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Chapter 6

Classical Interacting Systems
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2 CHAPTER 6. CLASSICAL INTERACTING SYSTEMS

6.2 Ising Model

6.2.1 Definition

The simplest model of an interacting system consists of a lattice L of sites, each of which contains a spin
σi which may be either up (σi = +1) or down (σi = −1). The Hamiltonian is

Ĥ = −J
∑

〈ij〉
σi σj − µ0H

∑

i

σi . (6.1)

When J > 0, the preferred (i.e. lowest energy) configuration of neighboring spins is that they are aligned,
i.e. σi σj = +1. The interaction is then called ferromagnetic. When J < 0 the preference is for anti-
alignment, i.e. σi σj = −1, which is antiferromagnetic.

This model is not exactly solvable in general. In one dimension, the solution is quite straightforward.
In two dimensions, Onsager’s solution of the model (with H = 0) is among the most celebrated results
in statistical physics. In higher dimensions the system has been studied by numerical simulations (the
Monte Carlo method) and by field theoretic calculations (renormalization group), but no exact solutions
exist.

6.2.2 Ising model in one dimension

Consider a one-dimensional ring of N sites. The ordinary canonical partition function is then

Zring = Tr e−βĤ =
∑

{σn}

N∏

n=1

eβJσnσn+1 eβµ0Hσn , (6.2)

where σN+1 ≡ σ1 owing to periodic (ring) boundary conditions. We can replace the factor , eβµ0Hσn in

the above expression with eβµ0H(σn+σn+1)/2, since the product over n yields the same result. We then
obtain Z = Tr

(
RN
)
, where R is a 2× 2 matrix with entries

Rσσ′ = eβJσσ
′
eβµ0H(σ+σ′)/2 =

(
eβJ eβµ0H e−βJ

e−βJ eβJ e−βµ0H

)
, (6.3)

called the transfer matrix. Expressed in terms of the Pauli matrices τα, we have

R = eβJ cosh(βµ0H) + eβJ sinh(βµ0H) τ z + e−βJ τx . (6.4)

Since the trace of a matrix is invariant under a similarity transformation, we have

Z(T,H,N) = λN+ + λN− , (6.5)

where λ± are the eigenvalues of R, viz.

λ±(T,H) = eβJ cosh(βµ0H)±
√
e2βJ sinh2(βµ0H) + e−2βJ . (6.6)



6.2. ISING MODEL 3

In the thermodynamic limit, N → ∞, and the larger λN+ term dominates exponentially. We them have

F (T,H,N) = −NkBT lnλ+(T,H) . (6.7)

From the free energy, we can compute the magnetization,

M = −
(
∂F

∂H

)

T,N

=
Nµ0 sinh(βµ0H)√
sinh2(βµ0H) + e−4βJ

(6.8)

and the zero field isothermal susceptibility,

χ(T ) =
1

N

∂M

∂H

∣∣∣∣
H=0

=
µ20
kBT

e2J/kBT . (6.9)

Note that in the noninteracting limit J → 0 we recover the familiar result for a free spin. The effect of the
interactions at low temperature is to vastly increase the susceptibility. Rather than a set of independent
single spins, the system effectively behaves as if it were composed of large blocks of spins, where the
block size ξ is the correlation length, to be derived below.

The physical properties of the system are often elucidated by evaluation of various correlation functions.
Accordingly, we define C(n) ≡ 〈σ1 σn+1〉, where

〈
σ1 σn+1

〉
=

Tr
(
σ1Rσ1σ2

· · ·Rσnσn+1
σn+1Rσn+1σn+2

· · ·Rσ
N
σ1

)

Tr
(
RN
) =

Tr
(
τ z Rn τ z RN−n

)

Tr
(
RN
) , (6.10)

with 0 < n < N , and where τ z is the Pauli matrix. To compute this ratio, we decompose R in terms of
its eigenvectors, writing R = λ+ |+〉〈+|+ λ− |−〉〈−|. Then

C(n) =
λN+ τ z++τ

z
++ + λN− τ z−−τ

z
−− +

(
λN−n
+ λn− + λn+ λ

N−n
−

)
τ z+−τ

z
−+

λN+ + λN−
, (6.11)

with τ zµµ′ = 〈µ |Z |µ′ 〉 being the matrix elements of Z in the eigenbasis of R.

Zero external field

Consider the case H = 0, where R = eβJ + e−βJ τx. Then |±〉 = 1√
2

(
|↑〉 ± |↓〉

)
, i.e. the eigenvectors of R

are

ψ± =
1√
2

(
1
±1

)
, (6.12)

which entails τ z++ = τ z−− = 0, while τ z+− = τ z−+ = 1. The corresponding eigenvalues are given by
λ+ = 2cosh(βJ) and λ− = 2 sinh(βJ) . The correlation function is then found to be

C(n) ≡
〈
σ1 σn+1

〉
=
λ
N−|n|
+ λ

|n|
− + λ

|n|
+ λ

N−|n|
−

λN+ + λN−

=
tanh|n|(βJ) + tanhN−|n|(βJ)

1 + tanhN (βJ)
≈ tanh|n|(βJ) for N → ∞ .

(6.13)
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This result is also valid for n < 0, provided |n| ≤ N . We see that we may write C(n) = e−|n|/ξ(T ), where
the correlation length is

ξ(T ) =
1

ln ctnh(J/kBT )
. (6.14)

Note that ξ(T ) grows as T → 0 as ξ ≈ 1
2 e

2J/kBT .

Chain with free ends

When the chain has free ends, there are (N−1) links, and the partition function is

Zchain =
∑

σ,σ′

(
RN−1

)
σσ′ =

∑

σ,σ′

{
λN−1
+ ψ+(σ)ψ+(σ

′) + λN−1
− ψ−(σ)ψ−(σ

′)
}

, (6.15)

where ψ±(σ) = 〈σ | ± 〉. When H = 0, we make use of eqn. 6.12 to obtain

RN−1 =
1

2

(
1 1
1 1

)(
2 cosh βJ

)N−1
+

1

2

(
1 −1
−1 1

)(
2 sinhβJ

)N−1
, (6.16)

and therefore Zchain = 2N coshN−1(βJ) .

There’s a nifty trick to obtaining the partition function for the Ising chain which amounts to a change of

variables. We define νn ≡ σn for l ≤ n < N . Thus, ν1 = σ1σ2 , ν2 = σ2σ3 , etc. Note that each νj takes
the values ±1. The Hamiltonian for the chain is

Hchain = −J
N−1∑

n=1

σn σn+1 = −J
N−1∑

n=1

νn . (6.17)

The state of the system is defined by the N Ising variables {σ1 , ν1 , . . . , νN−1}. Note that σ1 doesn’t
appear in the Hamiltonian. Thus, the interacting model is recast as N−1 noninteracting Ising spins, and
the partition function is

Zchain = Tr e−βHchain =
∑

σ1

∑

ν1

· · ·
∑

ν
N−1

eβJν1eβJν2 · · · eβJνN−1

=
∑

σ1

(
∑

ν

eβJν

)N−1

= 2N coshN−1(βJ) .

(6.18)

6.2.3 Ising model in two dimensions : Peierls’ argument

We have just seen how in one dimension, the Ising model never achieves long-ranged spin order. That
is, the spin-spin correlation function decays asymptotically as an exponential function of the distance
with a correlation length ξ(T ) which is finite for all > 0. Only for T = 0 does the correlation length
diverge. At T = 0, there are two ground states, |↑↑↑↑ · · · ↑ 〉 and |↓↓↓↓ · · · ↓ 〉. To choose between these
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ground states, we can specify a boundary condition at the ends of our one-dimensional chain, where
we demand that the spins are up. Equivalently, we can apply a magnetic field H of order 1/N , which
vanishes in the thermodynamic limit, but which at zero temperature will select the ‘all up’ ground state.
At finite temperature, there is always a finite probability for any consecutive pair of sites (n, n+1) to
be in a high energy state, i.e. either |↑↓ 〉 or |↓↑ 〉. Such a configuration is called a domain wall, and in
one-dimensional systems domain walls live on individual links. Relative to the configurations |↑↑ 〉 and
|↓↓ 〉, a domain wall costs energy 2J . For a system with M = xN domain walls, the free energy is

F = 2MJ − kBT ln

(
N

M

)

= N ·
{
2Jx+ kBT

[
x lnx+ (1− x) ln(1− x)

]}
,

(6.19)

Minimizing the free energy with respect to x, one finds x = 1
/(
e2J/kBT + 1

)
, so the equilibrium con-

centration of domain walls is finite, meaning there can be no long-ranged spin order. In one dimension,
entropy wins and there is always a thermodynamically large number of domain walls in equilibrium.
And since the correlation length for T > 0 is finite, any boundary conditions imposed at spatial infinity
will have no thermodynamic consequences since they will only be ‘felt’ over a finite range.

As we shall discuss in the following chapter, this consideration is true for any system with sufficiently
short-ranged interactions and a discrete global symmetry. Another example is the q-state Potts model,

H = −J
∑

〈ij〉
δσi,σj

− h
∑

i

δσi,1
. (6.20)

Here, the spin variables σi take values in the set {1, 2, . . . , q} on each site. The equivalent of an external
magnetic field in the Ising case is a field h which prefers a particular value of σ (σ = 1 in the above
Hamiltonian). See the appendix in §6.8 for a transfer matrix solution of the one-dimensional Potts model.

What about higher dimensions? A nifty argument due to R. Peierls shows that there will be a finite
temperature phase transition for the Ising model on the square lattice1. Consider the Ising model, in
zero magnetic field, on a Nx × Ny square lattice, with Nx,y → ∞ in the thermodynamic limit. Along
the perimeter of the system we impose the boundary condition σi = +1. Any configuration of the spins
may then be represented uniquely in the following manner. Start with a configuration in which all spins
are up. Next, draw a set of closed loops on the lattice. By definition, the loops cannot share any links
along their boundaries, i.e. each link on the lattice is associated with at most one such loop. Now flip all
the spins inside each loop from up to down. Identify each such loop configuration with a label Γ . The
partition function is

Z = Tr e−βĤ =
∑

Γ

e−2βJL
Γ , (6.21)

where LΓ is the total perimeter of the loop configuration Γ . The domain walls are now loops, rather
than individual links, but as in the one-dimensional case, each link of each domain wall contributes an
energy +2J relative to the ground state.

Now we wish to compute the average magnetization of the central site (assume Nx,y are both odd, so
there is a unique central site). This is given by the difference P+(0) − P−(0), where Pµ(0) =

〈
δσ0 , µ

〉
is

1Here we modify slightly the discussion in chapter 5 of the book by L. Peliti.
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Figure 6.1: Clusters and boundaries for the square lattice Ising model. Left panel: a configuration Γ
where the central spin is up. Right panel: a configuration Cγ ◦ Γ where the interior spins of a new loop
γ containing the central spin have been flipped.

the probability that the central spin has spin polarization µ. If P+(0) > P−(0), then the magnetization
per site m = P+(0) − P−(0) is finite in the thermodynamic limit, and the system is ordered. Clearly

P+(0) =
1

Z

∑

Γ∈Σ+

e−2βJL
Γ , (6.22)

where the restriction on the sum indicates that only those configurations where the central spin is up
(σ0 = +1) are to be included. (see fig. 6.1a). Similarly,

P−(0) =
1

Z

∑

Γ̃∈Σ−

e
−2βJL

Γ̃ , (6.23)

where only configurations in which σ0 = −1 are included in the sum, where Σ± ≡
{
Γ
∣∣ σ0 = ±

}
. That

is, Σ+(Σ−) is the set of configurations Γ in which the central spin is always up (down). Consider now

the construction in fig. 6.1b. Any loop configuration Γ̃ ∈ Σ− may be associated with a unique loop

configuration Γ ∈ Σ+ by reversing all the spins within the loop of Γ̃ which contains the origin. Note

that the map from Γ̃ to Γ is many-to-one. That is, we can write Γ̃ = Cγ ◦ Γ , where Cγ overturns the
spins within the loop γ, with the conditions that (i) γ contains the origin, and (ii) none of the links in the
perimeter of γ coincide with any of the links from the constituent loops of Γ . Let us denote this set of
loops as ΥΓ :

ΥΓ =
{
γ : 0 ∈ int(γ) and γ ∩ Γ = ∅

}
. (6.24)

Then

m = P+(0)− P−(0) =
1

Z

∑

Γ∈Σ+

e−2βJL
Γ

(
1−

∑

γ∈Υ
Γ

e−2βJLγ

)
. (6.25)
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If we can prove that
∑

γ∈Υ
Γ
e−2βJLγ < 1, then we will have established that m > 0. Let us ask: how

many loops γ are there in ΥΓ with perimeter L? We cannot answer this question exactly, but we can
derive a rigorous upper bound for this number, which, following Peliti, we call g(L). We claim that

g(L) <
2

3L
· 3L ·

(
L

4

)2
=

L

24
· 3L . (6.26)

To establish this bound, consider any site on such a loop γ. Initially we have 4 possible directions to
proceed to the next site, but thereafter there are only 3 possibilities for each subsequent step, since the
loop cannot run into itself. This gives 4 · 3L−1 possibilities. But we are clearly overcounting, since any
point on the loop could have been chosen as the initial point, and moreover we could have started by
proceeding either clockwise or counterclockwise. So we are justified in dividing this by 2L. We are
still overcounting, because we have not accounted for the constraint that γ is a closed loop, nor that
γ ∩ Γ = ∅. We won’t bother trying to improve our estimate to account for these constraints. However,
we are clearly undercounting due to the fact that a given loop can be translated in space so long as the
origin remains within it. To account for this, we multiply by the area of a square of side length L/4,
which is the maximum area that can be enclosed by a loop of perimeter L. We therefore arrive at eqn.
6.26. Finally, we note that the smallest possible value of L is L = 4, corresponding to a square enclosing
the central site alone. Therefore

∑

γ∈Υ
Γ

e−2βJLγ <
1

12

∞∑

k=2

k ·
(
3 e−2βJ

)2k
=

x4 (2− x2)

12 (1 − x2)2
≡ r , (6.27)

where x = 3 e−2βJ . Note that we have accounted for the fact that the perimeter L of each loop γ must
be an even integer. The sum is smaller than unity provided x < x0 = 0.869756 . . ., hence the system is
ordered provided

kBT

J
<

2

ln(3/x0)
= 1.61531 . (6.28)

The exact result is kBTc/J = 2/ sinh−1(1) = 2.26918 . . . The Peierls argument has been generalized to
higher dimensional lattices as well2.

With a little more work we can derive a bound for the magnetization. We have shown that

P−(0) =
1

Z

∑

Γ∈Σ+

e−2βJLΓ

∑

γ∈Υ
Γ

e−2βJLγ < r · 1
Z

∑

Γ∈Σ+

e−2βJLΓ = r P+(0) . (6.29)

Thus,

1 = P+(0) + P−(0) < (1 + r)P+(0) (6.30)

and therefore

m = P+(0)− P−(0) > (1− r)P+(0) >
1− r

1 + r
, (6.31)

where r(T ) is given in eqn. 6.27.

2See. e.g. J. L. Lebowitz and A. E. Mazel, J. Stat. Phys. 90, 1051 (1998).
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Figure 6.2: A two-dimensional square lattice mapped onto a one-dimensional chain.

6.2.4 Importance of interaction range

We showed that the one-dimensional Ising model has no finite temperature phase transition, and is
disordered at any finite temperature T , but in two dimensions on the square lattice there is a finite
critical temperature Tc below which there is long-ranged order. Consider now the construction depicted
in fig. 6.2, where the sites of a two-dimensional square lattice are mapped onto those of a linear chain3.
Clearly we can elicit a one-to-one mapping between the sites of a two-dimensional square lattice and
those of a one-dimensional chain. That is, the two-dimensional square lattice Ising model may be written
as a one-dimensional Ising model, i.e.

Ĥ = −J
square
lattice∑

〈ij〉
σi σj = −

linear
chain∑

n,n′

Jnn′ σn σn′ . (6.32)

How can this be consistent with the results we have just proven?

The fly in the ointment here is that the interaction along the chain Jn,n′ is long-ranged. This is apparent
from inspecting the site labels in fig. 6.2. Note that site n = 15 is linked to sites n′ = 14 and n′ = 16,
but also to sites n′ = −6 and n′ = −28. With each turn of the concentric spirals in the figure, the ranged
of the interaction increases. To complicate matters further, the interactions are no longer translationally
invariant, i.e. Jnn′ 6= J(n − n′). But it is the long-ranged nature of the interactions on our contrived
one-dimensional chain which spoils our previous energy-entropy argument, because now the domain
walls themselves interact via a long-ranged potential. Consider for example the linear chain with Jn,n′ =

J |n − n′|−α, where α > 0. Let us compute the energy of a domain wall configuration where σn = +1 if

3A corresponding mapping can be found between a cubic lattice and the linear chain as well.
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n > 0 and σn = −1 if n ≤ 0. The domain wall energy is then

∆ =

∞∑

m=0

∞∑

n=1

2J

|m+ n|α . (6.33)

Here we have written one of the sums in terms of m = −n′. For asymptotically large m and n, we can
write R = (m,n) and we obtain an integral over the upper right quadrant of the plane:

∞∫

1

dR R

π/2∫

0

dφ
2J

Rα (cosφ+ sinφ)α
= 2−α/2

π/4∫

−π/4

dφ

cosαφ

∞∫

1

dR

Rα−1
. (6.34)

The φ integral is convergent, but the R integral diverges for α ≤ 2. For a finite system, the upper
bound on the R integral becomes the system size L. For α > 2 the domain wall energy is finite in the
thermodynamic limit L → ∞. In this case, entropy again wins. I.e. the entropy associated with a single
domain wall is kB lnL, and therefore F = E − kBT is always lowered by having a finite density of
domain walls. For α < 2, the energy of a single domain wall scales as L2−α. It was first proven by F. J.
Dyson in 1969 that this model has a finite temperature phase transition provided 1 < α < 2. There is no
transition for α < 1 or α > 2. The case α = 2 is special, and is discussed as a special case in the beautiful
renormalization group analysis by J. M. Kosterlitz in Phys. Rev. Lett. 37, 1577 (1976).

