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0.1. PREFACE 1

0.1 Preface

This is a proto-preface. A more complete preface will be written after these notes are completed.

These lecture notes are intended to supplement a course in statistical physics at the upper division
undergraduate or beginning graduate level.

I was fortunate to learn this subject from one of the great statistical physicists of our time, John Cardy.

I am grateful to my wife Joyce and to my children Ezra and Lily for putting up with all the outrageous
lies I've told them about getting off the computer ‘in just a few minutes’ while working on these notes.

These notes are dedicated to the only two creatures I know who are never angry with me: my father and
my dog.

Figure 1: My father (Louis) and my dog (Henry).
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4 CHAPTER 1. FUNDAMENTALS OF PROBABILITY

1.2 Statistical Properties of Random Walks

1.2.1 One-dimensional random walk

Consider the mechanical system depicted in fig. 1.1, a version of which is often sold in novelty shops. A
ball is released from the top, which cascades consecutively through N levels. The details of each ball’s
motion are governed by Newton’s laws of motion. However, to predict where any given ball will end up in
the bottom row is difficult, because the ball’s trajectory depends sensitively on its initial conditions, and
may even be influenced by random vibrations of the entire apparatus. We therefore abandon all hope of
integrating the equations of motion and treat the system statistically. That is, we assume, at each level,
that the ball moves to the right with probability p and to the left with probability ¢ = 1 — p. If there is
no bias in the system, then p = ¢ = % The position X after N steps may be written

X=> o, (1.1)

where o; = +1 if the ball moves to the right at level j, and g; = —1 if the ball moves to the left at level
j. At each level, the probability for these two outcomes is given by

p ifo=+1

1.2
q ifo=-1. (1.2)

Pcr :p50,+1 +q5cr,—1 = {

This is a normalized discrete probability distribution of the type discussed in section 1.5 below. The
multivariate distribution for all the steps is then

N
P(oy,...,on) =[] Ploy) . (1.3)
j=1

Our system is equivalent to a one-dimensional random walk. Imagine an inebriated pedestrian on a
sidewalk taking steps to the right and left at random. After N steps, the pedestrian’s location is X.

Now let’s compute the average of X:

N
(X)=(> 0;)=N{o)=N> oP(0)=N(p—q)=N2p—1). (1.4)
7j=1 o=%1
This could be identified as an equation of state for our system, as it relates a measurable quantity X to
the number of steps N and the local bias p. Next, let’s compute the average of X2

(X%) = (oj05) = N*(p— q)* + 4Npq . (1.5)

Here we have used
1 if j =74

(oj05) = 050+ (1= 0 ) (0 = 0)* = {(p —q)? ifj#£j .
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Figure 1.1: The falling ball system, which mimics a one-dimensional random walk.

Note that (X?) > (X)?, which must be so because
Var(X) = (AX)?) = (X — (X)) = (X?) - (X)* . (17)

This is called the variance of X. We have Var(X) = 4Npq. The root mean square deviation, AX, .,
is the square root of the variance: AX, . = /Var(X). Note that the mean value of X is linearly

rms
proportional to N', but the RMS fluctuations AX,, . are proportional to N*/2. In the limit N — oo

then, the ratio AX,./(X) vanishes as N~/2. This is a consequence of the central limit theorem (see
§1.5.2 below), and we shall meet up with it again on several occasions.

We can do even better. We can find the complete probability distribution for X. It is given by

N
Py x = <N >PNR M, (1.8)

R
where Ny, are the numbers of steps taken to the right/left, with N = N, + N, and X = N, — N,.
There are many independent ways to take N steps to the right. For example, our first N steps could
all be to the right, and the remaining N, = N — N, steps would then all be to the left. Or our final N
steps could all be to the right. For each of these independent possibilities, the probability is p™Vr ¢™r.
How many possibilities are there? Elementary combinatorics tells us this number is

N N!
= —. 1.9
<NR> NN (1.9)

Note that N + X = 2N, so we can replace Ny, = $(N £ X). Thus,

N!

_ (N+X)/2 (N-X)/2

Py x = (N+X),(N—X),p q . (1.10)
2 : 2

!The exception is the unbiased case p = g = %, where (X) = 0.
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Figure 1.2: Comparison of exact distribution of eqn. 1.10 (red squares) with the Gaussian distribution
of eqn. 1.19 (blue line).

1.2.2 Thermodynamic limit

Consider the limit N — oo but with x = X/N finite. This is analogous to what is called the thermody-
namic limit in statistical mechanics. Since N is large, x may be considered a continuous variable. We
evaluate In Py y using Stirling’s asymptotic expansion

ImN!~NInN — N +O(nN) . (1.11)
We then have
nPyy~NInN—N-1N1+z)h [%N(l —I—x)} +IN(1+a)
~IN(1-2)ln [%N(l - x)} +INA—2)+ IN1+2) np+IN(1—2) Ing (1.12)
=~V [(52) In (552) + (555) n (452)] + N[ (152) mp + (15%) Ing -

Notice that the terms proportional to N In N have all cancelled, leaving us with a quantity which is linear
in N. We may therefore write In Py, v = —N f(z) + O(In V), where

F) = [(52) I (52) + (55) i (459) ] [(52) mp + (455) Ing| . (1.13)

We have just shown that in the large N limit we may write
Pyx = Ce NIX/N) (1.14)

where C is a normalization constant’. Since N is by assumption large, the function Py x is dominated
by the minimum (or minima) of f(x), where the probability is maximized. To find the minimum of f(x),

2The origin of C lies in the O(In N) and O(N°) terms in the asymptotic expansion of In N!. We have ignored these terms
here. Accounting for them carefully reproduces the correct value of C in eqn. 1.20.
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we set f'(z) = 0, where

1+
z)=1m (<. . 1.15
fa)=dm (4 (1.15)
Setting f’(xz) = 0, we obtain
1+2 p _
— =p—gq. 1.16
11—z ¢ - r=pP—d ( )
We also have ]
"(z) = 1.17
1) = s (117)
so invoking Taylor’s theorem,
fl@)=f@+if" @ (x—-2°+.... (1.18)
Putting it all together, we have
N(z —z)? (X — X)?
Pyx=~=Cexp|————| =Cexp|— ———| , 1.19
X [ 8pq ] [ 8Npq (1.19)

where X = (X) = N(p — q) = NZ. The constant C is determined by the normalization condition,

ZPNXN C/dX exp[ e ] V2nNpqC | (1.20)

and thus C = 1/4/27Npq. Why don’t we go beyond second order in the Taylor expansion of f(x)? We
will find out in §1.5.2 below

1.2.3 Entropy and energy

The function f(z) can be written as a sum of two contributions, f(z) = e(x) — s(x), where

(o) = ~(52)n (152) — (455 n (152)

e(z) = —3In(pq) — 3z In(p/q) - (121

The function S(N,z) = Ns(z) is analogous to the statistical entropy of our system®. We have

S(N,z) = Ns(x) = 1n<]*7\\£{> _ ln<%N(]1V+ x)> . (1.22)

Thus, the statistical entropy is the logarithm of the number of ways the system can be configured so as to
yield the same value of X (at fired N ). The second contribution to f(x) is the energy term. We write

E(N,z) = Ne(z) = —3N In(pq) — Nz In(p/q) . (1.23)

The energy term biases the probability Py y = exp(S — E) so that low energy configurations are more
probable than high energy configurations. For our system, we see that when p < ¢ (i.e. p < %), the energy

3The function s(x) is the specific entropy.
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is minimized by taking x as small as possible (meaning as negative as possible). The smallest possible
allowed value of x = X/N is = —1. Conversely, when p > ¢ (i.e. p > %), the energy is minimized by
taking x as large as possible, which means x = 1. The average value of x, as we have computed explicitly,
is £ =p—q =2p— 1, which falls somewhere in between these two extremes.

In actual thermodynamic systems, entropy and energy are not dimensionless. What we have called S
here is really S/k;, which is the entropy in units of Boltzmann’s constant. And what we have called E
here is really E/k,T, which is energy in units of Boltzmann’s constant times temperature.

1.3 Basic Concepts in Probability Theory

Here we recite the basics of probability theory.

1.3.1 Fundamental definitions

The natural mathematical setting is set theory. Sets are generalized collections of objects. The basics:
w € A is a binary relation which says that the object w is an element of the set A. Another binary
relation is set inclusion. If all members of A are in B, we write A C B. The union of sets A and B is
denoted A U B and the intersection of A and B is denoted A N B. The Cartesian product of A and B,
denoted A x B, is the set of all ordered elements (a,b) where a € A and b € B.

Some details: If w is not in A, we write w ¢ A. Sets may also be objects, so we may speak of sets of
sets, but typically the sets which will concern us are simple discrete collections of numbers, such as the
possible rolls of a die {1,2,3,4,5,6}, or the real numbers R, or Cartesian products such as RY. If A C B
but A # B, we say that A is a proper subset of B and write A C B. Another binary operation is the set
difference A\ B, which contains all w such that w € A and w ¢ B.

In probability theory, each object w is identified as an event. We denote by €2 the set of all events, and
() denotes the set of no events. There are three basic axioms of probability:
i) To each set A is associated a non-negative real number P(A), which is called the probability of A.
ii) P(Q2) = 1.

iii) If {A;} is a collection of disjoint sets, i.e. if A; M A; =0 for all i # j, then

P(UAZ) =Y Py (1.24)

From these axioms follow a number of conclusions. Among them, let =A = Q\ A be the complement of
A, i.e. the set of all events not in A. Then since AU—A = 2, we have P(—A) = 1— P(A). Taking A = (2,
we conclude P(()) = 0.

The meaning of P(A) is that if events w are chosen from Q at random, then the relative frequency for
w € A approaches P(A) as the number of trials tends to infinity. But what do we mean by ’at random’?
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One meaning we can impart to the notion of randomness is that a process is random if its outcomes
can be accurately modeled using the axioms of probability. This entails the identification of a probability
space 2 as well as a probability measure P. For example, in the microcanonical ensemble of classical
statistical physics, the space €2 is the collection of phase space points ¢ = {qy,...,4,,P1,---, P, and the
probability measure is du = X1(E) [[iL, dg; dp; (5(E — H(q,p)), so that for A € Q) the probability of A
is P(A) = [du X 4(p), where X 4(¢) = 1if o € A and X, () = 0if ¢ ¢ A is the characteristic function
of A. The quantity X(E) is determined by normalization: [du = 1.

1.3.2 Bayesian statistics

We now introduce two additional probabilities. The joint probability for sets A and B together is written
P(AN B). That is, P(AN B) = Probjw € A and w € B]. For example, A might denote the set of all
politicians, B the set of all American citizens, and C the set of all living humans with an 1Q greater than
60. Then AN B would be the set of all politicians who are also American citizens, etc. Exercise: estimate
P(AnBNOQO).

The conditional probability of B given A is written P(B|A). We can compute the joint probability
P(ANnB)=P(BNA) in two ways:

P(ANB) = P(A|B) - P(B) = P(B|A) - P(A) . (1.25)
Thus,
P(A|B) = % ’ (1.26)

a result known as Bayes’ theorem. Now suppose the ‘event space’ is partitioned as {4,}. Then

P(B) = P(B|A;) P(4;) . (1.27)

We then have P(B|A;) P(A;)
P(A;|B) = ZjP(B\;lj)P(zAj) , (1.28)

a result sometimes known as the extended form of Bayes’ theorem. When the event space is a ‘binary
partition’ {A, - A}, we have

P(B|A) P(A)
(B|A) P(A) + P(B|-A) P(=A) -

P(AB) = (1.29)

Note that P(A|B) + P(—A|B) =1 (which follows from —-—A = A).

As an example, consider the following problem in epidemiology. Suppose there is a rare but highly
contagious disease A which occurs in 0.01% of the general population. Suppose further that there is
a simple test for the disease which is accurate 99.99% of the time. That is, out of every 10,000 tests,
the correct answer is returned 9,999 times, and the incorrect answer is returned only once. Now let us
administer the test to a large group of people from the general population. Those who test positive are
quarantined. Question: what is the probability that someone chosen at random from the quarantine
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group actually has the disease? We use Bayes’ theorem with the binary partition {A, = A}. Let B denote
the event that an individual tests positive. Anyone from the quarantine group has tested positive. Given
this datum, we want to know the probability that that person has the disease. That is, we want P(A|B).
Applying eqn. 1.29 with

P(A)=0.0001 , P(-A)=09999 , P(B|A)=09999 , P(B|-A)=0.0001,

we find P(A|B) = % That is, there is only a 50% chance that someone who tested positive actually has
the disease, despite the test being 99.99% accurate! The reason is that, given the rarity of the disease in
the general population, the number of false positives is statistically equal to the number of true positives.

In the above example, we had P(B|A) + P(B|-A) = 1, but this is not generally the case. What is true
instead is P(B|A) + P(—B|A) = 1. Epidemiologists define the sensitivity of a binary classification test as
the fraction of actual positives which are correctly identified, and the specificity as the fraction of actual
negatives that are correctly identified. Thus, se = P(B|A) is the sensitivity and sp = P(—B|—A) is the
specificity. We then have P(B|—A) =1 — P(-B|—=A). Therefore,

P(B|A) + P(B|-A) = 1 + P(B|A) — P(~B|-A) =1 +se —sp . (1.30)

In our previous example, se = sp = 0.9999, in which case the RHS above gives 1. In general, if P(A) = f
is the fraction of the population which is afflicted, then
f-se

P(infected | positive) = Feet(=f) (=) (1.31)

For continuous distributions, we speak of a probability density. We then have

P(y) = [do Plyla) P(2) (1.32)

and
P(zly) = 7 dj%g?ai(?(x') : (1.33)

The range of integration may depend on the specific application.

The quantities P(A;) are called the prior distribution. Clearly in order to compute P(B) or P(A;|B)
we must know the priors, and this is usually the weakest link in the Bayesian chain of reasoning. If
our prior distribution is not accurate, Bayes’ theorem will generate incorrect results. One approach to
approximating prior probabilities P(A4,) is to derive them from a mazimum entropy construction.

1.3.3 Random variables and their averages

Consider an abstract probability space X whose elements (i.e. events) are labeled by x. The average of
any function f(z) is denoted as Ef or (f), and is defined for discrete sets as

Ef =(f) =) f(=)Px), (1.34)

zeX



1.4. ENTROPY AND PROBABILITY 11

where P(x) is the probability of z. For continuous sets, we have

Ef = (f) = / dr f(z) P(x) . (1.35)

X

Typically for continuous sets we have X = R or X = R, ;. Gardiner and other authors introduce an

extra symbol, X, to denote a random wvariable, with X (x) = z being its value. This is formally useful
but notationally confusing, so we’ll avoid it here and speak loosely of x as a random variable.

When there are two random variables x € X and y € ), we have ) = X x Y is the product space, and

Ef(z,y) = (f(z,9)) = D> > fla,y) P(z,y) , (1.36)

reX ye)y

with the obvious generalization to continuous sets. This generalizes to higher rank products, i.e. x; € X,
with ¢ € {1,..., N}. The covariance of z; and z; is defined as

Cyj = ((z; — () (l’j - <$]>)> = (wsxj) — (@) (x;) - (1.37)
If f(x) is a convex function then one has
Ef(x) > f(Ex) . (1.38)

For continuous functions, f(z) is convex if f”(x) > 0 everywhere®. If f(x) is convex on some interval
[a, b] then for z; 5 € [a,b] we must have

Az + (1= Nag) < Af(aq) + (1= A)f(a) (1.39)

where X € [0, 1]. This is easily generalized to
P pan) D pat (@) (1.40)

where p,, = P(z,,), a result known as Jensen’s theorem.

1.4 Entropy and Probability

1.4.1 Entropy and information theory

It was shown in the classic 1948 work of Claude Shannon that entropy is in fact a measure of information”.
Suppose we observe that a particular event occurs with probability p. We associate with this observation
an amount of information I(p). The information I(p) should satisfy certain desiderata:

1A function g(z) is concave if —g(x) is convex.
5See ‘An Introduction to Information Theory and Entropy’ by T. Carter, Santa Fe Complex Systems Summer School,
June 2011. Available online at http://astarte.csustan.edu/$\sim$tom/SFI-CSSS/info-theory/info-lec.pdf.
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1 Information is non-negative, i.e. I(p) > 0.

2 If two events occur independently so their joint probability is p; py, then their information is addi-
tive, i.e. I(pypy) = I(py) + 1(ps)-

3 I(p) is a continuous function of p.

4 There is no information content to an event which is always observed, i.e. I(1) = 0.

From these four properties, it is easy to show that the only possible function I(p) is
I(p)=—-Alnp, (1.41)

where A is an arbitrary constant that can be absorbed into the base of the logarithm, since log, z =
Inz/Inb. We will take A =1 and use e as the base, so I(p) = —Inp. Another common choice is to take
the base of the logarithm to be 2, so I(p) = —logyp. In this latter case, the units of information are
known as bits. Note that I(0) = co. This means that the observation of an extremely rare event carries
a great deal of information®

Now suppose we have a set of events labeled by an integer n which occur with probabilities {p, }. What
is the expected amount of information in NV observations? Since event n occurs an average of Np,, times,
and the information content in p,, is —Inp,,, we have that the average information per observation is

()
S:T:—zn:pnlnpn, (1.42)

which is known as the entropy of the distribution. Thus, maximizing S is equivalent to maximizing the
information content per observation.

Consider, for example, the information content of course grades. As we shall see, if the only constraint on
the probability distribution is that of overall normalization, then .S is maximized when all the probabilities
p,, are equal. The binary entropy is then S = log, I, since p,, = 1/I". Thus, for pass/fail grading, the
maximum average information per grade is — 10g2(%) = logy 2 = 1 bit. Ifonly A, B, C, D, and F grades are
assigned, then the maximum average information per grade is log, 5 = 2.32 bits. If we expand the grade
options to include {A+, A, A-, B+, B, B-, C+, C, C-, D, F}, then the maximum average information
per grade is logy 11 = 3.46 bits.

Equivalently, consider, following the discussion in vol. 1 of Kardar, a random sequence {n,ny,...,ny}
where each element n; takes one of K possible values. There are then K such possible sequences, and
to specify one of them requires logs(K”~) = N log, K bits of information. However, if the value n occurs
with probability p,,, then on average it will occur INV,, = Np,, times in a sequence of length N, and the
total number of such sequences will be

N!
—K -
Hn:l Nn'

SMy colleague John McGreevy refers to I(p) as the surprise of observing an event which occurs with probability p. I like
this very much.

g(N) = (1.43)
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In general, this is far less that the total possible number K, and the number of bits necessary to specify
one from among these g(N) possibilities is

logy g(N) = logy(N1) ZlogQN' —Nanlogzpn, (1.44)

n=1

up to terms of order unity. Here we have invoked Stirling’s approximation. If the distribution is uniform,
then we have p, = & for all n € {1,..., K}, and logy g(N) = Nlogy K

1.4.2 Probability distributions from maximum entropy

We have shown how one can proceed from a probability distribution and compute various averages. We
now seek to go in the other direction, and determine the full probability distribution based on a knowledge
of certain averages.

At first, this seems impossible. Suppose we want to reproduce the full probability distribution for an
N-step random walk from knowledge of the average (X) = (2p — 1)N, where p is the probability of
moving to the right at each step (see §1.2 above). The problem seems ridiculously underdetermined,
since there are 2V possible configurations for an N-step random walk: o;==xlforj=1,...,N. Overall
normalization requires

> Ploy,...,on) =1, (1.45)

{Uj}

but this just imposes one constraint on the 2V probabilities P(cy,...,o ~), leaving 2NV 1 overall param-
eters. What principle allows us to reconstruct the full probability distribution

N N
P(Ulv L 7UN) = H (péo'j,l + qéo'j,—l) = Hp(1+0j)/2 q(l—Uj)/Z ’ (146)
j=1 j=1

corresponding to N independent steps?

The principle of maximum entropy

The entropy of a discrete probability distribution {p,,} is defined as

where here we take e as the base of the logarithm. The entropy may therefore be regarded as a function of
the probability distribution: S =S ({pn}) One special property of the entropy is the following. Suppose
we have two independent normalized distributions {pa} and {pf’} The joint probability for events a
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and b is then P, = paA pg’. The entropy of the joint distribution is then

SZ—ZZPMIHPM Zzpapb papb ZZpapb lnpaA—l—lan’)
:—Zpalnpa Zpb Zpb lnpb-Zpa:—Zpalnpa—Zpb lmpl')3
a b a a b

=S5~ +58.
Thus, the entropy of a joint distribution formed from two independent distributions is additive.

Suppose all we knew about {p, } was that it was normalized. Then ) p, = 1. This is a constraint on
the values {p,,}. Let us now extremize the entropy S with respect to the distribution {p,,}, but subject
to the normalization constraint. We do this using Lagrange’s method of undetermined multipliers. We

define
S*({pn}:A) an Inp, — A(an - 1) (1.48)

and we freely extremize S* over all its arguments. Thus, for all n we have

0S5*
o = —(Inp, + 1+ )

a s* (1.49)

an

—(14))

0=

From the first of these equations, we obtain p, = e , and from the second we obtain

an = (+N. Z 1=Ie 0HN (1.50)

where I" = )" 1 is the total number of possible events. Thus, p,, = 1/I", which says that all events are
equally probable.

Now suppose we know one other piece of information, which is the average value X =) X, p, of some
quantity. We now extremize S subject to two constraints, and so we define

S*({pn}v)‘m)‘l) = - an lnpn - )‘O(an - 1) - Al(Zann - X) . (151)

We then have
as*
dp,

which yields the two-parameter distribution

p, = e UHh) e Xn (1.53)

—(Inp, +1+ X+ A X,) =0, (1.52)

n

To fully determine the distribution {p,,} we need to invoke the two equations ) ., p, =1land ) X, p, =
X, which come from extremizing S* with respect to A, and A, respectively:

L= e (0 3 X,
n

X = e_(l'l')‘o) ZXTL e_)‘lxn .
n

(1.54)
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General formulation

The generalization to K extra pieces of information (plus normalization) is immediately apparent. We
have

X' =Y Xip,, (1.55)

and therefore we define
K
S* ({pah PAa}) = = puInp, — ZAG(ZX;;% _ Xa) , (1.56)
n a=0 n

with X,(Lazo) = X(@=0) — 1 Then the optimal distribution which extremizes S subject to the K + 1
constraints is

K
pn:exp{_l_z)‘a‘Xﬁ}

a=0
1 K
~oa{-3a),
a=

where Z = e!*%0 is determined by normalization: 3 p, = 1. This is a (K + 1)-parameter distribution,
with {A\y, A;,..., A} determined by the K + 1 constraints in eqn. 1.55.

(1.57)

Example

As an example, consider the random walk problem. We have two pieces of information:

Z"'ZP(O’l,...,O'N):l
71 oN

N (1.58)

Z”'ZP(UU’”’UN)ZUJ:X'

J=1

Here the discrete label n from §1.4.2 ranges over 2V possible values, and may be written as an N digit
binary number 7y -- -7y, where r; = %(1 + aj) is 0 or 1. Extremizing S subject to these constraints, we
obtain

N
P(al,...,JN):Cexp{—/\Zaj}:CHe_)‘JJ' , (1.59)
J Jj=1

where C = e~(*%) and A = ;. Normalization then requires

Tr P = ZP(JI,...,JN):C(E)‘—I-E_)‘)N ; (1.60)

{O'j}
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hence C = (cosh \)™". We then have

N —)\o. N
e J
P(O-:l’70-N):Hm:H(p50371+q5037_1) 5 (161)
j=1 j=1
where
_ 1= O (1.62)
P=aTex » 17 7P X '

We then have X = (2p — 1)N, which determines p = %(N + X)), and we have recovered the Bernoulli
distribution.

Of course there are no miracles’, and there are an infinite family of distributions for which X = (2p —
1)N that are not Bernoulli. For example, we could have imposed another constraint, such as F =

Z;V:_ll 0,041 This would result in the distribution

N N-1
1
P(Ul,...,O'N):Eexp{—/\IZOj—/\2ZO'jO'j+l}, (163)
j=1 j=1

with Z (A, ;) determined by normalization: ) _P(o) = 1. This is the one-dimensional Ising chain
of classical equilibrium statistical physics. Defining the transfer matrix R, , = e M(5H8)/2 o= Aoss with

5,8 =41,
—A{—=A A
e~ M A2 e™2
R= < e)‘z e)‘l_)‘2> (
1.64)

= e 2 cosh AMI+ e 7% — e~ M2 sinh MNT?,
where 7 and 77 are Pauli matrices, we have that
Zring =Tr (RN) ) Zchain =Tr (RN_IS) ) (165)

/ .
where S, = e M(+)/2 e,

-
= (7 4)
1 eM (1.66)

=cosh A\ I+ 7% —sinh A\, 7° .

The appropriate case here is that of the chain, but in the thermodynamic limit N — oo both chain and
ring yield identical results, so we will examine here the results for the ring, which are somewhat easier to
obtain. Clearly Zying = Cf + ¢, where (. are the eigenvalues of R:

¢, =e Mcosh ) £ \/6_2’\2 sinh?)\; +e?2 . (1.67)

In the thermodynamic limit, the ¢, eigenvalue dominates, and Z;,, ~ ¢ iv . We now have

N .
X:<Zaj>:_81n2 ___ Nsinh) ‘ (1.68)

=1 O\ \/sinh?\; + et

"See §10 of An Enquiry Concerning Human Understanding by David Hume (1748).
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We also have E = —01n Z/0\,. These two equations determine the Lagrange multipliers A, (X, E, N) and
X2(X, E,N). In the thermodynamic limit, we have A\, = \;(X/N, E/N). Thus, if we fix X/N =2p—1
alone, there is a continuous one-parameter family of distributions, parametrized ¢ = E/N, which satisfy
the constraint on X.

So what is it about the maximum entropy approach that is so compelling? Maximum entropy gives us
a calculable distribution which is consistent with maximum ignorance given our known constraints. In
that sense, it is as unbiased as possible, from an information theoretic point of view. As a starting point,
a maximum entropy distribution may be improved upon, using Bayesian methods for example (see §1.6.2
below).

1.4.3 Continuous probability distributions

Suppose we have a continuous probability density P(¢) defined over some set 2. We have observables

X = / dp X°() P(sp) (1.69)
Q

where du is the appropriate integration measure. We assume duy = Hle dp;, where D is the dimension
of Q2. Then we extremize the functional

a=0

K
S'[Ple).AA] == [du Ple)nP(e) — 3", ( [anPe) xee) - Xa> (1.70)
Q Q

with respect to P(¢) and with respect to {)\,}. Again, X°(¢) = X° = 1. This yields the following result:

K
ImP(p)=—1-Y X, X%p) . (1.71)

a=0
The K + 1 Lagrange multipliers {\,} are then determined from the K + 1 constraint equations in eqn.

1.69.

As an example, consider a distribution P(z) over the real numbers R. We constrain

/dx Plx)=1 |, /dx xP(x)=pn /d:z: 22 P(x) = p? + 0% . (1.72)

Extremizing the entropy, we then obtain
P(z) = Ce Mo 2" (1.73)

where C = e~(11%). We already know the answer:
1
P(a:) = \/ﬁ 6_(x_u)2/202 . (174)

In other words, A\, = —u/0? and \, = 1/202, with C = (2r0?)™1/2 exp(—u?/20?).
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1.5 General Aspects of Probability Distributions

1.5.1 Discrete and continuous distributions

Consider a system whose possible configurations |n) can be labeled by a discrete variable n € C, where
C is the set of possible configurations. The total number of possible configurations, which is to say the
order of the set C, may be finite or infinite. Next, consider an ensemble of such systems, and let P,
denote the probability that a given random element from that ensemble is in the state (configuration)
|n). The collection {P,} forms a discrete probability distribution. We assume that the distribution is
normalized, meaning

> p,=1. (1.75)

neC

Now let A,, be a quantity which takes values depending on n. The average of A is given by

(A)=> P, A, . (1.76)

neC

Typically, C is the set of integers (Z) or some subset thereof, but it could be any countable set. As an
example, consider the throw of a single six-sided die. Then P, = % for each n € {1,...,6}. Let A, =0

if n is even and 1 if n is odd. Then find (4) = %, i.e. on average half the throws of the die will result in

an even number.

It may be that the system’s configurations are described by several discrete variables {n,ny,ng,...}. We
can combine these into a vector n and then we write P, for the discrete distribution, with ), P, = 1.

Another possibility is that the system’s configurations are parameterized by a collection of continuous
variables, ¢ = {¢;,...,p,}. We write ¢ € €, where © is the phase space (or configuration space) of the
system. Let du be a measure on this space. In general, we can write

d:u = W((')Dlv s 790n) d('pl d(102 t d(pn . (177)

The phase space measure used in classical statistical mechanics gives equal weight W to equal phase
space volumes:

dp = C [ ] dg, dp, . (1.78)

o=1
where C is a constant we shall discuss later on below®.

Any continuous probability distribution P(¢) is normalized according to

ﬁmmwzl. (1.79)

Q

8Such a measure is invariant with respect to canonical transformations, which are the broad class of transformations
among coordinates and momenta which leave Hamilton’s equations of motion invariant, and which preserve phase space
volumes under Hamiltonian evolution. For this reason du is called an invariant phase space measure.
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The average of a function A(p) on configuration space is then
) = [duPle) Ate) (1.80)
Q

For example, consider the Gaussian distribution

P(z) = Norr: o (@—n)?/20% (1.81)
From the result’
(o]
/d:z: e’ g=hT = 1/1 /Ao (1.82)
«@
—0o0

we see that P(x) is normalized. One can then compute

()
(&) — (2)

We call i the mean and o the standard deviation of the distribution, eqn. 1.81.

" (1.83)
g .

The quantity P(y) is called the distribution or probability density. One has
P(p) du = probability that configuration lies within volume dyu centered at ¢

For example, consider the probability density P = 1 normalized on the interval x € [0, 1] . The probability
that some x chosen at random will be ezactly %, say, is infinitesimal — one would have to specify each of
the infinitely many digits of x. However, we can say that x € [0.45, 0.55] with probability %.

If z is distributed according to P;(x), then the probability distribution on the product space (x;, x5)
is simply the product of the distributions: Py(xy,z5) = P(zy) Pj(x5). Suppose we have a function
é(xq,...,xy). How is it distributed? Let P(¢) be the distribution for ¢. We then have

P(¢) = /dxl.../dg;NPN(xl,...,xN)5(¢(x1,...,xN)—qs)
e e (1.84)
= /dxl"'/d$NP1($1)"'P1($N)5<¢($17"'7$N)_¢> ;

where the second line is appropriate if the {x]} are themselves distributed independently. Note that

/ dp P(¢) =1, (1.85)

so P(¢) is itself normalized.

9Memorize this!
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1.5.2 Central limit theorem

In particular, consider the distribution function of the sum X = sz\i 17;. We will be particularly

interested in the case where NV is large. For general N, though, we have
[ee) [e.e]
—0oQ —0o0
It is convenient to compute the Fourier transform'’ of P(X):

Py (k) = / dX Py(X)e X

_ (1.87)
— /dX/d:El.../deP1($l)---P1(ZEN) S+ oy —X)e X = [P(K)]Y,
where -
(k) = /d:n Py () c-ike (1.88)

is the Fourier transform of the single variable distribution P,(x). The distribution Py (X) is a convo-
lution of the individual P, (x;) distributions. We have therefore proven that the Fourier transform of a
convolution is the product of the Fourier transforms.

OK, now we can write for P, (k)

Py(k) = /del(:p) (1—ike— LK% 4 Likdad 1) s

=1—ik(z) — $E**) + LikP (@) + ... .

10Jean Baptiste Joseph Fourier (1768-1830) had an illustrious career. The son of a tailor, and orphaned at age eight,
Fourier’s ignoble status rendered him ineligible to receive a commission in the scientific corps of the French army. A
Benedictine minister at the Ecole Royale Militaire of Auxerre remarked, ”Fourier, not being noble, could not enter the
artillery, although he were a second Newton.” Fourier prepared for the priesthood but his affinity for mathematics proved
overwhelming, and so he left the abbey and soon thereafter accepted a military lectureship position. Despite his initial
support for revolution in France, in 1794 Fourier ran afoul of a rival sect while on a trip to Orleans and was arrested
and very nearly guillotined. Fortunately the Reign of Terror ended soon after the death of Robespierre, and Fourier was
released. He went on Napoleon Bonaparte’s 1798 expedition to Egypt, where he was appointed governor of Lower Egypt. His
organizational skills impressed Napoleon, and upon return to France he was appointed to a position of prefect in Grenoble.
It was in Grenoble that Fourier performed his landmark studies of heat, and his famous work on partial differential equations
and Fourier series. It seems that Fourier’s fascination with heat began in Egypt, where he developed an appreciation of
desert climate. His fascination developed into an obsession, and he became convinced that heat could promote a healthy
body. He would cover himself in blankets, like a mummy, in his heated apartment, even during the middle of summer. On
May 4, 1830, Fourier, so arrayed, tripped and fell down a flight of stairs. This aggravated a developing heart condition,
which he refused to treat with anything other than more heat. Two weeks later, he died. Fourier’s is one of the 72 names
of scientists, engineers and other luminaries which are engraved on the Eiffel Tower.



1.5. GENERAL ASPECTS OF PROBABILITY DISTRIBUTIONS 21

Thus,
In Py (k) = —ipk — Lo?k? + i3 k3 + ..., (1.90)
where
p=(x)
0% = (%) — (x)? (1.91)
7’ = (2% = 3(a?) (z) +2(z)°
We can now write
[pl(k)]N _ o~ iNpk (—No?k?/2 JiNv3E3/6 (1.92)

Now for the inverse transform. In computing Py (X), we will expand the term eNYR/6 and all subsequent
terms in the above product as a power series in k. We then have

fdk
Py(X) = /% (XN o= NoZk?/2 {1 +3iNYE 4. }

3 3

—(1-LnN 6_ 4o 1 e~ (X=Nu)?/2No? (1.93)
6 0X? V2rNo?
3 3

e ) e
6 73 V21 No?

In going from the second line to the third, we have written X = Npu++/N &, in which case Oy =N —1/2 85,
and the non-Gaussian terms give a subleading contribution which vanishes in the N — oo limit. We have
just proven the central limit theorem: in the limit N — oo, the distribution of a sum of N independent
random variables z; is a Gaussian with mean Ny and standard deviation VN o. Our only assumptions
are that the mean p and standard deviation o exist for the distribution P,(x). Note that P;(z) itself
need not be a Gaussian — it could be a very peculiar distribution indeed, but so long as its first and
second moment exist, where the k& moment is simply (z*), the distribution of the sum X = ZZJ\LI x; is
a Gaussian.

1.5.3 Moments and cumulants

Consider a general multivariate distribution P(zy,...,2) and define the multivariate Fourier transform
A oo oo N
P(ky,... ky) = /dazl . -/da:N P(zq,...,zx) €xp <— iija:j> . (1.94)
s e j=1
The inverse relation is
[e.e] e} N
“ S Jj=
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Acting on P(k:), the differential operator i % brings down from the exponential a factor of z; inside the

[<z %)ml.-. <¢%>mN P(k)] = (2" V) (1.96)

k=0
Similarly, we can reconstruct the distribution from its moments, viz.

Z Z mN Ty (1.97)

m,; =0 m =0

integral. Thus,

1 .

The cumulants ()" - - JE%N ) are defined by the Taylor expansion of In P(k):

In P(k Z Z Zkl L T gy (1.98)

|
N
my =0 m =0 N

There is no general form for the cumulants. It is straightforward to derive the following low order results:

(@) = ()
«%%» = (%xﬂ - <$z><$g> (1.99)
<<95i33j33k>> = (l’ixjxk> (z;7; ><l’k> <xj33k><xi> - <xkl’i><%’> + 2<33i><95j><35k> .

1.5.4 Multidimensional Gaussian integral

Consider the multivariable Gaussian distribution,

P(x) = <(d2e;;11>1/2 exp( 3T Ay a;]) ) (1.100)

where A is a positive definite matrix of rank n. A mathematical result which is extremely important
throughout physics is the following;:

det A\Y2 T T
Z(b) = <(27r)"> /da:l - /dazn exp( 7T Ajjx;+ b, ) = exp (% b, Ai_jl bj) . (1.101)
—00 —00
Here, the vector b= (b, ..., b,) is identified as a source. Since Z(0) = 1, we have that the distribution
P(x) is normalized. Now consider averages of the form
0"Z(b)
<:Ej1... g;]-2k> = /d";p P(ac) :Ejl... ;pj% = 7@{) o, .
g Jo, 10=0 (1.102)
g _1 DY _1
o Z Ajo'(l)jo'(Z) Ajo'(2k71)jo'(2k) )
contractions
The sum in the last term is over all contractions of the indices {j;, ..., jy.}. A contraction is an

arrangement of the 2k indices into k pairs. There are C,;, = (2k)!/ 28 k! possible such contractions. To
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obtain this result for €}, we start with the first index and then find a mate among the remaining 2%k — 1
indices. Then we choose the next unpaired index and find a mate among the remaining 2k — 3 indices.
Proceeding in this manner, we have

~ (2k)!
o 2kg!
Equivalently, we can take all possible permutations of the 2k indices, and then divide by 2Fk! since
permutation within a given pair results in the same contraction and permutation among the k pairs
results in the same contraction. For example, for k = 2, we have C; = 3, and

1 -1 1 41 1 4—1
(25,25, %5,%5, ) = Aj 5, Ag, A5 A0, A6 A%0, - (1.104)

Co=(2k—1)-(2k—3)---3-1 (1.103)

If we define b, = ik;, we have
P(k) = exp(— Lk A kj) , (1.105)

from which we read off the cumulants ((a;lx]» — A', with all higher order cumulants vanishing.

ij
1.6 Bayesian Statistical Inference

1.6.1 Frequentists and Bayesians

There field of statistical inference is roughly divided into two schools of practice: frequentism and
Bayesianism. You can find several articles on the web discussing the differences in these two approaches.
In both cases we would like to model observable data @ by a distribution. The distribution in general
depends on one or more parameters 8. The basic worldviews of the two approaches are as follows:

Frequentism: Data x are a random sample drawn from an infinite pool at some frequency.
The underlying parameters 8, which are to be estimated, remain fixed during this process.
There is no information prior to the model specification. The experimental conditions under
which the data are collected are presumed to be controlled and repeatable. Results are gen-
erally expressed in terms of confidence intervals and confidence levels, obtained via statistical
hypothesis testing. Probabilities have meaning only for data yet to be collected. Calculations
generally are computationally straightforward.

Bayesianism: The only data x which matter are those which have been observed. The
parameters @ are unknown and described probabilistically using a prior distribution, which
is generally based on some available information but which also may be at least partially
subjective. The priors are then to be updated based on observed data x. Results are expressed
in terms of posterior distributions and credible intervals. Calculations can be computationally
intensive.

In essence, frequentists say the data are random and the parameters are fized. while Bayesians say the
data are fized and the parameters are random'". Overall, frequentism has dominated over the past several

17 A frequentist is a person whose long-run ambition is to be wrong 5% of the time. A Bayesian is one who, vaguely
expecting a horse, and catching glimpse of a donkey, strongly believes he has seen a mule.” — Charles Annis.
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hundred years, but Bayesianism has been coming on strong of late, and many physicists seem naturally
drawn to the Bayesian perspective.

1.6.2 Updating Bayesian priors

Given data D and a hypothesis H, Bayes’ theorem tells us

D|H) P(H)

pHD) = 2 D) (1.106)

Typically the data is in the form of a set of values @ = {x;,..., 2y}, and the hypothesis in the form
of a set of parameters @ = {f,,...,0,}. It is notationally helpful to express distributions of = and
distributions of & conditioned on 6 using the symbol f, and distributions of 8 and distributions of 6
conditioned on @ using the symbol 7, rather than using the symbol P everywhere. We then have

_ [(=]@)n(8)
m(0)z) = T F@lf) 2@ (1.107)
e

where © > 6 is the space of parameters. Note that [,d@ m(6]x) = 1. The denominator of the RHS
is simply f(«), which is independent of 8, hence w(0|x) < f(x|0)n(0). We call 7(0) the prior for 6,
f(x]0) the likelihood of x given 8, and m(0|x) the posterior for @ given x. The idea here is that while
our initial guess at the @ distribution is given by the prior 7(0), after taking data, we should update this
distribution to the posterior 7(8|x). The likelihood f(x|@) is entailed by our model for the phenomenon
which produces the data. We can use the posterior to find the distribution of new data points y, called
the posterior predictive distribution,

fuia) = [0 f(516) w(Bla) (1.108)
e
This is the update of the prior predictive distribution,
f@) = /d0 F(]0) 7(6) . (1.109)
e

Example: coin flipping

Consider a model of coin flipping based on a standard Bernoulli distribution, where 6§ € [0,1] is the
probability for heads (x = 1) and 1 — 6 the probability for tails (x = 0). That is,

N

Ty, axn|0) = 1—0)6, o+00,.

RN E[( ) Gy0 00, L110)
=0%1 -

H)N_X

1

I
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where X = Z;VZI x;is the observed total number of heads, and N — X the corresponding number of tails.
We now need a prior (). We choose the Beta distribution,

e
m(0) = TBp)

where B(a, ) = I'(a) T'(B) /T (e + ) is the Beta function. One can check that 7(#) is normalized on the
unit interval: f01d9 m(0) = 1 for all positive «, 3. Even if we limit ourselves to this form of the prior,
different Bayesians might bring different assumptions about the values of o and 3. Note that if we choose
a = =1, the prior distribution for # is flat, with 7(6) = 1.

(1.111)

We now compute the posterior distribution for 6:

0) (6 gX+a—1(] _ gyN-X+p-1
T(Olzy, .. wy) = — J@y,: 2y |6) - (1-9) (1.112)
fode/f(xlv"'7$N|9/)7T(9/) B(X+a7N_X+/8)
Thus, we retain the form of the Beta distribution, but with updated parameters,
o =X +a
PN X410 (1.113)

The fact that the functional form of the prior is retained by the posterior is generally not the case in
Bayesian updating. We can also compute the prior predictive,

1
f(xl,...,xm=/def<x1,...,:cN|e>w<e>
0

) (1.114)
1 / X+a-1 N-x4p-1_ BX+a,N-X+p)
= df 9X o1 — )N XA =
B0, ) J — B(a.B)
The posterior predictive is then
1
f(ylv"'ayM|x17'-'v$N) = /def(ylw"7yM|0)7T(0|x17"'7$N)
0
1 / (1.115)
_ X+Y+a—1/1 _ p\N-X+M-Y+5-1 :
wX+mN—X+m/M9 (1-96)
0

B(X+Y+a,N—X+M-Y +0)
B(X +a,N—-X+5)

1.6.3 Hyperparameters and conjugate priors

In the above example, 6 is a parameter of the Bernoulli distribution, i.e. the likelihood, while quantities
a and (3 are hyperparameters which enter the prior 7(0). Accordingly, we could have written 7(60|c, 3)
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for the prior. We then have for the posterior

__ [(=|0)7(6la)
m(0lr, ) = T30 (2|0 7(8'a) ° (1.116)
(S

replacing eqn. 1.107, etc., where @ € A is the vector of hyperparameters. The hyperparameters can
also be distributed, according to a hyperprior p(a), and the hyperpriors can further be parameterized by
hyperhyperparameters, which can have their own distributions, ad nauseum.

What use is all this? We’ve already seen a compelling example: when the posterior is of the same form
as the prior, the Bayesian update can be viewed as an automorphism of the hyperparameter space A, i.e.
one set of hyperparameters « is mapped to a new set of hyperparameters .

Definition: A parametric family of distributions P = {r(8|cr) |0 € O, a € A} is called a
conjugate family for a family of distributions {f(:c\e) |lx € X, 0 € @} if, for all x € X and
a € A,
f(x|6) 7(0|cx)
0 =
"0 ) = Tigr f(aler) x(@']e)
e

eP. (1.117)
That is, (0|, a) = 7(0|x) for some & € A, with a = a(a, x).

As an example, consider the conjugate Bayesian analysis of the Gaussian distribution. We assume a
likelihood

N
f(x|u, s) = (2ms?)~N/? exp{— 2—; Z(acj - u)2} . (1.118)
j=1

The parameters here are @ = {u, s}. Now consider the prior distribution

_ u — fu)*
7 (u, s|pg, 09) = (2mod) /2 exp{— %} . (1.119)
0

Note that the prior distribution is independent of the parameter s and only depends on u and the
hyperparameters o = (11, 0,). We now compute the posterior:

7T(’LL, s|ac,,u0,0’0) (8 f($|’LL, 8) ﬂ-(u7 S|:u070-0)

- 1 N\ o o , N{x) py , N(z?) (1.120)
B exp{ <20(2] - 2s2>u * (0(2] T ) 202 T ’
with (z) = + ;-V:l z; and (z%) = & Z;Vzl x? This is also a Gaussian distribution for u, and after

supplying the appropriate normalization one finds

2\—1/2 (u — M1)2
m(u, slx, g, 09) = (2mo7) eXp4 — T 902 ) (1.121)
1
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with
- +N(<$>—Mo)08
L—=r0T 2 Ng2
L, 0 T (1.122)
02— _ 5%
17 24 No?

Thus, the posterior is among the same family as the prior, and we have derived the update rule for the
hyperparameters (u, o) — (@1,0,). Note that oy < 0, so the updated Gaussian prior is sharper than
the original. The updated mean f, shifts in the direction of (x) obtained from the data set.

1.6.4 The problem with priors

We might think that the for the coin flipping problem, the flat prior m(f) = 1 is an appropriate initial
one, since it does not privilege any value of §. This prior therefore seems ’objective’ or 'unbiased’, also
called 'uninformative’. But suppose we make a change of variables, mapping the interval 6 € [0, 1] to the
entire real line according to ( = In [9 /(1 — 9)] In terms of the new parameter ¢, we write the prior as
7(¢). Clearly m(0)df = 7(¢)d¢, so 7(¢) = m(0) df/d(. For our example, find 7(¢) = Lsech*((/2), which
is not flat. Thus what was uninformative in terms of # has become very informative in terms of the new
parameter (. Is there any truly unbiased way of selecting a Bayesian prior?

One approach, advocated by E. T. Jaynes, is to choose the prior distribution 7(@) according to the
principle of maximum entropy. For continuous parameter spaces, we must first define a parameter space
metric so as to be able to ’count’ the number of different parameter states. The entropy of a distribution
7(@) is then dependent on this metric: S = — [du(0) 7(0) Inn(6).

Another approach, due to Jeffreys, is to derive a parameterization-independent prior from the likelihood
f(x]0) using the so-called Fisher information matriz,

0?1 0
Iij(e) = —E,y <%>
77

0?Inf(x|0)

(1.123)
__/d:cf(:c\e) 50.90.
i 9Yj

The Jeffreys prior m,(0) is defined as
7,(0) oc \/det I(0) . (1.124)

One can check that the Jeffries prior is invariant under reparameterization. As an example, consider the

Bernoulli process, for which In f(x]0) = XInf + (N — X)In(1 — ), where X = Z;V:1 z;. Then

Phnp(xld) X N-X

0 e a—ep’

(1.125)
and since E, X = N0, we have

=-— = 7;,(9):% , (1.126)

01— 0)
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which felicitously corresponds to a Beta distribution with o = 8 = % In this example the Jeffries prior

turned out to be a conjugate prior, but in general this is not the case.

We can try to implement the Jeffreys procedure for a two-parameter family where each z; is normally
distributed with mean p and standard deviation o. Let the parameters be (6,,6,) = (1,0). Then

N
1
—In f(x]0) :Nln\/27T+Nlna+WZ(a:j—u)2 , (1.127)
i=1

and the Fisher information matrix is

-2 -3 _
0*Inf(z|0) No 07" 25y — m)
v U‘gzj(%—u) _NU_2+3U_42]'($]'_N)2
Taking the expectation value, we have E (z; — ) =0 and E (z; — 1)? = o2, hence
No=2 0
EI(0) = < 0 2N0__2> (1.129)

and the Jeffries prior is 7,(u,0) o o~2. This is problematic because if we choose a flat metric on the

(1, 0) upper half plane, the Jeffries prior is not normalizable. Note also that the Jeffreys prior no longer
resembles a Gaussian, and hence is not a conjugate prior.
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Thermodynamics
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2.2 What is Thermodynamics?

Thermodynamics is the study of relations among the state variables describing a thermodynamic system,
and of transformations of heat into work and vice versa.

2.2.1 Thermodynamic systems and state variables

Thermodynamic systems contain large numbers of constituent particles, and are described by a set of
state variables which describe the system’s properties in an average sense. State variables are classified
as being either ertensive or intensive.

Extensive variables, such as volume V', particle number N, total internal energy F, magnetization M,
etc., scale linearly with the system size, i.e. as the first power of the system volume. If we take two
identical thermodynamic systems, place them next to each other, and remove any barriers between them,
then all the extensive variables will double in size.

Intensive variables, such as the pressure p, the temperature T, the chemical potential u, the electric field
E, etc., are independent of system size, scaling as the zeroth power of the volume. They are the same
throughout the system, if that system is in an appropriate state of equilibrium. The ratio of any two
extensive variables is an intensive variable. For example, we write n = N/V for the number density,
which scales as VY. Intensive variables may also be inhomogeneous. For example, n(r) is the number
density at position r, and is defined as the limit of AN/AV of the number of particles AN inside a
volume AV which contains the point r, in the limit V' > AV > V/N.

Classically, the full motion of a system of N point particles requires 6N variables to fully describe it (3N
positions and 3N velocities or momenta, in three space dimensions)'. Since the constituents are very
small, IV is typically very large. A typical solid or liquid, for example, has a mass density on the order
of o ~ 1g/cm?; for gases, o ~ 1073 g/cm?3. The constituent atoms have masses of 10° to 10? grams per
mole, where one mole of X contains N, of X, and N, = 6.0221415 x 10?3 is Avogadro’s number”. Thus,
for solids and liquids we roughly expect number densities n of 1072 — 10° mol/cm?® for solids and liquids,
and 107° — 1073 mol/cm? for gases. Clearly we are dealing with fantastically large numbers of constituent
particles in a typical thermodynamic system. The underlying theoretical basis for thermodynamics, where
we use a small number of state variables to describe a system, is provided by the microscopic theory of
statistical mechanics, which we shall study in the weeks ahead.

Intensive quantities such as p, T', and n ultimately involve averages over both space and time. Consider for
example the case of a gas enclosed in a container. We can measure the pressure (relative to atmospheric
pressure) by attaching a spring to a moveable wall, as shown in fig. 2.2. From the displacement of the
spring and the value of its spring constant k we determine the force F'. This force is due to the difference
in pressures, so p = p, + F'//A. Microscopically, the gas consists of constituent atoms or molecules, which
are constantly undergoing collisions with each other and with the walls of the container. When a particle
bounces off a wall, it imparts an impulse 2n(n - p), where p is the particle’s momentum and 7 is the unit

IFor a system of N molecules which can freely rotate, we must then specify 3N additional orientational variables — the
Euler angles — and their 3N conjugate momenta. The dimension of phase space is then 12N.
?Hence, 1 guacamole = 6.0221415 x 10** guacas.
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individual particles gases, liquids, solids

statistical mechanics

classical mechanics thermodynamics
variables: {z,, p,} variables: T,p,V, ...
individual people human populations
psychology e sociology/politics

variables: ??? variables: ???

Figure 2.1: From microscale to macroscale : physical versus social sciences.

vector normal to the wall. (Only particles with p -7 > 0 will hit the wall.) Multiply this by the number
of particles colliding with the wall per unit time, and one finds the net force on the wall; dividing by
the area gives the pressure p. Within the gas, each particle travels for a distance ¢, called the mean free
path, before it undergoes a collision. We can write £ = o7, where v is the average particle speed and 7 is
the mean free time. When we study the kinetic theory of gases, we will derive formulas for ¢ and ¢ (and
hence 7). For now it is helpful to quote some numbers to get an idea of the relevant distance and time
scales. For O, gas at standard temperature and pressure (1" = 0°C, p = 1atm), the mean free path is
¢ = 1.1 x 1075 cm, the average speed is © ~ 480m/s, and the mean free time is 7 ~ 2.5 x 107%s. Thus,
particles in the gas undergo collisions at a rate 77 ~ 4.0 x 10°s~!. A measuring device, such as our
spring, or a thermometer, effectively performs time and space averages. If there are N, collisions with
a particular patch of wall during some time interval on which our measurement device responds, then

/

the root mean square relative fluctuations in the local pressure will be on the order of N, /2 times the

average. Since N, is a very large number, the fluctuations are negligible.

If the system is in steady state, the state variables do not change with time. If furthermore there are
no macroscopic currents of energy or particle number flowing through the system, the system is said
to be in equilibrium. A continuous succession of equilibrium states is known as a thermodynamic path,
which can be represented as a smooth curve in a multidimensional space whose axes are labeled by state
variables. A thermodynamic process is any change or succession of changes which results in a change of
the state variables. In a cyclic process, the initial and final states are the same. In a quasistatic process,
the system passes through a continuous succession of equilibria. A reversible process is one where the
external conditions and the thermodynamic path of the system can be reversed; it is both quasi-static and
non-dissipative (i.e. no friction). The slow expansion of a gas against a piston head, whose counter-force
is always infinitesimally less than the force pA exerted by the gas, is reversible. To reverse this process,
we simply add infinitesimally more force to pA and the gas compresses. An example of a quasistatic
process which is not reversible: slowly dragging a block across the floor, or the slow leak of air from a
tire. Irreversible processes, as a rule, are dissipative. Other special processes include isothermal (dT' = 0),
isobaric (dp = 0), isochoric (dV = 0), and adiabatic (d@ = 0, i.e. no heat exchange):

reversible: dQ) =T dS isothermal: dT = 0
spontaneous: dQ < T dS isochoric: dV =0
adiabatic: d@Q) = 0 isobaric: dp = 0

We shall discuss later the entropy S and its connection with irreversibility.
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10 atm Mv%WAA

Figure 2.2: The pressure p of a gas is due to an average over space and time of the impulses due to the
constituent particles.

How many state variables are necessary to fully specify the equilibrium state of a thermodynamic system?
For a single component system, such as water which is composed of one constituent molecule, the answer
is three. These can be taken to be T, p, and V. One always must specify at least one extensive variable,
else we cannot determine the overall size of the system. For a multicomponent system with ¢ different
species, we must specify g + 2 state variables, which may be {T',p, Ny, ... ,Ng}, where NN, is the number
of particles of species a. Another possibility is the set (T,p,V,zq,... ,xg_l}, where the concentration of
species a is ¢, = N,/N. Here, N = >>9_, N, is the total number of particles. Note that >9_; x, = 1.

If then follows that if we specify more than g+ 2 state variables, there must exist a relation among them.
Such relations are known as equations of state. The most famous example is the ideal gas law,

pV = Nk, T (2.1)

relating the four state variables T, p, V, and N. Here k, = 1.3806503 x 10716 erg/K is Boltzmann’s
constant. Another example is the van der Waals equation,

2
<p—|—aV£2>(V—bN) = Nk T (2.2)
where a and b are constants which depend on the molecule which forms the gas. For a third example,
consider a paramagnet, where
M CH
v T
where M is the magnetization, H the magnetic field, and C the Curie constant?.

(2.3)

Any quantity which, in equilibrium, depends only on the state variables is called a state function. For
example, the total internal energy E of a thermodynamics system is a state function, and we may write

3We use here a different font for the scalar magnetic field H to distinguish it from the thermodynamic potential known
as the enthalpy, H, which we discuss later on in this chapter.
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E = E(T,p,V). State functions can also serve as state variables, although the most natural state variables
are those which can be directly measured.

2.2.2 Heat

Once thought to be a type of fluid, heat is now understood in terms of the kinetic theory of gases, liquids,
and solids as a form of energy stored in the disordered motion of constituent particles. The units of
heat are therefore units of energy, and it is appropriate to speak of heat energy, which we shall simply
abbreviate as heat:*

1J =10"erg = 6.242 x 10" eV = 2.390 x 10~ kcal = 9.478 x 10" BTU . (2.4)

We will use the symbol @) to denote the amount of heat energy absorbed by a system during some given
thermodynamic process, and d(@) to denote a differential amount of heat energy. The symbol d indicates
an ‘inexact differential’, about which we shall have more to say presently. This means that heat is not a
state function: there is no ‘heat function’ Q(7,p, V).

2.2.3 Work

In general we will write the differential element of work dWW done by the system as

aw =Y FdX,; | (2.5)

where F, is a generalized force and dX, a generalized displacement®. The generalized forces and displace-
ments are themselves state variables, and by convention we will take the generalized forces to be intensive
and the generalized displacements to be extensive. As an example, in a simple one-component system,
we have dWW = pdV. More generally, we write

-2y, dX; > Ha AN,

AW = (pdV —H -dM — E -dP — o dA+...) — (uy dN; + iy dNy + ... ) (2.6)

Here we distinguish between two types of work. The first involves changes in quantities such as volume,
magnetization, electric polarization, area, etc. The conjugate forces y, applied to the system are then
—p, the magnetic field H, the electric field E, the surface tension o, respectively. The second type of
work involves changes in the number of constituents of a given species. For example, energy is required
in order to dissociate two hydrogen atoms in an H, molecule. The effect of such a process is d.V, , = -1
and dNy = +2.

As with heat, dW is an inexact differential, and work W is not a state variable, since it is path-dependent.
There is no ‘work function” W (7T, p, V).

4One calorie (cal) is the amount of heat needed to raise 1g of Hy,O from Ty = 14.5° C to Ty = 15.5° C at a pressure
of po = latm. One British Thermal Unit (BTU) is the amount of heat needed to raise 11b. of HyO from T, = 63° F to
T, = 64° F at a pressure of py = 1 atm.

5We use the symbol d in the differential dW to indicate that this is not an exact differential. More on this in section 2.4
below.
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2.2.4 Pressure and Temperature

The units of pressure (p) are force per unit area. The SI unit is the Pascal (Pa): 1Pa = 1N/m? =
1kg/ms?. Other units of pressure we will encounter:

1bar = 10° Pa
latm = 1.01325 x 10° Pa
1torr = 133.3 Pa

Temperature (7') has a very precise definition from the point of view of statistical mechanics, as we shall
see. Many physical properties depend on the temperature — such properties are called thermometric
properties. For example, the resistivity of a metal p(7', p) or the number density of a gas n(7,p) are both
thermometric properties, and can be used to define a temperature scale. Consider the device known as
the ‘constant volume gas thermometer’ depicted in fig. 2.3, in which the volume or pressure of a gas may
be used to measure temperature. The gas is assumed to be in equilibrium at some pressure p, volume
V, and temperature T. An incompressible fluid of density o is used to measure the pressure difference
Ap = p — p,, where p, is the ambient pressure at the top of the reservoir:

P =Dy = Qg(hz - hl) ) (2-7)

where g is the acceleration due to gravity. The height h; of the left column of fluid in the U-tube provides
a measure of the change in the volume of the gas:

V(hy) =V(0) — Ah; | (2.8)

where A is the (assumed constant) cross-sectional area of the left arm of the U-tube. The device can
operate in two modes:

e Constant pressure mode : The height of the reservoir is adjusted so that the height difference hy—h;
is held constant. This fixes the pressure p of the gas. The gas volume still varies with temperature

T, and we can define

T V

ref ref

where T’ ; and V., are the reference temperature and volume, respectively.

e Constant volume mode : The height of the reservoir is adjusted so that h; = 0, hence the volume
of the gas is held fixed, and the pressure varies with temperature. We then define

T
= _r (2.10)
Tref Dret

where T’ ; and p,; are the reference temperature and pressure, respectively.

What should we use for a reference? One might think that a pot of boiling water will do, but anyone who
has gone camping in the mountains knows that water boils at lower temperatures at high altitude (lower
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Figure 2.3: The constant volume gas thermometer. The gas is placed in thermal contact with an
object of temperature 7. An incompressible fluid of density o is used to measure the pressure difference

Ap = pgas — Po-

pressure). This phenomenon is reflected in the phase diagram for H,O, depicted in fig. 2.4. There are two
special points in the phase diagram, however. One is the triple point, where the solid, liquid, and vapor
(gas) phases all coexist. The second is the critical point, which is the terminus of the curve separating
liquid from gas. At the critical point, the latent heat of transition between liquid and gas phases vanishes
(more on this later on). The triple point temperature T} at thus unique and is by definition T, = 273.16 K.
The pressure at the triple point is 611.7 Pa = 6.056 x 1072 atm.

A question remains: are the two modes of the thermometer compatible? E.g. it we boil water at p = p, =
latm, do they yield the same value for T'7 And what if we use a different gas in our measurements? In
fact, all these measurements will in general be incompatible, yielding different results for the temperature
T. However, in the limit that we use a very low density gas, all the results converge. This is because all
low density gases behave as ideal gases, and obey the ideal gas equation of state pV = Nk,T.

2.2.5 Standard temperature and pressure

It is customary in the physical sciences to define certain standard conditions with respect to which any
arbitrary conditions may be compared. In thermodynamics, there is a notion of standard temperature
and pressure, abbreviated STP. Unfortunately, there are two different definitions of STP currently in use,
one from the International Union of Pure and Applied Chemistry (IUPAC), and the other from the U.S.
National Institute of Standards and Technology (NIST). The two standards are:

IUPAC : T, =0°C =273.15K . po=10°Pa
NIST : T, =20°C=293.15K , p,=latm =1.01325 x 10° Pa
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T, = 647K
P, = 22.06 MPa

freeze condense boil

LIQUID

SOLID
VAPOR

pressure p

T, =273.16 K
p, = 611.7Pa

sublimate

sublimate

temperature 7'

Figure 2.4: A sketch of the phase diagram of HoO (water). Two special points are identified: the triple
point (7%, py) at which there is three phase coexistence, and the critical point (7t,p.), where the latent
heat of transformation from liquid to gas vanishes. Not shown are transitions between several different
solid phases.

To make matters worse, in the past it was customary to define STP as T, = 0° C and p, = 1 atm. We will
use the NIST definition in this course. Unless I slip and use the ITUPAC definition. Figuring out what I
mean by STP will keep you on your toes.

The volume of one mole of ideal gas at STP is then

Nk, T, {22.711£ (IUPAC)

V=
Po 24219 ¢ (NIST) |,

(2.11)

where 1/ = 10 cm?® = 1073 m? is one liter. Under the old definition of STP as Ty, =0°C and p, = 1 atm,
the volume of one mole of gas at STP is 22.414 ¢, which is a figure I remember from my 10*" grade
chemistry class with Mr. Lawrence.

2.3 The Zeroth Law of Thermodynamics

Equilibrium is established by the exchange of energy, volume, or particle number between different systems
or subsystems:

energy exchange — T = constant — thermal equilibrium
volume exchange = % = constant = mechanical equilibrium
particle exchange = % = constant = chemical equilibrium
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constant pressure
O, p

02 (constant volume)

1\]2 (constant volume)

temperature 7'

0 number density N

Figure 2.5: As the gas density tends to zero, the readings of the constant volume gas thermometer
converge.

Equilibrium is transitive, so

If A is in equilibrium with B, and B is in equilibrium with C, then A is in equilibrium with

C.

This known as the Zeroth Law of Thermodynamics®.

2.4 Mathematical Interlude : Exact and Inexact Differentials

The differential

k
dF = A, dz, (2.12)
i=1

is called ezxact if there is a function F(x,...,z,) whose differential gives the right hand side of eqn.

2.178. In this case, we have

OF 0A; 0A;

A= — — t=—21 Vi . 2.13
b O Ox; O, “J (2.13)

For exact differentials, the integral between fixed endpoints is path-independent:
B
/dF:F(a;‘f,...,xE)—F(w‘f,...,xl‘z) : (2.14)
A
from which it follows that the integral of dF' around any closed path must vanish: $dF =0.

When the cross derivatives are not identical, i.e. when 0A,/0x; # 0A;/Ox;, the differential is inezact.
In this case, the integral of dF is path dependent, and does not depend solely on the endpoints.

5As we shall see further below, thermomechanical equilibrium in fact leads to constant p/T, and thermochemical equi-
librium to constant p/7T. If there is thermal equilibrium, then T is already constant, and so thermomechanical and thermo-
chemical equilibria then guarantee the constancy of p and p.
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path II
Ys T ’ B
Ya1 A >
path I
| |
| |
$A aJr'B

Figure 2.6: Two distinct paths with identical endpoints.

As an example, consider the differential dF = K, ydx+ K,z dy . Let’s evaluate the integral of dF', which
is the work done, along each of the two paths in fig. 2.6:

g Y

wWo = Kl/dx Ya t+ K2/dy Ty =K1y, (25 — 2,) + Ko g (Y — Ya) (2.15)
N Ya
g Y

wa = Kl/da; Yg T+ Kg/dy Ty =Kiyp (wp — ) + Koz (Yo —ya) - (2.16)
N Ya

Note that in general W® # WD, Thus, if we start at point A, the kinetic energy at point B will depend
on the path taken, since the work done is path-dependent. The difference between the work done along
the two paths is

WO — Wi = %dF = (Ky — Ky) (25 —2,) (Us — ¥a) - (2.17)

Thus, we see that if K| = K,, the work is the same for the two paths. In fact, if K| = K, the work
would be path-independent, and would depend only on the endpoints. This is true for any path, and
not just piecewise linear paths of the type depicted in fig. 2.6. Thus, if K; = K,, we are justified in
using the notation dF for the differential. Explicitly, we then have F' = K| zy. However, if K| # K, the
differential is inexact, and we will henceforth write dF in such cases.



2.5. THE FIRST LAW OF THERMODYNAMICS 39

AE=Q-W w
Q > Q >

heat added change in internal energy work done
to system by system

Figure 2.7: The first law of thermodynamics is a statement of energy conservation.

2.5 The First Law of Thermodynamics

2.5.1 Conservation of energy

The first law is a statement of energy conservation, and is depicted in fig. 2.7. It says, quite simply, that
during a thermodynamic process, the change in a system’s internal energy FE is given by the heat energy
@ added to the system, minus the work W done by the system:

AE=Q-W . (2.18)
The differential form of this, the First Law of Thermodynamics, is
dE =dQ —adw . (2.19)

We use the symbol d in the differentials d@Q and dW to remind us that these are inexact differentials.
The energy E, however, is a state function, hence dF is an exact differential.

Consider a volume V of fluid held in a flask, initially at temperature 7},, and held at atmospheric pressure.
The internal energy is then E, = E(T,p,V). Now let us contemplate changing the temperature in two
different ways. The first method (A) is to place the flask on a hot plate until the temperature of the fluid
rises to a value 7. The second method (B) is to stir the fluid vigorously. In the first case, we add heat
@, > 0 but no work is done, so W, = 0. In the second case, if we thermally insulate the flask and use
a stirrer of very low thermal conductivity, then no heat is added, i.e. Q@ = 0. However, the stirrer does
work —W, > 0 on the fluid (remember W is the work done by the system). If we end up at the same
temperature 7}, then the final energy is £y, = E(T},p, V) in both cases. We then have

It also follows that for any cyclic transformation, where the state variables are the same at the beginning
and the end, we have

AFE

cyclic

=Q-W=0 = Q=W (cyclic) . (2.21)

2.5.2 Single component systems

A single component system is specified by three state variables. In many applications, the total number
of particles IV is conserved, so it is useful to take N as one of the state variables. The remaining two can
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be (T,V) or (T,p) or (p,V). The differential form of the first law says

dE = dQ — dW
—dQ — pdV + pdN

(2.22)

The quantity g is called the chemical potential. We ask: how much heat is required in order to make an
infinitesimal change in temperature, pressure, volume, or particle number? We start by rewriting eqn.

2.22 as
dQ =dE +pdV — udN

We now must roll up our sleeves and do some work with partial derivatives.

e (T,V,N) systems : If the state variables are (7, V, N), we write

oF oF oF
b= (a—T>V,NdT+ <W>T,N‘“” * <a—N>T,V w
oOF

oF OF
dQ‘(a?Xﬂ“ (W)mﬂ’ (aTv)T,V‘“]dN

e (T,p, N) systems : If the state variables are (T',p, N), we write

OFE OF OFE
iw=(5p) ar+(50) v+ (Gy) av
or ), v p )1 N ON Jr.,

ov ov ov
w=(55) are(G) v+ () av
or J, n o Jrn ON Jr.,

(57), e+ | (5 )+ (5)
or PN orT PN Ip T,N dp TN

)

Then
dV +

We also write

Then

aQ — T + dp

_l’_

e (p,V,N) systems : If the state variables are (p,V, N), we write

oF oF oF
ae-(%E) 4 +<_> dV+<—> iN
<8p >V,N P oV p,N ON vV

oF oF or
Q=) o+ (%) + 2 —uldn
¢ <8p>V,N p <aV>p,N P <6N>p,v ’“‘]

Then
dV +

or oV
(a—N>T,p+p <a—N)T7p‘“] N

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

The heat capacity of a body, C, is by definition the ratio dQ/dT of the amount of heat absorbed by
the body to the associated infinitesimal change in temperature d7'. The heat capacity will in general be
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p Cp p Cp
SUBSTANCE | (J/molK) | (J/gK) || SUBSTANCE | (J/molK) | (J/gK)
Air 29.07 1.01 H,0 (25° C) 75.34 4.181
Aluminum 24.2 0.897 H,0O (1009 C) 37.47 2.08
Copper 24.47 0.385 Iron 25.1 0.450
CO, 36.94 0.839 Lead 26.4 0.127
Diamond 6.115 0.509 Lithium 24.8 3.58
Ethanol 112 2.44 Neon 20.786 1.03
Gold 25.42 0.129 Oxygen 29.38 0.918
Helium 20.786 5.193 || Paraffin (wax) 900 2.5
Hydrogen 28.82 5.19 Uranium 27.7 0.116
H,0O (—-10° C) 38.09 2.05 Zinc 25.3 0.387
Specific heat (at 25° C, unless otherwise noted) of some common substances. (Source:

Wikipedia.)

different if the body is heated at constant volume or at constant pressure. Setting dV = 0 gives, from

eqn. 2.25,
aQ ok
Cyn = (ﬁ)wv = <8_T>V,N (2.31)
Similarly, if we set dp = 0, then eqn. 2.28 yields
dQ ok ov
Cpn = <—> = <—> +p <—> (2.32)
P, dar'} , x oT b N oT N

Unless explicitly stated as otherwise, we shall assume that IV is fixed, and will write C, for C,  and C,
for C' .
p,N

The units of heat capacity are energy divided by temperature, e.g. J/K. The heat capacity is an extensive
quantity, scaling with the size of the system. If we divide by the number of moles N/N,, we obtain the
molar heat capacity, sometimes called the molar specific heat: ¢ = C/v, where v = N/N, is the number
of moles of substance. Specific heat is also sometimes quoted in units of heat capacity per gram of
substance. We shall define

C ¢ heat capacity per mole
mN M

(2.33)

c=
mass per mole

Here m is the mass per particle and M is the mass per mole: M = N, m.

Suppose we raise the temperature of a body from 7' =T, to T' = 1. How much heat is required? We
have

TB
Q= [drc(T) (2.34)
/
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bof =1

Vibration

Cy
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X - T (K)
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Figure 2.8: Heat capacity Cy for one mole of hydrogen (Hs) gas. At the lowest temperatures, only
translational degrees of freedom are relevant, and f = 3. At around 200K, two rotational modes are
excitable and f = 5. Above 1000 K, the vibrational excitations begin to contribute. Note the logarithmic
temperature scale. (Data from H. W. Wooley et al., Jour. Natl. Bureau of Standards, 41, 379 (1948).)

where C' = (Y, or C = C,, depending on whether volume or pressure is held constant. For ideal gases, as
we shall discuss below, C(T') is constant, and thus

Q= C(TB - TA) == TB = TA + % (2'35)
In metals at very low temperatures one finds C' = vT', where + is a constant’. We then have
TB
Q= /dT C(T) = 3~4(T5 — T3) (2.36)
TA

Ty =T2+2771Q . (2.37)

2.5.3 Ideal gases

The ideal gas equation of state is pV = NkyT. In order to invoke the formulae in eqns. 2.25, 2.28, and
2.30, we need to know the state function E(7T,V, N). A landmark experiment by Joule in the mid-19th
century established that the energy of a low density gas is independent of its volume®. Essentially, a gas
at temperature 7' was allowed to freely expand from one volume V to a larger volume V' > V', with no
added heat @@ and no work W done. Therefore the energy cannot change. What Joule found was that
the temperature also did not change. This means that E(T,V,N) = E(T, N) cannot be a function of the
volume.

"In most metals, the difference between Cy, and C), is negligible.
8See the description in E. Fermi, Thermodynamics, pp. 22-23.
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Since F is extensive, we conclude that
E(T,V,N)=ve(T) , (2.38)

where v = N/N, is the number of moles of substance. Note that v is an extensive variable. From equs.
2.31 and 2.32, we conclude

Cy(T)=ve(T) ,  C)(T)=Cy(T)+vR (2.39)

where we invoke the ideal gas law to obtain the second of these. Empirically it is found that Cy,(T')
is temperature independent over a wide range of T, far enough from boiling point. We can then write
Cy = vy, where v = N/N, is the number of moles, and where ¢y, is the molar heat capacity. We then
have ¢, = ¢y, + R. where R = N,k = 8.31457 J/mol K is the gas constant. We denote by v = c,/c;, the
ratio of specific heat at constant pressure and at constant volume.

From the kinetic theory of gases, one can show that

monatomic gases: ¢y = %R ;G = % R , ~= %
; ; . _5 7 _7
diatomic gases: ¢y =3R , c¢,=3R , v=3
polyatomic gases: ¢y = 3R Cp = 4R , = %

Digression : kinetic theory of gases

We will conclude in general from noninteracting classical statistical mechanics that the specific heat of a
substance is ¢, = % fR, where f is the number of phase space coordinates, per particle, for which there
is a quadratic kinetic or potential energy function. For example, a point particle has three translational
degrees of freedom, and the kinetic energy is a quadratic function of their conjugate momenta: H, =
(p? +p§ +p?)/2m. Thus, f = 3. Diatomic molecules have two additional rotational degrees of freedom — we
don’t count rotations about the symmetry axis — and their conjugate momenta also appear quadratically
in the kinetic energy, leading to f = 5. For polyatomic molecules, all three Euler angles and their
conjugate momenta are in play, and f = 6.

The reason that f = 5 for diatomic molecules rather than f = 6 is due to quantum mechanics. While
translational eigenstates form a continuum, or are quantized in a box with Ak, = 27 /L, being very
small, since the dimensions L, are macroscopic, angular momentum, and hence rotational kinetic energy,
is quantized. For rotations about a principal axis with very low moment of inertia I, the corresponding
energy scale h?/2I is very large, and a high temperature is required in order to thermally populate these
states. Thus, degrees of freedom with a quantization energy on the order or greater than ¢, are ‘frozen
out’ for temperatures T' < g,/ k.

In solids, each atom is effectively connected to its neighbors by springs; such a potential arises from
quantum mechanical and electrostatic consideration of the interacting atoms. Thus, each degree of
freedom contributes to the potential energy, and its conjugate momentum contributes to the kinetic
energy. This results in f = 6. Assuming only lattice vibrations, then, the high temperature limit for
¢y (T) for any solid is predicted to be 3R = 24.944J/mol K. This is called the Dulong-Petit law. The
high temperature limit is reached above the so-called Debye temperature, which is roughly proportional
to the melting temperature of the solid.
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Figure 2.9: Molar heat capacities ¢y for three solids. The solid curves correspond to the predictions of
the Debye model, which we shall discuss later.

In table 2.1, we list ¢, and ¢, for some common substances at 7' = 25° C (unless otherwise noted).
Note that ¢, for the monatomic gases He and Ne is to high accuracy given by the value from kinetic
theory, ¢, = SR = 20.7864 J/mol K. For the diatomic gases oxygen (O,) and air (mostly N, and O,),
kinetic theory predicts ¢, = %R = 29.10, which is close to the measured values. Kinetic theory predicts
¢, = 4R = 33.258 for polyatomic gases; the measured values for CO, and H,O are both about 10%
higher.

2.5.4 Adiabatic transformations of ideal gases

Assuming dN =0 and E = ve(T), eqn. 2.25 tells us that
dQ = CydT' +pdV . (2.40)

Invoking the ideal gas law to write p = vRT/V, and remembering C|, = v ¢,,, we have, setting d@Q = 0,
—+——=0 . (2.41)

We can immediately integrate to obtain

TV~ = constant
Q=0 — pV7 = constant (2.42)

TVp'~ = constant

where the second two equations are obtained from the first by invoking the ideal gas law. These are all
adiabatic equations of state. Note the difference between the adiabatic equation of state d(pV?) = 0 and
the isothermal equation of state d(pV') = 0. Equivalently, we can write these three conditions as

VAT =VET] o VIR =gV TR =Tt . (243)
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It turns out that air is a rather poor conductor of heat. This suggests the following model for an adiabatic
atmosphere. The hydrostatic pressure decrease associated with an increase dz in height is dp = —pg dz,
where g is the density and g the acceleration due to gravity. Assuming the gas is ideal, the density can
be written as o = Mp/RT, where M is the molar mass. Thus,

dp Mg

If the height changes are adiabatic, then, from d(77p'~7) = 0, we have

—17Td -1 M
ar =2 b_ 172729, (2.45)
Y op v R
with the solution Y .
- g y—1z

where Tj, = T'(0) is the temperature at the earth’s surface, and A = RT,/Mg. With M = 28.88¢g and
~v = { for air, and assuming T, = 293K, we find A\ = 8.6km, and dT/dz = —(1—y~1) Ty /A = —9.7K /km.
Note that in this model the atmosphere ends at a height 2z, = YA/(y — 1) = 30 km.

Again invoking the adiabatic equation of state, we can find p(z):

k
Recall that e¥ = limy_,oo (1 + %) . Thus, in the limit v — 1, where &k = 7/(y — 1) — oo, we have
p(z) = py exp(—z/A). Finally, since o o< p/T" from the ideal gas law, we have

o(z) _ (1 _a-t E>ﬁ . (2.48)

2.5.5 Adiabatic free expansion

Consider the situation depicted in fig. 2.10. A quantity (v moles) of gas in equilibrium at temperature
T and volume V] is allowed to expand freely into an evacuated chamber of volume V; by the removal of
a barrier. Clearly no work is done on or by the gas during this process, hence W = 0. If the walls are
everywhere insulating, so that no heat can pass through them, then ) = 0 as well. The First Law then
gives AE = @ — W =0, and there is no change in energy.

If the gas is ideal, then since E(7,V,N) = Nc,T, then AE = 0 gives AT = 0, and there is no change in
temperature. (If the walls are insulating against the passage of heat, they must also prevent the passage
of particles, so AN = 0.) There is of course a change in volume: AV = Vj, hence there is a change in
pressure. The initial pressure is p = Nk,T/V; and the final pressure is p’ = Nk,T/(V; + V3).

If the gas is nonideal, then the temperature will in general change. Suppose E(T,V,N) = a V* N1~ TY,
where «, x, and y are constants. This form is properly extensive: if V' and N double, then E doubles. If
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the volume changes from V' to V'’ under an adiabatic free expansion, then we must have, from AFE = 0,

GG~ @ e

If z/y > 0, the temperature decreases upon the expansion. If x/y < 0, the temperature increases.
Without an equation of state, we can’t say precisely what happens to the pressure, although we know on
general grounds that it must decrease because, as we shall see, thermodynamic stability entails a positive
isothermal compressibility: x; = _V(a_p)T, N >0
Adiabatic free expansion of a gas is a spontaneous process, arising due to the natural internal dynamics
of the system. It is also irreversible. If we wish to take the gas back to its original state, we must do
work on it to compress it. If the gas is ideal, then the initial and final temperatures are identical, so we
can place the system in thermal contact with a reservoir at temperature 7" and follow a thermodynamic
path along an isotherm. The work done on the gas during compression is then
v,
dv \% V.
W= -Nk,T [ — =Nk, TIn( L) = Nk, T In(1+ 2 2.50
Vi

The work done by the gas is W = [pdV = —W. During the compression, heat energy @ = W < 0 is
transferred to the gas from the reservoir. Thus, @ = W > 0 is given off by the gas to its environment.

2.6 Heat Engines and the Second Law of Thermodynamics

2.6.1 There’s no free lunch so quit asking

A heat engine is a device which takes a thermodynamic system through a repeated cycle which can be
represented as a succession of equilibrium states: A — B — C--- — A. The net result of such a cyclic
process is to convert heat into mechanical work, or wvice versa.

.001 4 N\
o ® e
0%%g o0

V1 V2

Figure 2.10: In the adiabatic free expansion of a gas, there is volume expansion with no work or heat
exchange with the environment: AE =Q =W = 0.
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heat bath - heat bath
heatl Q heat IQZW
W=aQ w
—_— «—
work work
(a) a perfect engine (b) a perfect waste of time

Figure 2.11: A perfect engine would extract heat ) from a thermal reservoir at some temperature 17" and
convert it into useful mechanical work W. This process is alas impossible, according to the Second Law
of thermodynamics. The inverse process, where work W is converted into heat Q, is always possible.

For a system in equilibrium at temperature 7', there is a thermodynamically large amount of internal
energy stored in the random internal motion of its constituent particles. Later, when we study statistical
mechanics, we will see how each ‘quadratic’ degree of freedom in the Hamiltonian contributes %k‘BT to the
total internal energy. An immense body in equilibrium at temperature T has an enormous heat capacity
C, hence extracting a finite quantity of heat @ from it results in a temperature change AT = —Q/C
which is utterly negligible. Such a body is called a heat bath, or thermal reservoir. A perfect engine
would, in each cycle, extract an amount of heat ) from the bath and convert it into work. Since AE =0
for a cyclic process, the First Law then gives W = (). This situation is depicted schematically in fig. 2.11.
One could imagine running this process virtually indefinitely, slowly sucking energy out of an immense
heat bath, converting the random thermal motion of its constituent molecules into useful mechanical
work. Sadly, this is not possible:

A transformation whose only final result is to extract heat from a source at fixed temperature
and transform that heat into work is impossible.

This is known as the Postulate of Lord Kelvin. It is equivalent to the postulate of Clausius,

A transformation whose only result is to transfer heat from a body at a given temperature to
a body at higher temperature is impossible.

These postulates which have been repeatedly validated by empirical observations, constitute the Second
Law of Thermodynamics.

