fermi charges of degree 1 

Possible covariants are (~, 0), (1, ½) and their conjugates. (1,½) is excluded by 
the following argument. If Q!I)~ .~. is of degree 1 then 

/ l t 2 ' /  

O (1) 1 : a e ~  Q~: + ea~2Q71 ) [e~tJ' -" t  t "t 2 ;'~" (ea'y 1 

where Q on the right-hand side is some (non-vanishing) Fermi charge in c5 (0). The 
condition [e2, ag  2;+l = 0gives 

0 =a(P l~Qv2 +P~z~QTl ) '  

and if we anticommute that with ()&, we get by (3.1) 

The bracket belongs to the representation (1,1) and is the spinor equivalent of  
Pu P~ 1gulp2 which cannot vanish identically on a mass shell. Hence a = O. 

This leaves us to consider Fermi charges of  degree 1 belonging to (1,0) .  De- 
noting such an element by Q(1) we have 

[ p ~ ,  Q(1)] = , e  7Qt~ ' 

with 0 E e3(0), Q 4: 0. From this and (3.1) we compute 

eVf e6n [p@, [p@ , {Q~I), 0 } l ) } l l  = c p~B ' 

with c 4: 0. This means that {Q(1), Q(1)} is a Bose symmetry of degree 2 (see ob- 
servation (b)). Thus i f Q  (1) exists, then also K~ must exist. The converse is true 
also since, as we shall see later, [Ku, Q~] cannot vanish and belongs to c3 (1). 

Thus: (F) In the massive case there are no Fermi charges of  degree 1 or higher. 
(G) In the zero-mass case Fermi charges Q(1), ~9(1) appear if and only if 

K u Ec5 (2) exists. 

4.5. Fermi charges of  higher degree 

By the same technique used in eliminating Bose symmetries of  higher degree, 
we find: 

(H) No Fermi charges of degree N > 1 exist. 

5. Complete algebraic structure 

The discussion of the massive case is finished since there the only symmetry 
generators which are not in c5 (0) are the Muu , whose commutat ion relations with 
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all other quantities are known. The most general structure is then given by eqs. (1.1) 
through (1.7). 

In the massless case, we may distinguish two situations. If  there is no K u then 
the situation remains essentially unchanged. The only element which can possibly 
be added is the dilatation D and we have to supplement (1.1) through (1.7) by the 
assignment of  dimensions to the previous quantities. The algebra with Ku on the 
other hand is significantly richer in elements and more restrictive in structure. We 
shall discuss this in the rest of  this section. 

The first step is to ghow that Ku, Pu, M~v, D give the structure relations of  the 
conformal group C. Beyond the specified Lorentz transformation properties and 
the previously obtained relations (4.2) and (4.3), which fix the definition of  D, we 
need for that purpose still the two relations 

[K. ,  K,,] = 0 ,  (5.1) 

[Ku, D] = iK u • (5.2) 

To obtain them, one may note that on the right-hand side of(5 .1)  we can only have 
a linear combination of Muv and its dual, since there are no other skew tensors in 
the Lie algebra. The Jacobi identity between Pp, K w K~, shows then that we can use 
the remaining freedom in the definition of K~ (addition of  a multiple of  P~) to 
achieve (5.1), (5.2) and that then K~ is uniquely fixed. 

Next, one sees that all Bose charges B! commute with the whole conformal group, 
specifically that 

[K u, Btl = 0 ,  (5.3) 

[D, Btl = 0 .  (5.4) 

A general ansatz for the right-hand side of  (5.3) would be c l Ku + c~Pu. The Jacobi 
identity involving Pu, Kv, B l then demands c l = 0 and also gives (5.4). The one 
involving Ku, Kv, B I gives c~ = 0. 