6.2.5 High temperature expansion

Consider once again the ferromagnetic Ising model in zero field (H = 0), but on an arbitrary lattice. The
partition function is

Z = Tr eβJ
∑

〈ij〉 σi σj =
(
cosh βJ

)NL Tr

{
∏

〈ij〉

(
1 + xσi σj

)
}

, (6.35)

where x = tanh βJ and NL is the number of links. For regular lattices, NL = 1
2zN , where N is the

number of lattice sites and z is the lattice coordination number, i.e. the number of nearest neighbors for
each site. We have used

eβJσσ
′
= cosh βJ ·

{
1 + σσ′ tanh βJ

}
=

{
e+βJ if σσ′ = +1

e−βJ if σσ′ = −1 .
(6.36)

We expand eqn. 6.35 in powers of x, resulting in a sum of 2NL terms, each of which can be represented
graphically in terms of so-called lattice animals. A lattice animal is a distinct (including reflections and
rotations) arrangement of adjacent plaquettes on a lattice. In order that the trace not vanish, only such
configurations and their compositions are permitted. This is because each σi for every given site i must
occur an even number of times in order for a given term in the sum not to vanish. For all such terms,
the trace is 2N . Let Γ represent a collection of lattice animals, and gΓ the multiplicity of Γ . Then

Z = 2N
(
cosh βJ

)NL
∑

Γ

gΓ
(
tanh βJ

)L
Γ , (6.37)
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Figure 6.3: HTE diagrams on the square lattice and their multiplicities.

where LΓ is the total number of sites in the diagram Γ , and gΓ is the multiplicity of Γ . Since x vanishes
as T → ∞, this procedure is known as the high temperature expansion (HTE).

For the square lattice, he enumeration of all lattice animals with up to order eight is given in fig. 6.3.
For the diagram represented as a single elementary plaquette, there are N possible locations for the
lower left vertex. For the 2 × 1 plaquette animal, one has g = 2N , because there are two inequivalent
orientations as well as N translations. For two disjoint elementary squares, one has g = 1

2N(N − 5),
which arises from subtracting 5N ‘illegal’ configurations involving double lines (remember each link
in the partition sum appears only once!), shown in the figure, and finally dividing by two because the
individual squares are identical. Note that N(N − 5) is always even for any integer value of N . Thus, to
lowest interesting order on the square lattice,

Z = 2N
(
cosh βJ

)2N{
1 +Nx4 + 2Nx6 +

(
7− 5

2

)
Nx8 + 1

2N
2x8 +O(x10)

}
. (6.38)

The free energy is therefore

F = −kBT ln 2 +NkBT ln(1− x2)−NkBT
[
x4 + 2x6 + 9

2 x
8 +O(x10)

]

= NkBT ln 2−NkBT
{
x2 + 3

2 x
4 + 7

3 x
6 + 19

4 x
8 +O(x10)

}
,

(6.39)

again with x = tanh βJ . Note that we’ve substituted cosh2βJ = 1/(1 − x2) to write the final result as a
power series in x. Notice that the O(N2) factor in Z has cancelled upon taking the logarithm, so the free
energy is properly extensive.
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Note that the high temperature expansion for the one-dimensional Ising chain yields

Zchain(T,N) = 2N coshN−1βJ , Zring(T,N) = 2N coshNβJ , (6.40)

in agreement with the transfer matrix calculations. In higher dimensions, where there is a finite tem-
perature phase transition, one typically computes the specific heat c(T ) and tries to extract its singular
behavior in the vicinity of Tc, where c(T ) ∼ A (T −Tc)−α. Since x(T ) = tanh(J/kBT ) is analytic in T , we
have c(x) ∼ A′ (x− xc)

−α, where xc = x(Tc). One assumes xc is the singularity closest to the origin and
corresponds to the radius of convergence of the high temperature expansion. If we write

c(x) =

∞∑

n=0

an x
n ∼ A′′

(
1− x

xc

)−α

, (6.41)

then according to the binomial theorem we should expect

an
an−1

=
1

xc

[
1− 1− α

n

]
. (6.42)

Thus, by plotting an/an−1 versus 1/n, one extracts 1/xc as the intercept, and (α− 1)/xc as the slope.

High temperature expansion for correlation functions

Can we also derive a high temperature expansion for the spin-spin correlation function Ckl = 〈σk σl〉 ?
Yes we can. We have

Ckl =
Tr

[
σk σl e

βJ
∑

〈ij〉 σi σj

]

Tr

[
eβJ

∑
〈ij〉 σi σj

] ≡ Ykl
Z

. (6.43)

Recall our analysis of the partition function Z . We concluded that in order for the trace not to vanish,
the spin variable σi on each site i must occur an even number of times in the expansion of the product.
Similar considerations hold for Ykl, except now due to the presence of σk and σl, those variables now
must occur an odd number of times when expanding the product. It is clear that the only nonvanishing
diagrams will be those in which there is a finite string connecting sites k and l, in addition to the usual
closed HTE loops. See fig. 6.4 for an instructive sketch. One then expands both Ykl as well as Z in
powers of x = tanh βJ , taking the ratio to obtain the correlator Ckl. At high temperatures (x → 0),
both numerator and denominator are dominated by the configurations Γ with the shortest possible
total perimeter. For Z , this means the trivial path Γ = {∅}, while for Ykl this means finding the shortest
length path from k to l. (If there is no straight line path from k to l, there will in general be several such
minimizing paths.) Note, however, that the presence of the string between sites k and l complicates
the analysis of gΓ for the closed loops, since none of the links of Γ can intersect the string. It is worth
stressing that this does not mean that the string and the closed loops cannot intersect at isolated sites,
but only that they share no common links; see once again fig. 6.4.

6.3 Nonideal Classical Gases

Let’s switch gears now and return to the study of continuous classical systems described by a Hamilto-
nian Ĥ

(
{xi}, {pi}

)
. In the next chapter, we will see how the critical properties of classical fluids can in
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Figure 6.4: HTE diagrams for the numerator Ykl of the correlation functionCkl. The blue path connecting
sites k and l is the string. The remaining red paths are all closed loops.

fact be modeled by an appropriate lattice gas Ising model, and we’ll derive methods for describing the
liquid-gas phase transition in such a model.

6.3.1 The configuration integral

Consider the ordinary canonical partition function for a nonideal system of identical point particles
interacting via a central two-body potential u(r). We work in the ordinary canonical ensemble. The
N -particle partition function is

Z(T, V,N) =
1

N !

∫ N∏

i=1

ddpi d
dxi

hd
e−Ĥ/kBT

=
λ−Nd
T

N !

∫ N∏

i=1

ddxi exp

(
− 1

kBT

∑

i<j

u
(
|xi − xj|

))
.

(6.44)

Here, we have assumed a many body Hamiltonian of the form

Ĥ =

N∑

i=1

p2
i

2m
+
∑

i<j

u
(
|xi − xj|

)
, (6.45)

in which massive nonrelativistic particles interact via a two-body central potential. As before, λT =√
2π~2/mkBT is the thermal wavelength. We can now write

Z(T, V,N) = λ−Nd
T QN (T, V ) , (6.46)
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where the configuration integral QN (T, V ) is given by

QN (T, V ) =
1

N !

∫
ddx1 · · ·

∫
ddxN

∏

i<j

e−βu(rij) . (6.47)

There are no general methods for evaluating the configurational integral exactly.

6.3.2 One-dimensional Tonks gas

The Tonks gas is a one-dimensional generalization of the hard sphere gas. Consider a one-dimensional
gas of indistinguishable particles of mass m interacting via the potential

u(x− x′) =

{
∞ if |x− x′| < a

0 if |x− x′| ≥ a .
(6.48)

Thus, the Tonks gas may be considered to be a gas of hard rods. The above potential guarantees that the
portion of configuration space in which any rods overlap is forbidden in this model. Let the gas be placed
in a finite volume L. The hard sphere nature of the particles means that no particle can get within a
distance 1

2a of the ends at x = 0 and x = L. That is, there is a one-body potential v(x) acting as well,
where

v(x) =





∞ if x < 1
2a

0 if 1
2a ≤ x ≤ L− 1

2a

∞ if x > L− 1
2a .

(6.49)

The configuration integral of the 1D Tonks gas is given by

QN (T,L) =
1

N !

L∫

0

dx1 · · ·
L∫

0

dxN χ(x1, . . . , xN ) , (6.50)

where χ = e−U/kBT is zero if any two ‘rods’ (of length a) overlap, or if any rod overlaps with either
boundary at x = 0 and x = L, and χ = 1 otherwise. Note that χ does not depend on the temperature.
Due to permutation symmetry, we may integrate over the subspace where x1 < x2 < · · · < xN and
then multiply the result by N ! . Clearly xj must lie to the right of xj−1 + a and also to the left of Yj ≡
L− (N − j)a − 1

2a. Note that since Yj − a = Yj−1 . Thus, the configurational integral is

QN (T,L) =

Y1∫

a/2

dx1

Y2∫

x1+a

dx2 · · ·
Y
N∫

x
N−1+a

dxN =

Y1∫

a/2

dx1

Y2∫

x1+a

dx2 · · ·
Y
N−1∫

x
N−2+a

dxN−1

(
YN−1 − xN−1

)
(6.51)

=
1

2

Y1∫

a/2

dx1

Y2∫

x1+a

dx2 · · ·
YN−2∫

x
N−3+a

dxN−2

(
YN−2 − xN−2

)2
= · · · = 1

k!

Y1∫

a/2

dx1

Y2∫

x1+a

dx2 · · ·
Y
N−k∫

x
N−k−1+a

dxN−k

(
YN−k − xN−k

)k

=
1

N !

(
X1 − 1

2a
)N

=
1

N !
(L−Na)N .
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The partition function is Z(T,L,N) = λ−N
T QN (T,L) , and so the free energy is

F = −kBT lnZ = −NkBT

{
− lnλT + 1 + ln

(
L

N
− a

)}
, (6.52)

where we have used Stirling’s rule to write lnN ! ≈ N lnN −N . The pressure is

p = −∂F
∂L

=
kBT
L
N − a

=
nkBT

1− na
, (6.53)

where n = N/L is the one-dimensional density. Note that the pressure diverges as n approaches 1/a.
The usual one-dimensional ideal gas law, pL = NkBT , is replaced by pLeff = NkBT , whereLeff = L−Na
is the ‘free’ volume obtained by subtracting the total ”excluded volume”Na from the original volume L.
Note the similarity here to the van der Waals equation of state, (p+av−2)(v−b) = RT , where v = NAV/N
is the molar volume. Defining ã ≡ a/N2

A and b̃ ≡ b/NA, we have

p+ ãn2 =
nkBT

1− b̃n
, (6.54)

where n = NA/v is the number density. The term involving the constant ã is due to the long-ranged
attraction of atoms due to their mutual polarizability. The term involving b̃ is an excluded volume
effect. The Tonks gas models only the latter.

6.3.3 Mayer cluster expansion

Let us return to the general problem of computing the configuration integral. Consider the function

e−βuij , where uij ≡ u(|xi − xj|). We assume that at very short distances there is a strong repulsion

between particles, i.e. uij → ∞ as rij = |xi−xj| → 0, and that uij → 0 as rij → ∞. Thus, e−βuij vanishes
as rij → 0 and approaches unity as rij → ∞. For our purposes, it will prove useful to define the function

f(r) = e−βu(r) − 1 , (6.55)

called the Mayer function after Josef Mayer. We may now write

QN (T, V ) =
1

N !

∫
ddx1 · · ·

∫
ddxN

∏

i<j

(
1 + fij

)
. (6.56)

A typical potential we might consider is the semi-phenomenological Lennard-Jones potential,

u(r) = 4 ǫ

{(σ
r

)12
−
(σ
r

)6}
. (6.57)

This accounts for a long-distance attraction due to mutually induced electric dipole fluctuations, and
a strong short-ranged repulsion, phenomenologically modelled with a r−12 potential, which mimics a
hard core due to overlap of the atomic electron distributions. Setting u′(r) = 0 we obtain r∗ = 21/6 σ ≈
1.12246σ at the minimum, where u(r∗) = −ǫ. In contrast to the Boltzmann weight e−βu(r), the Mayer
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Figure 6.5: Bottom panel: Lennard-Jones potential u(r) = 4ǫ
(
x−12−x−6

)
, with x = r/σ and ǫ = 1. Note

the weak attractive tail and the strong repulsive core. Top panel: Mayer function f(r, T ) = e−u(r)/kBT −1
for kBT = 0.8 ǫ (blue), kBT = 1.5 ǫ (green), and kBT = 5 ǫ (red).

function f(r) vanishes as r → ∞, behaving as f(r) ∼ −βu(r). The Mayer function also depends on
temperature. Sketches of u(r) and f(r) for the Lennard-Jones model are shown in fig. 6.5.

The Lennard-Jones potential4 is realistic for certain simple fluids, but it leads to a configuration integral
which is in general impossible to evaluate. Indeed, even a potential as simple as that of the hard sphere
gas is intractable in more than one space dimension. We can however make progress by deriving a
series expansion for the equation of state in powers of the particle density. This is known as the virial
expansion. As was the case when we investigated noninteracting quantum statistics, it is convenient to
work in the grand canonical ensemble and to derive series expansions for the density n(T, z) and the
pressure p(T, z) in terms of the fugacity z, then solve for z(T, n) to obtain p(T, n). These expansions in
terms of fugacity have a nifty diagrammatic interpretation, due to Mayer.

We begin by expanding the product in eqn. 6.56 as

∏

i<j

(
1 + fij

)
= 1 +

∑

i<j

fij +
∑

i<j , k<l
(ij) 6=(kl)

fij fkl + . . . . (6.58)

As there are 1
2N(N − 1) possible pairings, there are 2N(N−1)/2 terms in the expansion of the above

product. Each such term may be represented by a graph, as shown in fig. 6.6. For each such term,

we draw a connection between dots representing different particles i and j if the factor fij appears in
the term under consideration. The contribution for any given graph may be written as a product over

4Disambiguation footnote: Take care not to confuse Philipp Lenard (Hungarian-German, cathode ray tubes, Nazi), Alfred-
Marie Liénard (French, Liénard-Wiechert potentials, not a Nazi), John Lennard-Jones (British, molecular structure, also not a
Nazi), and Lynyrd Skynyrd (American, ”Free Bird”). I thank my colleague Oleg Shpyrko for setting me straight on this.
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Figure 6.6: Diagrammatic interpretation of a term involving a product of eight Mayer functions.

contributions from each of its disconnected component clusters. For example, in the case of the term in
fig. 6.6, the contribution to the configurational integral would be

∆Q =
V N−11

N !

∫
ddx1 d

dx4 d
dx7 d

dx9 f1,4 f4,7 f4,9 f7,9

×
∫
ddx2 d

dx5 d
dx6 f2,5 f2,6 ×

∫
ddx3 d

dx10 f3,10 ×
∫
ddx8 d

dx11 f8,11 .

(6.59)

We will refer to a given product of Mayer functions which arises from this expansion as a term.

The particular labels we assign to each vertex of a given graph don’t affect the overall value of the graph.
Now a given unlabeled graph consists of a certain number of connected subgraphs. For a system with
N particles, we may then write

N =
∑

γ

mγ nγ , (6.60)

where γ ranges over all possible connected subgraphs, and

mγ = number of connected subgraphs of type γ in the unlabeled graph

nγ = number of vertices in the connected subgraph γ .

Note that the single vertex • counts as a connected subgraph, with n• = 1. We now ask: how many ways
are there of assigning theN labels to theN vertices of a given unlabeled graph? One might first thing the
answer is simply N !, however this is too big, because different assignments of the labels to the vertices
may not result in a distinct graph. To see this, consider the examples in fig. 6.7. In the first example, an
unlabeled graph with four vertices consists of two identical connected subgraphs. Given any assignment
of labels to the vertices, then, we can simply exchange the two subgraphs and get the same term. So we
should divide N ! by the product

∏
γ mγ ! . But even this is not enough, because within each connected

subgraph γ there may be permutations which leave the integrand unchanged, as shown in the second
and third examples in fig. 6.7. We define the symmetry factor sγ as the number of permutations of
the labels which leaves a given connected subgraphs γ invariant. Examples of symmetry factors are
shown in fig. 6.8. Consider, for example, the third subgraph in the top row. Clearly one can rotate
the figure about its horizontal symmetry axis to obtain a new labeling which represents the same term.