2.6.2 Engines and refrigerators

While it is not possible to convert heat into work with 100% efficiency, it is possible to transfer heat
from one thermal reservoir to another one, at lower temperature, and to convert some of that heat into
work. This is what an engine does. The energy accounting for one cycle of the engine is depicted in the
left hand panel of fig. 2.12. An amount of heat ), > 0 is extracted- from the reservoir at temperature
T,. Since the reservoir is assumed to be enormous, its temperature change AT, = —Q,/C, is negligible,
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heat bath 7 heat bath T,
heat¢Q2 heat T QQ
W:QQ_Ql W:QQ_QI
— —
work work
heatlQ1 heatTQl
1 T
heat bath heat bath
(a) engine (b) refrigerator

Figure 2.12: An engine (left) extracts heat (2 from a reservoir at temperature Tp and deposits a
smaller amount of heat Qp into a reservoir at a lower temperature 77, during each cycle. The difference
W = Q9 — Qy is transformed into mechanical work. A refrigerator (right) performs the inverse process,
drawing heat ()1 from a low temperature reservoir and depositing heat Qs = @1 + W into a high
temperature reservoir, where ¥ is the mechanical (or electrical) work done per cycle.

and its temperature remains constant — this is what it means for an object to be a reservoir. A lesser
amount of heat, Q;, with 0 < Q; < @5, is deposited in a second reservoir at a lower temperature 77. Its
temperature change AT, = +Q,/C} is also negligible. The difference W = Q, — Q; is extracted as useful
work. We define the efficiency, i, of the engine as the ratio of the work done to the heat extracted from
the upper reservoir, per cycle:
w2
Qs Qs
This is a natural definition of efficiency, since it will cost us fuel to maintain the temperature of the upper

reservoir over many cycles of the engine. Thus, the efficiency is proportional to the ratio of the work
done to the cost of the fuel.

n (2.51)

A refrigerator works according to the same principles, but the process runs in reverse. An amount of heat
()1 is extracted from the lower reservoir — the inside of our refrigerator — and is pumped into the upper
reservoir. As Clausius’ form of the Second Law asserts, it is impossible for this to be the only result of
our cycle. Some amount of work VW must be performed on the refrigerator in order for it to extract the
heat @),. Since AE = 0 for the cycle, a heat Q, = W + ()1 must be deposited into the upper reservoir
during each cycle. The analog of efficiency here is called the coefficient of refrigeration, k, defined as

@ @ (2.52)

N W N Q2 - Ql
Thus, k is proportional to the ratio of the heat extracted to the cost of electricity, per cycle.

Please note the deliberate notation here. I am using symbols @ and W to denote the heat supplied to
the engine (or refrigerator) and the work done by the engine, respectively, and Q and W to denote the
heat taken from the engine and the work done on the engine.
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A perfect engine has Q; = 0 and 7 = 1; a perfect refrigerator has ); = Q, and k = co. Both violate
the Second Law. Sadi Carnot” (1796 — 1832) realized that a reversible cyclic engine operating between
two thermal reservoirs must produce the maximum amount of work W, and that the amount of work
produced is independent of the material properties of the engine. We call any such engine a Carnot
engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s
observations that the efficiency 7. can only be a function of the temperatures T} and T5: nc = 1o (1}, 15).
We can then define T
1 _
T = ne(Th, 1) . (2.53)
2
Below, in §2.6.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine,
this temperature scale coincides precisely with the ideal gas temperature scale from §2.2.4.

2.6.3 Nothing beats a Carnot engine

The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To see
this, let’s suppose that an amazing wonder engine has an efficiency even greater than that of the Carnot
engine. A key feature of the Carnot engine is its reversibility — we can just go around its cycle in the
opposite direction, creating a Carnot refrigerator. Let’s use our notional wonder engine to drive a Carnot
refrigerator, as depicted in fig. 2.13.

We assume that
w S w’
- = nwon er ,’7 arno = -5
9 d C t Q/2

(2.54)

But from the figure, we have W = W, and therefore the heat energy Q) — @, transferred to the upper
reservoir is positive. From

we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is
done on the system:

QD —Q=0Q1 -9, >0 . (2.56)

Therefore, the existence of the wonder engine entails a violation of the Second Law. Since the Second
Law is correct — Lord Kelvin articulated it, and who are we to argue with a Lord? — the wonder engine
cannot exist.

We further conclude that all reversible engines running between two thermal reservoirs have the same
efficiency, which is the efficiency of a Carnot engine. For an irreversible engine, we must have

Thus,
Q&
— < . 2.
T, T =" (2:58)

9Carnot died during cholera epidemic of 1832. His is one of the 72 names engraved on the Eiffel Tower.
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wonder engine Carnot refrigerator

Figure 2.13: A wonder engine driving a Carnot refrigerator.

2.6.4 The Carnot cycle

Let us now consider a specific cycle, known as the Carnot cycle, depicted in fig. 2.14. The cycle consists
of two adiabats and two isotherms. The work done per cycle is simply the area inside the curve on our
p — V diagram:

W = j{pdv . (2.59)

The gas inside our Carnot engine is called the ‘working substance’. Whatever it may be, the system
obeys the First Law,
dE =dQ — dW =dqQ —pdV . (2.60)

We will now assume that the working material is an ideal gas, and we compute W as well as Q; and Q,
to find the efficiency of this cycle. In order to do this, we will rely upon the ideal gas equations,

RT
g="7 . pV=vuRT |, (2.61)

v—1
where v = ¢,/c, = 1+ %, where f is the effective number of molecular degrees of freedom contributing
to the internal energy. Recall f = 3 for monatomic gases, f = 5 for diatomic gases, and f = 6 for

polyatomic gases. The finite difference form of the first law is

AFE = Ef - Ei = Qif - Wif ) (2-62)

where i1 denotes the initial state and f the final state.

AB: This stage is an isothermal expansion at temperature 7. It is the ‘power stroke’ of the engine. We

have
VB
vRT. V.
W, = / v — 2 — yRT, In (vi) (2.63)
VA
T.
B, =B, =L (2.64)
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BC:

CD:

DA:

CARNOT CYCLE

pressure p

Figure 2.14: The Carnot cycle consists of two adiabats (dark red) and two isotherms (blue).

hence %
Qug =AE,,+W,;, =vRI, In <7B> . (2.65)
A
This stage is an adiabatic expansion. We have
Qe =0 (2.66)
AE, —E,—E, - fy”i (T, -Ty) . (2.67)

The energy change is negative, and the heat exchange is zero, so the engine still does some work

during this stage:
vR
Wie = Qpe — AEy. = ﬁ (T, -1y) . (2.68)
This stage is an isothermal compression, and we may apply the analysis of the isothermal expansion,
mutatis mutandis:

vRT Vi

W, = /dV o L — yRT, In <VZ> (2.69)
VC
vRT,

ECZEDZ,Y_i : (2.70)

hence v
Qop =AE, + W, =vRT| In <VD> . (2.71)

C

This last stage is an adiabatic compression, and we may draw on the results from the adiabatic
expansion in BC:

Q@pr =0 (2.72)
ABp, =By~ Ey= —(,=T,) . (2.73)
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The energy change is positive, and the heat exchange is zero, so work is done on the engine:

VR

WDA = QDA - AEDA = 1 (Tl - T2) . (2'74)

We now add up all the work values from the individual stages to get for the cycle

W= WAB + WBC + WCD + WDA

v v (2.75)
=vRT, In (i) +vRT; In <VZ> .

Since we are analyzing a cyclic process, we must have AE = 0, we must have Q = W, which can of course
be verified explicitly, by computing Q@ = Q5 + Q¢ + Qcp + @p,- To finish up, recall the adiabatic ideal
gas equation of state, d(TV7~!) = 0. This tells us that

Vet =1, v3! (2.76)
Dividing these two equations, we find
VB VC
— = 2.78
e (279)
and therefore
VB
VA
Vs
Qug=vRI,In|—) . (2.80)
Vi

Finally, the efficiency is given by the ratio of these two quantities:

W T,
— —1-1 (2.81)
QAB T2

n

2.6.5 The Stirling cycle

Many other engine cycles are possible. The Stirling cycle, depicted in fig. 2.15, consists of two isotherms
and two isochores. Recall the isothermal ideal gas equation of state, d(pV') = 0. Thus, for an ideal gas
Stirling cycle, we have

paVi =psVs ) Vi =psVe (2.82)
which says

Pe _Po V1 (2.83)
Pa Y45 |2
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Figure 2.15: A Stirling cycle consists of two isotherms (blue) and two isochores (green).

This isothermal expansion is the power stroke. Assuming v moles of ideal gas throughout, we have
pV = vRT, = p,V}, hence

Vy

VvRT: V;
W, = /dV 7 2 — URT, In <7?> : (2.84)

Vl
Since AB is an isotherm, we have E, = E}, and from AE,; = 0 we conclude Q,, = W,;.

Isochoric cooling. Since dV = 0 we have W, = 0. The energy change is given by

T, — T
AFEp. = Ec — Ey = VBT, 2_)7 (2.85)
v—1
which is negative. Since Wy, = 0, we have Q. = AE,..
Isothermal compression. Clearly
Vl
vRT V.
Wy = /dV 7 L = VRT, In <7?> : (2.86)
V2
Since CD is an isotherm, we have E, = E|,, and from AE, = 0 we conclude Q., = W,.
Isochoric heating. Since dV = 0 we have W, = 0. The energy change is given by
T, — T,
AE,, = E, — E, = L(f_ : ) (2.87)

which is positive, and opposite to AE,,. Since W,, = 0, we have Q,, = AFE,,.
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OTTO CYCLE

pressure p

volume V

Figure 2.16: An Otto cycle consists of two adiabats (dark red) and two isochores (green).

We now add up all the work contributions to obtain

W= WAB + WBC + WCD + WDA

— VR(Ty~T}) In <%> . (2.85)

The cycle efficiency is once again
%% T,

= =1—-—= . (2.89)
QAB T2

n

2.6.6 The Otto and Diesel cycles

The Otto cycle is a rough approximation to the physics of a gasoline engine. It consists of two adiabats
and two isochores, and is depicted in fig. 2.16. Assuming an ideal gas, along the adiabats we have
d(pV7) = 0. Thus,

Pa Vl’y = DPs V2PY ) Pp Vlﬂy = Pc VQ’Y ) (2.90)
which says
gl
Pp=le <E> . (2.91)
Pr  DPp Vs,

AB: Adiabatic expansion, the power stroke. The heat transfer is (), = 0, so from the First Law we

have W,, = —AE,; = E, — E, thus
—1
— pAvl _pBV2 _ pA‘/l _ E K (2 92)
‘/2 . .

W,
AR v—1 v—1
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D dp=0 A DIESEL CYCLE

pressure p

volume V

Figure 2.17: A Diesel cycle consists of two adiabats (dark red), one isobar (light blue), and one isochore
(green).

Note that this result can also be obtained from the adiabatic equation of state pV? = p, V|":

7 7 v, v\
Vl Vl ?

BC: Isochoric cooling (exhaust); dV = 0 hence Wy, = 0. The heat Q5 absorbed is then

Vs
—1

QRpc = Ec — Ey = ~ (Pe —ps) - (2.94)

In a realistic engine, this is the stage in which the old burned gas is ejected and new gas is inserted.

CD: Adiabatic compression; Qp, =0 and W, = E, — E:

_ pcVo—pVi PV

v—1 v—1

WCD

1A
— | = . 2.95
)] a9
DA: Isochoric heating, i.e. the combustion of the gas. As with BC we have dV = 0, and thus W, = 0.

The heat ), absorbed by the gas is then

Vi
-1

Qor = E, — Ep = ~ (Pa —Pp) - (2.96)

The total work done per cycle is then

W =W+ Wpe + Wep + Wpy
Pa—pVi |, _ (Vi (2.97)
71 Va ’




56 CHAPTER 2. THERMODYNAMICS

and the efficiency is defined to be

o <E>H . (2.98)

The ratio V,/V] is called the compression ratio. We can make our Otto cycle more efficient simply by
increasing the compression ratio. The problem with this scheme is that if the fuel mixture becomes too
hot, it will spontaneously ‘preignite’, and the pressure will jump up before point D in the cycle is reached.
A Diesel engine avoids preignition by compressing the air only, and then later spraying the fuel into the
cylinder when the air temperature is sufficient for fuel ignition. The rate at which fuel is injected is
adjusted so that the ignition process takes place at constant pressure. Thus, in a Diesel engine, step DA
is an isobar. The compression ratio is r = V,/V,,, and the cutoff ratio is s = V, /V,. This refinement of
the Otto cycle allows for higher compression ratios (of about 20) in practice, and greater engine efficiency.

For the Diesel cycle, we have, briefly,

Vi —psVs + pcVo — PV

_ _ Pa

2.99
_ YpaVa = Vo) _ (Pe —Pc)Vss ( )
y—1 v—1
and
Qps = —fyp‘“(vvi; Yo) (2.100)

To find the efficiency, we will need to eliminate p, and p. in favor of p, using the adiabatic equation of

state d(pV7) = 0. Thus,
ViV 7Y
pB g pA . <V:> s pc = pA . <VE> s (2101)

where we've used p, = p, and V, = V;. Putting it all together, the efficiency of the Diesel cycle is

W _1 1 ri=7(s7 = 1)
Qpa Y s—1

" (2.102)

2.6.7 The Joule-Brayton cycle

Our final example is the Joule-Brayton cycle, depicted in fig. 2.18, consisting of two adiabats and two
isobars. Along the adiabats we have Thus,

pVi=pVo . V= VE o, (2.103)
which says
771
Ei:E§:<@> , (2.104)
Vi W Py
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D P=P; C
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o7

Figure 2.18: A Joule-Brayton cycle consists of two adiabats (dark red) and two isobars (light blue).

AB: This isobaric expansion at p = p, is the power stroke. We have

BC: Adiabatic expansion; Qg = 0 and W, = E; — E,. The work done by the gas is

VB
Wy = / 4V py = py (Vi — V)
VA
py (Vs —Vy)
AE,,=F,—FE, =252 % 7‘3_1 E
_ape (Vs —=Vy)

Qup =AE,; +W,p = r—1

Ve —piVe _ pVe (1 Vo
Woo =721 _7—1<1

Y2 VB
|
()
Do

Po Vi

v—1

CD: Isobaric compression at p = p;.

- Vb - B » 1—v
Wep = [dVp=p (Vp = Vo) = —py (Vs = V,) p_
Ve ?
ALe, = B, — Eg =" (ZD_ 1VC)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)
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DA: Adiabatic expansion; @Q,, =0 and W,, = E, — E,. The work done by the gas is

W, = PiVo —mVy  mVi <1 _ Db VD)

) VA

v—1 v—1

()]

W= WAB + WBC + WCD + WDA

VeV, <&>1‘“ (2.113)
y—1 Py
1

1—vy~
n= —<]ﬁ> . (2.114)
Dy

2.112
— _p2 VA ( )

= po—

The total work done per cycle is then

and the efficiency is defined to be

2.6.8 Carnot engine at maximum power output

While the Carnot engine described above in §2.6.4 has maximum efficiency, it is practically useless,
because the isothermal processes must take place infinitely slowly in order for the working material to
remain in thermal equilibrium with each reservoir. Thus, while the work done per cycle is finite, the cycle
period is infinite, and the engine power is zero.

A modification of the ideal Carnot cycle is necessary to create a practical engine. The idea'’ is as follows.
During the isothermal expansion stage, the working material is maintained at a temperature T, < T5.
The temperature difference between the working material and the hot reservoir drives a thermal current,

1Q,
dt

Here, k4 is a transport coefficient which describes the thermal conductivity of the chamber walls, multiplied
by a geometric parameter (which is the ratio of the total wall area to its thickness). Similarly, during the
isothermal compression, the working material is maintained at a temperature 7}, > T}, which drives a
thermal current to the cold reservoir,

= ky (Ty — Tyy,) - (2.115)

dQ
d—tl =k (T —Ty) . (2.116)

Now let us assume that the upper isothermal stage requires a duration At, and the lower isotherm a
duration At;. Then

Q2 = iy Aty (Ty — Tpy) (2.117)

198ee F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975). T am grateful to Professor Asle Sudbg for correcting a
typo in one expression and providing a simplified form of another.
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| Power source | T, (°C) | T5 (°C) | Ngamer | m (theor.) | n (obs.) |
West Thurrock (UK)
Coal Fired Steam Plant ~ 25 565 0.641 0.40 0.36
CANDU (Canada)
PHW Nuclear Reactor ~ 25 300 0.480 0.28 0.30
Larderello (Ttaly)
Geothermal Steam Plant ~ 80 250 0.323 0.175 0.16

Table 2.2: Observed performances of real heat engines, taken from table 1 from Curzon and Albhorn
(1975).

Since the engine is reversible, we must have

Ql Q2
& @ (2.119)
le TZW
which says
Aty _ ki Ty (T = Toy) (2.120)
AtQ K1 T2W (le - Tl)
The power is
p_ Q@ — (2.121)

(1+ ) (At; + Aty)

where we assume that the adiabatic stages require a combined time of o (At + At,). Thus, we find

_ Rihkg (Tyy — Thy) (Thy = T0) (T, — T,,)
L+a kT (Tyy —T7) + Ky 1oy, (Ty — Tay,)

(2.122)

We optimize the engine by maximizing P with respect to the temperatures 7}, and T,,. This yields

o o HLoVvhl (2.123)
2w T 2 .
L+ \/Ky/Ky
VI, T, — T
Ty, =T, +Y12 1 | 2.124
b T .
The efficiency at maximum power is then
Q@ — T T
n=-"2_"Lt—-1-_w_1_, /-1 2.125
Qs Ty, T ( )
One also finds at maximum power
At
i B S5 U (2.126)

Aty Ko
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Finally, the maximized power is

2
— Kiko \/TQ_ \/Tl ) (2127)
= T \ e v

Table 2.2, taken from the article of Curzon and Albhorn (1975), shows how the efficiency of this practical
Carnot cycle, given by eqn. 2.125, rather accurately predicts the efficiencies of functioning power plants.

2.7 The Entropy

2.7.1 Entropy and heat

The Second Law guarantees us that an engine operating between two heat baths at temperatures 7, and
T, must satisfy

QR | @

== 4+ 22 <0 2.128

T, T, S0 (2.128)
with the equality holding for reversible processes. This is a restatement of eqn. 2.58, after writing
@, = —9, for the heat transferred to the engine from reservoir #1. Consider now an arbitrary curve

in the p — V plane. We can describe such a curve, to arbitrary accuracy, as a combination of Carnot
cycles, as shown in fig. 2.19. Each little Carnot cycle consists of two adiabats and two isotherms. We

then conclude 0 0
hid) 2 <0 2.129
Y $7 <0, (2.129)
v C

with equality holding if all the cycles are reversible. Rudolf Clausius, in 1865, realized that one could
then define a new state function, which he called the entropy, S, that depended only on the initial and
final states of a reversible process:

B
dq dq
A

Since @ is extensive, so is S; the units of entropy are [S] = J/K.

2.7.2 The Third Law of Thermodynamics

Eqgn. 2.130 determines the entropy up to a constant. By choosing a standard state Y, we can define
Sy = 0, and then by taking A = T in the above equation, we can define the absolute entropy S for
any state. However, it turns out that this seemingly arbitrary constant Sy in the entropy does have
consequences, for example in the theory of gaseous equilibrium. The proper definition of entropy, from
the point of view of statistical mechanics, will lead us to understand how the zero temperature entropy
of a system is related to its quantum mechanical ground state degeneracy. Walther Nernst, in 1906,
articulated a principle which is sometimes called the Third Law of Thermodynamics,
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~

pressure p

volume V'

Figure 2.19: An arbitrarily shaped cycle in the p—V plane can be decomposed into a number of smaller

Carnot cycles. Red curves indicate isotherms and blue curves adiabats, with v = %

The entropy of every system at absolute zero temperature always vanishes.

Again, this is not quite correct, and quantum mechanics tells us that S(T" = 0) = kg In g, where g is the
ground state degeneracy. Nernst’s law holds when g = 1.

We can combine the First and Second laws to write
dE +dW =dQ <TdS (2.131)

where the equality holds for reversible processes.

2.7.3 Entropy changes in cyclic processes

For a cyclic process, whether reversible or not, the change in entropy around a cycle is zero: AS.,, = 0.
This is because the entropy S is a state function, with a unique value for every equilibrium state. A
cyclical process returns to the same equilibrium state, hence S must return as well to its corresponding
value from the previous cycle.

Consider now a general engine, as in fig. 2.12. Let us compute the total entropy change in the entire
Universe over one cycle. We have

(AS)TOTAL = (AS)ENGINE + (AS)HOT + (AS)COLD ? (2132)

written as a sum over entropy changes of the engine itself, the hot reservoir, and the cold reservoir''.

11We neglect any interfacial contributions to the entropy change, which will be small compared with the bulk entropy
change in the thermodynamic limit of large system size.
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Clearly (AS)pneme = 0. The changes in the reservoir entropies are

aQ Q
(AS)yor = / ;OT = —?22 <0 (2.133)
T=T,
dQCOLD Ql Ql
A _ =1 _ =1 2.134
(AS)eorp = [T = 21— 2L > 0 (2134)
T=T,
because the hot reservoir loses heat (), > 0 to the engine, and the cold reservoir gains heat Q; = —@Q; > 0
from the engine. Therefore,
@1 Qz
(AS) = ( >0 . (2.135)
TOTAL Tl T2

Thus, for a reversible cycle, the net change in the total entropy of the engine plus reservoirs is zero. For
an irreversible cycle, there is an increase in total entropy, due to spontaneous processes.

2.7.4 Gibbs-Duhem relation

Recall eqn. 2.6:
== y;dX; = p,dN, . (2.136)
7 a

For reversible systems, we can therefore write

dE =TdS+Y y;dX;+ > p,dN, . (2.137)
i a

This says that the energy E is a function of the entropy S, the generalized displacements {X j}, and the
particle numbers {N, }:
= E(S{X,},{N,}) . (2.138)

Furthermore, we have

OF OF OF
T= <_> ) Y; = ( > ) Hq = < > (2139)
95 {X,,N,} ’ 0X; X, 4y Na} ONa SAX Ny 0y}

Since E and all its arguments are extensive, we have
AE = E(AS,{AX;},{AN,}) . (2.140)
We now differentiate the LHS and RHS above with respect to A, setting A = 1 afterward. The result is

oF
E= S—+Z jaX N“a—Na

—TS+Zy]X +Z'“a

(2.141)
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Mathematically astute readers will recognize this result as an example of Euler’s theorem for homogeneous
functions. Taking the differential of eqn. 2.141, and then subtracting eqn. 2.137, we obtain

SdT +>  X;dy; +» N,du,=0 . (2.142)
J a

This is called the Gibbs-Duhem relation. It says that there is one equation of state which may be written
in terms of all the intensive quantities alone. For example, for a single component system, we must have
p = p(T, u), which follows from

Sdl'—Vdp+ Ndu=0 . (2.143)

2.7.5 Entropy for an ideal gas
For an ideal gas, we have F = % fNEST, and

! p %
dS—TdE+TdV TdN

:%hoj§l+§dv+<gﬂh—§>dN 20
Invoking the ideal gas equation of state pV = Nk,T', we have
dS|y = 5fNkydInT + NkydInV . (2.145)
Integrating, we obtain
S(T,V,N) = fNky InT + Nk mV + o(N) (2.146)

where ¢(N) is an arbitrary function. Extensivity of S places restrictions on ¢(N), so that the most
general case is

S(T,V,N) = 3fNky InT + Nk, In (%) + Na
(2.147)

E 1%
=1fNk, ln<N> + Nk In (N) +Nb

where a and b are constants, where b = a — % fkg ln(% fkg). When we study statistical mechanics, we will
find that for the monatomic ideal gas the entropy is

v
5

where A\ = /2nh?/mk,T is the thermal wavelength, which involved Planck’s constant. Let’s now
contrast two illustrative cases.

e Adiabatic free expansion — Suppose the volume freely expands from V; to V; = r V;, with » > 1. Such
an expansion can be effected by a removal of a partition between two chambers that are otherwise
thermally insulated (see fig. 2.10). We have already seen how this process entails

AE=Q=W=0 . (2.149)
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But the entropy changes! According to eqn. 2.147, we have
AS =5 -5, =NkgInr

CHAPTER 2. THERMODYNAMICS

(2.150)

e Reversible adiabatic expansion — If the gas expands quasistatically and reversibly, then S =
S(E,V,N) holds everywhere along the thermodynamic path. We then have, assuming dN = 0,

dE

O:dS:%kaBerNk

av

By (2.151)

= Nk dln (VE//?)

Integrating, we find

E vy 2/f
£

Thus,

E=rME — T,=r2/7T]

2.7.6 Example system

Consider a model thermodynamic system for which

aS3

where a is a constant. We have
dE=TdS —pdV + udN

and therefore

T_ OE ~ 3a5?
“\35 ),y NV
__(%B) _ a5
P=7\av oy~ N2
_ (9B __o&
H=\oN Jg, ~ TN

(2.152)

(2.153)

(2.154)

: (2.155)

(2.156)

(2.157)

(2.158)

Choosing any two of these equations, we can eliminate S, which is inconvenient for experimental purposes.

This yields three equations of state,

T3 1%
p—2:27aﬁ s

only two of which are independent.

, (2.159)

What about €, and C,? To find Cy,, we recast eqn. 2.156 as S = /NVT/3a. We then have

1/2
o -1 (%) ~h(Mry”
aT )y~ 2\ 3a

N T2

— 2.160
18a p ( )
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where the last equality on the RHS follows upon invoking the first of the equations of state in eqn. 2.159.
To find C,,, we eliminate V' from eqns. 2.156 and 2.157, obtaining T2 /p = 9aS/N. From this we obtain

2
C,=T (g—§> = % T? (2.161)
P,
Thus, C,/Cy, = 4.
We can derive still more. To find the isothermal compressibility x, = —% (%_‘;)T, W » use the first of the
equations of state in eqn. 2.159. To derive the adiabatic compressibility kg = _%(86_‘;)5, N+ use eqn.

2.157, and then eliminate the inconvenient variable S.

Suppose we use this system as the working substance for a Carnot engine. Let’s compute the work done
and the engine efficiency. To do this, it is helpful to eliminate S in the expression for the energy, and to
rewrite the equation of state:

oo N 1230 _ [N T2

We assume dN = 0 throughout. We now see that for isotherms,

FE
dT =0 : — = constant 2.163
NG (2.163)

Furthermore, since

N 59 dV
AWy =\ 5o T 5 = 2dE (2.164)
we conclude that
dT' =0 : Wy =2(E; — E) , Qy=E—E+Wyg=3E—-E) . (2.165)
For adiabats, eqn. 2.156 says d(T'V') = 0, and therefore
E
dQ =0 : TV = constant T = constant , FEV = constant (2.166)

as well as W;; = B, — E;. We can use these relations to derive the following:

_h Y _h

EF,.=,/—F E. = E E. = E, . 2.167
B VA A Y C T2 VA A ) D T2 A ( )
Now we can write
W.,. =2(F, — FE,) = E —1|F
AB — ( B NE % A
A
V. T
WBC:(EB_EC): VB<1_?1>EA
A 2
(2.168)
T Vv
WCD = Z(ED Ec) = T; <1 - 71? EA
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Adding up all the work, we obtain

W =W,p+ Wye + Wep + Wpy

v T (2.169)
— B _ -1
AR
3 VB
Qip =3(Ey — E,) = Wi = 3(\/; - 1) E, (2.170)

—1-21 (2.171)

Since

we find once again

2.7.7 Measuring the entropy of a substance

If we can measure the heat capacity Cy,(T") or C,(T') of a substance as a function of temperature down to
the lowest temperatures, then we can measure the entropy. At constant pressure, for example, we have
TdS = C,dT, hence

C (T

T
S(.1) = ST =0)+ far 2

(2.172)
0

The zero temperature entropy is S(p, 7" = 0) = kg Ing where g is the quantum ground state degeneracy
at pressure p. In all but highly unusual cases, g =1 and S(p,7 = 0) = 0.

2.8 Thermodynamic Potentials

Thermodynamic systems may do work on their environments. Under certain constraints, the work done
may be bounded from above by the change in an appropriately defined thermodynamic potential.

2.8.1 Energy F

Suppose we wish to create a thermodynamic system from scratch. Let’s imagine that we create it from
scratch in a thermally insulated box of volume V. The work we must to to assemble the system is
then W = E. After we bring all the constituent particles together, pulling them in from infinity (say),
the system will have total energy E. After we finish, the system may not be in thermal equilibrium.
Spontaneous processes will then occur so as to maximize the system’s entropy, but the internal energy
remains at F.

We have, from the First Law, dFF = dQQ — dW and combining this with the Second Law in the form
dQ < TdS yields
dE <TdS —dw . (2.173)
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Rearranging terms, we have dW < T'dS — dFE . Hence, the work done by a thermodynamic system under
conditions of constant entropy is bounded above by —dE, and the mazimum dW is achieved for a reversible
process. It is sometimes useful to define the quantity

AWpoo = AW —pdV | (2.174)

which is the differential work done by the system other than that required to change its volume. Then
we have
AWioo < T dS —pdV —dE (2.175)

and we conclude for systems at fixed (S, V') that dWeee < —dE.

In equilibrium, the equality in eqn. 2.173 holds, and for single component systems where dW = pdV —
wdN we have E = E(S,V, N) with

oOF oOF oOF
T‘(%LN ’ ‘“(W)M ’ “‘(aTv)sy' (2.176)

These expressions are easily generalized to multicomponent systems, magnetic systems, etc.

Now consider a single component system at fixed (S, V, N). We conclude that dE < 0, which says that
spontaneous processes in a system with dS = dV = dN = 0 always lead to a reduction in the internal
energy E. Therefore, spontaneous processes drive the internal energy E to a minimum in systems at fized

(S,V,N).

2.8.2 Helmholtz free energy F

Suppose that when we spontaneously create our system while it is in constant contact with a thermal
reservoir at temperature 7. Then as we create our system, it will absorb heat from the reservoir.
Therefore, we don’t have to supply the full internal energy E, but rather only F — @, since the system
receives heat energy () from the reservoir. In other words, we must perform work W = E —T'S to create
our system, if it is constantly in equilibrium at temperature 7. The quantity £ — T'S is known as the
Helmholtz free energy, F', which is related to the energy E by a Legendre transformation,

F=FE-TS . (2.177)
The general properties of Legendre transformations are discussed in Appendix II, §2.16.
Again invoking the Second Law, we have
dF < -=8dT'—adw . (2.178)

Rearranging terms, we have dW < —SdI' — dF', which says that the work done by a thermodynamic
system under conditions of constant temperature is bounded above by —dF, and the mazimum dW is
achieved for a reversible process. We also have the general result

and we conclude, for systems at fixed (7, V), that dWee < —dF.
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Under equilibrium conditions, the equality in eqn. 2.178 holds, and for single component systems where
dW =pdV — udN we have dF = —SdT — pdV + pdN . This says that F' = F(T,V,N) with

oF oF oF
‘5—<a—T>V,N ’ ‘“(W)M ’ ”—<a—N>T,V' (2.180)

For spontaneous processes, dF' < —SdT—pdV +pdN says that spontaneous processes drive the Helmholtz
free energy F' to a minimum in systems at fized (T,V,N).

2.8.3 Enthalpy H

Suppose that when we spontaneously create our system while it is thermally insulated, but in constant
mechanical contact with a ‘volume bath’ at pressure p. For example, we could create our system inside
a thermally insulated chamber with one movable wall where the external pressure is fixed at p. Thus,
when creating the system, in addition to the system’s internal energy F, we must also perform work
pV in order to make room for it. In other words, we must perform work W = E + pV. The quantity
E + pV is known as the enthalpy, H. The enthalpy is obtained from the energy via a different Legendre
transformation than that used to obtain the Helmholtz free energy F', i.e.

H=E+pV . (2.181)

Again invoking the Second Law, we have
dH <TdS —dW +pdV +Vdp (2.182)
hence with dW,,, = dW — pdV, we have in general
AWheoe <TdS+Vdp—dH (2.183)
and we conclude, for systems at fixed (.5, p), that dWiee < —dH.
In equilibrium, for single component systems,
dH =TdS+Vdp+pdN (2.184)

which says H = H(S,p, N), with

0H 0H 0H
T <_> L v= <_> - <_> | (2.185)
85 p,N 8]9 S’N 8N S,;D

For spontaneous processes, dH < T'dS + Vdp + pdN, which says that spontaneous processes drive the
enthalpy H to a minimum in systems at fized (S,p, N).

2.8.4 Gibbs free energy G

If we create a thermodynamic system at conditions of constant temperature T" and constant pressure
p, then it absorbs heat energy Q = TS from the reservoir and we must expend work energy pV in
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order to make room for it. Thus, the total amount of work we must do in assembling our system is
W =FE —TS5 + pV. This is the Gibbs free energy, G. The Gibbs free energy is obtained from E after
two Legendre transformations, viz.

G=FE-TS+pV (2.186)

Note that G = F + pV = H —T'S. The Second Law says that
dG < =SdT'+Vdp+pdV —dW (2.187)

which we may rearrange as dW,,, < —SdT'+ Vdp — dG . Accordingly, we conclude, for systems at fixed
(T, p), that AW < —dG.

For equilibrium one-component systems, the differential of G is
dG = -SdI'+Vdp+ pdN (2.188)

therefore G = G(T,p, N), with

oG 0G 0G
or ), n o Jrn ON )7, ( )

Recall that Euler’s theorem for single component systems requires £ = T'S — pV + uN which says
G = uN, Thus, the chemical potential i is the Gibbs free energy per particle. For spontaneous processes,
dG < =S5dT'+ Vdp+ nudN , hence spontaneous processes drive the Gibbs free energy G to a minimum in
systems at fized (T,p, N).

2.8.5 Grand potential (2

The grand potential, sometimes called the Landau free energy, is defined by
Q=E-TS—uN . (2.190)
Under equilibrium conditions, its differential is

d2 = —SdT —pdV — Ndu (2.191)

o5 o5 o5
<0T>V,u P (aV>T,M (ém >T,v (2.192)

Again invoking eqn. 2.141, we find 2 = —pV, which says that the pressure is the negative of the grand
potential per unit volume.

hence

The Second Law tells us
df2 < —adW —SdT' — undN — Ndu (2.193)

hence .
AWheo = AWheo + wdN < —=SdT —pdV — Ndp —d2 . (2.194)

We conclude, for systems at fixed (7, V, u), that d’/ﬁ;free < —df2.
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2.9 Maxwell Relations

Maxwell relations are conditions equating certain derivatives of state variables which follow from the
exactness of the differentials of the various state functions.

2.9.1 Relations deriving from E(S,V,N)

The energy E(S,V,N) is a state function, with

dE=TdS —pdV + updN (2.195)
and therefore
ok oF OF
) P R ¢ (2190
Taking the mixed second derivatives, we find
o’E or op
DSV (a_V>S,N = <%>V,N (2197)
o0’ oT o
5o~ (v )y = (5. .
0’E Op ou
o~ (v )y, = (o0 ) (2199

2.9.2 Relations deriving from F(7,V,N)

The energy F(T,V,N) is a state function, with

dF = —-SdT — pdV + udN (2.200)
and therefore
oF OF OF

Y SR el —p=( = = = i 2.201
s=(z) o (@ o (Ewh (2200

Taking the mixed second derivatives, we find

0’F oS Op
= (= == 2.202
oT v <8V >T7 N oT >v, N ( )
oS

o’r ou
TN ~ (8—N _>VN (2205)
9p

0’F ou
GVON <6N>Tv - _>TN | (2.204)



2.9. MAXWELL RELATIONS 71

2.9.3 Relations deriving from H(S,p, N)

The enthalpy H(S,p, N) satisfies

dH =TdS+Vdp+ pdN (2.205)
which says H = H(S,p, N), with
OH OH OH
T:<_) | V:<—d | “=<—ﬁ | (2.206)
85 p,N 8]9 S’N 8N S,;D
Taking the mixed second derivatives, we find
O*H or ov
a&%‘<%LN‘&EZN (2207
0’H oT o
aﬁﬁ—<mﬂm—QﬁpN (2:208)
0’H ov ou
v~ (v ), = (G 220

2.9.4 Relations deriving from G(T,p, N)

The Gibbs free energy G(T',p, N) satisfies
dG = -SdI'+Vdp+ pdN (2.210)

therefore G = G(T,p, N), with

e e e
s=(5) o v=(5) o w=(5) 2211
T ), v W Jrx ON )y, (2.211)

Taking the mixed second derivatives, we find

55--(5), -,
agg; <0N>mj:< T> (2:213)
253, @,

2.9.5 Relations deriving from (T, V, u)

The grand potential 2(T,V, u) satisfied
d2 =—-SdT —pdV — Ndu (2.215)
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hence
5= (@) = (@) . N= <@> . (2.216)
or )y, OV Jr ow )y
Taking the mixed second derivatives, we find
012 oS Op
oTov W)m o a_T>W (2.217)
012 oS ON
oTon (%)T,V T <8—T>V,u (2.218)
012 Op ON
ovou (%)m o <8_V>T7,J ' (2219)

Relations deriving from S(E,V,N)
We can also derive Maxwell relations based on the entropy S(F,V, N) itself. For example, we have
1 P 1%
dS=—=dF+ =dV — =dN . 2.22
S T + T V T (2.220)

Therefore S = S(E,V, N) and

aggv B (8(5;)>E7N - (a(%LE_l)LN : (2.221)

et cetera.

2.9.6 Generalized thermodynamic potentials

We have up until now assumed a generalized force-displacement pair (y, X) = (—p, V). But the above
results also generalize to e.g. magnetic systems, where (y, X) = (H,M). In general, we have

| THIS SPACE AVAILABLE | dE =TdS+ydX + pdN (2.222)
F=E-TS dF = —SdT +ydX + pdN (2.223)
H=FE-yX dH =TdS — X dy + udN (2.224)
G=F-TS—yX dG = —SdT — X dy + pdN (2.225)

R=FE-TS—uN d?=-SdT' +ydX — Ndp . (2.226)



2.10. EQUILIBRIUM AND STABILITY

Generalizing (

73

—p, V) = (y, X), we also obtain, mutatis mutandis, the following Maxwell relations:

().~ (@), (), () %)
0X Js N 95 )x n ON Js x 98 Jx n 0X Js
or ory _(on (o
<8y >S,N < ),N <8N>S,y a <8S>y,1v <8N>Sy <8y>SN

3 e ) N ) N ) - (5x)
0X Jr n T ) y ON Jr x T )y y 0X Jr

@)~ (ar), (), (), ),; ().
(x), = Gr), GG, G (),

2.10 Equilibrium and Stability

2.10.1 Equilibrium

Suppose we have two systems, A and B, which are free to exchange energy, volume, and particle number,
subject to overall conservation rules

E.+E,=F , V,+V;=V , N, +N,=N | (2.227)
where E, V, and N are fixed. Now let us compute the change in the total entropy of the combined

systems when they are allowed to exchange energy, volume, or particle number. We assume that the
entropy is additive, i.e.

S — <<‘?S ) <aSB> dE, + <<‘?S > <8SB> av,
OE, Jy n, \OEy )y n. Vi Joon, \Vulp
0S8, 05y
+ < ) < ) AN, . (2.228)
ON, Jo, v \ONy o v |©0

Note that we have used dE; = —dF,, dV; = —dV,, and dN; = —dN,. Now we know from the Second
Law that spontaneous processes result in T'dS > 0, which means that S tends to a maximum. If S is a
maximum, it must be that the coefficients of dE,, dV,, and dN, all vanish, else we could increase the total
entropy of the system by a judicious choice of these three differentials. From T'dS = dFE 4+ pdV — u,dN,

we have
1 [0S » [0S 1 03
1_(os p_ (95 E__ (95 , 9.99
T <6E>V,N T (aV>E,N T <0N>E,v (2.229)
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Thus, we conclude that in order for the system to be in equilibrium, so that S is maximized and can
increase no further under spontaneous processes, we must have

T, =T, (thermal equilibrium) (2.230)
Pa _ Py (mechanical equilibrium) (2.231)
TA TB
Ha _ Hs (chemical equilibrium) (2.232)
TA TB

2.10.2 Stability

Next, consider a uniform system with energy E’ = 2F, volume V' = 2V, and particle number N’ = 2N.
We wish to check that this system is not unstable with respect to spontaneously becoming inhomogeneous.
To that end, we imagine dividing the system in half. Each half would have energy E, volume V', and
particle number N. But suppose we divided up these quantities differently, so that the left half had
slightly different energy, volume, and particle number than the right, as depicted in fig. 2.20. Does the
entropy increase or decrease? We have

AS = S(E+ AE,V + AV,N + AN) + S(E — AE,V — AV,N — AN) — S(2E, 2V, 2N)
025 025 025

_Yw 2 , 0o 2 2
= 352 (AE)” + 72 (AV)” + ERe (AN) (2.233)
oS %S %S
2 AE A 2 AE AN +2 AV AN
e oEa V' 25Ean T oveN
Thus, we can write
,J
where
%5 9% 9%
OFE? OE0V  OEON
Q= |2 &5 05 (2.235)
OEOV  0VZ  9VON :

%S 9%s 9%
OEON OV ON ONZ2
is the matrix of second derivatives, known in mathematical parlance as the Hessian, and ¥ = (AE, AV, AN).

Note that @ is a symmetric matrix.

Since S must be a maximum in order for the system to be in equilibrium, we are tempted to conclude
that the homogeneous system is stable if and only if all three eigenvalues of () are negative. If one or more
of the eigenvalues is positive, then it is possible to choose a set of variations ¥ such that AS > 0, which
would contradict the assumption that the homogeneous state is one of maximum entropy. A matrix with
this restriction is said to be negative definite. While it is true that ) can have no positive eigenvalues,
it is clear from homogeneity of S(E,V, N) that one of the three eigenvalues must be zero, corresponding
to the eigenvector ¥ = (E,V,N). Homogeneity means S(AE,AV,AN) = AS(E,V,N). Now let us take
A =14 7, where 7 is infinitesimal. Then AE = nE, AV =V, and AN = nN, and homogeneity says
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E+AE | E—AE
V+AV | VAV
N + AN § N — AN

Figure 2.20: To check for an instability, we compare the energy of a system to its total energy when we
reapportion its energy, volume, and particle number slightly unequally.

S(E+AE,V+AV,N+AN)=(1+xn)S(E,V,N) and AS = (1+n)S+ (1 —n)S —2S5 =0. We then
have a slightly weaker characterization of Q) as negative semidefinite.

However, if we fix one of the components of (AE, AV, AN) to be zero, then ¥ must have some component
orthogonal to the zero eigenvector, in which case AS < 0. Suppose we set AN = 0 and we just examine
the stability with respect to inhomogeneities in energy and volume. We then restrict our attention to the
upper left 2 x 2 submatrix of (). A general symmetric 2 x 2 matrix may be written

Q= (Z 2) (2.236)

It is easy to solve for the eigenvalues of ). One finds

a—+c a—c2
e () (5 e e

In order for @) to be negative definite, we require A, <Oand A\_ < 0. Thus, Tr Q@ =a+c= X, +A_ <0
and detQ = ac — b?> = \ + A_ > 0. Taken together, these conditions require

a<0 , <0 , ac>b* . (2.238)

Going back to thermodynamic variables, this requires

028 0 028 028 99 ( 028 >2

9B a2 <Y e T \amav

572 (2.239)

Thus the entropy is a concave function of E and V at fixed N. Had we set AF = 0 and considered
the lower right 2 x 2 submatrix of @, we’d have concluded that S(V,N) is concave at fixed E. Since

(g—g)v =T~!, we have o8 — 1 (g—g)v = —?—‘2/ < 0 and we conclude C', > 0 for stability.

OEZ — T2

Many thermodynamic systems are held at fixed (T, p, N), which suggests we examine the stability criteria
for G(T,p, N). Suppose our system is in equilibrium with a reservoir at temperature 7, and pressure pj.
Then, suppressing N (which is assumed constant), we have
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Now suppose there is a fluctuation in the entropy and the volume of our system, which is held at fixed
particle number. Going to second order in AS and AV, we have

E E
AG = oF —Ty| AS + oF +po| AV
, ) ) (2.241)
1| 0°F 9 0°FE 0°FE 9
t3 W(AS) +2858VASAV+W(AV) +...
Equilibrium requires that the coefficients of AS and AV both vanish, i.e. that T = (g—g)v v = Ty and

p = —(2—5) sn = Po- The condition for stability is that AG > 0 for all (AS,AV). Stability therefore

requires that the Hessian matrix ) be positive definite, with

B B
052 oS oV
Q= . (2.242)
°E PE
oS oV ov?
Thus, we have the following three conditions:
O’E oT T
(=) = = 2.24
052 <as>v ¢, 0 (2243)
0’E Op 1
= E) = 2.244
av? <av>s Vig " (2.244)
2B O 2B Y T TV
oL OB (9 = (9L oy (2.245)
052 9V? aS oV Vikg Cy, aV Jg

As we shall discuss below, the quantity ag = % (%) o v is the adiabatic thermal expansivity coefficient.

We therefore conclude that stability of any thermodynamic system requires

kg Cy
vT

&>O

T s Rg >0 N Qg > (2246)

2.11 Applications of Thermodynamics

A discussion of various useful mathematical relations among partial derivatives may be found in the
appendix in §2.17. Some facility with the differential multivariable calculus is extremely useful in the
analysis of thermodynamics problems.

2.11.1 Adiabatic free expansion revisited

Consider once again the adiabatic free expansion of a gas from initial volume V; to final volume V; = rV;.
Since the system is not in equilibrium during the free expansion process, the initial and final states do
not lie along an adiabat, i.e. they do not have the same entropy. Rather, as we found, from @ = W = 0,
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volume V

initial

VT7/? = const.

temperature T

Figure 2.21: Adiabatic free expansion via a thermal path. The initial and final states do not lie along
an adabat! Rather, for an ideal gas, the initial and final states lie along an isotherm.

we have that E; = E;, which means they have the same energy, and, in the case of an ideal gas, the
same temperature (assuming N is constant). Thus, the initial and final states lie along an isotherm. The
situation is depicted in fig. 2.21. Now let us compute the change in entropy AS = S; — S; by integrating
along this isotherm. Note that the actual dynamics are irreversible and do not quasistatically follow
any continuous thermodynamic path. However, we can use what is a fictitious thermodynamic path as a
means of comparing S in the initial and final states.

We have
V.

f
oV Jr N
V k)

1

But from a Maxwell equation deriving from F', we have

()= () 22
hence
Vi 9
AS = /dV (8_T>va . (2.249)
4
For an ideal gas, we can use the equation of state pV = Nk,T to obtain
0 Nk
<8_§>V,N -2 . (2.250)
The integral can now be computed:
rV;
AS = /dV N‘fB = Nkg Inr | (2.251)
V.

1
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as we found before, in eqn. 2.150 What is different about this derivation? Previously, we derived the
entropy change from the explicit formula for S(F,V, N). Here, we did not need to know this function.
The Maxwell relation allowed us to compute the entropy change using only the equation of state.

2.11.2 Energy and volume

We saw how E(T,V,N) = % fNEST for an ideal gas, independent of the volume. In general we should

have
E(T,V,N)=N¢(T, %) - (2.252)
For the ideal gas, gb(T, %) = % fkT is a function of T" alone and is independent on the other intensive

quantity V/N. How does energy vary with volume? At fixed temperature and particle number, we have,

from E=F+ TS,
OE\  (OF as\ ap
(W)M - (W)M T (W)m =—p+T <a—T>V,N ’ (2.253)

where we have used the Maxwell relation (g—g)T'N = (%)vw’ derived from the mixed second derivative

%. Another way to derive this result is as follows. Write dEl =T dS — pdV + pudN and then express
dS in terms of dT', dV, and dN, resulting in
08 0
T on +u
o )y n

a5
B =1 <a—T>V7N T (eTv)m P

Now read off (g—g)VN and use the same Maxwell relation as before to recover eqn. 2.253. Applying this
result to the ideal gas law pV = Nk,T results in the vanishing of the RHS, hence for any substance
obeying the ideal gas law we must have

av — AN (2.254)

E(T,V,N) = ve(T) = Ne(T)/N, . (2.255)

2.11.3 van der Waals equation of state
It is clear that the same conclusion follows for any equation of state of the form p(7,V,N) =T - f(V/N),

where f(V/N) is an arbitrary function of its argument: the ideal gas law remains valid'?. This is not
true, however, for the van der Waals equation of state,

<p + %) (v—b)=RT | (2.256)

where v = N, V/N is the molar volume. We then find (always assuming constant N),

OE\ [0z Op _a
<W>T—<%>T—T<8—T>V‘p—v2 ’ (2.257)

2Note V/N = v/N,.
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gas a <Lrjl'(l°13r> b () | pe (bar) | T, (K) | v, (L/mol)

Acetone 14.09 0.0994 52.82 505.1 0.2982
Argon 1.363 0.03219 | 48.72 150.9 0.0966
Carbon dioxide 3.640 0.04267 7404 304.0 0.1280
Ethanol 12.18 0.08407 63.83 516.3 0.2522
Freon 10.78 0.0998 40.09 384.9 0.2994
Helium 0.03457 0.0237 2.279 5.198 0.0711
Hydrogen 0.2476 0.02661 12.95 33.16 0.0798
Mercury 8.200 0.01696 1055 1723 0.0509
Methane 2.283 0.04278 46.20 190.2 0.1283
Nitrogen 1.408 0.03913 34.06 128.2 0.1174
Oxygen 1.378 0.03183 50.37 154.3 0.0955
Water 5.536 0.03049 220.6 647.0 0.0915

Table 2.3: Van der Waals parameters for some common gases. (Source: Wikipedia.)

where E(T,V,N) = ve(T,v). We can integrate this to obtain
e(T,v) =w(T) — = | (2.258)
v

where w(7') is arbitrary. From eqn. 2.31, we immediately have
Oe ,
===\ =(T) . 2.2
¢y <6T>v w'(T) (2.259)

What about ¢,? This requires a bit of work. We start with eqn. 2.32,

»=ar), o+ (ar)
»—\or),""\ar ),

(2.260)
—J(T)+ (p+ — o
- P2 ) \ar A
We next take the differential of the equation of state (at constant N):
a 2a
RdT = <p—|—§> dv + (v—b)(dp— v_3dv>
(2.261)
B a  2ab B d
= p_ﬁ—i_ﬁ dv+ (v—10)dp
We can now read off the result for the volume expansion coefficient,
1 ( ov > 1 R
o=-(—=)==—= . (2.262)
Powl\dT), v p-— 4+ 2%7
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We now have for c_,

P
p+%)R
¢, = w'(T) + (ptii) R
’ P T
s (2.263)
= J(T) + Y

RTv3 — 2a(v — b)?

where v = VN, /N is the molar volume.

To fix w(T'), we consider the v — oo limit, where the density of the gas vanishes. In this limit, the gas
must be ideal, hence eqn. 2.258 says that w(T') = %fRT. Therefore ¢, (T,v) = %fR, just as in the case
of an ideal gas. However, rather than c, = ¢;, + R, which holds for ideal gases, c,(7,v) is given by eqn.
2.263. Thus,

o =3fR (2.264)
R*Tv3
VDW 1
=5fR 2.265
@ 2f R+ RTv? — 2a(v — b)? ( )

Note that c,(a — 0) = ¢y, + R, which is the ideal gas result.

As we shall see in chapter 7, the van der Waals system in unstable throughout a region of parameters,
where it undergoes phase separation between high density (liquid) and low density (gas) phases. The
above results are valid only in the stable regions of the phase diagram.

2.11.4 Thermodynamic response functions

Consider the entropy S expressed as a function of T', V', and N:

oS oS oS
ds = | — ar — d — dN . 2.2
5= (7 ) (57 )y * (), (2200
Dividing by dT', multiplying by 7', and assuming dN = 0 throughout, we have
oS ov
— =T|=— — . 2.2
C,—Cy < 5 >T < o7 )p (2.267)

Appealing to a Maxwell relation derived from F(T,V, N), and then appealing to eqn. 2.469, we have
a8 Op dp ov
=) =Z=Z) ==X — . 2.268
(ov),= (&), =~ (). (5r), (2269

B ap\ [V
6p-0v -1 (2) (&) (2209

p

This allows us to write
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We define the response functions,

1 1 0
isothermal compressibility: kp = v <%—‘;>T =y % (2.270)
1[0V 1 0°H
adiabatic compressibility: kg = v <5_p>5 =y e (2.271)
1
thermal expansivity: a, = v g—;)p . (2.272)
Thus,
Taf,
C,—Cy=V—= . (2.273)
T
or, in terms of intensive quantities,
v Tozlz,
cp—Cy = , (2.274)

Kp

where, as always, v = VN, /N is the molar volume.

This above relation generalizes to any conjugate force-displacement pair (—p, V') — (y, X):

B dy 0X
Cy=Cx=-T (a—T>X (a—T>y

2
:T<8_y> <5_X>
ox )y \or ),

For example, we could have (y, X) = (H*, M?).

(2.275)

A similar relationship can be derived between the compressibilities k. and xg. We then clearly must
start with the volume, writing

dv = <8—V> dp + <8—V> ds + <8—V> dN . (2.276)
dp S,N as p,N Ip S,p
Dividing by dp, multiplying by —V ~!, and keeping N constant, we have
1 /0V oS
Ky kg = <_> <_> | (2.277)
VoS b op Jop
Again we appeal to a Maxwell relation, writing
oS ov
— | =—| = 2.278
(&), a1

and after invoking the chain rule,

() CGAL(E)-22),
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we obtain
v Tozlz,
c
P
Comparing eqns. 2.274 and 2.280, we find
(cp —cv)kp = (kp — Kg) ¢, = UTCMI% . (2.281)
This result entails
D _fr (2.282)
¢y Rg
The corresponding result for magnetic systems is'?
om\?
oT Jy
where m = M /v is the magnetization per mole of substance, and
M 1 9?
isothermal susceptibility: X = <Z—H>T = % (2.284)
oM 1 6°H
diabati tibility: =) =—-——=— . 2.2
adiabatic susceptibility: Xg <8H>S T (2.285)
Here the enthalpy and Gibbs free energy are
H=FE-HM dH =TdS - MdH (2.286)
G=FE-TS—-HM dG =—-SdT"'—MdH . (2.287)

Remark: The previous discussion has assumed an isotropic magnetic system where M and H are
collinear, hence H- M = HM.

wg _ (OM*\ 1 9G
Xt = <3HB )T = T 9He omP (2.288)
op _ (OMY 1 O°H
X" = <8H5 )s = e o (2.289)
In this case, the enthalpy and Gibbs free energy are
H=F-H-M dH =TdS—M-dH (2.290)
G=FE-TS-H-M dG =-SdTI'—-M-dH . (2.291)

'3Recall the subtle font difference in notation: H is enthalpy while H is magnetic field.
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2.11.5 Joule effect: free expansion of a gas

Previously we considered the adiabatic free expansion of an ideal gas. We found that Q = W = 0 hence
AFE = 0, which means the process is isothermal, since E = ve(T) is volume-independent. The entropy
changes, however, since S(E,V,N) = Nk, In(V/N) + 3 fNkyIn(E/N) + Ns,. Thus,

V.

Vi
Sp = S, + Nk, 1n<—f> . (2.292)
What happens if the gas is nonideal?

We integrate along a fictitious thermodynamic path connecting initial and final states, where dE = 0
along the path. We have

oF oF
0=dE = <8—V>T dV + <8—T>V dT (2.293)
hence 5 O /oV) 5
T E/OV)p 1 E
il — =7 - 2= . 2.294
(aV>E (OE/OT), ~ Cy (aV>T (229
We also have 5 o 5
E p
=) =T =) —p=7T(ZXZ) — . 2.2
(), =7 (%), »=7 (), (3:295)

Thus,
(2.296)

ory _ 1
av ).~ Cy |P

Note that the term in square brackets vanishes for any system obeying the ideal gas law. For a nonideal

gas,
V

f
oT
AT = /dv<W>E : (2.297)

which is in general nonzero.

Now consider a van der Waals gas, for which

<p+%>(v—b):RT

We then have

Op a av?
p_;p<a_T>V:_F:_W , (2.208)

In §2.11.3 we concluded that C, = % fvR for the van der Waals gas, hence

Vi

2qv [dV 2a (1 1
AT = 222 22 () 2.299
fR/W fR<vf vi> (2.299)
V.

1
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pfa‘/f

Figure 2.22: In a throttle, a gas is pushed through a porous plug separating regions of different pressure.
The change in energy is the work done, hence enthalpy is conserved during the throttling process.

Thus, if V; >V}, we have T; < T} and the gas cools upon expansion.

Consider O, gas with an initial specific volume of v; = 22.4L/mol, which is the STP value for an ideal gas,
freely expanding to a volume v; = oo for maximum cooling. According to table 2.3, a = 1.378 L2-bar/mol?,
and we have AT = —2a/fRv;, = —0.296 K, which is a pitifully small amount of cooling. Adiabatic free
expansion is a very inefficient way to cool a gas.

2.11.6 Throttling: the Joule-Thompson effect

In a throttle, depicted in fig. 2.22, a gas is forced through a porous plug which separates regions of
different pressures. According to the figure, the work done on a given element of gas is
Vi Vi
W= /def - /dei =pVr -V - (2.300)
0 0

Now we assume that the system is thermally isolated so that the gas exchanges no heat with its environ-
ment, nor with the plug. Then Q =0 so AE = —-W, and

E;+pVi = Ef + Vi

(2.301)
Hi - Hf ;

where H is enthalpy. Thus, the throttling process is isenthalpic. We can therefore study it by defining a
fictitious thermodynamic path along which dH = 0. The, choosing T and p as state variables,

o= (M) o () s
(o7 - tomon -

The numerator on the RHS is computed by writing dH = T'dS + V dp and then dividing by dp, to obtain

o0H oS oV
< dp >T <8p >T <8T >p ( )
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The denominator is

(o), -

%)p <g_§>p (2.305)

N

Thus,
T 1
(%), =7 (),
W/ | \OT) (2.306)
v
=—(Ta, —1

S (ra, 1)

where a,, = % (%)p is the volume expansion coefficient.

From the van der Waals equation of state, we obtain, from eqn. 2.262,

T [ Ov RT /v v—>b
Toy = v <8_T> T, _ @y 2ab 20 (v—b)\2 (2.307)
D p 02 v3 v — RT (T)

Assuming v > a/RT and v > b, we have

B2

Thus, for T' > T* = %, we have <%—£>H < 0 and the gas heats up upon an isenthalpic pressure decrease.

For T' < T, the gas cools under such conditions.

In fact, there are two inversion temperatures 175 for the van der Waals gas. To see this, we set T'a, = 1,
which is the criterion for inversion. From eqn. 2.307 it is easy to derive
b bRT

Z_-1-
v 2a

(2.309)

We insert this into the van der Waals equation of state to derive a relationship 7' = T*(p) at which
Ta,, =1 holds. After a little work, we find

3RT 8aRT «a
p=— % +14/ B (2.310)

This is a quadratic equation for T, the solution of which is

2
. 2a 3b2
T"(p) = 57 <2 +4/1- Tp ) . (2.311)

In fig. 2.23 we plot pressure wversus temperature in scaled units, showing the curve along which the

derivative (%—Z) g = 0. The volume, pressure, and temperature scales defined are

_a _ 8a
- 27b2 ’ ¢ 27bR

ve=3b P (2.312)
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Figure 2.23: Inversion temperature 7%(p) for the van der Waals gas. Pressure and temperature are given
in terms of p. = a/27b* and T. = 8a/27bR, respectively.

Values for p., T, , and v, are provided in table 2.3. If we define v =v/v., p = p/p., and T = T/T., then
the van der Waals equation of state may be written in dimensionless form:

(p + %) (Bv—1)=8T . (2.313)

In terms of the scaled parameters, the equation for the inversion curve (8—T>H = 0 becomes

p:9—36<1—\/%7T)2 — T:3(1i,/1—$p>2 . (2.314)

Thus, there is no inversion for p > 9p,. We are usually interested in the upper inversion temperature, 15,
corresponding to the upper sign in eqn. 2.311. The maximum inversion temperature occurs for p = 0,
where Tj . = 2% = 2?7 T.. For H,, from the data in table 2.3, we find T}, (Hy) = 224 K, which is within

10% of the experimentally measured value of 205 K.

S

What happens when H, gas leaks from a container with 7" > 757 Since (%—Z < 0 and Ap < 0, we have

AT > 0. The gas warms up, and the heat facilitates the reaction 2 Hy + Oy — 2H,0, which releases
energy, and we have a nice explosion.

2.12 Phase Transitions and Phase Equilibria

A typical phase diagram of a p — V — T system is shown in the fig. 2.24(a). The solid lines delineate
boundaries between distinct thermodynamic phases. These lines are called coexistence curves. Along
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Figure 2.24: (a) Typical thermodynamic phase diagram of a single component p-V-T system, showing

triple point (three phase coexistence) and critical point. (Source: Univ. of Helsinki.) Also shown: phase
diagrams for >He (b) and “He (c). What a difference a neutron makes! (Source: Brittanica.)

these curves, we can have coexistence of two phases, and the thermodynamic potentials are singular. The
order of the singularity is often taken as a classification of the phase transition. Ie. if the thermodynamic
potentials F, F', G, and H have discontinuous or divergent m'™ derivatives, the transition between the
respective phases is said to be m™ order. Modern theories of phase transitions generally only recognize
two possibilities: first order transitions, where the order parameter changes discontinuously through
the transition, and second order transitions, where the order parameter vanishes continuously at the
boundary from ordered to disordered phases'®. We’ll discuss order parameters during Physics 140B.

For a more interesting phase diagram, see fig. 2.24(b,c), which displays the phase diagrams for *He and
“He. The only difference between these two atoms is that the former has one fewer neutron: (2p + 1n +
2e) in 3He versus (2p + 2n + 2e) in *He. As we shall learn when we study quantum statistics, this extra
neutron makes all the difference, because *He is a fermion while *He is a boson.

2.12.1 p-v-T surfaces

The equation of state for a single component system may be written as

f(p,0,T)=0 (2.315)
This may in principle be inverted to yield p = p(v,T) or v = v(T,p) or T' = T'(p,v). The single constraint
f(p,v,T) on the three state variables defines a surface in {p,v, T} space. An example of such a surface
is shown in fig. 2.25, for the ideal gas.

Real p-v-T surfaces are much richer than that for the ideal gas, because real systems undergo phase
transitions in which thermodynamic properties are singular or discontinuous along certain curves on the
p-v-T surface. An example is shown in fig. 2.26. The high temperature isotherms resemble those of the
ideal gas, but as one cools below the critical temperature T, the isotherms become singular. Precisely

14Some exotic phase transitions in quantum matter, which do not quite fit the usual classification schemes, have recently
been proposed.
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Figure 2.25: The surface p(v,T) = RT/v corresponding to the ideal gas equation of state, and its
projections onto the (p,T), (p,v), and (T, v) planes.

at T' = T, the isotherm p = p(v,T,) becomes perfectly horizontal at v = v,, which is the critical molar
volume. This means that the isothermal compressibility, k. = —% (g—;)T diverges at T = T,. Below T,
the isotherms have a flat portion, as shown in fig. 2.28, corresponding to a two-phase region where liquid
and vapor coexist. In the (p,T') plane, sketched for H,O in fig. 2.4 and shown for CO, in fig. 2.29,
this liquid-vapor phase coexistence occurs along a curve, called the vaporization (or boiling) curve. The
density changes discontinuously across this curve; for H,O, the liquid is approximately 1000 times denser
than the vapor at atmospheric pressure. The density discontinuity vanishes at the critical point. Note
that one can continuously transform between liquid and vapor phases, without encountering any phase
transitions, by going around the critical point and avoiding the two-phase region.

In addition to liquid-vapor coexistence, solid-liquid and solid-vapor coexistence also occur, as shown in
fig. 2.26. The triple point (T, p,) lies at the confluence of these three coexistence regions. For H,O, the
location of the triple point and critical point are given by

T, =273.16K T, =647K
p; = 611.7Pa = 6.037 x 107 atm pP. = 22.06 MPa = 217.7 atm
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pressure P

molar volume v

Figure 2.26: A p-v-T surface for a substance which contracts upon freezing. The red dot is the critical
point and the red dashed line is the critical isotherm. The yellow dot is the triple point at which there
is three phase coexistence of solid, liquid, and vapor.

2.12.2 The Clausius-Clapeyron relation

Recall that the homogeneity of E(S,V, N) guaranteed E = T'S — pV + uN, from Euler’s theorem. It also
guarantees a relation between the intensive variables T', p, and p, according to eqn. 2.143. Let us define
g = G/v = N, u, the Gibbs free energy per mole. Then

dg=—sdl'+vdp (2.316)
where s = S/v and v = V/v are the molar entropy and molar volume, respectively. Along a coexistence
curve between phase #1 and phase #2, we must have g; = g,, since the phases are free to exchange
energy and particle number, ¢.e. they are in thermal and chemical equilibrium. This means

dg, = —s1dT +vydp = —s9dT + vy dp = dgy . (2.317)

Therefore, along the coexistence curve we must have

dp 59— 81 l
— = = 2.31
(dT)coex Vg — U T Av ’ ( ’ 8)

where ¢ = T'As = T (s, — s,) is the molar latent heat of transition. Heat energy ¢ per mole must be
supplied in order to change frqm phase #1 to phase #2, even without changing p or T'. If ¢ is the latent
heat per mole, then we write ¢ as the latent heat per gram: ¢ = /M, where M is the molar mass.
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v

Figure 2.27: Equation of state for a substance which expands upon freezing, projected to the (v,T) and
(v,p) and (T, p) planes.

Along the liquid-gas coexistence curve, we typically have vg,, > Vliquid> and assuming the vapor is ideal,
we may write Av & vy, ~ RT/p. Thus,

dp . 14 N pl
<ﬁ>hq_gas “TAv  RTZ (2.319)

If £ remains constant throughout a section of the liquid-gas coexistence curve, we may integrate the above
equation to get

dp £ dT

» RT? p(T) = p(Ty) /o e~ /HE (2.320)

2.12.3 Liquid-solid line in H,O

Life on planet earth owes much of its existence to a peculiar property of water: the solid is less dense
than the liquid along the coexistence curve. For example at T' = 273.1 K and p = 1 atm,

Dyater = 1.00013cm> /g, Dy = 1.0907cm?/g . (2.321)

water

The latent heat of the transition is ¢ = 333J /g = 79.5cal/g. Thus,

dp R 333J/g
AT ) s TAD  (273.1K) (=9.05 x 1072 cm3 /g)

dyn atm
=—-134
cm? K °C

(2.322)

=—1.35 x 10%
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Figure 2.28: Projection of the p-v-T surface of fig. 2.26 onto the (v,p) plane.

The negative slope of the melting curve is invoked to explain the movement of glaciers: as glaciers slide
down a rocky slope, they generate enormous pressure at obstacles'” Due to this pressure, the story goes,
the melting temperature decreases, and the glacier melts around the obstacle, so it can flow past it, after
which it refreezes. But it is not the case that the bottom of the glacier melts under the pressure, for
consider a glacier of height h = 1km. The pressure at the bottom is p ~ gh/% ~ 107 Pa, which is only
about 100 atmospheres. Such a pressure can produce only a small shift in the melting temperature of
about AT . = —0.75° C.

Does the Clausius-Clapeyron relation explain how we can skate on ice? When my daughter was seven
years old, she had a mass of about M = 20kg. Her ice skates had blades of width about 5mm and length
about 10 cm. Thus, even on one foot, she imparted an additional pressure of only

Mg _ 20kg x 9.8m/s?

I x =39 x10°Pa=39atm . 2.32
1 (5% 107 m) x (10T m) 3.9 x 10° Pa = 3.9atm (2.323)

Ap =

The corresponding change in the melting temperature is thus minuscule: AT, . ~ —0.03° C.

So why could my daughter skate so nicely? The answer isn’t so clear!'® There seem to be two relevant
issues in play. First, friction generates heat which can locally melt the surface of the ice. Second, the
surface of ice, and of many solids, is naturally slippery. Indeed, this is the case for ice even if one is
standing still, generating no frictional forces. Why is this so? It turns out that the Gibbs free energy
of the ice-air interface is larger than the sum of free energies of ice-water and water-air interfaces. That
is to say, ice, as well as many simple solids, prefers to have a thin layer of liquid on its surface, even at

The melting curve has a negative slope at relatively low pressures, where the solid has the so-called Th hexagonal crystal
structure. At pressures above about 2500 atmospheres, the crystal structure changes, and the slope of the melting curve
becomes positive.

6 For a recent discussion, see R. Rosenberg, Physics Today 58, 50 (2005).
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temperatures well below its bulk melting point. If the intermolecular interactions are not short-ranged'”,
theory predicts a surface melt thickness d o (T, — T)~'/3. In fig. 2.30 we show measurements by Gilpin
(1980) of the surface melt on ice, down to about —50° C. Near 0° C the melt layer thickness is about
40nm, but this decreases to ~ 1nm at T'= —35° C. At very low temperatures, skates stick rather than
glide. Of course, the skate material is also important, since that will affect the energetics of the second
interface. The 19th century novel, Hans Brinker, or The Silver Skates by Mary Mapes Dodge tells the
story of the poor but stereotypically decent and hardworking Dutch boy Hans Brinker, who dreams of
winning an upcoming ice skating race, along with the top prize: a pair of silver skates. All he has are some
lousy wooden skates, which won’t do him any good in the race. He has money saved to buy steel skates,
but of course his father desperately needs an operation because — I am not making this up — he fell off a
dike and lost his mind. The family has no other way to pay for the doctor. What a story! At this point,
I imagine the suspense must be too much for you to bear, but this isn’t an American Literature class, so
you can use Google to find out what happens (or rent the 1958 movie, directed by Sidney Lumet). My
point here is that Hans’ crappy wooden skates can’t compare to the metal ones, even though the surface
melt between the ice and the air is the same. The skate blade material also makes a difference, both for
the interface energy and, perhaps more importantly, for the generation of friction as well.

2.12.4 Slow melting of ice : a quasistatic but irreversible process

Suppose we have an ice cube initially at temperature 7, < © = 273.15K (i.e. © = 0° C) and we toss it
into a pond of water. We regard the pond as a heat bath at some temperature 7; > ©. Let the mass of
the ice be M. How much heat (@) is absorbed by the ice in order to raise its temperature to 7,7 Clearly

Q= Mé&y(6 — Ty) + MI+ Mé, (T, — 6) (2.324)

where ¢ and ¢, are the specific heats of ice (solid) and water (liquid), respectively'®, and ? is the latent
heat of melting per unit mass. The pond must give up this much heat to the ice, hence the entropy of
the pond, discounting the new water which will come from the melted ice, must decrease:

Q
ASpond — —?1 (2325)
Now we ask what is the entropy change of the H,O in the ice. We have
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The total entropy change of the system is then
AStotal =AS + ASice

pond
_ (6 _(O-T, (11 (T /T —e\ (2.327)
() o (5 () () (1)

"For example, they could be of the van der Waals form, due to virtual dipole fluctuations, with an attractive 1/7"6 tail.
BWe assume &g (T) and ¢, (T) have no appreciable temperature dependence, and we regard them both as constants.
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Figure 2.29: Phase diagram for COgz in the (p,T') plane. (Source: www.scifun.org.)

Now since T, < © < T}, we have

_ (6T, _ (0T,
Mcs< T 0) < Mcs< 5 0) : (2.328)
Therefore,
(1 1
AS > M¢ <5 - T) + Mé¢, f(Ty/0) + M¢, f(0/Ty) (2.329)
1

where f(z) = x — 1 —Inxz. Clearly f'(z) = 1 — 27! is negative on the interval (0, 1), which means that
the maximum of f(z) occurs at = 0 and the minimum at = 1. But f(0) = oo and f(1) = 0, which
means that f(z) > 0 for z € [0,1]. Since Ty < © < T}, we conclude AS, .., > 0.

2.12.5 Gibbs phase rule

Equilibrium between two phases means that p, T, and u(p,T") are identical. From

i (p, T) = py(p, T) (2.330)

we derive an equation for the slope of the coexistence curve, the Clausius-Clapeyron relation. Note that
we have one equation in two unknowns (7', p), so the solution set is a curve. For three phase coexistence,
we have

w0, T) = pa(p, T) = p3(p. T) (2.331)
which gives us two equations in two unknowns. The solution is then a point (or a set of points). A critical

point also is a solution of two simultaneous equations:

critical point = vy (p,T) =vao(p, T) , (1) = pa(p, T) - (2.332)
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Figure 2.30: Left panel: data from R. R. Gilpin, J. Colloid Interface Sci. 77, 435 (1980) showing
measured thickness of the surface melt on ice at temperatures below 0°C. The straight line has slope —%,
as predicted by theory. Right panel: phase diagram of HyO, showing various high pressure solid phases.
(Source : Physics Today, December 2005).

Recall v = NA(g—g)T. Note that there can be no four phase coexistence for a simple p-V-T system.

Now for the general result. Suppose we have ¢ species, with particle numbers N,, wherea = 1,...,0. Itis
useful to briefly recapitulate the derivation of the Gibbs-Duhem relation. The energy E(S,V,Ny,...,N,)
is a homogeneous function of degree one:

EAS, AV, ANy, ..., AN,) = AE(S,V,N,...,N,) . (2.333)
From Euler’s theorem for homogeneous functions (just differentiate with respect to A and then set A = 1),
we have .
E=TS—pV+> u,N, . (2.334)
a=1

Taking the differential, and invoking the First Law,

dE =TdS —pdV + Y p,dN, (2.335)
a=1
we arrive at the relation .
SdT —Vdp+» Nydp, =0 | (2.336)
a=1

of which eqn. 2.142 is a generalization to additional internal ‘work’ variables. This says that the o + 2
quantities (7, p, f4q,- .-, l4,) are not all independent. We can therefore write

fio = fio (T,Ds 11, - s frg—1) (2.337)
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If there are ¢ different phases, then in each phase j, with j = 1,..., ¢, there is a chemical potential ,ut(lj )

for each species a. We then have

O = u@ (T, i) (2.338)
Here ,ugj ) is the chemical potential of the a'™ species in the j™ phase. Thus, there are ¢ such equations
relating the 2 + ¢ o variables (T, D, { ,ugj )}), meaning that only 2 + ¢ (0 — 1) of them may be chosen as
independent. This, then, is the dimension of ‘thermodynamic space’ containing a maximal number of

intensive variables:

dyp(0,0) =24 @ (0 —1) . (2.339)

To completely specify the state of our system, we of course introduce a single extensive variable, such
as the total volume V. Note that the total particle number N = >~ _, N, may not be conserved in the
presence of chemical reactions!

Now suppose we have equilibrium among ¢ phases. We have implicitly assumed thermal and mechanical
equilibrium among all the phases, meaning that p and T are constant. Chemical equilibrium applies on
a species-by-species basis. This means

Mz(zj) = gj’) (2.340)
where j, 5/ € {1,...,¢}. This gives o(¢ — 1) independent equations equations'”. Thus, we can have phase

equilibrium among the ¢ phases of o species over a region of dimension
dog(o,0) =2+¢(c—1)—0c(p—1)=240—¢p . (2.341)

Since dpg > 0, we must have ¢ < o + 2. Thus, with two species (0 = 2), we could have at most four
phase coexistence.

If the various species can undergo p distinct chemical reactions of the form

A+ Mg A =0 (2.342)
where A, is the chemical formula for species a, and Cy) is the stoichiometric coefficient for the a'® species
in the r** reaction, with r = 1,..., p, then we have an additional p constraints of the form

i .
¢ =0 . (2.343)
a=1
Therefore,
dog(0,0,p) =240 —p—p . (2.344)

One might ask what value of j are we to use in eqn. 2.343, or do we in fact have ¢ such equations for
each 1?7 The answer is that eqn. 2.340 guarantees that the chemical potential of species a is the same in
all the phases, hence it doesn’t matter what value one chooses for j in eqn. 2.343.

Let us assume that no reactions take place, i.e. p = 0, so the total number of particles >y _; N, is

conserved. Instead of choosing (7, p,,ul,...,ugjll) as d., intensive variables, we could have chosen

(4)

(T,p, poy,- .- x5 ), where x, = N, /N is the concentration of species a.

9Set j =1 and let j' range over the ¢ — 1 values 2, ..., .
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Why do phase diagrams in the (p,v) and (T,v) plane look different than those in the (p,T) plane??’
For example, fig. 2.27 shows projections of the p-v-T surface of a typical single component substance
onto the (T,v), (p,v), and (p,T) planes. Coexistence takes place along curves in the (p,T') plane, but in
extended two-dimensional regions in the (7',v) and (p,v) planes. The reason that p and T are special is
that temperature, pressure, and chemical potential must be equal throughout an equilibrium phase if it
is truly in thermal, mechanical, and chemical equilibrium. This is not the case for an intensive variable
such as specific volume v = N,V/N or chemical concentration z, = N,/N.

2.13 Entropy of Mixing and the Gibbs Paradox

2.13.1 Computing the entropy of mixing

Entropy is widely understood as a measure of disorder. Of course, such a definition should be supple-
mented by a more precise definition of disorder — after all, one man’s trash is another man’s treasure.
To gain some intuition about entropy, let us explore the mixing of a multicomponent ideal gas. Let
N =, N, be the total number of particles of all species, and let x, = N,/N be the concentration of
species a. Note that > z, = 1.

For any substance obeying the ideal gas law pV = Nk,T, the entropy is
S(T,V,N) = Nk;In(V/N)+ No(T) , (2.345)

a8

. Nk
since (W B

)T,N = (g—:‘f’;)vyN = —2. Note that in eqn. 2.345 we have divided V' by N before taking the
logarithm. This is essential if the entropy is to be an extensive function (see §2.7.5). One might think
that the configurational entropy of an ideal gas should scale as In(V) = N'InV, since each particle can
be anywhere in the volume V. However, if the particles are indistinguishable, then permuting the particle
labels does not result in a distinct configuration, and so the configurational entropy is proportional to
In(VN/N!) ~ NIn(V/N) — N. The origin of this indistinguishability factor will become clear when we
discuss the quantum mechanical formulation of statistical mechanics. For now, note that such a correction

is necessary in order that the entropy be an extensive function.

If we did not include this factor and instead wrote S*(T,V,N) = Nk,InV + N¢(T), then we would
find S*(T,V,N) — 25*(T, %V, %N) = NkgyIn2, i.e. the total entropy of two identical systems of particles
separated by a barrier will increase if the barrier is removed and they are allowed to mix. This seems
absurd, though, because we could just as well regard the barriers as invisible. This is known as the Gibbs
paradozr. The resolution of the Gibbs paradox is to include the indistinguishability correction, which
renders S extensive, in which case S(T,V, N) = 25(T, %V, %N)

Consider now the situation in fig. 2.31, where we have separated the different components into their own
volumes V. Let the pressure and temperature be the same everywhere, so pV, = N, k,T". The entropy
of the unmixed system is then

Sumnized = D Sa = D [ Nakin n(Va/N,) + Ny 6 (T)| (2.346)

2°The same can be said for multicomponent systems: the phase diagram in the (T, z) plane at constant p looks different
than the phase diagram in the (T, 1) plane at constant p.
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Figure 2.31: A multicomponent system consisting of isolated gases, each at temperature 7" and pressure
p. Then system entropy increases when all the walls between the different subsystems are removed.

Now let us imagine removing all the barriers separating the different gases and letting the particles mix
thoroughly. The result is that each component gas occupies the full volume V', so the entropy is

Suised = 3280 =3 [N ko In(V/N,) + Ny 6,(T)] (2:347)
Thus, the entropy of mixing is
ASmix = Smixed - Sunmixed
- Z N, k, n(V/V,) = —Nk, Zx nz, | (2:348)
where z, ]X;‘ = V“ is the fraction of species a. Note that AS

What if all the components were initially identical? It seems absurd that the entropy should increase
simply by removing some invisible barriers. This is again the Gibbs paradox. In this case, the resolution
of the paradox is to note that the sum in the expression for S, . ., is a sum over distinct species. Hence
if the particles are all identical, we have S = NkygIn(V/N)+ No(T) = S hence AS, ;, =

mixed unmixed’

2.13.2 Entropy and combinatorics

As we shall learn when we study statistical mechanics, the entropy may be interpreted in terms of the

number of ways W (E,V, N) a system at fixed energy and volume can arrange itself. One has
S(E,V,N)=k;nW(E,V,N) . (2.349)

Consider a system consisting of o different species of particles. Now let it be that for each species label
a, N, particles of that species are confined among @), little boxes such that at most one particle can fit
in a box (see fig. 2.32). How many ways W are there to configure N identical particles among @ boxes?

Clearly
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Figure 2.32: Mixing among three different species of particles. The mixed configuration has an additional
entropy, ASmix-

Were the particles distinct, we'd have Wy« = ﬁ, which is N! times greater. This is because
permuting distinct particles results in a different configuration, and there are N! ways to permute N
particles.

The entropy for species a is then S, = k;In W, = k; ln(%). We then use Stirling’s approximation,

In(K!)=KInK - K+3inK+3hn@r)+0K™") | (2.351)

which is an asymptotic expansion valid for K > 1. One then finds for @, N > 1, with x = N/Q € [0, 1],

Q\ _
In <N = (QmQ-Q) - (2Qm(@Q) ~2Q) — ((1 =)@ (1 ~2)Q) - (1 - 2)Q)

=-Q [aj Inz+ (1 —2)n(l — :17)] . (2.352)
This is valid up to terms of order ) in Stirling’s expansion. Since In () < @), the next term is small and
we are safe to stop here. Summing up the contributions from all the species, we get

Sunmixed = K > W, = —k, 3" Q, [g;a Inz, + (1 —z,)In(l —z,)| | (2.353)
a=1 a=1
where z, = N,/Q, is the initial dimensionless density of species a.

Now let’s remove all the partitions between the different species so that each of the particles is free to
explore all of the boxes. There are @ = ), @, boxes in all. The total number of ways of placing N,
particles of species a = 1 through N, particles of species o is

W @

= 2.354
mixed NO'Nll . 'Ng! ) ( 35 )

where Ny = Q — Y _7_; N, is the number of vacant boxes. Again using Stirling’s rule, we find

Smixed = _kB Q Z Ea In %a P (2355)
a=0
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where Z, = N,/Q is the fraction of all boxes containing a particle of species a, and N, is the number of
empty boxes. Note that

~ N, N, Q
wa:_a:_a._a:xafa ) 2356
Q Q. Q (23%6)
where f, = Q,/Q. Note that Y 7_, f, = 1.
Let’s assume all the densities are initially the same, so x, = xVa, so x, = x f,. In this case, f, = % = %
is the fraction of species a among all the particles. We then have z;, =1 — z, and
Smixed = _kB Q Z xfa ln(xfa) - kB Q 50 In ‘%0
o=l . (2.357)
= —kBQ[xlnx + (1 —2)In(1 - a:)] — kaQZfalnfa
a=1
Thus, the entropy of mixing is
ASyi = =Nk > fonf, (2.358)

a=1

where N = "7 | N, is the total number of particles among all species (excluding vacancies) and f, =
N,/(N + N,) is the fraction of all boxes occupied by species a.

2.13.3 Weak solutions and osmotic pressure

Suppose one of the species is much more plentiful than all the others, and label it with a = 0. We will
call this the solvent. The entropy of mixing is then

N, 7 N,
AS. . = —k. |Nyln[ —2— Ele —a
Sle B[ On<NO+N/>+a:1 an<NO+N/>

where N’ = "7 _| N, is the total number of solvent molecules, summed over all species. We assume the
solution is weak, which means N, < N’ < N,,. Expanding in powers of N'/N, and N,/N,, we find

7 N,
ASpix = —ks > [Na 1n<ﬁ> —~ N,
a=1 0

, (2.359)

+O(N?/N,) . (2.360)

Consider now a solution consisting of IV, molecules of a solvent and N, molecules of species a of solute,
where a = 1,...,0. We begin by expanding the Gibbs free energy G(T',p, Ny, Ny,...,N,), where there
are o species of solutes, as a power series in the small quantities N,. We have

N(l
G(T.p, No, {N,}) = Nogo(T,p) + kT > N, ln<eN >
o 0

. (2.361)
+ za: Na ¢a(T7p) + 2—]\70 ;Aab(T7p) Na Nb



100 CHAPTER 2. THERMODYNAMICS

Osmotic pressure: Do
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Figure 2.33: Osmotic pressure causes the column on the right side of the U-tube to rise higher than the
column on the left by an amount Ah = 7/pg.