To find the action of K u, Iv, D on the Fermi charges, let us start from the zero- 
degree charges QL, QL (L = 1, ..., v) and define charges Q(1)L, Q(1)L by 

lKc, d, Q~I = 2 i%v 0~ 1)L . (5.5) 

The Hermitian conjugate of this is 

[K~,  0_.~] = 2 ie&5, Q~I)L (5.6) 

From the Jacobi identity between Pu' D, QL one learns that [QL, D] commutes 
with Pu and is therefore of  degree zero. So 

[QL, D] = ~ d LM QM, (5.7) 
M 
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[QL, D] = -- ~ dLM ~)~I~ . (5.8) 
M 

The Jacobi identity between Q, Q, D in conjuction with (3.1) (3.2), (4.2) gives 
then 

dLM ~ML = i6LM, 

o r  

d LM = ½i6 LM + d 'LM , 

where d'  is Hermitian. The choice of basis in Q-space is so far only limited by the 
convention (3.2) which still allows a unitary transformation, so that we can diago~ 
nalize d'  and have 

d LM = 6LM(½ i + d'L). (5.9) 

We can now use the Jacobi identity between P, K, QL and the information about the 
the commutators in (5.5), (5.7), (5.9) and (4.3). The computation is most conve- 
niently done in spinorial notation, given in the appendix. The results are: 

d~ = 0 ,  i.e. [QL, D] =½iQ L , (5.10) 

[P~t3, Q(1)L] = 2 i e ~  Q1 d . (5.11) 

From (5.10) and (5.11) we see immediately 

[Q (I)L,. D] = - I  iQ (1)L , [Q(1)L, D] = - z , ~ l  i {)(1)L . (5.12) 

Also we see that the scheme is symmetric under the interchange of  quantities of 
opposite dimension. The counterpart of (3.5), i.e., the transformation of  the 
Q(1)L under the internal Bose symmetries B! follows from (5.5) and the Jacobi 
identity between K, QL, Bl" It is (see (3.18) for the definition of tl): 

[Q(1)L" ' Bl] : ~M sLM ~&t) (1)M , (5.13a) 

[Q(1)L, Bl ] = ~M tLMI Q(I)Ma - (5.13b) 

The precise form of the dimensional reflection in the pseudo Lie algebra is 

p a ~  K ~  , M ~ l ~ 2 ~  ~I~l(~2 , D ~ - D  , 

QL ~ 0(1)L,  Bl ,~,Bl. (5.14) 
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By dimension counting, use of  the automorphism (5.14) and the knowledge of all 
covariants of each dimension, we can write down the remaining structure relations: 

{0 L ' Q~I)M} = 0 ,  

{Q(1)L, o ~ l ) g ]  = ~LM Ku~,  

(5.15) 

(5.16) 

(5.17) 

{QL, Q(1)M} = aLM ea#D + bLM Mu# + iea#B LM , (5.18) 

where the B LM are some linear combinations of  the internal Bose symmetries B 1 
and a LM, b LM are numerical matrices. 

Note that in contrast to the massive case (and also the massless case with only 
dilatational and not conformal invariance), the right-hand side of  (1.1) must vanish. 
This is a consequence of  the fact that conformal invariance fixes uniquely the di- 
mensions of  B l and Q. 

All commutat ion relations are now in their final form except (5.18). There re- 
main a few Jacobi identities which have not been used yet. They fix not only the 
matrices a, b in (5.18) but also determine the group of internal Bose symmetries 
and its representation s I (apart from the trivial possibility of  adding internal sym- 
metries which commute with all the Fermi charges). The ( P ~ ,  QL, Q(1)M) identity 
yields 

2 ~LM e6#pa~ = aLM e ~ P , q  - bLM(e6u P#q + e6.G Pa..7) , 

from where one concludes (decomposing into symmetric and antisymmetric parts 
in e~,/3) 

aLM = _bLM = 5LM . (5.19) 

The (K, QL, O M) identity gives 

B LM= (BML) t . (5.20) 

The two last independent relations are 

(Q, Q, Q(1)): [OL, BMN] = ~ (26LM6NK _ 1 6 M N f L K ) o K  ' (5.21) 
K 

(Q, Q(1), B): [B LM, Bi] ~ ( t M N B L N  . LN~NM~ (5.22) = ± S l 15 ) N I 

Eq. (5.21) tells us that for u 4 :4  all B MN are linearly independent, for v = 4 
there is precisely one linear relation between them. For, suppose E aMN BMN = O. 