This twofold axis is the only symmetry the diagram possesses, hence sγ = 2. For the first diagram in
the second row, one can rotate either of the triangles about the horizontal symmetry axis. One can also
rotate the figur e in the plane by 180◦ so as to exchange the two triangles. Thus, there are 2 × 2× 2 = 8

symmetry operations which result in the same term, and sγ = 8. Finally, the last subgraph in the second
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Figure 6.7: Different assignations of labels to vertices may not result in a distinct term in the expansion
of the configuration integral.

row consists of five vertices each of which is connected to the other four. Therefore any permutation of

the labels results in the same term, and sγ = 5! = 120. In addition to dividing by the product
∏

γ mγ ! ,

we must then also divide by
∏

γ s
mγ
γ .

We can now write the partition function as

Z =
λ−Nd
T

N !

∑

{mγ}

N !∏
mγ ! s

mγ
γ

·
∏

γ

(∫
ddx1 · · · ddxnγ

γ∏

i<j

fij

)mγ

· δN ,
∑

mγnγ

=
∑

{mγ}

∏

γ

1

mγ !

(
V bγ(T )

λdT

)mγ

δN ,
∑

mγnγ

(6.61)

where the product
∏γ

i<j fij is over all links in the subgraph γ. The final Kronecker delta enforces the
constraint N =

∑
γ mγ nγ . We have defined the dimensionless cluster integrals bγ as

bγ(T ) ≡
1

sγ

∫
ddx1
λdT

· · ·
∫ ddxnγ−1

λdT

γ∏

i<j

fij , (6.62)

where we assume the limit V → ∞. Since fij = f
(
|xi − xj |

)
, the product

∏γ
i<j fij is invariant under

simultaneous translation of all the coordinate vectors by any constant vector, and hence the integral over
the nγ position variables contains exactly one factor of the volume, which yields factor of V within the
round brackets in the second line of eqn. 6.61. Thus, each cluster integral is intensive5, scaling as V 0.

If we compute the grand partition function, then the fixed N constraint is relaxed, and we can do the

5We assume that the long-ranged behavior of f(r) ≈ −βu(r) is integrable.
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Figure 6.8: The symmetry factor sγ for a connected subgraph γ is the number of permutations of its
indices which leaves the term

∏
(ij)∈γ fij invariant.

sums:

Ξ = e−βΩ =
∑

{mγ}

(
eβµ
)∑mγnγ

∏

γ

1

mγ !

(
V bγ(T )

λdT

)mγ

=
∏

γ

∞∑

mγ=0

1

mγ !

(
V znγ bγ(T )

λdT

)mγ

= exp

(
V λ−d

T

∑

γ

znγ bγ

)
,

(6.63)

where z = exp(βµ) is the fugacity. Thus,

Ω(T, V, µ) = −V kBT

λdT

∑

γ

znγ bγ(T ) , (6.64)

and we can write

p = kBT λ
−d
T

∑

γ

znγ bγ(T )

n = λ−d
T

∑

γ

nγ z
nγ bγ(T ) ,

(6.65)

where b• ≡ 1. As in the case of ideal quantum gas statistical mechanics, we can systematically invert the
relation n = n(z, T ) to obtain z = z(n, T ), and then insert this into the equation for p(z, T ) to obtain the
equation of state p = p(n, T ). This yields the virial expansion of the equation of state,

p = nkBT
{
1 +B2(T )n+B3(T )n

2 + . . .
}

. (6.66)

It is useful to define the dimensionless quantities ν ≡ nλdT and π = pλdT /kBT , as well as the dimension-
less cluster integral sums

bk ≡
∑

γ

bγ δk,nγ
, (6.67)
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which is the sum of all cluster integrals bγ with nγ = k vertices, multiplied by λ
−(k−1)d
T . Then

ν(z) =

∞∑

k=1

k bk z
k , π(z) =

∞∑

k=1

bk z
k . (6.68)

The virial expansion of the dimensionless equation of state is then

π(ν) =

∞∑

k=1

Bk ν
k (6.69)

We may again apply the Lagrange method introduced in §5.3.2 for the quantum virial coefficients, writ-
ing

Bk =

∮
dν

2πi

π(ν)

νk+1
=

∮
dz

2πi

ν ′(z)π(z)
[
ν(z)

]k+1
= −1

k

∮
dz

2πi
π(z)

d

dz

[
ν(z)

]−k
, (6.70)

where the contour encloses the origin in the complex plane. Integrating by parts, and using the relation
π′(z) = ν(z)/z, we obtain6

Bk =
1

k

∮
dz

2πi
π′(z)

[
ν(z)

]−k
=

1

k

∮
dz

2πi

1

z

[
ν(z)

]1−k

=
1

k

∮
dz

2πi

1

zk

(
1 + 2b2z + 3b3z

2 + 4b4z
4 + . . .

)1−k
,

(6.71)

where the contour is a small circle enclosing the origin. Working out the first two virial coefficients, we
find

B2 = −b2 , B3 = 4b22 − 2b3 . (6.72)

The dimensionful virial coefficients in eqn. 6.66 are then given by Bk = Bk λ
(k−1)d
T .

Lowest order expansion

We have

b−(T ) =
1
2

∫
ddx1
λdT

f
(
|x1 − x2|

)
= 1

2

∫
ddr

λdT
f(r) (6.73)

and

b∧(T ) =
1
2

∫
ddx1
λdT

∫
ddx2
λdT

f
(
|x1 − x2|

)
f
(
|x1 − x3|

)

= 1
2

∫
ddr

λdT

∫
ddr′

λdT
f(r) f(r′) = 2

(
b−
)2

(6.74)

6Since there is no term proportional to lnw in the Laurent expansion of π(w)
[

n(w)
]−k

, there is no residue arising from
integrating its derivative around the unit circle.



20 CHAPTER 6. CLASSICAL INTERACTING SYSTEMS

and

b△(T ) = 1
6

∫
ddx1
λdT

∫
ddx2
λdT

f
(
|x1 − x2|

)
f
(
|x1 − x3|

)
f
(
|x2 − x3|

)

= 1
6

∫
ddr

λdT

∫
ddr′

λdT
f(r) f(r′) f

(
|r − r′|

)
.

(6.75)

Thus we have b2 = b− and b3 = b∧ + b△ = 2b2− + b△ . From eqn. 6.72 we now have

B2(T ) = −b2(T ) = −b−(T )

B3(T ) =
[
4b22(T )− 2b3(T )

]
= −2b△(T ) .

(6.76)

Note that b∧ does not contribute to B3, even though the graph ∧ has three vertices, and only b△ appears.
This is because the virial coefficients Bj involve only cluster integrals bγ for one-particle irreducible clus-
ters, i.e. those clusters which remain connected and don’t fall into multiple pieces if any of its vertices is
removed, as depicted in fig. 6.9.

Cookbook recipe

Just follow these simple steps:

• The pressure and number density are written as sums over unlabeled connected clusters γ, viz.

p = kBT λ
−d
T

∑

γ

znγ bγ(T )

n = λ−d
T

∑

γ

nγ z
nγ bγ(T ) ,

(6.77)

where z = exp(βµ) is the fugacity.

• To compute the dimensionless cluster integral bγ(T ) , first draw the connected cluster γ with unla-
beled vertices.

• Next, assign labels 1 , 2 , . . . , nγ to the vertices, where nγ is the total number of vertices in the
cluster γ. It doesn’t matter how you assign the labels.

• Write down the product
∏γ

i<j fij . The factor fij appears in the product if there is a link in your
(now labeled) cluster between sites i and j.

• The symmetry factor sγ is the number of elements of the symmetric group Snγ
which leave the

product
∏γ

i<j fij invariant. The identity permutation leaves the product invariant, so sγ ≥ 1.

• The dimensionless cluster integral bγ(T ) is given by

bγ(T ) ≡
1

sγ

∫
ddx1
λdT

· · ·
∫ ddxnγ−1

λdT

γ∏

i<j

fij , (6.78)
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Due to translation invariance, bγ(T ) ∝ V 0. One can therefore set xnγ
≡ 0, eliminate the volume

factor from the denominator, and perform the integral over the remaining nγ−1 coordinates.

• This procedure generates expansions for p(T, z) and n(T, z) in powers of the fugacity z = exp(βµ).
To obtain something useful like p(T, n), we mut invert the equation n = n(T, z) to find z = z(T, n),
and then substitute into the equation p = p(T, z) to obtain p = p

(
T, z(T, n)

)
= p(T, n). The result

is the virial expansion,

p = nkBT
{
1 +B2(T )n +B3(T )n

2 + . . .
}

, (6.79)

where

Bk(T ) = −(k − 1)λ
(k−1)d
T

∑

γ∈Γ
k

bγ(T ) , (6.80)

with Γk the set of all one-particle irreducible (1PI) k-site clusters. A 1PI cluster remains connected
if any of its sites and all that site’s connecting links are removed.

Figure 6.9: Connected versus irreducible clusters. Clusters (a) through (d) are irreducible in that they
remain connected if any component site and its connecting links are removed. Cluster (e) is connected,
but is reducible. Its integral bγ is proportional to a product over its irreducible components, each shown
in a unique color, and occurring with various multiplicities. The open circles denote articulation points.
Removal of an articulation point and all the links connected to it results in a disconnected diagram.
Removal of any of the closed circles and its associated links does not result in a disconnected diagram.
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6.3.4 Examples

Hard sphere gas in three dimensions

The hard sphere potential is given by

u(r) =

{
∞ if r ≤ a

0 if r > a .
(6.81)

Here a is the diameter of the spheres. The corresponding Mayer function is then temperature indepen-
dent, and given by

f(r) =

{
−1 if r ≤ a

0 if r > a .
(6.82)

We can change variables to obtain

b2(T ) =
1
2

∫
d3r

λ3T
f(r) = −2

3πa
3λ−3

T . (6.83)

The calculation of b3 is more challenging. We have

b3 =
1
6

∫
d3ρ

λ3T

∫
d3r

λ3T
f(ρ) f(r) f

(
|r − ρ|

)
. (6.84)

We must first compute the volume of overlap for spheres of radius a (recall a is the diameter of the
constituent hard sphere particles) centered at 0 and at ρ:

V =

∫
d3r f(r) f

(
|r − ρ|

)

= 2

a∫

ρ/2

dz π(a2 − z2) = 4π
3 a

3 − πa2ρ+ π
12 ρ

3 .
(6.85)

We then integrate over region |ρ| < a, to obtain

b3 = −1
6 · 4πλ−6

T

a∫

0

dρ ρ2 ·
{

4π
3 a

3 − πa2ρ+ π
12 ρ

3
}
= −5π2

36 a
6λ−6

T . (6.86)

Thus, we have

B2(T ) = −λ3T b2(T ) =
2π
3 a

3 , B3(T ) = −2λ6T b3(T ) =
5π2

18 a
6 (6.87)

and the equation of state is then

p = nkBT
{
1 + 2π

3 a
3n+ 5π2

18 a
6n2 +O(n3)

}
. (6.88)
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Figure 6.10: The overlap of hard sphere Mayer functions. The shaded volume is V .

Weakly attractive tail

Suppose

u(r) =

{
∞ if r ≤ a

−u0(r) if r > a .
(6.89)

Then the corresponding Mayer function is

f(r) =

{
−1 if r ≤ a

eβu0(r) − 1 if r > a .
(6.90)

Thus,

b2(T ) =
1
2

∫
d3r

λ3T
f(r) = −2π

3 a
3λ−3

T + 2πλ−3
T

∞∫

a

dr r2
[
eβu0(r) − 1

]
. (6.91)

Thus, the second virial coefficient is

B2(T ) = −λ3T b2(T ) ≈ 2π
3 a

3 − 2π

kBT

∞∫

a

dr r2 u0(r) , (6.92)

where we have assumed kBT ≪ u0(r). We see that the second virial coefficient changes sign at some
temperature T0, from a negative low temperature value to a positive high temperature value.

Spherical potential well

Consider an attractive spherical well potential with an infinitely repulsive core,

u(r) =





∞ if r ≤ a

−ǫ if a < r < R

0 if r > R .

(6.93)
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Then the corresponding Mayer function is

f(r) =





−1 if r ≤ a

eβǫ − 1 if a < r < R

0 if r > R .

(6.94)

Writing s ≡ R/a, we have

B2(T ) = −λ3T b2(T ) = −1
2

∫
d3r f(r)

= −1

2

{
(−1) · 4π

3 a
3 +

(
eβǫ − 1

)
· 4π

3 a
3(s3 − 1)

}

= 2π
3 a

3

{
1− (s3 − 1)

(
eβǫ − 1

)}
.

(6.95)

To find the temperature T0 where B2(T ) changes sign, we set B2(T0) = 0 and obtain

kBT0 = ǫ

/
ln

(
s3

s3 − 1

)
. (6.96)

Recall in our study of the thermodynamics of the Joule-Thompson effect in §2.11.6 that the throttling
process is isenthalpic. The temperature change, when a gas is pushed (or escapes) through a porous plug
from a high pressure region to a low pressure one is

∆T =

p2∫

p1

dp

(
∂T

∂p

)

H

, (6.97)

where (
∂T

∂p

)

H

=
1

Cp

[
T

(
∂V

∂T

)

p

− V

]
. (6.98)

Appealing to the virial expansion, and working to lowest order in corrections to the ideal gas law, we
have

p =
N

V
kBT +

N2

V 2
kBT B2(T ) + . . . (6.99)

and we compute
(
∂V
∂T

)
p

by seting

0 = dp = −NkBT

V 2
dV +

NkB

V
dT − 2N2

V 3
kBT B2(T ) dV +

N2

V 2
d
(
kBT B2(T )

)
+ . . . . (6.100)

Dividing by dT , we find

T

(
∂V

∂T

)

p

− V = N

[
T
∂B2

∂T
−B2

]
. (6.101)
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Figure 6.11: An attractive spherical well with a repulsive core u(r) and its associated Mayer function
f(r).

The temperature where
(
∂T
∂p

)
H

changes sign is called the inversion temperature T ∗. To find the inversion

point, we set T ∗B′
2(T

∗) = B2(T
∗), i.e.

d lnB2

d lnT

∣∣∣∣
T ∗

= 1 . (6.102)

If we approximate B2(T ) ≈ A− B
T , then the inversion temperature follows simply:

B

T ∗ = A− B

T ∗ =⇒ T ∗ =
2B

A
. (6.103)

Hard spheres with a hard wall

Consider a hard sphere gas in three dimensions in the presence of a hard wall at z = 0. The gas is
confined to the region z > 0. The total potential energy is now

W (x1 , . . . , xN ) =
∑

i

v(xi) +
∑

i<j

u(xi − xj) , (6.104)

where

v(r) = v(z) =

{
∞ if z ≤ 1

2a

0 if z > 1
2a ,

(6.105)

and u(r) is given in eqn. 6.81. The grand potential is written as a series in the total particle number N ,
and is given by

Ξ = e−βΩ = 1 + ξ

∫
d3r e−βv(z) + 1

2ξ
2

∫
d3r

∫
d3r′ e−βv(z) e−βv(z′) e−βu(r−r′) + . . . , (6.106)

where ξ = z λ−3
T , with z = eµ/kBT the fugacity. Taking the logarithm, and invoking the Taylor series

ln(1 + δ) = δ − 1
2δ

2 + 1
3δ

3 − . . . , we obtain

− βΩ = ξ

∫

z> a
2

d3r + 1
2ξ

2

∫

z> a
2

d3r

∫

z′> a
2

d3r′
[
e−βu(r−r′) − 1

]
+ . . . (6.107)
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Figure 6.12: In the presence of a hard wall, the Mayer sphere is cut off on the side closest to the wall.
The resulting density n(z) vanishes for z < 1

2a since the center of each sphere must be at least one radius
(12a) away from the wall. Between z = 1

2a and z = 3
2a there is a density enhancement. If the calculation

were carried out to higher order, n(z) would exhibit damped spatial oscillations with wavelength λ ∼ a.

The volume is V =
∫

z>0

d3r. Dividing by V , we have, in the thermodynamic limit,

−βΩ
V

= βp = ξ + 1
2ξ

2 1

V

∫

z> a
2

d3r

∫

z′> a
2

d3r′
[
e−βu(r−r′) − 1

]
+ . . .

= ξ − 2
3πa

3 ξ2 +O(ξ3) .

(6.108)

The number density is

n = ξ
∂

∂ξ
(βp) = ξ − 4

3πa
3 ξ2 +O(ξ3) , (6.109)

and inverting to obtain ξ(n) and then substituting into the pressure equation, we obtain the lowest order
virial expansion for the equation of state,

p = kBT
{
n+ 2

3πa
3 n2 + . . .

}
. (6.110)

As expected, the presence of the wall does not affect a bulk property such as the equation of state.

Next, let us compute the number density n(z), given by

n(z) =
〈 ∑

i

δ(r − ri)
〉

. (6.111)

Due to translational invariance in the (x, y) plane, we know that the density must be a function of z
alone. The presence of the wall at z = 0 breaks translational symmetry in the z direction. The number
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density is

n(z) = Tr

[
eβ(µN̂−Ĥ)

N∑

i=1

δ(r − ri)

]/
Tr eβ(µN̂−Ĥ)

= Ξ−1

{
ξ e−βv(z) + ξ2 e−βv(z)

∫
d3r′ e−βv(z′) e−βu(r−r′) + . . .

}

= ξ e−βv(z) + ξ2 e−βv(z)

∫
d3r′ e−βv(z′)

[
e−βu(r−r′) − 1

]
+ . . . .