The first term on the RHS corresponds to the Gibbs free energy of the solvent. The second term is due
to the entropy of mixing. The third term is the contribution to the total free energy from the individual
species. Note the factor of e in the denominator inside the logarithm, which accounts for the second term
in the brackets on the RHS of eqn. 2.360. The last term is due to interactions between the species; it is
truncated at second order in the solute numbers.

The chemical potential for the solvent is

oG

to(T,p) = E?—NO =9o(T,p) — kBTZ Lo — % Z Ap(Tip)z, Ty (2.362)
a a,b
and the chemical potential for species a is
oG
:ua(T’p) = aT = k‘)BTln T, + ¢a(T,p) + Z Aab(Tv p) Ty (2'363)
a b

where z, = N,/N, is the concentrations of solute species a. By assumption, the last term on the RHS

of each of these equations is small, since N .. < Ny, where N, .. = > | N, is the total number of

solute molecules. To lowest order, then, we have

to(T,p) = go(T,p) — kT (2.364)
to(T.p) = kgT'Inz, + (T, p) (2.365)
where z = 1z, is the total solute concentration.

If we add sugar to a solution confined by a semipermeable membrane’!, the pressure increases! To
see why, consider a situation where a rigid semipermeable membrane separates a solution (solvent plus
solutes) from a pure solvent. There is energy exchange through the membrane, so the temperature is 7'
throughout. There is no volume exchange, however: dV = dV’ = 0, hence the pressure need not be the

2l:Semipermeable’ in this context means permeable to the solvent but not the solute(s).
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same. Since the membrane is permeable to the solvent, we have that the chemical potential y, is the
same on each side. This means

90(T,pr) — 2k, T = go(T,p,) (2.366)

where p_ , is the pressure on the left and right sides of the membrane, and x = N/N, is again the
total solute concentration. This equation once again tells us that the pressure p cannot be the same on
both sides of the membrane. If the pressure difference is small, we can expand in powers of the osmotic

pressure, ™ = py — p,,, and we find
8#0)
m=uzk,T —_— . 2.367
B / < ap . ( )

But a Maxwell relation (§2.9) guarantees

where v(T, p) is the molar volume of the solvent.
v =xRT (2.369)

which looks very much like the ideal gas law, even though we are talking about dense (but ‘weak’)
solutions! The resulting pressure has a demonstrable effect, as sketched in fig. 2.33. Consider a solution
containing v moles of sucrose (C;,H,,0;;) per kilogram (55.52 mol) of water at 30° C. We find 7 = 2.5 atm
when v = 0.1.

One might worry about the expansion in powers of m when 7 is much larger than the ambient pressure.
But in fact the next term in the expansion is smaller than the first term by a factor of 7k, where s is
the isothermal compressibility. For water one has x, ~ 4.4 x 1075 (atm) ™!, hence we can safely ignore
the higher order terms in the Taylor expansion.

2.13.4 Effect of impurities on boiling and freezing points

Along the coexistence curve separating liquid and vapor phases, the chemical potentials of the two phases
are identical:

pe(T,p) = pi(T,p) (2.370)

Here we write 0 for p to emphasize that we are talking about a phase with no impurities present. This
equation provides a single constraint on the two variables T" and p, hence one can, in principle, solve to
obtain T' = T (p), which is the equation of the liquid-vapor coexistence curve in the (7', p) plane. Now
suppose there is a solute present in the liquid. We then have

p(Top, ) = p (T, p) — ahky T (2.371)

where x is the dimensionless solute concentration, summed over all species. The condition for liquid-vapor
coexistence now becomes

(T, p) — xkpT = p(T,p) (2.372)
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Latent Heat | Melting | Latent Heat of | Boiling
Substance | of Fusion Point | Vaporization ¢, | Point
J/g °C J/g °C
C,H;OH 108 -114 855 78.3
NH, 339 -75 1369 -33.34
CO, 184 -57 574 -78
He — - 21 -268.93
H 58 -259 455 -253
Pb 24.5 372.3 871 1750
N, 25.7 -210 200 -196
O, 13.9 -219 213 -183
H,O 334 0 2270 100

Table 2.4: Latent heats of fusion and vaporization at p = 1 atm.

This will lead to a shift in the boiling temperature at fixed p. Assuming this shift is small, let us expand
to lowest order in (T -1y (p)), writing

0 * a:ug * 0 * a,u% *
i (T5, p) + T (T —Ty) — kT = py (15, p) + T (T-13) . (2.373)
p p

7).~ ()
=) == (2.374)
(3r),. = (%),

from a Maxwell relation deriving from exactness of dG. Since S is extensive, we can write S =
(N/N,) s(T,p), where s(T,p) is the molar entropy. Solving for T, we obtain

zR[T§(p)]”
£, (p)

where £, = T§ - (s, — s,) is the latent heat of the liquid-vapor transition®?. The shift AT* = T* — Ty is
called the boiling point elevation.

Note that

T*(p,x) =15 (p) + : (2.375)

As an example, consider seawater, which contains approximately 35 g of dissolved Na™Cl~ per kilogram of
H,0. The atomic masses of Na and Cl are 23.0 and 35.4, respectively, hence the total ionic concentration
in seawater (neglecting everything but sodium and chlorine) is given by

2. 35 1000
/ ~0.022 . (2.376)

xTr =
23.0+ 354 18
The latent heat of vaporization of H,O at atmospheric pressure is £ = 40.7kJ/mol, hence

0.022)(8.3 J/mol K)(373K)?

o |
AT* =
4.1 x 10* J/mol

~06K . (2.377)

22\We shall discuss latent heat again in §2.12.2 below.
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Put another way, the boiling point elevation of H,O at atmospheric pressure is about 0.28°C per percent
solute. We can express this as AT* = Km, where the molality m is the number of moles of solute per
kilogram of solvent. For H,O, we find K = 0.51°C kg/mol.

Similar considerations apply at the freezing point, when we equate the chemical potential of the solvent
plus solute to that of the pure solid. The latent heat of fusion for HyO is about £ = T{ (s 1qum — SsoLm) =
6.01kJ /mol®® We thus predict a freezing point depression of AT* = —xR [T(ﬂ2/€f = 1.03°C - 2[%]. This
can be expressed once again as AT* = —Km, with K = 1.86°C kg/mol**.

2.13.5 Binary solutions

Consider a binary solution, and write the Gibbs free energy G(7',p, Na, Ng) as

N
G(T,p, No,Ng) = No pX(T,p) + Ng p& (T, p) + NakyT In <_N _|_AN >
A B
2.
NxNg (2.378)

N,
Np kT | B A
NRCEE n(NA+NB> AN,

The first four terms on the RHS represent the free energy of the individual component fluids and the
entropy of mixing. The last term is an interaction contribution. With A > 0, the interaction term prefers
that the system be either fully A or fully B. The entropy contribution prefers a mixture, so there is a
competition. What is the stable thermodynamic state?

It is useful to write the Gibbs free energy per particle, (7', p,z) = G/(N, + Ng), in terms of T', p, and
the concentration x = xg = Ng/(N, + Np) of species B (hence 2, = 1 —  is the concentration of species
A). Then

g(T,p,x) =1 —z)pQ +2xpg +k,T|enz+ (1 —2)n(l —z)| + Xzl —z) . (2.379)

In order for the system to be stable against phase separation into relatively A-rich and B-rich regions, we
must have that g(T, p,x) be a convex function of z. Our first check should be for a local instability, i.e.
spinodal decomposition. We have

dg

xr
3 s+ kT (2

> +A(1—22) (2.380)

and )
09 kT n kT

or2 «x 1—=x

—2) . (2.381)

The spinodal is given by the solution to the equation g—;% = 0, which is

T (z) = 23; (1—-z) . (2.382)

23Gee table 2.4, and recall M = 18 g is the molar mass of H,O.
21Tt is more customary to write AT* = Thure solvent — Lsolution 1D the case of the freezing point depression, in which case
AT™ is positive.
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molar free energy g
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Figure 2.34: Gibbs free energy per particle for a binary solution as a function of concentration x = xg
of the B species (pure A at the left end z = 0; pure B at the right end x = 1), in units of the interaction
parameter A\. Dark red curve: T = 0.65\/kg > T, ; green curve: T = \/2kg = T, ; blue curve:
T = 0.40 \/ky < T.. We have chosen pi = 0.60\ — 0.50 ksT and p3 = 0.50 A — 0.50 k5T Note that the
free energy ¢(T, p,x) is not convex in z for T' < T¢, indicating an instability and necessitating a Maxwell
construction.

Since z (1 — z) achieves its maximum value of 1 at z = 3, we have T* < k /2.

In fig. 2.34 we sketch the free energy ¢(T,p,z) versus = for three representative temperatures. For
T > \/2kg, the free energy is everywhere convex in A. When T < A/2k,, there free energy resembles the
blue curve in fig. 2.34, and the system is unstable to phase separation. The two phases are said to be
immiscible, or, equivalently, there exists a solubility gap. To determine the coexistence curve, we perform
a Maxwell construction, writing

_ 9
- Oz

Ty

9(z5) — g(zy) _ @
Ty — Ty Oz

(2.383)

o

Here, x; and x, are the boundaries of the two phase region. These equations admit a symmetry of
x <+ 1 —z, hence we can set x = x; and z, =1 — x. We find

g(1 —z) —g(x) = (1 —22) (ug — Hp) . (2.384)
and invoking eqns. 2.383 and 2.380 we obtain the solution

A 1—2x
Tcoex(x) = k_

EYe= (2.385)
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Figure 2.35: Upper panels: chemical potential shifts Auy = Aua + Aug versus concentration x = xg.
The dashed black line is the spinodal, and the solid black line the coexistence boundary. Temperatures
range from 7' = 0 (dark blue) to T'= 0.6 A\/kg (red) in units of 0.1 A\/kg. Lower panels: phase diagram in
the (T, Auy) planes. The black dot is the critical point.

The phase diagram for the binary system is shown in fig. 2.36. For T' < T™*(x), the system is unstable,
and spinodal decomposition occurs. For T*(z) < T < T, (), the system is metastable, just like the
van der Waals gas in its corresponding regime. Real binary solutions behave qualitatively like the model
discussed here, although the coexistence curve is generally not symmetric under x <+ 1 —x, and the single
phase region extends down to low temperatures for x =~ 0 and x ~ 1. If X itself is temperature-dependent,
there can be multiple solutions to eqns. 2.382 and 2.385. For example, one could take

2
AT) = AT

_ 2.386
T? + T3 (2.386)

In this case, kzT > A at both high and low temperatures, and we expect the single phase region to be
reentrant. Such a phenomenon occurs in water-nicotine mixtures, for example.
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Figure 2.36: Phase diagram for the binary system. The black curve is the coexistence curve, and the
dark red curve is the spinodal. A-rich material is to the left and B-rich to the right.

It is instructive to consider the phase diagram in the (7, 1) plane. We define the chemical potential shifts,
App = pip — 9 = kg Tln(1 — ) + A 22 (2.387)
Apg = pg — pg = kgTlnz + A (1 —2)? | (2.388)

and their sum and difference, Ap, = Ap, £ Apg. From the Gibbs-Duhem relation, we know that we
can write pg as a function of 7', p, and p,. Alternately, we could write Apy in terms of T, p, and
Apig, so we can choose which among Ap, and Ap_ we wish to use in our phase diagram. The results
are plotted in fig. 2.35. It is perhaps easiest to understand the phase diagram in the (7, Au_) plane.
At low temperatures, below T = T, = \/2ky, there is a first order phase transition at Au_ = 0. For
T < T, = \2k, and Au_ = 0T, i.e. infinitesimally positive, the system is in the A-rich phase, but for
Ap_ = 07, i.e. infinitesimally negative, it is B-rich. The concentration = g changes discontinuously
across the phase boundary. The critical point lies at (T, Au_) = (A\/2kg, 0).

If we choose N = N, + Ng to be the extensive variable, then fixing N means dN, +dNg = 0. So st fixed
T and p,

dG|; = pia ANp + pg dNg = dgly = —Ap_dz . (2.389)
Since Ap_(z,T) = p(z,T)—p(l—2,T) = =Ap_(1—=2,T), where ¢(z,T) = Az — kT In x, we have that

-z

the coexistence boundary in the (z, A_) plane is simply the line Apy_ = 0, because [da’ Ap_(2',T) = 0.
xr

Note also that there is no two-phase region in the (7', Au) plane; the phase boundary in this plane is
a curve which terminates at a critical point. As we saw in §2.12, the same situation pertains in single
component (p,v,T) systems. That is, the phase diagram in the (p,v) or (T, v) plane contains two-phase
regions, but in the (p, T") plane the boundaries between phases are one-dimensional curves. Any two-phase
behavior is confined to these curves, where the thermodynamic potentials are singular.
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Figure 2.37: Gibbs free energy per particle g for an ideal binary solution for temperatures T' € [Tx, T3]
The Maxwell construction is shown for the case Ty < T < Tg. Right: phase diagram, showing two-phase
region and distillation sequence in (x,T') space.

The phase separation can be seen in a number of systems. A popular example involves mixtures of
water and ouzo or other anise-based liqueurs, such as arak and absinthe. Starting with the pure liqueur
(x = 1), and at a temperature below the coexistence curve maximum, the concentration is diluted by
adding water. Follow along on fig. 2.36 by starting at the point (x = 1, kyT/A = 0.4) and move to
the left. Eventually, one hits the boundary of the two-phase region. At this point, the mixture turns
milky, due to the formation of large droplets of the pure phases on either side of coexistence region which
scatter light, a process known as spontaneous emulsification””. As one continues to dilute the solution
with more water, eventually one passes all the way through the coexistence region, at which point the
solution becomes clear once again, and described as a single phase.

What happens if A < 07 In this case, both the entropy and the interaction energy prefer a mixed phase,
and there is no instability to phase separation. The two fluids are said to be completely miscible. An
example would be benzene, C4Hg, and toluene, C.Hg (i.e. C;H;CH3). The phase diagram would be
blank, with no phase boundaries below the boiling transition, because the fluid could exist as a mixture
in any proportion.

Any fluid will eventually boil if the temperature is raised sufficiently high. Let us assume that the boiling
points of our A and B fluids are T} 5, and without loss of generality let us take Ty < T at some given
fixed pressure?®. This means uj(Tx,p) = px(Tx,p) and ps(T5,p) = ps(TE, p). What happens to the

25 An emulsion is a mixture of two or more immiscible liquids.
26We assume the boiling temperatures are not exactly equal!
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Figure 2.38: Negative (left) and positive (right) azeotrope phase diagrams. From Wikipedia.

mixture? We begin by writing the free energies of the mixed liquid and mixed vapor phases as

9.(T,p,x) = (1 —z) us(T,p) + x pg(T,p) + kBT[x Inz+ (1—2)In(1 - az)] + A z(l—x) (2.390)

g (T,p,x) =1 —2) px(T,p) + x pg(T, p) + kT [aj Inz+ (1 —2)In(1 - :13)] +A,z(l—2x) . (2.391)

Typically A, ~ 0. Consider these two free energies as functions of the concentration x, at fixed 7" and
p. If the curves never cross, and g, () < g, (z) for all € [0,1], then the liquid is always the state of
lowest free energy. This is the situation in the first panel of fig. 2.37. Similarly, if g, (z) < g, (x) over
this range, then the mixture is in the vapor phase throughout. What happens if the two curves cross at
some value of x7 This situation is depicted in the second panel of fig. 2.37. In this case, there is always
a Maxwell construction which lowers the free energy throughout some range of concentration, i.e. the
system undergoes phase separation.

In an ideal fluid, we have A\, = A\, = 0, and setting g, = g, requires

where Api, /B(T, p) = iy /B(T, P) — pn /B(T, p). Expanding the chemical potential about a given tempera-
ture T,

* * * CP(T*’p) *\ 2
BT p) = (T, p) = (T, p) (T = T%) = B2 -1 (2:393)
where we have used (g—éﬁ) N = —(g—S)Tp = —s(T,p), the entropy per particle, and (g—;)pN = cp/T.
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Figure 2.39: Free energies before Maxwell constructions for a binary fluid mixture in equilibrium with
a vapor (Ay = 0). Panels show (a) A, = 0 (ideal fluid), (b) A, < 0 (miscible fluid; negative azeotrope),
(c) Ais > 0 (positive azeotrope), (d) A5 > 0 (heteroazeotrope). Thick blue and red lines correspond
to temperatures Ty and 7§, respectively, with Tx < Tg. Thin blue and red curves are for temperatures
outside the range [T, T§]. The black curves show the locus of points where g is discontinuous, i.e. where
the liquid and vapor free energy curves cross. The yellow curve in (d) corresponds to the coexistence
temperature for the fluid mixture. In this case the azeotrope forms within the coexistence region.

Thus, expanding Ap, /B about Ty /gy We have

v _ L

App = pg — pp = (sp — sp)(T — Tx) + LT = Ta)* + ...
QTA
¥ . (2.394)
o BT 9B 12
B

We assume sy /B> sk B i.e. the vapor phase has greater entropy per particle. Thus, Apu, /B(T) changes
sign from negative to positive as T rises through T, /B If we assume that these are the only sign changes

for App /B(T) at fixed p, then eqn. 2.392 can only be solved for T" € [T, T§]. This immediately leads to
the phase diagram in the rightmost panel of fig. 2.37.

According to the Gibbs phase rule, with o = 2, two-phase equilibrium (¢ = 2) occurs along a subspace
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of dimension d,, = 240 — ¢ = 2. Thus, if we fix the pressure p and the concentration x = z, liquid-gas
equilibrium occurs at a particular temperature 7™, known as the boiling point. Since the liquid and the
vapor with which it is in equilibrium at 7™ may have different composition, i.e. different values of x, one
may distill the mixture to separate the two pure substances, as follows. First, given a liquid mixture of
A and B, we bring it to boiling, as shown in the rightmost panel of fig. 2.37. The vapor is at a different
concentration x than the liquid (a lower value of z if the boiling point of pure A is less than that of
pure B, as shown). If we collect the vapor, the remaining fluid is at a higher value of z. The collected
vapor is then captured and then condensed, forming a liquid at the lower x value. This is then brought
to a boil, and the resulting vapor is drawn off and condensed, etc The result is a purified A state. The
remaining liquid is then at a higher B concentration. By repeated boiling and condensation, A and B
can be separated. For liquid-vapor transitions, the upper curve, representing the lowest temperature at
a given concentration for which the mixture is a homogeneous vapor, is called the dew point curve. The
lower curve, representing the highest temperature at a given concentration for which the mixture is a
homogeneous liquid, is called the bubble point curve. The same phase diagram applies to liquid-solid
mixtures where both phases are completely miscible. In that case, the upper curve is called the liquidus,
and the lower curve the solidus.

When a homogeneous liquid or vapor at concentration x is heated or cooled to a temperature 71" such that
(,T) lies within the two-phase region, the mixture phase separates into the the two end components
(zf,T) and (x%,T), which lie on opposite sides of the boundary of the two-phase region, at the same
temperature. The locus of points at constant 7' joining these two points is called the tie line. To
determine how much of each of these two homogeneous phases separates out, we use particle number
conservation. If n  is the fraction of the homogeneous liquid and homogeneous vapor phases present,
then n, zf + nyay = x, which says n, = (x — z¥)/(zf — z¥) and n, = (v — 2}) /(2% — zf). This is known
as the lever rule.

For many binary mixtures, the boiling point curve is as shown in fig. 2.38. Such cases are called azeotropes.
For negative azeotropes, the maximum of the boiling curve lies above both T 5. The free energy curves for
this case are shown in panel (b) of fig. 2.39. For x < z*, where z* is the azebtropic composition, one can
distill A but not B. Similarly, for x > z* one can distill B but not A. The situation is different for positive
azeotropes, where the minimum of the boiling curve lies below both Ty g, corresponding to the free energy
curves in panel (c) of fig. 2.39. In this case, distillation (i.e. condensing and reboiling the collected vapor)
from either side of z* results in the azeotrope. One can of course collect the fluid instead of the vapor.
In general, for both positive and negative azeotropes, starting from a given concentration x, one can only
arrive at pure A plus azeotrope (if < 2*) or pure B plus azeotrope (if > z*). Ethanol (C,H;OH) and
water (H,O) form a positive azeotrope which is 95.6% ethanol and 4.4% water by weight. The individual
boiling points are T¢, g oy = 78.4°C, Tjj,o = 100°C, while the azeotrope boils at Ty, = 78.2°C. No
amount of distillation of this mixture can purify ethanol beyond the 95.6% level. To go beyond this level
of purity, one must resort to azeotropic distillation, which involves introducing another component, such
as benzene (or a less carcinogenic additive), which alters the molecular interactions.

To model the azeotrope system, we need to take A\, # 0, in which case one can find two solutions to
the energy crossing condition g (z) = g, (z). With two such crossings come two Maxwell constructions,
hence the phase diagrams in fig. 2.38. Generally, negative azeotropes are found in systems with A\, <0,
whereas positive azeotropes are found when A\, > 0. As we’ve seen, such repulsive interactions between
the A and B components in general lead to a phase separation below a coexistence temperature Ty ()
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Figure 2.40: Phase diagram for a eutectic mixture in which a liquid L is in equilibrium with two solid
phases a and 8. The same phase diagram holds for heteroazeotropes, where a vapor is in equilibrium
with two liquid phases.

given by eqn. 2.385. What happens if the minimum boiling point lies within the coexistence region?
This is the situation depicted in panel (d) of fig. 2.39. The system is then a liquid/vapor version of the
solid/liquid eutectic (see fig. 2.40), and the minimum boiling point mixture is called a heteroazeotrope.

2.14 Some Concepts in Thermochemistry

2.14.1 Chemical reactions and the law of mass action

Suppose we have a chemical reaction among o species, written as
C1A1+C2A2+”'+C¢7Ao’:0 ) (2395)

where A, represents a chemical formula and ¢, the corresponding stoichiometric coefficient. For example,
we could have

—3Hy — Ny +2NH3; =0 (3H, + N, = 2NHj) (2.396)
for which

(Hy)=-3 , (Ny)=-1, ((NHz) =2 . (2.397)

When ¢, > 0, the corresponding A, is a product; when (, < 0, the corresponding A, is a reactant. The
bookkeeping of the coefficients ¢, which ensures conservation of each individual species of atom in the
reaction(s) is known as stoichiometry®”

27 Antoine Lavoisier, the ”father of modern chemistry”, made pioneering contributions in both chemistry and biology. In
particular, he is often credited as the progenitor of stoichiometry. An aristocrat by birth, Lavoisier was an administrator of
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Now we ask: what are the conditions for equilibrium? At constant 7" and p, which is typical for many
chemical reactions, the conditions are that G(T , D, {Na}) be a minimum. Now

dG = —SdT +Vdp+ Y p,dN, | (2.398)

2

and if it runs in reverse we have dN, = —(

so if we let the reaction go forward, we have dN, = (,, o

Thus, setting d1I' = dp = 0, we have the equilibrium condition

> Catta =0 . (2.399)
a=1

Let us investigate the consequences of this relation for ideal gases. The chemical potential of the a'™
species is

1a(T,0) = kaT 6o(T) + ks Tlnp, . (2.400)
Here p, = px,, is the partial pressure of species a, where x, = N,/ >, N, the dimensionless concentration

of species a. Chemists sometimes write x, = [A,] for the concentration of species a. In equilibrium we
must have

S G mp+ma, +o,M)] =0 (2.401)

which says

oz, == ¢ Inp—) (,6,(T) . (2.402)

Exponentiating, we obtain the law of mass action:
[T =p e exp (— > G %(T)) =r(p,T) . (2.403)
a a

The quantity x(p,T) is called the equilibrium constant. When & is large, the LHS of the above equation
is large. This favors maximal concentration z, for the products ({, > 0) and minimal concentration z,,
for the reactants (¢, < 0). This means that the equation REACTANTS = PRODUCTS is shifted to the
right, i.e. the products are plentiful and the reactants are scarce. When & is small, the LHS is small and
the reaction is shifted to the left, i.e. the reactants are plentiful and the products are scarce. Remember

the Ferme générale, an organization in pre-revolutionary France which collected taxes on behalf of the king. At the age of
28, Lavoisier married Marie-Anne Pierette Paulze, the 13-year-old daughter of one of his business partners. She would later
join her husband in his research, and she played a role in his disproof of the phlogiston theory of combustion. The phlogiston
theory was superseded by Lavoisier’s work, where, based on contemporary experiments by Joseph Priestley, he correctly
identified the pivotal role played by oxygen in both chemical and biological processes (i.e. respiration). Despite his fame as
a scientist, Lavoisier succumbed to the Reign of Terror. His association with the Ferme générale, which collected taxes from
the poor and the downtrodden, was a significant liability in revolutionary France (think Mitt Romney vis-a-vis Bain Capital).
Furthermore — and let this be a lesson to all of us — Lavoisier had unwisely ridiculed a worthless pseudoscientific pamphlet,
ostensibly on the physics of fire, and its author, Jean-Paul Marat. Marat was a journalist with scientific pretensions, but
apparently little in the way of scientific talent or acumen. Lavoisier effectively blackballed Marat’s candidacy to the French
Academy of Sciences, and the time came when Marat sought revenge. Marat was instrumental in getting Lavoisier and
other members of the Ferme générale arrested on charges of counterrevolutionary activities, and on May 8, 1794, after a
trial lasting less than a day, Lavoisier was guillotined. Along with Fourier and Carnot, Lavoisier’s name is one of the 72
engraved on the Eiffel Tower. Source: http://www.vigyanprasar.gov.in/scientists/ALLavoisier.htm.
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we are describing equilibrium conditions here. Now we observe that reactions for which > (, > 0 shift
to the left with increasing pressure and shift to the right with decreasing pressure, while reactions for
which )" ¢, > 0 the situation is reversed: they shift to the right with increasing pressure and to the left
with decreasing pressure. When ) (, = 0 there is no shift upon increasing or decreasing pressure.

The rate at which the equilibrium constant changes with temperature is given by

<%¥Z=4;g%@>- (2.404)

Now from eqn. 2.400 we have that the enthalpy per particle for species i is

_ g
he=ttq—T ( o7 >p : (2.405)

since H=G+TS5 and S = — (g—g)p. We find

hy = kT G4(T) (2.406)
and thus
Olnk\ > Ch,  Ah
< oT >p_ kT2 kT2 (2.407)

where Ah is the enthalpy of the reaction, which is the heat absorbed or emitted as a result of the reaction.

When Ah > 0 the reaction is endothermic and the yield increases with increasing 7. When Ah < 0 the
reaction is exothermic and the yield decreases with increasing 7.

As an example, consider the reaction H, 4+ 1, = 2HI. We have
(Hy)=-1 , ((I)=-1 CHI) =2 . (2.408)

Suppose our initial system consists of v moles of Hy, v = 0 moles of I,, and v moles of undissociated

HI . These mole numbers determine the initial concentrations z, where z, = v,/ >, v;,. Define

0_
a=8"% (2.409)
T3
in which case we have
zy = 2§ + saazf , Ty = saaf , 3= (1—-a)zd . (2.410)
Then the law of mass action gives
4(1 - a)?
— = . 2.411
ala + 2r) " ( )

where r = 20 /2 = /1. This yields a quadratic equation, which can be solved to find a(k,r). Note
that k = x(T") for this reaction since ), (, = 0. The enthalpy of this reaction is positive: Ah > 0.
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AHD Ay
Formula | Name State || kJ/mol || Formula | Name State | kJ/mol
Ag Silver crystal 0.0 NiSOy4 Nickel sulfate crystal | -872.9
C Graphite crystal 0.0 Al O3 Aluminum oxide crystal | -1657.7
C Diamond crystal 1.9 Ca3zP,0g | Calcium phosphate gas -4120.8
O3 Ozone gas 142.7 || HCN Hydrogen cyanide liquid 108.9
H>O Water liquid -285.8 || SFg Sulfur hexafluoride gas -1220.5
H3BOg3 | Boric acid crystal || -1094.3 || CaF4 Calcium fluoride crystal | -1228.0
ZnSOy Zinc sulfate | crystal || -982.8 || CaCly Calcium chloride crystal | -795.4

Table 2.5: Enthalpies of formation of some common substances.

2.14.2 Enthalpy of formation

Most chemical reactions take place under constant pressure. The heat Q,; associated with a given isobaric

process is
f f

Qif:/dE+/pdV:(Ef—Ei)‘f‘p(Vf—Vi):Hf—Hi ) (2.412)
where H is the enthalpy,
H=F+pV . (2.413)

Note that the enthalpy H is a state function, since F is a state function and p and V are state variables.
Hence, we can meaningfully speak of changes in enthalpy: AH = H;—H,. If AH < 0 for a given reaction,
we call it exothermic — this is the case when Q,; < 0 and thus heat is transferred to the surroundings. Such
reactions can occur spontaneously, and, in really fun cases, can produce explosions. The combustion of
fuels is always exothermic. If AH > 0, the reaction is called endothermic. Endothermic reactions require
that heat be supplied in order for the reaction to proceed. Photosynthesis is an example of an endothermic
reaction.

Suppose we have two reactions

A+ B By o (2.414)

and
c+p B2 (2.415)

Then we may write
(AH)g

A+B+D — FE | (2.416)

with
(AH), +(AH)y = (AH)5 . (2.417)

We can use this additivity of reaction enthalpies to define a standard molar enthalpy of formation. We
first define the standard state of a pure substance at a given temperature to be its state (gas, liquid, or
solid) at a pressure p = 1 bar. The standard reaction enthalpies at a given temperature are then defined
to be the reaction enthalpies when the reactants and products are all in their standard states. Finally,
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standard states
A

—(AH);

react

0
reactants (AH)prod

ENTHALPY

(AH) rxn

\ 4 v
P products

REACTION COORDINATE

Figure 2.41: Left panel: reaction enthalpy and activation energy (exothermic case shown). Right panel:
reaction enthalpy as a difference between enthalpy of formation of reactants and products.

we define the standard molar enthalpy of formation AHP (X) of a compound X at temperature T" as the
reaction enthalpy for the compound X to be produced by its constituents when they are in their standard
state. For example, if X = SO, then we write

AHP[SO,]

S+ 0, SO, . (2.418)

The enthalpy of formation of any substance in its standard state is zero at all temperatures, by definition:
AH?[0,] = AHY[He] = AHP[K] = AH?[Mn] = 0, etc.

Suppose now we have a reaction
aA+bB 2L co+dD . (2.419)

To compute the reaction enthalpy AH, we can imagine forming the components A and B from their
standard state constituents. Similarly, we can imagine doing the same for C and D. Since the number
of atoms of a given kind is conserved in the process, the constituents of the reactants must be the same
as those of the products, we have

AH = —a AHP(A) —bAH(B) + cAHY(C) +dAH{ (D) . (2.420)

A list of a few enthalpies of formation is provided in table 2.5. Note that the reaction enthalpy is
independent of the actual reaction path. That is, the difference in enthalpy between A and B is the same
whether the reaction is A — B or A — X — (Y + Z) — B. This statement is known as Hess’s
Law.

Note that
dH =dE +pdV +Vdp=dQ+Vdp |, (2.421)

o (9) () )

hence
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enthalpy enthalpy enthalpy enthalpy

bond (kJ/mol) || bond (kJ/mol) || bond (kJ/mol) || bond (kJ/mol)
H-H 436 c-C 348 Cc-S 259 F-F 155
H-C 412 CcC=C 612 N-N 163 F-Cl 254
H-N 388 cC=cC 811 N=N 409 Cl — Br 219
H-0 463 C—-N 305 N=N 945 Cl-1 210
H-F 565 C=N 613 N-O 157 Cl-S 250
H-Cl 431 C=N 890 N-—-F 270 Br — Br 193
H-Br 366 CcC-0 360 N -Cl 200 Br—1 178
H-1I 299 C=0 743 N — Si 374 Br—S 212
H-S 338 C-F 484 0-0 146 I-1 151
H-P 322 C-Cl 338 0=0 497 S—S 264
H-Si 318 C—Br 276 O-F 185 P-P 172
C-1 238 O-Cl 203 Si—Si 176

Table 2.6: Average bond enthalpies for some common bonds. (Source: L. Pauling, The Nature of the
Chemical Bond (Cornell Univ. Press, NY, 1960).)

We therefore have .

H(T,p,v) = H(Ty,p,v) +v[dT c,(T) . (2.423)
TO

For ideal gases, we have c,(T) = (1+ % f) R. For real gases, over a range of temperatures, there are small
variations:

ep(T)=a+BT+yT* . (2.424)
Two examples (300K < T < 1500K, p = 1 atm):
Oy : = 25.503 J B =13.612 x 1073 J = —42.553 x 1077
20 A= mol K ’ e mol K2 7T ' mol K3
J J J
H,0 : = 30.2 =9. 1073 =11.14 x 1077
0 @ =30206 —= , B=9936x10" - .y X 1077 ——g

If all the gaseous components in a reaction can be approximated as ideal, then we may write

(AH)p = (AE) o + > G RT | (2.425)

where the subscript ‘rxn’ stands for ‘reaction’. Here (AFE)
products.

~n 15 the change in energy from reactants to

2.14.3 Bond enthalpies

The enthalpy needed to break a chemical bond is called the bond enthalpy, h[e]. The bond enthalpy
is the energy required to dissociate one mole of gaseous bonds to form gaseous atoms. A table of bond
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C=C (AH) pxn |

+ —124kJ | |

H H
H—H

\ J \ J
(bond)
(bk /AH
(AH)react - N ( )prod

# ‘ bond ‘ cost (kJ) | total (kj) H H H ’ # | bond | cost (k) Ltotal (k)

| HH | 436 | 436 | || c-c | 348 348

4| H-C 412 1648 H H H 6| H-C 412 2472

|| c=C | 612 | e TOTAL 2820

TOTAL 2696 C C
G J

Figure 2.42: Calculation of reaction enthalpy for the hydrogenation of ethene (ethylene), CoHy.

enthalpies is given in Tab. 2.6. Bond enthalpies are endothermic, since energy is required to break
chemical bonds. Of course, the actual bond energies can depend on the location of a bond in a given
molecule, and the values listed in the table reflect averages over the possible bond environment.

The bond enthalpies in Tab. 2.6 may be used to compute reaction enthalpies. Consider, for example, the

reaction 2H,(g) + O4(g) — 2H,0(l). We then have, from the table,
(AH), = 2h[H—H] + h[O=0] — 4 h[H-O]

= —483kJ/mol O,

rxn

(2.426)

Thus, 483 kJ of heat would be released for every two moles of H,O produced, if the H,O were in the
gaseous phase. Since H,O is liquid at STP, we should also include the condensation energy of the gaseous
water vapor into liquid water. At T = 100°C the latent heat of vaporization is ¢ = 2270J /g, but at
T = 20°C, one has ¢ = 2450 J/g, hence with M = 18 we have ¢ = 44.1kJ/mol. Therefore, the heat
produced by the reaction 2H,(g) + O5(g) = 2H,O(l) is (AH),y, = —571.2kJ /mol O,. Since the

reaction produces two moles of water, we conclude that the enthalpy of formation of liquid water at STP
is half this value: AH{[H,0] = 285.6kJ/mol.

Hydrogenation of ethene

Hydrogenation is the adding of hydrogen to a carbon-carbon double bond. Consider the hydrogenation
of ethene (ethylene): C,H, + H, == C,Hg. The product is known as ethane. The energy accounting
is shown in fig. 2.42. To compute the enthalpies of formation of ethene and ethane from the bond
enthalpies, we need one more bit of information, which is the standard enthalpy of formation of C(g)
from C(s), since the solid is the standard state at STP. This value is AH?[C(g)] = 718 kJ/mol. We may
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now write
20(g) +4H(g) — = C,H,(g)
20(s) 1436 kJ 20(g)
2H,y(g) —1— 4H(g)
Thus, using Hess’s law, i.e. adding up these reaction equations, we have
2C(s) + 2Hy(g) —— C,H,(g)
Thus, the formation of ethene is endothermic. For ethane,
2C(g) + 6H(g) ———— C,Hq(g)
20(s) 1436 kJ 2C(g)
3Hy(g) ——— 6H(g)
Add ’em up: 61
2C(s) +3Hy(g) — CyHg(g)
which is exothermic. Thus,
—48kJ —76kJ
CoHy(g) +Hy(g) ———— 2C(s) +3Hy(g) ———— CoHg(g) (2.427)
which says 21
CoHy(g) + Ha(g) CyHg(g) - (2.428)

The hydrogenation of ethene is thus exothermic. However, there is a high activation energy associated
with the intermediate state which prevents the reaction from taking place under normal conditions. This
may be circumvented, however, through use of a catalyst, such as a Pt, Pd, or Ni surface.

2.15 Appendix I : Integrating Factors

Suppose we have an inexact differential

Here I am adopting the ‘Einstein convention’ where we sum over repeated indices unless otherwise ex-
plicitly stated; A,dx;, = >, A, dx,. An integrating factor e is a function which, when divided into
dF, yields an exact differential:

U = et aw = U dz; (2.430)
Oz,
Clearly we must have

0*U 0 I 0
— = LAy = (e 4) . 2.431
Ox,0x;  Ox; (e J) d; (e i) ( )

Applying the Leibniz rule and then multiplying by e” yields

0A; L A, L

.| 0 —81—14a (2.432)

a5, Yow " oa

s
J &Ej
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If there are K independent variables {x{,..., 2}, then there are %K (K — 1) independent equations of
the above form — one for each distinct (4, j) pair. These equations can be written compactly as

oL
Qe — =Fy. (2.433)
ik o, ij
where
Qijr = A0y, — A Oy (2.434)
0A;, DA,
FP.o=_39_ 2 (2.435)
Y Ox;  Oxy
Note that F}; is antisymmetric, and resembles a field strength tensor, and that Qij = —jSk is antisym-

metric in the first two indices (but is not totally antisymmetric in all three).

Can we solve these %K (K — 1) coupled equations to find an integrating factor L? In general the answer
is no. However, when K = 2 we can always find an integrating factor. To see why, let’s call = z; and
Yy = z5. Consider now the ODE

d A (x,
dy _ Ay (2.436)
de A (z,y)
This equation can be integrated to yield a one-parameter set of integral curves, indexed by an initial
condition. The equation for these curves may be written as U,(z,y) = 0, where c¢ labels the curves. Then

along each curve we have

_dUu, 90U, n ou, @
- dxr  Ox Oy dx
2.437
_ou, B ﬁ ou, ( )
dz A, Oy
Thus,
ouU. ouU.
A, =—CA,=elA A . 2.4
Ox Y ay T € x y ( 38)
This equation defines the integrating factor L :
1 oU 1 0U,
L=—1 . )l =_1 _ c . 2.4
(3 5) (5 %) 2439
We now have that
ou, ouU.
A =l Z2c A =l —2¢ 2.44
x € 8,:17 ) Y € ay 9 ( O)
and hence
eLaw = 2e gy + U, dy = dU, (2.441)

Ox Oy ¢
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2.16 Appendix II : Legendre Transformations

A convex function of a single variable f(x) is one for which f”(z) > 0 everywhere. The Legendre transform
of a convex function f(z) is a function g(p) defined as follows. Let p be a real number, and consider the
line y = px, as shown in fig. 2.43. We define the point x(p) as the value of = for which the difference
F(z,p) = pr — f(x) is greatest. Then define g(p) = F(xz(p),p).”® The value z(p) is unique if f(z) is
convex, since z(p) is determined by the equation

f'(z(p) =p . (2.442)
Note that from p = f’ (:E(p)) we have, according to the chain rule,

SIEW) = @) e = 0= [6w)] (2.443)

From this, we can prove that g(p) is itself convex:

(2.444)
=pa'(p) +x(p) — f'(z(p) ' (p) = z(p) .
hence .
J"(p) =2'(p) = [f/’(x(p))] >0 . (2.445)
In higher dimensions, the generalization of the definition f”(z) > 0 is that a function F(z4,...,z,) is
convex if the matrix of second derivatives, called the Hessian,
OF
H;:(x) = 2.44
(@) Ox; Oz (2.446)

is positive definite. That is, all the eigenvalues of H;;(x) must be positive for every . We then define
the Legendre transform G(p) as

G(p)=p -z — F(x) (2.447)
where
p=VF . (2.448)
Note that
dG=x-dp+p-de—VF -de=x-dp , (2.449)
which establishes that G is a function of p and that
0G
o . (2.450)
Ip; J

Note also that the Legendre transformation is self dual, which is to say that the Legendre transform of
G(p) is F(x): F — G — F under successive Legendre transformations.

Z8Note that g(p) may be a negative number, if the line y = px lies everywhere below f(z).
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Figure 2.43: Construction for the Legendre transformation of a function f(z).

We can also define a partial Legendre transformation as follows. Consider a function of g variables F'(x, y),
where @ = {z,...,2,,} and y = {yy,...,yn}, with ¢ = m + n. Define p = {p;,...,p,,}, and

G(p,y)=p -z F(z,y) , (2.451)
where oF
Do = ey (a=1,...,m) . (2.452)

These equations are then to be inverted to yield

T, = TP Y) = gg (2.453)
Note that OF
= . 2.454
Pa= By (z(p,y),y) (2.454)
Thus, from the chain rule,
0 0’F 0 0’F oG
bup = 2 = e _ , (2.455)
op, O0z,0x, Op, Ox,0x. Op.O0p,
which says
oG ox
= o gl 2.456
O, Op,  Op, (2.456)
where the m x m partial Hessian is
O0°F 0
= Lo g, . (2.457)

Ox, 0z, Oz,
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Note that K, = K, is symmetric. And with respect to the y coordinates,

0°G O°F
- _ =-L,, , 2.458
dy,, 0y, dy,, 0y, g (2.458)
where )
0“F
w= 5o, (2.459)

is the partial Hessian in the y coordinates. Now it is easy to see that if the full ¢ x ¢ Hessian matrix H,;
is positive definite, then any submatrix such as K, or L, must also be positive definite. In this case,
the partial Legendre transform is convex in {p;,...,p,,} and concave in {y,,...,y,}.

2.17 Appendix III : Useful Mathematical Relations

Consider a set of n independent variables {z, ..., z, }, which can be thought of as a point in n-dimensional
space. Let {y;,...,y,} and {z,...,2,} be other choices of coordinates. Then
Oxr;  Ox; Oy,
TSNl (2.460)
Oz, Oy; 0z,

Note that this entails a matrix multiplication: A, = B;; C;, where A, = 0x,/0z, B;; = 0x;/dy;, and
Cp = 0y;/0z;,. We define the determinant

J
axi _ a(;Ul??:En)
det<6zk> T 022y (2.461)

Such a determinant is called a Jacobian. Now if A = BC, then det(A) = det(B) - det(C). Thus,

8(33‘1,...,33”) 8(33‘1,...,33”) 8(y17"'7yn)
_ . 2.462
8(217---7Zn) a(y17"'7yn) 8(217"'7Zn) ( )

Recall also that
Ox;

oz,

=0y - (2.463)

Consider the case n = 2. We have
Oz Oz
o(u,v) (3_y) <@) - \ou /), \ov), ov ), \ou/, '

ou ov

We also have ooy D) Do)
z,y ) u,v _ x,y
O(u,v) O(r,s)  O(r,s) (2.465)

From this simple mathematics follows several very useful results.
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1) First, write

-1
z,y) | O(u,v)
o(u,v) la(x,y)] ) (2.466)
Now let v = y:
o) = <%> - (2.467)
(u,y) o ), (g_g)y ' .
Thus,

<gz> _1/ <%>y (2.468)

2) Second, we have

St (5] - S () (5)

(5L (2),

Invoking eqn. 2.468, we conclude that

<g_gyc>u <gz> @2) =-1- (2.470)

= : ;o (2.471)

(5)- () (2)

This is simply the chain rule of partial differentiation.

which is to say

3) Third, we have

which says

4) Fourth, we have

Oz,y) _O(z,y) O(u,v)
ow,y)  O(u,v) O(u,y)

~(5).(50). (3 - (&) B, (5,
(o), ()~ (5. (), (2

(2.473)

which says
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5) Fifth, whenever we differentiate one extensive quantity with respect to another, holding only intensive
quantities constant, the result is simply the ratio of those extensive quantities. For example,

as> S
=) =2 . (2.475)
<av oV

The reason should be obvious. In the above example, S(p, V,T) = Vé(p,T), where ¢ is a function of the
two intensive quantities p and 1. Hence differentiating S with respect to V' holding p and T constant is
the same as dividing S by V. Note that this implies

65) <65> <65> S
95 (22 _(92) _=2 (2.476)
<av e NV )., \oV )., V

where n = N/V is the particle density.

6) Sixth, suppose we have a function @(y,v) and we write

d® =zdy+udv . (2.477)
That is,
oP oP
=— ) =2 =) =9, . 2.478
=G o (@) 2
Now we may write
dx =&, dy + P, dv (2.479)
du =&, dy + P, dv . (2.480)
If we demand du = 0, this yields
Oz Pyy
— | = . 2.481
(50), -5 2450
Note that ¢, = &, . From the equation du = 0 we also derive
y P
=) =- . 2.482
(50), = (2:452)

Next, we use eqn. 2.480 with du = 0 to eliminate dy in favor of dv, and then substitute into eqn. 2.479.
This yields

Oz b, P
- =9, 2= . 2.483
(50), == (2459
Finally, eqn. 2.480 with dv = 0 yields
oy 1
=] = . 2.484
(50),~ 5, (2459

Combining the results of eqns. 2.481, 2.482, 2.483, and 2.484, we have
O(,y) _ (Oz\ (Oy\ _ (D) (0y
0(u,v) ou J, \ov ), ov J, \ou ),
(32)(=52) - (22502 (5,)
D, P, 4 P, P,

(2.485)
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Thus, if @ = E(S,V); then (x,y) = (T, S) and (u,v) = (—p, V), we have

aT.S)
V] = 1. (2.486)

Nota bene: It is important to understand what other quantities are kept constant, otherwise we can run
into trouble. For example, it would seem that eqn. 2.485 would also yield
O, N)
o) L (2.487)
But then we should have
or,s)  oT,S) ‘ A(—p,V)
A, N) — 9(=p,V) O, N)

when according to eqn. 2.485 it should be —1. What has gone wrong?

=+1  (WRONG!)

The problem is that we have not properly specified what else is being held constant. In eqn. 2.486 it is
N (or u) which is being held constant, while in eqn. 2.487 it is S (or T') which is being held constant.
Therefore a naive application of the chain rule for determinants yields the wrong result, as we have seen.

Let’s be more careful. Applying the same derivation to dE = x dy + udv 4+ r ds and holding s constant,
we conclude

o(x,y, s ox 0 ox 0
o) (G- BLGL - ow
Thus, if
dE =TdS +ydX +pudN (2.489)
where (y, X) = (—p, V) or (H*, M%) or (E®, P%), the appropriate thermodynamic relations are
a(T,S,N) _ 1 oI, S, ) _ 1
Iy, X,N) Ay, X, 1)
et s e
d(y, X, S) 4 Iy, X, T) _
I(p, N, S) d(u, N, T)

For example,
(-p,V,N) 9, N,S)  9T,SV) '

and
a(T7 SMU') _ 8(_p7MT) _ 8(:“7]\[7 _p)

o-p, Vo) O(u,N,T)  O(T,S,—p)

=-1 . (2.492)

If we are careful, then the results in eq. 2.490 can be quite handy, especially when used in conjunction
with eqn. 2.462. For example, we have

=1

——
8 _O(T,S,N) O(T,S,N) 9(p,V,N) _ (9p
oV Jpn O, V,N) 9(p,V,N) O(T,V,N) \oT },,n

, (2.493)
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which is one of the Maxwell relations derived from the exactness of dF(T,V, N). Some other examples
include

=1

<av> CAV.p,N) BV, N) A(S,T,N) (a:r)
S,N

oy _ . - (Z 2.494
95 ),y " 0SpN) S T,N) 0SpN)  \op (2.494)
=1
95\ _ 9(8,T,p) 9(ST,p) ouN,p)  (Op (2.495)
8N T,p B a(N7T7p) _8(M7N7p) a(N7T7p) 8T ’ '

which are Maxwell relations deriving from dH (S, p, N) and dG(T,p, N), respectively. Note that due to
the alternating nature of the determinant — it is antisymmetric under interchange of any two rows or
columns — we have

O(z,y,2) Ay, x,2) oy, x, 2)

A(u,v,w) B 0w, v, w) - A(w, v, u) = (2.496)

In general, it is usually advisable to eliminate S from a Jacobian. If we have a Jacobian involving 7', S,
and N, we can write

oT,5 N) O, 5 N) o(p,V,N) _ d(p,V,N)

= = 2.4
Oe, . N) ~ Op.VN) O(s, o, N)  Dls, e N) (2497
where each e is a distinct arbitrary state variable other than N.
If our Jacobian involves the S, V', and N, we write
IS, V,N) _A(S,V,N) AT,V,N) Cy 0T, V,N) 2.19%)
d(e,e,N) O(T,V,N) d(e,e,N) T 9(e,e,N) '
If our Jacobian involves the S, p, and N, we write
o(S,p,N) _9(Sp,N) 9oTp,N) G OT,pN) (2.499)
d(e,e,N) OT,p,N) O(e,e,N) T 0O(e,e, N) '
For example,
=1
e N
<a_V> _ULSN)_AESN) JTN) ST Gy (97 501
P S,N 8( ) 8(V7T7N) a(p7T7N) a(p,S,N) Cp ap T.N '
With « = —% %—‘; the compressibility, we see that the second of these equations says kpc;, = Kgc,,

relating the isothermal and adiabatic compressibilities and the molar heat capacities at constant volume
and constant pressure. This relation was previously established in eqn. 2.282



Chapter 3

Ergodicity and the Approach to
Equilibrium

3.1 References

— R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975)
An advanced text with an emphasis on fluids and kinetics.

— R. Balian, From Macrophysics to Microphysics (2 vols., Springer-Verlag, 2006)
A very detailed discussion of the fundamental postulates of statistical mechanics and their implica-
tions.)
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3.2 Modeling the Approach to Equilibrium

3.2.1 Equilibrium

A thermodynamic system typically consists of an enormously large number of constituent particles, a
typical ‘large number’ being Avogadro’s number, N, = 6.02 x 10?3, Nevertheless, in equilibrium, such
a system is characterized by a relatively small number of thermodynamic state variables. Thus, while
a complete description of a (classical) system would require us to account for (9(1023) evolving degrees
of freedom, with respect to the physical quantities in which we are interested, the details of the initial
conditions are effectively forgotten over some microscopic time scale 7, called the collision time, and over
some microscopic distance scale, ¢, called the mean free path'. The equilibrium state is time-independent.

3.2.2 The Master Equation

Relaxation to equilibrium is often modeled with something called the master equation. Let P;(t) be the
probability that the system is in a quantum or classical state ¢ at time ¢t. Then write

dp,
=2 (WP —Wy,P) . (3.1)

Here, W;; is the rate at which j makes a transition to ¢. Note that we can write this equation as

dP,
J

where

Wy it

where the prime on the sum indicates that k = j is to be excluded. The constraints on the W;; are that
W,;; > 0 for all 4, j, and we may take W;; = 0 (no sum on i). Fermi’s Golden Rule of quantum mechanics
says that
2 e 2

Wi == IV e(E)) (3.4)
where ﬁo ‘ z> =FE, | i >, V is an additional potential which leads to transitions, and p(E;) is the density
of final states at energy £;. The fact that W;; > 0 means that if each P;(t = 0) > 0, then F;(t) > 0 for all
t > 0. To see this, suppose that at some time ¢ > 0 one of the probabilities P; is crossing zero and about
to become negative. But then eqn. 3.1 says that P;(t) = >_; W;;P;(t) > 0. So Fj(t) can never become
negative.

!Exceptions involve quantities which are conserved by collisions, such as overall particle number, momentum, and energy.
These quantities relax to equilibrium in a special way called hydrodynamics.
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3.2.3 Equilibrium distribution and detailed balance

If the transition rates W;; are themselves time-independent, then we may formally write
Py(t) = (e1"),, P;(0) . (3.5)

Here we have used the Einstein ‘summation convention’ in which repeated indices are summed over (in
this case, the j index). Note that ). I, ;; = 0, which says that the total probability >, P; is conserved:

dtZP_ ZF P“E}(% Z:%—):O : (3.6)

We conclude that gz; = (1,1,...,1) is a left eigenvector of I" with eigenvalue A = 0. The corresponding
right eigenvector, which we write as Pfq, satisfies I Z-ijO 4= 0, and is a stationary (i.e. time independent)
solution to the master equation. Generally, there is only one right/left eigenvector pair corresponding to
A = 0, in which case any initial probability distribution P,(0) converges to Pi® as t — oo, as shown in
Appendix T (§3.7).

In equilibrium, the net rate of transitions into a state |i) is equal to the rate of transitions out of | 7). If,
for each state | j ) the transition rate from |i) to |j) is equal to the transition rate from |j) to |i), we
say that the rates satisfy the condition of detailed balance. In other words, Wi; P001 W P; °d - Assuming
W,; # 0 and P # 0, we can divide to obtain

Wj 4 P;q ( 3 7)
,  — cq . .

Note that detailed balance is a stronger condition than that required for a stationary solution to the
master equation.

If I' = I'* is symmetric, then the right eigenvectors and left eigenvectors are transposes of each other,
hence P°Y = 1/N, where N is the dimension of I". The system then satisfies the conditions of detailed
balance. See Appendix IT (§3.8) for an example of this formalism applied to a model of radioactive decay.

3.2.4 Boltzmann’s H-theorem

Suppose for the moment that I" is a symmetric matrix, i.e. I3; = I';;. Then construct the function
Z P,(t) In Py(t) . (3.8)

Then

dH dP
_ Lip
dt = dt Z ar

== z'ijlan:Z iy PPy —Inp;)
i i

(3.9)
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where we have used ), I';; = 0. Now switch ¢ <» j in the above sum and add the terms to get

Z (nP,—InP) . (3.10)
Note that the i = j term does not contribute to the sum. For i # j we have I';; = —W,;; <0, and using
the result
(r—y)(lnz —Iny) >0 , (3.11)
we conclude I
. A2
dt = =0 (3.12)

In equilibrium, Pfq is a constant, independent of i. We write

1
PA== | Q= Zl — H=-hQ . (3.13)
It I;; # I';;, we can still prove a version of the H-theorem. Define a new symmetric matrix
W, =W, PeOl Wi P = Wﬂ- , (3.14)

and the generalized H-function,

- Zi:Pi(t) 1n<1;;ff(?> . (3.15)

P, P,
ln<P.Cq> - ln<p—?j<l>
i J

3.3 Phase Flows in Classical Mechanics

Then

<0 . (3.16)

)

3.3.1 Hamiltonian evolution

The master equation provides us with a semi-phenomenological description of a dynamical system’s
relaxation to equilibrium. It explicitly breaks time reversal symmetry. Yet the microscopic laws of Nature
are (approximately) time-reversal symmetric. How can a system which obeys Hamilton’s equations of
motion come to equilibrium?

Let’s start our investigation by reviewing the basics of Hamiltonian dynamics. Recall the Lagrangian
L =1L(q,q,t) =T — V. The Euler-Lagrange equations of motion for the action S [ ] f dt L are

. d [ OL oL
pa‘%(a—q)—a—qa ’ (3.17)

where p, is the canonical momentum conjugate to the generalized coordinate ¢, , i.e. p, = OL/0q, .
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The Hamiltonian, H(q,p) is obtained by a Legendre transformation,

H(g,p)=> p,d,—L (3.18)
o=1
Note that
4 oL oL oL
dH = dq 7 dp. — —dg. — —— dg — —dt
Z:l (pg o o dpy = 5~ dto = 5 a> 5
o (3.19)

T
oL oL
= i, dp, — =—d — —dt
; (qg Pe ~ Ba qo> =
Thus, we obtain Hamilton’s equations of motion,

OH | OH 0L

ik SN i 520

and
dH O0H 0L

= = 3.21
dt ot ot (3.21)
Define the rank 2r vector ¢ by its components,

q; Hf1<i<r

i = (3.22)
p_, ifr<i<2r

Then we may write Hamilton’s equations compactly as

0H
by = Jii —— 3.23
where
— OTXT’ 17“><T’ (324)
_17’><r OTXT’
is a rank 2r matrix. Note that J' = —J, i.e. J is antisymmetric, and that J? = —1, ., .
3.3.2 Dynamical systems and the evolution of phase space volumes
Consider a general dynamical system,
de
- _ 2
P Vi) (3.25)

where ¢(t) is a point in an n-dimensional phase space. Consider now a compact” region R, in phase
space, and consider its evolution under the dynamics. That is, R, consists of a set of points {cp lp € RO},

Z‘Compact’ in the parlance of mathematical analysis means ‘closed and bounded’.
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and if we regard each ¢ € R, as an initial condition, we can define the time-dependent set R(t) as the
set of points ¢(t) that were in R, at time ¢ = 0:

R(t) = {e(t) | 0(0) € Ry} . (3.26)
Now consider the volume €(t) of the set R(t). We have

Q(t) = / i (3.27)
R(t)

where
dp = dpydpy -+ dp, (3.28)

for an n-dimensional phase space. We then have

Qt+dt:/d/=/d ‘7‘ , 3.29
( ) Z a D, (t) 529
R(t+dt) R(t)
where , /
'a(pi(t—l- dt)' _ 9 9) (3.30)

dp;(t) ey, 0m)

is a determinant, which is the Jacobean of the transformation from the set of coordinates {¢; = ¢;(t)}
to the coordinates {90; = (t+ dt)}. But according to the dynamics, we have

ei(t+dt) = ;(t) + Vi((t)) dt + O(dt?) (3.31)
and therefore Dt + dt) 5V
P\ + f 2
S =5 L dt+ Odt?) . 3.32
o =t g+ O) (3.32)

We now make use of the equality
Indet M =TrInM (3.33)

for any matrix M, which gives us®, for small ¢,

det(1+cA) =expTrin(14+cA) =1+¢c TrA+ %52<(TrA)2 —Tr (A2)> +... (3.34)
Thus,
Q(t + dt) = Q(t) + /du V-V dt+0(dt?) (3.35)
R(t)
which says
dQ .
E:/duV~V:/dSn-V (3.36)
R(t) OR(t)

3The equality Indet M = Tr In M is most easily proven by bringing the matrix to diagonal form via a similarity transfor-
mation, and proving the equality for diagonal matrices.
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Here, the divergence is the phase space divergence,

-
1=1 8(’0Z

: (3.37)

and we have used the divergence theorem to convert the volume integral of the divergence to a surface
integral of n - V', where n is the surface normal and dS is the differential element of surface area, and
OR denotes the boundary of the region R. We see that if V-V = 0 everywhere in phase space, then Q(t)
is a constant, and phase space volumes are preserved by the evolution of the system.

For an alternative derivation, consider a function o(p,t) which is defined to be the density of some
collection of points in phase space at phase space position ¢ and time ¢. This must satisfy the continuity
equation,

do
EJrV(V):O . (3.38)

This is called the continuity equation. It says that ‘nobody gets lost’. If we integrate it over a region of
phase space R, we have

dt/d,ug— /d,uV (V) = /dSn (oV) . (3.39)

It is perhaps helpful to think of p as a charge density, in which case J = gV is the current density. The
above equation then says

d

&:_/dSﬁ-J , (3.40)

dt
OR

where () is the total charge contained inside the region R. In other words, the rate of increase or
decrease of the charge within the region R is equal to the total integrated current flowing in or out of R
at its boundary.

The Leibniz rule lets us write the continuity equation as

%—FVVQ—FQVV—O . (3.41)

But now suppose that the phase flow is divergenceless, i.e. V-V = 0. Then we have
Dg < 0

T +V. V>g: 0 . (3.42)

The combination inside the brackets above is known as the convective derivative. It tells us the total rate
of change of ¢ for an observer moving with the phase flow. That is
do dp; | Do

d
EQ((P()’ ):% a +E

8p ag Do
- Z Vige Vot = Dt

(3.43)
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OO0
L&

=Ly

Figure 3.1: Time evolution of two immiscible fluids. The local density remains constant.

If Do/Dt = 0, the local density remains the same during the evolution of the system. If we consider the
‘characteristic function’

1 if peR,
,t=0)= 3.44
ole ) { 0 otherwise ( )

then the vanishing of the convective derivative means that the image of the set R under time evolution
will always have the same volume.

Hamiltonian evolution in classical mechanics is volume preserving. The equations of motion are

OH ) OH

G =+ o, ; Pi= "5, (3.45)
1 1

A point in phase space is specified by 7 positions ¢; and » momenta p,, hence the dimension of phase

space is n = 2r:
| ) v ()

Hamilton’s equations of motion guarantee that the phase space flow is divergenceless:

(3.47)

_Z{a%(am) +ai<‘gf>} !
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Thus, we have that the convective derivative vanishes, viz.

Do _ o

“E =2 L V.Vo=0 3.48
for any distribution o(¢p,t) on phase space. Thus, the value of the density o(y(t),t) is constant, which
tells us that the phase flow is incompressible. In particular, phase space volumes are preserved.

3.3.3 Liouville’s equation and the microcanonical distribution

Let o(¢,t) = o(q,p,t) be a distribution on phase space. Assuming the evolution is Hamiltonian, we can
write

do | (. 0 9N .
o= P Ve= ;(qkaqurpkapk)@— iLo (3.49)

where L is a differential operator known as the Liouvillian:
\ ~[oH o 090H 0
L=—i {—————} . (3.50)

Eqn. 3.49, known as Liouville’s equation, bears an obvious resemblance to the Schrédinger equation from
quantum mechanics.

Suppose that A,(¢) is conserved by the dynamics of the system. Typical conserved quantities include
the components of the total linear momentum (if there is translational invariance), the components of the
total angular momentum (if there is rotational invariance), and the Hamiltonian itself (if the Lagrangian
is not explicitly time-dependent). Now consider a distribution o(¢,t) = o(A;,A,,...,A,) which is a
function only of these various conserved quantities. Then from the chain rule, we have

do

p-Vo= d aAacp-VAazo , (3.51)
since for each a we have
dA "L /0N oA
e — 2 g —2» | =¢-VA = . .52
dt ;@Mﬁ@%>¢vao (3:52)

We conclude that any distribution o(@,t) = o(A;,A,,...,4,) which is a function solely of conserved
dynamical quantities is a stationary solution to Liouville’s equation.

Clearly the microcanonical distribution,

() = S(E-H(p)  d(E-H(p)
T TIDME) T Jdpd(E-H(g)

(3.53)

is a fixed point solution of Liouville’s equation.
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3.4 Irreversibility and Poincaré Recurrence

The dynamics of the master equation describe an approach to equilibrium. These dynamics are irre-
versible: dH/dt < 0, where H is Boltzmann’s H-function. However, the microscopic laws of physics are
(almost) time-reversal invariant?, so how can we understand the emergence of irreversibility? Further-
more, any dynamics which are deterministic and volume-preserving in a finite phase space exhibits the
phenomenon of Poincaré recurrence, which guarantees that phase space trajectories are arbitrarily close
to periodic if one waits long enough.

3.4.1 Poincaré recurrence theorem

The proof of the recurrence theorem is simple. Let g, be the ‘T-advance mapping’ which evolves points
in phase space according to Hamilton’s equations. Assume that g, is invertible and volume-preserving,
as is the case for Hamiltonian flow. Further assume that phase space volume is finite. Since energy is
preserved in the case of time-independent Hamiltonians, we simply ask that the volume of phase space
at fixed total energy E be finite, i.e.

Jaus (e~ Hap) <o | (3.54)
where du = dq dp is the phase space uniform integration measure.
Theorem: In any finite neighborhood R of phase space there exists a point ¢, which will return to R,
after m applications of g,, where m is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction. Consider the
set Y formed from the union of all sets g& R for all m:

T=Jdg R (3.55)
k=0

We assume that the set {gk R, | k€ Ny} is disjoint’. The volume of a union of disjoint sets is the sum of
the individual volumes. Thus,

vol(T) = Z vol(g’ﬁ Ro)
h=0 (3.56)

:VOI(RO)'Zl =0 ,
k=0

since vol (gf RO) = vol (RO) from volume preservation. But clearly T is a subset of the entire phase space,
hence we have a contradiction, because by assumption phase space is of finite volume.

4Actually, the microscopic laws of physics are not time-reversal invariant, but rather are invariant under the product
PCT, where P is parity, C is charge conjugation, and 7" is time reversal.
>The natural numbers Ny is the set of non-negative integers {0,1,2,...}.



3.4. IRREVERSIBILITY AND POINCARE RECURRENCE 137

gTRO

¥1

Figure 3.2: Successive images of a set Rg under the 7-advance mapping g., projected onto a two-
dimensional phase plane. The Poincaré recurrence theorem guarantees that if phase space has finite
volume, and g, is invertible and volume preserving, then for any set Ry there exists an integer m such
that Ro N g™ Ro # 0.

Thus, the assumption that the set {gf R, |k € Ny} is disjoint fails. This means that there exists some
pair of integers k and [, with k # [, such that g* Ry N g Ry # 0. Without loss of generality we may
assume k < [. Apply the inverse g-! to this relation k times to get g-"* Ry N Ry # 0. Now choose any
point ¢, € g" Ry N'Ry, where m = [ — k, and define ¢, = g™ ;. Then by construction both ¢, and
g7 ¢, lie within R, and the theorem is proven.

Poincaré recurrence has remarkable implications. Consider a bottle of perfume which is opened in an
otherwise evacuated room, as depicted in fig. 3.3. The perfume molecules evolve according to Hamiltonian
evolution. The positions are bounded because physical space is finite. The momenta are bounded because
the total energy is conserved, hence no single particle can have a momentum such that 7'(p) > Eor,
where T'(p) is the single particle kinetic energy function®. Thus, phase space, however large, is still
bounded. Hamiltonian evolution, as we have seen, is invertible and volume preserving, therefore the
system is recurrent. All the molecules must eventually return to the bottle. What’s more, they all must
return with momenta arbitrarily close to their initial momental” In this case, we could define the region
Ry as

Ro={(a1, -+ @p1s---,0) | lg; = @)l < Agand |p; —p}| < Ap Vi, j} | (3.57)

which specifies a hypercube in phase space centered about the point (g%, p?).

Each of the three central assumptions — finite phase space, invertibility, and volume preservation — is
crucial. If any one of these assumptions does not hold, the proof fails. Obviously if phase space is infinite

SIn the nonrelativistic limit, 7' = p?/2m. For relativistic particles, we have T' = (p2c? + m2c*)Y/2 — mc?.
" Actually, what the recurrence theorem guarantees is that there is a configuration arbitrarily close to the initial one which

recurs, to within the same degree of closeness.
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t = t=1s

Figure 3.3: Poincaré recurrence guarantees that if we remove the cap from a bottle of perfume in an
otherwise evacuated room, all the perfume molecules will eventually return to the bottle! (Here H is the
Hubble constant.)

the flow needn’t be recurrent since it can keep moving off in a particular direction. Consider next a
volume-preserving map which is not invertible. An example might be a mapping f: R — R which takes
any real number to its fractional part. Thus, f(7) = 0.14159265.... Let us restrict our attention to
intervals of width less than unity. Clearly f is then volume preserving. The action of f on the interval
[2,3) is to map it to the interval [0,1). But [0,1) remains fixed under the action of f, so no point within
the interval [2,3) will ever return under repeated iterations of f. Thus, f does not exhibit Poincaré
recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract.
For a one-dimensional oscillator obeying & + 284 + ng = 0 one has V-V = =28 < 0, since 8 > 0
for physical damping. Thus the convective derivative is Dyo = —(V-V)p = 280 which says that the
density increases exponentially in the comoving frame, as o(t) = e2ht 0(0). Thus, phase space volumes
collapse: Q(t) = e252Q(0), and are not preserved by the dynamics. The proof of recurrence therefore
fails. In this case, it is possible for the set T to be of finite volume, even if it is the union of an infinite
number of sets gF R, because the volumes of these component sets themselves decrease exponentially, as
vol(g? Ry) = e 2T vol(R,). A damped pendulum, released from rest at some small angle 6,, will not
return arbitrarily close to these initial conditions.

3.4.2 Kac ring model

The implications of the Poincaré recurrence theorem are surprising — even shocking. If one takes a bottle
of perfume in a sealed, evacuated room and opens it, the perfume molecules will diffuse throughout the
room. The recurrence theorem guarantees that after some finite time 7" all the molecules will go back
inside the bottle (and arbitrarily close to their initial velocities as well). The hitch is that this could take
a very long time, e.g. much much longer than the age of the Universe.

On less absurd time scales, we know that most systems come to thermodynamic equilibrium. But
how can a system both exhibit equilibration and Poincaré recurrence? The two concepts seem utterly
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Figure 3.4: Left: A configuration of the Kac ring with NV = 16 sites and F' = 4 flippers. The flippers,
which live on the links, are represented by blue dots. Right: The ring system after one time step.
Evolution proceeds by clockwise rotation. Spins passing through flippers are flipped.

incompatible!

A beautifully simple model due to Kac shows how a recurrent system can exhibit the phenomenon of
equilibration. Consider a ring with /N sites. On each site, place a ‘spin’ which can be in one of two states:
up or down. Along the N links of the system, F' of them contain ‘flippers’. The configuration of the
flippers is set at the outset and never changes. The dynamics of the system are as follows: during each
time step, every spin moves clockwise a distance of one lattice spacing. Spins which pass through flippers
reverse their orientation: up becomes down, and down becomes up.

The ‘phase space’ for this system consists of 2V discrete configurations. Since each configuration maps
onto a unique image under the evolution of the system, phase space ‘volume’ is preserved. The evolution
is invertible; the inverse is obtained simply by rotating the spins counterclockwise. Figure 3.4 depicts an
example configuration for the system, and its first iteration under the dynamics.

Suppose the flippers were not fixed, but moved about randomly. In this case, we could focus on a single
spin and determine its configuration probabilistically. Let p, be the probability that a given spin is in
the up configuration at time n. The probability that it is up at time (n + 1) is then

Pn+1 = (1 - x)pn +x (1 - pn) ) (3'58)

where x = F//N is the fraction of flippers in the system. In words: a spin will be up at time (n + 1) if it
was up at time n and did not pass through a flipper, or if it was down at time n and did pass through
a flipper. If the flipper locations are randomized at each time step, then the probability of flipping is
simply x = F/N. Equation 3.58 can be solved immediately:

pn=3+01—22)"(po—3) , (3.59)
which decays exponentially to the equilibrium value of peq = % with time scale
1

7(@) = CIn[l— 2z (3.60)
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Figure 3.5: Three simulations of the Kac ring model with N = 2500 sites and three different concen-
trations of flippers. The red line shows the magnetization as a function of time, starting from an initial
configuration in which 100% of the spins are up. The blue line shows the prediction of the Stosszahlansatz,
which yields an exponentially decaying magnetization with time constant 7.

We identify 7(z) as the microscopic relaxation time over which local equilibrium is established. If we
define the magnetization m = (N, — N|)/N, then m = 2p — 1, so my, = (1 — 22)" mg. The equilibrium
magnetization is meq = 0. Note that for % < x < 1 that the magnetization reverses sign each time step,
as well as decreasing exponentially in magnitude.

The assumption that leads to equation 3.58 is called the Stosszahlansatz®, a long German word mean-
ing, approximately, ‘assumption on the counting of hits’. The resulting dynamics are irreversible: the
magnetization inexorably decays to zero. However, the Kac ring model is purely deterministic, and the
Stosszahlansatz can at best be an approximation to the true dynamics. Clearly the Stosszahlansatz fails
to account for correlations such as the following: if spin ¢ is flipped at time n, then spin ¢ + 1 will have

8Unfortunately, many important physicists were German and we have to put up with a legacy of long German words like
Gedankenexperiment, Zitterbewegung, Brehmsstrahlung, Stosszahlansatz, Kartoffelsalat, etc.
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Figure 3.6: Simulations of the Kac ring model. Top: N = 2500 sites with F' = 201 flippers. After
2500 iterations, each spin has flipped an odd number of times, so the recurrence time is 2N. Middle:
N = 2500 with F' = 2400, resulting in a near-complete reversal of the population with every iteration.
Bottom: N = 25000 with N = 1000, showing long time equilibration and dramatic resurgence of the spin
population.

been flipped at time n — 1. Also if spin ¢ is flipped at time n, then it also will be flipped at time n + V.
Indeed, since the dynamics of the Kac ring model are invertible and volume preserving, it must exhibit
Poincaré recurrence. We see this most vividly in figs. 3.5 and 3.6.

The model is trivial to simulate. The results of such a simulation are shown in figure 3.5 for a ring of
N = 1000 sites, with /' = 100 and F' = 24 flippers. Note how the magnetization decays and fluctuates
about the equilibrium value meq = 0, but that after NV iterations m recovers its initial value: my = m,.
The recurrence time for this system is simply IV if F' is even, and 2N if F' is odd, since every spin will
then have flipped an even number of times.

In figure 3.6 we plot two other simulations. The top panel shows what happens when z > %, so that the
magnetization wants to reverse its sign with every iteration. The bottom panel shows a simulation for a
larger ring, with N = 25000 sites. Note that the fluctuations in m about equilibrium are smaller than in
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the cases with IV = 1000 sites. Why?

3.5 Remarks on Ergodic Theory

3.5.1 Definition of ergodicity

A mechanical system evolves according to Hamilton’s equations of motion. We have seen how such a
system is recurrent in the sense of Poincaré.

There is a level beyond recurrence called ergodicity. In an ergodic system, time averages over intervals
[0,7] with T — oo may be replaced by phase space averages. The time average of a function f(¢) is
defined as

T

(f(p)), = lim i/citf(<,o(t)) : (3.61)

T—oo T
0

For a Hamiltonian system, the phase space average of the same function is defined by

(Fe))s = [aurters(E - i) [ [ans(E- i) . (362
where H(p) = H(q,p) is the Hamiltonian, and where §(x) is the Dirac d-function. Thus,

ergodicity <= <f(<p)>t = <f(<p)>S , (3.63)

for all smooth functions f(¢) for which < f (cp)> ¢ exists and is finite. Note that we do not average over
all of phase space. Rather, we average only over a hypersurface along which H(p) = E is fixed, i.e. over
one of the level sets of the Hamiltonian function. This is because the dynamics preserves the energy.
FErgodicity means that almost all points ¢ will, upon Hamiltonian evolution, move in such a way as to
eventually pass through every finite neighborhood on the energy surface, and will spend equal time in
equal regions of phase space.

Let X (¢) be the characteristic function of a region R:

1 ifpeR

X = 3.64
r(#) {0 otherwise, ( )

where H(p) = E for all ¢ € R. Then

. time spent in R
(r(p), = Jim (F2Et R (3.65)
If the system is ergodic, then
Dr(E)

(Xr(p)), = P(R) = =B= (3.66)
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where P(R) is the a priori probability to find ¢ € R, based solely on the relative volumes of R and of
the entire phase space. The latter is given by

D(E) = / dus(E— H(p)) (3.67)

called the density of states, is the surface area of phase space at energy FE, and

Dy (E) = / dud(E - H(p)) . (3.68)
R

is the density of states for the phase space subset R. Note that

D(E) = /du §(E—H(p)) = % (3.69)
SE
:i%/WQw—H@»ZQgQ. (3.70)

Here, dS is the differential surface element, S, is the constant H hypersurface H(p) = E, and Q(E) is
the volume of phase space over which H(¢) < E. Note also that we may write dyu = dE d¥, , where

dsS
dXp = —— 3.71
is the the invariant surface element.
3.5.2 The microcanonical ensemble
The distribution,
op(p) = E_Hlp) __OF— Hlp) (3.72)
E D(E) [dus(E - H(p))
defines the microcanonical ensemble (uCE) of Gibbs. We could also write
1
SE

integrating over the hypersurface Sy rather than the entire phase space.

3.5.3 Ergodicity and mixing

Just because a system is ergodic, it doesn’t necessarily mean that o(¢,t) — 0°4(¢p), for consider the
following motion on the toroidal space (cp = (¢,p) | 0<g<l ,0<p< 1}, where we identify opposite
edges, i.e. we impose periodic boundary conditions. We also take ¢ and p to be dimensionless, for
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Figure 3.7: Constant phase space velocity at an irrational angle over a toroidal phase space is ergodic,
but not mixing. A circle remains a circle, and a blob remains a blob.

simplicity of notation. Let the dynamics be given by ¢ =1 and p = a.. The motion is then ¢(t) = g, + ¢
and p(t) = py + at. Thus the phase curves are given by p = p, + a(q — qp) -

Now consider the average of some function f(q,p). We can write f(q,p) in terms of its Fourier transform,

Flap) =Y frpn e®mimatme) (3.74)
We have, then,
F(a(8),p(t) = Y fpp €2mimaotnne) 2milmran)t (3.75)

We can now perform the time average of f:

2mi(m+tan)T _ |

<f(q,p)>t - foo + Th—I>r010 % mzn/ fm” et tnro) eZm’(m + an) (3.76)
= foo if a irrational.
Clearly,
11
(f(g,p))g = /dq dp f(g,p) = foo = (f(@:p)), (3.77)
0 0

so the system is ergodic.
The situation is depicted in fig. 3.7. If we start with the characteristic function of a disc,
o(g,p,t =0) = 0(a® = (¢ — q0)* = (0 —po)?) (3.78)
then it remains the characteristic function of a disc:
o(g,;p,t) =O(a> = (g — a9 — 1) = (p—pp — at)®) (3.79)
For an example of a transition to ergodicity in a simple dynamical Hamiltonian model, see §3.9.

A stronger condition one could impose is the following. Let A and B be subsets of S,. Define the measure

v(A) = /dEE XA(cp)//dZE = l;?Ak(EE)) : (3.80)
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Figure 3.8: The baker’s transformation is a successive stretching, cutting, and restacking.

where X 4(¢) is the characteristic function of A. The measure of a set A is the fraction of the energy
surface Sy covered by A. This means v(Sy) = 1, since Sp is the entire phase space at energy E. Now
let g be a volume-preserving map on phase space. Given two measurable sets A and B, we say that a
system is mizing if

mixing = lim V(g"A N B) =v(A)v(B) . (3.81)

n—oo

In other words, the fraction of B covered by the n' iterate of A, i.e. g"A, is, as n — oo, simply the

fraction of Sy covered by A. The iterated map g" distorts the region A so severely that it eventually
spreads out ‘evenly’ over the entire energy hypersurface. Of course by ‘evenly’ we mean ‘with respect to
any finite length scale’, because at the very smallest scales, the phase space density is still locally constant
as one evolves with the dynamics.

Mixing means that

<f(<p)>:/dﬂ9(‘P,t)f(‘P) Ry /d“f(‘P)‘S(E_H(‘P))/ Aud(E ~ Hlg)) (3.82)

=Tr [f(cp) §(E — H(cp))}/Tr [5(E — H(cp))}
Physically, we can imagine regions of phase space being successively stretched and folded. During the

stretching process, the volume is preserved, so the successive stretch and fold operations map phase space
back onto itself.

An example of a mixing system is the baker’s transformation, depicted in fig. 3.8, and defined by
(24, 3p) if 0<q<3

9(q,p) = (3.83)
(2¢—1,3p+13) if 1<qg<1
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n=>5 n=3

Figure 3.9: The multiply iterated baker’s transformation. The set A covers half the phase space and its
area is preserved under the map. Initially, the fraction of B covered by A is zero. After many iterations,
the fraction of B covered by g"A approaches %

Note that g is invertible and volume-preserving. The baker’s transformation consists of an initial stretch
in which ¢ is expanded by a factor of two and p is contracted by a factor of two, which preserves the total
volume. The system is then mapped back onto the original area by cutting and restacking, which we can
call a ‘fold’. The inverse transformation is accomplished by stretching first in the vertical (p) direction
and squashing in the horizontal (¢) direction, followed by a slicing and restacking. Explicitly,

(34 2p) if 0<p<j
9 a,p) = (3.84)
(3¢+3%.2p-1) if I<p<i

Another example of a mixing system is Arnold’s ‘cat map’®

9(g.p) = (la+pl. [a+2p]) , (3.85)

where [z] denotes the fractional part of . One can write this in matrix form as
M

——
() =( 2) () meaz - (3.56)

The matrix M is very special because it has integer entries and its determinant is det M = 1. This means
that the inverse also has integer entries. The inverse transformation is then

M71

——
(Z) :<—21 _11> (Zi> mod Z* . (3.87)

9The cat map gets its name from its initial application, by Arnold, to the image of a cat’s face.
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Figure 3.10: The Arnold cat map applied to an image of 150 x 150 pixels. After 300 iterations, the image
repeats itself. (Source: Wikipedia)

Now for something cool. Suppose that our image consists of a set of discrete points located at (nq/k, ny/k),
where the denominator k € Z is fixed, and where n; and n, range over the set {1,...,k}. Clearly g and
its inverse preserve this set, since the entries of M and M ™! are integers. If there are two possibilities
for each pixel (say off and on, or black and white), then there are 2(k?) possible images, and the cat map
will map us invertibly from one image to another. Therefore it must exhibit Poincaré recurrence! This
phenomenon is demonstrated vividly in fig. 3.10, which shows a k& = 150 pixel (square) image of a cat
subjected to the iterated cat map. The image is stretched and folded with each successive application of
the cat map, but after 300 iterations the image is restored! How can this be if the cat map is mixing? The
point is that only the discrete set of points (n,/k, n,/k) is periodic. Points with different denominators
will exhibit a different periodicity, and points with irrational coordinates will in general never return
to their exact initial conditions, although recurrence says they will come arbitrarily close, given enough
iterations. The baker’s transformation is also different in this respect, since the denominator of the p
coordinate is doubled upon each successive iteration.

The student should now contemplate the hierarchy of dynamical systems depicted in fig. 3.11, under-
standing the characteristic features of each successive refinement'’.

3.6 Thermalization of Quantum Systems

3.6.1 Quantum dephasing

Thermalization of quantum systems is fundamentally different from that of classical systems. Whereas
time evolution in classical mechanics is in general a nonlinear dynamical system, the Schrodinger equation

0T here is something beyond mixing, called a K-system. A K-system has positive Kolmogorov-Sinai entropy. For such
a system, closed orbits separate exponentially in time, and consequently the Liouvillian L has a Lebesgue spectrum with
denumerably infinite multiplicity.
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ERGODIC

RECURRENT
DYNAMICAL SYSTEM

Figure 3.11: The hierarchy of dynamical systems.
for time evolution in quantum mechanics is linear: iho¥ /0t = HU | where H is a many-body Hamiltonian.
In classical mechanics, the thermal state is constructed by time evolution — this is the content of the

ergodic theorem. In quantum mechanics, as we shall see, the thermal distribution must be encoded in
the eigenstates themselves.

Let us assume an initial condition at ¢ = 0 with [¥(0)) = > C, |¥,), where {| ¥, )} is an orthonormal
eigenbasis for H satisfying H |¥,) = E, |¥_). The expansion coefficients satisfy C,, = (¥,|¥(0)) and
>, 1C.|? = 1. Normalization requires (¥(0)|¥(0)) =3, |C,|? =1.

The time evolution of |¥) is then given by
U(t) =D Coe PtMw,) (3.88)

The energy is distributed according to the time-independent function

P(E) = (U(t)|6(E — H) | U(t) Z|C 26(E—-E,) . (3.89)
Thus, the average energy is time-independent and is given by
(B) = (U(t)| H| ¥ () /dEP Z|c ?E, . (3.90)

The root mean square fluctuations of the energy are given by

(AB) e = (B (B)]) = \/Zw eez - (Ylele) (3.91)

Typically we assume that the distribution P(E) is narrowly peaked about (E), such that (AE), . <
E — E,, where E; is the ground state energy. Note that P(E) = 0 for E < E,, i.e. the eigenspectrum of
H is bounded from below.
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Now consider a general quantum observable described by an operator A. We have
* i(E,—Ey)t/h
(AW®) = (1) [A]B() = Y CrCye B, (3.92)
a’ﬁ
where A5 = (U |A|¥g). In the limit of large times, we have

T
o1 2
(A), = Jim / at (AWD) = 3 1C An - (3.93)
0 (0%
Note that this implies that all coherence between different eigenstates is lost in the long time limit, due
to dephasing.

