1 Probability Distributions: Summary

- Discrete distributions: Let n label the distinct possible outcomes of a discrete random process, and let p_n be the probability for outcome n. Let A be a quantity which takes values which depend on n, with A_n being the value of A under the outcome n. Then the expected value of A is $\langle A \rangle = \sum_n p_n A_n$, where the sum is over all possible allowed values of n. We must have that the distribution is normalized, i.e. $\langle 1 \rangle = \sum_n p_n = 1$.
- Continuous distributions: When the random variable φ takes a continuum of values, we define the probability density $P(\varphi)$ to be such that $P(\varphi) d\mu$ is the probability for the outcome to lie within a differential volume $d\mu$ of φ , where $d\mu = W(\varphi) \prod_{i=1}^n d\varphi_i$, were φ is an n-component vector in the configuration space Ω , and where the function $W(\varphi)$ accounts for the possibility of different configuration space measures. Then if $A(\varphi)$ is any function on Ω , the expected value of A is $\langle A \rangle = \int\limits_{\Omega} d\mu \, P(\varphi) \, A(\varphi)$.
- Central limit theorem: If $\{x_1,\ldots,x_N\}$ are each independently distributed according to P(x), then the distribution of the sum $X=\sum_{i=1}^N x_i$ is

$$\mathcal{P}_{N}(X) = \int_{-\infty}^{\infty} dx_{1} \cdots \int_{-\infty}^{\infty} dx_{N} P(x_{1}) \cdots P(x_{N}) \, \delta\left(X - \sum_{i=1}^{N} x_{i}\right) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \left[\hat{P}(k)\right]^{N} e^{ikX} \quad ,$$

where $\hat{P}(k) = \int dx \ P(x) \ e^{-ikx}$ is the Fourier transform of P(x). Assuming that the lowest moments of P(x) exist, $\ln \left[\hat{P}(k)\right] = -i\mu k - \frac{1}{2}\sigma^2 k^2 + \mathcal{O}(k^3)$, where $\mu = \langle x \rangle$ and $\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$ are the mean and standard deviation. Then for $N \to \infty$,

$$P_N(X) = (2\pi N\sigma^2)^{-1/2} e^{-(X-N\mu)^2/2N\sigma^2}$$

which is a Gaussian with mean $\langle X \rangle = N \mu$ and standard deviation $\sqrt{\langle X^2 \rangle - \langle X \rangle^2} = \sqrt{N} \, \sigma$. Thus, X is distributed as a Gaussian, even if P(x) is not a Gaussian itself.

- *Entropy*: The entropy of a statistical distribution is $\{p_n\}$ is $S = -\sum_n p_n \ln p_n$. (Sometimes the base 2 logarithm is used, in which case the entropy is measured in *bits*.) This has the interpretation of the *information content* per element of a random sequence.
- Distributions from maximum entropy: Given a distribution $\{p_n\}$ subject to (K+1) constraints of the form $\mathcal{X}^a = \sum_n X_n^a p_n$ with $a \in \{0,\dots,K\}$, where $\mathcal{X}^0 = X_n^0 = 1$ (normalization), the distribution consistent with these constraints which maximizes the entropy function is obtained by extremizing the multivariable function

$$S^*\big(\{p_n\},\{\lambda_a\}\big) = -\sum_n p_n \ln p_n - \sum_{a=0}^K \lambda_a \Big(\sum_n X_n^a p_n - \mathcal{X}^a\Big) \quad ,$$

with respect to the probabilities $\{p_n\}$ and the Lagrange multipliers $\{\lambda_a\}$. This results in a Gibbs distribution,

$$p_n = \frac{1}{Z} \exp \left\{ -\sum_{a=1}^K \lambda_a X_n^a \right\} \quad ,$$

where $Z=e^{1+\lambda_0}$ is determined by normalization, *i.e.* $\sum_n p_n=1$ (*i.e.* the a=0 constraint) and the K remaining multipliers determined by the K additional constraints.