(6.112)

Note that the term in square brackets in the last line is the Mayer function f(r − r′) = e−βu(r−r′) − 1.
Consider the function

e−βv(z) e−βv(z′) f(r − r′) =





0 if z < 1
2a or z′ < 1

2a

0 if |r − r′| > a

−1 if z > 1
2a and z′ > 1

2a and |r − r′| < a .

(6.113)

Now consider the integral of the above function with respect to r′. Clearly the result depends on the
value of z. If z > 3

2a, then there is no excluded region in r′ and the integral is (−1) times the full Mayer

sphere volume, i.e. −4
3πa

3. If z < 1
2a the integral vanishes due to the e−βv(z) factor. For z infinitesimally

larger than 1
2a, the integral is (−1) times half the Mayer sphere volume, i.e. −2

3πa
3. For z ∈

[
a
2 ,

3a
2

]
the

integral interpolates between −2
3πa

3 and −4
3πa

3. Explicitly, one finds by elementary integration,

∫
d3r′ e−βv(z) e−βv(z′) f(r − r′) =





0 if z < 1
2a[

−1− 3
2

(
z
a − 1

2

)
+ 1

2

(
z
a − 1

2

)3] · 2
3πa

3 if 1
2a < z < 3

2a

−4
3πa

3 if z > 3
2a .

(6.114)

After substituting ξ = n+ 4
3πa

3n2 +O(n3) to relate ξ to the bulk density n = n∞, we obtain the desired
result:

n(z) =





0 if z < 1
2a

n+
[
1− 3

2

(
z
a − 1

2

)
+ 1

2

(
z
a − 1

2

)3] · 2
3πa

3 n2 if 1
2a < z < 3

2a

n if z > 3
2a .

(6.115)

A sketch is provided in the right hand panel of fig. 6.12. Note that the density n(z) vanishes identically
for z < 1

2 due to the exclusion of the hard spheres by the wall. For z between 1
2a and 3

2a, there is a density
enhancement, the origin of which has a simple physical interpretation. Since the wall excludes particles
from the region z < 1

2 , there is an empty slab of thickness 1
2z coating the interior of the wall. There are

then no particles in this region to exclude neighbors to their right, hence the density builds up just on
the other side of this slab. The effect vanishes to the order of the calculation past z = 3

2a, where n(z) = n
returns to its bulk value. Had we calculated to higher order, we’d have found damped oscillations with
spatial period λ ∼ a.



28 CHAPTER 6. CLASSICAL INTERACTING SYSTEMS

6.4 Lee-Yang Theory

6.4.1 Analytic properties of the partition function

How can statistical mechanics describe phase transitions? This question was addressed in some beauti-
ful mathematical analysis by Lee and Yang7. Consider the grand partition function Ξ,

Ξ(T, V, z) =
∞∑

N=0

zN QN (T, V )λ−dN
T , (6.116)

where

QN (T, V ) =
1

N !

∫
ddx1 · · ·

∫
ddxN e−U(x1 , ... ,xN )/kBT (6.117)

is the contribution to theN -particle partition function from the potential energyU (assuming no momentum-
dependent potentials). For two-body central potentials, we have

U(x1, . . . ,xN ) =
∑

i<j

v
(
|xi − xj|

)
. (6.118)

Suppose further that these classical particles have hard cores. Then for any finite volume, there must be
some maximum number NV such that QN (T, V ) vanishes for N > NV . This is because if N > NV at
least two spheres must overlap, in which case the potential energy is infinite. The theoretical maximum
packing density for hard spheres is achieved for a hexagonal close packed (HCP) lattice8, for which

fHCP = π
3
√
2
= 0.74048. If the spheres have radius r0, then NV = V/4

√
2r30 is the maximum particle

number.

Thus, if V itself is finite, then Ξ(T, V, z) is a finite degree polynomial in z, and may be factorized as

Ξ(T, V, z) =

N
V∑

N=0

zN QN (T, V )λ−dN
T =

N
V∏

k=1

(
1− z

zk

)
, (6.119)

where zk(T, V ) is one of theNV zeros of the grand partition function. Note that the O(z0) term is fixed to
be unity. Note also that since the configuration integrals QN (T, V ) are all positive, Ξ(z) is an increasing
function along the positive real z axis. In addition, since the coefficients of zN in the polynomial Ξ(z)
are all real, then Ξ(z) = 0 implies Ξ(z) = Ξ(z̄) = 0, so the zeros of Ξ(z) are either real and negative or
else come in complex conjugate pairs.

For finite NV , the situation is roughly as depicted in the left panel of fig. 6.13, with a set of NV zeros
arranged in complex conjugate pairs (or negative real values). The zeros aren’t necessarily distributed
along a circle as shown in the figure, though. They could be anywhere, so long as they are symmetrically
distributed about the Re(z) axis, and no zeros occur for z real and nonnegative.

7See C. N. Yang and R. D. Lee, Phys. Rev. 87, 404 (1952) and ibid, p. 410
8See e.g. http://en.wikipedia.org/wiki/Close-packing . For randomly close-packed hard spheres, one finds, from nu-

merical simulations, fRCP = 0.644.

http://en.wikipedia.org/wiki/Close-packing
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Figure 6.13: In the thermodynamic limit, the grand partition function can develop a singularity at
positive real fugacity z. The set of discrete zeros fuses into a branch cut.

Lee and Yang proved the existence of the limits

p

kBT
= lim

V→∞
1

V
lnΞ(T, V, z)

n = lim
V→∞

z
∂

∂z

[
1

V
lnΞ(T, V, z)

]
,

(6.120)

and notably the result

n = z
∂

∂z

(
p

kBT

)
, (6.121)

which amounts to the commutativity of the thermodynamic limit V → ∞ with the differential operator
z ∂

∂z . In particular, p(T, z) is a smooth function of z in regions free of roots. If the roots do coalesce and
pinch the positive real axis, then then density n can be discontinuous, as in a first order phase transition,
or a higher derivative ∂jp/∂nj can be discontinuous or divergent, as in a second order phase transition.

6.4.2 Electrostatic analogy

There is a beautiful analogy to the theory of two-dimensional electrostatics. We write

p

kBT
=

1

V

NV∑

k=1

ln

(
1− z

zk

)

= −
N

V∑

k=1

[
φ(z − zk)− φ(0 − zk)

]
,

(6.122)
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where φ(z) = −V −1 ln(z) is the complex potential due to a line charge of linear density λ = V −1 located
at origin. The number density is then

n = z
∂

∂z

(
p

kBT

)
= −z ∂

∂z

NV∑

k=1

φ(z − zk) , (6.123)

to be evaluated for physical values of z, i.e. z ∈ R
+. Since φ(z) is analytic,

∂φ

∂z̄
=

1

2

∂φ

∂x
+
i

2

∂φ

∂y
= 0 . (6.124)

If we decompose the complex potential φ = φ1 + iφ2 into real and imaginary parts, the condition of
analyticity is recast as the Cauchy-Riemann equations,

∂φ1
∂x

=
∂φ2
∂y

,
∂φ1
∂y

= −∂φ2
∂x

. (6.125)

Thus,

−∂φ
∂z

= −1

2

∂φ

∂x
+
i

2

∂φ

∂y

= −1

2

(
∂φ1
∂x

+
∂φ2
∂y

)
+
i

2

(
∂φ1
∂y

− ∂φ2
∂x

)

= −∂φ1
∂x

+ i
∂φ1
∂y

= Ex − iEy ,

(6.126)

where E = −∇φ1 is the electric field. Suppose, then, that as V → ∞ a continuous charge distribution
develops, which crosses the positive real z axis at a point x ∈ R

+. Then

n+ − n−
x

= Ex(x
+)− Ex(x

−) = 4πσ(x) , (6.127)

where σ is the linear charge density (assuming logarithmic two-dimensional potentials), or the two-
dimensional charge density (if we extend the distribution along a third axis).

6.4.3 Example

As an example, consider the function

Ξ(z) =
(1 + z)M (1− zM )

1− z

= (1 + z)M
(
1 + z + z2 + . . .+ zM−1

)
.

(6.128)

The (2M−1) degree polynomial has anM th order zero at z = −1 and (M−1) simple zeros at z = e2πik/M ,
where k ∈ {1, . . . ,M−1}. Since M serves as the maximum particle number NV , we may assume that
V =Mv0, and the V → ∞ limit may be taken as M → ∞. We then have

p

kBT
= lim

V→∞
1

V
lnΞ(z) =

1

v0
lim

M→∞
1

M
lnΞ(z)

=
1

v0
lim

M→∞
1

M

[
M ln(1 + z) + ln

(
1− zM

)
− ln(1− z)

]
.

(6.129)
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Figure 6.14: Fugacity z and pv0/kBT versus dimensionless specific volume v/v0 for the example problem
discussed in the text.

The limit depends on whether |z| > 1 or |z| < 1, and we obtain

p v0
kBT

=





ln(1 + z) if |z| < 1

[
ln(1 + z) + ln z

]
if |z| > 1 .

(6.130)

Thus,

n = z
∂

∂z

(
p

kBT

)
=





1
v0

· z
1+z if |z| < 1

1
v0

·
[

z
1+z + 1

]
if |z| > 1 .

(6.131)

If we solve for z(v), where v = n−1, we find

z =





v0
v−v0

if v > 2v0

v0−v
2v−v0

if 1
2v0 < v < 2

3v0 .

(6.132)

We then obtain the equation of state,

p v0
kBT

=





ln
(

v
v−v0

)
if v > 2v0

ln 2 if 2
3v0 < v < 2v0

ln
(

v(v0−v)
(2v−v0)

2

)
if 1

2v0 < v < 2
3v0 .

(6.133)
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6.5 Liquid State Physics

6.5.1 The many-particle distribution function

The virial expansion is typically applied to low-density systems. When the density is high, i.e. when
na3 ∼ 1, where a is a typical molecular or atomic length scale, the virial expansion is impractical. There
are to many terms to compute, and to make progress one must use sophisticated resummation tech-
niques to investigate the high density regime.

To elucidate the physics of liquids, it is useful to consider the properties of various correlation functions.
These objects are derived from the general N -body Boltzmann distribution for identical particles,

̺N (x1, . . . ,xN ,p1, . . . ,pN ) =
1

N !
×
{
Z−1
N e−βĤN ({pi},{xi}) OCE

Ξ−1 eβµN e−βĤN ({pi},{xi}) GCE ,
(6.134)

where

ZN = Tr e−βĤN =
1

N !

∫ N∏

j=1

ddxj d
dpj

hd
e−βĤN({pi},{xi})

Ξ = Tr eβµN̂ e−βĤ =

∞∑

N=0

eβµN

N !

∫ N∏

j=1

ddxj d
dpj

hd
e−βĤ

N({pi},{xi})

(6.135)

are the respective canonical and grand canonical partition functions. Note that the definition of the trace

(Tr ) includes a factor 1/N ! in order to account for particle indistinguishability, and that ̺N is normalized
according to

∫ N∏

j=1

dµj ̺(x1, . . . ,xN ,p1, . . . ,pN ) = 1 , (6.136)

where dµj ≡ ddxj d
dpj/h

d. We assume a Hamiltonian of the form

ĤN =
N∑

i=1

p2
i

2m
+W (x1 , . . . , xN ). (6.137)

The quantity

̺N (x1, . . . ,xN ,p1, . . . ,pN )
ddx1 d

dp1
hd

· · · d
dxN ddpN
hd

(6.138)

is the propability of findingN particles in the system, with particle #1 lying within d3x1 of x1 and having

momentum within ddp1 of p1, etc. Note Tr ̺N = 1. If we compute averages of quantities which only
depend on the positions {xj} and not on the momenta {pj}, then we may integrate out the momenta to
obtain, in the OCE,

P (x1, . . . ,xN ) =

∫ N∏

j=1

ddpj
hd

̺N (x1, . . . ,xN ,p1, . . . ,pN )

≡ Q−1
N · 1

N !
e−βW (x1 , ... ,xN ) ,

(6.139)
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where W is the total potential energy,

W (x1, . . . ,xN ) =
∑

i

v(xi) +
∑

i<j

u(xi − xj) +
∑

i<j<k

w(xi − xj , xj − xk) + . . . , (6.140)

and QN is the configuration integral,

QN (T, V ) =
1

N !

∫
ddx1 · · ·

∫
ddxN e−βW (x1 , ... ,xN ) . (6.141)

We will, for the most part, consider only two-body central potentials as contributing to W , which is to
say we will only retain the middle term on the RHS. Note that P (x1, . . . ,xN ) is invariant under any

permutation of the particle labels, and is normalized according to
∫ ∏N

j=1 d
dxj P (x1, . . . ,xN ) = 1 .

6.5.2 Averages over the distribution

To compute an average, one integrates over the distribution:

〈
F (x1, . . . ,xN )

〉
=

∫
ddx1 · · ·

∫
ddxN P (x1 , . . . , xN )F (x1 , . . . , xN ) . (6.142)

The overall N -particle probability density is normalized according to
∫
ddxN P (x1, . . . ,xN ) = 1 .

The average local density is

n1(r) =
〈∑

i

δ(r − xi)
〉
= N

∫
ddx2 · · ·

∫
ddxN P (r,x2, . . . ,xN ) . (6.143)

Note that the local density obeys the sum rule
∫
ddr n1(r) = N . In a translationally invariant system,

n1 = n = N
V is a constant independent of position. The boundaries of a system will in general break

translational invariance, so in order to maintain the notion of a translationally invariant system of finite
total volume, one must impose periodic boundary conditions.

The two-particle density matrix n2(r1, r2) is defined by

n2(r1, r2) =
〈∑

i6=j

δ(r1 − xi) δ(r2 − xj)
〉

= N(N − 1)

∫
ddx3 · · ·

∫
ddxN P (r1, r2,x3, . . . ,xN ) .

(6.144)

As in the case of the one-particle density matrix, i.e. the local density n1(r), the two-particle density
matrix also satisfies a sum rule: ∫

ddr1

∫
ddr2 n2(r1, r2) = N(N − 1) . (6.145)

Generalizing further, one defines the k-particle density matrix as

nk(r1, . . . , rk) =
〈∑

i1···ik

′
δ(r1 − xi1

) · · · δ(rk − xi
k
)
〉

=
N !

(N − k)!

∫
ddxk+1 · · ·

∫
ddxN P (r1, . . . , rk,xk+1, . . . ,xN ) ,

(6.146)
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where the prime on the sum indicates that all the indices i1, . . . , ik are distinct. The corresponding sum
rule is then ∫

ddr1 · · ·
∫
ddrk nk(r1, . . . , rk) =

N !

(N − k)!
. (6.147)

The average potential energy can be expressed in terms of the distribution functions. Assuming only
two-body interactions, we have

〈W 〉 =
〈∑

i<j

u(xi − xj)
〉

= 1
2

∫
ddr1

∫
ddr2 u(r1 − r2)

〈∑

i6=j

δ(r1 − xi) δ(r2 − xj)
〉

= 1
2

∫
ddr1

∫
ddr2 u(r1 − r2)n2(r1, r2) .

(6.148)

As the separations rij = |ri − rj| get large, we expect the correlations to vanish, in which case

nk(r1, . . . , rk) =
〈∑

i1···ik

′
δ(r1 − xi1

) · · · δ(rk − xi
k
)
〉
−−−−→
rij→∞

∑

i1···ik

′〈
δ(r1 − xi1

)
〉
· · ·
〈
δ(rk − xi

k
)
〉

=
N !

(N − k)!
· 1

Nk
n1(r1) · · ·n1(rk)

=

(
1− 1

N

)(
1− 2

N

)
· · ·
(
1− k − 1

N

)
n1(r1) · · · n1(rk) .

(6.149)

The k-particle distribution function is defined as the ratio

gk(r1, . . . , rk) ≡
nk(r1, . . . , rk)

n1(r1) · · · n1(rk)
. (6.150)

For large separations, then,

gk(r1, . . . , rk) −−−−→
rij→∞

k−1∏

j=1

(
1− j

N

)
. (6.151)

For isotropic systems, the two-particle distribution function g2(r1, r2) depends only on the magnitude
|r1 − r2|. As a function of this scalar separation, the function is known as the radial distribution function:

g(r) ≡ g2(r) =
1

n2
〈∑

i6=j

δ(r − xi) δ(xj)
〉
=

1

V n2
〈∑

i6=j

δ(r − xi + xj)
〉

. (6.152)

The radial distribution function is of great importance in the physics of liquids because

• thermodynamic properties of the system can be related to g(r)

• g(r) is directly measurable by scattering experiments
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Figure 6.15: Pair distribution functions for hard spheres of diameter a at filling fraction η = π
6a

3n = 0.49
(left) and for liquid Argon at T = 85K (right). Molecular dynamics data for hard spheres (points) is
compared with the result of the Percus-Yevick approximation (see below in §6.5.8). Reproduced (without
permission) from J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, fig 5.5. Experimental data
on liquid argon are from the neutron scattering work of J. L. Yarnell et al., Phys. Rev. A 7, 2130 (1973). The
data (points) are compared with molecular dynamics calculations by Verlet (1967) for a Lennard-Jones
fluid.

For example, in an isotropic system the average potential energy is given by

〈W 〉 = 1
2

∫
ddr1

∫
ddr2 u(r1 − r2)n2(r1, r2)

= 1
2n

2

∫
ddr1

∫
ddr2 u(r1 − r2) g

(
|r1 − r2|

)
=
N2

2V

∫
ddr u(r) g(r) .