3.6.2 Eigenstate thermalization hypothesis

The essential ideas behind the eigenstate thermalization hypothesis (ETH) were described independently
by J. Deutsch (1991) and by M. Srednicki (1994). The argument goes as follows. If the total energy is
the only conserved quantity, and if A is a local, translationally-invariant, few-body operator, then the
time average (A) is given by its microcanonical value,

_ _ 20 A OE 1)
<'A>t - 20; ‘Ca‘2"4aa - Za @(Ea c I)

where I = [E,E + AE] is an energy interval of width AFE. So once again, time averages are micro
canonical averages.

=(A)g, (3.94)

But how is it that this is the case? The hypothesis of Deutsch and of Srednicki is that thermalization
in isolated and bounded quantum systems occurs at the level of individual eigenstates. That is, for all
eigenstates |W,) with £, € I, one has A,, = (A)g . This means that thermal information is encoded
in each eigenstate. This is called the eigenstate thermalization hypothesis (ETH).

An equivalent version of the ETH is the following scenario. Suppose we have an infinite or extremely
large quantum system U (the ‘universe’) fixed in an eigenstate |¥,). Then form the projection operator
P, = |V )(¥,|. Projection operators satisfy P? = P and their eigenspectrum consists of one eigenvalue
1 and the rest of the eigenvalues are zero''. Now consider a partition of U = W U S, where W > S. We
imagine S to be the ‘system’ and W the ‘world’. We can always decompose the state |¥,) in a complete
product basis for W and S, viz.

Ny Ng

T =D Q%) @ [vf) (3.95)

p=1j=1
Here Ny, ¢ is the size of the basis for W/S. The reduced density matriz for S is defined as

Ng Ny,
ps = Tr Pa= 2 (Z%QZ?> Wiy wil (3.96)
=1 \p=1

")\ ore generally, we could project onto a K-dimensional subspace, in which case there would be K eigenvalues of +1 and
N — K eigenvalues of 0, where IV is the dimension of the entire vector space.
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The claim is that pg approximates a thermal density matriz on S, i.e.

1
ps~ e Ms (3.97)

where H g is some Hamiltonian on S, and Zg = Tr e—BH s, so that Tr pg = 1 and pg is properly normalized.
A number of issues remain to be clarified:

(i) What do we mean by “approximates”?

(ii) What do we mean by ﬁs?

(iii) What do we mean by the temperature 7'?

We address these in reverse order. The temperature T of an eigenstate |V, ) of a Hamiltonian H is defined
by setting its energy density E,/V;; to the thermal energy density, i.e.

o

E, 1TrHe?
V.V TreBH

L (3.98)

Here, H = H v is the full Hamiltonian of the universe U = W U S. Our intuition is that H g should reflect
a restriction of the original Hamiltonian ﬁU to the system S. What should be done, though, about
the interface parts of H v Which link S and W7 For lattice Hamiltonians, we can simply but somewhat
arbitrarily cut all the bonds coupling S and W. But we could easily imagine some other prescription, such
as halving the coupling strength along all such interface bonds. Indeed, the definition of Hg is somewhat
arbitrary. However, so long as we use pg to compute averages of local operators which lie sufficiently
far from the boundary of S, the precise details of how we truncate fIU to H g are unimportant. This
brings us to the first issue: the approximation of py by its Gibbs form in eqn. 3.97 is only valid when we
consider averages of local operators lying within the bulk of S. This means that we must only examine
operators whose support is confined to regions greater than some distance {, from 95, where & is a
thermal correlation length. This, in turn, requires that Lg > &, i.e. the region S is very large on the
scale of .. How do we define {? For a model such as the Ising model, it can be taken to be the usual
correlation length obtained from the spin-spin correlation function (oy 0,,),. More generally, we may
choose the largest correlation length from among the correlators of all the independent local operators
in our system. Again, the requirement is that exp(—d,(r)/{;) < 1, where dy(r) is the shortest distance
from the location of our local operator O, to the boundary of S. At criticality, the exponential is replaced
by a power law (dy(r)/&p) P, where p is a critical exponent. Another implicit assumption here is that
Vg < Vi

3.6.3 When is the ETH true?

There is no rigorous proof of the ETH. Deutsch showed that the ETH holds for the case of an integrable
Hamiltonian weakly perturbed by a single Gaussian random matrix. Horoi et al. (1995) showed that
nuclear shell model wavefunctions reproduce thermodynamic predictions. Recent numerical work by M.
Rigol and collaborators has verified the applicability of the ETH in small interacting boson systems.
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ETH fails for so-called integrable models, where there are a large number of conserved quantities, which
commute with the Hamiltonian. Integrable models are, however, quite special, and as Deutsch showed,
integrability is spoiled by weak perturbations, in which case ETH then applies.

ETH also fails in the case of noninteracting disordered systems which exhibit Anderson localization.
Single particle energy eigenstates ¥; whose energies ¢; the localized portion of the eigenspectrum decay
exponentially, as ‘%—(7’)‘2 ~ exp(—[r — rj]/g(sj)), where r; is some position in space associated with
¥; and {(ej) is the localization length. Within the localized portion of the spectrum, £(e) is finite.
As e approaches a mobility edge, {(c) diverges as a power law. In the delocalized regime, eigenstates
are spatially extended and typically decay at worst as a power law'?. Exponentially localized states
are unable to thermalize with other distantly removed localized states. Of course, all noninteracting
systems will violate ETH, because they are integrable. The interacting version of this phenomenon,
many-body localization (MBL), is a topic of intense current interest in condensed matter and statistical
physics. MBL systems also exhibit a large number of conserved quantities, but in contrast to the case of
integrable systems, where each conserved quantity is in general expressed in terms of an integral of a local
density, in MBL systems the conserved quantities are themselves local, although emergent. The emergent
nature of locally conserved quantities in MBL systems means that they are not simply expressed in terms
of the original local operators of the system, but rather are arrived at via a sequence of local unitary
transformations.

Note again that in contrast to the classical case, time evolution of a quantum state does not create the
thermal state. Rather, it reveals the thermal distribution which is encoded in all eigenstates after sufficient
time for dephasing to occur, so that correlations between all the wavefunction expansion coefficients {C,, }
for a # o are all lost.

3.7 Appendix I : Formal Solution of the Master Equation

Recall the master equation PZ = —I}; P;. The matrix I7; is real but not necessarily symmetric. For such

a matrix, the left eigenvectors ¢ and the right eigenvectors ¢]@ are not the same: general different:

3.99)
8 _ B (
lij ¢j = )\B ¢Z

Note that the eigenvalue equation for the right eigenvectors is Iy = Ay while that for the left eigenvectors
is I''¢ = A¢. The characteristic polynomial is the same in both cases:

FO\) =det(A—T) =det(A—TI") | (3.100)

which means that the left and right eigenvalues are the same. Note also that [F(\)] * = F(\*), hence the
eigenvalues are either real or appear in complex conjugate pairs. Multiplying the eigenvector equation
for ¢ on the right by %ﬁ and summing over j, and multiplying the eigenvector equation for # on the

left by ¢$ and summing over ¢, and subtracting the two results yields (A, — )‘6) (o> |9P) =0, where the

2Recall that in systems with no disorder, eigenstates exhibit Bloch periodicity in space.
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inner product is (¢| ¢ ) = >, &, ;. We may now demand ({¢* |97 ) = 045 » in which case we can write

L= M) (e = =) Aufef . (3.101)

We have seen that ¢ = (1,1,...,1) is a left eigenvector with eigenvalue A = 0, since ) _, I, =0. Wedo
not know a priori the corresponding right eigenvector, which depends on other details of L. Now let’s
expand P,(t) in the right eigenvectors of I', writing

=> C ) (3.102)
hen dP dcC
= 3 —Eul =T Py = - ZC Z)\ C, ¢ . (3.103)
This allows us to write
dC
—E="2C = Calt) =Co(0) e ol (3.104)
Hence, we can write
Py(t) =) Ch(0)e ot (3.105)

07

It is now easy to see that Re (A,) > 0 for all A, or else the probabilities will become negative. For suppose
Re(\,) < 0 for some . Then as t — oo, the sum in eqn. 3.105 will be dominated by the term for
which A, has the largest negative real part; all other contributions Wlll be subleading. But we must
have ), ¢ = 0 since ‘1/10‘> must be orthogonal to the left eigenvector qﬁa =0 = (1,1,...,1). Therefore,
at least one component of ¥§* (i.e. for some value of i) must have a negative real part, Which means a
negative probability!'® As we have already proven that an initial nonnegative distribution {P;(t = 0)}
will remain nonnegative under the evolution of the master equation, we conclude that P;(t) — P as
t — o0, relaxing to the A = 0 right eigenvector, with Re (\,) > 0 for all a.

3.8 Appendix II : Radioactive Decay

Consider a group of atoms, some of which are in an excited state which can undergo nuclear decay. Let
P, (t) be the probability that n atoms are excited at some time t. We then model the decay dynamics by

0 ifm>n
Wopn=4ny ifm=n-1 (3.106)
0 ifm<n-—1

13Since the probability P;(t) is real, if the eigenvalue with the smallest (i.e. largest negative) real part is complex, there
will be a corresponding complex conjugate eigenvalue, and summing over all eigenvectors will result in a real value for P;(¢).
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Here, ~y is the decay rate of an individual atom, which can be determined from quantum mechanics. The
master equation then tells us

apP,
dt

The interpretation here is as follows: let ‘ n> denote a state in which n atoms are excited. Then P, (t) =

=n+1)yP, ., —nyP, . (3.107)

|((t) |n>‘2 Then P,(t) will increase due to spontaneous transitions from |n+1) to |n), and will
decrease due to spontaneous transitions from |n) to |[n—1).

The average number of particles in the system is N(t) = > 2 n P, (t). Note that

% :Zn[(n—i-l)’yPH —nfyP}
n=0

(3.108)

—72[ (n—1)P, —n? }:—WZnP

Thus, N(t) = N(0) e~ . The relaxation time is 7 = 41, and the equilibrium distribution is Py? = 00
Note that this satisfies detailed balance.

We can go a bit farther here. Let us define

= i 2" P.(t) . (3.109)
n=0

This is sometimes called a generating function. Then

__’YZ [n"’_l n+l Pn

(3.110)
_or o
_7873 e 0z
Thus,
18P opP
=5 ~(l=2)5-=0 . (3.111)

We now see that any function f(§) satlsﬁes the above equation, where £ = vyt — In(1 — z). Thus, we can
write

P(z,t) = f(yt —In(1 —2)) . (3.112)
Setting ¢ = 0 we have P(z,0) = f(—In(1 — z)), and inverting this result we obtain f(u) = P(1 —e™*,0),

which entails

P(z,t)=P(1+(z—1)e ", 0) . (3.113)
The total probability is P(z=1,t) = Y~ , P,, which clearly is conserved: P(1,t) = P(1,0). The average
particle number is

an aP _ et P(1,0) = N(0)e (3.114)
z=1
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3.9 Appendix III: Transition to Ergodicity in a Simple Model

A ball of mass m executes perfect one-dimensional motion along the symmetry axis of a piston. Above
the ball lies a mobile piston head of mass M which slides frictionlessly inside the piston. Both the ball
and piston head execute ballistic motion, with two types of collision possible: (i) the ball may bounce off
the floor, which is assumed to be infinitely massive and fixed in space, and (ii) the ball and piston head
may engage in a one-dimensional elastic collision. The Hamiltonian is
P2 2

= W—l—p——l—MgX—l—mga: ,
where X is the height of the piston head and x the height of the ball. Another quantity is conserved by
the dynamics: ©(X — z). Le., the ball always is below the piston head.

(a) Choose an arbitrary length scale L, and then energy scale E; = MgL, momentum scale P, =
M+/gL, and time scale 7, = \/L/g. Show that the dimensionless Hamiltonian becomes

=2
PPrx+L 14z

H=1
2 2r ’

with r = m/M, and with equations of motion dX/dt = OH/OP, etc. (Here the bar indicates
dimensionless variables: P = P/P,, t = t/7,, etc.) What special dynamical consequences hold for
r=17

(b) Compute the microcanonical average piston height (X). The analogous dynamical average is

T
(X), = lim 1/th
0

T—oo T

When computing microcanonical averages, it is helpful to use the Laplace transform, discussed
toward the end of §3.3 of the notes. (It is possible to compute the microcanonical average by more
brute force methods as well.)

(¢) Compute the microcanonical average of the rate of collisions between the ball and the floor. Show
that this is given by
<Z§t—t = (O(v)vé(x —0T))

The analogous dynamical average is

T
. 1
(= fim 7 fat Yot .
0 T

where {¢;} is the set of times at which the ball hits the floor.

(d) How do your results change if you do not enforce the dynamical constraint X > x?
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(e) Write a computer program to simulate this system. The only input should be the mass ratio r
(set E = 10 to fix the energy). You also may wish to input the initial conditions, or perhaps to
choose the initial conditions randomly (all satisfying energy conservation, of course!). Have your
program compute the microcanonical as well as dynamical averages in parts (b) and (c). Plot out
the Poincaré section of P vs. X for those times when the ball hits the floor. Investigate this for
several values of r. Just to show you that this is interesting, I've plotted some of my own numerical
results in fig. 3.12.

Solution:

(a) Once we choose a length scale L (arbitrary), we may define E, = M gL, By = M+\/gL, V, = \/gL,
and 7, = \/L/g as energy, momentum, velocity, and time scales, respectively, the result follows directly.
Rather than write P = P/P, etc., we will drop the bar notation and write

2
H:%P2+X+%+m

(b) What is missing from the Hamiltonian of course is the interaction potential between the ball and
the piston head. We assume that both objects are impenetrable, so the potential energy is infinite when
the two overlap. We further assume that the ball is a point particle (otherwise reset ground level to
minus the diameter of the ball). We can eliminate the interaction potential from H if we enforce that
each time X = x the ball and the piston head undergo an elastic collision. From energy and momentum
conservation, it is easy to derive the elastic collision formulae

1—r 2
P = P
T1r P11 ?

- 2r P_l—r
1+ 1+

p p

We can now answer the last question from part (a). When r = 1, we have that P’ = p and p/ = P,
i.e. the ball and piston simply exchange momenta. The problem is then equivalent to two identical
particles elastically bouncing off the bottom of the piston, and moving through each other as if they were
completely transparent. When the trajectories cross, however, the particles exchange identities.

Averages within the microcanonical ensemble are normally performed with respect to the phase space
distribution

(B )

CTr S(E—H(p))

o(p)

where ¢ = (P, X, p, ), and

Tr F(p) = /dP/dX/dp/da:F(P,X,p,a:)
—00 0 —00 0
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MOMENTUM OF PISTON
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Figure 3.12: Poincaré sections for the ball and piston head problem. Each color corresponds to a different
initial condition. When the mass ratio r = m/M exceeds unity, the system apparently becomes ergodic.

Since X > z is a dynamical constraint, we should define an appropriately restricted microcanonical
average:

Tr [F(cp) 5(E - H(go))} Tro(E — H(p))

(F(@)) e

where

o) o) o) X
TrF(p) = /dP/dX/dp/dm F(P,X,p,z)
—00 0 —00 0

is the modified trace. Note that the integral over z has an upper limit of X rather than oo, since the
region of phase space with x > X is dynamically inaccessible.

When computing the traces, we shall make use of the following result from the theory of Laplace trans-
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forms. The Laplace transform of a function K (FE) is
R(8) = / dE K(B) e PP
0

The inverse Laplace transform is given by

c+1i00

3 ~
K(E) = / z—fiK(ﬁ)eﬁE ,

where the integration contour, which is a line extending from = ¢ — 00 to 8 = ¢+ oo, lies to the right
of any singularities of K (/) in the complex S-plane. For this problem, all we shall need is the following:

Et—l N
K(E) = W) = K(@B)=p"

For a proof, see §4.2.2 of the lecture notes.

We’re now ready to compute the microcanonical average of X. We have
(x) = M)
- D(B)
where N(E) = Tr [X0(E — H)|] and D(E) = Tré(E — H). Let’s first compute D(E). To do this, we
compute the Laplace transform IA)(B):

lA?(B) = Tre PH

00 o) o) X
= /dP 6_6P2/2/dp e_Bp2/2’"/dX e_BX/dw e fre
—00 —00 0 0
_ 2T /OOdX oox (LN W 2w
3 Br 1+7r 33
0

Similarly for N(8) we have

ﬁ(ﬁ) =TrXe P

0o 0o X

= /dP e_BPQ/z/dpe_ﬁpz/Qr/dXXe_BX/daz e hre
oo 0

—00 0

2my/r /dXXe—BX (1—6_BTX> _ 2+ om
0

5 Br A+r?
Taking the inverse Laplace transform, we then have

D(E) = Y g N(E) = BEDVT 1

14 1+r2Z 3
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We then have

) =g = (F) 4

The ‘brute force’ evaluation of the integrals isn’t so bad either. We have
o0 00 o0 X
D(E) = /dp/dx/dp/dxa(%PM§p2+X+m—E)
—00 0 —00 0

To evaluate define P = v/2u, and p = v/2ru,. Then we have dP dp = 2/ du, du,, and %PZ + % p? =
u2 + u . Now convert to 2D polar coordlnates w1th w=ul+ u . Thus,

o0 o0

X
D(E) = 2n\/r dw/dX/dwé (w+ X +rz—E)
0 0

0
_w/ /X/d:n@E w—X)0(X +rX - FE+w)
7
0 0
o [ 10 o
—W/dw/dX T qq—i-wE2 ,
T 1+r 1+r
0 E—w
1+7r
with ¢ = ¥ — w. Similarly,
00 0o X

0 0
5 o) o) X
:%/dw/dXX/d:E OF—-—w—-X)O(X +rX — FE+w)
0 0 0
) E E-w ) E . ) v
i m +r r
=— [d dX X =" [dg(1-—— ) - 12 = . Ry
\/F/w NG q< (1—1—7“)2> 24 <1—|—7‘> 1+r 3"
0 0

E—w
1+7r

(c) Using the general result
where F(x;) = A, we recover the desired expression. We should be careful not to double count, so to

avoid this difficulty we can evaluate §(t — t;7), where t; = t, + 07 is infinitesimally later than ¢,. The
point here is that when ¢ = ;7 we have p = rv > 0 (i.e. just after hitting the bottom). Similarly, at
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7 T T T T T T T T T T T T | T T T T ]
r=0.3 A
= .
3 2T
=< =
1 | 1 1 1 1 | 1 1 | 1 | 1 | | 1 :

108 2x10°% 3x10°% 4x10°
T | T T T T | T T T T | T T T T :
r=1.2 ]
= -
5 .
= ]
1 | 1 1 1 1 | 1 1 | 1 | 1 i | 1 :

108 2x10°% 3x10°% 4x10°%

time t

Figure 3.13: Long time running numerical averages X,, (t) = ¢~ fg dt’ X (t') for r = 0.3 (top) and r = 1.2
(bottom), each for three different initial conditions, with E = 10 in all cases. Note how in the r = 0.3 case
the long time average is dependent on the initial condition, while the r = 1.2 case is ergodic and hence

independent of initial conditions. The dashed black line shows the restricted microcanonical average,

<X>,uce = —81:3 : %E

times ¢ = t; we have p < 0 (i.e. just prior to hitting the bottom). Note v = p/r. Again we write
v(E) = N(E)/D(E), this time with

N(E)=Tr[0@p)r 'ps(z — 07)6(E — H)]

The Laplace transform is

oo oo oo

]\Af(ﬁ) = /dP e_BPQ/z/dp r_lpe_BPQ/%/dX e BX
—00 0 0
2 1 1
— 2 . = \/or B0/
CR A A

Thus, N(E) = % E3/? and

(7) = y = 4—ﬁ<1+T>E—1/2

—
&
SN—

w
3
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| [ X0 [&X®) [ e | 0@) | Muee | 7 [ X0) [ (X)) [ (Xee | 0®) | Wiee |
0.3 0.1 6.1743 | 5.8974 | 0.5283 | 0.4505 || 1.2 0.1 4.8509 | 4.8545 | 0.3816 | 0.3812
0.3 1.0 5.7303 | 5.8974 | 0.4170 | 0.4505 || 1.2 1.0 4.8479 | 4.8545 | 0.3811 | 0.3812
0.3 3.0 5.7876 | 5.8974 | 0.4217 | 0.4505 || 1.2 3.0 4.8493 | 4.8545 | 0.3813 | 0.3812
0.3 5.0 5.8231 | 5.8974 | 0.4228 | 0.4505 || 1.2 5.0 4.8482 | 4.8545 | 0.3813 | 0.3812
0.3 7.0 5.8227 | 5.8974 | 0.4228 | 0.4505 || 1.2 7.0 4.8472 | 4.8545 | 0.3808 | 0.3812
0.3 9.0 5.8016 | 5.8974 | 0.4234 | 0.4505 || 1.2 9.0 4.8466 | 4.8545 | 0.3808 | 0.3812
0.3 9.9 6.1539 | 5.8974 | 0.5249 | 0.4505 || 1.2 9.9 4.8444 | 4.8545 | 0.3807 | 0.3812

Table 3.1: Comparison of time averages and microcanonical ensemble averages for r = 0.3 and r = 0.9.
Initial conditions are P(0) = x(0) = 0, with X (0) given in the table and £ = 10. Averages were performed
over a period extending for Ny, = 107 bounces.

(d) When the constraint X > x is removed, we integrate over all phase space. We then have

D(B) =Tre PH

= 7dP e—5P2/27dp e—ﬁp2/2r7d X 6—6X7dx BT _ Z%ﬁ
- —o0 0 0
For part (b) we would then have
N(B)=Tr XePH
= 7dP 6_5P2/27dp e_ﬁp2/2T7dXX e_ﬁdex e Pre — 27;—4\/7_4
- —00 0 0

The respective inverse Laplace transforms are D(E) = my/r E? and N(E) = +7/rE3. The microcanonical
average of X would then be (X) = %E Using the restricted phase space, we obtained a value which is
greater than this by a factor of (2 + r)/(1 4 7). That the restricted average gives a larger value makes
good sense, since X is not allowed to descend below z in that case. For part (c), we would obtain the

same result for N(E) since x = 0 in the average. We would then obtain
(7) = 43—\/§r_1/2 E12

The restricted microcanonical average yields a rate which is larger by a factor 1 + r. Again, it makes
good sense that the restricted average should yield a higher rate, since the ball is not allowed to attain a
height greater than the instantaneous value of X.

(e) It is straightforward to simulate the dynamics. So long as 0 < z(t) < X (t), we have
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[r [ xoIN] X)) | Kwee | 00 | e |
1.2 7.0 104 | 4.8054892 | 4.8484848 | 0.37560388 | 0.38118510
1.2 7.0 10° | 4.8436969 | 4.8484848 | 0.38120356 | 0.38118510
1.2 7.0 106 | 4.8479414 | 4.8484848 | 0.38122778 | 0.38118510
1.2 7.0 107 | 4.8471686 | 4.8484848 | 0.38083749 | 0.38118510
1.2 7.0 108 | 4.8485825 | 4.8484848 | 0.38116282 | 0.38118510
1.2 7.0 109 | 4.8486682 | 4.8484848 | 0.38120259 | 0.38118510
1.2 1.0 109 | 4.8485381 | 4.8484848 | 0.38118069 | 0.38118510
1.2 9.9 109 | 4.8484886 | 4.8484848 | 0.38116295 | 0.38118510
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Table 3.2: Comparison of time averages and microcanonical ensemble averages for r = 1.2, with Ny,

ranging from 10* to 10°.

Starting at an arbitrary time ¢, these equations are integrated to yield

)
)

) = a(ty) +
) = nlto)

= X(to) + P(to) (t — to) — 5(t — t)?

= P(ty) — (t —to)

p(ty)

T

(t —to) — 3(t — t)?

p(t) = p(ty) — r(t — o)

We must stop the evolution when one of two things happens. The first possibility is a bounce at t = ¢,
meaning z(t,) = 0. The momentum p(t) changes discontinuously at the bounce, with p(t;) = —p(t;),

and where p(t;) < 0 necessarily. The second possibility is a collision at t = ¢
Integrating across the collision, we must conserve both energy and momentum. This means

1—r
P(tj): 1+7r
2r
p(td) = Tr

P(t;) + T ity
P(t;) — 1 p(t;)

(o]

meaning X (t.) = z(t.).

In the following tables I report on the results of numerical simulations, comparing dynamical averages with
(restricted) phase space averages within the microcanonical ensemble. For r = 0.3 the microcanonical
averages poorly approximate the dynamical averages, and the dynamical averages are dependent on
the initial conditions, indicating that the system is not ergodic. For r = 1.2, the agreement between

dynamical and microcanonical averages generally improves with averaging time.

Indeed, it has been

shown by N. I. Chernov, Physica D 53, 233 (1991), building on the work of M. P. Wojtkowski, Comm.
Math. Phys. 126, 507 (1990) that this system is ergodic for r > 1. Wojtkowski also showed that this
system is equivalent to the wedge billiard, in which a single point particle of mass m bounces inside a
two-dimensional wedge-shaped region {(x,y) ! x>0,y >xctn gzb} for some fixed angle ¢ = tan~! \/% .
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To see this, pass to relative (X') and center-of-mass ()’) coordinates,

mP — Mp
X=X-— =—
T P, M rm
MX +mz
= :P
Y M+m Py p
Then ) )
M P P
g MEmPe L'+ (M +m)gy

2Mm 2(M +m)

There are two constraints. One requires X > x, i.e. X > 0. The second requires = > 0, i.e.

X >
M+m =0

=) —

Now define x = X, p, = P,, and rescale y = yfﬁ Y and p, = 37 ]_Viz;” P, to obtain

1
Hzﬂ(pierf,)Jngy

with p = A]/}/[Jr"}n the familiar reduced mass and M = v/ Mm. The constraints are then x > 0 and y > 4/ %x.



Chapter 4

Statistical Ensembles

4.1 References

— F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason.
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treats statistical mechanics.
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4.2 Microcanonical Ensemble (uCE)

4.2.1 The microcanonical distribution function

We have seen how in an ergodic dynamical system, time averages can be replaced by phase space averages:

ergodicity <= (f(¢)), = (f(¢))g (4.1)
where
1 T
(o), = pim 7 [de f(ot0) (12)
0
and

(F(@N)s = [duf(o)6(E - H(p) / Jaus(E-fite) (4.3)

Here H(p) = H(q,p) is the Hamiltonian, and where d(z) is the Dirac d-function'. Thus, averages are

taken over a constant energy hypersurface which is a subset of the entire phase space.

We’ve also seen how any phase space distribution o(4,, ..., A,) which is a function of conserved quantitied
A,(p) is automatically a stationary (time-independent) solution to Liouville’s equation. Note that the
microcanonical distribution,

onl) =0(E ~ file) / [dns(E - ite) . (14)

is of this form, since H (¢) is conserved by the dynamics. Linear and angular momentum conservation
generally are broken by elastic scattering off the walls of the sample.

So averages in the microcanonical ensemble are computed by evaluating the ratio

(4) =

where Tr means ‘trace’, which entails an integration over all phase space:

Tr AS(E — H)

Tr6(E—H) (4.5)

Trqu——H/ddpdql p) . (4.6)

Here N is the total number of particles and d is the dimension of physical space in which each particle
moves. The factor of 1/N!, which cancels in the ratio between numerator and denominator, is present for

'We write the Hamiltonian as H (classical or quantum) in order to distinguish it from magnetic field, H. In chapter
2, we used the symbol H for enthalpy and wrote the magnetic field as H, but since enthalpy doesn’t get a mention in this
chapter, we shift notation slightly.
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indistinguishable particles’. The normalization factor (2k)~V? renders the trace dimensionless. Again,
this cancels between numerator and denominator. These factors may then seem arbitrary in the definition
of the trace, but we’ll see how they in fact are required from quantum mechanical considerations. So we
now adopt the following metric for classical phase space integration:

1 ddp d%;
C 4.
= N @) (4.7)
4.2.2 Density of states
The denominator,
DE)=Tr8(E—-H) , (4.8)
is called the density of states. It has dimensions of inverse energy, such that
E+AE
/dE'/d/uS /du (4.9)
E<H<E+AE
= # of states with energies between E and F + AE
Let us now compute D(FE) for the nonrelativistic ideal gas. The Hamiltonian is
N p2
H(q,p) = Z _Tln (4.10)

We assume that the gas is enclosed in a region of volume V', and we’ll do a purely classical calculation,
neglecting discreteness of its quantum spectrum. We must compute

M /Hdd;rgd < _é%> : (4.11)

We shall calculate D(F) in two ways. The first method utilizes the Laplace transform, Z(3):

Z(8) = L[D(E)] = / dE e PED(E) = Tre PH | (4.12)
0
The inverse Laplace transform is then
c+iood5
_ -1 — [ 9° BE
D(E) = £7[2(8)] = / e am) (4.13)

2More on this in chapter 5.
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Im f3 Im
' T e i
:' ——Re 3 S Re 3
% i branch’cut *, +
® T N i
Nd even Nd odd

Figure 4.1: Complex integration contours C for inverse Laplace transform £7'[Z(8)] = D(E). When
the product dN is odd, there is a branch cut along the negative Re 8 axis.

where ¢ is such that the integration contour is to the right of any singularities of Z () in the complex
[B-plane. We then have

N
1 ddxiddpi —Bp2/2m
20) =55 11 [y«

- N i (4.14)
- vy /ﬁ e Br?/2m | Vi m g—Nd/2
N! 2mh N! \ 27h?

The inverse Laplace transform is then

D(E) = VN (m NV féﬁ eBE g=Nd/2
N \ 27h? 270

(4.15)

UN /o \Nd/2 E%Nd—l
:W<27rh2> T(Nd/2)

exactly as before. The integration contour for the inverse Laplace transform is extended in an infinite
semicircle in the left half S-plane. When Nd is even, the function S~NV%2 has a simple pole of order
Nd/2 at the origin. When Nd is odd, there is a branch cut extending along the negative Re [ axis, and
the integration contour must avoid the cut, as shown in fig. 4.1. One can check that this results in the

same expression above, i.e. we may analytically continue from even values of Nd to all positive values of
Nd.

For a general system, the Laplace transform, Z(3) = ﬁ[D(E)] also is called the partition function. We
shall again meet up with Z(/3) when we discuss the ordinary canonical ensemble.

Our final result, then, is

VN< m >Nd/2 E%Nd_l

DEV.N) =57 (202 T'(Nd/2)

(4.16)



4.2. MICROCANONICAL ENSEMBLE (uCE) 167

Here we have emphasized that the density of states is a function of E, V, and N. Using Stirling’s
approximation,

InN!'=NInN—N+ilnN+Lilm@r)+0(N") (4.17)
we may define the statistical entropy,
E Vv
S(E,V,;N)=k,lnD(E,V,N) = Nl{:BqS(N, N) +O(InN) , (4.18)
where E Vv d E Vv d
AR R Y A I Y L 1
¢<N, N) 2ln<N>+ln<N>—|—2 ln<dﬂh2>+(1+2d) : (4.19)

Recall k, = 1.3806503 x 10710 erg/K is Boltzmann’s constant.

Second method

The second method invokes a mathematical trick. First, let’s rescale p§* = v2mE uf*. We then have

Nd
VN (V2mE 1
D(E):W<T> E/dMua(u%+u§+...+u§4—1) . (4.20)
Here we have written w = (u,uy,...,u,,;) with M = Nd as a M-dimensional vector. We've also used

the rule 6(Ex) = E~1§(x) for J-functions. We can now write
dMy=uMtdud,, (4.21)

where df2,, is the M-dimensional differential solid angle. We now have our answer:’

Nd
_ VN <\/2m

LNd—1
D(E)_m —> E? NI (4.22)

h

What remains is for us to compute (2,,, the total solid angle in M dimensions. We do this by a nifty
mathematical trick. Consider the integral

[e.e]
Iy = /dMu e = 20 /du uM-1ew
0

~ (4.23)
= %QM/ds S%M_l e’ = %QMF(%M) ,
0
where s = u?, and where .
I'(z) = /dt t*et (4.24)
0

®The factor of 1 preceding 2, in eqn. 4.22 appears because §(u” — 1) = 1 §(u— 1) + % §(u + 1). Since u = |u| > 0, the
second term can be dropped.
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is the Gamma function, which satisfies zI'(z) = I'(z + 1).* On the other hand, we can compute Z,, in
Cartesian coordinates, writing

o M
Iy = /dul e | = (\/E)M . (4.25)
Therefore
o, = 2 42
M T T0M2) (4.26)

Thus we obtain 2, = 27, {2, = 4w, 2, = 272, etc., the first two of which are familiar.

4.2.3 Arbitrariness in the definition of S(F)

Note that D(F) has dimensions of inverse energy, so one might ask how we are to take the logarithm
of a dimensionful quantity in eqn. 4.18. We must introduce an energy scale, such as AE in eqn. 4.9,
and define D(E; AE) = D(E)AE and S(E; AE) = k,In D(E; AE). The definition of statistical entropy
then involves the arbitrary parameter AFE, however this only affects S(E) in an additive way. That is,

AE
S(E,V,N;AE,) = S(E,V,N;AE,) + kyIn <A—El> : (4.27)
2

Note that the difference between the two definitions of S depends only on the ratio AE,/AE,, and is
independent of E, V, and N.

4.2.4 Ultra-relativistic ideal gas

Consider an ultrarelativistic ideal gas, with single particle dispersion €(p) = ¢p. We then have

0o N
vy of d—1 _—Be VN (T(d) 24\
Z0) = R Vg /dpp N By <cdhd5d> ' (4.28)
0

The statistical entropy is S(E,V,N) =k, In D(E,V,N) = Nk, gb(%, %), with
E V E v 2;1(d)
—, —= | =dIn{ = In{ — 1 1 4.2
¢<N,N> dn<N>+n<N>+n<(dhc)d + (d+1) (4.29)

4.2.5 Discrete systems

For classical systems where the energy levels are discrete, the states of the system |o ) are labeled by a
set of discrete quantities {0y, 0y, ...}, where each variable o; takes discrete values. The number of ways

“Note that for integer argument, I'(k) = (k — 1)!
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of configuring the system at fixed energy FE is then

UE,N) =Y dpp (4.30)

o

where the sum is over all possible configurations. Here N labels the total number of particles. For
example, if we have N spin—% particles on a lattice which are placed in a magnetic field H, so the
individual particle energy is ¢, = —puoHo, where o = %1, then in a configuration in which Ny particles
have o, = +1 and N¢ =N - NT particles have o, = —1, the energy is £/ = (N¢ — NT),uOH. The number
of configurations at fixed energy FE is

N N!
Q(E’N*(NT)‘(% oy g T (431

since N, | = % F %. The statistical entropy is S(E,N) = k; InQ(E, N).

4.3 The Quantum Mechanical Trace

Thus far our understanding of ergodicity is rooted in the dynamics of classical mechanics. A Hamiltonian
flow which is ergodic is one in which time averages can be replaced by phase space averages using the
microcanonical ensemble. What happens, though, if our system is quantum mechanical, as all systems
ultimately are?

4.3.1 The density matrix

First, let us consider that our system S will in general be in contact with a world W. We call the union
of S and W the universe, U = W U S. Let ‘ N > denote a quantum mechanical state of W, and let |n>
denote a quantum mechanical state of S. Then the most general wavefunction we can write is of the form

U)y=> U,y [NY®|n) . (4.32)

Nmn

Now let us compute the expectation value of some operator A which acts as the identity within W,
meaning <N ‘ A ‘ N ’> = Ad, s, Where A is the ‘Teduced’” operator which acts within S alone. We then
have

<\Il = ZZ\Il}k\f7n\IlN/7n/6NN/<n‘A‘n/>:Tr(éfi) s (433)
N,N’ n,n’
where
0= Wia Uy [n')(n] (4.34)
N n,n/

is the density matriz. The time-dependence of g is easily found:

' (t )><n(t)‘ — o—iflt/h ée-i-iﬁt/ﬁ 7 (4.35)

N n,n/
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WORLD W

Figure 4.2: A system S in contact with a ‘world” W. The union of the two, universe U = W U S| is said
to be the ‘universe’.

where H is the Hamiltonian for the system S. Thus, we find

L 00 o
’LFLE =[H,0] . (4.36)

Note that the density matrix evolves according to a slightly different equation than an operator in the
Heisenberg picture, for which

A(t) = evititn gm0 i g g A] (4.37)

For Hamiltonian systems, we found that the phase space distribution o(q,p,t) evolved according to the
Liouville equation, ¢ 0o/t = L ¢, where the Liouvillian L is the differential operator

(4.38)

Accordingly, any distribution o(A,...,A,) which is a function of constants of the motion A,(q,p) is
a stationary solution to the Liouville equation: 0, o(4;,...,4,) = 0. Similarly, any quantum mechan-
ical density matrix which commutes with the Hamiltonian is a stationary solution to eqn. 4.36. The
corresponding microcanonical distribution is ¢, = 5(E - H ) .

4.3.2 Averaging the DOS

If our quantum mechanical system is placed in a finite volume, the energy levels will be discrete, rather
than continuous, and the density of states (DOS) will be of the form

DE)=Tré§(E-H)=> §E-E) |, (4.39)
l
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AE
>
E

Figure 4.3: Averaging the quantum mechanical discrete density of states yields a continuous curve.

where {E,} are the eigenvalues of the Hamiltonian H. In the thermodynamic limit, V' — oo, and the
discrete spectrum of kinetic energies remains discrete for all finite V' but must approach the continuum
result. To recover the continuum result, we average the DOS over a window of width AFE:

E+AFE
D(E):& / dE' D(E') . (4.40)
E

If we take the limit AE — 0 but with AE > dE, where 0F is the spacing between successive quantized
levels, we recover a smooth function, as shown in fig. 4.3. We will in general drop the bar and refer to
this function as D(E). Note that 6E ~ 1/D(FE) = e~ V() is (typically) exponentially small in the size
of the system, hence if we took AE o V! which vanishes in the thermodynamic limit, there are still
exponentially many energy levels within an interval of width AFE.

4.3.3 Coherent states

The quantum-classical correspondence is elucidated with the use of coherent states. Recall that the
one-dimensional harmonic oscillator Hamiltonian may be written

2
H,= 2p—m + %mwg ¢ = hw, (aTa + %) , (4.41)

where a and af are ladder operators satisfying [a, aT] = 1, which can be taken to be

a:03+— , al ==+ L | (4.42)

with £ = \/h/2mw, . Note that ¢=¢(a+a') and p 2_);'15 (a —al).

The ground state satisfies a1(q) = 0, which yields

Yolq) = (2ml?) "W em 1 (4.43)
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The normalized coherent state |z ) is defined as
_Lie g e 2 2"
|z)=e 2 e 0) = 72 Z—|n> . (4.44)
n=0 \/’I?

The overlap of coherent states is given by

—l\z |2 —l|z 2 zz
(z1]20) = e 210 72120 5172 (4.45)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent states
allow a simple resolution of the identity,

1:/% P ;1_;22 _ dRezﬂdImz (4.46)
which is straightforward to establish.
To gain some physical intuition about the coherent states, define
Z = 2% + g (4.47)
and write | z) =|Q, P ). One finds (exercise!)
¢Q,P(q) =(q|z)= (27762)_1/4 o~ 1PQ/2h ,iPq/h ,—(q—Q)?/4¢? 7 (4.48)

hence the coherent state 1/JQ p(q) is a wavepacket Gaussianly localized about ¢ = @, but oscillating with
average momentum P.

For example, we can compute

(Q,P|q|Q,P)=(z|t(a+al)|z)=2Rez=Q (4.49)
<Q,P|p\Q,P>:<z|2%(a—aT)\z>:%Imz:P (4.50)

as well as
(Q.P|?|Q.P)y=(z|(a+a)?|z)=Q*+ ¢ (4.51)
(QP1#*QP) = (2| fa—al?]z) = PP 1 (4.52)

Thus, the root mean square fluctuations in the coherent state | Q, P) are

h h mhw
A — E == A = — = 0
4 2mw, ’ P= 50 2 ’

(4.53)

and Aq-Ap = % h. Thus we learn that the coherent state wQ p(q) is localized in phase space, i.e. in both

position and momentum. If we have a general operator A(q, p), we can then write

(Q,P|A(q,p)|Q,P)=A(Q,P)+0O(h) , (4.54)
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where A(Q, P) is formed from fl(q,p) by replacing ¢ — @ and p — P.

Since d? dRez dI dQ dP
2 ez dlmz
~ T = = 4.55
271 T 21h ’ ( )
we can write the trace using coherent states as
~ 1 7 7 A
TrA:%/dQ/dP<Q,P\A\Q,P> . (4.56)

We now can understand the origin of the factor 27# in the denominator of each (g;,p;) integral over
classical phase space in eqn. 4.6.

Note that wj is arbitrary in our discussion. By increasing w,, the states become more localized in ¢
and more plane wave like in p. However, so long as wy is finite, the width of the coherent state in each
direction is proportional to #'/2, and thus vanishes in the classical limit.

4.4 Thermal Equilibrium

4.4.1 Two systems in thermal contact

Consider two systems in thermal contact, as depicted in fig. 4.4. The two subsystems #1 and #2 are
free to exchange energy, but their respective volumes and particle numbers remain fixed. We assume
the contact is made over a surface, and that the energy associated with that surface is negligible when
compared with the bulk energies F; and E,. Let the total energy be E = E| + E,. Then the density of
states D(FE) for the combined system is

D(E) = / B, D, (E,) Dy(E — E,) . (4.57)

The probability density for system #1 to have energy F, is then

D, (E)) Dy(E — Ey)
D(E)

P(E,) = (4.58)

Note that P;(E,) is normalized: [dE; P,(E;) = 1. We now ask: what is the most probable value of E,?
We find out by differentiating P, (E;) with respect to F; and setting the result to zero. This requires

1 dP(E) 0

0= = In P(E
P(E))  dE, OF, ) (4.59)
0 0 '
= E lnDl(El) + 8—_El IHDQ(E — El)

We conclude that the maximally likely partition of energy between systems #1 and #2 is realized when

0%, _ 05,

9B, _ OE, (4.60)
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Figure 4.4: Two systems in thermal contact.

This guarantees that
S(E,Ey) = S1(Ey) + So(E — Ey) (4.61)

is a maximum with respect to the energy E,, at fixed total energy E.

The temperature T is defined as

1 oS
— = =— , (4.62)
T oF V.N

a result familiar from thermodynamics. The difference is now we have a more rigorous definition of the

entropy. When the total entropy S is maximized, we have that 7} = T,. Once again, two systems in
thermal contact and can exchange energy will in equilibrium have equal temperatures.

According to eqns. 4.19 and 4.29, the entropies of nonrelativistic and ultrarelativistic ideal gases in d
space dimensions are given by

E |4
Syr = 5Ndk; ln<ﬁ> + Nk ln<N> + const. (4.63)
E Vv
Syr = Nd kg ln<N> + Nk ln<ﬁ> + const. . (4.64)

Invoking eqn. 4.62, we then have E; = %Nd kT and By = Ndk,T .

We saw that the probability distribution P, (E;) is maximized when 7} = T, but how sharp is the peak
in the distribution? Let us write £, = E{ + AFE,, where E7 is the solution to eqn. 4.59. We then have

1 9%, 5 1 0%,

lnpl(Evlk + AEl) = lnPl(Ef) + E{ % 8—E,22

(AE) +... (4.65)
E;

where E5 = ' — E}. We must now evaluate
9% 0 (1 1 [oT 1
= (=)= (= = (4.66)
OE? OQE\T T2 \ OF V.N 120,
where C, = (E?E / E?T)V w 1s the heat capacity. Thus,

Py = P em(ABDR/2kT2Cy (4.67)
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where
= CV,I CV,2

Cy =——"—"-"—

Cyy +Cyy
The distribution is therefore a Gaussian, and the fluctuations in AE; can now be computed:
((AE))?) = k,T? Cy, = (AE1)gus = kg T/ Cy /Ky (4.69)

The individual heat capacities C'y,| and Cy,, scale with the volumes V; and V5, respectively. If V, >V,

(4.68)

then Cy,, > Cf,,, in which case C’V ~ Cy,,. Therefore the RMS fluctuations in AF, are proportional to

the square root of the system size, whereas E, itself is extensive. Thus, the ratio (AFE))pye/Ey o< V=12

scales as the inverse square root of the volume. The distribution P, (E;) is thus extremely sharp.

4.4.2 Thermal, mechanical and chemical equilibrium

We have dS‘VN = %dE, but in general S = S(E,V,N). Equivalently, we may write E = E(S,V, N).
The full differential of E(S, V, N) is then dE = T'dS —pdV +pudN, with T = (§),, v and p = — (5% ) v

and pu = (g—ﬁ) Sy As we shall discuss in more detail, p is the pressure and p is the chemical potential.

We may thus write the total differential d.S as
1 D %
dS=—=dF+ =dV — =dN . 4.70
T * T T (4.70)
Employing the same reasoning as in the previous section, we conclude that entropy maximization for two
systems in contact requires the following:
o If two systems can exchange energy, then T} = T,. This is thermal equilibrium.
o If two systems can exchange volume, then p, /T = p,/T,. This is mechanical equilibrium.

o If two systems can exchange particle number, then p, /T = py/T,. This is chemical equilibrium.

4.4.3 Gibbs-Duhem relation

The energy E(S,V,N) is an extensive function of extensive variables, i.e. it is homogeneous of degree
one in its arguments. Therefore E(AS, AV, AN) = \E, and taking the derivative with respect to A yields

OF OF OF
pog(%F +v<—> +N<_)
<8S >V,N oV Jsn ON Jgv (4.71)

=TS —pV + uN

Taking the differential of each side, using the Leibniz rule on the RHS, and plugging in dFf = T'dS —
pdV + pdN, we arrive at the Gibbs-Duhem relation®,

SdT —Vdp+Nduy=0 . (4.72)

This, in turn, says that any one of the intensive quantities (T, p, 1) can be written as a function of the
other two, in the case of a single component system.

®See §2.7.4.
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4.5 Ordinary Canonical Ensemble (OCE)

4.5.1 Canonical distribution and partition function

Consider a system S in contact with a world W, and let their union U = W U S be called the ‘universe’.
The situation is depicted in fig. 4.2. The volume V; and particle number Ny of the system are held
fixed, but the energy is allowed to fluctuate by exchange with the world W. We are interested in the
limit Ny — oo, Ny, — oo, with Ny < Ny, with similar relations holding for the respective volumes and
energies. We now ask what is the probability that S is in a state |n) with energy E,. This is given by
the ratio

Dy (E, — E,) AE

P = 1l
" T Aps0  Dy(E,)AE
. . (4.73)
_ #t of states accessible to W given that Ey = E,
N total # of states in U
Then
InP,=InDy(E,—E,) —InD,/(E,)
Oln Dy (E
WDy (E,) —In Dy (E,) — B, 2P B (4.74)
OE E=E
U
=—-a—pE,
The constant 3 is given by
dln D, (FE) 1
ok B=E, kT
Thus, we find P, = e~ e #Fn. The constant « is fixed by the requirement that YnbP, =1
1 N
— — .—BE, — —BE, _ —-BH
P,=e . Z(T,V,N) = Zn: e =Tre . (4.76)

We've already met Z(3) in eqn. 4.12 — it is the Laplace transform of the density of states. It is also
called the partition function of the system S. Quantum mechanically, we can write the ordinary canonical
density matrix as

e‘ﬁH

. 477
Tr e PH (4.77)

0=
which is known as the Gibbs distribution. Note that [@, H ] = 0, hence the ordinary canonical distribution
is a stationary solution to the evolution equation for the density matrix. Note that the OCE is specified
by three parameters: 7', V, and V.
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4.5.2 The difference between P(FE,) and P,

Let the total energy of the Universe be fixed at E;;. The joint probability density P(FEg, Ey,) for the
system to have energy Eg and the world to have energy E,, is

P(Esv EW) = DS(ES) DW(EW) 5(EU - Es - EW)/DU(EU) ) (4'78)
where
DU(EU) = /dEs DS(ES) DW(EU - Es) ) (4.79)

which ensures that [dEg [dE, P(Eg, Ey) = 1. The probability density P(Eg) is defined such that
P(Ey) dEq is the (differential) probability for the system to have an energy in the range [Eq, Eg + dEj].
The units of P(E) are E~!. To obtain P(E), we simply integrate the joint probability density P(Es, Ey,)
over all possible values of Fy,, obtaining

Ds(Es) DW(EU — Es)

P(Es) = DU(EU) )

(4.80)

as we have in eqn. 4.73. Suppose we wish to know the probability P, that the system is in a particular
state |n) with energy E,. Clearly

P — lim probability that Eg € [E,,E, + AE]  P(E,)AE Dy (E, - E,) (4.81)
" AE—0 # of S states with Eg € [E,,E, + AE]  Dy(E,)AE  Dy(E,) ’ ’

4.5.3 Additional remarks

The formula of eqn. 4.73 is quite general and holds in the case where Ng/Ny, = O(1), so long as we are
in the thermodynamic limit, where the energy associated with the interface between S and W may be
neglected. In this case, however, one is not licensed to perform the subsequent Taylor expansion, and the
distribution P, is no longer of the Gibbs form. It is also valid for quantum systems®, in which case we
interpret P, = (n|og|n) as a diagonal element of the density matrix p;. The density of states functions
may then be replaced by

Ey—E,+AE
Dy (E, — E,) AE — ew(Fu=En, AB) — Tra / dE §(E — Hy,)

EU_En
Ey+AE

Dy(E,)AE — e5v(Fu . AE) = Tra / dE §(E — Hy,)
E

(4.82)

U

The off-diagonal matrix elements of gg are negligible in the thermodynamic limit.

6See T.-C. Lu and T. Grover, arXiv 1709.08784.
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4.5.4 Averages within the OCE

To compute averages within the OCE,
>, (n|An) e=PEn
Y e

where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we
have

(A)=Tr(04) = (4.83)

o(p) = 1 ) , Z=Tr e PH = /d,u e BH(#) , (4.84)

— N

with dp = N, N (ddqj ddpj /h?) for identical particles (‘Maxwell-Boltzmann statistics’). Thus,

[dp A(g) o—BH(p)

A) =Tr(pA) = - 4.85
Ay =Tr (o) = P (4.55)
4.5.5 Entropy and free energy
The Boltzmann entropy is defined by
S=—k,Tr(6np) = —k ZP InP, . (4.86)

The Boltzmann entropy and the statistical entropy S = kyIn D(E) are identical in the thermodynamic
limit. We define the Helmholtz free energy F(T,V,N) as

F(T,V,N)=—k;TInZ(T,V,N) (4.87)
hence P, = e/ ¢7#Fn and In P, = 3F — BE,,. The entropy is then

F  (H)
S =—kg gn P, (5F — 5En) =7 + A (4.88)
which is to say F'= E — TS, where
Tr He PH
E= PE =——— 4.89
2. —T (4.89)
is the average energy. We also see that
N —-BE, B
_ -BH _ -BE, _ 2nEne __ov
Z=Tre P =%"¢ — E= B = 35 InZ= ﬁ(ﬁF) : (4.90)

Thus, F(T,V,N) is a Legendre transform of E(S,V, N), with
dF = —-SdT — pdV + udN (4.91)

oF oF oF
S <0T>VN P <aV>T,N K +<6N>Tv (4.92)

) )

which means
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4.5.6 Fluctuations in the OCE

In the OCE, the energy is not fixed. It therefore fluctuates about its average value £ = (]fl ). Note that

OE s OFE  0*InZ
e =k TP =T
ap oT 0p?
B 2 A £ 2
_ TrH?e PH (T He 81 (4.93)
Tr e—BH Tr e—BH
= (1%) —(H)’
Thus, the heat capacity is related to the fluctuations in the energy, just as we saw at the end of §4.4:
8E 1 Y2 oy 2
Oy = (6_T>VN — s (42) - () (4.94)

For the nonrelativistic ideal gas, we found Cy, = g Nk, hence the ratio of RMS fluctuations in the energy
to the energy itself is

((AH?) R T2C, 2

- = - =1\/— (4.95)
() INk, TV Nd

and the ratio of the RMS fluctuations to the mean value vanishes in the thermodynamic limit.

The full distribution function for the energy is

- r —H)ePH
P(E)=(0(E—-H)) = T 5(_‘; ei; = %D(g) e P (4.96)

Thus,
e BIE-TS(E)]

= fdg/e—ﬁ[é"—TS(é")} )
where S(€) = ky;ln D(E) is the statistical entropy. Let’s write £ = E + 0€, where E extremizes the

combination & — T S(£), i.e. the solution to T'S’(E) = 1, where the energy derivative of S is performed
at fixed volume V' and particle number N. We now expand S(FE + §€) to second order in €, obtaining

P(€) (4.97)

s (68)°
E =S(E)+ — — 4.
S(E+68)=S(FE)+ T 2170, + (4.98)
" — 0 (1y_ __1
Recall that S (E) = 39E (T) TQC—V Thus,
(6€)? 3
E-TSE)=E—-TS(E)+ +O((66)%) . (4.99)
2T C5,
Applying this to both numerator and denominator of eqn. 4.97, we obtain”
(6€)?
P = S S A 4.1
(&) =N exp [ TP, | (4.100)

"In applying eqn. 4.99 to the denominator of eqn. 4.97, we shift £ by E and integrate over the difference 6§’ = &' — E,
retaining terms up to quadratic order in §&’ in the argument of the exponent.
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where N = (21k,T2Cy,)~"/? is a normalization constant which guarantees [d€ P(£) = 1. Once again,

we see that the distribution is a Gaussian centered at (£) = E, and of width (A&)pys = kT2 Cy,.
This is a consequence of the Central Limit Theorem.

4.5.7 Thermodynamics revisited

The average energy within the OCE is

E=)EP, | (4.101)
and therefore
dE =) E,dP,+» P,dE,=dQ—dW |, (4.102)
where
iQ=> E,dp, , dW=-> PB,dE, . (4.103)
Finally, from P, = Z~1 e En/keT  we can write
E,=—k,TInZ —k,TInP, | (4.104)
with which we obtain
Q=Y E,dP,
=k TanZdP k TZlnP dp, (4.105)

:Td( ke, ZP lnP):TdS

Note also that

~> P,dE,
OE,
=-2F ( X, dXi) (4.106)

7

:_ZP n‘aTM ) dX; = ZFdX ,

nz

so the generalized force F; conjugate to the generalized displacement dX; is

Z "aX <g—§> . (4.107)

This is the force acting on the system®. In the chapter on thermodynamics, we defined the generalized

force conjugate to X, as y;, = —F.

811:1 deriving eqn. 4.107, we have used the so-called Feynman-Hellman theorem of quantum mechanics: d<n|f{|n> =
(n| dH |n), if |n) is an energy eigenstate.
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Figure 4.5: Microscopic, statistical interpretation of the First Law of Thermodynamics.

Thus we see from eqn. 4.102 that there are two ways that the average energy can change; these are
depicted in the sketch of fig. 4.5. Starting from a set of energy levels {E, } and probabilities {P,}, we
can shift the energies to {E},}. The resulting change in energy (AE), = —W is identified with the work
done on the system. We could also modify the probabilities to { P} } without changing the energies. The
energy change in this case is the heat absorbed by the system: (AFE),, = Q. This provides us with a
statistical and microscopic interpretation of the First Law of Thermodynamics.

4.5.8 Generalized susceptibilities

Suppose our Hamiltonian is of the form

H=HMN=Hy,—\Q , (4.108)
where )\ is an intensive parameter, such as magnetic field. Then Z(\) = Tr e™# (Hy=2Q) and

% g_i _ 5. %Tr (Qe ") =@ . (4.109)

But then from Z = ¢ #F we have

QNT) =(Q) = - <g—§>T : (4.110)
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Typically we will take @ to be an extensive quantity. We can now define the susceptibility X as

1 0Q 1 0°F
=T T v ow (1D

The volume factor in the denominator ensures that X is intensive.

It is important to realize that we have assumed here that []flo, Q] = 0, i.e. the ‘bare’ Hamiltonian ]fIO

and the operator Q commute. If they do not commute, then the response functions must be computed
within a proper quantum mechanical formalism, which we shall not discuss here.

Note also that we can imagine an entire family of observables {Qk} satisfying [Qk, Qk,] = 0 and
[ﬁo, Qk] =0, for all k¥ and k’. Then for the Hamiltonian

HN) =Hy =Y MQy (4.112)
k
we have that
° A oF
Qe(NT) = (@) =~ <Z?T> (4.113)
kT N Ny,

and we may define an entire matrix of susceptibilities,

10Q, 1 0%F

Vay ~ Vo o (4.114)

X =

4.6 Grand Canonical Ensemble (GCE)

4.6.1 Grand canonical distribution and partition function

Consider once again the situation depicted in fig. 4.2, where a system S is in contact with a world W,
their union U = W U S being called the ‘universe’. We assume that the system’s volume Vj is fixed,
but otherwise it is allowed to exchange energy and particle number with W. Hence, the system’s energy
E and particle number Ny will fluctuate. We ask what is the probability that S is in a state |n) with
energy F, and particle number N,,. This is given by the ratio

P — lim DW(EU_En7NU_Nn)AE
" AE—0 Dy(E,, Ny) AE

# of states accessible to W given that Eg = E,, and Ng = N,,
N total # of states in U

(4.115)
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Then
InP,=mnDy(E, — E,, Ny —N,) —IlnDy(E, Ny)
=InDy(E,,N,) —InD,(E;,Ny)
(4.116)
B Oln Dy (E,N) N OlnDy(E,N) n
n aE E:EU n aN E:EU o
N:NU N:NU
= —a — BE, + BuN,
The constants 8 and p are given by
Oln D, (E,N) 1
— 2 W\l = 4.11
N:N
Oln Dy (E,N)
w=—k;T AN bes, (4.118)
N:NU
The quantity p has dimensions of energy and is called the chemical potential. Nota bene: Some texts
define the ‘grand canonical Hamiltonian’ Kas K=H-— ,uN Thus, P, = e “e™" (En—1Nn) - Once again
the constant « is fixed by the requirement that >, P, = 1:

P_

n —

(] —

2B, V,u) = Ze‘ﬁ(E —HNp) — Ty ¢=BK

(4.119)
Thus, the quantum mechanical grand canonical density matriz is given by

e‘ﬁf{
0= ——— (4.120)
Tr e—BK
Note that [ K ] = 0. The quantity =(7,V, u) is called the grand partition function. It stands in relation
to a corresponding free energy in the usual way:
E(T,V,p) = e~ BATV.p)

—

N=—-kTh= |, (4.121)
where (T, V, i) is the grand potential, also known as the Landau free energy. The dimensionless quantity
z = ePH is called the fugacity.

If [H N ] = 0, the grand potential may be expressed as a sum over contributions from each N sector, viz
E(T,V, ) Z PN 7

Z(T,V,N)

(4.122)
When there is more than one species, we have several chemical potentials {u, }, and accordingly we define

1 _ZNaN

a 9
a
with = = Tr e‘ﬁf{ as before

(4.123)
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4.6.2 Entropy and Gibbs-Duhem relation

In the GCE, the Boltzmann entropy is

S=—ky» P,InP,

= —ky Y P, (B2~ BE, + BuN,) (4.124)
_ 2 H) pl)
T T T ’
which says
Q=E—-TS—uN |, (4.125)
where

E=) E,P,=Tr(¢H)

. (4.126)
N=> N,P,=Tr (¢N)
Therefore, 2(T,V, ) is a double Legendre transform of E(S,V, N), with
d2 =—-SdT —pdV — Ndu (4.127)
which entails
(94 (94 (94
S=_ (3_> o= (8_> ., N=-— <8_> . (4.128)
T )y, oV Jr, o Jry

Since 2(T,V,u) is an extensive quantity, we must be able to write 2 = Vw(T,u). We identify the
function w(T, ) as the negative of the pressure:

@ — B a_E — i % e_B(En_uNn)
v oV )y, EL OV

Therefore, 2 = —pV, and p = p(T, p) is an equation of state. This is consistent with the result from
thermodynamics that G = E — TS + pV = uN. Taking the differential, we recover the Gibbs-Duhem
relation,

7
~

(4.129)

Q| @
28

>T7H = —p(T,p)

d2=-SdT —pdV — Nduy=—-pdV —Vdp = SdT—Vdp+Ndu=0 . (4.130)
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4.6.3 Generalized susceptibilities in the GCE

We can appropriate the results from §4.5.8 and apply them, mutatis mutandis, to the GCE. Suppose we
have a family of observables {Qk} satisfying [Qk , Qk,] =0 and [HO, Qk] =0 and [Na, Qk] = 0 for all
k, k', and a. Then for the grand canonical Hamiltonian

K(X):ﬁo_ZNaNa—Z)\ka ) (4131)
a k
we have that 00
QN T) = (Qy) = — (W (4.132)
kT s At )

and we may define the matrix of generalized susceptibilities,

o109 1 20
MTVooN T VoA 0N

(4.133)

4.6.4 Fluctuations in the GCE

Both energy and particle number fluctuate in the GCE. Let us compute the fluctuations in particle
number. We have

- Tr Ne BH-1N) 1 9
N=(N)= —— =—— InZ 4.134
( > Tr e~ BH—-pN) B 8,& t ( )
Therefore,
1 ON  Tr N2 e AH-uN) Tr N e=BUH-pN) ’
B Ou  TreBH-uN)  \ Ty e BH-uN)
(4.135)
= (V%) — (N’
Note now that . o
N2) —(N
(N?) - g ) _ kT (3_N> _ &L (4.136)
(N) N o Jry Vv
where k. is the isothermal compressibility. Note:
<8_N> _O(N,T,V) __8(N,T,V)
o Jry O, T,V) oV, T, )
1
——
O, T,V) O(N,T,p) O(V,T,p) ON,T,pn) (4.137)

(N, T.p) O(V.T.p) O(N,T,u) O(V,T,p)

_ NPV N
- V2 \dp )y VT
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Thus,
(4.138)
which again scales as V—1/2.

4.6.5 Gibbs ensemble

Let the system’s particle number N be fixed, but let it exchange energy and volume with the world W.
Mutatis mutandis, we have

Dy (B, —E, .V, ~V,) AEAV

P =1l li 4.1
= A0 M T DB, Vo) AEAV (4.139)
Then
ImP,=InDy(E, —E,,V,—V,)—InDy(E,, V)
=InDy(Ey, Vy) —InDy(Ey, Vy)
(4.140)
B oln D, (E, V) v OlnD(E,V) n
n 8E E:EU n 8V E:EU h
V=g v=vy
The constants 5 and p are given by
Oln D, (E,V) 1
_ = 4.141
B aE E:EU kBT ( )
V:VU
B oln D, (E,V)
p=k,T oV |ees, (4.142)
V=vy
The corresponding partition function is
~ 1 i
Y(T,p,N) = Tr ¢ BU+PV) — - / AV e PPV Z(T,V,N) = ¢ BC¢TPN) (4.143)
0

0

where V}; is a constant which has dimensions of volume. The factor VO_1 in front of the integral renders
Y dimensionless. Note that G(Vy) = G(V;) + kT In(Vy/ V), so the difference is not extensive and can
be neglected in the thermodynamic limit. In other words, it doesn’t matter what constant we choose for
V, since it contributes subextensively to G. Moreover, in computing averages, the constant V|, divides
out in the ratio of numerator and denominator. Like the Helmholtz free energy, the Gibbs free energy
G(T,p,N) is also a double Legendre transform of the energy E(S,V, N), viz.

G=FE-TS+pV

(4.144)
dG = —SdT + Vdp + pdN
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which entails
oG oG oG
aT p,N 8p T7N aN T,p

4.7 Statistical Ensembles from Maximum Entropy

The basic principle: maximize the entropy,

S=-ky» P,InP,

4.7.1 uCE

We maximize S subject to the single constraint
C=> P,—1=0
n
We implement the constraint C' = 0 with a Lagrange multiplier, A = kg A, writing
S*=8—k; C
and freely extremizing over the distribution {P,} and the Lagrange multiplier A. Thus,

3S* = 65 — kyAdC — k, C oA
— kY [1nPn+1+A}5Pn k,CA=0

We conclude that C' = 0 and that
InP, = —(1 + )\) ,

and we fix A by the normalization condition ) P, = 1. This gives P, = 1/, with

Q=) O(E+AE-E,)O(E,-E) ,
i.e. the total number of energy states lying in the interval [E, E + AFE].

4.7.2 OCE

We maximize S subject to the two constraints

C,=» P,-1=0 , Cy=>» E,B,-E=0
n n

187

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

(4.150)

(4.151)

(4.152)
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We now have two Lagrange multipliers. We write
2
S =8—ky> NCj o,
j=1
and we freely extremize over {P,} and {C;}. We therefore have

2
05" =68 —ky > (M + M E,) 0P, —ky > C; ),

Jj=1

2
S [lnPn+1—|—/\1+/\2En}5Pn—szz:10j5/\j —0
n 1=

Thus, C; = C, =0 and
InP,=—(1+X\+X\E,)

We define A\, = 3 and we fix A; by normalization. This yields

1 s
Pn:Ee_ﬁE" , Z:Ze_BE":Tr e PH
n

4.7.3 GCE

We maximize S subject to the three constraints
C;=>» PB,-1=0 , Cy=» E,B,-E=0 , C3=» N,P,-N=0
We now have three Lagrange multipliers. We write
3
S =8~k > NCj o,
j=1
and hence

3
05" =068 —ky Y (A +AE, + A N,) 6P, — ky ¥ C;0),
n 7=1

3
= {lnPnJrlJr)\l+)\2En+)\3Nn]6Pn—kBZ;Cj5)\jEO
n 1=

Thus, €} = Cy = C3 =0 and
We define A\, = 8 and A3 = —fu, and we fix A\; by normalization. This yields

Pn — é e_ﬁ(En_iu‘Nn) = = Z E_B(En_/J'Nn) = Tr E_B(IA{_:U'N)
n

—
—

(4.153)

(4.154)

(4.155)

(4.156)

(4.157)

(4.158)

(4.159)

(4.160)

(4.161)
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4.8 Ideal Gas Statistical Mechanics

The ordinary canonical partition function for the ideal gas was computed in eqn. 4.14. We found

Z(T,V,N) = 'H/d””ddp 02 fom
N

27h)d
Nd N (4.162)
N
vy /d_p o) _L(V
N! 2wh NN ’
where A\, is the thermal wavelength:
Ap =/ 21h? /mk,T . (4.163)

The physical interpretation of A, is that it is the de Broglie wavelength for a particle of mass m which
has a kinetic energy of k;T.

In the GCE, we have

E(T,V, ) = Zeﬁ“N (T,V,N)

4.164
> (Veu/kBij (Veu/kBT> o
= ————— | =exp| ——
= N! )\dT /\flp
From = = e /%87 we have the grand potential is
AT, V,p) = —VE,Tet*sT /x4 (4.165)
Since 2 = —pV (see §4.6.2), we have
p(T, 1) = kT A et/ P (4.166)
The number density can also be calculated:
N n
noN_ 170 _ Al enlhsT (4.167)
4 En TV

Combined, the last two equations recapitulate the ideal gas law, pV = Nk,T.

4.8.1 Maxwell velocity distribution

The distribution function for momenta is given by

1 N
- <N > dmi-p) - (4.168)
i=1
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Figure 4.6: Maxwell distribution of speeds ¢(v/vg). The most probable speed is vyax = V2 vg. The
average speed is vyyg = \/g vo. The RMS speed is vpus = V3 0.

Note that g(p) = <5(pl- - p)> is the same for every particle, independent of its label .. We compute the
average (A) = Tr (Ae™PH)/Tr e PH. Setting i = 1, all the integrals other than that over p; divide out
between numerator and denominator. We then have
_ [d%, 6(p, — p) e Ppi/2m

[d3p, e~Bpi/2m (4.169)
= (2rmk,T)3/? e~ Pp*/2m

9(p)

Textbooks commonly refer to the velocity distribution f(v), which is related to g(p) by

fv)d =g(p)d’ . (4.170)
Hence,
m \? v2 )2k, T
flv) = <27rkBT> e BY (4.171)

This is known as the Mazwell velocity distribution. Note that the distributions are normalized, viz.

/ & g(p) = / & fo) =1 . (4.172)

If we are only interested in averaging functions of v = |v| which are isotropic, then we can define the
Mazwell speed distribution, f(v), as

B 3/2
f(v) = 4w v?f(v) = 4«(27:: T> v2 e~ 0?2k T (4.173)
B
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~ S8 ~
Note that f(v) is normalized according to [dv f(v) = 1. It is convenient to represent v in units of

0
vy = \/kzT/m, in which case
; 1 2 2 —s2/2
f(’U) v SD(U/UO) ) 90(8) \/;S € ( 7 )

The distribution ¢(s) is shown in fig. 4.6. Computing averages, we have

I 2

/dss p(s) =22 1 (3+5) | (4.175)
m

0 \/_

Thus, Cy =1, C| = %, C, = 3, etc. The speed averages are

i (4.176)

()=

Note that the average welocity is (v) = 0, but the average speed is = /8k,T/mm. The speed
distribution is plotted in fig. 4.6.

4.8.2 Equipartition

The Hamiltonian for ballistic (i.e. massive nonrelativistic) particles is quadratic in the individual com-
ponents of each momentum p,. There are other cases in which a classical degree of freedom appears
quadratically in H as well. For example, an individual normal mode £ of a system of coupled oscillators
has the Lagrangian

= %52 — %w% & (4.177)
where the dimensions of £ are [{] = M /2, by convention. The Hamiltonian for this normal mode is then

2
= % +1a3e? (4.178)
from which we see that both the kinetic as well as potential energy terms enter quadratically into the
Hamiltonian. The classical rotational kinetic energy is also quadratic in the angular momentum compo-
nents.

Let us compute the contribution of a single quadratic degree of freedom in H to the partition function.
We'll call this degree of freedom ¢ — it may be a position or momentum or angular momentum — and
we’ll write its contribution to H as H 1K (2, where K is some constant. Integrating over ¢ yields the
following factor in the partition functlon

/ d¢ e PKE2 _ <2” >1/2 _ (4.179)
Kp
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The contribution to the Helmholtz free energy is then

AF; = %kBT1n< ) : (4.180)

2wk T
and therefore the contribution to the internal energy F is

%(5 AF) = % — kT (4.181)

We have thus derived what is commonly called the equipartition theorem of classical statistical mechanics:

To each degree of freedom which enters the Hamiltonian quadratically is associated a contri-
bution %k‘BT to the internal energy of the system. This results in a concomitant contribution
of %kB to the heat capacity.

We now see why the internal energy of a classical ideal gas with f degrees of freedom per molecule
is B = % fNEST, and C\, = %N kg. This result also has applications in the theory of solids. The
atoms in a solid possess kinetic energy due to their motion, and potential energy due to the spring-like
interatomic potentials which tend to keep the atoms in their preferred crystalline positions. Thus, for a
three-dimensional crystal, there are siz quadratic degrees of freedom (three positions and three momenta)
per atom, and the classical energy should be F = 3Nk,T, and the heat capacity C}, = 3Nk;. As we
shall see, quantum mechanics modifies this result considerably at temperatures below the highest normal
mode (i.e. phonon) frequency, but the high temperature limit is given by the classical value C|, = 3vR
(where v = N/N, is the number of moles) derived here, known as the Dulong-Petit limit.

4.9 Selected Examples

4.9.1 Spins in an external magnetic field

Consider a system of N, spins , each of which can be either up (¢ = +1) or down (¢ = —1). The
Hamiltonian for this system is

NS
H=—pH> o0; | (4.182)
j=1

where now we write H for the Hamiltonian, to distinguish it from the external magnetic field H, and g,
is the magnetic moment per particle. We treat this system within the ordinary canonical ensemble. The

partition function is )
7 = Z o Ze—ﬁH =¢Ns (4.183)
0'1 O'NS

where ( is the single particle partition function:

H
(= Z etoto/kgT — 2cosh<'20T> . (4.184)
o==+1

B
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The Helmholtz free energy is then

F(T,H,N,) = —k,TInZ = —N, k,TIn 2(:osh<'l]:0]; >] . (4.185)
B
The magnetization is
oF poH
M=—|—— = N, pg tanh . 4.1
(81 ), = et (27 ) (159
The energy is
0 o
E=— (BF)=—N,uyH tanh . 4.187
85 (5 ) s Ho an <k3T> ( )

Hence, E = —H M, which we already knew, from the form of H itself.
Each spin here is independent. The probability that a given spin has polarization o is

EBNOHJ

Py = o ¢ oiE (4.188)

The total probability is unity, i.e. P+ P =1, and the average polarization is a weighted average of
0 = +1 and ¢ = —1 contributions:

_ _ to
(o) =P, — P = tanh< kBT> . (4.189)

At low temperatures T' < pgH/ky, we have Po~1- e~ 20H/ksT At high temperatures T > poH kg,

the two polarizations are equally likely, and P, ~ %(1 + Uk?f ) .

The isothermal magnetic susceptibility is defined as

1 [OM ué of HoH
_ _ M o2 o) 4.1
=N ( oH )T kT o\ kT (4.190)

(Typically this is computed per unit volume rather than per particle.) At H = 0, we have X, = ,ug Jk,T,
which is known as the Curie law.

Aside

The energy £ = —HM here is not the same quantity we discussed in our study of thermodynamics.
In fact, the thermodynamic energy for this problem vanishes! Here is why. To avoid confusion, we’ll
need to invoke a new symbol for the thermodynamic energy, £. Recall that the thermodynamic energy
£ is a function of extensive quantities, meaning & = £(S, M, N,). It is obtained from the free energy
F(T,H, N,) by a double Legendre transform:

E(S,M,N,)=F(T,H,N,)+TS+HM . (4.191)
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Figure 4.7: When entropy decreases with increasing energy, the temperature is negative. Typically,
kinetic degrees of freedom prevent this peculiarity from manifesting in physical systems.

Now from eqn. 4.185 we derive the entropy

S = or = N kg In [2cosh<'u0H>

- aT ke, T

H H
— N, Ho tanh<“0 > . (4.192)

Thus, using eqns. 4.185 and 4.186, we obtain £(S, M, N,) = 0.

The potential confusion here arises from our use of the expression F(T, H, N;). In thermodynamics, it is
the Gibbs free energy G(T,p, N) which is a double Legendre transform of the energy: G = & — TS + pV.
By analogy, with magnetic systems we should perhaps write G = & — T'S — HM, but in keeping with
many textbooks we shall use the symbol F' and refer to it as the Helmholtz free energy. The quantity
we've called F in eqn. 4.187 is in fact F = £ — HM, which means £ = 0. The energy £(S, M, N,) vanishes
here because the spins are noninteracting.

4.9.2 Negative temperature (!)

Consider again a system of N spins, each of which can be either up (4) or down (—). Let N, be the
number of sites with spin o, where o = £1. Clearly N, + N_ = N;. We now treat this system within
the microcanonical ensemble.

The energy of the system is £ = —H M, where H is an external magnetic field, and M = (N, — N_) g
is the total magnetization. We now compute S(E) using the ordinary canonical ensemble. The number
of ways of arranging the system with N, up spins is

0= <]]VV+> , (4.193)
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hence the entropy is
S=k;InQ=—-N, k:B{:Eln:E—I—(l —z)In(1 —3:)} (4.194)

in the thermodynamic limit: Ny — oo, N, — oo, x = N, /N, constant. Now the magnetization is
M = (N, — N_)ug = (2N, — Ny) g, hence if we define the maximum energy Eq, = N pigH, then

FE M E,—F
- __ —1-9 = =0 4.1
E Ny o ! - ’ 2E, (4195)
We therefore have
E,—F E,—F E,+ FE E,+ F
S(E,N,) = —N._k 0 1 0 0 1 0 4.196
(B, N;) SB<2EO>H< 2E0>+<2E0 "\ 2R, (4.196)
We now have Y 95 8 Nk
L_(03) _050x  Neky, (Eo—EN (4.197)
T \0E)y 0z 0E 2B, \E,+E

We see that the temperature is positive for —F; < E < 0 and is negative for 0 < E < F,.

What has gone wrong? The answer is that nothing has gone wrong — all our calculations are perfectly
correct. This system does exhibit the possibility of negative temperature. It is, however, unphysical in
that we have neglected kinetic degrees of freedom, which result in an entropy function S(E, N;) which
is an increasing function of energy. In this system, S(E, N;) achieves a maximum of S, = N, k;In2
at £ =0 (i.e. ¢ = %), and then turns over and starts decreasing. In fact, our results are completely
consistent with eqn. 4.187 : the energy FE is an odd function of temperature. Positive energy requires

negative temperature! Another example of this peculiarity is provided in the appendix in §4.11.2.

4.9.3 Adsorption

PROBLEM: A surface containing N, adsorption sites is in equilibrium with a monatomic ideal gas. Atoms
adsorbed on the surface have an energy —A and no kinetic energy. Each adsorption site can accommodate
at most one atom. Calculate the fraction f of occupied adsorption sites as a function of the gas density
n, the temperature T, the binding energy A, and physical constants.

The grand partition function for the surface is

N, N
E ¢ — e_qurf/kBT — < S> ej(“+A)/kBT
sur .
=0 \J (4.198)
_ (1 + eM/ksT eA/kBT)Ns
The fraction of occupied sites is
Fo Nowrt) _ 1 0 _ eh/teT (4.199)

Since the surface is in equilibrium with the gas, its fugacity z = exp(u/k;T") and temperature 7" are the
same as in the gas.
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A B A B B AAA B AA

Figure 4.8: The monomers in wool are modeled as existing in one of two states. The low energy unde-
formed state is A, and the higher energy deformed state is B. Applying tension induces more monomers
to enter the B state.

SOLUTION: For a monatomic ideal gas, the single particle partition function is { = V)\:;?’, where A\, =
\/2mh?/mk,T is the thermal wavelength. Thus, the grand partition function, for indistinguishable par-
ticles, is

Egas = €XP (V)\:;?’ e“/kBT> . (4.200)
The gas density is
(Ngss) 1 0%

- - = A73 et/ksT 4.201

n Vv VvV 9 u T € ( )

We can now solve for the fugacity: z = e#/ksT = n/\g’p. Thus, the fraction of occupied adsorption sites is
)\3

f= ey . (4.202)

B nA3, + e~ A/ksT
Interestingly, the solution for f involves the constant A.

It is always advisable to check that the solution makes sense in various limits. First of all, if the gas
density tends to zero at fixed T and A, we have f — 0. On the other hand, if n — oo we have f — 1,
which also makes sense. At fixed n and T, if the adsorption energy is (—A) — —oo, then once again
f = 1 since every adsorption site wants to be occupied. Conversely, taking (—A) — +oo results in n — 0,
since the energetic cost of adsorption is infinitely high.

4.9.4 Elasticity of wool

Wool consists of interlocking protein molecules which can stretch into an elongated configuration, but
reversibly so. This feature gives wool its very useful elasticity. Let us model a chain of these proteins
by assuming they can exist in one of two states, which we will call A and B, with energies €, and ¢,
and lengths ¢, and /. The situation is depicted in fig. 4.8. We model these conformational degrees of
freedom by a spin variable o = 41 for each molecule, where 0 = +1 in the A state and 0 = —1 in the B
state. Suppose a chain consisting of N monomers is placed under a tension 7. We then have
N
EDY [gA s i1+ 5%_,_1] . (4.203)

<
[y

Similarly, the length is

~
Il

<
Il
-

[eA 05 1+ 5%_1} . (4.204)
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Figure 4.9: Upper panel: length L(7,T) for kg7 /é = 0.01 (blue), 0.1 (green), 0.5 (dark red), and 1.0
(red). Bottom panel: dimensionless force constant k/N(Af)? versus temperature.

The Gibbs partition function is Y = Tr K/ keT | with K=H-+L:
N
K= Z [5A O, 41+ €50 1] (4.205)

Jj=1

where €, =¢, —7(, and €; = 5 — 7{;. At 7 = 0 the A state is preferred for each monomer, but when
T exceeds 7%, defined by the relation €, = €5, the B state is preferred. One finds

* €B _ €A
= 4.2
T A (4.206)

Once again, we have a set of N noninteracting spins. The partition function is Y = ¢ N where ( is the
single monomer partition function, ¢ = Tr e~?", where

h=2,08, 1+ &0

O'j,—l (4207)
is the single “spin” Hamiltonian. Thus,

¢=Tr e Bl = ¢=PEn 4 oPen , (4.208)
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It is convenient to define the differences
Ne=¢ez—¢e, , AM=ly—1l, , Aé=¢,—-¢, (4.209)

in which case the partition function Y is

- AN
Y(T,7,N) = e~ NBéa [1 n e—ﬁﬁe] (4.210)
G(T,7,N) = N&, — Nk, Tl [1 + e—Af/’fBT} (4.211)
The average length is
T/TN NA/ (4.212)
= N¢, +

e(As—TAZ)/kBT +1

The polymer behaves as a spring, and for small 7 the spring constant is

_ Ak,T of Ae
= N(Al? cosh <2kBT> . (4.213)

or

k:a—L

7=0

The results are shown in fig. 4.9. Note that length increases with temperature for 7 < 7* and decreases
with temperature for 7 > 7*. Note also that k diverges at both low and high temperatures. At low T, the
energy gap Ae dominates and L = N/, , while at high temperatures k,7 dominates and L = %N (0, +1y).

4.9.5 Noninteracting spin dimers

Consider a system of noninteracting spin dimers as depicted in fig. 4.10. Each dimer contains two spins,
and is described by the Hamiltonian

Hyiper = —J 0105 — p1gH (07 + 05) . (4.214)

Here, J is an interaction energy between the spins which comprise the dimer. If J > 0 the interaction is
ferromagnetic, which prefers that the spins are aligned. That is, the lowest energy states are |11) and
|4). If J < 0 the interaction is antiferromagnetic, which prefers that spins be anti-aligned: |1 ) and
[41).7

Suppose there are N, dimers. Then the OCE partition function is Z = ¢Na, where ((T, H) is the single
dimer partition function. To obtain ((T, H), we sum over the four possible states of the two spins,
obtaining

C = TI' e_Hdimcr/kBT

= 2¢ J/ksT + 2 e?/*8T cosh M
kT

9Nota bene we are concerned with classical spin configurations only — there is no superposition of states allowed in this
model!



4.9. SELECTED EXAMPLES 199

Figure 4.10: A model of noninteracting spin dimers on a lattice. Each red dot represents a classical spin
for which o; = £1.