• Multidimensional Gaussian integral:

$$\int_{-\infty}^{\infty} dx_1 \cdots \int_{-\infty}^{\infty} dx_n \exp\left(-\frac{1}{2}x_i A_{ij} x_j + b_i x_i\right) = \left(\frac{(2\pi)^n}{\det A}\right)^{1/2} \exp\left(\frac{1}{2}b_i A_{ij}^{-1} b_j\right)$$

• Bayes' theorem: Let the conditional probability for B given A be P(B|A). Then Bayes' theorem says $P(A|B) = P(A) \cdot P(B|A) / P(B)$. If the 'event space' is partitioned as $\{A_i\}$, then we have the extended form,

$$P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{\sum_j P(B|A_j) \cdot P(A_j)} .$$

When the event space is a 'binary partition' $\{A, \neg A\}$, as is often the case in fields like epidemiology (*i.e.* test positive or test negative), we have

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\neg A) \cdot P(\neg A)}$$

Note that $P(A|B) + P(\neg A|B) = 1$ (which follows from $\neg \neg A = A$).

• *Updating Bayesian priors*: Given data in the form of observed values $\mathbf{x} = \{x_1, \dots, x_N\} \in \mathcal{X}$ and a hypothesis in the form of parameters $\mathbf{\theta} = \{\theta_1, \dots, \theta_K\} \in \Theta$, we write the conditional probability (density) for observing \mathbf{x} given $\mathbf{\theta}$ as $f(\mathbf{x}|\mathbf{\theta})$. Bayes' theorem says that the corresponding distribution $\pi(\mathbf{\theta}|\mathbf{x})$ for $\mathbf{\theta}$ conditioned on \mathbf{x} is

$$\pi(\boldsymbol{\theta}|\boldsymbol{x}) = \frac{f(\boldsymbol{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\int\limits_{\boldsymbol{\Theta}} d\boldsymbol{\theta}' f(\boldsymbol{x}|\boldsymbol{\theta}') \pi(\boldsymbol{\theta}')} \quad ,$$

We call $\pi(\theta)$ the *prior* for θ , $f(x|\theta)$ the *likelihood* of x given θ , and $\pi(\theta|x)$ the *posterior* for θ given x. We can use the posterior to find the distribution of new data points y, called the *posterior predictive distribution*, $f(y|x) = \int\limits_{\theta} d\theta \ f(y|\theta) \ \pi(\theta|x)$. This is the update of the *prior predictive distribution*, $f(x) = \int\limits_{\theta} d\theta \ f(x|\theta) \ \pi(\theta)$. As an example, consider coin flipping with $f(x|\theta) = \theta^X \ (1-\theta)^{N-X}$, where N is the number of flips, and $X = \sum_{j=1}^N x_j$ with x_j a discrete variable which is 0 for tails and 1 for heads. The parameter $\theta \in [0,1]$ is the probability to flip heads. We choose a prior $\pi(\theta) = \theta^{\alpha-1} \ (1-\theta)^{\beta-1} \ |B(\alpha,\beta)|$ where $B(\alpha,\beta) = \Gamma(\alpha) \Gamma(\beta) \ |\Gamma(\alpha+\beta)|$ is the Beta distribution. This results in a normalized prior $\int\limits_{0}^{1} d\theta \ \pi(\theta) = 1$. The posterior distribution for θ is then

$$\pi(\theta|x_1,...,x_N) = \frac{f(x_1,...,x_N|\theta) \pi(\theta)}{\int_0^1 d\theta' f(x_1,...,x_N|\theta') \pi(\theta')} = \frac{\theta^{X+\alpha-1} (1-\theta)^{N-X+\beta-1}}{\mathsf{B}(X+\alpha,N-X+\beta)} .$$

The prior predictive is $f(x) = \int\limits_0^1 d\theta f(x|\theta) \, \pi(\theta) = \mathsf{B}(X+\alpha,N-X+\beta)/\mathsf{B}(\alpha,\beta)$, and the posterior predictive for the total number of heads Y in M flips is

$$f(\boldsymbol{y}|\boldsymbol{x}) = \int_{0}^{1} d\theta f(\boldsymbol{y}|\theta) \pi(\theta|\boldsymbol{x}) = \frac{B(X+Y+\alpha, N-X+M-Y+\beta)}{B(X+\alpha, N-X+\beta)}.$$