(6.153)

For a three-dimensional system, the average internal (i.e. potential) energy per particle is

〈W 〉
N

= 2πn

∞∫

0

dr r2 g(r)u(r) . (6.154)

Intuitively, f(r) dr ≡ 4πr2 n g(r) dr is the average number of particles lying at a radial distance between
r and r + dr from a given reference particle. The total potential energy of interaction with the reference
particle is then f(r)u(r) dr. Now integrate over all r and divide by two to avoid double-counting. This
recovers eqn. 6.154.

In the OCE, g(r) obeys the sum rule

∫
ddr g(r) =

V

N2
·N(N − 1) = V − V

N
, (6.155)
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Figure 6.16: Monte Carlo pair distribution functions for liquid water. From A. K. Soper, Chem Phys.
202, 295 (1996).

hence

n

∫
ddr
[
g(r)− 1

]
= −1 (OCE) . (6.156)

The function h(r) ≡ g(r) − 1 is called the pair correlation function.

In the grand canonical formulation, we have

n

∫
d3r h(r) =

〈
N
〉

V
·
[〈
N(N − 1)

〉

〈N〉2 V − V

]

=

〈
N2
〉
−
〈
N
〉2

〈
N
〉 − 1 = nkBTκT − 1 (GCE) ,

(6.157)

where κT is the isothermal compressibility. Note that in an ideal gas we have h(r) = 0 and κT = κ0T ≡
1/nkBT . Self-condensed systems, such as liquids and solids far from criticality, are nearly incompress-
ible, hence 0 < nkBT κT ≪ 1, and therefore n

∫
d3r h(r) ≈ −1. For incompressible systems, where κT = 0,

this becomes an equality.

As we shall see below in §6.5.4, the function h(r), or rather its Fourier transform ĥ(k), is directly mea-
sured in a scattering experiment. The question then arises as to which result applies: the OCE result
from eqn. 6.156 or the GCE result from eqn. 6.157. The answer is that under almost all experimental
conditions it is the GCE result which applies. The reason for this is that the scattering experiment typ-
ically illuminates only a subset of the entire system. This subsystem is in particle equilibrium with the
remainder of the system, hence it is appropriate to use the grand canonical ensemble. The OCE results
would only apply if the scattering experiment were to measure the entire system.
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6.5.3 Virial equation of state

The virial of a mechanical system is defined to be

G =
∑

i

xi · Fi , (6.158)

where Fi is the total force acting on particle i. If we average G over time, we obtain

〈G〉 = lim
T→∞

1

T

T∫

0

dt
∑

i

xi · Fi

= − lim
T→∞

1

T

T∫

0

dt
∑

i

m ẋ2
i = −3NkBT .

(6.159)

Here, we have made use of

xi · Fi = mxi · ẍi = −m ẋ2
i +

d

dt

(
mxi · ẋi

)
, (6.160)

as well as ergodicity and equipartition of kinetic energy. We have also assumed three space dimensions.
In a bounded system, there are two contributions to the force Fi. One contribution is from the surfaces
which enclose the system. This is given by9

〈G〉surfaces =
〈∑

i

xi · F (surf)
i

〉
= −3pV . (6.161)

The remaining contribution is due to the interparticle forces. Thus,

p

kBT
=
N

V
− 1

3V kBT

〈∑

i

xi ·∇iW
〉

. (6.162)

Invoking the definition of g(r), we have

p = nkBT



1− 2πn

3kBT

∞∫

0

dr r3 g(r)u′(r)



 . (6.163)

As an alternate derivation, consider the First Law of Thermodynamics,

dΩ = −S dT − p dV −N dµ , (6.164)

from which we derive

p = −
(
∂Ω

∂V

)

T,µ

= −
(
∂F

∂V

)

T,N

. (6.165)

9To derive this expression, note thatF (surf) is directed inward and vanishes away from the surface. Each Cartesian direction

α = (x, y, z) then contributes −F
(surf)
α Lα, where Lα is the corresponding linear dimension. But F

(surf)
α = pAα, where Aα is

the area of the corresponding face and p. is the pressure. Summing over the three possibilities for α, one obtains eqn. 6.161.
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Now let V → ℓ3V , where ℓ is a scale parameter. Then

p = −∂Ω
∂V

= − 1

3V

∂

∂ℓ

∣∣∣∣∣
ℓ=1

Ω(T, ℓ3V, µ) . (6.166)

Now

Ξ(T, ℓ3V, µ) =

∞∑

N=0

1

N !
eβµN λ−3N

T

∫

ℓ3V

d3x1 · · ·
∫

ℓ3V

d3xN e−βW (x1 , ... ,xN )

=
∞∑

N=0

1

N !

(
eβµ λ−3

T

)N
ℓ3N
∫

V

d3x1 · · ·
∫

V

d3xN e−βW (ℓx1 , ... , ℓxN )

(6.167)

Thus,

p = − 1

3V

∂Ω(ℓ3V )

∂ℓ

∣∣∣∣∣
ℓ=1

=
kBT

3V

1

Ξ

∂Ξ(ℓ3V )

∂ℓ

=
kBT

3V

1

Ξ

∞∑

N=0

1

N !

(
zλ−3

T

)N




∫

V

d3x1 · · ·
∫

V

d3xN e−βW (x1 , ... ,xN )

[
3N − β

∑

i

xi ·
∂W

∂xi

]


= nkBT − 1

3V

〈∂W
∂ℓ

〉
ℓ=1

.

(6.168)

Finally, from W =
∑

i<j u(ℓxij) we have

〈∂W
∂ℓ

〉
ℓ=1

=
∑

i<j

xij ·∇u(xij) =
2πN2

V

∞∫

0

dr r3g(r)u′(r) , (6.169)

and hence

p = nkBT − 2
3πn

2

∞∫

0

dr r3 g(r)u′(r) . (6.170)

Note that the density n enters the equation of state explicitly on the RHS of the above equation, but also
implicitly through the pair distribution function g(r), which has implicit dependence on both n and T .

6.5.4 Correlations and scattering

Consider the scattering of a light or particle beam (i.e. photons or neutrons) from a liquid. We label the
states of the beam particles by their wavevector k and we assume a general dispersion εk. For photons,
εk = ~c|k|, while for neutrons εk = ~

2k2/2mn. We assume a single scattering process with the liquid,
during which the total momentum and energy of the liquid plus beam are conserved. We write

k′ = k+ q , εk′ = εk + ~ω , (6.171)
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Figure 6.17: In a scattering experiment, a beam of particles interacts with a sample and the beam parti-
cles scatter off the sample particles. A momentum ~q and energy ~ω are transferred to the beam particle
during such a collision. If ω = 0, the scattering is said to be elastic. For ω 6= 0, the scattering is inelastic.

where k′ is the final state of the scattered beam particle. Thus, the fluid transfers momentum ∆p = ~q

and energy ~ω to the beam.

Now consider the scattering process between an initial state | i,k 〉 and a final state | j,k′ 〉, where these
states describe both the beam and the liquid. According to Fermi’s Golden Rule, the scattering rate is

Γik→jk′ =
2π

~

∣∣〈 j,k′ | V | i,k 〉
∣∣2 δ(Ej − Ei + ~ω) , (6.172)

where V is the scattering potential and Ei is the initial internal energy of the liquid. Note that overall
energy conservation requires Ej + εk′ = Ei + εk and therefore Ej = Ei − ~ω. If r is the position of the
beam particle and {xl} are the positions of the liquid particles, then

V(r) =
N∑

l=1

v(r − xl) . (6.173)

The differential scattering cross section (per unit frequency per unit solid angle) is

∂2σ

∂Ω ∂ω
=

~

4π

g(εk′)

|vk|
∑

i,j

Pi Γik→jk′ , (6.174)

where g(ε) =
∫

ddk
(2π)d

δ(ε − εk) is the density of states for the beam particles, and Pi = Z−1 e−βEi is the

Boltzmann weight.
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Consider now the matrix element

〈
j,k′ ∣∣V

∣∣ i,k
〉
=
〈
j
∣∣ 1
V

N∑

l=1

∫
ddrei(k−k′)·r v(r − xl)

∣∣ i
〉

=
1

V
v̂(q)

〈
j
∣∣

N∑

l=1

e−iq·x
l

∣∣ i
〉

,

(6.175)

where we have assumed that the incident and scattered beams are plane waves. We then have

∂2σ

∂Ω ∂ω
=

~

2

g(εk+q)

|∇kεk|
|v̂(q)|2
V 2

∑

i

Pi

∑

j

∣∣〈 j
∣∣

N∑

l=1

e−iq·x
l

∣∣ i
〉∣∣2 δ(Ej − Ei + ~ω)

=
g(εk+q)

4π |∇kεk|
N

V 2
|v̂(q)|2 S(q, ω) ,

(6.176)

where S(q, ω) is the dynamic structure factor,

S(q, ω) =
2π~

N

∑

i

Pi

∑

j

∣∣〈 j
∣∣

N∑

l=1

e−iq·x
l

∣∣ i
〉∣∣2 δ(Ej − Ei + ~ω) (6.177)

Note that for an arbitrary operator A,

∑

j

∣∣〈 j
∣∣A
∣∣ i
〉∣∣2 δ(Ej − Ei + ~ω) =

1

2π~

∑

j

∞∫

−∞

dt ei(Ej−Ei+~ω) t/~ 〈 i
∣∣A† ∣∣ j

〉 〈
j
∣∣A
∣∣ i
〉

=
1

2π~

∑

j

∞∫

−∞

dt eiωt
〈
i
∣∣A† ∣∣ j

〉 〈
j
∣∣ eiĤt/~Ae−iĤt/~

∣∣ i
〉

=
1

2π~

∞∫

−∞

dt eiωt
〈
i
∣∣A†(0)A(t)

∣∣ i
〉

.

(6.178)

Thus,

S(q, ω) =
1

N

∞∫

−∞

dt eiωt
∑

i

Pi

〈
i
∣∣ ∑

l,l′

eiq·xl
(0) e−iq·x

l′
(t)
∣∣ i
〉

=
1

N

∞∫

−∞

dt eiωt
〈∑

l,l′

eiq·xl
(0) e−iq·x

l′
(t)〉 ,

(6.179)

where the angular brackets in the last line denote a thermal expectation value of a quantum mechanical
operator. If we integrate over all frequencies, we obtain the equal time correlator,

S(q) =

∞∫

−∞

dω

2π
S(q, ω) =

1

N

∑

l,l′

〈
eiq·(xl

−x
l′
)
〉

= N δq,0 + 1 + n

∫
ddr e−iq·r [g(r)− 1

]
.

(6.180)
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Figure 6.18: Comparison of the static structure factor as determined by neutron scattering work of J. L.
Yarnell et al., Phys. Rev. A 7, 2130 (1973) with molecular dynamics calculations by Verlet (1967) for a
Lennard-Jones fluid.

known as the static structure factor10. Note that S(q = 0) = N , since all the phases eiq·(xi−xj) are then
unity. As q → ∞, the phases oscillate rapidly with changes in the distances |xi − xj |, and average out
to zero. However, the ‘diagonal’ terms in the sum, i.e. those with i = j, always contribute a total of 1 to
S(q). Therefore in the q → ∞ limit we have S(q → ∞) = 1.

In general, the detectors used in a scattering experiment are sensitive to the energy of the scattered
beam particles, although there is always a finite experimental resolution, both in q and ω. This means
that what is measured is actually something like

Smeas(q, ω) =

∫
ddq′

∫
dω′ F (q − q′)G(ω − ω′)S(q′, ω′) , (6.181)

where F and G are essentially Gaussian functions of their argument, with width given by the experi-
mental resolution. If one integrates over all frequencies ω, i.e. if one simply counts scattered particles as
a function of q but without any discrimination of their energies, then one measures the static structure
factor S(q). Elastic scattering is determined by S(q, ω = 0), i.e. at no energy transfer.

6.5.5 Correlation and response

Suppose an external potential v(x) is also present. Then

P (x1 , . . . , xN ) =
1

QN [v]
· 1

N !
e−βW (x1 , ... ,xN ) e−β

∑
i v(xi) , (6.182)

10We may write δq,0 = 1
V
(2π)d δ(q).
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where

QN [v] =
1

N !

∫
ddx1 · · ·

∫
ddxN e

−βW (x1 , ... ,xN ) e−β
∑

i v(xi) . (6.183)

The Helmholtz free energy is then

F = − 1

β
ln
(
λ−dN
T QN [v]

)
. (6.184)

Now consider the functional derivative

δF

δv(r)
= − 1

β
· 1

QN

· δQN

δv(r)
. (6.185)

Using
∑

i

v(xi) =

∫
ddr v(r)

∑

i

δ(r − xi) , (6.186)

hence
δF

δv(r)
=

∫
ddx1 · · ·

∫
ddxN P (x1 , . . . , xN )

∑

i

δ(r − xi) = n1(r) , (6.187)

which is the local density at r.

Next, consider the response function,

χ(r, r′) ≡ δn1(r)

δv(r′)
=

δ2F [v]

δv(r) δv(r′)

=
1

β
· 1

Q2
N

δQN

δv(r)

δQN

δv(r′)
− 1

β
· 1

QN

δ2QN

δv(r) δv(r′)

= β n1(r)n1(r
′)− β n1(r) δ(r − r′)− β n2(r, r

′) .

(6.188)

In an isotropic system, χ(r, r′) = χ(r − r′) is a function of the coordinate separation, and

−kBT χ(r − r′) = −n2 + n δ(r − r′) + n2g
(
|r − r′|

)

= n2 h
(
|r − r′|

)
+ n δ(r − r′) .

(6.189)

Taking the Fourier transform,

− kBT χ̂(q) = n+ n2 ĥ(q) = nS(q) . (6.190)

We may also write
κT
κ0T

= 1 + n ĥ(0) = −nkBT χ̂(0) , (6.191)

i.e. κT = −χ̂(0).
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What does this all mean? Suppose we have an isotropic system which is subjected to a weak, spatially
inhomogeneous potential v(r). We expect that the density n(r) in the presence of the inhomogeneous
potential to itself be inhomogeneous. The first corrections to the v = 0 value n = n0 are linear in v, and
given by

δn(r) =

∫
ddr′ χ(r, r′) v(r′)

= −βn0 v(r) − βn20

∫
ddr′ h(r − r) v(r′) .

(6.192)

Note that if v(r) > 0 it becomes energetically more costly for a particle to be at r. Accordingly, the
density response is negative, and proportional to the ratio v(r)/kBT – this is the first term in the above
equation. If there were no correlations between the particles, then h = 0 and this would be the entire
story. However, the particles in general are correlated. Consider, for example, the case of hard spheres
of diameter a, and let there be a repulsive potential at r = 0. This means that it is less likely for a particle
to be centered anywhere within a distance a of the origin. But then it will be more likely to find a particle
in the next ‘shell’ of radial thickness a.

6.5.6 BBGKY hierarchy

The distribution functions satisfy a hierarchy of integro-differential equations known as the BBGKY
hierarchy11 . In homogeneous systems, we have

gk(r1 , . . . , rk) =
N !

(N − k)!

1

nk

∫
ddxk+1 · · ·

∫
ddxN P (r1 , . . . , rk , xk+1 , . . . , xN ) , (6.193)

where

P (x1 , . . . , xN ) =
1

QN

· 1

N !
e−βW (x1 , ... ,xN ) . (6.194)

Taking the gradient with respect to r1, we have

∂

∂r1
gk(r1 , . . . , rk) =

1

QN

· n−k

(N − k)!

∫
ddxk+1 · · ·

∫
ddxN e

−β
∑

k<i<j u(xij)

× ∂

∂r1

[
e−β

∑
i<j≤k u(rij) · e−β

∑
i≤k<j u(ri−xj)

]
,

(6.195)

where
∑

k<i<j means to sum on indices i and j such that i < j and k < i, i.e.

∑

k<i<j

u(xij) ≡
N−1∑

i=k+1

N∑

j=i+1

u
(
xi − xj

)

∑

i<j≤k

u(rij) ≡
k−1∑

i=1

k∑

j=i+1

u
(
ri − rj

)

∑

i≤k<j

u(ri − xj) =

k∑

i=1

N∑

j=k+1

u(ri − xj) .

11So named after Bogoliubov, Born, Green, Kirkwood, and Yvon.
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Now

∂

∂r1

[
e−β

∑
i<j≤k u(rij) · e−β

∑
i≤k<j u(ri−xj)

]
=

β

{
∑

1<j≤k

∂u(r1 − rj)

∂r1
+
∑

k<j

∂u(r1 − rj)

∂r1

}
·
[
e−β

∑
i<j≤k u(rij) · e−β

∑
i≤k<j u(ri−xj)

]
,

(6.196)

hence

∂

∂r1
gk(r1 , . . . , rk) = −β

k∑

j=2

∂u(r1 − rj)

∂r1
gk(r1 , . . . , rk)

− β(N − k)

∫
ddxk+1

∂u(r1 − xk+1)

∂r1
P (r1 , . . . , rk , xk+1 , . . . , xN )

= −β
k∑

j=2

∂u(r1 − rj)

∂r1
gk(r1 , . . . , rk)

+ n

∫
ddxk+1

∂u(r1 − xk+1)

∂r1
gk+1(r1 , . . . , rk , xk+1) .