272 R. Haag et al. / Supersymmetries 

Then, by (5.21) 

2 aLK = 1 6 L K  tr (a) ,  

which for v 4 :4  is impossible and for v = 4 fixes aLK up to a normalization factor. 
By (5.20), the real Lie algebra spanned by the B L M  is therefore isomorphic to the 
set of  all Hermitian v × v matrices (for v 4: 4), respectively to all traceless such 
matrices (for v = 4). This part of  the internal symmetry group is therefore U(v) 
(respectively SU(4)). Consider now the Lie algebra Z? of  all the B l and denote the 
kernel of the representation s I byCg *, the subalgebra spanned by the B L M  by E 1 . 
The quotient Z?/CKis faithfully represented by Hermitian matrices s in the v-di- 
mensional space and must therefore be contained in the Lie algebra of  U(v). There- 
fore for v 4: 4: Z?/cK = Z? 1 . But Z? 1 is an invariant subalgebra by (5.22) andCK is an 
invariant subalgebra because it is a kernel. Therefore Z? is the direct sum 

For v = 4 we have similarly 

Z~:  ~ ? 1 . 9 ( ,  

where Z~ 1 may be either the Lie algebra of  U(4) or that of  SU(4). 
We have seen that only the zero-mass case gives the possibility of  a complete 

fusion between geometric and internal symmetries: the Fermi charges may then 
generate the full conformal group together with a unitary symmetry group, the 
only arbitrariness being the number v of  Fermi charges. The phenomenological 
application of  the scheme is unfortunately plagued -in that case even more than in 
the massive case by symmetry breaking (spontaneous or otherwise). But the con- 
sideration of  lepton physics from the point of  vfew of supersymmetry appears to be 
most indicated. 

Thanks are due to G.F. Dell Antonio, P.H. Dondi, J. Wess and B. Zumino for 
many helpful discussions. One of us (J.T.L.) wishes to thank Professor Wess for 
the cordial hospitality extended to him during his stay in Karlsruhe. 

Appendix 

Some of  the calculations are greatly simplified if one uses the spinorial notation 
for the angular momenta and the four-vectors which appear. We give the relevant 
formulas which have been used in the text. 

Define the symmetric spinors Mal az '  Mill f12 implicitly by 

* EalBl~qC if )2als I = O. 
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°ucqd I °vcqj2 iVI~v = 3"I a2 e~,~2 + Mfi,~ 2 ecqa2 , 

273 

(A.1) 

ll/I l~2= --l i(o#u f)~l~2Mgu . 

M~, ~i2 : -½ i (ea"V)~ l t}2 M ~ v '  

g v : ~- i ((e o )  ~' ~2 M ~2 + ( ° . d ) ~ l  ~2 M~, & ) .  

This splits Muv into its irreducible parts with respect to the connected Lorentz 
group, and Mc~ 1 az acts only on undotted, Mt~ ~ ~z only on dotted spinor indices: 

[Qo<, Ma I ~2 ] = - i  (eo.~l Qaz + ea~2 Qoq), 

[Q/~' M~I/32 ] = -i(6~/~1 Q132 + e~2  O~l ) '  

[0~, Marc, 2] = [Qc~,/~1 ~2 ] : 0 .  

From 
e.g.: 

[P ,/~, m c~2] = -i(6ot~l G2  ~ + ce~o~2 P~, ~) " 

The commutator  (4.3) reads in this notation 

[ e l  ~1' Kc~2 ~2 ] = 4i ec~ 1 c~2 eft, ~2 O - 2i(e~1 ~2 M~I ~2 + eC~l c~2 Mill ~2 ) '  

(A.2) 

(A.3) 

(A.4) 

(A.S) 

(A.6) 

(A.7) 

(A.8) 

this the transformation of spinors of  higher rank can be immediately read off, 

(A.9) 

if we define the following connection between a four-vector V. and the correspond- 
ing spinor V ~ :  

Vc~ fi : (ou),~ V ,  (A.I O) 

V = ½(~ ) ~  V f i .  (A.11) 
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