Thus, the free energy is

F(T,H,N;) = —N;k,TIn2 — Nyk,TIn (4.215)

2ugH
e~ /ksT 4 ed/ksT cosh <—1230T )

The magnetization is

J/ksT ginh ( 2o
F e B~ SIn <k T
T,N,

) (4.216)

— 2u0 H
e J/kBT—Fe‘]/kBTcosh( :°T>
B

oH

It is instructive to consider the zero field isothermal susceptibility per spin,

1 M 2 ) J/kgT
PR N i . (4.217)
ON, OH |,y kgD ekl 1 o I/kgT

The quantity u% /k,T is simply the Curie susceptibility for noninteracting classical spins. Note that we
correctly recover the Curie result when J = 0, since then the individual spins comprising each dimer are
in fact noninteracting. For the ferromagnetic case, if J > kT, then we obtain

2413
kT
This has the following simple interpretation. When J > k,T', the spins of each dimer are effectively
locked in parallel. Thus, each dimer has an effective magnetic moment g = 2p4. On the other hand,
there are only half as many dimers as there are spins, so the resulting Curie susceptibility per spin is

% X (210)? /K T

When —J > kT, the spins of each dimer are effectively locked in one of the two antiparallel configura-
tions. We then have

XT(J > kBT) ~

(4.218)

2 2
Xp(—J > kyT) o KO o=21/ksT (4.219)
kT
In this case, the individual dimers have essentially zero magnetic moment.
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4.10 Statistical Mechanics of Molecular Gases

4.10.1 Separation of translational and internal degrees of freedom

The states of a noninteracting atom or molecule are labeled by its total momentum p and its internal
quantum numbers, which we will simply write with a collective index «, specifying rotational, vibrational,
and electronic degrees of freedom. The single particle Hamiltonian is then

~ p ~
h==—+h. 4.220
2@m + int > ( )
with
- h?k?
h|k,a>:<2m +aa>\k,a> : (4.221)
The partition function is A
(=Tre = Z e~ PP*/2m Zgj e P (4.222)
P J

Here we have replaced the internal label o with a label j of energy eigenvalues, with g; being the
degeneracy of the internal state with energy €;. To do the p sum, we quantize in a box of dimensions
Ly x Ly x ---x Ly, using periodic boundary conditions. Then

(4.223)

2whn,;  2mhng 2mhn,
Ll ) L2 9ttt Ld )

where each n, is an integer. Since the differences between neighboring quantized p vectors are very tiny,
we can replace the sum over p by an integral:

d’p
Zp: . / R (4.224)

where the volume in momentum space of an elementary rectangle is

orh)d orh)
Apl...Apd:L(lm)L _ v) , (4.225)
d

Thus,
¢ = V/ dp o—P?/2mkyT Zg, e—ci/ksT _ V)\;dg (4.226)
= d ¥ - '
(2mh) 7
f(T) _ Z 9; e—ej/kBT ) (4227)
J

Here, £(T) is the internal coordinate partition function. The full N-particle ordinary canonical partition
function is then

N
Zy = % <%> Ny . (4.228)
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Using Stirling’s approximation, we find the Helmholtz free energy F' = —k,T'In Z is

F(T,V,N) = —Nk,T

ln<%> +1+Ing(T)

d
T
1%
In(— )41
n<N>\dT> *

o(T) = —k,TIn&(T) (4.230)

is the internal coordinate contribution to the single particle free energy. We could also compute the
partition function in the Gibbs (T, p, N) ensemble:

(4.229)
= —Nk,T + No(T)

9

where

1 o0
Y(T,p,N) = e PETPN) = - / dv e PV Z(T,V, N)
0
0

(4.231)
kTN (kT
-G ) Gig) €
PV PAT
Thus, in the thermodynamic limit,
G(T,p,N M
u(T,p) = & ]\1; ) _kBTln<Z 1{“) — k,TIn&(T)
v (4.232)
PAT

4.10.2 Ideal gas law

Since the internal coordinate contribution to the free energy is volume-independent, we have

v <%> _ NkT (4.233)
Op TN p

and the ideal gas law applies. The entropy is

oG kT
S:—(—) = Nk 1n<B—>+1+ld

—~ N(T) 4.234
v @' (T) (4.234)
and therefore the heat capacity is
oS 1 "
C,=T|(— = (3d+ 1)Nky — NT ¢"(T) (4.235)
P or), y
Cy =T\ = 5dNky — NT ¢"(T) (4.236)
or )y

Thus, any temperature variation in C,, must be due to the internal degrees of freedom



202 CHAPTER 4. STATISTICAL ENSEMBLES

4.10.3 The internal coordinate partition function

At energy scales of interest we can separate the internal degrees of freedom into distinct classes, writing

hint = hrot + hvib + heloc (4237)

as a sum over internal Hamiltonians governing rotational, vibrational, and electronic degrees of freedom.
Then

Sint = grot ’ gvib ’ geloc : (4238)

Associated with each class of excitation is a characteristic temperature ©. Rotational and vibrational
temperatures of a few common molecules are listed in table tab. 4.1.

4.10.4 Rotations

Consider a class of molecules which can be approximated as an axisymmetric top. The rotational Hamil-
tonian is then
LI+ N L
rot 21, 21,
R?L(L + 1 1 1

o, o, a1 )t

(4.239)

where n,, }, .(t) are the principal axes, with i, the symmetry axis, and L, }, . are the components of the
angular momentum vector L about these instantaneous body-fixed principal axes. The components of L
along space-fized axes {z,y,z} are written as L*¥*. Note that

[LF, L) =nZ [L*, L] + [L*, nf] LY = ic,,\nf L* +ic,,\ng LY =0, (4.240)

which is equivalent to the statement that L. = n-L is a rotational scalar. We can therefore simultaneously
specify the eigenvalues of {L?, L7 L_}, which form a complete set of commuting observables (CSCO)™.
The eigenvalues of L* are mh with m € {—L,...,L}, while those of L. are kh with k € {—L,...,L}.
There is a (2L + 1)-fold degeneracy associated with the L* quantum number.

We assume the molecule is prolate, so that I; < I;. We can the define two temperature scales,

h? ~ h?

0= o0k, 0= 21k,

(4.241)

Prolateness then means © > ©. We conclude that the rotational partition function for an axisymmetric
molecule is given by

o L _
Eot(T) = D (2L + 1) e LEADO/T N7 =k (6-6)/T (4.242)
L=0 k=—L

ONote that while we cannot simultaneously specify the eigenvalues of two components of L along axes fixed in space,
we can simultaneously specify the components of L along one axis fixed in space and one axis rotating with a body. See
Landau and Lifshitz, Quantum Mechanics, §103.
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| molecule | O,0:(K) ‘ O, (K) |
, 854 6100
Ny 2.86 3340
H,O 13.7 ,21.0, 39.4 | 2290 , 5180 , 5400

Table 4.1: Some rotational and vibrational temperatures of common molecules.

In diatomic molecules, I is extremely small, and o> kgT at all relevant temperatures. Only the k =0
term contributes to the partition sum, and we have

o0

§ot(T) =D (2L + 1) HEADOMT (4.243)
L=0
When T' < O, only the first few terms contribute, and
Eet(T) =143e720/T 4 50760/T 1 (4.244)

In the high temperature limit, we have a slowly varying summand. The Fuler-MacLaurin summation
formula may be used to evaluate such a series:

ZFk = /dkF k) + 2[F(0 |+ Z [ F=D () — FE=D(0) (4.245)
j:l
where B; is the j* b Bernoulli number where
Thus,
o o0 1
Z /dwF x) + 1F(0) — 5 F'(0) — 0 F"(0)+... . (4.247)
0

We have F(z) = (22 + 1) e *(@+DO/T for which [dx F(z) = L, hence
0

2
£mt:g §+1—ég+%<g>+... . (4.248)
Recall that ¢(T) = —k,TIn&(T). We conclude that ¢, (T) ~ —3k,T e 29/T for T < O and ¢, (T) ~
—kzT'In(T/O) for T > O. We have seen that the internal coordinate contribution to the heat capacity
is ACy, = —NT¢"(T). For diatomic molecules, then, this contribution is exponentially suppressed for
T < ©, while for high temperatures we have AC,, = Nk;. One says that the rotational excitations are
‘frozen out’ at temperatures much below @. Including the first few terms, we have

2
ACy (T < ©) =12Nk, (g) e 20T 4 (4.249)

1 /0 16 [0V
ACV(T>>@)—NI<:B{1+4—5<—>+%<?>+...} : (4.250)
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Note that Cf, overshoots its limiting value of Nk, and asymptotically approaches it from above.

Special care must be taken in the case of homonuclear diatomic molecules, for then only even or odd L
states are allowed, depending on the total nuclear spin. This is discussed below in §4.10.7.
For polyatomic molecules, the moments of inertia generally are large enough that the molecule’s rotations
can be considered classically. We then have
L2 L2 L2
Lo LpsLe) = =2 + 2 4 < 4.251

We then have

1 /dLa dlydlodpdody o 1,1 /m,T (4.252)

grot (T) = % (27Th)3

where (¢,01) are the Euler angles. Recall ¢ € [0,27], § € [0,7], and ¢ € [0,27]. The factor g,
accounts for physically indistinguishable orientations of the molecule brought about by rotations, which
can happen when more than one of the nuclei is the same. We then have

2%k, T\*/

This leads to ACY, = %N kg.

4.10.5 Vibrations

Vibrational frequencies are often given in units of inverse wavelength, such as cm™!, called a wavenumber.
To convert to a temperature scale 7%, we write k,T* = hv = he/\, hence T* = (hc/ky) A7, and we

multiply by )
k—c = 1.436K -cm . (4.254)

B
For example, infrared absorption (~ 50 cm™! to 10* cm™!) reveals that the ‘asymmetric stretch’ mode of
the H,O molecule has a vibrational frequency of v = 3756 cm~!. The corresponding temperature scale is
T = 5394 K.

Vibrations are normal modes of oscillations. A single normal mode Hamiltonian is of the form

2
2 p
b= 2 b (et }) (4259)
In general there are many vibrational modes, hence many normal mode frequencies w,. We then must
sum over all of them, resulting in
Ean = [ €45 (4.256)
(0%

For each such normal mode, the contribution is

€= i o~ (T 3)w/kpT _ —hw/2kyT i <€_h’w/kBT>n
n=0 n—0

(4.257)
o—lw/2kg T 1

T 1— e /ksT T 25inh(6)2T)
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where © = hw/k,. Then

o =k,T1In <2 sinh(@/ZT))

(4.258)
= 1kyO + kyTln (1 — e_@/T)
The contribution to the heat capacity is
0\? e®/T
5 (4.259)
| Nkg(O/T)* exp(-0/T) (T —0)
| Nk, (T — o)

4.10.6 Two-level systems : Schottky anomaly

Consider now a two-level system, with energies ¢, and €;. We define A = ¢; — ¢, and assume without
loss of generality that A > 0. The partition function is

(=e 0 pe o =P (1+ e_BA) . (4.260)

The free energy is
f=—k,TIn¢ =¢ey— k,Tln (1 +e &/kT) (4.261)
The entropy for a given two level system is then

af A 1

— _ —A/kRT
S——a—T—kBln(1+€ /B)—F?‘m (4262)
and the heat capacity is = T (9s/9T), i.e.
A2 eA/kBT
c(T) = . 4.263
@) kT2 (eA/ksT 1)2 ( )
Thus,
A* AT
c(T<KA)=—e 2/ (4.264)
kT2
A2
B

We find that ¢(7T") has a characteristic peak at T* ~ 0.42 A/k,. The heat capacity vanishes in both the
low temperature and high temperature limits. At low temperatures, the gap to the excited state is much
greater than ky7', and it is not possible to populate it and store energy. At high temperatures, both
ground state and excited state are equally populated, and once again there is no way to store energy.
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Figure 4.11: Heat capacity per molecule as a function of temperature for (a) heteronuclear diatomic
gases, (b) a single vibrational mode, and (c) a single two-level system.

If we have a distribution of independent two-level systems, the heat capacity of such a system is a sum
over the individual Schottky functions:

C(T) =) &(A;/ksT) =N / dAP(A)E(A/T) (4.266)
0

%

where N is the number of two level systems, ¢(x) = k; 2% €% /(e* +1)2, and where P(A) is the normalized
distribution function, which satisfies the normalization condition

/dA P(A) =1 . (4.267)
0

N is the total number of two level systems. If P(A) o< A" for A — 0, then the low temperature heat
capacity behaves as C(T) oc T'". Many amorphous or glassy systems contain such a distribution of two
level systems, with r ~ 0 for glasses, leading to a linear low-temperature heat capacity. The origin of
these two-level systems is not always so clear but is generally believed to be associated with local atomic
configurations for which there are two low-lying states which are close in energy. The paradigmatic
example is the mixed crystalline solid (KBr),_,(KCN), which over the range 0.1 Lz <0.6 forms an
‘orientational glass’ at low temperatures. The two level systems are associated with different orientation

of the cyanide (CN) dipoles.

4.10.7 Electronic and nuclear excitations

For a monatomic gas, the internal coordinate partition function arises due to electronic and nuclear
degrees of freedom. Let’s first consider the electronic degrees of freedom. We assume that k;7T is small
compared with energy differences between successive electronic shells. The atomic ground state is then
computed by filling up the hydrogenic orbitals until all the electrons are used up. If the atomic number
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is a ‘magic number’ (A = 2 (He), 10 (Ne), 18 (Ar), 36 (Kr), 54 (Xe), etc.) then the atom has all shells
filled and L = 0 and S = 0. Otherwise the last shell is partially filled and one or both of L and S will be
nonzero. The atomic ground state configuration 2/+1L g is then determined by Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest L has
the lowest energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J = |L — S|. If
the shell is more than half-filled, then J = L + S.

The last of Hund’s rules distinguishes between the (254 1)(2L + 1) states which result upon fixing S and
L as per rules #1 and #2. It arises due to the atomic spin-orbit coupling, whose effective Hamiltonian
may be written H = AL - S, where A is the Russell-Saunders coupling. If the last shell is less than or
equal to half-filled, then A > 0 and the ground state has J = |L — S|. If the last shell is more than
half-filled, the coupling is inverted, i.e. A < 0, and the ground state has J = L + 5.

The electronic contribution to £ is then

L+S
Coec = Y, (2T +1) e BeLSD kT (4.268)
J=|L—8|
where
Ae(L, S, J) = 14 [J(J +1) —L(L+1)—8(S+1)] . (4.269)

At high temperatures, k;7 is larger than the energy difference between the different J multiplets, and we
have €. ~ (2L+1)(2S+1) e P, where ¢ is the ground state energy. At low temperatures, a particular
value of .J is selected — that determined by Hund’s third rule — and we have & . ~ (2J + 1) e P%0. If, in
addition, there is a nonzero nuclear spin I, then we also must include a factor &, = (21 + 1), neglecting
the small hyperfine splittings due to the coupling of nuclear and electronic angular momenta.

For heteronuclear diatomic molecules, i.e. molecules composed from two different atomic nuclei, the
internal partition function simply receives a factor of &, - ér(&l)c : 551%1).3, where the first term is a sum over
molecular electronic states, and the second two terms arise from the spin degeneracies of the two nuclei.
For homonuclear diatomic molecules, the exchange of nuclear centers is a symmetry operation, and does
not represent a distinct quantum state. To correctly count the electronic states, we first assume that the
total electronic spin is S = 0. This is generally a very safe assumption. Exchange symmetry now puts
restrictions on the possible values of the molecular angular momentum L, depending on the total nuclear
angular momentum I, ;. If I, is even, then the molecular angular momentum L must also be even.
If the total nuclear angular momentum is odd, then L must be odd. This is so because the molecular
ground state configuration is 12;.12

1Gee e.g. §72 of Landau and Lifshitz, Quantum Mechanics, which, in my humble estimation, is the greatest physics book
ever written.
128ee Landau and Lifshitz, Quantum Mechanics, §86.
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L2 [ 9 | o |
odd I(2I+1) (I+1)(2I+1)
even | (I +1)(2I +1) I(2I +1)

Table 4.2: Number of even (g,) and odd (g,) total nuclear angular momentum states for a homonuclear
diatomic molecule. I is the ground state nuclear spin.

The total number of nuclear states for the molecule is (21 + 1)?, of which some are even under nuclear
exchange, and some are odd. The number of even states, corresponding to even total nuclear angular
momentum is written as g,, where the subscript conventionally stands for the (mercifully short) German
word gerade, meaning ‘even’. The number of odd (Ger. ungerade) states is written g,. Table 4.2 gives
the values of g, ,, corresponding to half-odd-integer I and integer I.

The final answer for the rotational component of the internal molecular partition function is then

Erot (T) =44 Cg + 9y Cu ) (4270)

where

L even (4.271)
Cu= Y L+1)e MO/t
L odd

For hydrogen, the molecules with the larger nuclear statistical weight are called orthohydrogen and those
with the smaller statistical weight are called parahydrogen. For H,, we have I = % hence the ortho state
has g, = 3 and the para state has g, = 1. In D,, we have I =1 and the ortho state has g, = 6 while the
para state has g, = 3. In equilibrium, the ratio of ortho to para states is then

ortho ortho
= Bb 36 TB GG 2% (4272
‘ZVH2 gg Cg Cg ND2 9u Cu Cu

Incidentally, how do we derive the results in Tab. 4.2 7 The total nuclear angular momentum 1, is the
quantum mechanical sum of the two individual nuclear angular momenta, each of which are of magnitude
I. From elementary addition of angular momenta, we have

I9I=001020® - G2 . (4.273)

The right hand side of the above equation lists all the possible multiplets. Thus, I, € {0,1,...,2I}.
Now let us count the total number of states with even I, . If 21 is even, which is to say if I is an integer,
we have

I
gir=even) — 37 {2 - (2n) + 1} —(I+1)@e[+1) (4.274)

n=0
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because the degeneracy of each multiplet is 27, , + 1. It follows that
g=even) = (2T +1)2 — g, = I(2[ +1) . (4.275)

On the other hand, if 27 is odd, which is to say [ is a half odd integer, then

I-3
g21=odd) — 3~ {2 - (2n) + 1} =12l +1) . (4.276)
n=0
It follows that
gH=ed) = 2T +1)2 — g, = (I +1)(2T +1) . (4.277)

4.11 Appendix I : Additional Examples

4.11.1 Three state system

Consider a spin-1 particle where o = —1,0,4+1. We model this with the single particle Hamiltonian
h=—pHo+A(l-0?) . (4.278)

We can also interpret this as describing a spin if 0 = +1 and a vacancy if 0 = 0. The parameter A then
represents the vacancy formation energy. The single particle partition function is

¢C=Tr e Bh = ¢=BA 4 2cosh(BugH) . (4.279)

With N, distinguishable noninteracting spins (e.g. at different sites in a crystalline lattice), we have
Z = (Ns and

F=Nf= kTImZ=—N,kTl [e_BA + 2cosh(5,u0H)] , (4.280)

where f = —k;T In( is the free energy of a single particle. Note that

fy=1—0%= S—Z (4.281)
m= pyo = —g—g (4.282)

are the vacancy number and magnetization, respectively. Thus,

o e 2T
) _of 4.283
Ny, <”v > OA — ¢=A/kgT 4 9 cosh(pgH/kT) ( |

and 9 inh(pu,H/k
oy~ Oy sy (1280

COH AT 4 2 cosh(pgH/k,T)
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At weak fields we can compute

om o 2

_omi o _ Mo 4.285
OH |;_y  kyT 24 e AT (4.285)

X

We thus obtain a modified Curie law. At temperatures T’ < A/kg, the vacancies are frozen out and we
recover the usual Curie behavior. At high temperatures, where T > A/k, the low temperature result
is reduced by a factor of 2, which accounts for the fact that one third of the time the particle is in a
nonmagnetic state with o = 0.

4.11.2 Spins and vacancies on a surface

PROBLEM: A collection of spin—% particles is confined to a surface with N sites. For each site, let o = 0 if
there is a vacancy, o = +1 if there is particle present with spin up, and 0 = —1 if there is a particle present
with spin down. The particles are non-interacting, and the energy for each site is given by ¢ = —W¢o?2,
where —W < 0 is the binding energy.

(a) Let Q = NT + N i be the number of spins, and NN, be the number of vacancies. The surface

magnetization is M = NT - N R Compute, in the microcanonical ensemble, the statistical entropy

S(Q,M).

(b) Let ¢ = Q/N and m = M/N be the dimensionless particle density and magnetization density,
respectively. Assuming that we are in the thermodynamic limit, where N, @, and M all tend to
infinity, but with ¢ and m finite, Find the temperature T'(q, m). Recall Stirling’s formula

In(N!) = NInN — N+ O(InN)

(c) Show explicitly that 7" can be negative for this system. What does negative 7" mean? What physical
degrees of freedom have been left out that would avoid this strange property?

SOLUTION: There is a constraint on NT’ N,, and N¢:
The total energy of the system is £ = —WQ.

(a) The number of states available to the system is

N!

NI NI N,

Fixing Q and M, along with the above constraint, is enough to completely determine {NT’ Ny, N i}:

N,=3(Q+M) , Ny=N-Q , N =3@Q-M) , (4.288)
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whence

NI
Q(Q, M) = 4.289
R R Y R gy 2%
The statistical entropy is S = ky InQ:
S(Q, M) = ky In(N) — kyIn [L(Q + M) — kyIn [3(Q — M)!] —kyIn [(N —Q)!] . (4.290)
Now we invoke Stirling’s rule,
In(N!) =NInN—-N+O(lnN) , (4.291)
to obtain
nQQ,M)=NInN—-N-L(Q+M)n[3(Q+M)]+1Q+M)
—3(Q = M)In [5(Q - M)] + 3(Q — M)
(4.292)

—(N=Q)In(N-Q)+ (N -Q)

Q+ M
7o)

= NInN - 3Qmn [1(@* - M?)| - %Mln<
Combining terms,

InQ(Q,M)=—Ngqln [%\/qz - m2] —1Nm 111(34_—2) —N(1-¢)In(1—gq) , (4.293)

where () = Nq and M = Nm. Note that the entropy S = k;In() is extensive. The statistical
entropy per site is thus

qgt+tm

s(qg,m) = —kgqln [%\/q2 - m2] — 2k mln(—m> —ky(1—q)In(1—¢q) . (4.294)

The temperature is obtained from the relation

1_ (98 _ 1 (s
T \9E),, W\dq/,

(4.295)
1 ln(l—q)—i In [l qz—mﬂ
w w 2
Thus,
W/ks (4.296)

T =

In[2(1 = q)/v/q*> — m?]
We have 0 < ¢ <1 and —g < m < ¢, so T is real (thank heavens!). But it is easy to choose {q,m}
such that 7 < 0. For example, when m = 0 we have T = W/k,In(2¢~" — 2) and T < 0 for all
q € (%, 1] . The reason for this strange state of affairs is that the entropy S is bounded, and is not an
monotonically increasing function of the energy E (or the dimensionless quantity @). The entropy
is maximized for N 1= N, = N L= %, which says m = 0 and ¢ = % Increasing ¢ beyond this
point (with m = 0 fixed) starts to reduce the entropy, and hence (0S/0FE) < 0 in this range, which
immediately gives T < 0. What we’ve left out are kinetic degrees of freedom, such as vibrations
and rotations, whose energies are unbounded, and which result in an increasing S(FE) function.
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4.11.3 Fluctuating interface

Consider an interface between two dissimilar fluids. In equilibrium, in a uniform gravitational field, the
denser fluid is on the bottom. Let z = z(x,y) be the height the interface between the fluids, relative to
equilibrium. The potential energy is a sum of gravitational and surface tension terms, with

_ |2
Ugray = /d x/dz' Apg? (4.297)
0
Ugnf = 50 / d?z (V2)? . (4.298)

We won’t need the kinetic energy in our calculations, but we can include it just for completeness. It isn’t
so clear how to model it a priori so we will assume a rather general form

/
T:/d%g/d%n’ (e, ) az(amt’t) 87’%2’” . (4.299)

We assume that the (z,y) plane is a rectangle of dimensions L, X L,. We also assume ule, ') =
(| — @'|). We can then Fourier transform

Ae) = (L, L) P get (4.300)
K
where the wavevectors k are quantized according to
21 2mn
k="23 L g 4.301
I T+ I y o, (4.301)

with integer n, and n,, if we impose periodic boundary conditions (for calculational convenience). The

Lagrangian is then
1

L=5>" [l‘k\z'k\z— (9 Ap + ok?) \Zk\z] : (4.302)
k

where
g = /d2x (|z|) e~k (4.303)

Since z(x,t) is real, we have the relation z_, = zj, therefore the Fourier coefficients at k and —k are not
independent. The canonical momenta are given by

oL . . OL .
Pk = oz = Uy 2, : Pr = oz, = Uy 2, (4.304)
The Hamiltonian is then
A /
=% [pk 7+l zk] ) (4.305)
K
. ! ‘ka 2 2
=> T (90p + ok?) |22, (4.306)
k

k
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where the prime on the k sum indicates that only one of the pair {k, —k} is to be included, for each k.

We may now compute the ordinary canonical partition function:

Z = H /dzpkd'zk —Ip? 1k T (9 Aptok?) |z [* kg T

2mh)?
, . (4.307)
_ B k
_1;[ ( 2h ) <9Ap+ok2>
Thus,
kT
F=—-kT ln< B ) , (4.308)
where'?
0, = <%> . (4.300)
k

is the normal mode frequency for surface oscillations at wavevector k. For deep water waves, it is
appropriate to take p, = Ap/ |k|, where Ap = p, — p, =~ p, is the difference between the densities of
water and air.

It is now easy to compute the thermal average

{z?) :/ 2|2 € (0 2040k |22 kg T/ /d22k o~ (0 Aptok?) |2 2 kT
kT
9Aptok?

(4.310)

Note that this result does not depend on p,, i.e. on our choice of kinetic energy. One defines the
correlation function

. 2 .
O = (@0 = 20 3 () 7 = [ ((xpam)

ke T T etklel g T

471'0' Vg + €2  Arxo

(4.311)

Ko(lzl/€)

where £ = /gAp/o is the correlation length, and where K;(z) is the Bessel function of imaginary
argument. The asymptotic behavior of K (z) for small z is K(z) ~ In(2/z), whereas for large z one has
Ky(z) ~ (n/ 22)1/2 e=%. We see that on large length scales the correlations decay exponentially, but on
small length scales they diverge. This divergence is due to the improper energetics we have assigned to
short wavelength fluctuations of the interface. Roughly, it can cured by imposing a cutoff on the integral,
or by insisting that the shortest distance scale is a molecular diameter.

13Note that there is no prime on the k sum for F, as we have divided the logarithm of Z by two and replaced the half
sum by the whole sum.
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4.11.4 Dissociation of molecular hydrogen

Consider the reaction
H=p +e . (4.312)

In equilibrium, we have
i = T+ e (4.313)

What is the relationship between the temperature T" and the fraction = of hydrogen which is dissociated?

Let us assume a fraction x of the hydrogen is dissociated. Then the densities of H, p, and e are then

ng=(1—-2)n , n, = In , ne=2an . (4.314)

The single particle partition function for each species is

N N
g (Vv _Ne,
C = N' <)\§1> e Nalnt/kBT , (4315)

where g is the degeneracy and ¢, , the internal energy for a given species. We have ¢; , = 0 for p and e,
and g, = —A for H, where A = ¢?/2a, = 13.6 eV, the binding energy of hydrogen. Neglecting hyperfine
splittings'*, we have gy = 4, while g, = g, = 2 because each has spin S = % Thus, the associated grand

potentials are

Oy = — gy VT Apy el t2)/ksT (4.316)
02, = —g, VEsT A2 eto/FsT (4.317)
0y = —go VksT A2 et/ kT (4.318)

where

| 2mh?
— 4.31
>‘T,a makBT ( 3 9)

for species a. The corresponding number densities are

L (08 ) =3 (u=ci) T
n=—|—- =g\’ eW Ein)/ "B 7 4.320
4 <8M TV ’ ( )

and the fugacity z = e*/*sT of a given species is given by
z=g '\ efm /T (4.321)

We now invoke py = p, + e, which says zyy = z, 2, or

gﬁlnH )‘%,H e_A/kBT = (gglnp )‘%“,p) (go_lne )‘%‘,e) ) (4322)

14The hyperfine splitting in hydrogen is on the order of (me/mp) atmec® ~ 107% eV, which is on the order of 0.01 K. Here
a = e?/hc is the fine structure constant.
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which yields

1—=x

a:2 ~
( > Ay = e BksT (4.323)

where Ap = /2712 /m*k, T, with m* = myme/my ~ m. Note that

~ 4mm A
M =ag | HJ , 4.324
T B mp kaT ( )

where a; = 0.529 A is the Bohr radius. Thus, we have

22 ) T \/?
(4m)3Py = (-) e To/T (4.325)
(1 - T,

where T, = A/k, = 1.578 x 10° K and v = nad. Consider for example a temperature 7 = 3000 K, for
which T},/T = 52.6, and assume that z = % We then find v = 1.69 x 10727, corresponding to a density
of n = 1.14 x 1072 cm™3. At this temperature, the fraction of hydrogen molecules in their first excited
(2s) state is 2’ ~ e~To/2T — 3.8 x 10~'2. This is quite striking: half the hydrogen atoms are completely
dissociated, which requires an energy of A, yet the number in their first excited state, requiring energy
%A, is twelve orders of magnitude smaller. The student should reflect on why this can be the case.
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Chapter 5

Noninteracting Quantum Systems

5.1 References

— F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason.

— A. H. Carter, Classical and Statistical Thermodynamics
(Benjamin Cummings, 2000)
A very relaxed treatment appropriate for undergraduate physics majors.

— D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)
This is the best undergraduate thermodynamics book I've come across, but only 40% of the book
treats statistical mechanics.

— C. Kittel, Elementary Statistical Physics (Dover, 2004)
Remarkably crisp, though dated, this text is organized as a series of brief discussions of key concepts
and examples. Published by Dover, so you can’t beat the price.

— R. K. Pathria, Statistical Mechanics (2"9 edition, Butterworth-Heinemann, 1996)
This popular graduate level text contains many detailed derivations which are helpful for the stu-
dent.

— M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3¢ edition, World Scientific, 2006)
An excellent graduate level text. Less insightful than Kardar but still a good modern treatment of
the subject. Good discussion of mean field theory.

— E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (part I, 3'4 edition, Pergamon, 1980)
This is volume 5 in the famous Landau and Lifshitz Course of Theoretical Physics. Though dated,
it still contains a wealth of information and physical insight.
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5.2 Statistical Mechanics of Noninteracting Quantum Systems

5.2.1 Bose and Fermi systems in the grand canonical ensemble

A noninteracting many-particle quantum Hamiltonian may be written as'

H=> e,n, . (5.1)
[e%

where 1, is the number of particles in the quantum state o with energy ¢,. This form is called the
second quantized representation of the Hamiltonian. The number eigenbasis is therefore also an energy
eigenbasis. Any eigenstate of H may be labeled by the integer eigenvalues of the 7, number operators,
and written as ‘ ny, Ny, ... ). We then have

o) =ng|7) (5.2)
and

ﬁ|ﬁ>:2naaa|ﬁ> : (5.3)

The eigenvalues n, take on different possible values depending on whether the constituent particles are
bosons or fermions, viz.

bosons:na€{0,1,2,3,...} (5.4)
fermions : n, € {0, 1} . '

In other words, for bosons, the occupation numbers are nonnegative integers. For fermions, the occupation
numbers are either 0 or 1 due to the Pauli principle, which says that at most one fermion can occupy
any single particle quantum state. There is no Pauli principle for bosons.

The N-particle partition function Z; is then

ZN — Z e—ﬁ > e "afa 5N,Z ng (55)

{na}
where the sum is over all allowed values of the set {n,}, which depends on the statistics of the particles.
Bosons satisfy Bose-Einstein (BE) statistics, in which n, € {0, 1, 2, ...}. Fermions satisfy Fermi-Dirac

(FD) statistics, in which n, € {0, 1}.

The OCE partition sum is difficult to perform, owing to the constraint ) n, = N on the total number
of particles. This constraint is relaxed in the GCE, where

=) eMNzy
N

— Z 6_6 Za Na€a eﬁl"za Ny
(n} (5.6)

= H (Z e Blea—n) na>

1For a review of the formalism of second quantization, see the appendix in §5.9.




5.2. STATISTICAL MECHANICS OF NONINTERACTING QUANTUM SYSTEMS 219

Note that the grand partition function = takes the form of a product over contributions from the indi-
vidual single particle states.

We now perform the single particle sums:

> 1
—Ble-pwn _— =
Z_;]e S = (bosons) (5.7)
1
Z e~ Ble=mn — 1 4 o=Ble—n) (fermions) . (5.8)

n=0

Therefore we have

= 1
SBE = H 1— e_(ea_/»‘)/kBT

) (5.9)
pp = kBTZIn<1 _ e—(sa—u)/kBT)

and

2 = [[ (1 + e Ca/ioT)

(5.10)
Qpp = —kT Z ln(l + e_(ea_“)/kBT>
We can combine these expressions into one, writing
AT, V) = 4T > In(1 5 e~ Can/bT) (5.11)

where we take the upper sign for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics.
Note that the average occupancy of single particle state « is

o1 1

() = 9o = T PRTET (5.12)
and the total particle number is then
1
N(T,V,p) = Za: R, (5.13)

We will henceforth write n,(u, T') = (n,,) for the thermodynamic average of this occupancy.

5.2.2 Quantum statistics and the Maxwell-Boltzmann limit

Consider a system composed of N noninteracting particles. The Hamiltonian is

N
H=> h; . (5.14)
j=1
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The single particle Hamiltonian h has eigenstates |a) with corresponding energy eigenvalues ,. What is
the partition function? Is it

7 ”:Z Ze—ﬁ(sa1+ Cayt +eaN) _ov (5.15)

where ( is the single particle partition function, { =5, e~P2a | For systems where the individual particles
are distinguishable, such as spins on a lattice which have fixed positions, this is indeed correct. But for
particles free to move in a gas, this equation is wrong. The reason is that for indistinguishable particles
the many particle quantum mechanical states are specified by a collection of occupation numbers n,

which tell us how many particles are in the single-particle state | o). The energy is E =) n,¢€, and
the total number of particles is N = )" n, . That is, each collection of occupation numbers {n,} labels a
unique many particle state | {n,} ). In the product ¢*, the collection {n,} occurs many times. We have
therefore overcounted the contribution to Z due to this state. By what factor have we overcounted? It

is easy to see that the overcounting factor is

. N!
degree of overcounting = —— ,
o Na!

which is the number of ways we can rearrange the labels «; to arrive at the same collection {n,}. This
follows from the multinomial theorem,

K
(Z:I:E > ZZ Z 'n o zy ay? K ONmy 4oty (5.16)
a—

Ny Mg
Thus, the correct expression for Z; is

ZN — Z e_BZa Na€a 5N,Za n,
{nat

_ ZZ Z < > —B(eal—i- €a2+ e+ saN)

Qg

(5.17)

In the high temperature limit, almost all the n, are either 0 or 1, hence Z, =~ ¢N /N!. This is the
classical Mazwell-Boltzmann limit of quantum statistical mechanics. We now see the origin of the 1/N!
term which is so important in the thermodynamics of entropy of mixing.

Finally, starting with the expressions for the grand partition function for Bose-Einstein or Fermi-Dirac
particles, and working in the low density limit where n,(u,T) < 1, we have ¢, — u > kT, and
consequently

“QBE/FD = ikBT Zln(l F e_(aa_u)/kBT)

(5.18)
~ —kBTZ e Camm/ksT = 0

This is the Maxwell-Boltzmann limit of quantum statistical mechanics. The occupation number average
in the Maxwell-Boltzmann limit is then

(n,) = e~ Ea=m)/ksT (5.19)
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5.2.3 Single particle density of states

The single particle density of states per unit volume g(e) is defined as
1
9(e) = 3 D de—z,) (5.20)

The concept of density of states is an important one and the student should develop some facility with
it. Note that the dimensions of g(¢) and [g(e)] = E/L?, where E stands for energy and L for length. We

may Nnow write
o

T,V p) = in;BT/da g(e) 1n(1 ¥ e—<€—“>/’fBT> . (5.21)

—00

For particles with a dispersion ¢(k), with p = hik, we have

d; d—1
o(6) =& [ oz Oe = (k) = 5 o (5.22)

where g = 25+1 is the spin degeneracy, and where we assume that ¢(k) is both isotropic and a mono-
tonically increasing function of k. Thus, we have

g dk
Ja=1(e) = = —

g . dk g ,odk
_ ==k — _ = =k —
) 9a—2(€) o e ) 9a—3(€) o2 e
In order to obtain g(¢) as a function of the energy € one must invert the dispersion relation € = €(k) to
obtain k = k(e). A quick and dirty way to derive the above results is to write
d% g
de = = d

S 5.23
7 de ( )

k=L dk (5.24)

to derive g(¢).

For a spin-S particle with ballistic dispersion (k) = h2k?/2m, we have g = 25 + 1 and

N
g(e):%<2wh2> £d-2/2 g(g) (5.25)

where ©(¢) is the step function, which takes the value 0 for ¢ < 0 and 1 for ¢ > 0. The appearance of ©(¢)
simply says that all the single particle energy eigenvalues are nonnegative. Note that we are assuming a
box of volume V' but we are ignoring the quantization of kinetic energy, and assuming that the difference
between successive quantized single particle energy eigenvalues is negligible so that g(¢) can be replaced
by the average in the above expression. Note that

1

n(e, T, p) = e 0/kT £ |

(5.26)

This result holds true independent of the form of g(g). The average total number of particles is then

r 1

which does depend on g(¢).
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5.3 Quantum Ideal Gases : Low Density Expansions

5.3.1 Expansion in powers of the fugacity

From eqn. 5.27, we have that the number density n = N/V is

n(T,z) = /da 9(c)

21 ea/kBT F1

% (5.28)
=> ()4,
j=1
where z = exp(u/kyT) is the fugacity and
Cy(T) = (il)j‘l/da g(e) e 9e/ksT (5.29)

Note that [Cj] = V~! for all j. From §2 = —pV and our expression above for 2(T,V, i), we have

o0

p(T,2) = F kT /da g(e) ln(l Fz e_e/kBT>
o0 (5.30)
=k, Ty j1C(T) &
j=1

5.3.2 Virial expansion of the equation of state

Eqns. 5.28 and 5.30 express n(T,z) and p(T,z) as power series in the fugacity z, with T-dependent
coefficients. In principal, we can eliminate z using eqn. 5.28, writing z = z(7T,n) as a power series in the
number density n, and substitute this into eqn. 5.30 to obtain an equation of state p = p(T,n) of the
form

p(T,n) = nk,T <1+BQ(T)n+Bg(T)n2+...) . (5.31)

Note that the low density limit n — 0 yields the ideal gas law independent of the density of states g(e).
This follows from expanding n (7T, z) and p(T, z) to lowest order in 2, yielding n = C; 2z + O(2?) and
p = kT C, 2z + O(2?). Dividing the second of these equations by the first yields p = nk,T + O(n?),
which is the ideal gas law. Note that z = n/C; + O(n?) can formally be written as a power series in n.

Unfortunately, there is no general analytic expression for the virial coefficients Bj(T ) in terms of the

expansion coefficients n; (T). However our work is made somewhat easier by appealing to a method of

Lagrange. We regard the series

— p(T,TL) _ - k
(T, n) = P ;Bkn (5.32)
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as a power series in a complex variable n. We then have

B, Zj{ dn (n) 27{% w1 f de m(2) i[n(z)] - (5.33)

omi w1 = f 2t [ RS 2

where the contour encloses the origin in the complex plane. Integrating by parts, and using the relation
zm'(z) = n(z), we obtain’

B 1 dz , -k 1 dz 1 —(k—1)
B, = : jé 5 T () [n(z)] " = ’ jé 5l 3 [n(z)] . (5.34)
Defining the dimensionless ratios v, = C; /C; , we have the result
1 dz f.(2)
B, = — .

k kCF! 7{ 2w 2k (5.35)

where (b—1)
fk(Z)E(1+’Y2Z+’YgZ2+...) . (536)

Note that [B,] = Vk=1 Expanding by hand to order z? isn’t so difficult, and we obtain

filz) =1 = (k= 1)z + (k1) (é ks — ’Ys)zz +0(z%) (5.37)

From this, we may now read off B; = 1, which we already showed above, and

Y2 Gy
B = —— = ———
2T 20 203
2 2 9 (5.38)
B 72— 373 _02 205
= 2313 2V

N N
It is easy to see that, in general, B} = (—1)7 _le, where the superscripts denote Fermi (F) or Bose (B)

statistics.

We remark that the equation of state for classical (and quantum) interacting systems also can be expanded
in terms of virial coefficients. Consider, for example, the van der Waals equation of state,

<p + “V—Af> (V — Nb) = Nk, T . (5.39)

This may be recast as

k. T
nky _ an?

S 1-bn (5.40)
= nkyT + (bkpT — a) n® + kT V*n® + k,THnt + ... |

where n = N/V. Thus, for the van der Waals system, we have By = (bk,T — a) and B, = k,Tb*~1 for
all £ > 3.

2Since there is no term proportional to In z in the Laurent expansion of m(z) [n(z)} 7k7 there is no residue arising from
integrating its derivative around the unit circle.
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5.3.3 Ballistic dispersion

For the ballistic dispersion £(p) = p?/2m we computed the density of states in eqn. 5.25. One finds

gs T -1 _ —d .—d/2
C,(T) T(d/2) /dm =g\t (5.41)

We then have

By(T) = 727 (5+1) . g1 g

By(T) = (2—(d+1)_3 (4+ )) 2g2? A (5.42)

Note that B,(T") is negative for bosons and positive for fermions. This is because bosons have a tendency
to bunch and under certain circumstances may exhibit a phenomenon known as Bose-FEinstein conden-
sation (BEC). Fermions, on the other hand, obey the Pauli principle, which results in an extra positive
correction to the pressure in the low density limit.

We may also write
n(T,z) = +go A\p? Lig(+2) (5.43)
2

and
p(T,2) = g4 kT Ap¢ Lig NC=I (5.44)

where

J— - zn
= nZ::l e (5.45)

is the polylogarithm function®. Note that Li,(z) obeys a recursion relation in its index, viz.

z % Lij(z) = Li,_;(2) (5.46)

and that
=1
=> == (5.47)
n=1 n’

For s ¢ N and |¢| < 27, one has”

Li,(e™®) =T(1—s)e" " + f: w (—e)k . (5.48)

3Several texts, such as Pathria and Reichl, write g,(z) for Li,(2). T adopt the latter notation since we are already using
the symbol g for the density of states function g(¢) and for the internal degeneracy g.
“The set N = {1,2,3,...} denotes the so-called “natural numbers”.
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5.4 Entropy and Counting States

Suppose we are to partition /N particles among J possible distinct single particle states. How many ways
Q are there of accomplishing this task? The answer depends on the statistics of the particles. If the
particles are fermions, the answer is easy: Qp, = (]‘\],) For bosons, the number of possible partitions can
be evaluated via the following argument. Imagine that we line up all the N particles in a row, and we
place J — 1 barriers among the particles, as shown below in fig. 5.1. The number of partitions is then the
total number of ways of placing the N particles among these N + J — 1 objects (particles plus barriers),
hence we have Qg = (N +]§,]_1). For Maxwell-Boltzmann statistics, we take Q,,; = JV/N! Note that
Q. is not necessarily an integer, so Maxwell-Boltzmann statistics does not represent any actual state
counting. Rather, it manifests itself as a common limit of the Bose and Fermi distributions, as we have
seen and shall see again shortly.

® ¢ 6 O ¢ O 6 ¢ &6 ¢ O ¢ ¢ O o ¢ o o

Figure 5.1: Partitioning N bosons into J possible states (N = 14 and J = 5 shown). The N black dots
represent bosons, while the J — 1 white dots represent markers separating the different single particle
populations. Here ny =3, ng =1, ng =4, ny = 2, and ns = 4.

The entropy in each case is simply S = k;In{). We assume N > 1 and J > 1, with n = N/J finite.
Then using Stirling’s approximation, In(K!) = KIn K — K + O(In K), we have

Sup = —Jkgnlnn
Spw = —Jky[nInn — (1 +n)In(1 +n)] (5.49)

Sep = —Jkg[nlnn + (1 —n)In(1 —n)]

In the Maxwell-Boltzmann limit, n < 1, and all three expressions agree. Note thatR

08
< OJI\\ATB>J = —ky (1+1nn)

(aSBE >J =kyln(n~'+1) (5.50)

ON

<%> = kg ln(n_1 — 1)
N J;

Now let’s imagine grouping the single particle spectrum into intervals of J consecutive energy states.
If J is finite and the spectrum is continuous and we are in the thermodynamic limit, then these states
will all be degenerate. Therefore, using a as a label for the energies, we have that the grand potential
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2=FE—TS — uN is given in each case by
Qs = JZ —(&?a —p)ng, + kzT'n,ln na]

Qup = JZ :(ea —p)ng +kyT'n,Inn, —k;T (1 +n,)In(l + na)} (5.51)

2., = JZ :(z—:a —p)ng + kT n,Inn, + k;T (1 —n,)In(l — na)}

Now - lo and behold! - treating {2 as a function of the distribution {n,} and extremizing in each case,
subject to the constraint of total particle number N = J ) n,, one obtains the Maxwell-Boltzmann,
Bose-Einstein, and Fermi-Dirac distributions, respectively:

(ntl\x/[B — e(“_ea)/kBT

% (2-27 ) =0 = fnkr = [/l -y (5:52)

1

gn(P;D = [e(ea_“)/kBT —+ 1:| B

As long as J is finite, so the states in each block all remain at the same energy, the results are independent
of J.

5.5 Photon Statistics

5.5.1 Thermodynamics of the photon gas

There exists a certain class of particles, including photons and certain elementary excitations in solids
such as phonons (i.e. lattice vibrations) and magnons (i.e. spin waves) which obey bosonic statistics
but with zero chemical potential. This is because their overall number is not conserved (under typical
conditions) — photons can be emitted and absorbed by the atoms in the wall of a container, phonon and
magnon number is also not conserved due to various processes, etc. In such cases, the free energy attains
its minimum value with respect to particle number when

o= (g—f[)” =0 . (5.53)

The number distribution, from eqn. 5.12, is then

1

n(e) =
The grand partition function for a system of particles with y = 0 is

AT, V) =Vk,T / deg(e) In (1 — e~/FeT) (5.55)
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where g¢(¢) is the density of states per unit volume.

Suppose the particle dispersion is e(p) = A|p|”. We can compute the density of states g(e):

e}

d 17,
g(e) =8¢ h—df 5(c — Alp|°) = ghdd /dppd L§(e — Ap?)
’ ) (5.56)
_ gy / 2g VT d_q
A o f— — o
= ohd doat 2= TR wallr ) < o)

where g is the internal degeneracy, due, for example, to different polarization states of the photon. We
have used the result 2, = 27%?2 /T(d/2) for the solid angle in d dimensions. The step function O(e) is
perhaps overly formal, but it reminds us that the energy spectrum is bounded from below by € = 0, i.e.
there are no negative energy states.

For the photon, we have e(p) = ¢p, hence o = 1 and

2g 7.{.d/2 gd—1
I'(d/2) (he)d
In d = 3 dimensions the degeneracy is g = 2, the number of independent polarization states. The pressure
p(T) is then obtained using {2 = —pV. We have

g(e) = 0() . (5.57)

oo

p(T) = —k’BT/de g(e) In (1 - e—E/kBT)
2 o
N %;T/z ) kT [ de ™" In (1 —e7*/MT) (5.58)
0
2g7'(d/2 d+1 s i1 ~
=- dt t'1
I'(d/2) d / n(l—e™)
0

We can make some progress with the dimensionless integral:
o o) 1 o
_ dt td—l 1 oty — - d—1 _—nt
/ n (1 e ) Z - dtt* e
0 n=1""7
[o¢]

=T(d) Y e = T(@)C(d+ 1)

n=1

(5.59)

Finally, we invoke a result from the mathematics of the gamma function known as the doubling formula,

22—1
I'(z) = NG L) r=h) . (5.60)
Putting it all together, we find
_1 k. T d+1
p(T) =gr 2V (e ¢(d+ 1) (ks T)1°7 (5.61)

(e)?



228 CHAPTER 5. NONINTERACTING QUANTUM SYSTEMS

The number density is found to be

1 E.T\%
)= [t i =er e o (57)

—00

For photons in d = 3 dimensions, we have g = 2 and thus

3 4
=2 (BT - 20 )

2 hic

4

It turns out that ((4) = 5.
Note that hic/k,; = 0.22855cm - K, so

kT
Bc =43755T[K]em™ = n(T) = 20.405 x T3[K3] cm ™

To find the entropy, we use Gibbs-Duhem:

dp
du=0= —sdT d — g
w=20 sdl'+vdp — s vdT ,

where s is the entropy per particle and v = n~! is the volume per particle. We then find

¢(d+1)
s(T) = (d+1 k
The entropy per particle is constant. The internal energy is
OlnZ= 0
and hence the energy per particle is
E d-((d+1)
TN YT T

5.5.2 Classical arguments for the photon gas

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

A number of thermodynamic properties of the photon gas can be determined from purely classical argu-

ments. Here we recapitulate a few important ones.

1. Suppose our photon gas is confined to a rectangular box of dimensions L, x L, x L. Suppose further

that the dimensions are all expanded by a factor AY/3, i.e. the volume is isotropically expanded by
a factor of A\. The cavity modes of the electromagnetic radiation have quantized wavevectors, even

within classical electromagnetic theory, given by

K — 2mn, 2mn, 2mn,
L, L, L

T Y z

(5.69)
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Since the energy for a given mode is (k) = hc|k|, we see that the energy changes by a factor AL/3

under an adiabatic volume expansion V' — AV, where the distribution of different electromagnetic
mode occupancies remains fixed. Thus,

V(a_v>S_A<aA>S_ o (5.70)
Thus,
OF E
== (av)s T3V (571)

as we found in eqn. 5.67. Since F = E(T,V) is extensive, we must have p = p(7T) alone.

. Since p = p(T') alone, we have

9E\ _ (0EN _4
ov ), \av) ="
_ (9
‘T<8T>V P
Op

where the second line follows the Maxwell relation (W)p = (B_)V’ after invoking the First Law
dE =TdS — pdV. Thus,

(5.72)

Tj—gzélp — p(T)=AT* | (5.73)

where A is a constant. Thus, we recover the temperature dependence found microscopically in eqn.
5.61.

. Given an energy density E/V, the differential energy flux emitted in a direction € relative to a

surface normal is

) E df?
dje—c-v-cosﬁ-ﬂ , (5.74)

where df? is the differential solid angle. Thus, the power emitted per unit area is

7'('/2 2T
P E E
j—A:;T—V/dH/dqﬁsinH-cosﬂzi—V:%cp(T)EJT4 , (5.75)
0 0
where 0 = %CA, with p(T) = AT* as we found above. From quantum statistical mechanical
considerations, we have
2k} s W

is Stefan’s constant.
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Figure 5.2: Spectral density p.(v,T) for blackbody radiation at three temperatures.

5.5.3 Surface temperature of the earth

We derived the result P = oT% - A where 0 = 5.67 x 1078 W/m2K* for the power emitted by an
electromagnetic ‘black body’. Let’s apply this result to the earth-sun system. We’ll need three lengths:
the radius of the sun R = 6.96 x 10% m, the radius of the earth R, = 6.38 x 10° m, and the radius of the
earth’s orbit a, = 1.50 x 10 m. Let’s assume that the earth has achieved a steady state temperature
of T,,. We balance the total power incident upon the earth with the power radiated by the earth. The
power incident upon the earth is

TR? R? R?
Pincident = ﬁ : O-T(% : 47TR(29 = ea% . WJT(% . (577)
The power radiated by the earth is
Pradiated = UT434 : 47TR§ : (578)
Setting Pincident = Pradiated’ we obtain
R\l/2
T,=(2) T, . 5.79
() o

Thus, we find T, = 0.04817T,, and with T, = 5780K, we obtain T, = 278.4K. The mean surface
temperature of the earth is 7, = 287 K, which is only about 10 K higher. The difference is due to the fact
that the earth is not a perfect blackbody, i.e. an object which absorbs all incident radiation upon it and
emits radiation according to Stefan’s law. As you know, the earth’s atmosphere retraps a fraction of the
emitted radiation — a phenomenon known as the greenhouse effect.
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5.5.4 Distribution of blackbody radiation

Recall that the frequency of an electromagnetic wave of wavevector k is v = ¢/\ = ck/2w. Therefore the
number of photons N(v,T) per unit frequency in thermodynamic equilibrium is (recall there are two
polarization states)

2V d% v k? dk
N(”? T) dv = ﬁ ) ehck/kBT -1 - P ) eth/kBT -1 : (580)
We therefore have
8tV v?
N, T) = p i — (5.81)
Since a photon of frequency v carries energy hv, the energy per unit frequency £(v) is
hV 3
Ew,T) = " v (5.82)

B w/kgT _q

Note what happens if Planck’s constant h vanishes, as it does in the classical limit. The denominator

can then be written
hv

hv/kgT 1 _ 2
M 1= 4 O) (5.83)
and
8k, T
E(1,T) = lim E(w) = V - ToB2 )2 (5.84)
h—0 C

In classical electromagnetic theory, then, the total energy integrated over all frequencies diverges. This
is known as the wltraviolet catastrophe, since the divergence comes from the large v part of the integral,
which in the optical spectrum is the ultraviolet portion. With quantization, the Bose-Einstein factor
imposes an effective ultraviolet cutoff k,T'/h on the frequency integral, and the total energy, as we found
above, is finite:

Vi 2 (k,T)*
E T == = = [— B .
(T) / v Ew) =3y = v 0 (5.85)
0
We can define the spectral density p.(v) of the radiation as
T) 1 hv/k,T)3

E(T) — nt k,T v/ksT _q

so that p.(v,T)dv is the fraction of the electromagnetic energy, under equilibrium conditions, between
o

frequencies v and v + dv, i.e. [dvp.(v,T) = 1. In fig. 5.2 we plot this in fig. 5.2 for three different
0

temperatures. The maximum occurs when s = hr/k,T satisfies

d s3 s
\e 1) = 0 = — =3 = s =2.82144 . (5.87)
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5.5.5 What if the sun emitted ferromagnetic spin waves?

We saw in eqn. 5.74 that the power emitted per unit surface area by a blackbody is ¢7*. The power law
here follows from the ultrarelativistic dispersion € = hck of the photons. Suppose that we replace this
dispersion with the general form e = ¢(k). Now consider a large box in equilibrium at temperature 7.
The energy current incident on a differential area dA of surface normal to 2 is

10e(k) 1
h Ok, es®)/ksT _q

AP = dA - / % O(cos 0) - (k) - (5.88)

Let us assume an isotropic power law dispersion of the form e(k) = Ck®. Then after a straightforward
calculation we obtain

— =oT*% | (5.89)
where
2+2 -2
8m2h

One can check that for g =2, C' = hc, and a = 1 that this result reduces to that of eqn. 5.76.

gkp

- ¢+ )T+ d). (590

5.6 Lattice Vibrations : Einstein and Debye Models

Crystalline solids support propagating waves called phonons, which are quantized vibrations of the lattice.
Recall that the quantum mechanical Hamiltonian for a single harmonic oscillator, H = % + %mw3q2,
may be written as H = hwo(aTa + %), where a and a' are ‘ladder operators’ satisfying commutation
relations [a,aT] =1.

5.6.1 One-dimensional chain

Consider the linear chain of masses and springs depicted in fig. 5.3. We assume that our system consists
of N mass points on a large ring of circumference L. In equilibrium, the masses are spaced evenly by a
distance b = L/N. That is, 20 = nb is the equilibrium position of particle n. We define u,, = z,, — 2 to
be the difference between the position of mass n and The Hamiltonian is then

—Z[—Jr 1k n+1—xn—a)2}

) 3 o ) e (5.91)
Z + ’{ Up41 un) + QNK(b (1) )

where a is the unstretched length of each spring, m is the mass of each mass point, & is the force constant
of each spring, and N is the total number of mass points. If b # a the springs are under tension in
equilibrium, but as we see this only leads to an additive constant in the Hamiltonian, and hence does not
enter the equations of motion.
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The classical equations of motion are

) OH Dn
= o =
" (5.92)
. OH
Pp=—g5 - =HK (Ung1 + Un—y — 2uy,)
n
Taking the time derivative of the first equation and substituting into the second yields
. K
ln = — (g1 + U1 — 2u,) . (5.93)

We now write

1 .
U, = — Zuk e (5.94)
VN 4

where periodicity uy ., = u, requires that the k values are quantized so that e*Na =1 j.e. k=2mj/Na
where j € {0,1,...,N—1}. The inverse of this discrete Fourier transform is

- 1 ik
Uy, = —— u, e " 5.95

Note that 1, is in general complex, but that 4} = %_,. In terms of the u,, the equations of motion take

the form )
Uy, = —Eﬁ (1 — cos(ka)) @, = T (5.96)

Thus, each @, is a normal mode, and the normal mode frequencies are

wy, =2 \/g |sin ($ka)| . (5.97)

The density of states for this band of phonon excitations is

w/a
dk
(e)= [ 5= 6(e— Twy)
" _742” o (5.98)
_ %(ﬂ ~ )o@ e —¢) |

where J = 2h\/k/m is the phonon bandwidth. The step functions require 0 < ¢ < J; outside this range
there are no phonon energy levels and the density of states accordingly vanishes.

The entire theory can be quantized, taking [pn ,un,] = —iho,,,. We then define
1 ~  ikna ~ 1 —ikna
= — e , = — e , 5.99
Y20 N 2}; Pg Pg N En: Pn ( )

in which case [ﬁk ,ﬂk,] = —ihd,,,. Note that &L =1u_; and 1"52 = p_;- We then define the ladder operator

1\ 1/2
—(——) 5 i) g (5.100)
%= 2mhw, ) P*T "\ T2n ) M '
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n-2 n-1 n n+1 n+2

Figure 5.3: A linear chain of masses and springs. The black circles represent the equilibrium positions
of the masses. The displacement of mass n relative to its equilibrium value is u,,.

and its Hermitean conjugate aL, in terms of which the Hamiltonian is

H=>Y hw,(afa, +3) . (5.101)
k

which is a sum over independent harmonic oscillator modes. Note that the sum over k is restricted to
an interval of width 27, e.g. k € [—g, %], which is the first Brillouin zone for the one-dimensional chain

structure. The state at wavevector k + %” is identical to that at k, as we see from eqn. 5.95.

5.6.2 General theory of lattice vibrations

The most general model of a harmonic solid is described by a Hamiltonian of the form

2
2 pz(R) 1 a afs A ) /
=3 50 T3 X 2 R (R- )R 1)

where the dynamical matriz is

02U
oug(R) oul) (R)

af A
?;(R—R) = ; (5.103)

where U is the potential energy of interaction among all the atoms. Here we have simply expanded the
potential to second order in the local displacements u{'(R). The lattice sites R are elements of a Bravais
lattice. The indices i and j specify basis elements with respect to this lattice, and the indices o and
B range over {1,...,d}, the number of possible directions in space. The subject of crystallography is
beyond the scope of these notes, but, very briefly, a Bravais lattice in d dimensions is specified by a set of
d linearly independent primitive direct lattice vectors a,;, such that any point in the Bravais lattice may
be written as a sum over the primitive vectors with integer coefficients: R = Eflzl n;a;. The set of all
such vectors {R} is called the direct lattice. The direct lattice is closed under the operation of vector
addition: if R and R’ are points in a Bravais lattice, then so is R+ R/.

A crystal is a periodic arrangement of lattice sites. The fundamental repeating unit is called the unit
cell. Not every crystal is a Bravais lattice, however. Indeed, Bravais lattices are special crystals in which
there is only one atom per unit cell. Consider, for example, the structure in fig. 5.4. The blue dots form
a square Bravais lattice with primitive direct lattice vectors a; = a @ and a, = a9y, where a is the lattice
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Figure 5.4: A crystal structure with an underlying square Bravais lattice and a three element basis.

constant, which is the distance between any neighboring pair of blue dots. The red squares and green
triangles, along with the blue dots, form a basis for the crystal structure which label each sublattice. Our
crystal in fig. 5.4 is formally classified as a square Bravais lattice with a three element basis. To specify
an arbitrary site in the crystal, we must specify both a direct lattice vector R as well as a basis index
J € {1l,...,r}, so that the location is R + n;. The vectors {n;} are the basis vectors for our crystal
structure. We see that a general crystal structure consists of a repeating unit, known as a unit cell. The
centers (or corners, if one prefers) of the unit cells form a Bravais lattice. Within a given unit cell, the
individual sublattice sites are located at positions 7, with respect to the unit cell position R.

Upon diagonalization, the Hamiltonian of eqn. 5.102 takes the form

=" ho,(k) (Ag(k) A, (k) + %) : (5.104)
k,a
where
[A,(k), Al(K')] = 00 Ot - (5.105)
The eigenfrequencies are solutions to the eigenvalue equation
N6 (k) elY (k) = M w2 (k) el () (5.106)
j7B
where B '
(k) = @ (R)eF R (5.107)
R

Here, k lies within the first Brillouin zone, which is the unit cell of the reciprocal lattice of points G

satisfying ¢’G'® = 1 for all G and R. The reciprocal lattice is also a Bravais lattice, with primitive



236 CHAPTER 5. NONINTERACTING QUANTUM SYSTEMS

reciprocal lattice vectors b, such that any point on the reciprocal lattice may be written G' = zld:l m,; b;.
One also has that a; - b, = 27J;;,. The index a ranges from 1 to d-r and labels the mode of oscillation at
wavevector k. The vector eEZ)(kz) is the polarization vector for the a™ phonon branch. In solids of high

symmetry, phonon modes can be classified as longitudinal or transverse excitations.

For a crystalline lattice with an r-element basis, there are then d - r phonon modes for each wavevector
k lying in the first Brillouin zone. If we impose periodic boundary conditions, then the k points within
the first Brillouin zone are themselves quantized, as in the d = 1 case where we found k = 27n/N. There
are N distinct k points in the first Brillouin zone — one for every direct lattice site. The total number of
modes is than d - r - IV, which is the total number of translational degrees of freedom in our system: rINV
total atoms (IV unit cells each with an r atom basis) each free to vibrate in d dimensions. Of the d - r
branches of phonon excitations, d of them will be acoustic modes whose frequency vanishes as k — 0.
The remaining d(r — 1) branches are optical modes and oscillate at finite frequencies. Basically, in an
acoustic mode, for k close to the (Brillouin) zone center k = 0, all the atoms in each unit cell move
together in the same direction at any moment of time. In an optical mode, the different basis atoms
move in different directions.

There is no number conservation law for phonons — they may be freely created or destroyed in anharmonic
processes, where two photons with wavevectors k and g can combine into a single phonon with wavevector
k + q, and vice versa. Therefore the chemical potential for phonons is u = 0. We define the density of
states g,(w) for the a'™ phonon mode as

d
g, () = %Zé(w—wa(k)) - VO/% 5w —wy(k)) (5.108)
k

BZ

where N is the number of unit cells, V), is the unit cell volume of the direct lattice, and the k sum

and integral are over the first Brillouin zone only. Note that w here has dimensions of frequency. The
o

functions g,(w) is normalized to unity: [dw g,(w) = 1. The total phonon density of states per unit cell
0

. . 5 d

is given by” g(w) = 355 ga(w) -

The grand potential for the phonon gas is

AT, V)=-k,Thn ] > o B (k) (ng (k)3 )
k,a nq(k)=0

=k, T ) In [2 sinh (%‘Zﬁ?)

k,a

(5.109)

= Nk;BT/dw g(w) In [2 sinh <2/<:BT>
0
[oX0)

Note that V' = NV, since there are N unit cells, each of volume V). The entropy is given by S = _(W)V
and thus the heat capacity is

920 T ho ¥ o hw
Cy = _TW = Nky /dw g(w) <2k‘BT> csch <2k‘BT> (5.110)
0

"Note the dimensions of g(w) are (frequency)™'. By contrast, the dimensions of g(¢) in eqn. 5.25 are (energy)™' -
(volume)~*. The difference lies in the a factor of Vy - i, where V, is the unit cell volume.
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Figure 5.5: Upper panel: phonon spectrum in elemental rhodium (Rh) at 7" = 297 K measured by high
precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324 (1998). Note the
three acoustic branches and no optical branches, corresponding to d = 3 and r = 1. Lower panel: phonon
spectrum in gallium arsenide (GaAs) at T = 12K, comparing theoretical lattice-dynamical calculations
with INS results of D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990). Note the three
acoustic branches and three optical branches, corresponding to d = 3 and r = 2. The Greek letters along
the z-axis indicate points of high symmetry in the Brillouin zone.

Note that as T — oo we have csch(2,':“’T) — 2’;57, and therefore
B

T—o00

lim Cy(T) = Nky /dw g(w) =rdNk, . (5.111)
0

This is the classical Dulong-Petit limit of %k‘B per quadratic degree of freedom; there are rIN atoms
moving in d dimensions, hence d - rN positions and an equal number of momenta, resulting in a high
temperature limit of C}, = rdNky.
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5.6.3 Einstein and Debye models

HIstorically, two models of lattice vibrations have received wide attention. First is the so-called Finstein
model, in which there is no dispersion to the individual phonon modes. We approximate g,(w) ~ 6(w—w,),

in which case
hw, 2 of hw,

At low temperatures, the contribution from each branch vanishes exponentially, since csch2(2h,:;‘ép) ~
4ewa/ksT 5 (. Real solids don’t behave this way.

A more realistic model. due to Debye, accounts for the low-lying acoustic phonon branches. Since the
acoustic phonon dispersion vanishes linearly with |k| as k — 0, there is no temperature at which the
acoustic phonons ‘freeze out’ exponentially, as in the case of Einstein phonons. Indeed, the Einstein
model is appropriate in describing the d (r—1) optical phonon branches, though it fails miserably for the
acoustic branches.

In the vicinity of the zone center k = 0 (also called I in crystallographic notation) the d acoustic modes
obey a linear dispersion, with w,(k) = c,(k) k. This results in an acoustic phonon density of states in
d = 3 dimensions of

o Vyw? 3V o
=52 2/471' 3R (wp —w) = 52 Y O(wp —w) (5.113)

where ¢ is an average acoustic phonon velocity (i.e. speed of sound) defined by

Z/m 308 (5.114)

and wy, is a cutoff known as the Debye frequency. The cutoff is necessary because the phonon branch
does not extend forever, but only to the boundaries of the Brillouin zone. Thus, w, should roughly be
equal to the energy of a zone boundary phonon. Alternatively, we can define w, by the normalization
condition

/dwg(w)::s e wy = (672 e (5.115)

This allows us to write g(w) = (9w?/wd) O(wp — w).

The specific heat due to the acoustic phonons is then

wWp
9Nk hw \ hiw
Cy(T) = —52 [ dw w? h?( ——
V(@) wj /ww <2kBT> e <2kBT>
0

— 9Nk, <2—T>3 $(0p/2T)

(5.116)
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Element Ag | Al | Au C Cd | Cr Cu Fe Mn
6, (K) 227 | 433 | 162 | 2250 | 210 | 606 | 347 | 477 | 409
Tert (K) || 962 | 660 | 1064 | 3500 | 321 | 1857 | 1083 | 1535 | 1245
Element Ni Pb Pt Si Sn Ta Ti AW Zn
e, (K) 477 | 105 | 237 | 645 | 199 | 246 | 420 | 383 | 329
Tert (K) || 1453 | 327 | 1772 | 1410 | 232 | 2996 | 1660 | 3410 | 420

Table 5.1: Debye temperatures (at 7" = 0) and melting points for some common elements (carbon is
assumed to be diamond and not graphite). (Source: the internet!)

where O, = Iwy, /k, is the Debye temperature and

x /3 -0
o(x) :/dt t* esch?t = (5.117)
0 /30 z— o0

Therefore,
%714Nk7B (T/6p) T < 6
Cy(T) = (5.118)
3Nkyg T > 6

Thus, the heat capacity due to acoustic phonons obeys the Dulong-Petit rule in that Cy,(T" — o0) = 3Nk,
corresponding to the three acoustic degrees of freedom per unit cell. The remaining contribution of
3(r — 1)Nkyg to the high temperature heat capacity comes from the optical modes not considered in the
Debye model. The low temperature 72 behavior of the heat capacity of crystalline solids is a generic
feature, and its detailed description is a triumph of the Debye model.

5.6.4 Melting and the Lindemann criterion
Atomic fluctuations in a crystal

For the one-dimensional chain, eqn. 5.100 gives

) on A\ ,
Uy, = z<2ka> (ap —a'}) . (5.119)
Therefore the RMS fluctuations at each site are given by
(up) = % > iy ii_y) = % > o (n(k)+3) (5.120)
- — Wy,

where n(k,T) = [exp(hw,/k;T) — 1] ~! is the Bose occupancy function.
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Let us now generalize this expression to the case of a d-dimensional solid. The appropriate expression for
the RMS position fluctuations of the i*" basis atom in each unit cell is

w(R) = ZZ M, (”a(k) +3) - (5.121)

k a=1""1ta

Here we sum over all wavevectors k in the first Brilliouin zone, and over all normal modes a. There are
dr normal modes per unit cell i.e. d branches of the phonon dispersion w, (k). (For the one-dimensional
chain with d = 1 and r = 1 there was only one such branch to consider). Note also the quantity M, (k),

which has units of mass and is defined in terms of the polarization vectors el(-i)(k) as

d
=" m)* (5.122)
pn=1

—-1/2

The dimensions of the polarization vector are [mass] , since the generalized orthonormality condition

on the normal modes is

ZM e (k) el (k) = 6%, (5.123)

where M, is the mass of the atom of species i within the unit cell (i € {1,...,7}). For our purposes we
can replace M, (k) by an appropriately averaged quantity which we call M, ; this ‘effective mass’ is then
independent of the mode index a as well as the wavevector k. We may then write

T B 1 |
(u?>m/dwg(w) Miw'{efw/kBT_1+§} : (5.124)

0

where we have dropped the site label R since translational invariance guarantees that the fluctuations
are the same from one unit cell to the next. Note that the fluctuations (u?) can be divided into a
temperature-dependent part (u >th and a temperature-independent quantum contribution (uf)

K
qu >
where

i g(w) 1
2 —
u; >th - Mz /dw w ’ ehw/kBT -1
0

o (5.125)
h g(w)
2 —
<uz>qu_2Mi/dw w
0
Let’s evaluate these contributions within the Debye model, where we replace g(w) by
- d2 wd—l
g(w) = — Owp, —w) . (5.126)
wD
We then find
Ph o (k,T\"!
(o= g () Fathan /)
) (5.127)
(u2), = N
At d—1 2Mw,



5.6. LATTICE VIBRATIONS : EINSTEIN AND DEBYE MODELS 241

where
x 2372/(d-2) z—0

Fy(z) = /ds proms e . (5.128)
0 ¢(d-1) T — 00

We can now extract from these expressions several important conclusions:

1) The T = 0 contribution to the the fluctuations, (u?)
there are no one-dimensional quantum solids.

qus diverges in d = 1 dimensions. Therefore

2) The thermal contribution to the fluctuations, (u?),,, diverges for any 7' > 0 whenever d < 2. This
is because the integrand of F)(x) goes as s9=3 as s — 0. Therefore, there are no two-dimensional

classical solids.

3) Both the above conclusions are valid in the thermodynamic limit. Finite size imposes a cutoff on
the frequency integrals, because there is a smallest wavevector k,;, ~ 27/L, where L is the (finite)
linear dimension of the system. This leads to a low frequency cutoff w_, = 2n¢/L, where ¢ is the
appropriately averaged acoustic phonon velocity from eqn. 5.114, which mitigates any divergences.

Lindemann melting criterion

An old phenomenological theory of melting due to Lindemann says that a crystalline solid melts when
the RMS fluctuations in the atomic positions exceeds a certain fraction i of the lattice constant a. We
therefore define the ratios

u? h2 Td—l
o=t e () o peu)
(5.129)

) Fau d? h2 1
vau a? 2(d—1) \M;a?k,) 6,

with @, = \ a7y +2f = /(] >/a.

Let’s now work through an example of a three-dimensional solid. We’ll assume a single element basis
(r =1). We have that

h2/4k
O/Aks _ 9k (5.130)
1 amu

According to table 5.1, the melting temperature always exceeds the Debye temperature, and often by a
great amount. We therefore assume 7' > ©,,, which puts us in the small x limit of F;(x). We then find

e e* 4T 4T\ O*
2 2
- = - = .= - 14+ = | = 131
Tm=g, v YTgrg " ( *@D>@D (5.131)
where 109K

o = . (5.132)

MTamu] - (a[A])?
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2 2

The total position fluctuation is of course the sum z* = x?th + T qu- Consider for example the case of

copper, with M = 56amu and a = 2.87 A. The Debye temperature is O, = 347K. From this we find
Ty, = 0.026, which says that at 7' = 0 the RMS fluctuations of the atomic positions are not quite three
percent of the lattice spacing (i.e. the distance between neighboring copper atoms). At room temperature,
T = 293K, one finds z;, = 0.048, which is about twice as large as the quantum contribution. How big
are the atomic position fluctuations at the melting point? According to our table, T\ , = 1083K for
copper, and from our formulae we obtain x = 0.096. The Lindemann criterion says that solids melt

when z(7T") ~ 0.1.

melt

We were very lucky to hit the magic number x_, = 0.1 with copper. Let’s try another example. Lead
has M = 208amu and a = 4.95A. The Debye temperature is O, = 105K (‘soft phonons’), and the
melting point is 7. . = 327K. From these data we obtain (7T = 0) = 0.014, x(293K) = 0.050 and

melt

(T = 327K) = 0.053. Same ballpark.

We can turn the analysis around and predict a melting temperature based on the Lindemann criterion
x(T, ) =1, where n = 0.1. We obtain

2
T, = <77£D - > -% . (5.133)

We call T, the Lindemann temperature. Most treatments of the Lindemann criterion ignore the quantum
correction, which gives the —1 contribution inside the above parentheses. But if we are more careful and
include it, we see that it may be possible to have T, < 0. This occurs for any crystal where O, < ©*/n?.

Consider for example the case of He, which at atmospheric pressure condenses into a liquid at 7, = 4.2 K
and remains in the liquid state down to absolute zero. At p = 1 atm, it never solidifies! Why? The number
density of liquid *He at p = latm and 7 = 0K is 2.2 x 10?2 cm™>. Let’s say the Helium atoms want
to form a crystalline lattice. We don’t know a priori what the lattice structure will be, so let’s for the
sake of simplicity assume a simple cubic lattice. From the number density we obtain a lattice spacing of
a = 3.57 A. OK now what do we take for the Debye temperature? Theoretically this should depend on the
microscopic force constants which enter the small oscillations problem (i.e. the spring constants between
pairs of helium atoms in equilibrium). We’ll use the expression we derived for the Debye frequency,
Wy = (67T2/V0)1/3E, where V), is the unit cell volume. We’ll take ¢ = 238m/s, which is the speed of
sound in liquid helium at 7" = 0. This gives O, = 19.8 K. We find ©* = 2.13K, and if we take n = 0.1
this gives ©* /n? = 213K, which significantly exceeds ©,. Thus, the solid should melt because the RMS
fluctuations in the atomic positions at absolute zero are huge: z, = (0*/ 0,)'/? = 0.33. By applying
pressure, one can get “He to crystallize above p, = 25atm (at absolute zero). Under pressure, the unit
cell volume V), decreases and the phonon velocity ¢ increases, so the Debye temperature itself increases.

It is important to recognize that the Lindemann criterion does not provide us with a theory of melting
per se. Rather it provides us with a heuristic which allows us to predict roughly when a solid should
melt.

5.6.5 Goldstone bosons

The vanishing of the acoustic phonon dispersion at k = 0 is a consequence of Goldstone’s theorem
which says that associated with every broken generator of a continuous symmetry there is an associated
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bosonic gapless excitation (i.e. one whose frequency w vanishes in the long wavelength limit). In the
case of phonons, the ‘broken generators’ are the symmetries under spatial translation in the z, y, and z
directions. The crystal selects a particular location for its center-of-mass, which breaks this symmetry.
There are, accordingly, three gapless acoustic phonons.

Magnetic materials support another branch of elementary excitations known as spin waves, or magnons.
In isotropic magnets, there is a global symmetry associated with rotations in internal spin space, described
by the group SU(2). If the system spontaneously magnetizes, meaning there is long-ranged ferromagnetic
order (11 ---), or long-ranged antiferromagnetic order (1J1] ---), then global spin rotation symmetry is
broken. Typically a particular direction is chosen for the magnetic moment (or staggered moment, in the
case of an antiferromagnet). Symmetry under rotations about this axis is then preserved, but rotations
which do not preserve the selected axis are ‘broken’. In the most straightforward case, that of the
antiferromagnet, there are two such rotations for SU(2), and concomitantly two gapless magnon branches,
with linearly vanishing dispersions w, (k). The situation is more subtle in the case of ferromagnets, because
the total magnetization is conserved by the dynamics (unlike the total staggered magnetization in the
case of antiferromagnets). Another wrinkle arises if there are long-ranged interactions present.

For our purposes, we can safely ignore the deep physical reasons underlying the gaplessness of Goldstone
bosons and simply posit a gapless dispersion relation of the form w(k) = A |k|?. The density of states for

d
. o . -—1 . . .
this excitation branch is then g(w) = Cw®  O(w, —w), where C is a constant and w,, is the cutoff, which

is the bandwidth for this excitation branch.® Normalizing the density of states for this branch results in
the identification w, = (d/aC)?/.

The heat capacity is then found to be

Fooaa (Y hw d 27 \¥/7
Cy _NkBC/dww <I<:BT> csch <2kBT> = ENkB<5> p(©/2T) (5.134)
0

where © = hw,/k, and

z g ydlo x—0
441 d
o(x) :/dt to " csch?t = (5.135)
0 2742+ 2)¢(2+4) 200

which is a generalization of our earlier results. Once again, we recover Dulong-Petit for kT > hw,, with
CV(T > hw,/ky) = Nks.

In an isotropic ferromagnet, i.e.a ferromagnetic material where there is full SU(2) symmetry in internal
‘spin’ space, the magnons have a k? dispersion. Thus, a bulk three-dimensional isotropic ferromagnet will
exhibit a heat capacity due to spin waves which behaves as T3/2 at low temperatures. For sufficiently
low temperatures this will overwhelm the phonon contribution, which behaves as T°.

4
2

_d
*If w(k) = Ak”, then C=2""%7m 207" A 7 g /I'(d/2).
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5.7 The Ideal Bose Gas

5.7.1 General formulation for noninteracting systems

Recall that the grand partition function for noninteracting bosons is given by

1

== H < i eﬁ(u—%)%) - H (1 — eﬁ(ﬂ—aa)>_ , (5.136)

a n,=0 a

In order for the sum to converge to the RHS above, we must have p < ¢, for all single-particle states |a).
The density of particles is then

1o\ 1 1T gl
n(T, /L) = —V <£>TV = V Z 7@B(EQ_N) 1 = /d€ 7@5(5_/1) 1 s (5137)

«
€o

where g(e) = % > . 0(e —€,) is the density of single particle states per unit volume. We assume that

g(e) = 0 for € < g,; typically ¢, = 0, as is the case for any dispersion of the form (k) = A|k|", for
example. However, in the presence of a magnetic field, we could have e(k, o) = Alk|" — gugHo, in which
case £y = —gpo|H|.

Clearly n(T, p) is an increasing function of both 7" and p. At fixed T, the maximum possible value for
n(T, p), called the critical density n.(T'), is achieved for p = ¢, i.e.

7 g(e)
o

The above integral converges provided g(g,) = 0, assuming g(¢) is continuous’. If g(gy) > 0, the integral
diverges, and n.(T) = oo. In this latter case, one can always invert the equation for n(7, u) to obtain
the chemical potential p(7,n). In the former case, where the n (T) is finite, we have a problem — what
happens if n > n (1) 7

In the former case, where n (7") is finite, we can equivalently restate the problem in terms of a critical
temperature T, (n), defined by the equation n.(7.) = n. For T' < T, , we apparently can no longer invert to
obtain u(T',n), so clearly something has gone wrong. The remedy is to recognize that the single particle
energy levels are discrete, and separate out the contribution from the lowest energy state €. I.e. we write

g n'!

1 & [ 9

€o

where g, is the degeneracy of the single particle state with energy ¢,. We assume that n is finite, which
means that Ny = Vn is extensive. We say that the particles have condensed into the state with energy

TOK, that isn’t quite true. For example, if g(¢) ~ 1/In¢, then the integral has a very weak Inln(1/n) divergence, where
7 is the lower cutoff. But for any power law density of states g(g) o< ¢” with r > 0, the integral converges.
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gy The quantity n, is the condensate density. The remaining particles, with density n’, are said to
comprise the overcondensate. With the total density n fixed, we have n = n, + n/. Note that n, finite
means that p is infinitesimally close to €:

p=cy— kBTln<1 + Vg—so> ~ ey — ggf;f (5.140)
Note also that if e, — y is finite, then ny oc V! is infinitesimal.
Thus, for T' < T,(n), we have p = g, with ny > 0, and
o0
n(T,ng) = ng + /da Aﬁ%ﬁ/(% . (5.141)
o

For T' > T.(n), we have ny = 0 and

n(T,p) = /da IO . (5.142)

€o

The equation for T.(n) is

_ 9(e)
n = /ds e T ] (5.143)

€o

For another take on ideal Bose gas condensation see the appendix in §5.10.

5.7.2 Ballistic dispersion

We already derived, in §5.3.3, expressions for n(7T', z) and p(T, z) for the ideal Bose gas (IBG) with ballistic
dispersion e(p) = p?/2m, We found

n(T,z) = g Ap" Liy(2)
’ (5.144)
p(T, Z) = gk:BT)‘;d Li%+1(z)v

where g is the internal (e.g. spin) degeneracy of each single particle energy level. Here z = et/ksT is the
fugacity and

oo

Li(z)= ) =

m=1

3

(5.145)

3(/3

is the polylogarithm function. For bosons with a spectrum bounded below by ¢, = 0, the fugacity takes
values on the interval z € [0, 1]°.

81t is easy to see that the chemical potential for noninteracting bosons can never exceed the minimum value ¢, of the
single particle dispersion.
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Figure 5.6: The polylogarithm function Lis(z) versus z for s = %, s = %, and s = % Note that
Lis(1) = ((s) diverges for s < 1.

Clearly n(T,z) = g)\;d Li,(z) is an increasing function of z for fixed T'. In fig. 5.6 we plot the function

2
Li (z) versus z for three different values of s. We note that the maximum value Li (z = 1) is finite if

s > 1. Thus, for d > 2, there is a mazimum density n,(T) = gLi,(2) )\}d which is an increasing

2
function of temperature T'. Put another way, if we fix the density n, then there is a critical temperature
T. below which there is no solution to the equation n = n(T, z). The critical temperature T,(n) is then
determined by the relation

d/2 2 2/d
ay [ mEgT, 2mh n
— a — [ = — | ——— . .14
" gC(Q) < 2mh? > Fo T m gg(%) (5.146)

What happens for T' < T, 7

As shown above in §5.7, we must separate out the contribution from the lowest energy single particle
mode, which for ballistic dispersion lies at ¢, = 0. Thus writing

11 1 1
n=g o1ty Za: T (5.147)

(eq>0)

where we have taken g = 1. Now V! is of course very small, since V is thermodynamically large, but if
i — 0 then 27! — 1 is also very small and their ratio can be finite, as we have seen. Indeed, if the density
of k = 0 bosons n is finite, then their total number IV, satisfies

1
Noy=Vny= g = z= TN No_l (5.148)
The chemical potential is then
—1 kBT —
p=k,Tlnz=—k,Tln(1+N;") ~— -0 . (5.149)

0

In other words, the chemical potential is infinitesimally negative, because N is assumed to be thermo-
dynamically large.
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According to eqn. 5.11, the contribution to the pressure from the k = 0 states is

Pl (1—2)=

So the k = 0 bosons, which we identify as the condensate, contribute nothing to the pressure.