(6.197)

Thus, we obtain the BBGKY hierarchy:

−kBT
∂

∂r1
gk(r1 , . . . , rk) =

k∑

j=2

∂u(r1 − rj)

∂r1
gk(r1 , . . . , rk)

+ n

∫
ddr′

∂u(r1 − r′)
∂r1

gk+1(r1 , . . . , rk , r
′) .

(6.198)

The BBGKY hierarchy is an infinite tower of coupled integro-differential equations, relating gk to gk+1

for all k. If we approximate gk at some level k in terms of equal or lower order distributions, then we
obtain a closed set of equations which in principle can be solved, at least numerically. For example, the
Kirkwood approximation closes the hierarchy at order k = 2 by imposing the condition

g3(r1 , r2 , r3) ≡ g(r1 − r2) g(r1 − r3) g(r2 − r2) . (6.199)

This results in the single integro-differential equation

− kBT ∇g(r) = g(r)∇u+ n

∫
ddr′ g(r) g(r′) g(r − r′)∇u(r − r′) . (6.200)

This is known as the Born-Green-Yvon (BGY) equation. In practice, the BGY equation, which is solved
numerically, gives adequate results only at low densities.

6.5.7 Ornstein-Zernike theory

The direct correlation function c(r) is defined by the equation

h(r) = c(r) + n

∫
d3r′ h(r − r′) c(r′) , (6.201)
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where h(r) = g(r) − 1 and we assume an isotropic system. This is called the Ornstein-Zernike equation.
The first term, c(r), accounts for local correlations, which are then propagated in the second term to
account for long-ranged correlations.

The OZ equation is an integral equation, but it becomes a simple algebraic one upon Fourier transform-
ing:

ĥ(q) = ĉ(q) + n ĥ(q) ĉ(q) , (6.202)

the solution of which is

ĥ(q) =
ĉ(q)

1− n ĉ(q)
. (6.203)

The static structure factor is then

S(q) = 1 + n ĥ(q) =
1

1− n ĉ(q)
. (6.204)

In the grand canonical ensemble, we can write

κT =
1 + n ĥ(0)

nkBT
=

1

nkBT
· 1

1− n ĉ(0)
=⇒ n ĉ(0) = 1− κ0T

κT
, (6.205)

where κ0T = 1/nkBT is the ideal gas isothermal compressibility.

At this point, we have merely substituted one unknown function, h(r), for another, namely c(r). To
close the system, we need to relate c(r) to h(r) again in some way. There are various approximation
schemes which do just this.

6.5.8 Percus-Yevick equation

In the Percus-Yevick approximation, we take

c(r) =
[
1− eβu(r)

]
· g(r) . (6.206)

Note that c(r) vanishes whenever the potential u(r) itself vanishes. This results in the following integro-
differential equation for the pair distribution function g(r):

g(r) = e−βu(r) + n e−βu(r)

∫
d3r′

[
g(r − r′)− 1

]
·
[
1− eβu(r

′)
]
g(r′) . (6.207)

This is the Percus-Yevick equation. Remarkably, the Percus-Yevick (PY) equation can be solved analytically
for the case of hard spheres, where u(r) = ∞ for r ≤ a and u(r) = 0 for r > a, where a is the hard sphere
diameter. Define the function y(r) = eβu(r)g(r), in which case

c(r) = y(r) f(r) =

{
−y(r) , r ≤ a

0 , r > a .
(6.208)

Here, f(r) = e−βu(r) − 1 is the Mayer function. We remark that the definition of y(r) may cause some
concern for the hard sphere system, because of the eβu(r) term, which diverges severely for r ≤ a.



46 CHAPTER 6. CLASSICAL INTERACTING SYSTEMS

However, g(r) vanishes in this limit, and their product y(r) is in fact finite! The PY equation may then
be written for the function y(r) as

y(r) = 1 + n

∫

r′<a

d3r′ y(r′)− n

∫

r′<a

|r−r′|>a

d3r′ y(r′) y(r − r′) . (6.209)

This has been solved using Laplace transform methods by M. S. Wertheim, J. Math. Phys. 5, 643 (1964).
The final result for c(r) is

c(r) = −
{
λ1 + 6η λ2

( r
a

)
+ 1

2η λ1

( r
a

)3}
·Θ(a− r) , (6.210)

where η = 1
6πa

3n is the packing fraction and

λ1 =
(1 + 2η)2

(1− η)4
, λ2 = −(1 + 1

2η)
2

(1− η)4
. (6.211)

This leads to the equation of state

p = nkBT · 1 + η + η2

(1− η)3
. (6.212)

This gets B2 and B3 exactly right. The accuracy of the PY approximation for higher order virial coeffi-
cients is shown in table 6.1.

To obtain the equation of state from eqn. 6.210, we invoke the compressibility equation,

nkBT κT =

(
∂n

∂p

)

T

=
1

1− n ĉ(0)
. (6.213)

We therefore need

ĉ(0) =

∫
d3r c(r) = −4πa3

1∫

0

dxx2
[
λ1 + 6 η λ2 x+ 1

2 η λ1 x
3
]

= −4πa3
[
1
3 λ1 +

3
2 η λ2 +

1
12 η λ1

]
.

(6.214)

With η = 1
6πa

3n and using the definitions of λ1,2 in eqn. 6.211, one finds

1− n ĉ(0) =
1 + 4η + 4η2

(1− η)4
. (6.215)

We then have, from the compressibility equation,

6kBT

πa3
∂p

∂η
=

1 + 4η + 4η2

(1− η)4
. (6.216)

Integrating, we obtain p(η) up to a constant. The constant is set so that p = 0 when n = 0. The result is
eqn. 6.212.
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quantity exact PY HNC

B4/B
3
2 0.28695 0.2969 0.2092

B5/B
4
2 0.1103 0.1211 0.0493

B6/B
5
2 0.0386 0.0281 0.0449

B7/B
6
2 0.0138 0.0156 –

Table 6.1: Comparison of exact (Monte Carlo) results to those of the Percus-Yevick (PY) and hypernetted
chains approximation (HCA) for hard spheres in three dimensions. Sources: Hansen and McDonald
(1990) and Reichl (1998)

Another commonly used scheme is the hypernetted chains (HNC) approximation, for which

c(r) = −βu(r) + h(r)− ln
(
1 + h(r)

)
. (6.217)

The rationale behind the HNC and other such approximation schemes is rooted in diagrammatic ap-
proaches, which are extensions of the Mayer cluster expansion to the computation of correlation func-
tions. For details and references to their application in the literature, see Hansen and McDonald (1990)
and Reichl (1998).

6.5.9 Ornstein-Zernike approximation at long wavelengths

Let’s expand the direct correlation function ĉ(q) in powers of the wavevector q, viz.

ĉ(q) = ĉ(0) + c2 q
2 + c4 q

4 + . . . . (6.218)

Here we have assumed spatial isotropy. Then

1− n ĉ(q) =
1

S(q)
= 1− n ĉ(0)− n c2 q

2 + . . .

≡ ξ−2R2 + q2R2 +O(q4) ,

(6.219)

where

R2 = −n c2 = 2πn

∞∫

0

dr r4 c(r) (6.220)

and

ξ−2 =
1− n ĉ(0)

R2
=

1− 4πn
∫∞
0 dr r2 c(r)

2πn
∫∞
0 dr r4 c(r)

. (6.221)

The quantity R(T ) tells us something about the effective range of the interactions, while ξ(T ) is the
correlation length. As we approach a critical point, the correlation length diverges as a power law:

ξ(T ) ∼ A|T − Tc|−ν . (6.222)
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The susceptibility is given by

χ̂(q) = −nβ S(q) = − nβR−2

ξ−2 + q2 +O(q4)
(6.223)

In the Ornstein-Zernike approximation, one drops the O(q4) terms in the denominator and retains only the
long wavelength behavior. in the direct correlation function. Thus,

χ̂OZ
(q) = − nβR−2

ξ−2 + q2
. (6.224)

We now apply the inverse Fourier transform back to real space to obtain χOZ(r). In d = 1 dimension the
result can be obtained exactly:

χOZ
d=1(x) = − n

kBTR
2

∞∫

−∞

dq

2π

eiqx

ξ−2 + q2
= − nξ

2kBTR
2
e−|x|/ξ . (6.225)

In higher dimensions d > 1 we can obtain the result asymptotically in two limits:

• Take r → ∞ with ξ fixed. Then

χOZ
d (r) ≃ −Cd n · ξ

(3−d)/2

kBT R
2
· e−r/ξ

r(d−1)/2
·
{
1 +O

(
d− 3

r/ξ

)}
, (6.226)

where the Cd are dimensionless constants.

• Take ξ → ∞ with r fixed; this is the limit T → Tc at fixed r. In dimensions d > 2 we obtain

χOZ
d (r) ≃ − C ′

d n

kBTR
2
· e

−r/ξ

rd−2
·
{
1 +O

(
d− 3

r/ξ

)}
. (6.227)

In d = 2 dimensions we obtain

χOZ
d=2(r) ≃ − C ′

2 n

kBTR
2
· ln
(
r

ξ

)
e−r/ξ ·

{
1 +O

(
1

ln(r/ξ)

)}
, (6.228)

where the C ′
d are dimensionless constants.

At criticality, ξ → ∞, and clearly our results in d = 1 and d = 2 dimensions are nonsensical, as they are
divergent. To correct this behavior, M. E. Fisher in 1963 suggested that the OZ correlation functions in
the r ≪ ξ limit be replaced by

χ(r) ≃ −C ′′
d n · ξη

kBTR
2
· e−r/ξ

rd−2+η
, (6.229)

a result known as anomalous scaling. Here, η is the anomalous scaling exponent.
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Recall that the isothermal compressibility is given by κT = −χ̂(0). Near criticality, the integral in χ̂(0) is
dominated by the r ≪ ξ part, since ξ → ∞. Thus, using Fisher’s anomalous scaling,

κT = −χ̂(0) = −
∫
ddr χ(r)

∼ A

∫
ddr

e−r/ξ

rd−2+η
∼ B ξ2−η ∼ C

∣∣T − Tc
∣∣−(2−η)ν

,

(6.230)

where A, B, and C are temperature-dependent constants which are nonsingular at T = Tc. Thus, since
κT ∝ |T − Tc|−γ , we conclude

γ = (2− η) ν , (6.231)

a result known as hyperscaling.

6.6 Coulomb Systems : Plasmas and the Electron Gas

6.6.1 Electrostatic potential

Coulomb systems are particularly interesting in statistical mechanics because of their long-ranged forces,
which result in the phenomenon of screening. Long-ranged forces wreak havoc with the Mayer cluster
expansion, since the Mayer function is no longer integrable. Thus, the virial expansion fails, and new
techniques need to be applied to reveal the physics of plasmas.

The potential energy of a Coulomb system is

U = 1
2

∫
ddr

∫
ddr′ ρ(r)u(r − r′) ρ(r′) , (6.232)

where ρ(r) is the charge density and u(r), which has the dimensions of (energy)/(charge)2, satisfies

∇2u(r − r′) = −4π δ(r − r′) . (6.233)

Thus,

u(r) =





−2π |x− x′| , d = 1

−2 ln |r − r′| , d = 2

|r − r′|−1 , d = 3 .

(6.234)

For discete particles, the charge density ρ(r) is given by

ρ(r) =
∑

i

qi δ(r − xi) , (6.235)

where qi is the charge of the ith particle. We will assume two types of charges: q = ±e, with e > 0. The
electric potential is

φ(r) =

∫
ddr′ u(r − r′) ρ(r′) =

∑

i

qi u(r − xi) . (6.236)
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This satisfies the Poisson equation, ∇2φ(r) = −4πρ(r) . The total potential energy can be written as

U = 1
2

∫
ddr φ(r) ρ(r) = 1

2

∑

i

qi φ(xi) , (6.237)

where it is understood that we omit self-interaction terms.

6.6.2 Debye-Hückel theory

We now write the grand partition function:

Ξ(T, V, µ+, µ−) =
∞∑

N+=0

∞∑

N−=0

1

N+!
eβµ+N+ λ

−N+d
+ · 1

N−!
eβµ−N−λ

−N−d
−

·
∫
ddr1 · · ·

∫
ddrNtot

e
−βU(r1 , ... , rNtot

)
,

(6.238)

where Ntot = N+ +N− . We now adopt a mean field approach, known as Debye-Hückel theory, writing

ρ(r) = ρ̄(r) + δρ(r) , φ(r) = φ̄(r) + δφ(r) . (6.239)

We then have

U = 1
2

∫
ddr
[
ρ̄(r) + δρ(r)

]
·
[
φ̄(r) + δφ(r)

]

= 1
2

∫
ddr φ̄(r) ρ̄(r)+

these two terms are the same︷ ︸︸ ︷
1
2

∫
ddr φ̄(r) δρ(r) + 1

2

∫
ddr ρ̄(r) δφ(r) +1

2

∫
ddr δρ(r) δφ(r)

=

≡ U0︷ ︸︸ ︷
−1

2

∫
ddr φ̄(r) ρ̄(r) +

∫
ddr φ̄(r) ρ(r)+

ignore fluctuation term︷ ︸︸ ︷
1
2

∫
ddr δρ(r) δφ(r) ,

(6.240)

where we have used δρ = ρ− ρ̄ . Thus we have

Ξ = e−U0/kBT exp

(
z+λ

−d
+

∫
ddr+ e

−e φ̄(r+)/kBT

)
exp

(
z−λ

−d
−

∫
ddr− e

e φ̄(r−)/kBT

)
(6.241)

whence

Ω(T, V, µ+, µ−) = U0 − kBTz+λ
−d
+

∫
ddr exp

(
− e φ̄(r)

kBT

)
− kBTz−λ

−d
−

∫
ddr exp

(
+
e φ̄(r)

kBT

)
, (6.242)

where

λ± =

(
2π~2

m±kBT

)
, z± = exp

(
µ±
kBT

)
. (6.243)

Note that since φ̄(r) =
∫
ddr′ u(r − r′) ρ̄(r′) is a linear functional of ρ̄(r), we have

δU0

δφ̄(r)
= −ρ̄(r) . (6.244)
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We now demand that the free energy Ω is extremized with respect to the mean field φ̄(r), viz.

0 =
δΩ

δφ̄(r)
= −ρ̄(r) + e λ−d

+ z+ exp

(
− e φ̄(r)

kBT

)
− e λ−d

− z− exp

(
+
e φ̄(r)

kBT

)
. (6.245)

At r → ∞, we assume charge neutrality and φ(∞) = 0. Thus

λ−d
+ z+ = n+(∞) = λ−d

− z− = n−(∞) ≡ n∞ , (6.246)

where n∞ is the ionic density of either species at infinity. Therefore,

ρ(r) = −2e n∞ sinh

(
e φ(r)

kBT

)
, (6.247)

where we have dropped the bars on φ̄ and ρ̄ for convenience. We now invoke Poisson’s equation,

∇2φ = 8πen∞ sinh(βeφ)− 4πρext , (6.248)

where ρext is an externally imposed charge density.

If eφ≪ kBT , we can expand the sinh function and obtain

∇2φ = κ2D φ− 4πρext , (6.249)

where

κD =

(
8πn∞e

2

kBT

)1/2
, λD =

(
kBT

8πn∞e2

)1/2
. (6.250)

The quantity λD is known as the Debye screening length. Consider, for example, a point charge Q located
at the origin. We then solve Poisson’s equation in the weak field limit,

∇2φ = κ2D φ− 4πQδ(r) . (6.251)

Fourier transforming, we obtain

− q2 φ̂(q) = κ2D φ̂(q) − 4πQ =⇒ φ̂(q) =
4πQ

q2 + κ2D
. (6.252)

Transforming back to real space, we obtain, in three dimensions, the Yukawa potential,

φ(r) =

∫
d3q

(2π)3
4πQeiq·r

q2 + κ2D
=
Q

r
· e−κDr . (6.253)

This solution must break down sufficiently close to r = 0, since the assumption eφ(r) ≪ kBT is no longer
valid there. However, for larger r, the Yukawa form is increasingly accurate.

For another example, consider an electrolyte held between two conducting plates, one at potential φ(x =
0) = 0 and the other at potential φ(x = L) = V , where x̂ is normal to the plane of the plates. Again
assuming a weak field eφ≪ kBT , we solve ∇2φ = κ2D φ and obtain

φ(x) = AeκDx +B e−κD x . (6.254)

We fix the constants A and B by invoking the boundary conditions, which results in

φ(x) = V · sinh(κDx)

sinh(κDL)
. (6.255)

Debye-Hückel theory is valid provided n∞ λ3D ≫ 1, so that the statistical assumption of many charges
in a screening volume is justified.
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6.6.3 The electron gas : Thomas-Fermi screening

Assuming kBT ≪ εF, thermal fluctuations are unimportant and we may assume T = 0. In the same
spirit as the Debye-Hückel approach, we assume a slowly varying mean electrostatic potential φ(r).
Locally, we can write

εF =
~
2k2F
2m

− eφ(r) . (6.256)

Thus, the Fermi wavevector kF is spatially varying, according to the relation

kF(r) =

[
2m

~2

(
εF + eφ(r)

)]1/2
. (6.257)

The local electron number density is

n(r) =
k3F(r)

3π2
= n∞

(
1 +

eφ(r)

εF

)3/2

. (6.258)

In the presence of a uniform compensating positive background charge ρ+ = en∞, Poisson’s equation
takes the form

∇2φ = 4πen∞ ·
[(

1 +
eφ(r)

εF

)3/2
− 1

]
− 4πρext(r) . (6.259)

If eφ≪ εF, we may expand in powers of the ratio, obtaining

∇2φ =
6πn∞e

2

εF
φ ≡ κ2TF φ− 4πρext(r) . (6.260)

Here, κTF is the Thomas-Fermi wavevector,

κTF =

(
6πn∞e

2

εF

)1/2
. (6.261)

Thomas-Fermi theory is valid provided n∞ λ3TF ≫ 1, where λTF = κ−1
TF , so that the statistical assumption

of many electrons in a screening volume is justified.

