1 Probability Distributions : Summary

e Discrete distributions: Let n label the distinct possible outcomes of a discrete random
process, and let p, be the probability for outcome n. Let A be a quantity which takes
values which depend on n, with A, being the value of A under the outcome n. Then the
expected value of Ais (4) = >, p, A,, where the sum is over all possible allowed values
of n. We must have that the distribution is normalized, i.e. (1) =" p, = 1.

e Continuous distributions: When the random variable ¢ takes a continuum of values, we
define the probability density P(¢) to be such that P(¢) dy is the probability for the outcome
to lie within a differential volume du of ¢, where du = W () [[i-, dp;, were ¢ is an n-
component vector in the configuration space 2, and where the function W (¢) accounts for
the possibility of different configuration space measures. Then if A(¢) is any function on
Q, the expected value of A is (A) = [du P(p) A(p).
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e Central limit theorem: If {x,,..., x5} are each independently distributed according to
P(z), then the distribution of the sum X = Sz is
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where P(k) = [dx P(x) e~™** is the Fourier transform of P(z). Assuming that the lowest
moments of P(z) exist, In[P(k)] = —iuk — 162k* + O(k®), where u = (z) and o2 =
(x?) — (x)? are the mean and standard deviation. Then for N — oo,
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which is a Gaussian with mean (X) = Ny and standard deviation /(X2) — (X)2 = /N o.
Thus, X is distributed as a Gaussian, even if P(x) is not a Gaussian itself.

e Entropy: The entropy of a statistical distributionis {p,}is S = — >, p, Inp,. (Sometimes
the base 2 logarithm is used, in which case the entropy is measured in bits.) This has the
interpretation of the information content per element of a random sequence.

e Distributions from maximum entropy: Given a distribution {p,,} subject to (K + 1) con-
straints of the form X* = Y X%p, with a € {0,..., K}, where X = X! = 1 (normal-
ization), the distribution consistent with these constraints which maximizes the entropy
function is obtained by extremizing the multivariable function
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with respect to the probabilities {p,,} and the Lagrange multipliers {\,}. This results in a

Gibbs distribution,
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where Z = ¢! is determined by normalization, i.e. " p, = 1 (i.e. the a = 0 constraint)
and the K remaining multipliers determined by the K additional constraints.

o Multidimensional Gaussian integral:
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e Bayes’ theorem: Let the conditional probability for B given A be P(B|A). Then Bayes’ theo-
rem says P(A|B) = P(A) - P(B|A) / P(B). If the "event space’ is partitioned as {4, }, then
we have the extended form,

- X P(BIA)) - P(4))

When the event space is a ‘binary partition’ {A, ~A}, as is often the case in fields like
epidemiology (i.e. test positive or test negative), we have

P(B|A) - P(A)
(B|4) - P(A) + P(B|=A) - P(=4)

P(A|B) =

Note that P(A|B) + P(—A|B) = 1 (which follows from ——A = A).

e Updating Bayesian priors: Given data in the form of observed values = {z,..., 2z} € X
and a hypothesis in the form of parameters § = {6,,...,0,} € ©, we write the conditional
probability (density) for observing « given 0 as f(x|0). Bayes’ theorem says that the cor-
responding distribution 7(@|x) for 8 conditioned on « is
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We call 7(0) the prior for 8, f(x|0) the likelihood of x given 6, and 7(0|x) the posterior for

0 given . We can use the posterior to find the distribution of new data points y, called

the posterior predictive distribution, f(y|lx) = [d6 f(y|@)m(0|x). This is the update of the
o

prior predictive distribution, f(x) = [d6 f(xz|0) 7(0). As an example, consider coin flipping
e

with f(x]0) = 6% (1 — §)N=X, where N is the number of flips, and X = Z;Vzl z; with
z; a discrete variable which is 0 for tails and 1 for heads. The parameter ¢ € [0,1] is
the probability to flip heads. We choose a prior 7(6) = 61 (1 — 6)%~!/B(a, ) where

B(a,8) = I'(a) T'(B) /T (a + B) is the Beta distribution. This results in a normalized prior
1

[dfw(8) = 1. The posterior distribution for 6 is then
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The prior predictive is f(x) = fldHf(:c\H)ﬂ(H) =B(X +a,N - X+ 3)/B(e, 8), and the
0

posterior predictive for the total number of heads Y in M flips is
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