Py = — (1+ Ny) — 0" . (5.150)

Having separated out the k = 0 mode, we can now replace the remaining sum over « by the usual integral
over k. We then have

T <T, : n—no—l—g((%) —d
(5.151)
p=gC(4+1) kT A
and
T>T, n=gliy(z) \p"
’ (5.152)

The condensate fraction ny/n is unity at T' = 0, when all particles are in the condensate with k = 0, and
decreases with increasing 7" until 7' = T, at which point it vanishes identically. Explicitly, we have

d d/2

no(T):l_gC(Czl) :1_< T > _ (5.153)
n n A T;(n)
Let us compute the internal energy F for the ideal Bose gas. We have
on on
) =10 ——_Q T—=0+4TS 5.154
B 0 (80)=2+5 55 o7 = 2+ (5.154)
and therefore
E=02+TS+ puN = puN + 5(5(2)
(5.155)
_ V(w ~ 35 (ﬁp)) = ldgVk, T \;° Lig,,(2)

This expression is valid at all temperatures, both above and below 7. Note that the condensate particles
do not contribute to F, because the k = 0 condensate particles carry no energy.

We now investigate the heat capacity Cy, y = (g_?)‘ﬂ n - Since we have been working in the GCE, it is
very important to note that IV is held constant when computing C', . We'll also restrict our attention
to the case d = 3 since the ideal Bose gas does not condense at finite 1" for d < 2 and d > 3 is unphysical.
While we’re at it, we’ll also set g = 1.

The number of particles is
Ny+¢(3/2) VA (T<T)
N = (5.156)
VR Liz o (2) T>T,) ,
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Figure 5.7: Molar heat capacity of the ideal Bose gas (units of R). Note the cusp at T' = T..

and the energy is

V

E=3kT X Ligjo(2) = 5pV . (5.157)
For T' < T, we have z = 1 and
OF Vv
Cyn = <—> =505/ ky — - (5.158)
’ oy R
The molar heat capacity is therefore
_ CVJV _ 15 3\—1
cyn(Tin) =N, - —~ = C(5/2) R~ (nA}) : (5.159)
For T' > T, we have
V. dTr V dz
15 . 3 .
dE‘V = IkBTL15/2(Z)E. ?+§kBTL13/2(Z)E . 7 N (5160)
where we have invoked eqn. 5.46. Taking the differential of N, we have
Vo dr V dz
dN|,, = 3 Ligp(2) = - 7 + Li; j9(2) = - — (5.161)
‘v 273/2 AT 1/2 Nz
We set dN = 0, which fixes dz in terms of dT’, resulting in
5 Tix (2 3 i, (2
cyn(T,2) = 3R |2 s22) _ 2Lisp(a)) (5.162)

. Li3/2(z) Li1/2(2)

To obtain ¢y, 5 (T',n), we must then invert the relation

(T, z) = A\p" Lig 5 (2) (5.163)
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in order to obtain z(T,n), and then insert this into eqn. 5.162. The results are shown in fig. 5.7. There
are several noteworthy features of this plot. First of all, by dimensional analysis the function ¢y, N(T,n)

is R times a function of the dimensionless ratio T/T.(n) o< Tn~2/3. Second, the high temperature limit
is %R, which is the classical value. Finally, there is a cusp at T'= T,(n).

For another example, see §5.11.

5.7.3 Isotherms for the ideal Bose gas

Let a be some length scale and define

2 h2 21 h2
3
- - T = — 5.164
Ya =4 ’ Pa =005 ’ T mak, ( )
Then we have

v, T 3/2 .

; = (i) L13/2(Z) + 'Ua no (5165)

5/2
D T .
p—a = <Ta> Ll5/2(2) N (5166)

where v = V/N is the volume per particle’ and ng is the condensate number density; n, vanishes for
T > T, where z = 1. One identifies a critical volume v (T") by setting z = 1 and n, = 0, leading to
v(T) = v, (T/T,)%?. For v < v (T), we set z =1 in eqn. 5.165 to find a relation between v, T, and n,.
For v > v (T'), we set ny = 0 in eqn. 5.165 to relate v, T', and z. Note that the pressure is independent
of volume for T' < T,. The isotherms in the (p,v) plane are then flat for v < v.. This resembles
the coexistence region familiar from our study of the thermodynamics of the liquid-gas transition. The
situation is depicted in fig. 5.8. In the (T,p) plane, we identify p.(T) = p,(T/T,)*/? as the critical
temperature at which condensation starts to occur.

Recall the Gibbs-Duhem equation, duy = —sdT'+vdp. Along a coexistence curve, we have the Clausius-

Clapeyron relation,
dp 89 — 81 l
_— pr— pr— .].
<dT>Coex Vg — Uy T Av 7 (5 67)

where ¢ = T (s, — s1) is the latent heat per mole, and Av = v, — v;. For ideal gas Bose condensation,
the coexistence curve resembles the red curve in the right hand panel of fig. 5.8. There is no meaning to
the shaded region where p > p.(T'). Nevertheless, it is tempting to associate the curve p = p (T) with
the coexistence of the k = 0 condensate and the remaining uncondensed (k # 0) bosons'".

The entropy in the coexistence region is given by

5 n

9Note that in the thermodynamics chapter we used v to denote the molar volume, N, V/N.
0The k # 0 particles are sometimes called the overcondensate.
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Figure 5.8: Phase diagrams for the ideal Bose gas. Left panel: (p,v) plane. The solid blue curves are
isotherms, and the green hatched region denotes v < v.(T"), where the system is partially condensed. Right
panel: (p,T) plane. The solid red curve is the coexistence curve p.(T), along which Bose condensation
occurs. No distinct thermodynamic phase exists in the yellow hatched region above p = p.(T).

All the entropy is thus carried by the uncondensed bosons, and the condensate carries zero entropy.
The Clausius-Clapeyron relation can then be interpreted as describing a phase equilibrium between the
condensate, for which s, = v, = 0, and the uncondensed bosons, for which s’ = s(T) and v/ = v (T).
So this identification forces us to conclude that the specific volume of the condensate is zero. This is
certainly false in an interacting Bose gas!

While one can identify, by analogy, a ‘latent heat’ ¢ = T'As = T's in the Clapeyron equation, it is
important to understand that there is no distinct thermodynamic phase associated with the region p >
pe(T'). Ideal Bose gas condensation is a second order transition, and not a first order transition.

5.7.4 The )transition in liquid ‘He

Helium has two stable isotopes. “He is a boson, consisting of two protons, two neutrons, and two electrons
(hence an even number of fermions). 3He is a fermion, with one less neutron than *He. Each *He atom
can be regarded as a tiny hard sphere of mass m = 6.65 x 1072 g and diameter a = 2.65 A. A sketch
of the phase diagram is shown in fig. 5.9. At atmospheric pressure, Helium liquefies at 7T} = 4.2 K. The
gas-liquid transition is first order, as usual. However, as one continues to cool, a second transition sets in
at T'=T, = 2.17K (at p = 1 atm). The A-transition, so named for the A-shaped anomaly in the specific
heat in the vicinity of the transition, as shown in fig. 5.10, is continuous (i.e. second order).

If we pretend that ‘He is a noninteracting Bose gas, then from the density of the liquid n = 2.2x10%? cm ™3,

we obtain a Bose-Einstein condensation temperature T, = %(n/{(3/2))2/3 = 3.16 K, which is in the

right ballpark. The specific heat C,(T') is found to be singular at 7" = T), with

C

(1) =A|T —T\(p)| " . (5.169)
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Figure 5.9: Phase diagram of “He. All phase boundaries are first order transition lines, with the exception
of the normal liquid-superfluid transition, which is second order. (Source: University of Helsinki)

« is an example of a critical exponent. We shall study the physics of critical phenomena later on in
this course. While the cusp singularity of the type found in fig. 5.7 suggests o = —1, this is true for
Cy(T), and for C,(T) one finds instead o = 3 (see the calculation in §5.12). The observed behavior
of C,(T) in “He is very nearly logarithmic in |T" — T}|. In fact, both theory (renormalization group
on the O(2) model) and experiment concur that « is almost zero but in fact slightly negative, with
a = —0.0127 £0.0003 in the best experiments (Lipa et al., 2003). The X transition is most definitely not
an ideal Bose gas condensation. Theoretically, in the parlance of critical phenomena, IBG condensation
and the A-transition in *He lie in different universality classes''. Unlike the IBG, the condensed phase
in *He is a distinct thermodynamic phase, known as a superfluid. Note that C,(T < T) for the IBG is
not even defined, since for T' < T, we have p = p(T") and therefore dp = 0 requires dT" = 0.

5.7.5 Fountain effect in superfluid ‘He

At temperatures T' < T\, liquid 4He has a superfluid component which is a type of Bose condensate. In
fact, there is an important difference between condensate fraction N,_,/N and superfluid density, which
is denoted by the symbol p,. In “He, for example, at T = 0 the condensate fraction is only about 8%,
while the superfluid fraction p,/p = 1. The distinction between N, and p, is very interesting but lies
beyond the scope of this course.

One aspect of the superfluid state is its complete absence of viscosity. For this reason, superfluids can flow
through tiny cracks called microleaks that will not pass normal fluid. Consider then a porous plug which
permits the passage of superfluid but not of normal fluid. The key feature of the superfluid component
is that it has zero energy density. Therefore even though there is a transfer of particles across the plug,

1IBG condensation is in the universality class of the spherical model. The A-transition is in the universality class of the
XY model.
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Figure 5.10: Specific heat of liquid *He in the vicinity of the A-transition. Data from M. J. Buckingham
and W. M. Fairbank, in Progress in Low Temperature Physics, C. J. Gortner, ed. (North-Holland, 1961).
Inset at upper right: more recent data of J. A. Lipa et al., Phys. Rev. B 68, 174518 (2003) performed
in zero gravity earth orbit, to within AT = 2nK of the transition.

there is no energy exchange, and therefore a temperature gradient across the plug can be maintained'?.

The elementary excitations in the superfluid state are sound waves called phonons. They are compres-
sional waves, just like longitudinal phonons in a solid, but here in a liquid. Their dispersion is acoustic,
given by w(k) = ck where ¢ = 238m/s.'® The have no internal degrees of freedom, hence g = 1. Like
phonons in a solid, the phonons in liquid helium are not conserved. Hence their chemical potential van-
ishes and these excitations are described by photon statistics. We can now compute the height difference
Ah in a U-tube experiment.

Clearly Ah = Ap/pg. so we must find p(7T') for the helium. In the grand canonical ensemble, we have

p=—0/V =k [ (df)?) In (1 = e hek/koT)

22 (kT (5.170)

uw? In(1 —e ™) =
c)3 87r3/d n(l—e™) 0 (he)3

12Recall that two bodies in thermal equilibrium will have identical temperatures if they are free to exchange energy.
3The phonon velocity c¢ is slightly temperature dependent.

Ne)
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Figure 5.11: The fountain effect. In each case, a temperature gradient is maintained across a porous
plug through which only superfluid can flow. This results in a pressure gradient which can result in a
fountain or an elevated column in a U-tube.

Let’s assume T' = 1 K. We'll need the density of liquid helium, p = 148 kg/m3.

dh  2m% (kTN kg
dT ~ 45 < he ) 09

Cor? (0 (13X 10°BJ/K)(K) ) (138 x 107P J/K)
TS <(1.055 X 10~ . s)(238m/s)> " (148kg/m?)(9.8m/s2)

(5.171)

~32cm/K |

a very noticeable effect!

5.7.6 Bose condensation in optical traps

The 2001 Nobel Prize in Physics was awarded to Weiman, Cornell, and Ketterle for the experimental
observation of Bose condensation in dilute atomic gases. The experimental techniques required to trap
and cool such systems are a true tour de force, and we shall not enter into a discussion of the details
here'.
The optical trapping of neutral bosonic atoms, such as 8”Rb, results in a confining potential V' (r) which
is quadratic in the atomic positions. Thus, the single particle Hamiltonian for a given atom is written

2 W o1 2.2 2,2 2.2

H:—%V + tm(wi 2® +wiy? + w3 z?) (5.172)
where w5 5 are the angular frequencies of the trap. This is an anisotropic three-dimensional harmonic
oscillator, the solution of which is separable into a product of one-dimensional harmonic oscillator wave-
functions. The eigenspectrum is then given by a sum of one-dimensional spectra, viz.

1 1 1

(ny + 3) hwy + (ng + 3) hwy + (n3 + 3) hws . (5.173)

Ny,Ng,Ng

MMany reliable descriptions may be found on the web. Check Wikipedia, for example.
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According to eqn. 5.13, the number of particles in the system is

o o0 00
N et Z Z Z |:y—1 e"lﬁwl/kBT eth/JJ?/kBT enSEWS/kBT o 1]

n,;=0 ny,=0 nyz=0

oo
_ k 1 1 1
= k:1y 1_ e—khwl/kBT 1— e—kﬁMQ/kBT 1— e—khw?)/kBT )

where we've defined y = et/ksT e=hw/2kpT g=hwy/2kgT o=hws/2ksT < [0 1]

-1

(5.174)

Let’s assume that the trap is approximately anisotropic, which entails that the frequency ratios w;/w,
etc. are all numbers on the order of one. Let us further assume that kT > hw, 5 3. Then

koT/khw; k < k*(T)
~ (5.175)
1 k> k*(T)

1
1 — o Fhw,/kyT

where k*(T') = kpT/hi > 1, with © = (w; wywg) /3 We then have

E*+1 e T\3 EL k
N(T,y)~ 4 +< = >Zy (5.176)

— » 3
11—y hwkzlk

where the first term on the RHS is due to & > k* and the second term from k& < k* in the previous sum.
Since k* > 1 and since the sum of inverse cubes is convergent, we may safely extend the limit on the
above sum to infinity. To help make more sense of the first term, write N, = (y_1 — 1)_1 for the number
of particles in the (n;,n4,n3) = (0,0,0) state. Then y = N,/(Ny + 1), which is true always. The issue
vis-a-vis Bose-Einstein condensation is whether N, > 1. At any rate, we now see that we can write

ko (kT
N ~ Ny (1 +N0_1) Mt < 7% >L13(y) . (5.177)
As for the first term, we have
0 Ny<k*
Ny (1+NH™ = (5.178)

Thus, as in the case of IBG condensation of ballistic particles, we identify the critical temperature by the
condition y = Ny/(Ny+ 1) =~ 1, and we have

Cho [ N\ 7 18
Tc_k—3<@> _4.5<100HZ>N [nK] (5.179)

where 7 = w/2m. We see that kT, > hw if the number of particles in the trap is large: N > 1. In this
regime, we have

3
T<T, : N:N0+C(3)<k;§>

. N <khi§>3Li3(y) (5.180)

T>1T
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It is interesting to note that BEC can also occur in two-dimensional traps, which is to say traps which are
very anisotropic, with oblate equipotential surfaces V(r) = Vj,. This happens when hwy > k;T > w1 o-

We then have
_ 5 6N\
=2 _ k@ . <6;T_2> (5.181)
B

with w = (w; wz) 2 The particle number then obeys a set of equations like those in eqns. 5.180, mutatis
mutandis®’ .

For extremely prolate traps, with wy < w5, the situation is different because Li; (y) diverges for y = 1.
We then have
kT

N = N,
0+m3

In (14 Ny) . (5.182)

Here we have simply replaced y by the equivalent expression N,/(N,+1). If our criterion for condensation
is that Ny = aN, where a is some fractional value, then we have

T.(a) =(1—«a) h]/;u_; . % . (5.183)

5.8 The Ideal Fermi Gas

5.8.1 Grand potential and particle number
The grand potential of the ideal Fermi gas is, per eqn. 5.11,

T, V,p) = -Vk,TY In (1 4 eh/kpT e—ea/kBT)

00 (5.184)
- VK, T / de g(¢) In (1 n ew—e)/'fBT)

The average number of particles in a state with energy ¢ is
(e) = - (5.185
ne) = T 11 185)

hence the total number of particles is

N = Vood ( __ (5.186
=V |deg(e) T 1 -186)

2

"Explicitly, one replaces ((3) with ¢(2) = %, Liz(y) with Lis(y), and (kBT/hE))S with (kBT/hw)z.
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Figure 5.12: The Fermi distribution, f(e) = [exp(e/ksT) + 1]_1. Here we have set kg = 1 and taken
p =2, with T = 5 (blue), T = 2 (green), and 7' =2 (red). In the 7' — 0 limit, f(€) approaches a step
function ©(—e).

5.8.2 The Fermi distribution

We define the function )

ee/kBT +1

f(e)

known as the Fermi distribution. In the T — oo limit, f(e) — % for all finite values of e. As T'— 0, f(e)
approaches a step function ©(—e). The average number of particles in a state of energy ¢ in a system at
temperature 7" and chemical potential p is n(e) = f(e — p). In fig. 5.12 we plot f(e — p) versus € for
three representative temperatures.

: (5.187)

5.8.3 T =0 and the Fermi surface

At T = 0, we therefore have n(e) = O(u — €), which says that all single particle energy states up to
e = u are filled, and all energy states above ¢ = p are empty. We call u(7T" = 0) the Fermi energy:
ep = u(T = 0). If the single particle dispersion (k) depends only on the wavevector k, then the locus
of points in k-space for which (k) = e is called the Fermi surface. For isotropic systems, e(k) = (k)
is a function only of the magnitude k& = |k|, and the Fermi surface is a sphere in d = 3 or a circle in
d = 2. The radius of this circle is the Fermi wavevector, kp. When there is internal (e.g. spin) degree
of freedom, there is a Fermi surface and Fermi wavevector (for isotropic systems) for each polarization
state of the internal degree of freedom.

Let’s compute the Fermi wavevector kp and Fermi energy ey for the IFG with a ballistic dispersion
e(k) = h?k?/2m. The number density is

d; d

and thus
ngoy =gkp/m . ngo=ghki/4mr . ngy=ghp/6n" | (5.189)
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where 2, = 2142 /T'(d/2) is the area of the unit sphere in d space dimensions. Note that the form
of n(kp) is independent of the dispersion relation, so long as it remains isotropic. Inverting the above
expressions, we obtain ky(n) = 2r(dn/g 2,)"/¢:

kpgo =m0/8 . kpgo=(mn/e)'? . k.= (67°n/g)' . (5.190)

The Fermi energy in each case, for ballistic dispersion, is given by

__ Pk _ 2R (dn 2/d (5.151)
F™%m = m g2, ’ '
and so
242, 2 2 2 2.\ 2/3
T=h*n 2rh*n h 6mn
ER,d=1 — W ) EF,d=2 = gm ) €p,d=3 = o ( z > (5.192)

Another useful result for the ballistic dispersion, which follows from the above, is that the density of
states at the Fermi level is given by
(ep) = g2, mki? _d n
PR = ond TR T 2

(5.193)

That g(ep) must be a numerical factor multiplied by e /n is obvious on dimensional grounds.

For the electron gas, we have g = 2. In a metal, one typically has kp ~ 0.5 A to 2A_1, and ep ~
1eV — 10eV. Due to the effects of the crystalline lattice, electrons in a solid behave as if they had an
effective mass m* which is typically on the order of the electron mass but very often about an order of
magnitude smaller, particularly in semiconductors.

Nonisotropic dispersions (k) are more interesting in that they give rise to non-spherical Fermi surfaces.
The simplest example is that of a two-dimensional ‘tight-binding’ model of electrons hopping on a square
lattice, as may be appropriate in certain layered materials. The dispersion relation is then

e(ky, k,) = =2t cos(k,a) — 2t cos(k,a) (5.194)

T
)

where k, and k, are confined to the interval [ o g] . The quantity ¢ has dimensions of energy and is known
as the hopping integral. The Fermi surface is the set of points (k,, k,) which satisfies (k,, k,) = ep . When
min __

ep achieves its minimum value of e = —4¢, the Fermi surface collapses to a point at (k,,k,) = (0,0).

For energies just above this minimum value, we can expand the dispersion in a power series, writing

e(ky, ky) = -4t +ta® (kI + k) — 5 ta (ky + k) +... . (5.195)
If we only work to quadratic order in k, and k,, the dispersion is isotropic, and the Fermi surface is a
circle, with k2 = (ep+4t)/ta®. As the energy increases further, the continuous O(2) rotational invariance
is broken down to the discrete group of rotations of the square, C;,. The Fermi surfaces distort and
eventually, at ep = 0, the Fermi surface is itself a square. As ey increases further, the square turns back
into a circle, but centered about the point (g, g) Note that everything is periodic in k, and k, modulo
%”. The Fermi surfaces for this model are depicted in the upper right panel of fig. 5.13.
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Figure 5.13: Fermi surfaces for two and three-dimensional structures. Upper left: free particles in two
dimensions. Upper right: ‘tight binding’ electrons on a square lattice. Lower left: Fermi surface for
cesium, which is predominantly composed of electrons in the 6s orbital shell. Lower right: the Fermi
surface of yttrium has two parts. One part (yellow) is predominantly due to 5s electrons, while the other
(pink) is due to 4d electrons. (Source: www.phys.ufl.edu/fermisurface/)

Fermi surfaces in three dimensions can be very interesting indeed, and of great importance in under-
standing the electronic properties of solids. Two examples are shown in the bottom panels of fig. 5.13.
The electronic configuration of cesium (Cs) is [Xe] 6s'. The 6s electrons ‘hop’ from site to site on a body
centered cubic (BCC) lattice, a generalization of the simple two-dimensional square lattice hopping model
discussed above. The elementary unit cell in k space, known as the first Brillouin zone, turns out to be
a dodecahedron. In yttrium, the electronic structure is [Kr] 552 4d!, and there are two electronic energy
bands at the Fermi level, meaning two Fermi surfaces. Yttrium forms a hexagonal close packed (HCP)
crystal structure, and its first Brillouin zone is shaped like a hexagonal pillbox.

Spin-split Fermi surfaces

Consider an electron gas in an external magnetic field H. The single particle Hamiltonian is then

A~ p2

H= o +ugHo | (5.196)
where p, is the Bohr magneton, u, = eh/2mc = 5.788 x 107%eV /G . It is convenient to keep in mind
the ratio pg/k; = 6.717 x 1075 K/G. where m is the electron mass. What happens at T = 0 to a

noninteracting electron gas in a magnetic field?
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Electrons of each spin polarization form their own Fermi surfaces. That is, there is an up spin Fermi
surface, with Fermi wavevector kg,, and a down spin Fermi surface, with Fermi wavevector kg . The
individual Fermi energies, on the other hand, must be equal, hence

h2k2 h2k2
T —
om +pgt = om psH (5.197)
which says
2eH
kp| — kg = —— 5.198
Fl — FFp Tie ( )
The total density is
_ fey | ey kipy + kipy = 67 5.199

Clearly the down spin Fermi surface grows and the up spin Fermi surface shrinks with increasing H.
Eventually, the minority spin Fermi surface vanishes altogether. This happens for the up spins when
kpy = 0. Solving for the critical field, we obtain

H, = %  (67%n)"? (5.200)

In real magnetic solids, like cobalt and nickel, the spin-split Fermi surfaces are not spheres, just like the
case of the (spin degenerate) Fermi surfaces for Cs and Y shown in fig. 5.13.

5.8.4 The Sommerfeld expansion

In dealing with the ideal Fermi gas, we will repeatedly encounter integrals of the form
T(T.) = [d= fe = ole) - (5.201)

The Sommerfeld expansion provides a systematic way of expanding these expressions in powers of T" and
is an important analytical tool in analyzing the low temperature properties of the ideal Fermi gas (IFG).

We start by defining

€

P(e) = / de’ ¢(£") (5.202)

so that ¢(e) = @'(¢). We then have
I:/daf(s—,u)d—g :—/daf'(s) D(p+e) (5.203)

where we assume @(—o0) = 0. Next, we invoke Taylor’s theorem, to write

@(u—i—s):Z——:exp

=" AP
n! dum

d
2 € @> D(p) . (5.204)
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Figure 5.14: Deformation of the complex integration contour in eqn. 5.207.

This last expression involving the exponential of a differential operator may appear overly formal but it
proves extremely useful. Since

fie) = —— e (5.205)
kT (ee/kBT + 1)2
we can write -
evD
7= / I e 20 (5.206)

with v = ¢/k,T, where D = kT % is a dimensionless differential operator. The integral can now be

done using the methods of complex integration:'¢

ood evD & R evD
/ Yt e + 1) 7”7; Clesner )
o0 - v=(n+1)in (5.207)
o ) 27D iwD
= —27i ZDe@"H)”D = —% =7D cscmD
n=0
Thus,
I(T, ) = mDcse(nD) D(p) (5.208)

which is to be understood as the differential operator 7D csc(mD) = wD/sin(wD) acting on the function
&(pn). Appealing once more to Taylor’s theorem, we have

W e T

mDcsc(nD) =1+ 6 (ksT) + . (5.209)

a2+ ag0 BT gt

16Note that writing v = (2n+1) im + € we have e*’ = —1F e — 18+, so (e’ +1)(e”"+1) = —€*+... We then expand
e’D = (@n+1)inD (1+e€D +...) to find the residue: Res = —D e(ZnFDinD,
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Thus,
7 i 2 T
ﬂﬂ@z/%ﬂwww@=/¢M@+g%ﬂfwm+%ﬂ%ﬂ%Wm+m . (5.210)

If ¢(e) is a polynomial function of its argument, then each derivative effectively reduces the order of the
polynomial by one degree, and the dimensionless parameter of the expansion is (7'/u)2. This procedure
is known as the Sommerfeld expansion.

Chemical potential shift

As our first application of the Sommerfeld expansion formalism, let us compute u(n,T') for the ideal
Fermi gas. The number density n(T, u) is

e w )
n :/de g(e) fle — ) :/de g(e) + % (ksT)? g () + ... . (5.211)

Let us write p = e + 6, where e = (7" = 0,n) is the Fermi energy, which is the chemical potential at
T = 0. We then have

eptou )
n = /dsg(&?) + % (kyT)? ¢’ (ep + Op) + . ..
o (5.212)
EF 9
T
= [degte) + gter) ut T (TP o o) o
from which we derive
m g'(ep)
op=—— (k,T7)> 2L 0T . 5.213
5 (T 25 o) (5213)
Note that ¢'/g = (Ing)’. For a ballistic dispersion, assuming g = 2,
d% h2k? mk(e)
=2 [——§le— = 5.214
9(5) /(27T)3 <6 2m ) 72h? k(e):% 2me ( )
Thus, g(¢) x €¥/? and (Ing)’ = 371, so
72 (kyT)?
T)=¢ep— — —2 21
:u(nv ) EF 12 ep + ) (5 5)

where ep(n) = %(377271)2/3.
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Specific heat

The energy of the electron gas is

oo

o I CEC

n 2
— [dege)e+ T T 2 (ngli)) + .
K. a (5.216)

F
2 2
Z/dE gle)e +glep) ep op + 3 (ksT)?ep ' (ep) + 3 (ksT)? g(ep) + - ..
2

s
:€0+€ (kBT)2g(EF)+... ,

R
where ¢, = [ de g(¢)e. is the ground state energy density (i.e. ground state energy per unit volume).
—00

Thus, to order T2,

E 2
Cyn = oF = L VIR Tg(ep) = VAT (5.217)
, or Jyn 3

where v(n) = ”—32 k2 g(ep(n)) . Note that the molar heat capacity is

N, 2 kyTglep) m (kT
— A =_R. B2 21

where in the last expression on the RHS we have assumed a ballistic dispersion, for which

g(ep)  gmkp 672 3
= . = . 21
n 2m2h? gkd  2ep (5:219)

The molar heat capacity in eqn. 5.218 is to be compared with the classical ideal gas value of %R. Relative
to the classical ideal gas, the IFG value is reduced by a fraction of (72/3) x (kzT'/ep), which in most
metals is very small and even at room temperature is only on the order of 1072. Most of the heat capacity
of metals at room temperature is due to the energy stored in lattice vibrations.

A niftier way to derive the heat capacity'”: Starting with eqn. 5.213 for u(T) — ep = 6u(T), note that
g(ep) = dn/dep , so we may write opu = —%z(kBT)z(dg/dn) + O(T*). Next, use the Maxwell relation
(0S/ON )1y = —(0p/0T) v to arrive at

Js _ ? 2 59(5F) 3
<a_n>T =73 kT e +0(T°) , (5.220)

where s = S/V is the entropy per unit volume. Now use S(T" = 0) = 0 and integrate with respect to the
density n to arrive at S(T,V, N) = VAT, where v(n) is defined above.

71 thank my colleague Tarun Grover for this observation.
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5.8.5 Magnetic susceptibility
Pauli paramagnetism

Magnetism has two origins: (i) orbital currents of charged particles, and (ii) intrinsic magnetic moment.
The intrinsic magnetic moment m of a particle is related to its quantum mechanical spin according to
m = gu,S/h, where 2320 is the magneton. Here g is the particle’s g-factor, p, its magnetic moment,

and S is the vector of quantum mechanical spin operators satisfying [Sa, SB] = ihe By S7, i.e. SU(2)
commutation relations. The Hamiltonian for a single particle is then

Jr ( qA>2 H-m ( +6A>2+g H (5.221)

= - = —H-m= - = o .
om \P 7 ¢ om P T4 o He ’

where in the last line we’ve restricted our attention to the electron, for which ¢ = —e. The g-factor

for an electron is g = 2 at tree level, and when radiative corrections are accounted for using quantum
electrodynamics (QED) one finds g = 2.0023193043617(15). For our purposes we can take g = 2, although
we can always absorb the small difference into the definition of p, writing u, — iy, = geh/4me. We've
chosen the 2-axis in spin space to point in the direction of the magnetic field, and we wrote the eigenvalues
of S* as %ha, where o0 = +1. The quantity m™ is the effective mass of the electron, which we mentioned
earlier. An important distinction is that it is m* which enters into the kinetic energy term p?/2m*, but
it is the electron mass m itself (m = 511keV) which enters into the definition of the Bohr magneton. We
shall discuss the consequences of this further below.

In the absence of orbital magnetic coupling, the single particle dispersion is

h2k?
eolk) = 5 +igHo . (5.222)

At T = 0, we have the results of §5.8.3. At finite T', we once again use the Sommerfeld expansion. We
then have

o0 [e.e]

n= gt + [degye) s
=3 /dé? {9(6 — AgH) +g(e + ﬂBH)} fle=p) (5.223)
— [ae{oe) + R g"E) . 1)
We now invoke the Sommerfeld expension to find the temperature dependence:
: 2
T -
n= [de g(e) + T (kT () + (i o) + ..

(5.224)

€
2

= [deg(e) + gler) S+ T (TP o' (ex) + (i HP o' (56) +

—00
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Figure 5.15: Fermi distributions in the presence of an external Zeeman-coupled magnetic field.

Note that the density of states for spin species o is g,(¢) =  g(e — fisHo) , where g(e) is the total density
of states per unit volume, for both spin species, in the absence of a magnetic field. We conclude that the
chemical potential shift in an external field is

71.2 !
Su(T,n, H) = _{E (k,T)* + (ﬂBH)2} % +o (5.225)

We next compute the difference ng—mn; in the densities of up and down spin electrons:

n=n = [de{o(e) - 9,0} £ - n)

= %/da {g(s—ﬂBH) —9(€+ﬁBH)}f(5_N)

—0o0

= —jigH - wDcsc(nD) g(pu) + O(H?)

(5.226)

We needn’t go beyond the trivial lowest order term in the Sommerfeld expansion, because H is already
assumed to be small. Thus, the magnetization density is

M = ~fig(ny —n)) = i gle) H . (5.227)

in which the magnetic susceptibility is

Y= (g—f‘;) — 2 gler) (5.228)

This is called the Pauli paramagnetic susceptibility.
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Landau diamagnetism

When orbital effects are included, the single particle energy levels are given by

h2k?
k 1 z
(Tl, zaa) ( + 2) C 2m

Here n is a Landau level index, and w. = eH/m*c is the cyclotron frequency. Note that

inHo . (5.229)

ﬂBH gehH m*c g m”

Z. 5.230
hw, dmc heH 4 m ( )

Accordingly, we define the ratio r = (g/2) x (m*/m). We can then write

h2k?
k 5.231
e(n,k,,0) = (n+ 3+ 3r0) Sy ( )
The grand potential is then given by

0=-"21 .k T/ Z Z In [1 + eM/kpT o= (ntg+570)hw/kgT e-h?kz/zm*kBT] ‘ (5.232)

n=0o0=%1

A few words are in order here regarding the prefactor. In the presence of a uniform magnetic field, the
energy levels of a two-dimensional ballistic charged particle collapse into Landau levels. The number of
states per Landau level scales with the area of the system, and is equal to the number of flux quanta
through the system: N, = H A/¢y, where ¢y = hc/e is the Dirac flux quantum. Note that

%;4 L, kT = hw, - ; , (5.233)
hence we can write
T, V,p, H) = Tw, f: > Q(n+ 5+ 3ro)hw.—p) (5.234)
n=0o==1
where -
Qe) = —% / d;jr n[l +e—€/kBTe—"’/2k5/2m*’fBT} : (5.235)

We now invoke the Euler-MacLaurin formula,

i F(n) = /da; F(z)+ 3 F(0)— 5 F(0)+... (5.236)
n=0 0

resulting in

0= Z /d&? Qe — p) O — 3(1 + or)hw,)

+Z[ Q1+ o), — 1) — 5 (o) Q (31 + o) — 1) + ... |

(5.237)
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We next expand in powers of the magnetic field H to obtain
T, V,p, H) =2 / de Qe — ) + (7% = 73) (hwe)* Q'(=p) + ... (5.238)

Thus, the magnetic susceptibility is

0’2 /
=k P )i ) (- 2@ w)

2 2
g m ~2 2
B <Z‘3m*2>'“B'” A

where r is the isothermal compressibility'®. In most metals we have m* ~ m and the term in brackets is
positive (recall g &~ 2). In semiconductors, however, we can have m* < m; for example in GaAs we have
m* = 0.067 m . Thus, semiconductors can have a diamagnetic response. If we take g = 2 and m* = m, we
see that the orbital currents give rise to a diamagnetic contribution to the magnetic susceptibility which
is exactly —% times as large as the contribution arising from Zeeman coupling. The net result is then
paramagnetic (X > 0) and % as large as the Pauli susceptibility. The orbital currents can be understood
within the context of Lenz’s law.

(5.239)

Exercise : Show that —Z Q'(—p) = n?k.

5.8.6 Moment formation in interacting itinerant electron systems
The Hubbard model

A noninteracting electron gas exhibits paramagnetism or diamagnetism, depending on the sign of X,
but never develops a spontaneous magnetic moment: M (H = 0) = 0. What gives rise to magnetism
in solids? Overwhelmingly, the answer is that Coulomb repulsion between electrons is responsible for
magnetism, in those instances in which magnetism arises. At first thought this might seem odd, since
the Coulomb interaction is spin-independent. How then can it lead to a spontaneous magnetic moment?

To understand how Coulomb repulsion leads to magnetism, it is useful to consider a model interacting
system, described by the Hamiltonian

H:—tZ(w ja—l—cjacw>—|—Uanan—|—,uBH ch TopCig - (5.240)

1,0 i,0,8

This is none other than the famous Hubbard model, which has served as a kind of Rosetta stone for
interacting electron systems. The first term describes hopping of electrons along the links of some regular
lattice (the symbol ij denotes a link between sites ¢ and j). The second term describes the local (on-
site) repulsion of electrons. This is a single orbital model, so the repulsion exists when one tries to put
two electrons in the orbital, with opposite spin polarization. Typically the Hubbard U parameter is

1870 2 __19% _ 2
We've used — < (“)*_Va_,ﬂ*n K.
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on the order of electron volts. The last term is the Zeeman interaction of the electron spins with an
external magnetic field. Orbital effects can be modeled by associating a phase exp(iA4, j) to the hopping

matrix element ¢ between sites i and j, where the directed sum of Aij around a plaquette yields the
total magnetic flux through the plaquette in units of ¢, = hc/e. We will ignore orbital effects here.
Note that the interaction term is short-ranged, whereas the Coulomb interaction falls off as 1/|R; — R;].
The Hubbard model is thus unrealistic, although screening effects in metals do effectively render the
interaction to be short-ranged.

Within the Hubbard model, the interaction term is local and written as U ngny on any given site. This
term favors a local moment. This is because the chemical potential will fix the mean value of the total
occupancy n, +n,, in which case it always pays to maximize the difference |nT -n ¢|.

Stoner mean field theory

There are no general methods available to solve for even the ground state of an interacting many-body
Hamiltonian. We’ll solve this problem using a mean field theory due to Stoner. The idea is to write the
occupancy n,, as a sum of average and fluctuating terms:

Njg = <nio> + 5”@'0' . (5241)

Here, (n,,) is the thermodynamic average; the above equation may then be taken as a definition of the
fluctuating piece, dn,,. We assume that the average is site-independent. This is a significant assumption,
for while we understand why each site should favor developing a moment, it is not clear that all these local
moments should want to line up parallel to each other. Indeed, on a bipartite lattice, it is possible that the
individual local moments on neighboring sites will be antiparallel, corresponding to an antiferromagnetic
order of the pins. Our mean field theory will be one for ferromagnetic states.

We now write the interaction term as
(Auct®)?
——
nymy = (ng) (ny) + (ny) ony | + (ny) ong+ dny, oy
= —(ny) (n)) + (ny) ny + () ngy + O((6n)?)
=1(m? —n?) + In (s + 1) + im (ngp —ngy) + O((6n)?)

(5.242)

where n and m are the average occupancy per spin and average spin polarization, each per unit cell:

n= <n¢> + <nT>

5.243
m= <n¢> - <nT> ) ( )

i.e. (n,) = 3(n — om). The mean field grand canonical Hamiltonian K = H — N, may then be written
as

KM= -1 Z tij <C;racja + C;r'acia) — (1 —3Un) Z clotio
0.0 o

+ (,uBH + %Um) Zac;[acw + iNsitCs U(m2 - n2) ,

1o

(5.244)
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where we’ve quantized spins along the direction of H, defined as 2. You should take note of two things
here. First, the chemical potential is shifted downward (or the electron energies shifted upward) by an
amount %U n, corresponding to the average energy of repulsion with the background. Second, the effective
magnetic field has been shifted by an amount %Um/ g, so the effective field is

Um

Hq,s=H
off * 21

(5.245)

The bare single particle dispersions are given by ¢, (k) = —t(k) + o, H, where

t(k) =) t(R)e ™F (5.246)
R

and t;; = t(R;,—R;). For nearest neighbor hopping on a d-dimensional cubic lattice, t(k) = —t Ezzl cos(k,a),
where a is the lattice constant. Including the mean field effects, the effective single particle dispersions

become
g,(k)=—i(k) = iUn+ (uH + sUm) o . (5.247)

We now solve the mean field theory, by obtaining the free energy per site, ¢(n,T, H). First, note that
¢ = w + pn, where w = 2/Ngites is the Landau, or grand canonical, free energy per site. This follows
from the general relation {2 = F'— uN; note that the total electron number is N = nNg;tes, since n is the
electron number per unit cell (including both spin species). If g(e) is the density of states per unit cell
(rather than per unit volume), then we have'”

¢ =2U(m*+n?) + in — %kBT/da g(e) { In (1 + e(ﬁ_e_A)/kBT) +1In (1 + e(ﬁ_€+A)/kBT)} (5.248)

—00

where 1 = u — %U nand A= pu,H + %U m. From this free energy we derive two self-consistent equations
for u and m. The first comes from demanding that ¢ be a function of n and not of u, i.e. dp/Ou = 0,
which leads to

o0

n:%/dsg(s){f(a—A—,u)+f(€+A—u)} , (5.249)

— 00

where f(y) = [exp(y/k;T) + 1] " is the Fermi function. The second equation comes from minimizing f

with respect to average moment m:

m:%/dsg(e){f(s—A—ﬂ)—f(s+A—,a)} . (5.250)

Here, we will solve the first equation, eq. 5.249, and use the results to generate a Landau expansion of
the free energy ¢ in powers of m?. We assume that A is small, in which case we may write

o0

n = /dsg(s) {f(a — )+ 322 (e — )+ 5 A (e — ) +} . (5.251)

—0o0

9Note that we have written un = an + %Un2, which explains the sign of the coefficient of n?.
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We write fi(A) = fig + 0 and expand in df. Since n is fixed in our (canonical) ensemble, we have

o0

n= /d&? g(e) f(e — Ro) (5.252)

—00

which defines fiy(n,T).?’ The remaining terms in the §ji expansion of eqn. 5.251 must sum to zero. This
yields

D(fig) 671 + 3 4% D' (j1g) + 5(611) D' (fig) + 5 D" (i) A% 6 + 51 D" (i) A* + O(A%) =0, (5.253)
where -
D) = [deg() (e = 1) (5.254)

is the thermally averaged bare density of states at energy u. Note that the k™ derivative is

D) =~ [deg¥E) Fle 1) (5.255)
Solving for dji, we obtain
ofi = —2a; A% — 3 (3a] — 6ajay + ag) A+ 0(A%) (5.256)

where a, = D) (fi,)/D(fip) -

After integrating by parts and inserting this result for §i into our expression for the free energy f, we
obtain the expansion

(D' ()]

C,D(TL,T, m) = QDO(an) + %Um2 - %D(laO) A2 + %( D(ﬂ )
0

— %D”(g@) Aty (5.257)

where prime denotes differentiation with respect to argument, at m = 0, and

oo

wo(n,T) = 1Un* + njiy — /da N(e) f(e—Ho) (5.258)

—00

where g(g) = N'(¢), so N (e) is the integrated bare density of states per unit cell in the absence of any
magnetic field (including both spin species).

We assume that H and m are small, in which case

U
90:@0+%am2+%bm4—%XOH2—2—XOHm—|—... , (5.259)

U

20The Gibbs-Duhem relation guarantees that such an equation of state exists, relating any three intensive thermodynamic
quantities.
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Figure 5.16: A graduate student experiences the Stoner enhancement

where X, = u2 D(fiy) is the Pauli susceptibility, and

D')?
o= lU(1-1UD) | b=§<%—%0"> vt (5.260)

where the argument of each D) above is fiy(n, T). The magnetization density (per unit cell, rather than

per unit volume) is given by
8@0 UXO

M=——F—=XH . 5.261
OH o+ 2y " ( )
Minimizing with respect to m yields
UX
am+bm® — L H=0 |, (5.262)
24
which gives, for small m,
H
m = Xo — (5.263)
We therefore obtain M = X H with
X
X = 1 _Og ’ (5.264)
Uc

where U, = 2/D(f,) is the critical value of U. The denominator of X increases the susceptibility above
the bare Pauli value X,,, and is referred to as — I kid you not — the Stoner enhancement (see fig. 5.16).

It is worth emphasizing that the magnetization per unit cell is given by

— = pgm . (5.265)

This is an operator identity and is valid for any value of m, and not only small m.
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When H = 0 we can still get a magnetic moment, provided U > U,. This is a consequence of the simple
Landau theory we have derived. Solving for m when H = 0 gives m = 0 when U < U, and

1/2
m(U) = i<2bUUC> JT=T. | (5.266)

when U > U., and assuming b > 0. Thus we have the usual mean field order parameter exponent of

B=1.

Antiferromagnetic solution

In addition to ferromagnetism, there may be other ordered states which solve the mean field theory. One
such example is antiferromagnetism. On a bipartite lattice, the antiferromagnetic mean field theory is
obtained from

(ni,) = gn+ 30 m (5.267)
where Q = (7/a,7/a,...,7/a) is the antiferromagnetic ordering wavevector. The grand canonical Hamil-
tonian is then

1
-2 Z tl]( CivCio + c;rcrcw> - Un Z CioCio

7-] g
+ = Um Z e’Q Ri 5 chw %Nsitos U(m2 - n2) (5.268)
_1 T t > 5(k)—ﬂ+§Un 50Um > Cro 1a7. 2 .2
= c c + 7 Ngites U (M n ,
2%;( ko Tk+Q,o < %aUm E(k:—i—Q)—,u—F%Un et 0.0 1Vsites U )
(5.269)
where (k) = —f(k), as before. On a bipartite lattice, with nearest neighbor hopping only, we have
e(k+Q) = —e(k). The above matrix is diagonalized by a unitary transformation, yielding the eigenvalues
Ay =+/e2(k)+ A% — [ (5.270)
with A = %Um and 1 = p — %Un as before. The free energy per unit cell is then
o= LU(m? +n?) + in — Y6, T [ de g(e) { In (1 + e(ﬂ—\/e_um‘)/kBT) T 1n <1 + e(u+\/_52+4‘2)/kBT>}
(5.271)
The mean field equations are then
n= %/d&?g(&?) {f(—\/s2 + A% — ﬂ) + f(\/€2 + A% — ﬂ) } (5.272)

- %/ds s I (VET 2 ) (Ve T2 ) (5.273)

As in the case of the ferromagnet, a paramagnetic solution with m = 0 always exists, in which case the
second of the above equations is no longer valid.
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Mean field phase diagram of the Hubbard model

Let us compare the mean field theories for the ferromagnetic and antiferromagnetic states at 7' =0 and
H = 0. Due to particle-hole symmetry, we may assume 0 < n < 1 without loss of generality. (The
solutions repeat themselves under n — 2 — n.) For the paramagnet, we have

i

n = /da g(e) (5.274)
E ,1
o= 1Un? + / de g(e)e (5.275)

with g = p — %U n is the ‘renormalized’ Fermi energy and g(¢) is the density of states per unit cell in the
absence of any explicit (H) or implicit (m) symmetry breaking, including both spin polarizations.

For the ferromagnet,

fi—A fi+A
n= %/de g(e) + %/de g(e) (5.276)
AN a+A
4 _ / de (o) (5.277)
U
- A

A2 fi—A i+ A
p=tunt - T+ [age)e + [dege)e . (5.278)

Here, A = %U m is nonzero in the ordered phase.

Finally, the antiferromagnetic mean field equations are
o0 [ee]
Np<o = / de g(e) ; Ngso =2 — / de g(e) (5.279)
EO 50

2 [ )

— = [ de ———=— 5.280
U / € 1/62 + A2 ( )
€o

2

A o
= 1Un*+ Nid —/dag(a) Ver+ A2 (5.281)

€o

where ¢, = /2 — A2 and A = %U m as before. Note that || > A for these solutions. Exactly at
half-filling, we have n =1 and 1 = 0. We then set ¢, = 0.



5.8. THE IDEAL FERMI GAS 273

square lattice DOS

0t L
0 0.5 1 1.5 2

Figure 5.17: Mean field phase diagram of the Hubbard model, including paramagnetic (P), ferromagnetic
(F), and antiferromagnetic (A) phases. Left panel: results using a semicircular density of states function
of half-bandwidth W. Right panel: results using a two-dimensional square lattice density of states with
nearest neighbor hopping ¢, from J. E. Hirsch, Phys. Rev. B 31, 4403 (1985). The phase boundary
between F and A phases is first order.

The paramagnet to ferromagnet transition may be first or second order, depending on the details of
g(g). If second order, it occurs at U = 1/g(fi,), where fip(n) is the paramagnetic solution for fi. The
paramagnet to antiferromagnet transition is always second order in this mean field theory, since the RHS

[e.e]
of eqn. (5.280) is a monotonic function of A. This transition occurs at U2 =2 / [de g(¢) e~!. Note that
bp
U2 — 0 logarithmically for n — 1, since i, = 0 at half-filling.
For large U, the ferromagnetic solution always has the lowest energy, and therefore if U} < UY, there
will be a first-order antiferromagnet to ferromagnet transition at some value U* > UY. In fig. 5.17, 1
plot the phase diagram obtained by solving the mean field equations assuming a semicircular density of
states g(e) = %W‘2\/ W2 — 2. Also shown is the phase diagram for the d = 2 square lattice Hubbard
model obtained by J. Hirsch (1985).

How well does Stoner theory describe the physics of the Hubbard model? Quantum Monte Carlo calcula-
tions by J. Hirsch (1985) found that the actual phase diagram of the d = 2 square lattice Hubbard Model
exhibits no ferromagnetism for any n up to U = 10. Furthermore, he found the antiferromagnetic phase
to be entirely confined to the vertical line n = 1. For n # 1 and 0 < U < 10, the system is a param-
agnet’'. These results were state-of-the art at the time, but both computing power as well as numerical

2! A theorem due to Nagaoka establishes that the ground state is ferromagnetic for the case of a single hole in the U = oo
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algorithms for interacting quantum systems have advanced considerably since 1985. Yet as of 2018, we
still don’t have a clear understanding of the d = 2 Hubbard model’s T = 0 phase diagram! There is
an emerging body of numerical evidence?” that in the underdoped (n < 1) regime, there are portions of
the phase diagram which exhibit a stripe ordering, in which antiferromagnetic order is interrupted by a
parallel array of line defects containing excess holes (i.e. the absence of an electron)?®. This problem has
turned out to be unexpectedly rich, complex, and numerically difficult to resolve due to the presence of
competing ordered states, such as d-wave superconductivity and spiral magnetic phases, which lie nearby
in energy with respect to the putative stripe ground state.

In order to achieve a ferromagnetic solution, it appears necessary to introduce geometric frustration,
either by including a next-nearest-neighbor hopping amplitude ¢’ or by defining the model on non-bipartite
lattices. Numerical work by M. Ulmke (1997) showed the existence of a ferromagnetic phase at 7' = 0 on
the FCC lattice Hubbard model for U = 6 and n € [0.15,0.87] (approximately).

5.8.7 White dwarf stars

There is a nice discussion of this material in R. K. Pathria, Statistical Mechanics. As a model, consider
a mass M ~ 1033 g of helium at nuclear densities of p ~ 107 g/cm? and temperature T ~ 107 K. This
temperature is much larger than the ionization energy of *He, hence we may safely assume that all helium
atoms are ionized. If there are N electrons, then the number of a particles (i.e. “He nuclei) must be %N .
The mass of the « particle is m,, ~ 4m,,. The total stellar mass M is almost completely due to a particle
cores.

The electron density is then

= = ~ 103 ¢cm ™3 5.282
Vv 2m,, o ’ ( )

n —=

N 2-M/4mp P
Vv

since M = N -m,+ +N - 4m,,. From the number density n we find for the electrons

kp = (372n)'/3 = 2.14 x 101 cm ™!
pp = hkp = 2.26 x 107" gcm/s (5.283)
me = (9.1 x 10728 g)(3 x 10'%m/s) = 2.7 x 107" gcm/s

Since p, ~ mec, we conclude that the electrons are relativistic. The Fermi temperature will then be
Ty ~ mc? ~ 100eV ~ 102 K. Thus, T < T; which says that the electron gas is degenerate and may
be considered to be at T ~ 0. So we need to understand the ground state properties of the relativistic
electron gas.

The kinetic energy is given by

e(p) = VP22 +m2ct —me* . (5.284)

system on bipartite lattices.

228ee J. P. F. LeBlanc et al., Phys. Rev. X 5, 041041 (2015) and B. Zheng et al., Science 358, 1155 (2017).

23 The best case for stripe order has been made at 7' = 0, U/t = 8, and hold doping z = % (i.e. m = %)
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The velocity is

Oe pc?
v = _
op p?c? + m2ct
The pressure in the ground state is
Pr
1 p2c?
—lplp v) = —— R e —
po = (P v) = oo /dpp e

0
O

m4c5 4.5

= /d@ sinh?g = 921720713 (sinh(46y) — 8sinh(20p) + 12 6)
0

3m2h3

where we use the substitution

p=mcsinhf |, ov=ctanhf — 9:%1n<2t2>

Note that pp = hky = h(372n)'/3, and that

n = == 37T2n—9—7T—M
C2m )V - 8 Rm,

Now in equilibrium the pressure p is balanced by gravitational pressure. We have

dEy = —podV = —po(R) - 4rR*dR
This must be balanced by gravity:
GM?
R2
where v depends on the radial mass distribution. Equilibrium then implies

v GM?

dE, =7+

dr

To find the relation R = R(M), we must solve

v gM2 m405

= R 96270 (sinh(46p) — 8sinh(26p) + 126p)

Note that
L5 6, —0
sinh(46y) — 8sinh(20y) + 120y =

1,40
5 eF Op — 00

Thus, we may write

2 (on m )PP 0. — 0
15m2m 8 R3m, F

v gM?

pO(R) = E R4

he 9r M 4/3 O — 0o
1272 \ '8 R3 m, F

275

(5.285)

(5.286)

(5.287)

(5.288)

(5.289)

(5.290)

(5.291)

(5.292)

(5.293)

(5.294)
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Figure 5.18: Mass-radius relationship for white dwarf stars. (Source: Wikipedia).

In the limit # — 0, we solve for R(M) and find

h2

S VetV 5.295
Gm‘g/gli/?’ ( )

_ 3 (971')2/3

In the opposite limit 6 — oo, the R factors divide out and we obtain

1/2 3/2
M=M 9<37T> <@> L (5.296)

ul\y) \a) m
To find the R dependence, we must go beyond the lowest order expansion of eqn. 5.293, in which case

we find
() (@)@

The value M, is the limiting size for a white dwarf. It is called the Chandrasekhar limit.

5.9 Appendix I : Second Quantization

5.9.1 Basis states and creation/annihilation operators

Second quantization is a convenient scheme to label basis states of a many particle quantum system. We
are ultimately interested in solutions of the many-body Schrédinger equation,

HU(x,,...,xy)=EV(x,, ..., xy) (5.298)
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where the Hamiltonian is

ZV2—|—ZV:E —x;) . (5.299)

To the coordinate labels {x;,...x,} we may also append labels for internal degrees of freedom, such as
spin polarization, denoted {(;,...,{y}. Since [ﬁ,a] = 0 for all permutations o € Sy, the many-body
wavefunctions may be chosen to transform according to irreducible representations of the symmetric
group Sy. Thus, for any o € Sy,

1
\Il(ma(l)""’md(N)) = {sgn(a)}ql(mlv"'va) ) (5300)

where the upper choice is for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics. Here

x; may include not only the spatial coordinates of particle j, but its internal quantum number(s) as well,

such as ¢;.

A convenient basis for the many body states is obtained from the single-particle eigenstates {|a>} of
some single-particle Hamiltonian H , with (& |a) = ¢, (x) and Hy|a) = ¢, |a). The basis may be taken
as orthonormal, i.e. <a ‘ o > = 0, Now define

(@) 0o (@) - (5301

sy (@1 ) = mz{sgn }%am

Here n, is the number of times the index a appears among the set {a;,...,ay}. For BE statistics,
ng, € {0,1,2,...}, whereas for FD statistics, n, € {0,1} . Note that the above states are normalized?*:

N
d d 2 1 1 d.
/d ‘Tl/d TN ‘\I/al---aN(wlw-'aa:N)‘ N'H Z {sgn(a,u)} H/d Ly (paa(j )(pa#(ﬂ( j)
o Mg ! j=1

cr,uGS

= > H =1 (5.302)

Oc [e'h UESN] 1

Note that
D P @) e (@) = per{p, (@)}
75w (5.303)
D sen(0) g (@) e (@) =det{g, (z)}
oeSy
which stand for permanent and determinant, respectively. We may now write
\Ifal,,,aN(azl,... ,TN) = <ar:1, Cee Ty ‘ Q- --aN> , (5.304)
where
R ! 5.305
[oaan) = mgezs,v{sgm} ) @ g ) @ lagy) - (5:305)

24In the normalization integrals, each [ d% implicitly includes a sum 3 ¢ over any internal indices that may be present.
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Note that ]ao_(l) Sy ) = (£1)7 |ay ---ay ), where by (£1)7 we mean 1 in the case of BE statistics
and sgn (o) in the case of FD statistics.

We may express |a; ---ay ) as a product of creation operators acting on a vacuum |0) in Fock space.
For bosons,

T\n

|a1---aN>:1;[(%|o>z|{na}> , (5.306)

with
[bo ] =0 [pl.b] =0, [by.bh] =6 . (5.307)

where [e, @] is the commutator. For fermions,

|041"'04N>2021022"‘CLN\0>E\{%}> , (5.308)

with
{ca, cﬁ} =0 , {cL, CTB} =0 , {ca, c};} =0up > (5.309)

where {o, e} is the anticommutator.

5.9.2 Second quantized operators

Now consider the action of permutation-symmetric first quantized operators such as T=-1 ZZ 1 V2
and V = ZK] o(x; — ;). For a one-body operator such as T, we have

/ddxl y -/dde <Hna!>_1/2 ( Hn;!) s (5.310)

Mz

< 3 (@176 (@) b
UESN k=1
-y (ﬂ)“(]‘[na!n;!) Z IT 6. ()/dd:nl en (@) Ty (@1)
7€ “ =G

One may verify that any permutation-symmetric one-body operator such as T is faithfully represented
by the second quantized expression,

~

T=Y (a|T|B)lts | (5.311)
B

where w:& is b:& or c:& as the application determines, and

<a\T|5>=/ddﬂfl (@) Ty pglay) (5.312)

Similarly, two-body operators such as V are represented as

V=1 (aB|VI]y8)ehvvse, (5.313)

a7/B7775
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where
(aB|V|yd) = /d /d Ty pn (1) Ph(x) v(X] — 9) P5(T) 0. (1) - (5.314)
The general form for an n-body operator is then
- 1 .
51...g:

Finally, if the Hamiltonian is noninteracting, consisting solely of one-body operators H = va 1 hZ , then

H=) e.dbva (5.316)

where {€,} is the spectrum of each single particle Hamiltonian izl

5.10 Appendix II : Ideal Bose Gas Condensation

We begin with the grand canonical Hamiltonian K = H — uN for the ideal Bose gas,

K = Z 1) blb, —\/_Z v bl + 7, b,) (5.317)

Here b;rc is the creation operator for a boson in a state of wavevector k, hence [bk, bz,] = 04~ The
dispersion relation is given by the function €,, which is the energy of a particle with wavevector k. We
must have €, — p > 0 for all k, lest the spectrum of K be unbounded from below. The fields {v, 7}
break a global O(2) symmetry.

Students who have not taken a course in solid state physics can skip the following paragraph, and be
aware that N = V/v, is the total volume of the system in units of a fundamental "unit cell” volume.
The thermodynamic limit is then N — oo. Note that N is not the boson particle number, which we’ll
call V.

Solid state physics boilerplate : We presume a setting in which the real space Hamiltonian is defined
by some boson hopping model on a Bravais lattice. The wavevectors k are then restricted to the first
Brillouin zone, Q, and assuming periodic boundary conditions are quantized according to the condition
exp(z'Nl k - al) =1foralll € {1,...,d}, where a; is the I*" fundamental direct lattice vector and N, is
the size of the system in the a; direction; d is the dimension of space. The total number of unit cells is
N = [[, N,. Thus, quantization entails k = ) ,(2mn,/N,) b, , where b, is the I*" elementary reciprocal
lattice vector (a;- b, = 27d,,) and n, ranges over N, distinct integers such that the allowed k points form
a discrete approximation to Q.

To solve, we first shift the boson creation and annihilation operators, writing

2
K= Z ) BB, — Z@ : (5.318)
K kM
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where
ﬁ:b_VNVk IBT:bT_
k k ey ) k k ey

(5.319)

Note that [ﬁk, ﬁ,i,] = 0,y S0 the above transformation is canonical. The Landau free energy {2 =
—kgT'In =, where 5 = Tr e E/ksT is given by

0= Nk:BT/de g(e) In (1 —e=o/hTy - Ny~ ki |”k| (5.320)
e k Sk
where g(g) is the density of energy states per unit cell,
1 d¥
= — 6(e — o(e — . 5.321
00) = 3 320 5 [ t-=) (5.321)

je})

Note that

Yy = — = : (5.322)

1
— (b= ——
) N op, M
In the condensed phase, 1), is nonzero.

The Landau free energy (grand potential) is a function (T, N, u,v, 7). We now make a Legendre
transformation,

Y(T,N,,u,?[),?[)) :Q(T7N7:uvl/717)+NZ(VkQZk+Dkwk) : (5323)
k
Note that 9y 90
8_% = 8—17k + Ny, =0 (5.324)

by the definition of 1. Similarly, 0Y/0v,, = 0. We now have

Y(T,N,p,9,%) = Nk, T / de g(e) In (1 — e /BT) £ NS "(e), — ) 1] (5.325)
k

Therefore, the boson particle number per unit cell is given by the dimensionless density,

N A0 s 0D
ne =y - Ll / , (5.326)

—o0
and the condensate amplitude at wavevector k is

1 9Y
Vg = Now, (e — 1) ¥r - (5.327)

Recall that v, acts as an external field. Let the dispersion &, be minimized at k = K. Without loss of
generality, we may assume this minimum value is e = 0. We see that if v;, = 0 then one of two must
be true:
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(i) ), =0 for all k

(ii) p = e, in which case ¢ can be nonzero.

Thus, for v = 7 = 0 and p > 0, we have the usual equation of state,

n(T, 1) = / ge— 99 (5.328)
ce=m/ksT _ 1

which relates the intensive variables n, T', and pu. When p = 0, the equation of state becomes

ns (1)

A

n(T, 1= 0) = 24 [ge96) 5.329
w=0) =3 gl + [de—=0 : (5.329)
K e ef/Fpt — 1

where now the sum is over only those K for which ez = 0. Typically this set has only one member,
K = 0, but it is quite possible, due to symmetry reasons, that there are more such K values. This last
equation of state is one which relates the intensive variables n, T', and n, , where ny = >, |¢ K]2 is the
dimensionless condensate density. If the integral n. (7)) in eqn. 5.329 is finite, then for n > ny(T") we
must have n, > 0. Note that, for any 7', n. (T") diverges logarithmically whenever g(0) is finite. This
means that eqn. 5.328 can always be inverted to yield a finite p(n,T'), no matter how large the value of
n, in which case there is no condensation and ny, = 0. If g(g) o< e* with a > 0, the integral converges and
n+ (T') is finite and monotonically increasing for all T'. Thus, for fixed dimensionless number n, there will
be a critical temperature T, for which n =n_ (T,). For T' < T,, eqn. 5.328 has no solution for any p and
we must appeal to eqn. 5.329. The condensate density, given by ny(n,T) =n —n- (T'), is then finite for
T < T,, and vanishes for 7" > T, .

In the condensed phase, the phase of the order parameter 1 inherits its phase from the external field
v, which is taken to zero, in the same way the magnetization in the symmetry-broken phase of an Ising
ferromagnet inherits its direction from an applied field h which is taken to zero. The important feature
is that in both cases the applied field is taken to zero after the approach to the thermodynamic limit.

5.11 Appendix III : Example Bose Condensation Problem

PROBLEM: A three-dimensional gas of noninteracting bosonic particles obeys the dispersion relation (k) =
12
Alk|

(a) Obtain an expression for the density n(7T,z) where z = exp(u/kgT) is the fugacity. Simplify your
expression as best you can, adimensionalizing any integral or infinite sum which may appear. You
may find it convenient to define

o0

1
o /dt i Zku . (5.330)
0

Note Li,(z)(1) = ¢(v), the Riemann zeta function.
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(b) Find the critical temperature for Bose condensation, T.(n). Your expression should only include
the density n, the constant A, physical constants, and numerical factors (which may be expressed
in terms of integrals or infinite sums).

(c) What is the condensate density n, when 7' = £ T..?

(d) Do you expect the second virial coefficient to be positive or negative? Explain your reasoning. (You
don’t have to do any calculation.)

SOLUTION: We work in the grand canonical ensemble, using Bose-Einstein statistics.

(a) The density for Bose-Einstein particles are given by

(T2 / & |
) (2m)3 2t exp(AKY/2 kL T) — 1

(kTN TS 120 (kTN
—F<A>/d8m—?<7 Lig(2)
0

where we have changed integration variables from k to s = AkY?/k,T, and we have defined the
functions Li,(z) as above, in eqn. 5.330. Note Li, (1) = {(v), the Riemann zeta function.

(5.331)

(b) Bose condensation sets in for z = 1, i.e. u = 0. Thus, the critical temperature T, and the density
n are related by

6
n= 12(;(2(6) (kilTC> , (5.332)
or ) o
To(n) = é(%) . (5.333)
(¢) For T < T, we have
n=ng+ 12(;2(6) <ki34T>6 =ny+ <%>6 n o, (5.334)
where n, is the condensate density. Thus, at T' = %TC,
ny(T =1T,) = Bn. (5.335)
(d) The virial expansion of the equation of state is
p= nkBT<1 + By(T)n+ Bs(T)n? + .. ) . (5.336)

We expect By(T') < 0 for noninteracting bosons, reflecting the tendency of the bosons to condense.
(Correspondingly, for noninteracting fermions we expect By(T') > 0.)
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For the curious, we compute By(T') by eliminating the fugacity z from the equations for n(T, z) and
p(T, z). First, we find p(T), z):

p(T,z) = —kBT/(;ij;?) In (1 —z exp(—Ak‘l/z/k:BT)>

oo 5.337)
key T (kT Lo 120k, T (kTN (
—;2<2>/dss5ln(1—ze ) = 7T2B <Z>L17(z).
0
Expanding in powers of the fugacity, we have
120 [ k,T\° PR
6 (5.338)
b _ @ kBT {Z + 2_2 + i + }
kT w2 \ A 27 3T
Solving for z(n) using the first equation, we obtain, to order n?,
w2 ASn 1 2450\
=l = ———= on?) . 5.339
‘ <120 (k;BT)6> 26 (120 (k;BT)6> +0() (5.339)
Plugging this into the equation for p(T, z), we obtain the first nontrivial term in the virial expansion,
with ) 5
m A
By(T) = ——— 5.340
2(T) = ~ 15360 (k:BT> ’ (5:340)

which is negative, as expected. Note that the ideal gas law is recovered for T"— oo, for fixed n.

5.12 Appendix IV : (), y for the Ideal Bose Gas

=

The phase diagram for the ideal Bose gas in the (T,p) plane was considered in §5.7.3 and in fig. 5.8.
Let’s compute the behavior of C’p7 ~N(T,p,N) and explore how it behaves as one approaches the critical
curve p = p,(T) = ((5/2) kT /A3 . We found that when the fugacity z = exp(u/k,T) is larger than one,
then the density and pressure are given by

n(z,T) = Lign(2) Az . p(2,T) = Ligj(2) ks T A (5.341)

The energy is £ = %pV, as we obtained in eqn. 5.157.

To obtain C,, y, we first set dp = 0, which is of course equivalent to setting dInp = 0:

o Lis/z(z)
Lis/z(z)

OF oV 5 (oV
g e p— = = > . . 4
Co <8T>p7N+p<8T>p7N 2p<8T>p7N (5.:343)

dlnp =0 (5.342)

5Li z
dlnz—l—%dlnT = <8lnz> = — 5/2()
P

81HT 3L13/2(Z)

We wish to evaluate



284 CHAPTER 5. NONINTERACTING QUANTUM SYSTEMS

Thus, we need

<8_V> B <8N/n> N <81nn>
or J, n or J,n n\ T J,n

_ N {Li1/2(2) <81nz> . §} N {5L15/2(z) Liyjo(2) §} (5.344)
nT | Ligp(2) \OWT ), = 2f T | 2Lij,(2) 2
Thus, we have
- NiCpn _ 25R L?5/2(Z) {Li5 /2(:2) Liyj(z) §} | -
: N 4 Lign(2) ng/z(z) 5

where R = N, k; is the gas constant.

As we approach the critical line p = p (T'), the fugacity approaches unity: z — 1. In this limit we have
Lig o(z = 1) = ((3/2) and Liz (2 — 1) = ¢(5/2), but Li; »(z — 1) is divergent. We write z = exp(—e),
with

» Li; ()
Po(T) = /2 =1-¢3/2)e+... (5.346)
allows us to write
S (1 - L) . (5.347)
¢(3/2) (T)
Here we have appealed to the expansion in eqn. 5.48, which also gives
Lijjp(e™) = ﬁ[%} TR (5.348)

Thus, from eqn. 5.344, we have that Cp N diverges as we approach p = p.(T") from below as

257 C2(5/2) (p(T)—p\ ?
cpn(T,p) = fcg/g(?{/;) <pl()C()T)p> o (5.349)

Equivalently, we can consider approaching the curve T'= T, (p) from the right. In both cases we have

e (Top) < [p=pe(D)| 7, eun(Tip) x [T =To(0)] 7 (5.350)

In other words, the critical exponent is @ = 3. and unlike ¢y y(T,n) which has a cusp at T' = T,(n) yet

. . . . 925
remains finite, the specific heat at constant pressure diverges®”.

%I thank Andre Vieira for prompting me to clarify the differences between cy, y (T, n) and c, x(7,p) in this context.
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Classical Interacting Systems
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6.2 Ising Model

6.2.1 Definition

The simplest model of an interacting system consists of a lattice £ of sites, each of which contains a spin
o; which may be either up (o, = +1) or down (0; = —1). The Hamiltonian is

]fI:—JZUin—MOHZUi . (6.1)
(i7) g

When J > 0, the preferred (i.e. lowest energy) configuration of neighboring spins is that they are aligned,
i.e. 0;0; = +1. The interaction is then called ferromagnetic. When J < 0 the preference is for anti-

alignment, i.e. 0;0; = —1, which is antiferromagnetic.

This model is not exactly solvable in general. In one dimension, the solution is quite straightforward.
In two dimensions, Onsager’s solution of the model (with H = 0) is among the most celebrated results
in statistical physics. In higher dimensions the system has been studied by numerical simulations (the
Monte Carlo method) and by field theoretic calculations (renormalization group), but no exact solutions
exist.

6.2.2 Ising model in one dimension

Consider a one-dimensional ring of N sites. The ordinary canonical partition function is then

Z

ring

N

=Tre PH = Z H ePIonnt1 Brotlon (6.2)
{o,} n=1

where o, = 0y owing to periodic (ring) boundary conditions. We can replace the factor ,eProHon in

the above expression with e’Fof (@ntoni1)/ 2 since the product over n yields the same result. We then
obtain Z = Tr (RN ), where R is a 2 x 2 matrix with entries

— eﬁ]aa’ eBuOH(J+U’)/2

eBI B g=BugH |

R

oo’

called the transfer matriz. Expressed in terms of the Pauli matrices 7%, we have

R = ¢%7 cosh(BugH) + 7 sinh(BugH) 7° + e P/ 7% . (6.4)

Since the trace of a matrix is invariant under a similarity transformation, we have
Z(T,H,N) =Y + N (6.5)

where A, are the eigenvalues of R, viz.

Ay (T, H) = P/ cosh(BugH) + \/ewJ sinh?(BuyH) + =267 . (6.6)
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In the thermodynamic limit, N — oo, and the larger )\4]\_[ term dominates exponentially. We them have
F(I'H,N)=—-Nk,Tln\ (T,H) . (6.7)

From the free energy, we can compute the magnetization,

TN\ fsinh® (g H) + 197
and the zero field isothermal susceptibility,
1 oM z
wr)y =+ 2 = Ho 2T (6.9)

=N oH |y, kT

Note that in the noninteracting limit J — 0 we recover the familiar result for a free spin. The effect of the
interactions at low temperature is to vastly increase the susceptibility. Rather than a set of independent
single spins, the system effectively behaves as if it were composed of large blocks of spins, where the block
size £ is the correlation length, to be derived below.

The physical properties of the system are often elucidated by evaluation of various correlation functions.
Accordingly, we define C(n) = (0, 0,,,1), where

Tr (Ul R0102 T Ranan+1 On+1 Ran+lan+2 e RO'NO'l) Tr (Z R"Z RN_n)

(010p11) = T () = T (RY) , (6.10)

with 0 < n < N, and where Z = 77 is the Pauli matrix. To compute this ratio, we decompose R in terms
of its eigenvectors, writing R = A, |[4+)(4+| + A_ [=)(—|. Then

_ M Z2 M Z2_ (M NNz, Z

cn) A AN ’

(6.11)

with Z, , = (u|Z|p') being the matrix elements of Z in the eigenbasis of R.

6.2.3 Zero external field

Consider the case H = 0, where R = ¢/ + 77/ 7%, Then |£) = == (|1) £[})), i.e. the eigenvectors of

V2
R are
1 1
Yy = VG <j:1> ) (6.12)
which entails Z,, = Z__ = 0, while Z, = Z_, = 1. The corresponding eigenvalues are given by

Ay =2cosh(BJ) and A_ = 2sinh(fJ). The correlation function is then found to be
AT AN
A+ 2N
B tanh™(8.J) + tanh™ ~I"(5.])
1 + tanh™ (3.7)

C(n)=(o,0,,,) =

(6.13)
~ tanh™l(8J) for N — oo
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This result is also valid for n < 0, provided |n| < N. We see that we may write C(n) = e~ 1"/¢T) where
the correlation length is
1

T = ————— 14
§(1) Inctnh(J/k,T) (6.14)
Note that &£(T') grows as T'— 0 as £ ~ %ezj/kBT.
6.2.4 Chain with free ends
When the chain has free ends, there are (N —1) links, and the partition function is
Zchain = Z (RN_l)crcr’
- N-1 ’ N-1 ’ (6.15)
=Y MW @) (o) + AT (@) v ()}
where ¢, (o) = (0| £). When H = 0, we make use of eqn. 6.12 to obtain
_ 1/1 1 N—1 11 -1 . N-1
N-1_ 1 Z
RV =3 (1 1) (2cosh BJ)" " + 5 <_1 ) > (2sinh 8.J) : (6.16)
and therefore
i = 2 coshVH(BT) (6.17)

There’s a nifty trick to obtaining the partition function for the Ising chain which amounts to a change of
variables. We define

Vp = 0,0, n=1,...,N—-1) . (6.18)

Thus, v; = 0,0y, V2 = 0404, etc. Note that each v; takes the values 1. The Hamiltonian for the chain
is

N-1 N-1
Hchain =—J Z OnOpt1 = —J Z Vp - (619)
n=1 n=1
The state of the system is defined by the N Ising variables {0, v;, ..., vy_;}. Note that o, doesn’t

appear in the Hamiltonian. Thus, the interacting model is recast as N—1 noninteracting Ising spins, and
the partition function is

Zchain f— Tr e_BHchain — E E e E eﬁjyleﬁ‘]'/2 e eBJVNfl

o " VN—1

N-1
:Z <Zeﬁ‘]”) =2V coshV1(B)

(6.20)
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6.2.5 Ising model in two dimensions : Peierls’ argument

We have just seen how in one dimension, the Ising model never achieves long-ranged spin order. That is,
the spin-spin correlation function decays asymptotically as an exponential function of the distance with
a correlation length £(7") which is finite for all > 0. Only for 7" = 0 does the correlation length diverge.
At T = 0, there are two ground states, |11 --- 1) and |]J] --- ] ). To choose between these ground
states, we can specify a boundary condition at the ends of our one-dimensional chain, where we demand
that the spins are up. Equivalently, we can apply a magnetic field H of order 1/N, which vanishes in
the thermodynamic limit, but which at zero temperature will select the ‘all up’ ground state. At finite
temperature, there is always a finite probability for any consecutive pair of sites (n,n+1) to be in a high
energy state, i.e. either |1} ) or |}1). Such a configuration is called a domain wall, and in one-dimensional
systems domain walls live on individual links. Relative to the configurations |11) and |/ ), a domain
wall costs energy 2J. For a system with M = N domain walls, the free energy is

F=2MJ—k,Tn Gj)
(6.21)
=N {2Jm+kBT[Jclnx+ (1 —-z)In(1 —a:)]} )

Minimizing the free energy with respect to x, one finds x = 1 / (€2J/ kpT 1), so the equilibrium con-
centration of domain walls is finite, meaning there can be no long-ranged spin order. In one dimension,
entropy wins and there is always a thermodynamically large number of domain walls in equilibrium. And
since the correlation length for T' > 0 is finite, any boundary conditions imposed at spatial infinity will
have no thermodynamic consequences since they will only be ‘felt” over a finite range.

As we shall discuss in the following chapter, this consideration is true for any system with sufficiently
short-ranged interactions and a discrete global symmetry. Another example is the ¢-state Potts model,

H==J) 0, , ~h)> 0, . (6.22)
(is) i

Here, the spin variables o, take values in the set {1,2,...,¢} on each site. The equivalent of an external
magnetic field in the Ising case is a field h which prefers a particular value of o (¢ = 1 in the above
Hamiltonian). See the appendix in §6.8 for a transfer matrix solution of the one-dimensional Potts
model.

What about higher dimensions? A nifty argument due to R. Peierls shows that there will be a finite
temperature phase transition for the Ising model on the square lattice'. Consider the Ising model, in
zero magnetic field, on a N, x N, square lattice, with N, , — oo in the thermodynamic limit. Along
the perimeter of the system we impose the boundary condition o; = +1. Any configuration of the spins
may then be represented uniquely in the following manner. Start with a configuration in which all spins
are up. Next, draw a set of closed loops on the lattice. By definition, the loops cannot share any links
along their boundaries, i.e. each link on the lattice is associated with at most one such loop. Now flip all
the spins inside each loop from up to down. Identify each such loop configuration with a label I'. The

"Here we modify slightly the discussion in chapter 5 of the book by L. Peliti.
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+[+[+]+ [+]+[+]FH [+ ][ [+][+H[+][+]+ +[+[+[+[+[+[+]+ [+ [F]+[+]+ ]+
+==E1+ [+ [+ [+ [ [ [ +=E= [+ [ [+ [ E [  +
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+ [+ [+ [+ ==+ [+ [+ [+ =+ + [+ [+ [+= =T+ - [ |+]=]-]+]+ [+
+[+[== ==+ [+ [+ [+ [+ ===+ +[+[== ==+ |+ =+ [+ ==+
+[+|= ==+ [+ [+ [+ [+ [+ [F]=]=]+ +[+[- - [-[+ [+ ]+ [=]+[+]+]=-]-]+
+[+[==+ [+ [+ ]+ [+ [+ [+ [ [+ [+ ]+ +[+[==+ [+ [+ ]+ ][+ [+]+ ]+
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Figure 6.1: Clusters and boundaries for the square lattice Ising model. Left panel: a configuration I"
where the central spin is up. Right panel: a configuration C, o I' where the interior spins of a new loop
~ containing the central spin have been flipped.

partition function is A
Z=Tre Pl = Z eI Lr (6.23)
r

where L is the total perimeter of the loop configuration I'. The domain walls are now loops, rather
than individual links, but as in the one-dimensional case, each link of each domain wall contributes an
energy +2J relative to the ground state.

Now we wish to compute the average magnetization of the central site (assume N, , are both odd, so
there is a unique central site). This is given by the difference P, (0) — P_(0), where P,(0) = <5Uo ’ #> is
the probability that the central spin has spin polarization p. If P, (0) > P_(0), then the magnetization
per site m = P, (0) — P_(0) is finite in the thermodynamic limit, and the system is ordered. Clearly

1
P (0) =~ > e (6.24)
res,

where the restriction on the sum indicates that only those configurations where the central spin is up
(0y = +1) are to be included. (see fig. 6.1a). Similarly,

1 _
P(0)=~ ~Z e 2y (6.25)
rex_
where only configurations in which o, = —1 are included in the sum. Here we have defined
. = {F B i} . (6.26)

Le. ¥ (X
the construction in fig. 6.1b. Any loop configuration I'exs._ may be associated with a unique loop

) is the set of configurations I" in which the central spin is always up (down). Consider now
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configuration I" € ¥, by reversing all the spins within the loop of I" which contains the origin. Note
that the map from F to I is many-to-one. That is, we can write I = C, o I', where C,, overturns the
spins within the loop 7, with the conditions that (i) v contains the origin, and (ii) none of the links in
the perimeter of v coincide with any of the links from the constituent loops of I'. Let us denote this set
of loops as Y

Tp = {7 : 0€int(y) and yN I = (Z)} . (6.27)

m = P,(0) — P_(0) :% > e (1 - > e—%”v) . (6.28)

rex, vET,

Then

—28JLy < 1, then we will have established that m > 0. Let us ask: how

many loops «y are there in 7, with perimeter L7 We cannot answer this question exactly, but we can
derive a rigorous upper bound for this number, which, following Peliti, we call g(L). We claim that

2 . (LY _ L .
g(L) < —-3 <4> 21 237 (6.29)
To establish this bound, consider any site on such a loop . Initially we have 4 possible directions to
proceed to the next site, but thereafter there are only 3 possibilities for each subsequent step, since the
loop cannot run into itself. This gives 4 - 3¢~1 possibilities. But we are clearly overcounting, since any
point on the loop could have been chosen as the initial point, and moreover we could have started by
proceeding either clockwise or counterclockwise. So we are justified in dividing this by 2L. We are still
overcounting, because we have not accounted for the constraint that v is a closed loop, nor that yNI" = ().
We won’t bother trying to improve our estimate to account for these constraints. However, we are clearly
undercounting due to the fact that a given loop can be translated in space so long as the origin remains
within it. To account for this, we multiply by the area of a square of side length L/4, which is the
maximum area that can be enclosed by a loop of perimeter L. We therefore arrive at eqn. 6.29. Finally,
we note that the smallest possible value of L is L = 4, corresponding to a square enclosing the central
site alone. Therefore

If we can prove that Z“/GTF e

4 2
~28JL, —2BJ at(2—2%) _

E e <3 E k- 712(1_332)2_7‘ , (6.30)

YEY

where z = 3e72%/. Note that we have accounted for the fact that the perimeter L of each loop ~ must
be an even integer. The sum is smaller than unity provided x < x; = 0.869756. .., hence the system is
ordered provided
kT 2
<

J In(3/z,)
The exact result is k,7. = 2J/sinh~!(1) = 2.26918... The Peierls argument has been generalized to
higher dimensional lattices as well”.

=1.61531 . (6.31)

With a little more work we can derive a bound for the magnetization. We have shown that

1 _ _ 1 _
& 0):2 Z e 2L Z e I Ly <r-— Z e 2Phr = ¢ P (0) . (6.32)

res, YET, res,

2See. e.g. J. L. Lebowitz and A. E. Mazel, J. Stat. Phys. 90, 1051 (1998).
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-32) -33| -34] -35

-31) 18] 19| 20| 21| 22| 23| 24| 25

-30) 17} -8} -9 -10{ -11] -12] -13} 26

-29) 16} -7 2 3 4 5| -14) 27

-28) 15} -6 1 of -1 6] -15] 28
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35| 34| 33| 32

Figure 6.2: A two-dimensional square lattice mapped onto a one-dimensional chain.

Thus,
1=P_(0)+ P_(0) < (1+7)P.(0) (6.33)
and therefore
1—r

m =P, (0) = P_(0) > (1 =r) P, (0) > 3

; (6.34)

where r(T) is given in eqn. 6.30.

6.2.6 Two dimensions or one?

We showed that the one-dimensional Ising model has no finite temperature phase transition, and is
disordered at any finite temperature T, but in two dimensions on the square lattice there is a finite
critical temperature 7, below which there is long-ranged order. Consider now the construction depicted
in fig. 6.2, where the sites of a two-dimensional square lattice are mapped onto those of a linear chain®.
Clearly we can elicit a one-to-one mapping between the sites of a two-dimensional square lattice and
those of a one-dimensional chain. That is, the two-dimensional square lattice Ising model may be written
as a one-dimensional Ising model, i.e.

square linear

lattice chain
H=-7Y 0,0,==> Jowo, 0, (6.35)
(5) n,n’

How can this be consistent with the results we have just proven?