One important application of Thomas-Fermi screening is to the theory of metals. In a metal, the outer,
valence electrons of each atom are stripped away from the positively charged ionic core and enter into
itinerant, plane-wave-like states. These states disperse with some ε(k) function (that is periodic in the
Brillouin zone, i.e. under k → k+G, where G is a reciprocal lattice vector), and at T = 0 this energy band
is filled up to the Fermi level εF, as Fermi statistics dictates. (In some cases, there may be several bands
at the Fermi level, as we saw in the case of yttrium.) The set of ionic cores then acts as a neutralizing
positive background. In a perfect crystal, the ionic cores are distributed periodically, and the positive
background is approximately uniform. A charged impurity in a metal, such as a zinc atom in a copper
matrix, has a different nuclear charge and a different valency than the host. The charge of the ionic core,
when valence electrons are stripped away, differs from that of the host ions, and therefore the impu-
rity acts as a local charge impurity. For example, copper has an electronic configuration of [Ar] 3d10 4s1.
The 4s electron forms an energy band which contains the Fermi surface. Zinc has a configuration of
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[Ar] 3d10 4s2, and in a Cu matrix the Zn gives up its two 4s electrons into the 4s conduction band, leav-
ing behind a charge +2 ionic core. The Cu cores have charge +1 since each copper atom contributed only
one 4s electron to the conduction band. The conduction band electrons neutralize the uniform positive
background of the Cu ion cores. What is left is an extra Q = +e nuclear charge at the Zn site, and one
extra 4s conduction band electron. The Q = +e impurity is, however, screened by the electrons, and at
distances greater than an atomic radius the potential that a given electron sees due to the Zn core is of
the Yukawa form,

φ(r) =
Q

r
· e−κTFr . (6.262)

We should take care, however, that the dispersion ε(k) for the conduction band in a metal is not neces-
sarily of the free electron form ε(k) = ~

2k2/2m. To linear order in the potential, however, the change in
the local electronic density is

δn(r) = eφ(r) g(εF) , (6.263)

where g(εF) is the density of states at the Fermi energy. Thus, in a metal, we should write

∇2φ = (−4π)(−e δn) = 4πe2g(εF)φ = κ2TF φ , (6.264)

where

κTF =
√

4πe2 g(εF) . (6.265)

The value of g(εF) will depend on the form of the dispersion. For ballistic bands with an effective mass
m∗, the formula in eqn. 6.260 still applies.

The Thomas-Fermi atom

Consider an ion formed of a nucleus of charge +Ze and an electron cloud of charge −Ne. The net ionic
charge is then (Z − N)e. Since we will be interested in atomic scales, we can no longer assume a weak
field limit and we must retain the full nonlinear screening theory, for which

∇2φ(r) = 4πe · (2m)3/2

3π2~3

(
εF + eφ(r)

)3/2
− 4πZe δ(r) . (6.266)

We assume an isotropic solution. It is then convenient to define

εF + eφ(r) =
Ze2

r
· χ(r/r0) , (6.267)

where r0 is yet to be determined. As r → 0 we expect χ→ 1 since the nuclear charge is then unscreened.
We then have

∇2

{
Ze2

r
· χ(r/r0)

}
=

1

r20

Ze2

r
χ′′(r/r0) , (6.268)

thus we arrive at the Thomas-Fermi equation,

χ′′(t) =
1√
t
χ3/2(t) , (6.269)
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Figure 6.19: The Thomas-Fermi atom consists of a nuclear charge +Ze surrounded by N electrons
distributed in a cloud. The electric potential φ(r) felt by any electron at position r is screened by the
electrons within this radius, resulting in a self-consistent potential φ(r) = φ0 + (Ze2/r)χ(r/r0).

with r = t r0, provided we take

r0 =
~
2

2me2

(
3π

4
√
Z

)2/3
= 0.885Z−1/3 aB , (6.270)

where aB = ~
2

me2 = 0.529 Å is the Bohr radius. The TF equation is subject to the following boundary
conditions:

• At short distances, the nucleus is unscreened, i.e. χ(0) = 1.

• For positive ions, with N < Z , there is perfect screening at the ionic boundary R = t∗ r0, where
χ(t∗) = 0. This requires

E = −∇φ =

[
−Ze

2

R2
χ(R/r0) +

Ze2

Rr0
χ′(R/r0)

]
r̂ =

(Z −N) e

R2
r̂ . (6.271)

This requires

− t∗ χ′(t∗) = 1− N

Z
. (6.272)

For an atom, with N = Z , the asymptotic solution to the TF equation is a power law, and by inspection
is found to be χ(t) ∼ C t−3, where C is a constant. The constant follows from the TF equation, which
yields 12C = C3/2, hence C = 144. Thus, a neutral TF atom has a density with a power law tail, with
ρ ∼ r−6. TF ions with N > Z are unstable.
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6.7 Polymers

6.7.1 Basic concepts

Linear chain polymers are repeating structures with the chemical formula (A)x, where A is the formula
unit and x is the degree of polymerization. In many cases (e.g. polystyrene), x>∼ 105 is not uncommon. For
a very readable introduction to the subject, see P. G. de Gennes, Scaling Concepts in Polymer Physics.

Quite often a given polymer solution will contain a distribution of x values; this is known as polydisper-
sity. Various preparation techniques, such as chromatography, can mitigate the degree of polydisper-
sity. Another morphological feature of polymers is branching, in which the polymers do not form linear
chains.

Polymers exhibit a static flexibility which can be understood as follows. Consider a long chain hydrocar-
bon with a −C − C− C− backbone. The angle between successive C − C bonds is fixed at θ ≈ 68◦, but
the azimuthal angle ϕ can take one of three possible low-energy values, as shown in the right panel of
fig. 6.21. Thus, the relative probabilities of gauche and trans orientations are

Prob (gauche)

Prob (trans)
= 2 e−∆ε/kBT (6.273)

where ∆ε is the energy difference between trans and gauche configurations. This means that the polymer
chain is in fact a random coil with a persistence length

ℓp = ℓ0 e
∆ε/kBT (6.274)

Figure 6.20: Some examples of linear chain polymers.
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where ℓ0 is a microscopic length scale, roughly given by the length of a formula unit, which is approxi-
mately a few Ångstroms (see fig. 6.22). Let L be the total length of the polymer when it is stretched into
a straight line. If ℓp > L, the polymer is rigid. If ℓp ≪ L, the polymer is rigid on the length scale ℓp but
flexible on longer scales. We have

ℓp
L

=
1

N
e∆ε/kBT , (6.275)

where we now use N (rather than x) for the degree of polymerization.

In the time domain, the polymer exhibits a dynamical flexibility on scales longer than a persistence time.
The persistence time τp is the time required for a trans-gauche transition. The rate for such transitions is
set by the energy barrier B separating trans from gauche configurations:

τp = τ0 e
B/kBT (6.276)

where τ0 ∼ 10−11 s. On frequency scales ω ≪ τ−1
p the polymer is dynamically flexible. If ∆ε ∼ kBT ≪ B

the polymer is flexible from a static point of view, but dynamically rigid. That is, there are many gauche
orientations of successive carbon bonds which reflect a quenched disorder. The polymer then forms a
frozen random coil, like a twisted coat hanger.

6.7.2 Polymers as random walks

A polymer can be modeled by a self-avoiding random walk (SAW). That is, on scales longer than ℓp, it
twists about randomly in space subject to the constraint that it doesn’t overlap itself. Before we consider
the mathematics of SAWs, let’s first recall some aspects of ordinary random walks which are not self-
avoiding.

We’ll simplify matters further by considering random walks on a hypercubic lattice of dimension d.
Such a lattice has coordination number 2d, i.e. there are 2d nearest neighbor separation vectors, given by
δ = ±a ê1 , ±a ê2 , . . . , ±a êd , where a is the lattice spacing. Consider now a random walk of N steps
starting at the origin. After N steps the position is where δj takes on one of 2d possible values. Now
N is no longer the degree of polymerization, but somthing approximating L/ℓp, which is the number

of persistence lengths in the chain. We assume each step is independent, hence 〈δαj δβj′〉 = (a2/d) δjj′δ
αβ

and
〈
R2

N

〉
= Na2. The full distribution PN (R) is given by

PN (R) = (2d)−N
∑

δ1

· · ·
∑

δ
N

δR,
∑

j δj

= ad
π/a∫

−π/a

dk1
2π

· · ·
π/a∫

−π/a

dkd
2π

e−ik·R
[
1

d

d∑

µ=1

cos(kµa)

]N

= ad
∫

Ω̂

ddk

(2π)d
e−ik·R exp

[
N ln

(
1− 1

2d
k2a2 + . . .

)]

≈
(
a

2d

)d ∫
ddk e−Nk2a2/2d e−ik·R =

(
d

2πN

)d/2
e−dR2/2Na2 .

(6.277)
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Figure 6.21: Left: trans and gauche orientations in carbon chains. Right: energy as a function of azimuthal
angle ϕ. There are three low energy states: trans (ϕ = 0) and gauche (ϕ = ±ϕ0).

This is a simple Gaussian, with width
〈
R2
〉
= d ·(Na2/d) = Na2, as we have already computed. The

quantity R defined here is the end-to-end vector of the chain. The RMS end-to-end distance is then
〈R2〉1/2 =

√
Na ≡ R0.

A related figure of merit is the radius of gyration, Rg , defined by

R2
g =

1

N

〈 N∑

n=1

(
Rn −RCM

)2〉
, (6.278)

where RCM = 1
N

∑N
j=1Rj is the center of mass position. A brief calculation yields

R2
g =

(
N + 3− 4N−1

)
a2 ∼ Na2

6
, (6.279)

in all dimensions.

The total number of random walk configurations with end-to-end vector R is then (2d)NPN (R), so the
entropy of a chain at fixed elongation is

S(R, N) = kB ln
[
(2d)NPN (R)

]
= S(0, N) − dkBR

2

2Na2
. (6.280)

If we assume that the energy of the chain is conformation independent, then E = E0(N) and

F (R, N) = F (0, N) +
dkBTR

2

2Na2
. (6.281)

In the presence of an external force Fext, the Gibbs free energy is the Legendre transform

G(Fext, N) = F (R, N) − Fext ·R , (6.282)
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Figure 6.22: The polymer chain as a random coil.

and ∂G/∂R = 0 then gives the relation

〈
R(Fext, N)

〉
=

Na2

dkBT
Fext . (6.283)

This may be considered an equation of state for the polymer.

Following de Gennes, consider a chain with charges ±e at each end, placed in an external electric field
of magnitude E = 30, 000V/cm. Let N = 104, a = 2 Å, and d = 3. What is the elongation? From the
above formula, we have

R

R0

=
eER0

3kBT
= 0.8 , (6.284)

with R0 =
√
Na as before.

Structure factor

We can also compute the structure factor,

S(k) =
1

N

〈 N∑

m=1

N∑

n=1

eik·(Rm−Rn)
〉
= 1 +

2

N

N∑

m=1

m−1∑

n=1

〈
eik·(Rm−Rn)

〉
. (6.285)

For averages with respect to a Gaussian distribution,

〈
eik·(Rm−Rn)

〉
= exp

{
− 1

2

〈(
k · (Rm −Rn)

)2〉
}

. (6.286)

Now for m > n we have Rm −Rn =
∑m

j=n+1 δj , and therefore

〈(
k · (Rm −Rn)

)2 〉
=

m∑

j=n+1

〈
(k · δj)2

〉
=

1

d
(m− n)k2a2 , (6.287)

since 〈δαj δβj′〉 = (a2/d) δjj′δ
αβ . We then have

S(k) = 1 +
2

N

N∑

m=1

m−1∑

n=1

e−(m−n) k2a2/2d =
N (e2µk − 1)− 2 eµk (1− e−Nµk)

N
(
eµk − 1

)2 , (6.288)
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where µk = k2a2/2d. In the limit whereN → ∞ and a→ 0 with Na2 = R2
0 constant, the structure factor

has a scaling form, S(k) = Nf(Nµk) = (R0/a) f(k
2R2

0/2d), where

f(x) =
2

x2
(
e−x − 1 + x

)
= 1− x

3
+
x2

12
+ . . . . (6.289)

Rouse model

Consider next a polymer chain subjected to stochastic forcing. We model the chain as a collection of

mass points connected by springs, with a potential energy U = 1
2k
∑

n

(
xn+1 − xn

)2
. This reproduces

the distribution of eqn. 6.277 if we take the spring constant to be k = 3kBT/a
2 and set the equilibrium

length of each spring to zero. The equations of motion are then

M ẍn + γ ẋn = −k
(
2xn − xn−1 − xn+1

)
+ fn(t) , (6.290)

where n ∈ {1, . . . , N} and {fµn (t)} a set of Gaussian white noise forcings, each with zero mean, and

〈
fµn (t) f

ν
n′(t′)

〉
= 2γkBT δnn′ δ

µν δ(t− t′) . (6.291)

We define x0 ≡ x1 and xN+1 ≡ xN so that the end mass points n = 1 and n = N experience a restoring
force from only one neighbor. We assume the chain is overdamped and set M → 0. We then have

γ ẋn = −k
N∑

n′=1

Ann′ xn′ + fn(t) , (6.292)

where

A =




1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0

0 0 −1
. . . · · ·

...
...

. . .
. . . 2 −1

0 · · · · · · 0 −1 1




. (6.293)

The matrix A is real and symmetric. Its eigenfunctions are labeled ψj(n), with j ∈ {0, . . . , N − 1}. The

j = 0 eigenfunction is a constant, ψ0(n) = 1/
√
N , and the others are given by

ψj(n) =

√
2

N
cos

(
(2n− 1)jπ

2N

)
, j ∈ {1, . . . , N − 1} (6.294)

The completeness and orthonormality relations are

N−1∑

j=0

ψj(n)ψj(n
′) = δnn′ ,

N∑

n=1

ψj(n)ψj′(n) = δjj′ , (6.295)
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with eigenvalues λj = 4 sin2
(
πj/2N

)
. Note that λ0 = 0.

We now work in the basis of normal modes {ηµj }, where

ηµj (t) =

N∑

n=1

ψj(n)x
µ
n(t) , xµn(t) =

N−1∑

j=0

ψj(n) η
µ
j (t) . (6.296)

We then have
dηj

dt
= − 1

τj
ηj + gj(t) , (6.297)

where the jth relaxation time is

τj =
γ

4k sin2
(
πj/2N

) (6.298)

and

gµj (t) = γ−1
N∑

n=1

ψj(n) f
µ
n (t) . (6.299)

Note that 〈
gµj (t) g

ν
j′(t

′)
〉
= 2γ−1kBT δjj′ δ

µν δ(t− t′) . (6.300)

Integrating eqn. 6.297, we have for, j = 0,

η0(t) = η0(0) +

t∫

0

dt′ g0(t
′) . (6.301)

For the j > 0 modes,

ηj(t) = ηj(0) e
−t/τj +

t∫

0

dt′ gj(t
′) e(t

′−t)/τj . (6.302)

Thus,

〈
ηµ0 (t) η

ν
0 (t

′)
〉
c
= 2γ−1kBT δ

µν
min(t, t′)

〈
ηµj (t) η

ν
j (t

′)
〉
c
= γ−1kBT δ

µν τj

(
e−|t−t′|/τj − e−(t+t′)/τj

)
,

(6.303)

where the ‘connected average’ is defined to be 〈A(t)B(t′)〉c ≡ 〈A(t)B(t′)〉− 〈A(t)〉〈B(t′)〉. Transforming
back to the original real space basis, we then have

〈
xµn(t)x

ν
n′(t′)

〉
c
=

2kBT

Nγ
δµνmin(t, t′) +

kBT

γ
δµν

N−1∑

j=1

τj ψj(n)ψj(n
′)
(
e−|t−t′|/τ

j − e−(t+t′)/τ
j

)
. (6.304)

In particular, the ‘connected variance’ of xn(t) is

CVar
[
xn(t)

]
≡
〈[
xn(t)

]2〉
c
=

6kBT

Nγ
t+

3kBT

γ

N−1∑

j=1

τj
[
ψj(n)

]2 (
1− e−2t/τj

)
. (6.305)



6.7. POLYMERS 61

From this we see that at long times, i.e. when t ≫ τ1 , the motion of xn(t) is diffusive, with diffusion
constant D = kBT/Nγ ∝ B−1, which is inversely proportional to the chain length. Recall the Stokes
result γ = 6πηR/M for a sphere of radius R and mass M moving in a fluid of dynamical viscosity η.
From D = kBT/γM , shouldn’t we expect the diffusion constant to be D = kBT/6πηR ∝ N−1/2, since

the radius of gyration of the polymer is Rg ∝ N1/2 ? This argument smuggles in the assumption that
the only dissipation is taking place at the outer surface of the polymer, modeled as a ball of radius Rg. In

fact, for a Gaussian random walk in three space dimensions, the density for r < Rg is ρ ∝ N−1/2 since

there are N monomers inside a region of volume
(√
N
)3

. Accounting for Flory swelling due to steric

interactions (see below), the density is ρ ∼ N−4/5, which is even smaller. So as N → ∞, the density
within the r = Rg effective sphere gets small, which means water molecules can easily penetrate, in
which case the entire polymer chain should be considered to be in a dissipative environment, which is
what the Rouse model says – each monomer executed overdamped motion.