The fly in the ointment here is that the interaction along the chain T 18 long-ranged. This is apparent
from inspecting the site labels in fig. 6.2. Note that site n = 15 is linked to sites n’ = 14 and n’ =
16, but also to sites n’ = —6 and n’ = —28. With each turn of the concentric spirals in the figure,

3A corresponding mapping can be found between a cubic lattice and the linear chain as well.
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the ranged of the interaction increases. To complicate matters further, the interactions are no longer
translationally invariant, i.e. J, , # J(n —n’). But it is the long-ranged nature of the interactions on
our contrived one-dimensional chain which spoils our previous energy-entropy argument, because now
the domain walls themselves interact via a long-ranged potential. Consider for example the linear chain
with J, ., = J |n—n/|~%, where o > 0. Let us compute the energy of a domain wall configuration where
o, = +1ifn >0 and 0, = —1 if n < 0. The domain wall energy is then

Here we have written one of the sums in terms of m = —n/. For asymptotically large m and n, we can
write R = (m,n) and we obtain an integral over the upper right quadrant of the plane:

00 w/2 x/4 -
2J _ dp [ dR
=9 a/2 ‘ ‘
/dR R/dqb R~ (COS ¢ + sin (;5)0‘ /COSa(b Ro—1 (6 37)
! 0 —m/4 1

The ¢ integral is convergent, but the R integral diverges for « < 2. For a finite system, the upper
bound on the R integral becomes the system size L. For « > 2 the domain wall energy is finite in the
thermodynamic limit L — co. In this case, entropy again wins. I.e. the entropy associated with a single
domain wall is k; In L, and therefore F' = E' — kT is always lowered by having a finite density of domain
walls. For o < 2, the energy of a single domain wall scales as L>~®. It was first proven by F. J. Dyson
in 1969 that this model has a finite temperature phase transition provided 1 < a < 2. There is no
transition for o < 1 or a > 2. The case o = 2 is special, and is discussed as a special case in the beautiful
renormalization group analysis by J. M. Kosterlitz in Phys. Rev. Lett. 37, 1577 (1976).

6.2.7 High temperature expansion

Consider once again the ferromagnetic Ising model in zero field (H = 0), but on an arbitrary lattice. The
partition function is

7 = Tr 726 7% = (cosh 8.J) " Tr { [[a+zo aj)} : (6.38)
(i)

where z = tanh J and N, is the number of links. For regular lattices, IV, = %ZN , where N is the
number of lattice sites and z is the lattice coordination number, ¢.e. the number of nearest neighbors for
each site. We have used

et if oo’ = +1

e P if oo’ = —1 (6.:39)

efloo’ — cosh 8. - {1 + o0’ tanhﬂj} = {

We expand eqn. 6.38 in powers of z, resulting in a sum of 2VL terms, each of which can be represented
graphically in terms of so-called lattice animals. A lattice animal is a distinct (including reflections and
rotations) arrangement of adjacent plaquettes on a lattice. In order that the trace not vanish, only such
configurations and their compositions are permitted. This is because each o, for every given site ¢ must
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"
~

diagram I’ gr remarks

1 empty lattice

Y )

2 /\/ 2 rotations, N translations

0
4 N N translations
6
8

2 /\/ 2 rotations, N translations

.L. 8 N N translations

9--- 8 4 N 4 rotations, N translations

lude five invalid (1)
8 | 1(N2_5N) |t L
2 equivalent squares I:H:I (4)

Figure 6.3: HTE diagrams on the square lattice and their multiplicities.

occur an even number of times in order for a given term in the sum not to vanish. For all such terms,
the trace is 2V. Let I" represent a collection of lattice animals, and gp the multiplicity of I'. Then

Z = 2N(cosh5J)NL ng (tanh ﬁJ)LF , (6.40)
r

where L is the total number of sites in the diagram I', and g, is the multiplicity of I". Since = vanishes
as T — oo, this procedure is known as the high temperature expansion (HTE).

For the square lattice, he enumeration of all lattice animals with up to order eight is given in fig. 6.3. For
the diagram represented as a single elementary plaquette, there are N possible locations for the lower left
vertex. For the 2 x 1 plaquette animal, one has g = 2N, because there are two inequivalent orientations
as well as IV translations. For two disjoint elementary squares, one has g = %N (N —5), which arises
from subtracting 5N ‘illegal’ configurations involving double lines (remember each link in the partition
sum appears only once!), shown in the figure, and finally dividing by two because the individual squares
are identical. Note that N(N — 5) is always even for any integer value of N. Thus, to lowest interesting
order on the square lattice,

Z = 2" (cosh ﬂJ)2N{1 + Nz +2N2% + (7 - 3)Na2® + IN?2® + (’)(a:lo)} : (6.41)
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The free energy is therefore

F=—k,TIn2+ Nk,TIn(1 — 22) — Nk,T |2* + 22° + 325 + O(mlo)]
(6.42)
= Nk,Tln2 — Nk;BT{x2 +32 4+ 220+ 028+ O(xw)},

again with 2 = tanh 8.J. Note that we’ve substituted cosh?8J = 1/(1 — 22) to write the final result as
a power series in x. Notice that the O(N?) factor in Z has cancelled upon taking the logarithm, so the
free energy is properly extensive.

Note that the high temperature expansion for the one-dimensional Ising chain yields

Z pain (T, N) = 2V coshV 137 , Z

ring(Tv N) =2V COShNﬂJ s (643)

in agreement with the transfer matrix calculations. In higher dimensions, where there is a finite tem-
perature phase transition, one typically computes the specific heat ¢(7") and tries to extract its singular
behavior in the vicinity of T, where ¢(T') ~ A(T —T,)~“. Since z(T) = tanh(J/k,T) is analytic in T,
we have c(z) ~ A" (x — z,)~®, where z, = 2:(T,). One assumes z, is the singularity closest to the origin
and corresponds to the radius of convergence of the high temperature expansion. If we write

c(x) = Z a, x" ~ A”<1 - f) , (6.44)
n=0

C

then according to the binomial theorem we should expect

ay :i[l_l_o‘} . (6.45)

T n

a

n—1 c

Thus, by plotting a,,/a,,_; versus 1/n, one extracts 1/z. as the intercept, and (o — 1)/x, as the slope.
High temperature expansion for correlation functions

Can we also derive a high temperature expansion for the spin-spin correlation function C); = (o, 0;) 7
Yes we can. We have

Tr [ak o) e X 7 Uj:| Y,
Cu - [eﬁjzw o crj] 7 (6.46)
Recall our analysis of the partition function Z. We concluded that in order for the trace not to vanish,
the spin variable o; on each site ¢ must occur an even number of times in the expansion of the product.
Similar considerations hold for Y},, except now due to the presence of o, and o;, those variables now
must occur an odd number of times when expanding the product. It is clear that the only nonvanishing
diagrams will be those in which there is a finite string connecting sites k and [, in addition to the usual
closed HTE loops. See fig. 6.4 for an instructive sketch. One then expands both Y;; as well as Z in
powers of & = tanh #.J, taking the ratio to obtain the correlator C};. At high temperatures (z — 0),
both numerator and denominator are dominated by the configurations I" with the shortest possible total
perimeter. For Z, this means the trivial path I" = {(}, while for Y}, this means finding the shortest
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Figure 6.4: HTE diagrams for the numerator Y; of the correlation function Cy;. The blue path connecting
sites k and [ is the string. The remaining red paths are all closed loops.

length path from k to [. (If there is no straight line path from & to [, there will in general be several
such minimizing paths.) Note, however, that the presence of the string between sites k and [ complicates
the analysis of g, for the closed loops, since none of the links of I" can intersect the string. It is worth
stressing that this does not mean that the string and the closed loops cannot intersect at isolated sites,
but only that they share no common links; see once again fig. 6.4.

6.3 Nonideal Classical Gases

Let’s switch gears now and return to the study of continuous classical systems described by a Hamiltonian
H ({azl}, {pz}) In the next chapter, we will see how the critical properties of classical fluids can in fact be
modeled by an appropriate lattice gas Ising model, and we’ll derive methods for describing the liquid-gas
phase transition in such a model.

6.3.1 The configuration integral

Consider the ordinary canonical partition function for a nonideal system of identical point particles
interacting via a central two-body potential u(r). We work in the ordinary canonical ensemble. The
N-particle partition function is

ddp th
2(T,V.N) = / H i [l T

e (6.47)

_ /de o (- g Sl )

1<j
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Here, we have assumed a many body Hamiltonian of the form

N o2
S N .
H= 2 o + ;u(\wl zj|) (6.48)

in which massive nonrelativistic particles interact via a two-body central potential. As before, A, =
/27h?/mk,T is the thermal wavelength. We can now write

Z(T,V,N) =\ N QN (T, V) (6.49)

where the configuration integral @, (T,V) is given by

1
QT V) = 1 / i . / dhey [[e ) . (6.50)

1<j

There are no general methods for evaluating the configurational integral exactly.

6.3.2 One-dimensional Tonks gas

The Tonks gas is a one-dimensional generalization of the hard sphere gas. Consider a one-dimensional
gas of indistinguishable particles of mass m interacting via the potential

, o if|lz—2|<a
- = 6.51
u(x — ') {O e 2| > a (6.51)

Thus, the Tonks gas may be considered to be a gas of hard rods. The above potential guarantees that
the portion of configuration space in which any rods overlap is forbidden in this model*. Let the gas
be placed in a finite volume L. The hard sphere nature of the particles means that no particle can get
within a distance %a of the ends at * = 0 and = L. That is, there is a one-body potential v(z) acting
as well, where
x ifz< %a
v(z) =<0 ifla<az<L-31a (6.52)

00 ifx>L—%a

The configuration integral of the 1D Tonks gas is given by

L L
1
Qn(T.L) = 3 [do o+ [doyx@roay) (6.53)
0 0

where X = e U/ksT is zero if any two ‘rods’ (of length a) overlap, or if any rod overlaps with either

boundary at x = 0 and x = L, and X = 1 otherwise. Note that X does not depend on temperature.
Without loss of generality, we can integrate over the subspace where z; < 24 < --- < x5 and then multiply

4Not that I personally think there’s anything wrong with that.
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the result by N!. Clearly z; must lie to the right of z;_; +a and to the left of Y; = L — (N —j)a— %a.
Thus, the configurational integral is

Yl Y2 YN

a/2 x,+a Tyn_qita
YN 1
/dflfl /d!l?z . /dIIJ‘N 1 YN 1~ TN— 1)
a/2 =z +a N 2+a (654)
/dxl/dflf2’ /de 22 YN2 .Z'N 2) E R
a/2 z,+a Tn_zta
X Ne — (L-Na)N
N' ( 1 ) - ﬁ( - CL)

The partition function is Z(T, L, N) = /\;N Qn(T,L), and so the free energy is
L
F=—kThhi= —Nk:BT{ —InAp+1+1n (N - a>} , (6.55)

where we have used Stirling’s rule to write In N! = NIn N — N. The pressure is

OF kT  nk,T

p:_(?—L:%—azl—na ’ (6.56)

where n = N/L is the one-dimensional density. Note that the pressure diverges as n approaches 1/a.
The usual one-dimensional ideal gas law, pL. = NkT, is replaced by pL g = Nk;T', where L gz = L — Na
is the ‘free’ volume obtained by subtracting the total ”excluded volume” Na from the original volume
L. Note the similarity here to the van der Waals equation of state, (p + av=2)(v — b) = RT, where
v = N,V/N is the molar volume. Defining @ = a/N? and b = b/N,, we have

- nkyT
p+an® = —8 (6.57)
1—bn
where n = N, /v is the number density. The term involving the constant a is due to the long-ranged
attraction of atoms due to their mutual polarizability. The term involving b is an excluded volume effect.
The Tonks gas models only the latter.

6.3.3 Mayer cluster expansion

Let us return to the general problem of computing the configuration integral. Consider the function

e P%5 where u, i = u(lz; — x;]). We assume that at very short distances there is a strong repulsion

between particles, i.e. u;; — o0 as 1 = |z, — acj| — 0, and that u;; — 0 as r;; — co. Thus, e Pt
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Figure 6.5: Bottom panel: Lennard-Jones potential u(r) = 4e (a:_lz—a:_6), with x = r/o and e = 1. Note

the weak attractive tail and the strong repulsive core. Top panel: Mayer function f(r,T) = eulr)/ksT _q
for kgT = 0.8 ¢ (blue), kgT = 1.5¢ (green), and kgT = 5¢€ (red).

vanishes as ;=0 and approaches unity as r;; — 00. For our purposes, it will prove useful to define the
function

f(r)y=eBur) —1 | (6.58)
called the Mayer function after Josef Mayer. We may now write

Qn(T,V) = %/ddxl-../ddx]v H(1+fij) : (6.59)

i<j

A typical potential we might consider is the semi-phenomenological Lennard-Jones potential,

u(r) = 4de { (%)12 - (%)6} . (6.60)

This accounts for a long-distance attraction due to mutually induced electric dipole fluctuations, and a
strong short-ranged repulsion, phenomenologically modelled with a r~12 potential, which mimics a hard
core due to overlap of the atomic electron distributions. Setting «/(r) = 0 we obtain r* = 2/65 ~
1.12246 ¢ at the minimum, where u(r*) = —e. In contrast to the Boltzmann weight e=#“(") the Mayer
function f(r) vanishes as r — oo, behaving as f(r) ~ —fu(r). The Mayer function also depends on
temperature. Sketches of u(r) and f(r) for the Lennard-Jones model are shown in fig. 6.5.

The Lennard-Jones potential® is realistic for certain simple fluids, but it leads to a configuration integral
which is in general impossible to evaluate. Indeed, even a potential as simple as that of the hard sphere

*Disambiguation footnote: Take care not to confuse Philipp Lenard (Hungarian-German, cathode ray tubes), Alfred-Marie
Liénard (French, Liénard-Wiechert potentials), John Lennard-Jones (British, molecular structure), and Lynyrd Skynyrd
(American, ”Free Bird”). I thank my colleague Oleg Shpyrko for setting me straight on this.
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Figure 6.6: Diagrammatic interpretation of a term involving a product of eight Mayer functions.

gas is intractable in more than one space dimension. We can however make progress by deriving a series
expansion for the equation of state in powers of the particle density. This is known as the virial expansion.
As was the case when we investigated noninteracting quantum statistics, it is convenient to work in the
grand canonical ensemble and to derive series expansions for the density n(7), z) and the pressure p(T, z)
in terms of the fugacity z, then solve for z(T,n) to obtain p(T,n). These expansions in terms of fugacity
have a nifty diagrammatic interpretation, due to Mayer.

We begin by expanding the product in eqn. 6.59 as

[TO+5)=14> Ffi+ D fijfut- (6.61)
< LA 5

As there are %N (N — 1) possible pairings, there are 2V(N=1/2 terms in the expansion of the above
product. Each such term may be represented by a graph, as shown in fig. 6.6. For each such term,
we draw a connection between dots representing different particles ¢ and j if the factor f;; appears in
the term under consideration. The contribution for any given graph may be written as a product over
contributions from each of its disconnected component clusters. For example, in the case of the term in

fig. 6.6, the contribution to the configurational integral would be

VN—ll
AQ=—x

/ddxl dd$4 ddﬂ?? ddxg fi.4 f4,7 f4,9 f7,9

(6.62)
X /dd% ddl"s ddx6 fas fog % /dd% ddxlo f310 %X /ddxs dd$11 fs11

We will refer to a given product of Mayer functions which arises from this expansion as a term.

The particular labels we assign to each vertex of a given graph don’t affect the overall value of the graph.
Now a given unlabeled graph consists of a certain number of connected subgraphs. For a system with NV
particles, we may then write

N=> mn, |, (6.63)
v

where v ranges over all possible connected subgraphs, and

m., = number of connected subgraphs of type v in the unlabeled graph

n., = number of vertices in the connected subgraph v
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Note that the single vertex e counts as a connected subgraph, with n, = 1. We now ask: how many ways
are there of assigning the IV labels to the N vertices of a given unlabeled graph? One might first thing
the answer is simply /N!, however this is too big, because different assignments of the labels to the vertices
may not result in a distinct graph. To see this, consider the examples in fig. 6.7. In the first example, an
unlabeled graph with four vertices consists of two identical connected subgraphs. Given any assignment
of labels to the vertices, then, we can simply exchange the two subgraphs and get the same term. So we
should divide N! by the product Hﬁ/ m.,!. But even this is not enough, because within each connected
subgraph ~ there may be permutations which leave the integrand unchanged, as shown in the second and
third examples in fig. 6.7. We define the symmetry factor s, as the number of permutations of the labels
which leaves a given connected subgraphs v invariant. Examples of symmetry factors are shown in fig.
6.8. Consider, for example, the third subgraph in the top row. Clearly one can rotate the figure about
its horizontal symmetry axis to obtain a new labeling which represents the same term. This twofold axis
is the only symmetry the diagram possesses, hence s, = 2. For the first diagram in the second row, one
can rotate either of the triangles about the horizontal symmetry axis. One can also rotate the figur e in
the plane by 180° so as to exchange the two triangles. Thus, there are 2 x 2 x 2 = 8 symmetry operations
which result in the same term, and s, = 8. Finally, the last subgraph in the second row consists of five
vertices each of which is connected to the other four. Therefore any permutation of the labels results in
the same term, and s, = 5! = 120. In addition to dividing by the product H,Y m~!, we must then also

divide by ], 57"

We can now write the partition function as

)\;Nd N! d d i "

{m.} [Tm,! 32” ¥ i<j
(Vo (T))™

_ )\ENd Z HVi .5}\7’2:%117

|
m.,.
{m,} v v

(6.64)

where the product H7< ; Ji; is over all links in the subgraph 7. The final Kronecker delta enforces the

constraint N = Zﬁ/ m., n.,. We have defined the cluster integrals b., as

_ 1 1 [y i T
bV(T):S—-V/dxl---danHfij : (6.65)

where we assume the limit V' — oco. Since f;; = f(lz; — acj|), the product qu- f;; 1s invariant under

simultaneous translation of all the coordinate vectors by any constant vector, and hence the integral over
the n., position variables contains exactly one factor of the volume, which cancels with the prefactor in
the above definition of b.,. Thus, each cluster integral is intensive’, scaling as V0.

If we compute the grand partition function, then the fixed N constraint is relaxed, and we can do the

SWe assume that the long-ranged behavior of f(r) &~ —Bu(r) is integrable.
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Figure 6.7: Different assignations of labels to vertices may not result in a distinct term in the expansion

of the configuration integral.

SuIms:
o B Z (eﬁu )\;d)me Y H% (Vb)™
{m,} v T (6.66)
=11 Y — (WA d) T (V)™ =exp (VZ(eﬁ“)\ N b )
Y om,= v ¥
Thus,
AT V,p) = =VET Y (A9 b (T) (6.67)
Y
and we can write
p=ksT> (2259 0,(T)
v
. (6.68)
n= Z n, (z/\}d) "b,(T)
Y

where z = exp(Su) is the fugacity, and where b, = 1. As in the case of ideal quantum gas statistical
mechanics, we can systematically invert the relation n = n(z,T) to obtain z = z(n,T), and then insert
this into the equation for p(z,T) to obtain the equation of state p = p(n,T). This yields the wvirial
expansion of the equation of state,

p=nkyT {1+ By(T)n+ By(T)n? +... } . (6.69)

It is useful to define w = z)\Ed and ™ = p/k,T, as well as

Bk = Z b'y 5k,n,y ) (670)
Y
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Figure 6.8: The symmetry factor s, for a connected subgraph 7 is the number of permutations of its

indices which leaves the term H (ij)ey Jij Invariant.

which is the sum of all cluster integrals with £ vertices. Then

w) =Y Bt nw) =) kfuwt . (6.71)
k=1 k=1
Note that [7] = [n] = [w] = V! hence [3,] = V*~1. The virial expansion of the equation of state is
p .- k
o =) = 2 B (6.72)

We apply again the Lagrange method introduced in §5.3.2 for the quantum virial coefficients, writing

_ fdnon(n) _ fdwnw)a(e) 1 fdw o d
B = jé 2mi b+l T jé 27 [ (w) ]k+1 -k ]é > m(w) Tw [n(w)] ; (6.73)

21

where the contour encloses the origin in the complex plane. Integrating by parts, and using the relation
w ' (w) = v(w), we obtain’

By, = %j{d—w ' (w) [n(w)] ™" = %j{d—w 1 [n(w)] ¢

211 2w
(6.74)
dw 1 1-k

. (1 + 28w + 385w + 48,0 + . ) ,

2m wk

where the contour is a small circle enclosing the origin. Working out the first two virial coefficients, we
find

By=—f ., By=48-28; . (6.75)

"Since there is no term proportional to Inw in the Laurent expansion of m(w) [n(w)} 7k7 there is no residue arising from
integrating its derivative around the unit circle.
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6.3.4 Lowest order expansion

We have
1
b (T) = — [d%, | d% [y — xy))
ZV/ 1/ 2 1 2 (6.76)
— 4 [t )
and
bA(T) = L/d/dxl/ddﬁﬂz/a(/dx?, f(|5131 - ac2|) f(|ac1 - 5133|)
2V (6.77)
— %/ddr/dd*r’ F) Fr) =2(b_)
and
baT) = g [ty [ty [ty £ (ley = o)) £ (12, ) £ — )
oV (6.78)
=4 fab [ a4 10 76 £ =)
Thus we have 8, = b_ and B3 = b, + b, = 202 + bs . From eqn. 6.75 we now have
By(T) = —=B5(T) = =b_(T)
(6.79)

By(T) = 463 (T) — 2B5(T) = —2bA(T)

Note that b, does not contribute to Bj, even though the graph A has three vertices, and only b, appears.
This is because the virial coefficients B; involve only cluster integrals b, for one-particle irreducible
clusters, i.e. those clusters which remain connected and don’t fall into multiple pieces if any of its vertices
is removed.

6.3.5 Cookbook recipe

Just follow these simple steps!

e The pressure and number density are written as sums over unlabeled connected clusters -, viz.

p/ksT =" (224" b (T)

! (6.80)
n= Z n, (z)\;d)m b, (T)
ol

e To compute the cluster integral b, ('), first draw the connected cluster v with unlabeled vertices.
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Figure 6.9: Connected versus irreducible clusters. Clusters (a) through (d) are irreducible in that they
remain connected if any component site and its connecting links are removed. Cluster (e) is connected,
but is reducible. Its integral ¢, may be reduced to a product over its irreducible components, each shown
in a unique color.

e Next, assign labels 1, 2, ..., n, to the vertices, where n, is the total number of vertices in the
cluster v. It doesn’t matter how you assign the labels.

e Write down the product H7< ; Jij- The factor f;; appears in the product if there is a link in your

(now labeled) cluster between sites ¢ and j.

e The symmetry factor s, is the number of elements of the symmetric group Sn7 which leave the

.
product H;’< j [i; invariant. The identity permutation leaves the product invariant, so s, > 1.

e The cluster integral is
11 [, i T
bV(T)ES—-V/dxl---d:anfij . (6.81)
v i<j
Due to translation invariance, b, (T) o V9. One can therefore set x, =0, eliminate the volume
factor from the denominator, and perform the integral over the remaining n.,—1 coordinates.

e This procedure generates expansions for p(T,z) and n(T, z) in powers of the fugacity z = e®#. To
obtain something useful like p(T',n), we mut invert the equation n = n(T,z) to find z = 2(T,n),
and then substitute into the equation p = p(T, z) to obtain p = p(T, 2(T, n)) = p(T,n). The result
is the virial expansion,

p=nk,T {1+ By(T)n+ By(T)n? + ...}, (6.82)

where

By(T)=—(k—1) Y b,(T) , (6.83)

'yEFk

with I, the set of all one-particle irreducible k-site clusters.
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6.3.6 Hard sphere gas in three dimensions

The hard sphere potential is given by

oo ifr<a
= - 6.84
ulr) {0 ifr>a . ( )

Here a is the diameter of the spheres. The corresponding Mayer function is then temperature independent,
and given by

-1 ifr<a
fr) = { . (6.85)
0 ifr>a .
We can change variables
b_(T)zz%/ﬁ%qf@j::—gﬂag . (6.86)

The calculation of b, is more challenging. We have

bo =4[ [ @ 10) £0) £ (1 ) (6.87)

We must first compute the volume of overlap for spheres of radius a (recall a is the diameter of the
constituent hard sphere particles) centered at 0 and at p:

y = / a £(r) (I - p)

@ (6.88)
= 2/dz7r(a2 -2 = %”ag —ra’p+ & p°
p/2
We then integrate over region |p| < a, to obtain
2
bA:—%-élw dpp2'{4§a3—7m2p+%p3}:—%a6 . (6.89)
0
Thus,
p = nk,T {1 + 2Za’n + %aﬁn2 + O(ng)} . (6.90)
6.3.7 Weakly attractive tail
Suppose
if r <
u(ry =4 L (6.91)
—uy(r) ifr>a
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Figure 6.10: The overlap of hard sphere Mayer functions. The shaded volume is V.

Then the corresponding Mayer function is

fr) = {_1 fr<a | (6.92)

B — 1 ifr>aq

Thus,
b_(T) = %/d?’r fr)=-%d*+ 27?/(17‘ 2 [eﬁuo(” - 1} . (6.93)
Thus, the second virial coefficient is
By(T) = —b_(T) ~ 2 — 2= [ dry? 6.94
o(T) = =b.(T) ~ 3o = 25 [arr ) (694

a

where we have assumed kT < ug(r). We see that the second virial coefficient changes sign at some
temperature 7;), from a negative low temperature value to a positive high temperature value.

6.3.8 Spherical potential well

Consider an attractive spherical well potential with an infinitely repulsive core,
oo ifr<a

u(r)=«(—€ ifa<r<R (6.95)
0 ifr>R

Then the corresponding Mayer function is

-1 ifr<a
f(r)= efe—1 ifa<r<R (6.96)
0 ifr>R
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Writing s = R/a, we have

Byl() = b (1) = =} [ d¥ 1)

1

=—3 {(_1) A 4 (P —1) - Arad(s? - 1)} (6.97)

_ %ﬁa?’{l — (5% = 1) (e - 1)}

To find the temperature T;) where B, (T') changes sign, we set By(T};,) = 0 and obtain

83
kT, = e/ ln<s3 — 1) . (6.98)

Recall in our study of the thermodynamics of the Joule-Thompson effect in §1.10.6 that the throttling
process is isenthalpic. The temperature change, when a gas is pushed (or escapes) through a porous plug
from a high pressure region to a low pressure one is

Py

oT
AT = / d <—> , 6.99
P oy ). (6.99)
Py
oT 1 oV
) =Tz =

Appealing to the virial expansion, and working to lowest order in corrections to the ideal gas law, we
have

where

(6.100)

= ngT+ ]‘\/[—jkBTBQ(T) b (6.101)
and we compute (%)p by seting
0=dp= —N‘Ij‘;T av + N‘fB dT — 2‘]/\22 kT Bo(T) dV + ]‘\/f—j d(kyT By(T)) + ... . (6.102)
Dividing by dT', we find
T (g—¥>p -V =N|T % — B,y (6.103)

The temperature where (%—2)  changes sign is called the inversion temperature T*. To find the inversion
point, we set T* BY(T*) = B,(T*), i.e.

dIn B,
= 104
dinT |,. (6.104)
If we approximate By(T) ~ A — % then the inversion temperature follows simply:
B B 2B
=A = T = — (6.105)

T T A
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Figure 6.11: An attractive spherical well with a repulsive core u(r) and its associated Mayer function

f(r).

6.3.9 Hard spheres with a hard wall

Consider a hard sphere gas in three dimensions in the presence of a hard wall at z = 0. The gas is
confined to the region z > 0. The total potential energy is now

Wy, ...,ox)=> v(z)+ Y ulz,—z;) , (6.106)
7 1<J
where
if z<41
o) =v(z) =4 L =2 (6.107)
0 if z>g35a |,

and u(r) is given in eqn. 6.84. The grand potential is written as a series in the total particle number N,
and is given by

526—59=1+§/d3re )+ 52/d3 /d e PvG) B o=Bulr=r") o (6.108)

where £ = z)\;?’, with z = e#/*sT the fugacity. Taking the logarithm, and invoking the Taylor series
In(1+49) :5—%52—1—%53—..., we obtain

— 80 = g/d?’r + %52/6137‘ / &3 [e—ﬁu(r—r') _ 1] + ... (6.109)
2>5 2>5 2'>%

The volume is V= [ d%. Dividing by V, we have, in the thermodynamic limit,

z>0
? 1 /
7 == ieg [dv [ oo ]+
>3 723 (6.110)
={ -’ €+ 0(E)
The number density is

n=¢ 5 () =€~ 4’ € +0() (6.111)
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Figure 6.12: In the presence of a hard wall, the Mayer sphere is cut off on the side closest to the wall.
The resulting density n(z) vanishes for z < %a since the center of each sphere must be at least one radius

(%a) away from the wall. Between z = %a and z = %a there is a density enhancement. If the calculation
were carried out to higher order, n(z) would exhibit damped spatial oscillations with wavelength A ~ a.

and inverting to obtain £(n) and then substituting into the pressure equation, we obtain the lowest order
virial expansion for the equation of state,

p=k,T {n—l— 2ra? n2+...} . (6.112)
As expected, the presence of the wall does not affect a bulk property such as the equation of state.

Next, let us compute the number density n(z), given by

n(z) = ( Zé(r -r)) . (6.113)

Due to translational invariance in the (z,y) plane, we know that the density must be a function of z
alone. The presence of the wall at z = 0 breaks translational symmetry in the z direction. The number
density is

N
n(z) =Tr |:65(MN—H) Z 5(r — Ti)] /Tr eB(uN—H)
=1
=51 {56—51)(2) 1 2 Pu(z) / 3 e Bu(E) =Pulr—r") } (6.114)

= £ePUE) g2 e_ﬁv(z)/d?’r/e_ﬁ”(zl) [e‘ﬁ“(“r,) — 1} + ...

Note that the term in square brackets in the last line is the Mayer function f(r — 7/) = e~ #u(r="") 1,
Consider the function

0 ifz<%a0rz’<%a
e e BED) fr 'y =d0 iflr—r|>a (6.115)

—1 ifz>2%aand 2’ > 3aand [r— 7| <a
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Now consider the integral of the above function with respect to /. Clearly the result depends on the

value of z. If z > %a, then there is no excluded region in 7’ and the integral is (—1) times the full Mayer

sphere volume, i.e. —%7‘(’@3. If z < %a the integral vanishes due to the e=#%(2) factor. For z infinitesimally

larger than %a, the integral is (—1) times half the Mayer sphere volume, i.e. —%77&3. For z € [% , 32—“] the
integral interpolates between —%77@3 and —%ﬂa?’. Explicitly, one finds by elementary integration,

0 if z < %a
/d?’r' e PV =B f(p —p!) = [—1 —3(z2-D+3(2- %)3] . %7‘('0,3 ifla<z<3a (6.116)
—%7‘('0,3 if z > %a

After substituting & = n+ %77@3712 + O(n?) to relate ¢ to the bulk density n = n_,, we obtain the desired
result:

0 ifz<%a
n(z) =qn+ [1 —3E-D+3(2- %)3] ’%7‘(’@3 n? ifla<z<ia (6.117)
n ifz>%a

A sketch is provided in the right hand panel of fig. 6.12. Note that the density n(z) vanishes identically
for z < % due to the exclusion of the hard spheres by the wall. For z between %a and %a, there is a
density enhancement, the origin of which has a simple physical interpretation. Since the wall excludes
particles from the region z < %, there is an empty slab of thickness %z coating the interior of the wall.
There are then no particles in this region to exclude neighbors to their right, hence the density builds
up just on the other side of this slab. The effect vanishes to the order of the calculation past z = %a,
where n(z) = n returns to its bulk value. Had we calculated to higher order, we’d have found damped
oscillations with spatial period A ~ a.

6.4 Lee-Yang Theory

6.4.1 Analytic properties of the partition function

How can statistical mechanics describe phase transitions? This question was addressed in some beautiful
mathematical analysis by Lee and Yang®. Consider the grand partition function =,

E(T,V,2) =Y N QuT V)AL (6.118)
N=0
where 1
Qn(T,V) = ﬁ/d%l---/ddm e U@ ay)/kgT (6.119)

is the contribution to the N-particle partition function from the potential energy U (assuming no
momentum-dependent potentials). For two-body central potentials, we have

Uxy,...,zy) =Y vllo; —z)) (6.120)

i<j

8See C. N. Yang and R. D. Lee, Phys. Rev. 87, 404 (1952) and ibid, p. 410
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Figure 6.13: In the thermodynamic limit, the grand partition function can develop a singularity at
positive real fugacity z. The set of discrete zeros fuses into a branch cut.

Suppose further that these classical particles have hard cores. Then for any finite volume, there must be
some maximum number Ny, such that @ (T, V') vanishes for N > Ny,. This is because if N > Ny, at
least two spheres must overlap, in which case the potential energy is infinite. The theoretical maximum
packing density for hard spheres is achieved for a hexagonal close packed (HCP) lattice”, for which
frep = 3% = 0.74048. If the spheres have radius r, then N, = V/4+/2r3 is the maximum particle
number.

Thus, if V itself is finite, then Z(T,V, z) is a finite degree polynomial in z, and may be factorized as

NV NV
E(T,V,2) =Y N Q@ V)M =] <1 — Zi> , (6.121)
N=0 k=1 k

where 2, (T, V) is one of the Ny, zeros of the grand partition function. Note that the O(2°) term is fixed to
be unity. Note also that since the configuration integrals Q (7', V') are all positive, =(z) is an increasing
function along the positive real z axis. In addition, since the coefficients of zV in the polynomial =(z)
are all real, then =(z) = 0 implies =(z) = Z(z) = 0, so the zeros of Z(z) are either real and negative or
else come in complex conjugate pairs.

For finite Ny, the situation is roughly as depicted in the left panel of fig. 6.13, with a set of Ny, zeros
arranged in complex conjugate pairs (or negative real values). The zeros aren’t necessarily distributed
along a circle as shown in the figure, though. They could be anywhere, so long as they are symmetrically
distributed about the Re(z) axis, and no zeros occur for z real and nonnegative.

9See e.g. http://en.wikipedia.org/wiki/Close-packing. For randomly close-packed hard spheres, one finds, from
numerical simulations, frcp = 0.644.
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Lee and Yang proved the existence of the limits

p — J—
kT vlﬂnoo y mETV:2)
51 (6.122)
n= Vlgnooza [V ln:(T,V,z)] ,
and notably the result
9 /( p
=z — 12
oz <k‘BT> ’ (6.123)

which amounts to the commutativity of the thermodynamic limit V' — oo with the differential operator
z %. In particular, p(7, z) is a smooth function of z in regions free of roots. If the roots do coalesce and
pinch the positive real axis, then then density n can be discontinuous, as in a first order phase transition,
or a higher derivative /p/dn’ can be discontinuous or divergent, as in a second order phase transition.

6.4.2 Electrostatic analogy

There is a beautiful analogy to the theory of two-dimensional electrostatics. We write

P T V21n<1——>

(6.124)
:—Z{ P(z — 2) (O_Zk)} )
where
6(z) = —% In(2) (6.125)

is the complex potential due to a line charge of linear density A = V! located at origin. The number
density is then
NV

0 0
n:z£<ka> =%y Zqﬁ(z—zk) , (6.126)

k=1

to be evaluated for physical values of z, i.e. 2 € R*. Since ¢(z) is analytic,

9 109 i

5" 35: T35 =0 (6.127)

If we decompose the complex potential ¢ = ¢; + i¢, into real and imaginary parts, the condition of
analyticity is recast as the Cauchy-Riemann equations,

96, 99, 961 _ 09,

or Oy ’ oy Oz (6.128)
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Thus,
00 109 9
dz  20x 20y
1[04, O, i (0, Oy
—‘§<%+a—y o\ e (6.129)
0, . 0¢; ,
=-——= — =FE_—1iE
Ox e oy =Wy
where E = —V ¢, is the electric field. Suppose, then, that as V' — oo a continuous charge distribution

develops, which crosses the positive real z axis at a point x € R*. Then

% = E, (2%) - E, (27) = 4no(z) | (6.130)

where o is the linear charge density (assuming logarithmic two-dimensional potentials), or the two-
dimensional charge density (if we extend the distribution along a third axis).

6.4.3 Example

As an example, consider the function
(14 2)M (1 — M)
(2) =
1— 2 (6.131)
=1+ (1+z+2"+...+2M1)

[1]

The (2M —1) degree polynomial has an M*™ order zero at z = —1 and (M —1) simple zeros at z = 2™/M

where k € {1,...,M —1}. Since M serves as the maximum particle number Ny,, we may assume that
V = Mwvy, and the V' — oo limit may be taken as M — oo. We then have

1
P — fim — In=(2)

kBT Voo V
S Lsg
=5 = 6122
1

1
=— lim —|MIn(1 In(1—2M) —In(1 —
o MgnooM[ n(l+z)+In(l—2z") —In(l —z)

The limit depends on whether |z] > 1 or |z] < 1, and we obtain

In(1+ 2) if |z <1
P% _ (6.133)
T {ln(l +2)+In z] if |z >1
Thus,
5/ p % = if |zl <1
n:z£<kBT> = (6.134)

Lolz ] o fs >
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Figure 6.14: Fugacity z and pvg/ksT versus dimensionless specific volume v/vg for the example problem
discussed in the text.

If we solve for z(v), where v = n~!, we find

’UO .
v if v> 2y,
z= (6.135)
vy —v . 1 2
Zv—0, if §'U0 <v < g'UO

We then obtain the equation of state,

ln( ”0> it v> 2y,

V—
0 = {n2 it 2y, < v < 20, (6.136)
’ ln<(vz(:+;:))g) if vy <v < 3,

6.5 Liquid State Physics

6.5.1 The many-particle distribution function

The virial expansion is typically applied to low-density systems. When the density is high, i.e. when
na’ ~ 1, where a is a typical molecular or atomic length scale, the virial expansion is impractical. There
are to many terms to compute, and to make progress one must use sophisticated resummation techniques
to investigate the high density regime.

To elucidate the physics of liquids, it is useful to consider the properties of various correlation functions.
These objects are derived from the general N-body Boltzmann distribution,

' B Zﬁl.%e—BHN(z’,w) OCE
Sl BniPL PN S 25 L s i) GoR

—

(6.137)
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We assume a Hamiltonian of the form

N o2
A I)Z
Hy = 2% +W(xy, ..., Ty). (6.138)
The quantity
d%, d d% \ d%
F@yseos @iy PY) = (6.139)

is the propability of finding N particles in the system, with particle #1 lying within d3:E1 of ; and
having momentum within d%l of p,, etc. If we compute averages of quantities which only depend on the
positions {x j} and not on the momenta {pj}, then we may integrate out the momenta to obtain, in the

OCE,

41
P(acl,...,a:N):QNl-meBW(“”l"“’“”N) , (6.140)

where W is the total potential energy,

W(:cl,...,wN):Zv(mi)—FZu(wi—wj)—k Z w(x; —x;, T; —Ty) + ..., (6.141)

i i<j i<j<k

and @ is the configuration integral,

1
QN(T, V) = ﬁ /ddZEl e /ddZEN e_ﬁw(ml’m’mN) . (6142)

We will, for the most part, consider only two-body central potentials as contributing to W, which is to
say we will only retain the middle term on the RHS. Note that P(x,...,xz, ) is invariant under any
permutation of the particle labels.

6.5.2 Averages over the distribution

To compute an average, one integrates over the distribution:

<F(a:1,...,:cN)>:/ddwl---/ddwNP(:cl, s xn) Py, oo xy) (6.143)

The overall N-particle probability density is normalized according to
/dde Pl@y,...ey) =1 . (6.144)
The average local density is
ny(r) = (D 8(r — ;)
i

(6.145)
= N/ddx2'--/ddeP(r,:cz,...,wN)
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Note that the local density obeys the sum rule

/ d%ny(r)=N . (6.146)
In a translationally invariant system, n; = n = % is a constant independent of position. The bound-

aries of a system will in general break translational invariance, so in order to maintain the notion of a
translationally invariant system of finite total volume, one must impose periodic boundary conditions.

The two-particle density matrix ny(r;,r,) is defined by

ny(ry, 7o) = <Zf5(7’1 —x;) 0(ry — wj)>
i#d (6.147)
=N(N — 1)/ddx3---/dde P(r{,ry, @5, ..., xTy)

As in the case of the one-particle density matrix, i.e. the local density n,(r), the two-particle density
matrix satisfies a sum rule:

Generalizing further, one defines the k-particle density matriz as

nk(rl’ s 7’rk) = < 2/5(7"1 - mil) e 5(rk - mzk) >
N (6.149)

N!
:m/ddgpkﬂ.../ddeP(rl,...,rk,mk+1,...,mN) ,

where the prime on the sum indicates that all the indices i,...,7, are distinct. The corresponding sum
rule is then

/dd’rl---/ddrk ng(ry, ..., 1) = (NL_'W . (6.150)

The average potential energy can be expressed in terms of the distribution functions. Assuming only
two-body interactions, we have

(W) = <Zu(wz - "Bg)>

i<j
=1 [ d%y [ d%yu(ry —ry) () d(ry —x;) 8(ry — ;) (6.151)
2/ 1/ 2 U(Ty — T ; 1 2 j
- %/ddrl/ddrz u(ry — ry) ny(ry,5)
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Figure 6.15: Pair distribution functions for hard spheres of diameter a at filling fraction n = %a?’n = 0.49
(left) and for liquid Argon at 7' = 85K (right). Molecular dynamics data for hard spheres (points) is
compared with the result of the Percus-Yevick approximation (see below in §6.5.8). Reproduced (without
permission) from J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, fig 5.5. Experimental
data on liquid argon are from the neutron scattering work of J. L. Yarnell et al., Phys. Rev. A 7, 2130
(1973). The data (points) are compared with molecular dynamics calculations by Verlet (1967) for a
Lennard-Jones fluid.

As the separations 7;; = |r; — 'rj| get large, we expect the correlations to vanish, in which case

ne(ry, ..., 1) = <'Z/5(r1 — a:il) by, — af:lk)>

rijoo L
bt (6.152)
= (NL_',{:), : ]\}k ny(ry) - ny(rg)
= <1— %) <1— %) <1—%> ny(ry) - ny(ry)
The k-particle distribution function is defined as the ratio
Gr(ry, .. mp) = WG EERELY . (6.153)

ny(ry) - nq(ry)

For large separations, then,

k—1 .
H J
iJ ,7:1
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For isotropic systems, the two-particle distribution function g,(7,7,) depends only on the magnitude
|ry —75|. As a function of this scalar separation, the function is known as the radial distribution function:

o) = 0u(r) = 5 (3 6(r ) 3(a))
i#]

1 (6.155)
= 72 <Z(5(r -, +x;))
i#j
The radial distribution function is of great importance in the physics of liquids because
e thermodynamic properties of the system can be related to g(r)
e ¢g(r) is directly measurable by scattering experiments
For example, in an isotropic system the average potential energy is given by
(W) = %/ddrl/ddrz u(ry = ro) ny(ry,m3)
= %”2/dd"1/dd’“2 u(ry —ry) g(|ry —73l) (6.156)
N2
=57 d% u(r) g(r)
For a three-dimensional system, the average internal (i.e. potential) energy per particle is
W o
% = 27m/d7‘ r2g(ryu(r) . (6.157)
0

Intuitively, f(r)dr = 47r? n g(r) dr is the average number of particles lying at a radial distance between
r and r + dr from a given reference particle. The total potential energy of interaction with the reference
particle is then f(r)u(r)dr. Now integrate over all r and divide by two to avoid double-counting. This
recovers eqn. 6.157.

In the OCE, g(r) obeys the sum rule
/ddrg(r):—-N(N—l):V—— s (6158)

hence

n / & [gr)—1]= -1  (OCE) . (6.159)
The function h(r) = g(r) — 1 is called the pair correlation function.

In the grand canonical formulation, we have

n/d3r h(r) = <]‘>[> . <N(<]]VV>_2 D) V-V
, (6.160)
(N?) - (N)

= VY =k Ty —1  (GCE) |

(V)
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Figure 6.16: Monte Carlo pair distribution functions for liquid water. From A. K. Soper, Chem Phys.
202, 295 (1996).

where f7 is the isothermal compressibility. Note that in an ideal gas we have h(r) = 0 and ki = K% =
1/nk,T. Self-condensed systems, such as liquids and solids far from criticality, are nearly incompressible,
hence 0 < nk,T K < 1, and therefore n f d* h(r) ~ —1. For incompressible systems, where kp = 0, this
becomes an equality.

As we shall see below in §6.5.4, the function h(r), or rather its Fourier transform h(k), is directly measured
in a scattering experiment. The question then arises as to which result applies: the OCE result from eqn.
6.159 or the GCE result from eqn. 6.160. The answer is that under almost all experimental conditions it is
the GCE result which applies. The reason for this is that the scattering experiment typically illuminates
only a subset of the entire system. This subsystem is in particle equilibrium with the remainder of the
system, hence it is appropriate to use the grand canonical ensemble. The OCE results would only apply
if the scattering experiment were to measure the entire system.

6.5.3 Virial equation of state

The virial of a mechanical system is defined to be

G=> =z, F, | (6.161)
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where F is the total force acting on particle 7. If we average G' over time, we obtain

(G>:T11_1)I;o—/dt2w - F,

. (6.162)
=— h_]?;of/dt mel = —3Nk,T
0 7
Here, we have made use of
. o d .
wi'Fi:mwi-wi:—mwi+E(mazi'a}i> , (6.163)

as well as ergodicity and equipartition of kinetic energy. We have also assumed three space dimensions.
In a bounded system, there are two contributions to the force F;. One contribution is from the surfaces
which enclose the system. This is given by'’

= z;  FP"Yy = —3pv 6.164
surfacos

The remaining contribution is due to the interparticle forces. Thus,

N 1
_N_ v , 1
P v SET <Zw v, W) (6.165)
Invoking the definition of g(r), we have
p=mnk,T <1— dr 3 g(r) o (r) . (6.166)
0

As an alternate derivation, consider the First Law of Thermodynamics,

dQ =—SdT —pdV — Ndu | (6.167)

o5 oF
— (== _ (= . 1
P (av )m <av >T,N (6.168)

Now let V — 3V, where / is a scale parameter. Then

from which we derive

02 19

e __ - 3
57 = 37 37 HQ(T,@ Vop) . (6.169)

p=-

10Ty derive this expression, note that F' Gurh s directed inward and vanishes away from the surface. Each Cartesian
direction o = (x,y, z) then contributes —Fésurf)La where L, is the corresponding linear dimension. But F(S"rf) pAa,
where A, is the area of the corresponding face and p. is the pressure. Summing over the three possibilities for «, one obtains
eqn. 6.164.
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Now
.5(’11@3‘/'7 wn) = Z % PN )\_3N/d3x1 . /d?’x e BW (T, )
o cvee (6.170)
— Z % (eﬁu )\—3> €3N/d3x /di’:x e—BW(le, LAz )
N=0 % %
Thus,
_1anty) _ kT 1 05(4%V)
P="3y T o T3V = ol
=1
BT 1 = 1,  _anN _ ow 6.171
LS | o [ oaga 2| e
N=0 v v i
1 /0w
= T — (2
nks 3V< o >é:1

Finally, from W =3, . u(fx;;) we have

oo

ow 27 N2
(90 ) = 2o Vuley) = =5 /dr rPg(r)d(r) (6.172)
- i<j 0
and hence N
p =nkyT — %ﬂn2/dr 7‘39(7") u'(r) . (6.173)
0

Note that the density n enters the equation of state explicitly on the RHS of the above equation, but also
implicitly through the pair distribution function g(r), which has implicit dependence on both n and 7'

6.5.4 Correlations and scattering

Consider the scattering of a light or particle beam (i.e. photons or neutrons) from a liquid. We label the
states of the beam particles by their wavevector k and we assume a general dispersion €,. For photons,
€, = hc|k|, while for neutrons ¢, = h%k?/2m,. We assume a single scattering process with the liquid,
during which the total momentum and energy of the liquid plus beam are conserved. We write

E'=k+gq

(6.174)
€k/ == 6’6 + h/w 5

where k' is the final state of the scattered beam particle. Thus, the fluid transfers momentum Ap = hq
and energy Aw to the beam.

Now consider the scattering process between an initial state |4,k ) and a final state | j, k"), where these
states describe both the beam and the liquid. According to Fermi’s Golden Rule, the scattering rate is
27

. . 2
Fik—)jk’:EK K| V]ik)|"0(E; — B+ hw) (6.175)



6.5. LIQUID STATE PHYSICS

______

ELASTIC SCATTERING INELASTIC SCATTERING

323

Figure 6.17: In a scattering experiment, a beam of particles interacts with a sample and the beam
particles scatter off the sample particles. A momentum hq and energy hAw are transferred to the beam
particle during such a collision. If w = 0, the scattering is said to be elastic. For w # 0, the scattering is

inelastic.

where V is the scattering potential and E; is the initial internal energy of the liquid. Note that overall
energy conservation requires E; + &, = E; + €, and therefore E; = E; — hw. If r is the position of the

beam particle and {x;} are the positions of the liquid particles, then

N
Zv r—x)
=1

The differential scattering cross section (per unit frequency per unit solid angle) is

820' h g €k/
== P /
00w Ar v, 2 Pl

2%

where g(g) = f(d& (e — &) is the density of states for the beam particles, and P, = Z~!

2m)d
Boltzmann weight.

Consider now the matrix element
1Y .
<],k/‘V‘Z,k> = <]|V2/ddrel(k—k)rv(r_ml)‘z>
=1

1 N
- L (e
=1

(6.176)

(6.177)

PE; is the

(6.178)
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where we have assumed that the incident and scattered beams are plane waves. We then have

620' h g E]H_q |’U iq-T
0005 2 Ve, v2 Z Z|;|Ze i) 0, — B+ o)

( ) (6.179)
I\ Ckrq AroN12
= = 12 S ’ ’
Ve, | V2 Iv(q)l (q,w)
where S(q,w) is the dynamic structure factor,
27Th
q,w ZP Z|<J|Zemz\z *8(E; — B + hw) (6.180)
Note that for an arbitrary operator A,
. L [ B Bhe | b1\ ol L
DI 88, = Byt = 5o 3 f e BB (it ) A
J J Zxo
_ % Z /dt aruanyi GiHit/h g ~iHt/h 4) (6.181)
J Zso
2ﬂ_h/dte“"t Z‘AT )A(t) | i)
Thus,
/dt ezwt ZP < | Zezqml(o zqwl, "L>
W (6.182)

N/dt zwt Zequl(o zqml,()> ,

L

where the angular brackets in the last line denote a thermal expectation value of a quantum mechanical
operator. If we integrate over all frequencies, we obtain the equal time correlator,

Oodw 1 )
S(g) = [ o= S(q.w) = = > (e"r=m))
_Zo N7 (6.183)

=Négo+1+n / dre "7 [g(r) — 1]

known as the static structure factor''. Note that S(q = 0) = N, since all the phases '@ =%;) are then

unity. As ¢ — oo, the phases oscillate rapidly with changes in the distances |x; — acj|, and average out

""We may write 6q,0 = + (2m)*5(q).
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Figure 6.18: Comparison of the static structure factor as determined by neutron scattering work of J.
L. Yarnell et al., Phys. Rev. A 7, 2130 (1973) with molecular dynamics calculations by Verlet (1967) for
a Lennard-Jones fluid.

to zero. However, the ‘diagonal’ terms in the sum, i.e. those with i = j, always contribute a total of 1 to
S(q). Therefore in the ¢ — oo limit we have S(¢ — o0) = 1.

In general, the detectors used in a scattering experiment are sensitive to the energy of the scattered beam
particles, although there is always a finite experimental resolution, both in ¢ and w. This means that
what is measured is actually something like

Snens (@) = / &y / ' F(q - q) Glw— ') S(d o) (6.184)
where F' and G are essentially Gaussian functions of their argument, with width given by the experimental
resolution. If one integrates over all frequencies w, i.e. if one simply counts scattered particles as a function

of @ but without any discrimination of their energies, then one measures the static structure factor S(q).
Elastic scattering is determined by S(g,w = 0, i.e. no energy transfer.

6.5.5 Correlation and response

Suppose an external potential v(x) is also present. Then

1 1 w
J— . _ﬁ (m yeeey & ) _BZZ v(ml)
Plx,,...,xy) = Onll ik 1 Ne , (6.185)

where

Qn[v] = %/ddxl . -/dde e AW (@, zy) =B v(=;) (6.186)
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The Helmholtz free energy is then

F= —% In (A;C”V QN[U]) . (6.187)

oF 1 . 1 0Q N
Sor) = B Qy do(r) (0159
Using
Zv(ml) = /ddrv(r) Zé(r —x;) (6.189)
hence

:/ddx /da:NPazl,..., )Zé(r—mi):nl(r), (6.190)

which is the local density at r.

Next, consider the response function,

ony(r)  &°F[v]

su(r’)  dv(r)dv(r')

1 1 6Qy 6Qy 1 1 Qy (6.191)

T BQ% du(r) su(r) T B Qy du(r)du(r)
= Bny(r)ny(r') = Bny(r)d(r — ') = Bny(r,7')

X(r,r') =

In an isotropic system, X(r,r') = X(r — r’) is a function of the coordinate separation, and

—kxTx(r —7') = —n* +nd(r —r') + n2g(|r —r'])

(6.192)
=n?h(|r —7'|) + nd(r —r')
Taking the Fourier transform,
— kT x(q) =n+n*h(q) =nS(q) . (6.193)
We may also write
BT _ 9 4 nh(0) = —nk, T %(0) (6.194)

i.e. kp = —X(0).

What does this all mean? Suppose we have an isotropic system which is subjected to a weak, spatially
inhomogeneous potential v(r). We expect that the density n(r) in the presence of the inhomogeneous
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potential to itself be inhomogeneous. The first corrections to the v = 0 value n = ng are linear in v, and
given by

on(r) = /ddr' X(r,r")v(r')

(6.195)

= —Bnov(r ﬁno/dd*r’ r—r)v(r)
Note that if v(r) > 0 it becomes energetically more costly for a particle to be at r. Accordingly, the
density response is negative, and proportional to the ratio v(r)/k,T — this is the first term in the above
equation. If there were no correlations between the particles, then A = 0 and this would be the entire
story. However, the particles in general are correlated. Consider, for example, the case of hard spheres
of diameter a, and let there be a repulsive potential at » = 0. This means that it is less likely for a
particle to be centered anywhere within a distance a of the origin. But then it will be more likely to find
a particle in the next ‘shell’ of radial thickness a.

6.5.6 BBGKY hierarchy

The distribution functions satisfy a hierarchy of integro-differential equations known as the BBGKY
hierarchy?. In homogeneous systems, we have

gk(r17“'7rk):mm dmk—l—l’” d‘rNP(T17'”7Tk7wk+17"'7wN) ) (6196)
where 1 !
P(x,, ...,mN)zQ—N.me—BW@v---va) : (6.197)

Taking the gradient with respect to r;, we have

5 1 n_k d d _52 ‘ u(x)

B ) = g gy | e [ diy e

" ' (6.198)

X 8i |:e_ﬁzl<j§k u(rij) . e_BZiSIKj u(ri—wj)
T

where Zk<i<j means to sum on indices ¢ and j such that ¢ < j and k < i, i.e.

N-1 N
ORTERESD DI SRTEA.
k<i<j i= +1j=l+1
k k
S ur) =Y Y ulr—n)
1<j<k i=1 j=i+1
k N
DRTIEFIES S PRTLEE
i<k<j i=1 j=k+1

1280 named after Bogoliubov, Born, Green, Kirkwood, and Yvon.
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Now

? [e‘ﬁ 2ici<k ulriy) L g=B k< “("i_mj)} =

or,
_ (6.199)
B { Z 87“177“ + Z } . [e—ﬁzz'qgk u(ryy) | =P Lickej ulri=—2;) ,
1<5<k k<j
hence
k
0 ou(r, —r;)
a—,r,lgk(rl’ C s Ty) :_ﬁZTjgk(rlv ey TE)
j=2
ou(r; —x,,q)
—5(N—k)/ddxk+1Tk+1P(’rl, ey Tk7 $k+1, ey ZI:N)
! (6.200)
FOu( 7’1 -
:—ﬁz 9Ty, oo, Ty)
mk—i— )
+n dﬂ?k+1 Gra1(P1y ooy T, Tpy)
Thus, we obtain the BBGKY hierarchy:
k
o ou(ry —r,)
—kBT879k(7’17 cee s TE) :ZTJ%(TL cee s TE)
1 — 1
i=2 (6.201)
oulr, —r’
n/ddr'%gkﬂ(rl, ey, 1)
1

The BBGKY hierarchy is an infinite tower of coupled integro-differential equations, relating g, to g, ,
for all k. If we approximate g, at some level k in terms of equal or lower order distributions, then we
obtain a closed set of equations which in principle can be solved, at least numerically. For example, the
Kirkwood approximation closes the hierarchy at order k = 2 by imposing the condition

g3(r1, o, m3) = g(ry —713) g(ry —73) g(ry —73) . (6.202)

This results in the single integro-differential equation
—k;TVg(r)=g(r) Vu+ n/ddr/g(r) g(r)glr =) Vulr —7') . (6.203)

This is known as the Born-Green-Yvon (BGY) equation. In practice, the BGY equation, which is solved
numerically, gives adequate results only at low densities.

6.5.7 Ornstein-Zernike theory

The direct correlation function c(r) is defined by the equation

h(r) = c(r) + n/d?’r’ h(r —7')c(r') (6.204)
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where h(r) = g(r) — 1 and we assume an isotropic system. This is called the Ornstein-Zernike equation.
The first term, ¢(r), accounts for local correlations, which are then propagated in the second term to
account for long-ranged correlations.

The OZ equation is an integral equation, but it becomes a simple algebraic one upon Fourier transforming:

h(q) = é(q) +nh(q)é(q) (6.205)
the solution of which is )
~ C q
hig) = ———X— . .2
(2) T~ nel) (6.206)
The static structure factor is then
- 1
S@):1+nh@)zszaa'- (6.207)

In the grand canonical ensemble, we can write

1+ n h(0) 1 1 ) KD,
TS T kT 1-ne o A0 P (6.208)

where % = 1/nk,T is the ideal gas isothermal compressibility.

At this point, we have merely substituted one unknown function, h(r), for another, namely ¢(r). To close
the system, we need to relate c¢(r) to h(r) again in some way. There are various approximation schemes
which do just this.

6.5.8 Percus-Yevick equation

In the Percus-Yevick approximation, we take
o(r)=[1- eﬁu(r)] -g(r) . (6.209)

Note that ¢(r) vanishes whenever the potential u(r) itself vanishes. This results in the following integro-
differential equation for the pair distribution function g(r):

g(r) = e Pum) 4 ne‘ﬁu(")/dgr' [g(r — ') —1] - [1 = 2D g(r") . (6.210)

This is the Percus-Yevick equation. Remarkably, the Percus-Yevick (PY) equation can be solved analyt-
ically for the case of hard spheres, where u(r) = oo for r < a and u(r) = 0 for r > a, where a is the hard
sphere diameter. Define the function y(r) = e?*(")g(r), in which case

,r<sa
(6.211)
0 , T>a

Here, f(r) = e ") — 1 is the Mayer function. We remark that the definition of y(r) may cause some
concern for the hard sphere system, because of the e#*(") term, which diverges severely for r < a. However,
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g(r) vanishes in this limit, and their product y(r) is in fact finite! The PY equation may then be written
for the function y(r) as

y(r)y=1+ n/d?’r’ y(r') — n/d?’r/ y(r)y(r—7r") . (6.212)
r'<a r'<a
|r—r/|>a

This has been solved using Laplace transform methods by M. S. Wertheim, J. Math. Phys. 5, 643 (1964).
The final result for ¢(r) is

3

c(r) = — {)\1 + 67 Ao (2) +inn (2) }-@(a—r) , (6.213)

where n = %wa?’n is the packing fraction and

(14 2n)2 (14 3n)?
A= =20 6.214
T 2= iy (0219
This leads to the equation of state
1 2

p=nk,T 151 (6.215)

(1—n)?
This gets B, and Bj exactly right. The accuracy of the PY approximation for higher order virial
coefficients is shown in table 6.1.

To obtain the equation of state from eqn. 6.213, we invoke the compressibility equation,

on 1

We therefore need

1
¢(0) = /d?’rc(r) = —47ra3/dxa;2 AL +6nX 2+ %77)\1 a:?’]
0

(6.217)
= —47&3[% )\1 + %77)\2 + %77/\1}
With n = %Wa?’n and using the definitions of A, , in eqn. 6.214, one finds
1+ 4n + 4n?
1 —ne(0) = 2 (6.218)
(1—=mn)
We then have, from the compressibility equation,
6k, T Op 1+ 4n+ 4n?
st Op _ Lt dn+dn” (6.219)

ma® On (1 —n)*

Integrating, we obtain p(n) up to a constant. The constant is set so that p = 0 when n = 0. The result
is eqn. 6.215.
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H quantity‘ exact ‘ PY ‘ HNC H

By/B3 | 0.28695 | 0.2969 | 0.2092
Bs/By | 0.1103 | 0.1211 | 0.0493
Bg/B5 | 0.0386 | 0.0281 | 0.0449
B7/BS | 0.0138 | 0.0156 -

Table 6.1: Comparison of exact (Monte Carlo) results to those of the Percus-Yevick (PY) and hypernetted
chains approximation (HCA) for hard spheres in three dimensions. Sources: Hansen and McDonald (1990)
and Reichl (1998)

Another commonly used scheme is the hypernetted chains (HNC) approximation, for which
dr):—ﬁ%AT)+iMT)—In<1+Jer . (6.220)

The rationale behind the HNC and other such approximation schemes is rooted in diagrammatic ap-

proaches, which are extensions of the Mayer cluster expansion to the computation of correlation func-

tions. For details and references to their application in the literature, see Hansen and McDonald (1990)
and Reichl (1998).

6.5.9 Ornstein-Zernike approximation at long wavelengths

Let’s expand the direct correlation function ¢(q) in powers of the wavevector g, viz.
éq) =e0) +eaq® Feggdt +.. (6.221)

Here we have assumed spatial isotropy. Then

1
1—-né(@)=——=1-—né0)—nc,¢>+ ...
=5 ) =ne, (6.222)
=R PR 1 0(q")
where
R?>= —ncy= 27Tn/dr rhe(r) (6.223)
0
and o1 o
£2 = 1-ne(0)  1- 477710{0 drr?c(r) ' (6.224)
R? 2mn [y dr i c(r)

The quantity R(T') tells us something about the effective range of the interactions, while £(7) is the
correlation length. As we approach a critical point, the correlation length diverges as a power law:

§(T) ~ AT — T . (6.225)
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The susceptibility is given by

nBR™2

X(q) = —nBS(q) = T2 2 1 O

(6.226)

In the Ornstein-Zernike approzimation, one drops the O(g*) terms in the denominator and retains only
the long wavelength behavior. in the direct correlation function. Thus,

nBR™2

XOZ(Q) = —m (6227)

We now apply the inverse Fourier transform back to real space to obtain X°%(r). In d = 1 dimension the
result can be obtained exactly:

0z n dg el ng —|z|/€
2 _ - _ . .22
Xa=1(®) kT R? / 21 €72 4 ¢2 2k, T R? € (6.228)

— 00

In higher dimensions d > 1 we can obtain the result asymptotically in two limits:

e Take r — oo with £ fixed. Then

X% (r) ~ —C 0T et ] o3 6.229
a ()= =Can e wane PO\ ! (6.229)

where the Cd are dimensionless constants.

e Take £ — oo with r fixed; this is the limit 7" — T, at fixed r. In dimensions d > 2 we obtain

Chn e /¢ d—3

In d = 2 dimensions we obtain

XOZ, (1) ~ —kfzégz -1n<§> e e {1 + O(m(i/g))} , (6.231)

where the C’C’l are dimensionless constants.

At criticality, & — oo, and clearly our results in d = 1 and d = 2 dimensions are nonsensical, as they are
divergent. To correct this behavior, M. E. Fisher in 1963 suggested that the OZ correlation functions in
the r <« £ limit be replaced by

&n e~ /¢
) k. TR? Cpd—2+n

X(r)~—-Cin (6.232)

a result known as anomalous scaling. Here, n is the anomalous scaling exponent.
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Recall that the isothermal compressibility is given by xk, = —X(0). Near criticality, the integral in X(0)
is dominated by the r < £ part, since £ — oo. Thus, using Fisher’s anomalous scaling,

oy = —%(0) = /ddr X(r)

/¢
d. € 2— —(2=n)v
NA/drrd_szng "~ CIT T, ,

(6.233)

where A, B, and C' are temperature-dependent constants which are nonsingular at 7" = 7. Thus, since
kp o< [T —T,|77, we conclude
=@y (6.234)

a result known as hyperscaling.

6.6 Coulomb Systems : Plasmas and the Electron Gas

6.6.1 Electrostatic potential

Coulomb systems are particularly interesting in statistical mechanics because of their long-ranged forces,
which result in the phenomenon of screening. Long-ranged forces wreak havoc with the Mayer cluster
expansion, since the Mayer function is no longer integrable. Thus, the virial expansion fails, and new
techniques need to be applied to reveal the physics of plasmas.

The potential energy of a Coulomb system is
= %/dd’r/ddr/p(r)u(r —r)p(r) (6.235)

where p(r) is the charge density and u(r), which has the dimensions of (energy)/(charge)?, satisfies

Viu(r —7') = —4wé(r —1') . (6.236)
Thus,
—2mlz—2] ,d=1
wr)=q-2Injr—7r/| ,d=2 (6.237)
lr — /|7t d=3

)

For discete particles, the charge density p(r) is given by

r) = Z g o(r—x;) (6.238)
where g; is the charge of the ith particle. We will assume two types of charges: ¢ = +e, with e > 0. The

= / d% u(r — ') p(r') = Z g u(r—wz;) . (6.239)

This satisfies the Poisson equation, V2¢(r) = —4mp(r) . The total potential energy can be written as

/ddm;s zqu z;) . (6.240)

electric potential is
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6.6.2 Debye-Hiickel theory

We now write the grand partition function:

_ 1 _
STV py, e Z Z PNy >\+N+d-—N 'eﬁﬂ—NfA_N*d
+=0N_ = - (6.241)

—BU(r;,...,r
| /ddrl... [y )

We now adopt a mean field approach, known as Debye-Hiickel theory, writing

p(r) = p™(r)+op(r) o(r) = o™ (r) +do(r) . (6.242)
)+ 6p(r)] - [6™ () + 6o (7))

—4 [ [
U, ignore ﬂuctuation term (6.243)
=4 [ o)+ [ 6 ol b [ b sotr) g6

We apply the mean field approximation in each region of space, which leads to

T Vopg ) = _kBT)‘IdZJr/ddr exp<_ %av(r))

We then have

kT (1) (6.244)
_ k:BT)\:d z_/ddr exp(—l— ¢ kBTr > ,
where 052 s
AL = <mik‘BT> , Zy = exp<kBT> . (6.245)
The charge density is therefore
p(r) = w%(ir) = e/\;d zy exp<— el:i(;)> —eXT%z_ exp<+ el:i(;)> , (6.246)

where we have now dropped the superscript on ¢?V(r) for convenience. At r — oo, we assume charge
neutrality and ¢(oo) = 0. Thus

ANz =ni(00) =222 =n_(0) =0y (6.247)

where n_ is the ionic density of either species at infinity. Therefore,

plr) = —2en,, sinh<e]i(;)> . (6.248)

We now invoke Poisson’s equation,

V2¢ = 8men, sinh(Bed) — 4mpoy (6.249)
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where p,, is an externally imposed charge density.

If ep < kT, we can expand the sinh function and obtain

V2¢ = H2D (b - 47Tpcxt ’ (6250)

871 e 1/2 kT 1/2
o= (BEY () -

The quantity A\, is known as the Debye screening length. Consider, for example, a point charge () located
at the origin. We then solve Poisson’s equation in the weak field limit,

where

Vip=r2 ¢ —4nQo(r) . (6.252)
Fourier transforming, we obtain

47 Q)
q* + Kj

~ @ d(q) =rpo(q) —4nQ =  ¢(q) = (6.253)

Transforming back to real space, we obtain, in three dimensions, the Yukawa potential,

o(r) = / (dgq QT Q@ wpr (6.254)

21)3 @*+KE v

This solution must break down sufficiently close to = 0, since the assumption e¢(r) < k,T is no longer
valid there. However, for larger r, the Yukawa form is increasingly accurate.

For another example, consider an electrolyte held between two conducting plates, one at potential ¢p(x =
0) = 0 and the other at potential ¢(z = L) = V, where @& is normal to the plane of the plates. Again
assuming a weak field e < kT, we solve V24 = k2 ¢ and obtain

¢(xr) = Ae™¥ + Be "p® | (6.255)
We fix the constants A and B by invoking the boundary conditions, which results in

sinh(kpx)

P(z) =V - sinh(ryL) (6.256)

Debye-Hiickel theory is valid provided n_ A3 > 1, so that the statistical assumption of many charges in
a screening volume is justified.

6.6.3 The electron gas : Thomas-Fermi screening

Assuming kT < e, thermal fluctuations are unimportant and we may assume 7' = 0. In the same spirit
as the Debye-Hiickel approach, we assume a slowly varying mean electrostatic potential ¢(r). Locally,
we can write

h2k2
Ep = 2mF —ed(r) . (6.257)
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Thus, the Fermi wavevector Ky is spatially varying, according to the relation

om 1/2
kp(r) = [ﬁ <5F + eqﬁ(r))} . (6.258)
The local electron number density is
3 3/2
n(r) = kF(Z) =n. <1 + M) . (6.259)
3m Ep

In the presence of a uniform compensating positive background charge p, = en.,, Poisson’s equation
takes the form

3/2
V2 = dren,, - [(1 + egi('r)) - 1] — AP (1) . (6.260)
F
If ep < e, we may expand in powers of the ratio, obtaining
67N, €2
Vi = =6 = Ky & — TP (T) - (6.261)
F

Here, kpp is the Thomas-Fermi wavevector,

6 2\ 1/2
Koy = (%) . (6.262)
F

Thomas-Fermi theory is valid provided n_ A3, > 1, where \,, = ke, so that the statistical assumption
of many electrons in a screening volume is justified.

One important application of Thomas-Fermi screening is to the theory of metals. In a metal, the outer,
valence electrons of each atom are stripped away from the positively charged ionic core and enter into
itinerant, plane-wave-like states. These states disperse with some (k) function (that is periodic in the
Brillouin zone, i.e. under k — k+G, where G is a reciprocal lattice vector), and at T' = 0 this energy band
is filled up to the Fermi level e, as Fermi statistics dictates. (In some cases, there may be several bands
at the Fermi level, as we saw in the case of yttrium.) The set of ionic cores then acts as a neutralizing
positive background. In a perfect crystal, the ionic cores are distributed periodically, and the positive
background is approximately uniform. A charged impurity in a metal, such as a zinc atom in a copper
matrix, has a different nuclear charge and a different valency than the host. The charge of the ionic core,
when valence electrons are stripped away, differs from that of the host ions, and therefore the impurity
acts as a local charge impurity. For example, copper has an electronic configuration of [Ar]3d'4s!.
The 4s electron forms an energy band which contains the Fermi surface. Zinc has a configuration of
[Ar] 3d'0 452, and in a Cu matrix the Zn gives up its two 4s electrons into the 4s conduction band, leaving
behind a charge +2 ionic core. The Cu cores have charge +1 since each copper atom contributed only
one 4s electron to the conduction band. The conduction band electrons neutralize the uniform positive
background of the Cu ion cores. What is left is an extra () = +e nuclear charge at the Zn site, and one
extra 4s conduction band electron. The = +e impurity is, however, screened by the electrons, and at
distances greater than an atomic radius the potential that a given electron sees due to the Zn core is of
the Yukawa form, o

o(r)=—=-e """ | (6.263)
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We should take care, however, that the dispersion (k) for the conduction band in a metal is not necessarily
of the free electron form e(k) = h?k?/2m. To linear order in the potential, however, the change in the
local electronic density is

on(r) =ed(r)gler) (6.264)

where g(ep) is the density of states at the Fermi energy. Thus, in a metal, we should write

V2 = (—4r)(—edn) = dwe’g(ep) ¢ = K2 ¢ (6.265)

Kep = \/4me2 g(ep) . (6.266)

The value of g(ep) will depend on the form of the dispersion. For ballistic bands with an effective mass
m™, the formula in eqn. 6.261 still applies.

where

The Thomas-Fermi atom

Consider an ion formed of a nucleus of charge +Ze and an electron cloud of charge —Ne. The net ionic
charge is then (Z — N)e. Since we will be interested in atomic scales, we can no longer assume a weak
field limit and we must retain the full nonlinear screening theory, for which

/
V2(r) = dre - % (o5 + e¢(r)>3/ L unZes(r) . (6.267)

We assume an isotropic solution. It is then convenient to define

e +ed(r) = = - X(r/ry) (6.268)

where 7 is yet to be determined. As r — 0 we expect X — 1 since the nuclear charge is then unscreened.
We then have

e? e?
v {25 xiofm) | = 2N ) (6.269)

thus we arrive at the Thomas-Fermi equation,

1

X"(t) = NG X312t (6.270)
with r = try, provided we take
h2 3T 2/3
= ) =o0s8852771/3 271
o= 5,3 <4\/2> 0.885 ag (6.271)

where ay = mh—zg = 0.529 A is the Bohr radius. The TF equation is subject to the following boundary
conditions:

e At short distances, the nucleus is unscreened, i.e. X(0) = 1.
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= - - X unstable

Figure 6.19: The Thomas-Fermi atom consists of a nuclear charge +Ze surrounded by N electrons
distributed in a cloud. The electric potential ¢(r) felt by any electron at position r is screened by the
electrons within this radius, resulting in a self-consistent potential ¢(r) = ¢g + (Ze? /1) X(r/7q).

e For positive ions, with N < Z, there is perfect screening at the ionic boundary R = t*r,, where
X(t*) = 0. This requires

Ze? Ze? . (Z—N)e .
This requires
N
—t*"X () =1- 7 (6.273)

For an atom, with N = Z, the asymptotic solution to the TF equation is a power law, and by inspection
is found to be X(t) ~ C't~3, where C is a constant. The constant follows from the TF equation, which
yields 12C = C3/2, hence C' = 144. Thus, a neutral TF atom has a density with a power law tail, with
p ~r~8 TF ions with N > Z are unstable.

6.7 Polymers

6.7.1 Basic concepts

Linear chain polymers are repeating structures with the chemical formula (A),, where A is the formula
unit and x is the degree of polymerization. In many cases (e.g. polystyrene), x > 10° is not uncommon.
For a very readable introduction to the subject, see P. G. de Gennes, Scaling Concepts in Polymer Physics.

Quite often a given polymer solution will contain a distribution of x values; this is known as polydisper-
sity. Various preparation techniques, such as chromatography, can mitigate the degree of polydispersity.
Another morphological feature of polymers is branching, in which the polymers do not form linear chains.
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Figure 6.20: Some examples of linear chain polymers.

Polymers exhibit a static flexibility which can be understood as follows. Consider a long chain hydrocar-
bon with a —C — C — C— backbone. The angle between successive C — C bonds is fixed at 6 ~ 68°, but
the azimuthal angle ¢ can take one of three possible low-energy values, as shown in the right panel of fig.
6.21. Thus, the relative probabilities of gauche and trans orientations are

Prob (gauche) 9 o~ Ae/kyT

= A 274
Prob (trans) (6:274)

where Ae is the energy difference between trans and gauche configurations. This means that the polymer
chain is in fact a random coil with a persistence length

0, = Ly ete/ksT (6.275)

where £, is a microscopic length scale, roughly given by the length of a formula unit, which is approx-
imately a few Angstroms (see fig. 6.22). Let L be the total length of the polymer when it is stretched
into a straight line. If £, > L, the polymer is rigid. If £, < L, the polymer is rigid on the length scale
¢, but flexible on longer scales. We have

g_p _ i eAs/kBT

2
£ -~ , (6.276)

where we now use N (rather than x) for the degree of polymerization.

In the time domain, the polymer exhibits a dynamical flexibility on scales longer than a persistence time.

The persistence time 7, is the time required for a trans-gauche transition. The rate for such transitions

is set by the energy barrier B separating trans from gauche configurations:

T, = To BlksT (6.277)
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Figure 6.21: Left: t¢rans and gauche orientations in carbon chains. Right: energy as a function of
azimuthal angle ¢. There are three low energy states: trans (¢ = 0) and gauche (¢ = £¢yp).

where 7 ~ 10~™'s. On frequency scales w < Ty ! the polymer is dynamically flexible. If Ae ~ kT < B
the polymer is flexible from a static point of view, but dynamically rigid. That is, there are many gauche
orientations of successive carbon bonds which reflect a quenched disorder. The polymer then forms a
frozen random coil, like a twisted coat hanger.

6.7.2 Polymers as random walks

A polymer can be modeled by a self-avoiding random walk (SAW). That is, on scales longer than £,
it twists about randomly in space subject to the constraint that it doesn’t overlap itself. Before we
consider the mathematics of SAWSs, let’s first recall some aspects of ordinary random walks which are not
self-avoiding.

We'll simplify matters further by considering random walks on a hypercubic lattice of dimension d. Such
a lattice has coordination number 2d, i.e. there are 2d nearest neighbor separation vectors, given by
0 =+aé,, faé,, ..., faé,, where a is the lattice spacing. Consider now a random walk of N steps
starting at the origin. After N steps the position is

N
Ry =) 4 (6.278)
j=1

where 5]- takes on one of 2d possible values. Now N is no longer the degree of polymerization, but
somthing approximating L/f,, which is the number of persistence lengths in the chain. We assume each

step is independent, hence (5% 55,) = (a?/d) 5jj,5°‘5 and (R%) = Na?. The full distribution Py(R) is
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given by

Py(R) = (2d)™" Z e Z5R,zj 5
5, oy

ik 1 N
= a4 2—;/ 2—7Td e R [aZcos(kua)
—7/a —7/a p=1
(6.279)

d% . 1
_d —ik-R o 2 2
_a/(%)de exp[Nln<1 2dka +>

a\’ dy, —Nk2?a?/2d ,—ik-R d \* —dR2/2Na?
N<2—d> /dke e :<m> e

This is a simple Gaussian, with width (R?) = d-(Na?/d) = Na?, as we have already computed. The
quantity R defined here is the end-to-end vector of the chain. The RMS end-to-end distance is then
(R))1? = \/Na = R,.

L

A related figure of merit is the radius of gyration, R, , defined by

N
1 2
Rg - N< Z (Rn - RCM) > ) (6.280)
where Rq,, = & Zﬁvzl R is the center of mass position. A brief calculation yields

R2=(N+3—-4N"")a*~ % (6.281)

in all dimensions.

The total number of random walk configurations with end-to-end vector R is then (2d)" Py (R), so the
entropy of a chain at fixed elongation is

dk, R

— N —
S(R,N) = k, In | (2d) PN(R)] = 5(0.N) - T2 (6.282)
If we assume that the energy of the chain is conformation independent, then E = E;(N) and
dk, T R?
F(R,N) —F(O,N)—FW (6.283)
In the presence of an external force F,,, the Gibbs free energy is the Legendre transform
G(F.,,N)=F(R,N)-F,-R |, (6.284)
and OG/OR = 0 then gives the relation
Na?
R(F,,N)) = ——=F, 2
< ( ext? )> dkBT ext (6 85)
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Figure 6.22: The polymer chain as a random coil.

trans sequences

This may be considered an equation of state for the polymer.

Following de Gennes, consider a chain with charges 4e at each end, placed in an external electric field
of magnitude F = 30,000V /cm. Let N = 10%, a = 2A, and d = 3. What is the elongation? From the
above formula, we have

R  eER,
— = =0.8 6.286
Ry, 3k, T ’ ( )
with Ry = V/Na as before.
Structure factor
We can also compute the structure factor,
1 N N g N om-l
S(k) = ~ < 3 Ze’k'<Rm—Rn>> =1+ ) <e’k'<Rm—Rn>> . (6.287)
m=1n=1 m=1 n=1
For averages with respect to a Gaussian distribution,
o 1
<e”c (R, Rn)> = exp {— 5 <(k: (R, — Rn))2>} . (6.288)
Now for m > n we have R,, — R, = Z;n:n 419, and therefore
2 = 1
<(k: (R, — R,)) > = > ((k-8)%) =~ (m—n)k%® (6.289)
Jj=n+1

since (65 5f,> = (a?/d) 5]-]-,50‘5 . We then have

N m-—1
2 ) K242 N (e — 1) — 2etk (1 — e~ NHk)
5(k):1+—§j§je (m—n)k*a®/2d _ , (6.290)
N m=1 n=1 N(eﬂk - 1)2

where pg, = k%a?/2d. In the limit where N — oo and @ — 0 with Na? = R3 constant, the structure
factor has a scaling form, S(k) = N f(Nug) = (Ry/a) f(k*R3/2d), where
9 2

f@)= S (e —14a)=1-g+ 5+ - (6.291)



6.7. POLYMERS 343

Rouse model

Consider next a polymer chain subjected to stochastic forcing. We model the chain as a collection of
mass points connected by springs, with a potential energy U = %k‘ >on (:cn i1 wn)2. This reproduces
the distribution of eqn. 6.279 if we take the spring constant to be k = 3k,T/a? and set the equilibrium
length of each spring to zero. The equations of motion are then

M, +v&, = —k(2z, —,_; — @, 1) + f.(t) , (6.292)
where n € {1,..., N} and {f/(t)} a set of Gaussian white noise forcings, each with zero mean, and
(Fh@) fo ') = 2vkp,T6,,, " 6(t —t) . (6.293)

We define , = x; and ), ; = ), so that the end mass points n = 1 and n = N experience a restoring
force from only one neighbor. We assume the chain is overdamped and set M — 0. We then have

N
Vi, =—k> A @, + 1) (6.294)
n/=1
where
1 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 - 0
A=1o o -1 o | (6.205)
o2 -1
0 0 -1 1

The matrix A is real and symmetric. Its eigenfunctions are labeled wj(n), with j € {0,...,N —1}. The
j = 0 eigenfunction is a constant, ¢y(n) =1/ V/N, and the others are given by

¢j(n):\/%cos<w> el N-1) (6.296)

The completeness and orthonormality relations are

N-1 N
7=0 n=1

with eigenvalues A ;= 4sin? (7Tj /2N ) Note that A\, = 0.

We now work in the basis of normal modes {n}'}, where

N N-1

W)=Y wm)ah(t) , aht) =) )i (6.298)

n=1 j=0
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We then have

d"7j 1
—J—_ " (t 6.299
where the j* relaxation time is
Y
;= 6.300
T Whsin?(nj/2N) (6.300)
and
N
git) =71 wi(n) fE(t) (6.301)
n=1
Note that
(G ) g5 (t")) =29 kg T 8,5, 0" 6(t — 1) . (6.302)
Integrating eqn. 6.299, we have for, j = 0,
¢
mo(®) = ml0) + [dt g(¥) (6.303)
0
For the j > 0 modes,
t
n,(t) = n;(0)e"/T + / dt’ g;(t) eI (6.304)
0
Thus,
{nhy (t) n{{(t'))c = 2y Yk, T 6M min(t, ')
(6.305)

(), = kT 6 7 (71717 = 000/

where the ‘connected average’ is defined to be (A(t) B(t')). = (A(t) B(t')) — (A(t))(B(t')). Transforming
back to the original real space basis, we then have

N-1

Y 2k, T 0 . kT et (it
(ah(t)al (), = J\; o mm(t,t’)—kBT(W > Tii(n) g (n) (e [t=tl/7; _ o= (4t >/J) . (6.306)

j=1
In particular, the ‘connected variance’ of @, (t) is

N-1
CVar[azn(t)] = <[5'3n(t)]2>0 _ %—Bft n 3k T

=2 [;(n)]* (1—e72/7) (6.307)
7j=1
From this we see that at long times, i.e. when ¢ > 7, the motion of x,(t) is diffusive, with diffusion
constant D = k,T/N~ oc B~!, which is inversely proportional to the chain length. Recall the Stokes
result v = 6mnR/M for a sphere of radius R and mass M moving in a fluid of dynamical viscosity 7.
From D = k,T/yM, shouldn’t we expect the diffusion constant to be D = k,T/6mnR o« N~/2] since

the radius of gyration of the polymer is Ry oc N 1/272 This argument smuggles in the assumption that the
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only dissipation is taking place at the outer surface of the polymer, modeled as a ball of radius R,. In

~1/2

fact, for a Gaussian random walk in three space dimensions, the density for r < R, is p oc N since

there are N monomers inside a region of volume (\/N )3. Accounting for Flory swelling due to steric
interactions (see below), the density is p ~ N —4/5 which is even smaller. So as N — oo, the density
within the r = R, effective sphere gets small, which means water molecules can easily penetrate, in which
case the entire polymer chain should be considered to be in a dissipative environment, which is what the
Rouse model says — each monomer executed overdamped motion.