A careful analysis of eqn. 6.305 reveals that there is a subdiffusive regime12 where CVar
[
xn(t)

]
∝ t1/2.

To see this, first take the N ≫ 1 limit, in which case we may write τj = N2τ0/j
2, where τ0 ≡ γ/π2k and

j ∈ {1, . . . , N − 1}. Let s ≡ (n− 1
2)/N ∈ [0, 1] be the scaled coordinate along the chain. The second term

in eqn. 6.305 is then

S(s, t) ≡ 6kBT

γ
· τ1
N

N−1∑

j=1

cos2(πjs)

j2
(
1− e−2j2t/τ1

)
. (6.306)

Let σ ≡ (t/τ1)
1/2. When t≪ τ1 , i.e. σ ≪ 1, we have

S(s, t) ≃ 6kBT

γ
· τ1
N
σ

Nσ∫

0

du
cos2(πus/σ)

u2
(
1− e−2u2)

. (6.307)

Since s/σ ≫ 1, we may replace the cosine squared term by its average 1
2 . If we further assume Nσ ≫ 1,

which means we are in the regime 1 ≪ t/τ0 ≪ N2, after performing the integral we obtain the result

S(s, t) =
3kBT

γ

√
2πτ0t , (6.308)

provided s = O(1) , i.e. the site n is not on either end of the chain. The result in eqn. 6.308 dominates the
first term on the RHS of eqn. 6.305 since τ0 ≪ t≪ τ1. This is the subdiffusive regime.

When t≫ τ1 = N2τ0, the exponential on the RHS of eqn. 6.306 is negligible, and if we again approximate
cos2(πjs) ≃ 1

2 , and we extend the upper limit on the sum to infinity, we findS(t) = (3kBT/γ)(τ1/N)(π2/6) ∝
t0, which is dominated by the leading term on the RHS of eqn. 6.305. This is the diffusive regime, with
D = kBT/Nγ.

Finally, when t ≪ τ0, the factor 1 − exp(−2t/τj) may be expanded to first order in t. One then obtains

CVar
[
xn(t)

]
= (6kBT/γ) t, which is independent of the force constant k. In this regime, the monomers

don’t have time to respond to the force from their neighbors, hence they each diffuse independently. On
such short time scales, however, one should check to make sure that inertial effects can be ignored, i.e.
that t≫M/γ.

12I am grateful to Jonathan Lam and Olga Dudko for explaining this to me.
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One serious defect of the Rouse model is its prediction of the relaxation time of the j = 1 mode, τ1 ∝ N2.

The experimentally observed result is τ1 ∝ N3/2. We should stress here that the Rouse model applies to
ideal chains. In the theory of polymer solutions, a theta solvent is one in which polymer coils act as ideal
chains. An extension of the Rouse model, due to my former UCSD colleague Bruno Zimm, accounts for
hydrodynamically-mediated interactions between any pair of ‘beads’ along the chain. Specifically, the
Zimm model is given by

dxµn
dt

=
∑

n′

Hµν(xn − xn′)
[
k
(
xνn′+1 + xνn′−1 − 2xνn′

)
+ f νn′(t)

]
, (6.309)

where

Hµν(R) =
1

6πηR

(
δµν + R̂µR̂ν

)
(6.310)

is known as the Oseen hydrodynamic tensor (1927) and arises when computing the velocity in a fluid
at position R when a point force F = f δ(r) is applied at the origin. Typically one replaces H(R) by
its average over the equilibrium distribution of polymer configurations. Zimm’s model more correctly
reproduces the behavior of polymers in θ-solvents.

6.7.3 Flory theory of self-avoiding walks

What is missing from the random walk free energy is the effect of steric interactions. An argument due
to Flory takes these interactions into account in a mean field treatment. Suppose we have a chain of
radius R. Then the average monomer density within the chain is c = N/Rd. Assuming short-ranged
interactions, we should then add a term to the free energy which effectively counts the number of near
self-intersections of the chain. This number should be roughly Nc. Thus, we write

F (R, N) = F0 + u(T )
N2

Rd
+ 1

2dkBT
R2

Na2
. (6.311)

The effective interaction u(T ) is positive in the case of a so-called ‘good solvent’.

The free energy is minimized when

0 =
∂F

∂R
=

(
− uN2

Rd+1
+
RkBT

Na2

)
d , (6.312)

which yields the result

RF(N) =

(
ua2

kBT

)1/(d+2)

N3/(d+2) ∝ Nν . (6.313)

Thus, we obtain ν = 3/(d + 2). In d = 1 this says ν = 1, which is exactly correct because a SAW in d = 1
has no option but to keep going in the same direction. In d = 2, Flory theory predicts ν = 3

4 , which is
also exact. In d = 3, we have νd=3 =

3
5 , which is extremely close to the numerical value ν = 0.5880. Flory

theory is again exact at the SAW upper critical dimension, which is d = 4, where ν = 1
2 , corresponding

to a Gaussian random walk13. Best. Mean. Field. Theory. Ever.

13There are logarithmic corrections to the SAW result exactly at d = 4, but for all d > 4 one has ν = 1
2

.
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Figure 6.23: Radius of gyrationRg of polystyrene in a toluene and benzene solvent, plotted as a function
of molecular weight of the polystyrene. The best fit corresponds to a power law Rg ∝ Mν with ν =
0.5936. From J. Des Cloizeaux and G. Jannink, Polymers in Solution: Their Modeling and Structure
(Oxford, 1990).

How well are polymers described as SAWs? Fig. 6.23 shows the radius of gyration Rg versus molecular
weight M for polystyrene chains in a toluene and benzene solvent. The slope is ν = d lnRg/d lnM =
0.5936. Experimental results can vary with concentration and temperature, but generally confirm the
validity of the SAW model.

For a SAW under an external force, we compute the Gibbs partition function,

Y (Fext, N) =

∫
ddR PN (R) eFext ·R/kBT =

∫
ddx f(x) esn̂·x , (6.314)

where x = R/RF and s = kBT/RFFext and n̂ = F̂ext. One than has R(Fext) = RF Φ(RF/ξ), where
ξ = kBT/Fext and R(Fext) = FextR

2
F/kBT . For small values of its argument one has Φ(u) ∝ u. For large

u it can be shown that R(Fext) ∝ (FextRF/kBT )
2/3.

On a lattice of coordination number z, the number of N -step random walks starting from the origin is
ΩN = zN . If we constrain our random walks to be self-avoiding, the number is reduced to

ΩSAW

N = CNγ−1 yN , (6.315)

where C and γ are dimension-dependent constants, and we expect y <∼ z − 1, since at the very least a
SAW cannot immediately double back on itself. In fact, on the cubic lattice one has z = 6 but y = 4.68,
slightly less than z − 1. One finds γd=2 ≃ 4

3 and γd=3 ≃ 7
6 . The RMS end-to-end distance of the SAW is

RF = aNν , (6.316)

where a and ν are d-dependent constants,with νd=1 = 1, νd=2 ≃ 3
4 , and νd=3 ≃ 3

5 . The distribution
PN (R) has a scaling form,

PN (R) =
1

Rd
F

f

(
R

RF

)
(a≪ R≪ Na) . (6.317)
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One finds

f(x) ∼
{
xg x≪ 1

exp(−xδ) x≫ 1 ,
(6.318)

with g = (γ − 1)/ν and δ = 1/(1 − ν).

6.7.4 Polymers and solvents

Consider a solution of monodisperse polymers of length N in a solvent. Let φ be the dimensionless
monomer concentration, so φ/N is the dimensionless polymer concentration and φs = 1 − φ is the
dimensionless solvent concentration. (Dimensionless concentrations are obtained by dividing the corre-
sponding dimensionful concentration by the overall density.) The entropy of mixing for such a system
is given by eqn. 2.352. We have

Smix = −V kB

v0
·
{

1

N
φ lnφ+ (1− φ) ln(1− φ)

}
, (6.319)

where v0 ∝ a3 is the volume per monomer. Accounting for an interaction between the monomer and
the solvent, we have that the free energy of mixing is

v0 Fmix

V kBT
=

1

N
φ lnφ+ (1− φ) ln(1− φ) + χφ(1 − φ) . (6.320)

where χ is the dimensionless polymer-solvent interaction, called the Flory parameter. This provides a
mean field theory of the polymer-solvent system.

The osmotic pressure Π is defined by

Π = −∂Fmix

∂V

∣∣∣∣
Np

, (6.321)

which is the variation of the free energy of mixing with respect to volume holding the number of polymers
constant. The monomer concentration is φ = NNpv0/V , so

∂

∂V

∣∣∣∣
Np

= − φ2

NNp v0

∂

∂φ

∣∣∣∣
Np

. (6.322)

Now we have

Fmix = NNp kBT

{
1

N
lnφ+ (φ−1 − 1) ln(1− φ) + χ (1− φ)

}
, (6.323)

and therefore

Π =
kBT

v0

[
(N−1 − 1)φ− ln(1− φ)− χφ2

]
. (6.324)

In the limit of vanishing monomer concentration φ→ 0, we recover

Π =
φkBT

Nv0
, (6.325)
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which is the ideal gas law for polymers. For N−1 ≪ φ≪ 1, we expand the logarithm and obtain

v0Π

kBT
=

1

N
φ+ 1

2 (1− 2χ)φ2 +O(φ3)

≈ 1
2 (1− 2χ)φ2 .

(6.326)

Note that Π > 0 only if χ < 1
2 , which is the condition for a ’good solvent’.

In fact, eqn. 6.326 is only qualitatively correct. In the limit where χ ≪ 1
2 , Flory showed that the indi-

vidual polymer coils behave much as hard spheres of radius RF. The osmotic pressure then satisfies
something analogous to a virial equation of state:

Π

kBT
=

φ

Nv0
+A

(
φ

Nv0

)2
R3

F + . . .

=
φ

Nv0
h(φ/φ∗) .

(6.327)

This is generalized to a scaling form in the second line, where h(x) is a scaling function, and the quantity
φ∗ is given by φ∗ = Nv0/R

3
F ∝ N−4/5, assuming d = 3 and ν = 3

5 from Flory theory. As x = φ/φ∗ → 0,
we must recover the ideal gas law, so h(x) = 1+O(x) in this limit. For x→ ∞, we require that the result
be independent of the degree of polymerization N . This means h(x) ∝ xp with 4

5p = 1, i.e. p = 5
4 . The

result is known as the des Cloiseaux law:

v0Π

kBT
= C φ9/4 , (6.328)

where C is a constant. This is valid for what is known as semi-dilute solutions, where φ∗ ≪ φ ≪ 1.
In the dense limit φ ∼ 1, the results do not exhibit this universality, and we must appeal to liquid state
theory, which is no fun at all.

6.8 Appendix I : Potts Model in One Dimension

6.8.1 Definition

The Potts model is defined by the Hamiltonian

H = −J
∑

〈ij〉
δσi,σj

− h
∑

i

δσi,1
. (6.329)

Here, the spin variables σi take values in the set {1, 2, . . . , q} on each site. The equivalent of an ex-
ternal magnetic field in the Ising case is a field h which prefers a particular value of σ (σ = 1 in the
above Hamiltonian). Once again, it is not possible to compute the partition function on general lattices,
however in one dimension we may once again find Z using the transfer matrix method.
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6.8.2 Transfer matrix

On a ring of N sites, we have

Z = Tr e−βH =
∑

{σn}
e
βhδσ1,1 e

βJδσ1,σ2 · · · eβhδσN ,1 e
βJδσ

N
,σ

1 = Tr
(
RN
)

, (6.330)

where the q × q transfer matrix R is given by

Rσσ′ = eβJδσσ′ e
1
2
βhδσ,1 e

1
2
βhδσ′,1 =





eβ(J+h) if σ = σ′ = 1

eβJ if σ = σ′ 6= 1

eβh/2 if σ = 1 and σ′ 6= 1

eβh/2 if σ 6= 1 and σ′ = 1

1 if σ 6= 1 and σ′ 6= 1 and σ 6= σ′ .

(6.331)

In matrix form,

R =




eβ(J+h) eβh/2 eβh/2 · · · eβh/2

eβh/2 eβJ 1 · · · 1

eβh/2 1 eβJ · · · 1
...

...
...

. . .
...

eβh/2 1 1 · · · eβJ 1

eβh/2 1 1 · · · 1 eβJ




(6.332)

The matrix R has q eigenvalues λj , with j = 1, . . . , q. The partition function for the Potts chain is then

Z =

q∑

j=1

λNj . (6.333)

We can actually find the eigenvalues of R analytically. To this end, consider the vectors

φ =




1
0
...
0


 , ψ =

(
q − 1 + eβh

)−1/2




eβh/2

1
...
1


 . (6.334)

Then R may be written as

R =
(
eβJ − 1

)
I+

(
q − 1 + eβh

)
|ψ 〉〈ψ |+

(
eβJ − 1

)(
eβh − 1

)
|φ 〉〈φ | , (6.335)

where I is the q × q identity matrix. When h = 0, we have a simpler form,

R =
(
eβJ − 1

)
I+ q |ψ 〉〈ψ | . (6.336)

From this we can read off the eigenvalues:

λ1 = eβJ + q − 1

λj = eβJ − 1 , j ∈ {2, . . . , q} ,
(6.337)
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since |ψ 〉 is an eigenvector with eigenvalue λ = eβJ + q − 1, and any vector orthogonal to |ψ 〉 has
eigenvalue λ = eβJ − 1. The partition function is then

Z =
(
eβJ + q − 1

)N
+ (q − 1)

(
eβJ − 1

)N
. (6.338)

In the thermodynamic limit N → ∞, only the λ1 eigenvalue contributes, and we have

F (T,N, h = 0) = −NkBT ln
(
eJ/kBT + q − 1

)
for N → ∞ . (6.339)

When h is nonzero, the calculation becomes somewhat more tedious, but still relatively easy. The prob-
lem is that |ψ 〉 and |φ 〉 are not orthogonal, so we define

|χ 〉 = |φ 〉 − |ψ 〉〈ψ |φ 〉√
1− 〈φ |ψ 〉2

, (6.340)

where

x ≡ 〈φ |ψ 〉 =
(

eβh

q − 1 + eβh

)1/2
. (6.341)

Now we have 〈χ |ψ 〉 = 0, with 〈χ |χ 〉 = 1 and 〈ψ |ψ 〉 = 1, with

|φ 〉 =
√

1− x2 |χ 〉+ x |ψ 〉 . (6.342)

and the transfer matrix is then

R =
(
eβJ − 1

)
I+

(
q − 1 + eβh

)
|ψ 〉〈ψ |

+
(
eβJ − 1

)(
eβh − 1

) [
(1− x2) |χ 〉〈χ |+ x2 |ψ 〉〈ψ |+ x

√
1− x2

(
|χ 〉〈ψ |+ |ψ 〉〈χ |

)]

=
(
eβJ − 1

)
I+

[
(
q − 1 + eβh

)
+
(
eβJ − 1

)(
eβh − 1

)( eβh

q − 1 + eβh

)]
|ψ 〉〈ψ | (6.343)

+
(
eβJ − 1

)(
eβh − 1

) ( q − 1

q − 1 + eβh

)
|χ 〉〈χ |

+
(
eβJ − 1

)(
eβh − 1

)( (q − 1) eβh

q − 1 + eβh

)1/2 (
|χ 〉〈ψ |+ |ψ 〉〈χ |

)
,

which in the two-dimensional subspace spanned by |χ 〉 and |ψ 〉 is of the form

R =

(
a c
c b

)
. (6.344)

Recall that for any 2× 2 Hermitian matrix,

M = a0 I+ a · τ =

(
a0 + a3 a1 − ia2
a1 + ia2 a0 − a3

)
, (6.345)

the characteristic polynomial is

P (λ) = det
(
λ I−M

)
= (λ− a0)

2 − a21 − a22 − a23 , (6.346)
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and hence the eigenvalues are

λ± = a0 ±
√
a21 + a22 + a23 . (6.347)

For the transfer matrix of eqn. 6.343, we obtain, after a little work,

λ1,2 = eβJ − 1 + 1
2

[
q − 1 + eβh +

(
eβJ − 1

)(
eβh − 1

)]
(6.348)

± 1
2

√[
q − 1 + eβh +

(
eβJ − 1

)(
eβh − 1

)]2
− 4(q − 1)

(
eβJ − 1

)(
eβh − 1

)
.

There are q−2 other eigenvalues, however, associated with the (q−2)-dimensional subspace orthogonal
to |χ 〉 and |ψ 〉. Clearly all these eigenvalues are given by

λj = eβJ − 1 , j ∈ {3 , . . . , q} . (6.349)

The partition function is then
Z = λN1 + λN2 + (q − 2)λN3 , (6.350)

and in the thermodynamic limit N → ∞ the maximum eigenvalue λ1 dominates. Note that we recover
the correct limit as h→ 0.
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