A careful analysis of eqn. 6.307 reveals that there is a subdiffusive regime® where CVar |z, (t)] o t1/2,
To see this, first take the N > 1 limit, in which case we may write T, =N 27'0 /3%, where o =7/ 7%k and
j€{l,....,N—1}. Let s = (n—1)/N € [0,1] be the scaled coordinate along the chain. The second term

in eqn. 6.307 is then
N—-1

cos” 7” ) (1 ewimy (6.308)
7j=1

_ 6ksT 1
S(s,t)_ SN

Let o = (t/7)"2. When t < 7y, i.e. 0 < 1, we have

S(s,t) ~ 6/<;7T T /d cos? 7TUS/O’)( —6_2“2) . (6.309)

Since s/o > 1, we may replace the cosine squared term by its average % . If we further assume No > 1,

which means we are in the regime 1 < t/7, < N 2 after performing the integral we obtain the result

V21Tt (6.310)

provided s = O(1), i.e. the site n is not on either end of the chain. The result in eqn. 6.310 dominates
the first term on the RHS of eqn. 6.307 since 7y < ¢t < 7. This is the subdiffusive regime.

S(s.1) = 3k, T

When t > 7, = NZ27,, the exponential on the RHS of eqn. 6.308 is negligible, and if we again
approximate cos?(mjs) ~ %, and we extend the upper limit on the sum to infinity, we find S(t) =
(3kyT/v)(m,/N)(7%/6) o t, which is dominated by the leading term on the RHS of eqn. 6.307. This is
the diffusive regime, with D = k;T/N~.

Finally, when ¢t < 7, the factor 1 — exp(—2t/ Tj) may be expanded to first order in . One then obtains
CVar[wn(t)] = (6kyT/v)t, which is independent of the force constant k. In this regime, the monomers
don’t have time to respond to the force from their neighbors, hence they each diffuse independently. On
such short time scales, however, one should check to make sure that inertial effects can be ignored, i.e.
that ¢ > M /.

One serious defect of the Rouse model is its prediction of the relaxation time of the j = 1 mode, 7; < N2.
The experimentally observed result is 7, oc IV 3/2 We should stress here that the Rouse model applies to
ideal chains. In the theory of polymer solutions, a theta solvent is one in which polymer coils act as ideal
chains. An extension of the Rouse model, due to my former UCSD colleague Bruno Zimm, accounts for

3] am grateful to Jonathan Lam and Olga Dudko for explaining this to me.
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hydrodynamically-mediated interactions between any pair of ‘beads’ along the chain. Specifically, the
Zimm model is given by

% :ZH‘“’(:I: —x )[kz(m”/ + b, —2a),) +fuf(t)] (6.311)
dt n! n n’ n'+1 n'—1 n n ’ ’
where 1
H'"(R) = ¢on (6" + RFRY) (6.312)

is known as the Oseen hydrodynamic tensor (1927) and arises when computing the velocity in a fluid
at position R when a point force F' = f(r) is applied at the origin. Typically one replaces H(R) by
its average over the equilibrium distribution of polymer configurations. Zimm’s model more correctly
reproduces the behavior of polymers in 6-solvents.

6.7.3 Flory theory of self-avoiding walks

What is missing from the random walk free energy is the effect of steric interactions. An argument due
to Flory takes these interactions into account in a mean field treatment. Suppose we have a chain of
radius R. Then the average monomer density within the chain is ¢ = N/R?. Assuming short-ranged
interactions, we should then add a term to the free energy which effectively counts the number of near
self-intersections of the chain. This number should be roughly Nec. Thus, we write

N? R?

— 1
F(RN) = Fy + u(T) 57 + 5T 575 (6.313)

The effective interaction u(7") is positive in the case of a so-called ‘good solvent’.

The free energy is minimized when

oF doN*? R
which yields the result
ua2 \/(d+2)
Rp(N) = N3/@+2) o NV (6.315)
kT
Thus, we obtain v = 3/(d+2). In d = 1 this says v = 1, which is exactly correct because a SAW in d = 1

has no option but to keep going in the same direction. In d = 2, Flory theory predicts v = %, which is

also exact. In d = 3, we have v;_; = %, which is extremely close to the numerical value v = 0.5880. Flory
theory is again exact at the SAW upper critical dimension, which is d = 4, where v = %, corresponding
to a Gaussian random walk'®. Best. Mean. Field. Theory. Ever.

How well are polymers described as SAWs? Fig. 6.23 shows the radius of gyration R, versus molecular
weight M for polystyrene chains in a toluene and benzene solvent. The slope is v = dIn Rg/ din M =
0.5936. Experimental results can vary with concentration and temperature, but generally confirm the
validity of the SAW model.

' There are logarithmic corrections to the SAW result exactly at d = 4, but for all d > 4 one has v = %
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Figure 6.23: Radius of gyration R, of polystyrene in a toluene and benzene solvent, plotted as a function
of molecular weight of the polystyrene. The best fit corresponds to a power law R, oc M" with v = 0.5936.
From J. Des Cloizeaux and G. Jannink, Polymers in Solution: Their Modeling and Structure (Oxford,
1990).

For a SAW under an external force, we compute the Gibbs partition function,

ext?

V(.. N) = / 4R Py (R) Fox R/MT — / di f(z) e (6.316)

where © = R/Ry and s = k;T/RpF, and n = F_.. One than has R(F.) = Ry ®(Ry/€), where
¢ = kyT/F, and R(F,) = FyR2/k,T. For small values of its argument one has ®(u) oc u. For large

u it can be shown that R(F,.) oc (FuyRp/ksT)%/3.

On a lattice of coordination number z, the number of N-step random walks starting from the origin is
Qy = 2N . If we constrain our random walks to be self-avoiding, the number is reduced to

QW =Ny N (6.317)

where C and  are dimension-dependent constants, and we expect y <z — 1, since at the very least a
SAW cannot immediately double back on itself. In fact, on the cubic lattice one has z = 6 but y = 4.68,
slightly less than z — 1. One finds ~,_, ~ % and 7y, 5 ~ %. The RMS end-to-end distance of the SAW is

Rp=aN" | (6.318)

|oo

where a and v are d-dependent constants,with v, | =1, v;_, ~ and v;_5 ~ % The distribution

~ 2,
Py (R) has a scaling form,

1 R
Py(R) = — f<—> (e < R< Na) . (6.319)
R " \ Ry
One finds
x9 r1
~ 6.320
/@) {exp(—x‘;) z>1 ( )

with g =(y—1)/vand 6 =1/(1 —v).
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6.7.4 Polymers and solvents

Consider a solution of monodisperse polymers of length N in a solvent. Let ¢ be the dimensionless
monomer concentration, so ¢/N is the dimensionless polymer concentration and ¢, = 1 — ¢ is the dimen-
sionless solvent concentration. (Dimensionless concentrations are obtained by dividing the corresponding
dimensionful concentration by the overall density.) The entropy of mixing for such a system is given by

eqn. 2.352. We have

S =~ Lolo+ (-9 -0)} | (6.321)

Yo

where v o< a® is the volume per monomer. Accounting for an interaction between the monomer and the
solvent, we have that the free energy of mixing is

(%) Fmix
Vi, T

:%(bln(b—l—(l—(b)ln(l—¢)+X¢(1—¢) . (6.322)

where X is the dimensionless polymer-solvent interaction, called the Flory parameter. This provides a
mean field theory of the polymer-solvent system.

The osmotic pressure II is defined by

II = _aFmix

o : (6.323)

Np

which is the variation of the free energy of mixing with respect to volume holding the number of polymers
constant. The monomer concentration is ¢ = NN, v, /V, so

— = (6.324)
oV ‘ N, N N b Vg aqb
Now we have )
Fix = NNy kT {N In¢+ (¢t —1)In(l—¢)+x(1 - qS)} , (6.325)
and therefore kT
== [(N— 1) ¢ —In(l - ¢) — x¢2] . (6.326)
0
In the limit of vanishing monomer concentration ¢ — 0, we recover
P kT
J=1"58" .32
Nog (6.327)

which is the ideal gas law for polymers. For N™! <« ¢ < 1, we expand the logarithm and obtain

vo Il
kBT B

¢+ 3(1—2X)¢* + O(¢?)

(1-2x) ¢

ZIH

(6.328)

D=

Note that IT > 0 only if X < %, which is the condition for a ’good solvent’.
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In fact, eqn. 6.328 is only qualitatively correct. In the limit where X <« %, Flory showed that the
individual polymer coils behave much as hard spheres of radius Ry. The osmotic pressure then satisfies

something analogous to a virial equation of state:

2
n_ ¢ +A<i>R%+...

kT N(;O Ng (6.329)
= N, h(¢/d)

This is generalized to a scaling form in the second line, where h(x) is a scaling function, and the quantity
@* is given by ¢* = NUO/R%’ o« N~*/5 assuming d = 3 and v = % from Flory theory. As x = ¢/¢* — 0,
we must recover the ideal gas law, so h(z) = 1 + O(z) in this limit. For z — oo, we require that the
result be independent of the degree of polymerization N. This means h(z) oc 2P with %p =1,ie p= %.
The result is known as the des Cloiseaux law:

voll
kT

=C ¢t (6.330)

where C' is a constant. This is valid for what is known as semi-dilute solutions, where ¢* < ¢ < 1. In
the dense limit ¢ ~ 1, the results do not exhibit this universality, and we must appeal to liquid state
theory, which is no fun at all.

6.8 Appendix I : Potts Model in One Dimension

6.8.1 Definition

The Potts model is defined by the Hamiltonian
H= —J(Z%égi’oj —~ hZé%l : (6.331)
ij t

Here, the spin variables o, take values in the set {1,2,...,¢} on each site. The equivalent of an external
magnetic field in the Ising case is a field h which prefers a particular value of ¢ (¢ = 1 in the above
Hamiltonian). Once again, it is not possible to compute the partition function on general lattices,
however in one dimension we may once again find Z using the transfer matrix method.

6.8.2 Transfer matrix

On a ring of N sites, we have

Z =Tre P
= Z eﬁhé"l'l GBJ(SUl'UQ . eﬁh(s"N’1 eBJ(SUN'Ul =Tr (RN) , (6.332)
{on}
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where the ¢ x ¢ transfer matrix R is given by

R, = eB0or e%ﬁhag,l e%ﬁh%,yl _

oo

In matrix form,
eB(J+h)

eBh/2
oPh/2

oBh/2
oBh/2

The matrix R has q eigenvalues )\j, with 7 =1,...

(BUHh) if o =0/ =1

ePJ ifo=0#1

ePh/2 ifo=1and o' #1

ePh/2 ifo#Aland o' =1

1 ifo#1and o’ #1 and o # o’
oBh/2  Bh/2 oBh/2

Al 1 1

1 P 1

1 1 |

1 1 1 P

(6.333)

(6.334)

,q. The partition function for the Potts chain is then

Z =Y \Y (6.335)
j=1
We can actually find the eigenvalues of R analytically. To this end, consider the vectors
1 ePh/2
¢ = O L = (g—1+4eM)7 ! (6.336)
0 !
Then R may be written as
R= (" =) T+ (g—1+e™) [¢)(¢]+ (¥ 1) (™ = 1) [o)(s] | (6.337)
where I is the ¢ x ¢ identity matrix. When h = 0, we have a simpler form,
R= (" —1)I+q|v) (] (6.338)
From this we can read off the eigenvalues:
M= rg-d (6.339)

N=e -1 je{2.q

since |v) is an eigenvector with eigenvalue A = ¢?’/ 4 ¢ — 1, and any vector orthogonal to |¢) has
eigenvalue X\ = €8/ — 1. The partition function is then
)N

Z= (" +q-1)" +(q-1)(" -1 (6.340)
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In the thermodynamic limit N — oo, only the \; eigenvalue contributes, and we have

F(T,N,h=0) = —Nk,Tln (/%" +¢—1)  for N > o0 . (6.341)

When h is nonzero, the calculation becomes somewhat more tedious, but still relatively easy. The problem
is that |4 ) and | ¢ ) are not orthogonal, so we define

L= (o]v)’
where
B eBh 1/2
r=(o|¢Y) = <m> : (6.343)
Now we have (X |¢) =0, with (X|X) =1 and (¢ |¢) = 1, with
[¢) =V1-—2*|x)+z[¢) . (6.344)

and the transfer matrix is then
R= (" —1)I+ (¢—1+€") |v) (|
+ (¥ = 1)(e 1) [(1—:c2>|x><x|+:c2|¢><w|+wl—:c2 (|x><¢|+|w><x|)]

— (B _
—(e 1)]I+ g— 11 Pk

(g—1+e) + (77 — 1) (" —1) (Lﬂ | )| (6.345)

e =)@ 1) () U]

— 1) eBh 12
+(eﬁ‘]—l)(€5h—1)<q(q_1%> (!X><1/J\+W><X’> )

which in the two-dimensional subspace spanned by | X ) and |1 ) is of the form

RZ(Z Z) , (6.346)

Recall that for any 2 x 2 Hermitian matrix,

M=ayl+a-T

_[agtaz a;—iay (6.347)
- \ay +iay ay—ag ’

the characteristic polynomial is

P(\) =det (\[— M) = (A —ag)* —a} —a3 —a3 , (6.348)

Ay =agty/a?+ad+ad . (6.349)

and hence the eigenvalues are
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For the transfer matrix of eqn. 6.345, we obtain, after a little work,

Mz =€ =14 L lg— 144 (M - 1) (M —1)] (6.350)

i%\/[q—l—l—eﬁh—l— (8~ 1) (e~ 1)]" —alg ~ (e ~ 1) (e ~1)

There are ¢ — 2 other eigenvalues, however, associated with the (¢—2)-dimensional subspace orthogonal
to | X) and | ). Clearly all these eigenvalues are given by

=€l -1 je{3, .. q . (6.351)

The partition function is then
Z=\X 4N +@q-2))\) (6.352)

and in the thermodynamic limit N — oo the maximum eigenvalue A\; dominates. Note that we recover
the correct limit as h — 0.

]
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Mean Field Theory of Phase Transitions
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7.2 The van der Waals system

7.2.1 Equation of state

Recall the van der Waals equation of state,

Q%H%)@—b):RT , (7.1)

where v = N, V/N is the molar volume. Solving for p(v,T"), we have

RT a
oS (7.2)

Let us fix the temperature 7' and examine the function p(v). Clearly p(v) is a decreasing function of
volume for v just above the minimum allowed value v = b, as well as for v — co. But is p(v) a monotonic
function for all v € [b, 00]?

We can answer this by computing the derivative,

Setting this expression to zero for finite v, we obtain the equation'

2a _ ud
bRT  (u—1)2

(7.4)

where v = v/b is dimensionless. It is easy to see that the function f(u) = u?/(u — 1)? has a unique
minimum for u > 1. Setting f'(u*) = 0 yields u* = 3, and so f,;, = f(3) = %. Thus, for T' > T, =
8a/27bR, the LHS of eqn. 7.4 lies below the minimum value of the RHS, and there is no solution. This

means that p(v,T > T,) is a monotonically decreasing function of v.

At T = T, there is a saddle-node bifurcation. Setting v, = bu* = 3b and evaluating p, = p(v,,T.), we
have that the location of the critical point for the van der Waals system is

o a _ 8a
272 ’ ¢ 27bR

Pe (7.5)

For T' < T, there are two solutions to eqn. 7.4, corresponding to a local minimum and a local maximum
of the function p(v). The locus of points in the (v, p) plane for which (Op/dv), = 0 is obtained by setting
eqn. 7.3 to zero and solving for T', then substituting this into eqn. 7.2. The result is

“(0) a 2ab
V)= — — —
b vZ 3

(7.6)
Expressed in terms of dimensionless quantities p = p/p, and v = v/v,, this equation becomes

ﬁ@z%—%. (7.7)
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Figure 7.1: Pressure versus molar volume for the van der Waals gas at temperatures in equal intervals
from T'=1.10T; (red) to T'= 0.857T, (blue). The purple curve is p*(v).

Along the curve p = p*(v), the isothermal compressibility, k, = —% (g—;)T diverges, heralding a thermo-

dynamic instability. To understand better, let us compute the free energy of the van der Waals system,
F =FE —TS. Regarding the energy F, we showed back in chapter 2 that

de\ dp _a
<%>T - <8_T>v e v? (78)

e(T,v) = LfRT - % , (7.9)

which entails

where ¢ = E/v is the molar internal energy. The first term is the molar energy of an ideal gas, where f
is the number of molecular freedoms, which is the appropriate low density limit. The molar specific heat

is then ¢, = (g—:‘?)v = %R, which means that the molar entropy is

s(T,v) = /ET' Y LRI(T/T.) + 51(v) (7.10)

We then write f = & —T's, and we fix the function s,(v) by demanding that p = _(%)T‘ This yields

51(v) = Rln(v — b) + s, where s, is a constant. Thus?,

F(T,v) = LRT (1 - ln(T/TC)) - % — RTIn(v—b) —Ts, . (7.11)

!There is always a solution to (9p/0v)r = 0 at v = oo.
2Don’t confuse the molar free energy (f) with the number of molecular degrees of freedom (f)!
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gas a <Lrjl'(l°13r> b () | pe (bar) | T, (K) | v, (L/mol)

Acetone 14.09 0.0994 52.82 505.1 0.2982
Argon 1.363 0.03219 48.72 150.9 0.0966
Carbon dioxide 3.640 0.04267 7404 304.0 0.1280
Ethanol 12.18 0.08407 63.83 516.3 0.2522
Freon 10.78 0.0998 40.09 384.9 0.2994
Helium 0.03457 0.0237 2.279 5.198 0.0711
Hydrogen 0.2476 0.02661 12.95 33.16 0.0798
Mercury 8.200 0.01696 1055 1723 0.0509
Methane 2.283 0.04278 46.20 190.2 0.1283
Nitrogen 1.408 0.03913 34.06 128.2 0.1174
Oxygen 1.378 0.03183 50.37 154.3 0.0955
Water 5.536 0.03049 220.6 647.0 0.0915

Table 7.1: van der Waals parameters for some common gases. (Source: Wikipedia)

We know that under equilibrium conditions, f is driven to a minimum by spontaneous processes. Now
suppose that g—i{ ‘T < 0 over some range of v at a given temperature T'. This would mean that one mole of
the system at volume v and temperature 1" could lower its energy by rearranging into two half-moles, with
respective molar volumes v 4 dv, each at temperature T'. The total volume and temperature thus remain
fixed, but the free energy changes by an amount Af = %g—g| T(5v)2 < 0. This means that the system is
unstable — it can lower its energy by dividing up into two subsystems each with different densities (i.e.

molar volumes). Note that the onset of stability occurs when

2
CEN R | R (7.12)
ov? |, ov | p VK,

which is to say when k, = co. As we saw, this occurs at p = p*(v), given in eqn. 7.6.

P

2
However, this condition, %LI < 0, is in fact too strong. That is, the system can be unstable even at

molar volumes where g—i’; ‘ o > 0. The reason is shown graphically in fig. 7.2. At the fixed temperature
T, for any molar volume v between v quid = U1 and v, = vy, the system can lower its free energy by
phase separating into regions of different molar volumes. In general we can write

v=(_1-2)v; +zvy (7.13)
so v = v; when z =0 and v = vy when = 1. The free energy upon phase separation is simply
f=0-2)fi+af, , (7.14)

where f; = f (vj,T). This function is given by the straight black line connecting the points at volumes
v; and vy in fig. 7.2.

The two equations which give us v; and v, are

af| _ of

ov v, T ov

_(Tvy) = f(Ty0) (7.15)

vy, T a (UZ - Ul)
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Figure 7.2: Molar free energy f(T,v) of the van der Waals system T = 0.85T., with dot-dashed black
line showing Maxwell construction connecting molar volumes v; 2 on opposite sides of the coexistence

curve.
Equivalently, in terms of the pressure, p = —%b, these equations are equivalent to
Vg
1
p(T0) = p(Ty) = —— [dop(T0) (7.16)
U =V
U1

This procedure is known as the Mazwell construction, and is depicted graphically in fig. 7.3. When
the Maxwell construction is enforced, the isotherms resemble the curves in fig. 7.4. In this figure,
all points within the purple shaded region have g—ié < 0, hence this region is unstable to infinitesimal
fluctuations. The boundary of this region is called the spinodal, and the spontaneous phase separation
into two phases is a process known as spinodal decomposition. The dot-dashed orange curve, called the
coexistence curve, marks the instability boundary for nucleation. In a nucleation process, an energy
barrier must be overcome in order to achieve the lower free energy state. There is no energy barrier for

spinodal decomposition — it is a spontaneous process.

7.2.2 Analytic form of the coexistence curve near the critical point

We write v, = v+ w, and vg = v, + wg. One of our equations is p(v. +w,T) = p(v. + wg, T'). Taylor
expanding in powers of w, and wg , we have

0= pv(UmT) (wG - wL) + %pvv(vcaT) (wé - wE) + %pvvv(va) (wé - wi) +... ) (717)

where

Op 0%p _ 3p 0%p

etc. (7.18)

P=gy 0 PuSgp o PewSga o PT S0
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The second equation we write as
Wg

/dw p(ve +w,T) = 1(wg — w) (p(vc +w,T) + p(v, + wg, T)) . (7.19)

we
Expanding in powers of w; and wg, this becomes

p(UmT) (wG - wL) + %pv(UoT) (w(23 - ZUE) + %pvv(vch) (w?G’ - ZUE)

+ 2_14pvvv(vc7T) (wé - wﬁ) + 1_%()pvvvv(vc7T) (wg - wE) +...

1 ) 5 5 (7.20)
= 5(wg — ’wL){QP(UuT) + pp(ve, T) (g +w) + 5 Pyo(ve, T) (w5 + i)
4 Do (s T) (wh +00) + 3 Py (Ve T) (w + w) + .. }

Subtracting the LHS from the RHS, we find that we can then divide by %(w% — wE), resulting in

0= pvv(vm T) + %pvvv(vm T) (wG + wL) + 2_10 pvvvv(vca T) (3'10% + 4wGwL + 3’U)E) + O(w%,L) . (721)
We now define wy = wg £ w| . In terms of these variables, eqns. 7.17 and 7.21 become

Ozpv(’Uc,T) +%pm}(vc7T) wy +%pvvv(vc7T) (w—2|—+ %w%) +O(w§:) ( )
7.22

0 = Py, (v, T) + %pvvv(UUT) wy + %pvvvv(UUT) (w—zl- + %w%) + O(w?t)

We now evaluate w, to order T. Note that p,(v.,T.) = p,,(ve, T.) = 0, since the critical point is an
inflection point in the (v,p) plane. Thus, we have p,(v.,T) = p,7 O + O(6?), where T = T. + O and
Pyor = Pyr(ve, T.). We can then see that w_ is of leading order /—©, while w, is of leading order ©.
This allows us to write

0= va(9 + ipvvv ,w2_ + 0(82)

(7.23)
0= Pyur @ + %pvvv w-i— + %pvvvv w% + 0(82)
Thus,
24 1/2
w - (_m) V-3
Povvv (7‘24)
6va Povov — 10pvvv Pyur
w+:< 5p7 O+...
We then have
1/2 B
w = — 6va m + 3vapvvvv 5 Pywy Pyyr o+ 0(93/2)
. Povvv 5p12)1)1) (7 25)

6va 1/2 3va Povov — 5pvvv Py 3/2
wg = (" V-6 + 52 0+ 0(e7?)
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Figure 7.3: Maxwell construction in the (v, p) plane. The system is absolutely unstable between volumes
vq and ve. For v € [v,,vq] of v € [ve, vc], the solution is unstable with respect to phase separation. Source:
Wikipedia.

Suppose we follow along an isotherm starting from the high molar volume (gas) phase. If T > T, the
volume v decreases continuously as the pressure p increases. If ' < T, then at the instant the isotherm
first intersects the orange boundary curve in fig. 7.4, there is a discontinuous change in the molar volume
from high (gas) to low (liquid). This discontinuous change is the hallmark of a first order phase transition.
Note that the volume discontinuity, Av = w_ o (T, — T')'/2. This is an example of a critical behavior in
which the order parameter ¢, which in this case may be taken to be the difference ¢ = v — v, behaves
as a power law in |T — T)|, where T} is the critical temperature. In this case, we have ¢(T) o (T, — T)i,
where § = % is the exponent, and where (T, —T')4 is defined to be T, —T'if T' < T, and 0 otherwise. The
isothermal compressibility is xp, = —v/p,(v,T’). This is finite along the coexistence curve — it diverges
only along the spinodal. It therefore diverges at the critical point, which lies at the intersection of the
spinodal and the coexistence curve.

It is convenient to express the equation of state and the coexistence curve in terms of dimensionless
variables. Write

__p _ - T
p=— s v = — 5 T = 726
pC UC TC ( )
The van der Waals equation of state then becomes
8T 3
= _ 7.27
P=5—1 (7.27)

Further expressing these dimensionless quantities in terms of distance from the critical point, we write

p=14+47n , v=14¢ , T=1+t . (7.28)
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pressure p/p,

0.5 1 1.5 2 2.9 3
molar volume v/v,

Figure 7.4: Pressure-volume isotherms for the van der Waals system, as in fig. 7.1, but corrected to
account for the Maxwell construction. The boundary of the purple shaded region is the spinodal line p*().
The boundary of the orange shaded region is the stability boundary with respect to phase separation.

Thus,
8(1+1) 3
t) = — -1 . 7.29
m(e?) 243 (1+¢)? (7.:29)

Note that the LHS and the RHS of this equation vanish identically for (,¢€,t) = (0,0,0). We can then
write

6 Tet 1/ 1/2 3 Tet Teeee — b Teee Teet 3/2

2
Teee 5 TMeee

7.2.3 History of the van der Waals equation

The van der Waals equation of state first appears in van der Waals’ 1873 PhD thesis®, “Over de Con-
tinuiteit van den Gas - en Vloeistoftoestand” (“On the continuity of the gas and liquid state”). In his
Nobel lecture*, van der Waals writes of how he was inspired by Rudolf Clausius’ 1857 treatise on the
nature of heat, where it is posited that a gas in fact consists of microscopic particles whizzing around at
high velocities. van der Waals reasoned that liquids, which result when gases are compressed, also consist

3Johannes Diderik van der Waals, the eldest of ten children, was the son of a carpenter. As a child he received only
a primary school education. He worked for a living until age 25, and was able to enroll in a three-year industrial evening
school for working class youth. Afterward he continued his studies independently, in his spare time, working as a teacher.
By the time he obtained his PhD, he was 36 years old. He received the Nobel Prize for Physics in 1910.

4See http://www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf
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Figure 7.5: ‘Universality’ of the liquid-gas transition for eight different atomic and molecular fluids,
from E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945). Dimensionless temperature T'/T;. versus
dimensionless density p/p. = ve/v is shown. The van der Waals / mean field theory gives Av = vgas —
Vliquid < (—t)'/2, while experiments show a result closer to Av o< (—t)¥/3. Here t =T — 1 = (T — T,)/Te
is the dimensionless temperature deviation with respect to the critical point.

of ’small moving particles’: ”Thus I conceived the idea that there is no essential difference between the
gaseous and the liquid state of matter...”

Clausius’ treatise showed how his kinetic theory of heat was consistent with Boyle’s law for gases (pV =
constant at fixed temperature). van der Waals pondered why this might fail for the non-dilute liquid
phase, and he reasoned that there were two principal differences: inter-particle attraction and excluded
volume. These considerations prompted him to posit his famous equation,

RT a
p=—7-——5 - (7.31)

The first term on the RHS accounts for excluded volume effects, and the second for mutual attractions.

In the limiting case of p — oo, the molar volume approaches v = b. On physical grounds, one might
expect b = vy/(, where vy = N, wy is N, times the volume w, of a single molecule, and the packing
fraction is ( = Nw,/V = vy/v, which is the ratio of the total molecular volume to the total system
volume. In three dimensions, the maximum possible packing fraction is for fcc and hcp lattices, each
of which have coordination number 12, with (., = ﬁ = (0.74078. Dense random packing results in
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Cdrp = 0.634. Expanding the vdW equation of state in inverse powers of v yields

__RT a RT _3

and we read of the second virial coefficient B, = (b — %) /N,. For hard spheres, a = 0, and the result
B, = 4w, from the Mayer cluster expansion corresponds to bMayer = 4v,, which is larger than the result
from even the loosest regular sphere packing, i.e. that for a cubic lattice, with (_,, = &-

The law of corresponding states

Another of van der Waals’ great achievements was his articulation of the law of corresponding states.
Recall that the van der Waals equation of state, when written in terms of dimensionless quantities
p=p/p., v =v/v,,and T = T/T,, takes the form of eqn. 7.27. Thus, while the a and b parameters are
specific to each fluid — see Tab. 7.1 — when written in terms of these scaled dimensionless variables, the
equation of state and all its consequent properties (i.e. the liquid-gas phase transition) are universal.

The van der Waals equation is best viewed as semi-phenomenological. Interaction and excluded volume
effects surely are present, but the van der Waals equation itself only captures them in a very approximate
way. It is applicable to gases, where it successfully predicts features that are not present in ideal systems
(e.g. throttling). It is of only qualitative and pedagogical use in the study of fluids, the essential physics of
which lies in the behavior of quantities like the pair distribution function g(r). As we saw in chapter 6, any
adequate first principles derivation of g(r) - a function which can be measured in scattering experiments -
involves rather complicated approximation schemes to close the BBGKY hierarchy. Else one must resort
to numerical simulations such as the Monte Carlo method. Nevertheless, the lessons learned from the
van der Waals system are invaluable and they provide us with a first glimpse of what is going on in the
vicinity of a phase transition, and how nonanalytic behavior, such as vg —v o (T, — T)? with noninteger
exponent § may result due to singularities in the free energy at the critical point.

7.3 Fluids, Magnets, and the Ising Model

7.3.1 Lattice gas description of a fluid

The usual description of a fluid follows from a continuum Hamiltonian of the form

N o2
H(p,z) = 21)_7;1 + Zu(ml —x;) . (7.33)
i=1 i<j

The potential u(r) is typically central, depending only on the magnitude |r|, and short-ranged. Now
consider a discretized version of the fluid, in which we divide up space into cells (cubes, say), each of
which can accommodate at most one fluid particle (due to excluded volume effects). That is, each cube
has a volume on the order of a3, where a is the diameter of the fluid particles. In a given cube i we set
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Figure 7.6: The lattice gas model. An occupied cell corresponds to n =1 (0 = +1), and a vacant cell to
n=0(oc=-1).

the occupancy n, = 1 if a fluid particle is present and n, = 0 if there is no fluid particle present. We then
have that the potential energy is

U= Zu(wi —z)) =3 Z VRr' "R"R (7.34)
i<j R£R'

where Vpp, = v(R — R/), where R, is the position at the center of cube k. The grand partition function
is then approximated as

{nR} R R#R’

where ¢ = ef# )\;d a?, and where a is the side length of each cube (chosen to be on the order of the hard
sphere diameter). The /\;d factor arises from the integration over the momenta. Note > pnp = N is the
total number of fluid particles, so

[Jemm =€ = PN agNiaN (7.36)
R

Thus, we can write a lattice Hamiltonian,

ﬁ:% Z VRR/ TLRTLR/ —kBTlnfan

R#R/ R
f (7.37)
:—EZJRR/O'RO'R/—HZO'R‘FEO s
RAR’ R
where o = 2np — 1 is a spin variable taking the possible values {—1,+1}, and
hm”:—g%m
(7.38)

/
H=3kTmé- 1) Vap
R/
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where the prime on the sum indicates that R’ = R is to be excluded. For the Lennard-Jones system,
Ver = v(R—R') <0 is due to the attractive tail of the potential, hence Jgp is positive, which prefers
alignment of the spins op and op,. This interaction is therefore ferromagnetic. The spin Hamiltonian in
eqn. 7.37 is known as the Ising model.

7.3.2 Phase diagrams and critical exponents

The physics of the liquid-gas transition in fact has a great deal in common with that of the transition
between a magnetized and unmagnetized state of a magnetic system. The correspondences are’

p+— H , veE—mo,

where m is the magnetization density, defined here to be the total magnetization M divided by the
number of lattice sites N:°

M 1
S %:<UR> : (7.39)

Sketches of the phase diagrams are reproduced in fig. 7.7. Of particular interest is the critical point, which
occurs at (T,,p.) in the fluid system and (7., H,) in the magnetic system, with H, = 0 by symmetry.

In the fluid, the coexistence curve in the (p,T’) plane separates high density (liquid) and low density (va-
por) phases. The specific volume v (or the density n = v~!) jumps discontinuously across the coexistence
curve. In the magnet, the coexistence curve in the (H,T') plane separates positive magnetization and
negative magnetization phases. The magnetization density m jumps discontinuously across the coexis-
tence curve. For T' > T, the latter system is a paramagnet, in which the magnetization varies smoothly
as a function of H. This behavior is most apparent in the bottom panel of the figure, where v(p) and
m(H) curves are shown.

For T' < T,, the fluid exists in a two phase region, which is spatially inhomogeneous, supporting local
regions of high and low density. There is no stable homogeneous thermodynamic phase for (7', v) within
the two phase region shown in the middle left panel. Similarly, for the magnet, there is no stable
homogeneous thermodynamic phase at fixed temperature 7" and magnetization m if (T, m) lies within
the coexistence region. Rather, the system consists of blobs where the spin is predominantly up, and
blobs where the spin is predominantly down.

Note also the analogy between the isothermal compressibility x;, and the isothermal susceptibility X:

1 /ov
kp = _; <8_p>T ) K’T(chpc) =00

om
Xp = (8—H>T , Xp(Te, Hy) = o0

50ne could equally well identify the second correspondence as n <— m between density (rather than specific volume)
and magnetization. One might object that H is more properly analogous to u. However, since p = u(p,T') it can equally be
regarded as analogous to p. Note also that Sp = z)\;d for the ideal gas, in which case £ = z(a/)\T)d is proportional to p.

SNote the distinction between the number of lattice sites N, and the number of occupied cells N. According to our
definitions, N = $(M + Ny).
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The ‘order parameter’ for a second order phase transition is a quantity which vanishes in the disordered
phase and is finite in the ordered phase. For the fluid, the order parameter can be chosen to be ¥
(Vyap — Vyiq)> the difference in the specific volumes of the vapor and liquid phases. In the vicinity of the
critical point, the system exhibits power law behavior in many physical quantities, viz.

m(T, Hy) ~ (T, —T)%

X(T7 Hc) ~ ‘T - TC‘_’Y
(7.40)
CM(T7 Hc) ~ ‘T - TC‘_OC

m(Ty, H) ~ +[H|'/°

The quantities «, 3, v, and § are the critical exponents associated with the transition. These exponents
satisfy certain equalities, such as the Rushbrooke and Griffiths relations and hyperscaling,”

a+28+v=2 (Rushbrooke)
B+~ =36 (Griffiths) (7.41)
2—a=dv (hyperscaling)

Originally such relations were derived as inequalities, and only after the advent of scaling and renormal-
ization group theories it was realized that they held as equalities. We shall have much more to say about
critical behavior later on, when we discuss scaling and renormalization.

7.3.3 Gibbs-Duhem relation for magnetic systems

Homogeneity of E(S,M,N,) means E = T'S + HM + pN,, and, after invoking the First Law dFE =
TdS + HdM + 1dN,, we have
SdTl'+ MdH + Nydp =0 . (7.42)

Now consider two magnetic phases in coexistence. We must have du; = du,, hence
dp, = —s;dl' —mydH = —sodT — mydH =dpy (7.43)

where m = M /Ny is the magnetization per site and s = S/Nj is the specific entropy. Thus, we obtain
the Clapeyron equation for magnetic systems,

dH 51 — 89
i =1 =2 44
< dr > coex my — My (7 )

Thus, if m; # m, and (Z—?)Coex = 0, then we must have s; = s,, which says that there is no latent
heat associated with the transition. This absence of latent heat is a consequence of the symmetry which
guarantees that F(T, H, N,) = F(T,—H, N,).

"In the third of the following exponent equalities, d is the dimension of space and v is the correlation length exponent.
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Figure 7.7: Comparison of the liquid-gas phase diagram with that of the Ising ferromagnet.

7.3.4 Order-disorder transitions

Another application of the Ising model lies in the theory of order-disorder transitions in alloys. Examples
include CugAu, CuZn, and other compounds. In CuZn, the Cu and Zn atoms occupy sites of a body
centered cubic (BCC) lattice, forming an alloy known as fS-brass. Below T, ~ 740K, the atoms are
ordered, with the Cu preferentially occupying one simple cubic sublattice and the Zn preferentially
occupying the other.

The energy is a sum of pairwise interactions, with a given link contributing €, ,, €55, or €,5, depending
on whether it is an A-A, B-B, or A-B/B-A link. Here A and B represent Cu and Zn, respectively. Thus,
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Figure 7.8: Order-disorder transition on the square lattice. Below T' = T, order develops spontaneously
on the two v/2 x v/2 sublattices. There is perfect sublattice order at T = 0 (left panel).

we can write the energy of the link (ij) as

Eijj=eyPPP} +e,, PP PP +e,, (PP PP+ PP | (7.45)
where
1 if site ¢ contains Cu
P =1(140;) = e .
0 if site ¢ contains Zn

PP 11 o) = {1 if site i contains Zn
—1 =

0 if site 4 contains Cu
The Hamiltonian is then
H= Z E;; = Z {%(EAA +Epp — 2€AB) 0,05+ %(EAA - EBB) (0; +0;) + %(EAA +épp + 2€AB)}
(ig) (ig)
(i) i
where the exchange constant J and the magnetic field H are given by

J = %(2€AB —Ean — 5}3}3) (7.47)

H = %(5}3}3 _5AA) )

and E, = %N 2(4s + Epp + 26,), where N is the total number of lattice sites and z = 8 is the lattice
coordination number, which is the number of nearest neighbors of any given site.
Note that

26,5 > €an + g — J >0 (ferromagnetic) (7.48)
26,5 < Ean+egg = J <0 (antiferromagnetic) '

The antiferromagnetic case is depicted in fig. 7.8.
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7.4 Mean Field Theory

Consider the Ising model Hamiltonian,
H=-J)Y ojo;—H» o; | (7.49)
(i) i

where the first sum on the RHS is over all links of the lattice. Each spin can be either ‘up’ (o = +1)
or ‘down’ (0 = —1). We further assume that the spins are located on a Bravais lattice® and that the
coupling J;; = J (|RZ - Rj|), where R; is the position of the ¢** spin.

On each site i we decompose o, into a contribution from its thermodynamic average and a fluctuation
term, i.e.

We will write (o;) = m, the local magnetization (dimensionless), and assume that m is independent of
position ¢. Then
=m? +m (60, + 60 ;) + 60, 60 (7.51)

=-—m*+m(o; + 0;) +d0;00;

The last term on the RHS of the second equation above is quadratic in the fluctuations, and we assume
this to be negligibly small. Thus, we obtain the mean field Hamiltonian

H,. = %Nz,]m2 — (H + zJm) Zai , (7.52)

where N is the total number of lattice sites. The first term is a constant, although the value of m is yet
to be determined. The Boltzmann weights are then completely determined by the second term, which is
just what we would write down for a Hamiltonian of noninteracting spins in an effective ‘mean field’

H

€

g=H+zJm . (7.53)

In other words, H g = H,, + H,,, where the external field is applied field H. = H, and the ‘internal
field” is H, , = zJm. The internal field accounts for the interaction with the average values of all other
spins coupled to a spin at a given site, hence it is often called the ‘mean field’. Since the spins are

noninteracting, we have

(7.54)

ePHeg — o= BHeg H+ zJm
m = tanh| ———

- eBHeH + e_ﬁHeff k:BT
It is a simple matter to solve for the free energy, given the noninteracting Hamiltonian H wmr- Lhe partition
function is N

Z = Tr e~Pllur — o~ 3BN=Im? <265<H+2Jm>0> — ¢ PF (7.55)

[

8 A Bravais lattice is one in which any site is equivalent to any other site through an appropriate discrete translation.
Examples of Bravais lattices include the linear chain, square, triangular, simple cubic, face-centered cubic, etc. lattices. The
honeycomb lattice is not a Bravais lattice, because there are two sets of inequivalent sites — those in the center of a Y and
those in the center of an upside down Y.
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We now define dimensionless variables:

F kT H
= =2 h=-— 7.56
f NzJ ' zJ ’ 2J (7.56)
and obtain the dimensionless free energy

f(m,h,0) = im? — 0 In <e<m+h>/9 + e—<m+h>/9> : (7.57)

Differentiating with respect to m gives the mean field equation,

m+h

m = tanh <T) , (7.58)

which is equivalent to the self-consistency requirement, m = (o;). In terms of the dimensionless variables
f and h, the physics is universal, and independent of details such as the magnitude of .J, the value of z,
and Boltzmann’s constant.

741 h=0

When h = 0 the mean field equation becomes m = tanh(m/6). This nonlinear equation can be solved
graphically, as in the top panel of fig. 7.9. The RHS in a tanh function which gets steeper with decreasing
t. If, at m = 0, the slope of tanh(m/#) is smaller than unity, then the curve y = tanh(m/h) will intersect
y = m only at m = 0. However, if the slope is larger than unity, there will be three such intersections.
Since the slope is 1/6, we identify 6. = 1 as the mean field transition temperature.

In the low temperature phase 8 < 1, there are three solutions to the mean field equations. One solution is
always at m = 0. The other two solutions must be related by the m <> —m symmetry of the free energy
(when h = 0). The exact free energies are plotted in the bottom panel of fig. 7.9, but it is possible to
make analytical progress by assuming m is small and Taylor expanding the free energy f(m,#) in powers
of m:

£(m,0) = Im® — 6In2 — 0 In cosh (%)
4 6 (7.59)

_ m m
=—0lm2+3(1-90 1)m2+m—m+_”

Note that the sign of the quadratic term is positive for § > 1 and negative for § < 1. Thus, the shape
of the free energy f(m,0) as a function of m qualitatively changes at this point, 6, = 1, the mean field
transition temperature, also known as the critical temperature.

For 6 > 6, the free energy f(m,0) has a single minimum at m = 0. Below 6, the curvature at m = 0
reverses, and m = 0 becomes a local maximum. There are then two equivalent minima symmetrically
displaced on either side of m = 0. Differentiating with respect to m, we find these local minima. For
6 < 6, the local minima are found at

m?=30°(1-0)=3(1-0)+0(1-6)*) . (7.60)
Thus, we find for |§ — 1] < 1,

m(,h=0)=+v3(1-6)"" (7.61)

where the + subscript indicates that this solution is only for 1 — 8 > 0. For # > 1 the only solution is
m = 0. The exponent with which m(€) vanishes as § — 67 is denoted 8. Le. m(6,h =0) o (6, — H)i
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Figure 7.9: .
Results for h = 0. Upper panels: graphical solution to self-consistency equation m = tanh(m/f) at
temperatures § = 0.65 (blue) and 6 = 1.5 (dark red). Lower panel: mean field free energy, with energy
shifted by #1n2 so that f(m =0,60) = 0.

7.4.2 Specific heat

We can now expand the free energy f(6,h = 0). We find

—f1In?2 if 6 > 6
foh=0)=4"10 o (7.62)
—6In2-3(1-0)2+0((1—-0)*) ifh <6,
Thus, if we compute the heat capacity, we find in the vicinity of 6 = 6,
0*f 0 if6d>40
=_0L = ¢ 7.63
v 062 {% if 0 <0, (7.63)

Thus, the specific heat is discontinuous at § = 6,. We emphasize that this is only valid near § = 0, = 1.
The general result valid for all 4 is’

1 m*(8) — m*(9)

cy(0) = 9 6—1+m26) (7.64)

9To obtain this result, one writes f = f(&m(@)) and then differentiates twice with respect to 6, using the chain rule.
Along the way, any naked (i.e. undifferentiated) term proportional to 27 may be dropped, since this vanishes at any 6 by

om
the mean field equation.
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Figure 7.10: Results for A~ = 0.1. Upper panels: graphical solution to the self-consistency equation
m = tanh((m + h)/6) at temperatures § = 0.65 (blue), § = 0.9 (dark green), and § = 1.5 (dark red).
Lower panel: mean field free energy, with energy shifted by 61n2 so that f(m =0,6) = 0.

With this expression one can check both limits # — 0 and § — 6.. As § — 0 the magnetization
saturates and one has m?(f) ~ 1 — 4e~2/?. The numerator then vanishes as e~2/¢  which overwhelms
the denominator that itself vanishes as 2. As a result, cy (0 — 0) =0, as expected. As # — 1, invoking
m? =~ 3(1 — 0) we recover ¢y, (6;) = 3. In the theory of critical phenomena, ¢ (6) o |0 — 0 |~ as § — 0.
We see that mean field theory yields a = 0.

743 h#£0

Consider without loss of generality the case h > 0. The minimum of the free energy f(m,h, ) now lies
at m > 0 for any 6. At low temperatures, the double well structure we found in the h = 0 case is tilted so
that the right well lies lower in energy than the left well. This is depicted in fig. 7.10. As the temperature
is raised, the local minimum at m < 0 vanishes, annihilating with the local maximum in a saddle-node

bifurcation. To find where this happens, one sets g—£ =0 and g—:{; = 0 simultaneously, resulting in

W*(0) = V=6 — gm(ii\/_ Vi:g) (7.65)

The solutions lie at h = £h*(f). For § < 6, = 1 and h € [—h*(6), +h*(0)], there are three solutions
to the mean field equation. Equivalently we could in principle invert the above expression to obtain
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0*(h). For 0 > 0*(h), there is only a single global minimum in the free energy f(m) and there is no local
minimum. Note 6*(h =0) = 1.

Assuming h < | — 1| < 1, the mean field solution for m(é, h) will also be small, and we expand the free
energy in m, and to linear order in h:

m?* hm

1203 6 (7.66)
=fot+3@—-1)m*+ 5m' —hm+...

fim,h,0) = -0 In2+4(1—0""Yym*+

Setting g—i = (0, we obtain
I+ (0—-1)-m—h=0 . (7.67)

If > 1 then we have a solution m = h/(§ — 1). The m? term can be ignored because it is higher order
in h, and we have assumed h < |§ — 1| < 1. This is known as the Curie-Weiss law'’. The magnetic

susceptibility behaves as
om 1
)= —=—x0—-1]"" 7.68
X(0) = = s xlo -1l (7.69)
where the magnetization critical exponent v is v = 1. If § < 1 then while there is still a solution at
m = h/(6 — 1), it lies at a local maximum of the free energy, as shown in fig. 7.10. The minimum of the
free energy occurs close to the h = 0 solution m = my(6) = V3 (1 — 6), and writing m = mg + ém we

find dm to linear order in h as dm(0,h) = h/2(1 — 6). Thus,

h

m(@,h) == \/5(1—9)1/24-@

(7.69)
Once again, we find that X(0) diverges as |# — 1|77 with v = 1. The exponent v on either side of the
transition is the same.
Finally, we can set §# = . and examine m(h). We find, from eqn. 7.67,

m(0 = 0,,h) = (3h)'/3 « B/ | (7.70)

where ¢ is a new critical exponent. Mean field theory gives § = 3. Note that at § = 6. = 1 we have
m = tanh(m + h), and inverting we find
1—-m

3 5
h(m,@z@c):%ln<1+m>— mm

= — 4+ — ... 7.71
m 3+5+ , ( )

which is consistent with what we just found for m(h,0 = 6,).

10Pjerre Curie was a pioneer in the fields of crystallography, magnetism, and radiation physics. In 1880, Pierre and his
older brother Jacques discovered piezoelectricity. He was 21 years old at the time. It was in 1895 that Pierre made the first
systematic studies of the effects of temperature on magnetic materials, and he formulated what is known as Curie’s Law,
X = C/T, where C is a constant. Curie married Marie Sklodowska in the same year. Their research turned toward radiation,
recently discovered by Becquerel and Rontgen. In 1898, Pierre and Marie Curie discovered radium. They shared the 1903
Nobel Prize in Physics with Becquerel. Marie went on to win the 1911 Nobel Prize in Chemistry and was the first person
ever awarded two Nobel Prizes. Their daughter Iréne Joliot Curie shared the 1935 Prize in Chemistry (with her husband),
also for work on radioactivity. Pierre Curie met an untimely and unfortunate end in the Spring of 1906. Walking across the
Place Dauphine, he slipped and fell under a heavy horse-drawn wagon carrying military uniforms. His skull was crushed by
one of the wagon wheels, killing him instantly. Later on that year, Pierre-Ernest Weiss proposed a modification of Curie’s
Law to account for ferromagnetism. This became known as the Curie-Weiss law, x = C/(T — T).
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2D Ising | 3D Ising COq
Exponent | MFT | (exact) | (numerical) | (expt.)

o 0 0 0.125 <0.1
3 1/2 1/8 0.313 0.35
5 1 7/4 1.25 1.26
5 15 5 12

Table 7.2: Critical exponents from mean field theory as compared with exact results for the two-
dimensional Ising model, numerical results for the three-dimensional Ising model, and experiments on
the liquid-gas transition in COs. Source: H. E. Stanley, Phase Transitions and Critical Phenomena.

How well does mean field theory do in describing the phase transition of the Ising model? In table 7.2 we
compare our mean field results for the exponents «, 3, v, and § with exact values for the two-dimensional
Ising model, numerical work on the three-dimensional Ising model, and experiments on the liquid-gas
transition in COs. The first thing to note is that the exponents are dependent on the dimension of space,
and this is something that mean field theory completely misses. In fact, it turns out that the mean field
exponents are exact provided d > d,,, where d,, is the upper critical dimension of the theory. For the
Ising model, d, = 4, and above four dimensions (which is of course unphysical) the mean field exponents
are in fact exact. We see that all in all the MFT results compare better with the three dimensional
exponent values than with the two-dimensional ones — this makes sense since MFT does better in higher
dimensions. The reason for this is that higher dimensions means more nearest neighbors, which has the
effect of reducing the relative importance of the fluctuations we neglected to include.

7.4.4 Magnetization dynamics

Dissipative processes drive physical systems to minimum energy states. We can crudely model the
dissipative dynamics of a magnet by writing the phenomenological equation

dm __of

ds — om

where s is a dimensionless time variable. Under these dynamics, the free energy is never increasing:

(7.72)

df  of om _ [(df\
a—a—ma—‘<a—m> <o . (7.73)

Clearly the fized point of these dynamics, where rih = 0, is a solution to the mean field equation g—rJ; =
The time dependent m(s) thus evolves until it reaches the first fixed point encountered, which is to say
the first local extremum of the function f(m). This extremum could be a global minimum, but it could
also be a local minimum or even an inflection point'!.

The phase flow for the equation m = — f/(m) is shown in fig. 7.11. As we have seen, for any value of h
there is a temperature 8* below which the free energy f(m) has two local minima and one local maximum.

"Since f(s) is never increasing, the extremum cannot be a local maximum.
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Figure 7.11: Dissipative magnetization dynamics mm = —f’(m). Bottom panel shows h*(6) from eqn.

7.65. For (6, h) within the blue shaded region, the free energy f(m) has a global minimum plus a local
minimum and a local maximum. Otherwise f(m) has only a single global minimum. Top panels show an
imperfect bifurcation in the magnetization dynamics at h = 0.0215 , for which 8* = 0.90. Temperatures
shown: 6 = 0.65 (blue), 8 = 6*(h) = 0.90 (green), and # = 1.2. The rightmost stable fixed point
corresponds to the global minimum of the free energy. The bottom of the middle two upper panels
shows h = 0, where both of the attractive fixed points and the repulsive fixed point coalesce into a single
attractive fixed point (supercritical pitchfork bifurcation).

When h = 0 the minima are degenerate, but at finite i one of the minima is a global minimum. Thus, for
0 < 6*(h) there are three solutions to the mean field equations. In the language of dynamical systems,
under the dynamics of eqn. 7.72, minima of f(m) correspond to attractive fixed points and maxima to
repulsive fixed points. If A > 0, the rightmost of these fixed points corresponds to the global minimum
of the free energy. As 6 is increased, this fixed point evolves smoothly. At 6 = 6*, the (metastable) local
minimum and the local maximum coalesce and annihilate in a saddle-note bifurcation. However at h = 0
all three fixed points coalesce at § = 6, and the bifurcation is a supercritical pitchfork. As a function of
t at finite h, the dynamics are said to exhibit an imperfect bifurcation, which is a deformed supercritical
pitchfork.

The solution set for the mean field equation is simply expressed by inverting the tanh function to obtain
h(0,m). One readily finds
0 1+m

As we see in the bottom panel of fig. 7.12, m(h) becomes multivalued for h € [ — h*(#), +h*(6)], where
h*(#) is given in eqn. 7.65. Now imagine that § < 6. and we slowly ramp the field h from a large
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Figure 7.12: Top panel : hysteresis as a function of ramping the dimensionless magnetic field h at
f = 0.40. Dark red arrows below the curve follow evolution of the magnetization on slow increase of h.
Dark grey arrows above the curve follow evolution of the magnetization on slow decrease of h. Bottom
panel : solution set for m(6,h) as a function of h at temperatures § = 0.40 (blue), 6 = 6. = 1.0 (dark
green), and t = 1.25 (red).

negative value to a large positive value, and then slowly back down to its original value. On the time
scale of the magnetization dynamics, we can regard h(s) as a constant. (Remember the time variable is
s here.) Thus, m(s) will flow to the nearest stable fixed point. Initially the system starts with m = —1
and h large and negative, and there is only one fixed point, at m* ~ —1. As h slowly increases, the
fixed point value m* also slowly increases. As h exceeds —h*(f), a saddle-node bifurcation occurs, and
two new fixed points are created at positive m, one stable and one unstable. The global minimum of
the free energy still lies at the fixed point with m* < 0. However, when h crosses h = 0, the global
minimum of the free energy lies at the most positive fixed point m*. The dynamics, however, keep the
system stuck in what is a metastable phase. This persists until A = +h*(6), at which point another
saddle-note bifurcation occurs, and the attractive fixed point at m* < 0 annihilates with the repulsive
fixed point. The dynamics then act quickly to drive m to the only remaining fixed point. This process
is depicted in the top panel of fig. 7.12. As one can see from the figure, the the system follows a stable
fixed point until the fixed point disappears, even though that fixed point may not always correspond to a
global minimum of the free energy. The resulting m(h) curve is then not reversible as a function of time,
and it possesses a characteristic shape known as a hysteresis loop. Etymologically, the word hysteresis
derives from the Greek voTepnois, which means ‘lagging behind’. Systems which are hysteretic exhibit a
history-dependence to their status, which is not uniquely determined by external conditions. Hysteresis
may be exhibited with respect to changes in applied magnetic field, changes in temperature, or changes
in other externally determined parameters.
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7.4.5 Beyond nearest neighbors

Suppose we had started with the more general model,

H=-3> Jjo0,—HY o, , (7.75)
i#£j i

where J;; is the coupling between spins on sites ¢ and j'2. In the top equation above, each pair (ij) is
counted once in the interaction term; this may be replaced by a sum over all ¢ and j if we include a factor
of %.13 The resulting mean field Hamiltonian is then

HMF =

NI~

NJ(O)m? — (H+J(0)m)> o . (7.76)

Here, J (q) is the Fourier transform of the interaction matrix Jijzl"1
J(g) =Y _J(R)e Ml (7.77)
R

For nearest neighbor interactions only, one has J (0) = zJ, where z is the lattice coordination number,
i.e. the number of nearest neighbors of any given site. The scaled free energy is as in eqn. 7.57, with
f = F/NJ(), 6 = k,T/J(0), and h = H/J(0). The analysis proceeds precisely as before, and we
conclude 6, = 1, i.e. kT = J(0). For example, on the simple cubic lattice there are six nearest
neighbors and twelve next-nearest neighbors. Thus, if J is the nearest neighbor coupling and .J’ the
next-nearest neighbor coupling, we have .J(0) = 6.J + 12.J.

7.4.6 Ising model with long-ranged forces

Consider an Ising model where Jiy =4 /N for all i and j, so that there is a very weak interaction between
every pair of spins. The Hamiltonian is then

E[Z—%<ZO’Z->2—HZ]€:U]€ . (7.78)

(2

The partition function is

BJ ?
Z = {I[} exp [W <Z 02-> + BH Z ai] : (7.79)

i

12Note that we may write % Zi# A;j as ZKj A;; provided A = A% is symmetric. Clearly A;; = 0, 0; is symmetric under
interchange of indices ¢ and j. Each version of the sum counts all unique pairs (3,j) = (j,4) exactly once.

13The self-interaction terms with ¢ = j contribute a constant to H and may be either included or excluded. However, this
property only pertains to the o; = +1 model. For higher spin versions of the Ising model, say where S; € {—1,0,+1}, then
S2 is not constant and we should explicitly exclude the self-interaction terms.

4The sum in the discrete Fourier transform is over all ‘direct Bravais lattice vectors’ and the wavevector ¢ may be
restricted to the ‘first Brillouin zone’. These terms are familiar from elementary solid state physics.



7.4. MEAN FIELD THEORY 377

We now invoke the Gaussian integral,

/ dz e~ —ﬁw:,/ Pl (7.80)

BJ 2 _ N/BJ 1/2 r —lNBJm2+BJmZ-J-
exp[2N<Za-> =\ 5 /dme 2 , (7.81)

and we can write the partition function as

P <N5J>1/2/ dim, o~ SNBIm? <Ze B(H+Jm)o >

Thus,

b (7.82)
_ i —NA(m)/0
= <2719> /dm e ,
where 6 = k,T/J, h = H/J, and
A(m) = m* —0In [2 cosh <h+Tm>] . (7.83)

Since N — 00, we can perform the integral using the method of steepest descents. Thus, we must set

dA m*+h
am| . 0 = m"=tan < 7 > (7.84)
Expanding about m = m*, we write
A(m) = A(m*) + $A"(m*) (m — m*)* + L A" (m*) (m —m*)* + ... . (7.85)

Performing the integrations, we obtain

N 1/2 N Al ® NA//(m*) NA///(m*)
A — (m*)/0 Rt S A e ST AR |
Z <2719> e /duexp 20 m 0 m°+ ...
VAR (7.86)
__ b Namye, -1
abvoor {1 +O(N )}
The corresponding free energy per site
F 0 " —2
f:N—J:A( )+W1HA( Y+ O(NT) (7.87)

where m* is the solution to the mean field equation which minimizes A(m). Mean field theory is ezact
for this model!
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7.5 Variational Density Matrix Method

7.5.1 The variational principle

Suppose we are given a Hamiltonian H. From this we construct the free energy, F:

F=FE-TS

’ (7.88)
=Tr(oH)+ k;TTr(o1np)

Here, o is the density matriz'®. A physical density matrix must be (i) normalized (i.e. Tro = 1), (ii)
Hermitian, and (iii) non-negative definite (i.e. all the eigenvalues of ¢ must be non-negative).

Our goal is to extremize the free energy subject to the various constraints on g. Let us assume that p is
diagonal in the basis of eigenstates of H, i.e.

=3P (75)
2l
where P, is the probability that the system is in state ! 0% > Then
F=> E,P,+kT» PP, . (7.90)
v gl

Thus, the free energy is a function of the set {P,}. We now extremize F' subject to the normalization
constraint. This means we form the extended function

Fr({P,},\) = F({P,}) + A(ZP7 - 1) , (7.91)
v

and then freely extremize over both the probabilities {P,} as well as the Lagrange multiplier A\. This
yields the Boltzmann distribution,

Pt = — exp(—E,/k;T) (7.92)

where Z = Z,Y e=Br/ksT — Ty e=H/ksT is the canonical partition function, which is related to A through
A=k, T(InZ—-1) . (7.93)

Note that the Boltzmann weights are, appropriately, all positive.

If the spectrum of H is bounded from below, our extremum should in fact yield a minimum for the free
energy F. Furthermore, since we have freely minimized over all the probabilities, subject to the single
normalization constraint, any distribution {Py} other than the equilibrium one must yield a greater value
of F.

5How do we take the logarithm of a matrix? The rule is this: A = In B if B = exp(A). The exponential of a matrix may
be evaluated via its Taylor expansion.
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Alas, the Boltzmann distribution, while exact, is often intractable to evaluate. For one-dimensional
systems, there are general methods such as the transfer matrix approach which do permit an exact
evaluation of the free energy. However, beyond one dimension the situation is in general hopeless. A
family of solvable (“integrable”) models exists in two dimensions, but their solutions require specialized
techniques and are extremely difficult. The idea behind the variational density matrix approximation is
to construct a tractable trial density matrix ¢ which depends on a set of variational parameters {x,},
and to minimize with respect to this (finite) set.

7.5.2 Variational density matrix for the Ising model

Consider once again the Ising model Hamiltonian,
i<j i

The states of the system |’y> may be labeled by the values of the spin variables: | ’y> — ‘ 01,09, ... >
We assume the density matrix is diagonal in this basis, i.e.

on(VY) = e() 8y (7.95)

where 0, o =[], 5%0.2 . Indeed, this is the case for the exact density matrix, which is to say the Boltzmann
weight,

1 N
oy(o1,00,...) = Ee_BH(Ul"“’UN) . (7.96)

We now write a trial density matriz which is a product over contributions from independent single sites:

on(o1,09,...) = H o(oi) (7.97)

where

o0) = () bt (P52 bor (7.98)

Note that we've changed our notation slightly. We are denoting by o(o) the corresponding diagonal
element of the matrix
1+m 0
o= (7 5) (7.99)
2
and the full density matrix is a tensor product over the single site matrices: oy = 0® 0 ®@ - ® 0.

Note that ¢ and hence g, are appropriately normalized. The variational parameter here is m, which, if p
is to be non-negative definite, must satisfy —1 < m < 1. The quantity m has the physical interpretation
of the average spin on any given site, since

(o) =Y olo)o =m. (7.100)

[
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We may now evaluate the average energy:

E:Tr(gN]fI):—ZJijm2—HZm
i<j i (7.101)

= -iNJ(O)m* -~ NHm

where once again J(0) is the discrete Fourier transform of J(R) at wavevector ¢ = 0. The entropy is
given by

S =—kyTr(oyInoy) = —Nk; Tr(oln o)

(7.102)
o {55 () + (52)m (52)

We now define the dimensionless free energy per site: f = F/N J (0). We have
f(m,h,@):—%m2—hm+9{<1—;m)ln<1;m)—|—<1_2m)ln<1_2m>} , (7.103)

where 0 = k T/ J (0) is the dimensionless temperature, and h = H/ J (0) the dimensionless magnetic field,
as before. We extremize f(m) by setting

af 0 1+m
—=0=-m— —In(—) . 104
om 0= h+2n<1—m) (7.104)
Solving for m, we obtain
m+h
m = tanh ) (7.105)

which is precisely what we found in eqn. 7.58.

Note that the optimal value of m indeed satisfies the requirement |m| < 1 of non-negative probability.
This nonlinear equation may be solved graphically. For h = 0, the unmagnetized solution m = 0
always applies. However, for § < 1 there are two additional solutions at m = 4+m,(0), with m,(0) =
V31 —-0)+0((1- 0)3/2) for t close to (but less than) one. These solutions, which are related by the
Zo symmetry of the h = 0 model, are in fact the low energy solutions. This is shown clearly in figure
7.13, where the variational free energy f(m,t) is plotted as a function of m for a range of temperatures
interpolating between ‘high’ and ‘low’ values. At the critical temperature 6. = 1, the lowest energy state
changes from being unmagnetized (high temperature) to magnetized (low temperature).

For h > 0, there is no longer a Zy symmetry (i.e. 0; — —o; V). The high temperature solution now has
m > 0 (or m < 0if h < 0), and this smoothly varies as t is lowered, approaching the completely polarized
limit m = 1 as 8 — 0. At very high temperatures, the argument of the tanh function is small, and we
may approximate tanh(z) ~ z, in which case

m(h,0) = (7.106)

60— 0
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Figure 7.13: Variational field free energy Af = f(m,h,8)+ 0 In 2 versus magnetization m at six equally
spaced temperatures interpolating between ‘high’ (§ = 1.25, red) and ‘low’ (6 = 0.75, blue) values. Top
panel: h = 0. Bottom panel: h = 0.06.

This is called the Curie-Weiss law. One can infer 6. from the high temperature susceptibility X(0) =

(Om/0h),_, by plotting X~! wersus 6 and extrapolating to obtain the f-intercept. In our case, X(6)
(6 — 6.)~L. For low # and weak h, there are two inequivalent minima in the free energy.

When m is small, it is appropriate to expand f(m, h,#), obtaining
flm,h,0) =02 —hm+ 3O -1)m*+Zm*+ Emé+ mP4 ... . (7.107)

This is known as the Landau expansion of the free energy in terms of the order parameter m. An order
parameter is a thermodynamic variable ¢ which distinguishes ordered and disordered phases. Typically
¢ = 0 in the disordered (high temperature) phase, and ¢ # 0 in the ordered (low temperature) phase.
When the order sets in continuously, i.e. when ¢ is continuous across ., the phase transition is said to
be second order. When ¢ changes abruptly, the transition is first order. It is also quite commonplace to
observe phase transitions between two ordered states. For example, a crystal, which is an ordered state,
may change its lattice structure, say from a high temperature tetragonal phase to a low temperature
orthorhombic phase. When the high T phase possesses the same symmetries as the low T phase, as in
the tetragonal-to-orthorhombic example, the transition may be second order. When the two symmetries
are completely unrelated, for example in a hexagonal-to-tetragonal transition, or in a transition between
a ferromagnet and an antiferromagnet, the transition is in general first order.

Throughout this discussion, we have assumed that the interactions J;; are predominantly ferromagnetic,
i.e. J;j > 0, so that all the spins prefer to align. When J;; < 0, the interaction is said to be antiferro-
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magnetic and prefers anti-alignment of the spins (i.e. 0;0; = —1). Clearly not every pair of spins can
be anti-aligned — there are two possible spin states and a thermodynamically extensive number of spins.
But on the square lattice, for example, if the only interactions J;; are between nearest neighbors and
the interactions are antiferromagnetic, then the lowest energy configuration (7' = 0 ground state) will
be one in which spins on opposite sublattices are anti-aligned. The square lattice is bipartite — it breaks
up into two interpenetrating sublattices A and B (which are themselves square lattices, rotated by 45°
with respect to the original, and with a larger lattice constant by a factor of 4/2), such that any site in
A has nearest neighbors in B, and wvice versa. The honeycomb lattice is another example of a bipartite
lattice. So is the simple cubic lattice. The triangular lattice, however, is not bipartite (it is tripartite).
Consequently, with nearest neighbor antiferromagnetic interactions, the triangular lattice Ising model is
highly frustrated. The moral of the story is this: antiferromagnetic interactions can give rise to compli-
cated magnetic ordering, and, when frustrated by the lattice geometry, may have finite specific entropy
even at T'= 0.

7.5.3 Mean Field Theory of the Potts Model

The Hamiltonian for the Potts model is

H=-) Jijboo;—H> 651 - (7.108)
1<J %

Here, o; € {1,...,q}, with integer ¢q. This is the so-called ‘g-state Potts model’. The quantity H is
analogous to an external magnetic field, and preferentially aligns (for H > 0) the local spins in the 0 = 1
direction. We will assume H > 0.

The g-component set is conveniently taken to be the integers from 1 to ¢, but it could be anything, such
as
o; € {tomato, penny, ostrich, Grateful Dead ticket from 1987, ...} . (7.109)

The interaction energy is —J;; if sites @ and j contain the same object (¢ possibilities), and 0 if i and j
contain different objects (¢? — ¢ possibilities).

The two-state Potts model is equivalent to the Ising model. Let the allowed values of o be 1. Then the
quantity
bo00 = 3 + 300 (7.110)

equals 1 if 0 = ¢/, and is zero otherwise. The three-state Potts model cannot be written as a simple
three-state Ising model, i.e. one with a bilinear interaction oo’ where o € {—1,0,+1}. However, it is
straightforward to verify the identity

oo =1+ 100" +30%7 — (6> +0?%) . (7.111)

Thus, the ¢ = 3-state Potts model is equivalent to a S = 1 (three-state) Ising model which includes
both bilinear (c0’) and biquadratic (020'2) interactions, as well as a local field term which couples to the
square of the spin, 0. In general one can find such correspondences for higher ¢ Potts models, but, as
should be expected, the interactions become increasingly complex, with bi-cubic, bi-quartic, bi-quintic,
etc. terms. Such a formulation, however, obscures the beautiful S, symmetry inherent in the model,
where S, is the permutation group on ¢ symbols, which has ¢! elements.
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Getting back to the mean field theory, we write the single site variational density matrix g as a diagonal
matrix with entries )
-
1) (1—651) (7.112)

o(0) =xd51 + <

with oy (0q,...,0y5) = 0(0y)---0(oy). Note that Tr(p) = 1. The variational parameter is . When
x = ¢~ ', all states are equally probable. But for > ¢!, the state o = 1 is preferred, and the other
(¢ — 1) states have identical but smaller probabilities. It is a simple matter to compute the energy and

entropy:

. Lar 5  (1—x)?
E=Tr(oyH)=—5NJ(0)3 2 t— — NHz
1 , (7.113)
S=—k, Tr(oyInoy) = —NkB{arlna:+ (1-2)In (q_”{)}
The dimensionless free energy per site is then
1 oo, (- z)? 1-=z
f(x,@,h):—i{x +ﬁ}+9{xlnx+(l—x)ln <q——1 —hz (7.114)
where h = H/.J(0). We now extremize with respect to z to obtain the mean field equation,
of 1—x 1—2x
—=0=-—24+——+0Inz—-01 —h . 7.115
B x+q_1+ nr n<q_1> ( )

Note that for h = 0, 2 = ¢! is a solution, corresponding to a disordered state in which all states are
equally probable. At high temperatures, for small h, we expect © — ¢~  h. Indeed, using Mathematica
one can set = ¢~ + s and expand the mean field equation in powers of s. One obtains

_ 3 —

For weak fields, |h| < 1, and we have

(¢—1)h 2
s(0) = + O(h , 7117
0) = Fg= s + O (7.117)
which again is of the Curie-Weiss form. The difference s = = — ¢~
transition.

1'is the order parameter for the

Finally, one can expand the free energy in powers of s, obtaining the Landau expansion,

2h + 1 6—1 -2)¢*0
+ —91nq—hs+7q(q )32—7@ )q2 3
2(¢—1) 6(¢q—1)
+q3—9[1+( —1)—3]34—‘14—9[1—( —1)—4}s5+@[1+( — )58 ¢
12 1 20 1 30 1
Note that, for ¢ = 2, the coefficients of s3, s, and higher order odd powers of s vanish in the Landau
expansion. This is consistent with what we found for the Ising model, and is related to the Zs symmetry
of that model. For ¢ > 3, there is a cubic term in the mean field free energy, and thus we generically
expect a first order transition, as we shall see below when we discuss Landau theory.

Fs,0,h) = — (7.118)
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7.5.4 Mean Field Theory of the XY Model

Consider the so-called XY model, in which each site contains a continuous planar spin, represented by
an angular variable ¢; € [—m, 7] :

H= ——ZJ,] cos( HZcosqﬁ, . (7.119)
i#]

We write the (diagonal elements of the) full density matrix once again as a product:

N (b1, 62,2 HQ@ . (7.120)

Our goal will be to extremize the free energy with respect to the function o(¢). To this end, we compute
. . 2
E=Tr(oy H)=—-1NJ(0) ‘Tr (ge’¢)‘ — NHTr(ocos¢) . (7.121)

The entropy is S = —Nk; Tr (o In 9) . Note that for any function A(¢), we have'®

Tr(oA) = / ;ij: o(d) A(d) . (7.122)

—T

We now extremize the functional F [Q((;S)] = E — TS with respect to g(¢), under the condition that
Tr o = 1. We therefore use Lagrange’s method of undetermined multipliers, writing

F*=F — Nk, T\ (Tr 0— 1) . (7.123)

Note that F* is a function of the Lagrange multiplier A and a functional of the density matrix o(¢). The
prefactor NkyT which multiplies )\ is of no mathematical consequence — we could always redefine the
multiplier to be X' = Nk, T\. It is present only to maintain homogeneity and proper dimensionality of
F* with X itself dimensionless and of order N°. We now have

OF™* 1) . i |2
50(0) = —5Q( ) {— %NJ(O) ‘Tr(ge ¢)‘ — NHTr(g cos gb) o
+ NksT Tr(oIng) — Nk T A <Trg— 1)}
To this end, we note that
0 _ 5 [d 1
500) N = 50 [ 5 e 40) = 3 460) (7.125)

—T

16The denominator of 27 in the measure is not necessary, and in fact it is even slightly cumbersome. It divides out
whenever we take a ratio to compute a thermodynamic average. I introduce this factor to preserve the relation Tr 1 = 1. I
personally find unnormalized traces to be profoundly unsettling on purely aesthetic grounds.



7.5. VARIATIONAL DENSITY MATRIX METHOD 385

Thus, we have

OF Lar 3 1 N IV cos ¢
—— = —INJO) —|Tr(ee) e ™ + Tr(oe ) €| — NH -
IR [w(@ Je o™ o 1o
b NET [m (¢)+1} _NE T2
5T 2w ¢ PToon
Now let us define
Tr(ee'?) = / 40 o(¢) €’ =meo . (7.127)
¢ 27
We then have .
_J(0) H
Ino(¢) = T m cos(¢ — ¢g) + T cosp+ A —1. (7.128)

Clearly the free energy will be reduced if ¢, = 0 so that the mean field is maximal and aligns with the
external field, which prefers ¢ = 0. Thus, we conclude

o(¢) =C exp(kHe; cos ¢> : (7.129)

B

where H g = J(0)m + H and C = e*~'. The value of X is then determined by invoking the constraint,

[do  (H.
Tro=1= C/% exp(kB; cos gb) =CIy(Hg/ksT) (7.130)

where I(z) is the Bessel function. We are free to define e = H 4 /k,T', and treat ¢ as our single variational
parameter. We then have the normalized single site density matrix

o) = exp(e cos ¢) _ exp(e cos ¢) ' (7.131)
}% exp(e cos ¢') lo(e)
We next compute the following averages:
oy [do +ig _ 11(e)
(e59) = /277 o(@) e = To(e) (7.132)
{cos(¢ — ¢)) = Re (e e = L)Y’ (7.133
cos ¢')) =Re (e?e _<Io(€)> , .133)
as well as
A €COS ¢
Tr(oIlnp) = /% 610? {5 cos ¢ — In Io(e)} = 253 —Inly(e) . (7.134)

—T
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The dimensionless free energy per site is therefore

_ 1(L(e) Li(g)
f(z—:,h,@)——§<lo(€)> (0¢ —h)[o()—el nl(e) | (7.135)

with @ = k,T/J(0) and h = H/J(0) and f = F/NJ(0) as before. Note that the mean field equation is
m=0g—h= <ei¢’>, i.e.

I (e)
fe — h = 7.136
IO(E) ( )
For small €, we may expand the Bessel functions, using
1 (1 2)k
I, 5 —_ 7.137
(2) = (3 — KT (k+v+1) (7.137)
to obtain
fleh0)=10-3)+&(2-30)e" —She+ Hhe®+... . (7.138)
This predicts a second order phase transition at 6. = %.17 Note also the Curie-Weiss form of the
susceptibility at high 6:
af h
= = = e 1
e 0 = ¢ 6—06+ (7.139)
7.5.5 XY model via neglect of fluctuations method
Consider again the Hamiltonian of eqn. 7.119. Define z; = exp(i¢,;) and write z; = w + dz;, where
w = (z;) and dz; = z; — w. Of course we also have the complex conjugate relatlons zf = w* 40z and

w* = (z7). Writing cos(¢; — ¢;) = Re(2]z;), by neglecting the terms proportional to dz] dz; in H we
arrive at the mean field Hamiltonian,

HYF = %Nj(O) lw|* — % ) [w] Z (w*z; + wz]) — %Hz (zF + %) (7.140)
i

It is clear that the free energy will be minimized 1f the mean field w breaks the O(2) symmetry in the
same direction as the external field H, which means w € R and

YT = LNJ(0) |w]* — (H + J(0) |w)) Zcow : (7.141)

The dimensionless free energy per site is then

h
f=3w)* - 6111[0< +9|w|> : (7.142)
Differentiating with respect to |w|, one obtains
T (h+m)
wj=m=-"_L2 (7.143)
Ip(*5*)

which is the same equation as eqn. 7.136. The two mean field theories yield the same results in every
detail (see §7.10).

1"Note that the coefficient of the quartic term in € is negative for 6 > % At =10, = %7 the coefficient is positive, but for
larger € one must include higher order terms in the Landau expansion.
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Figure 7.14: Phase diagram for the quartic Landau free energy f = fo+ %am2 + %bm4 — hm, with b > 0.
There is a first order line at h = 0 extending from a = —oo and terminating in a critical point at a = 0.

For |h| < h*(a) (dashed red line) there are three solutions to the mean field equation, corresponding
to one global minimum, one local minimum, and one local maximum. Insets show behavior of the free
energy f(m).

7.6 Landau Theory of Phase Transitions

Landau’s theory of phase transitions is based on an expansion of the free energy of a thermodynamic
system in terms of an order parameter, which is nonzero in an ordered phase and zero in a disordered
phase. For example, the magnetization M of a ferromagnet in zero external field but at finite temperature
typically vanishes for temperatures 1T° > T, where T¢ is the critical temperature, also called the Curie
temperature in a ferromagnet. A low order expansion in powers of the order parameter is appropriate
sufficiently close to the phase transition, i.e. at temperatures such that the order parameter, if nonzero,
is still small.

7.6.1 Quartic free energy with Ising symmetry
The simplest example is the quartic free energy,
fim,h=0,0) = fo+ 2am® + 3bm* | (7.144)

where fo = fo(0), a = a(f), and b = b(#). Here, 0 is a dimensionless measure of the temperature. If for
example the local exchange energy in the ferromagnet is J, then we might define § = k,T/zJ, as before.
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Let us assume b > 0, which is necessary if the free energy is to be bounded from below'®. The equation
of state ,
of

5 = 0=am+ bm3 (7.145)

has three solutions in the complex m plane: (i) m = 0, (ii) m = y/—a/b, and (iii) m = —/—a/b. The
latter two solutions lie along the (physical) real axis if a < 0. We assume that there exists a unique
temperature 6, where a(.) = 0. Minimizing f, we find

2

a
0>0. : f(6)=rfo
The free energy is continuous at 6. since a(f.) = 0. The specific heat, however, is discontinuous across
the transition, with
0? a? 0. [a’(@c)]2
+ — ) = — —_— —_— = -
c(6F) —c(07) = —b. 50 9=9C<4b> T (7.147)

The presence of a magnetic field h breaks the Z, symmetry of m — —m. The free energy becomes
f(m,h,0) = fo+ $am*+ tbm* — hm | (7.148)

and the mean field equation is
bm3 +am —h=0 . (7.149)

This is a cubic equation for m with real coefficients, and as such it can either have three real solutions or
one real solution and two complex solutions related by complex conjugation. Clearly we must have a < 0
in order to have three real roots, since bm? + am is monotonically increasing otherwise. The boundary
between these two classes of solution sets occurs when two roots coincide, which means f”(m) = 0 as
well as f'(m) = 0. Simultaneously solving these two equations, we find

* 2 (_a)3/2
or, equivalently,
. 3
a*(h) =~ 275 bt/3 |h|?3, (7.151)

If, for fixed h, we have a < a*(h), then there will be three real solutions to the mean field equation
f/(m) = 0, one of which is a global minimum (the one for which m - h > 0). For a > a*(h) there is only
a single global minimum, at which m also has the same sign as h. If we solve the mean field equation
perturbatively in h/a, we find

h b

a a* (

1/2 1/2 7.152)
h 307 +0h*  (a<0)

m(a,h) = h3 4+ O(Rh®) (a >0)

_  ld
bt/2 " 2lal * 8lal5/2

181t is always the case that f is bounded from below, on physical grounds. Were b negative, we’d have to consider higher
order terms in the Landau expansion.
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7.6.2 Cubic terms in Landau theory : first order transitions

Next, consider a free energy with a cubic term,
f=fo+ %am2 — %ym?’ + %bm4 , (7.153)

with b > 0 for stability. Without loss of generality, we may assume y > 0 (else send m — —m). Note
that we no longer have m — —m (i.e. Z,) symmetry. The cubic term favors positive m. What is the
phase diagram in the (a,y) plane?

Extremizing the free energy with respect to m, we obtain

0

of =0=am—ym?+bm® . (7.154)

om
This cubic equation factorizes into a linear and quadratic piece, and hence may be solved simply. The
three solutions are m = 0 and

Y y\? a
—m, =24 (—)—— . 1
m=mg = op 5 3 (7.155)

We now see that for y? < 4ab there is only one real solution, at m = 0, while for y? > 4ab there are three
real solutions. Which solution has lowest free energy? To find out, we compare the energy f(0) with
f(m)'. Thus, we set

fim)=f(0) = %am2 - %ym?’ + ibm4 =0 , (7.156)
and we now have two quadratic equations to solve simultaneously:

0=a—ym+bm?
) ) L 9 (7.157)

Eliminating the quadratic term gives m = 3a/y. Finally, substituting m = m__ gives us a relation between
a, b, and y:

y?=3ab . (7.158)
Thus, we have the following:
Y2
a>@ : 1lreal root m=0
Y’ 2y
“—>a>-" : 3real roots; minimum at m =0 (7.159)
4b 9b
212 2
g_yb >a : 3 real roots; minimum at m = 2% + <2_yb) — %

The solution m = 0 lies at a local minimum of the free energy for a > 0 and at a local maximum for a < 0.
2 2
Over the range % >a > 29%, then, there is a global minimum at m = 0, a local minimum at m = m,,

2
and a local maximum at m = m_, with m, > m_ > 0. For 29% > a > 0, there is a local minimum at

9We needn’t waste our time considering the m = m_ solution, since the cubic term prefers positive m.
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Figure 7.15: Behavior of the quartic free energy f(m) = %am2 — %ym?’ + %bm‘l. A: y? < 4ab ; B:

4ab < y? < %ab : Cand D: 92 > %ab. The thick black line denotes a line of first order transitions, where
the order parameter is discontinuous across the transition.

a = 0, a global minimum at m = m,, and a local maximum at m = m_, again with m, > m_ > 0.
For a < 0, there is a local maximum at m = 0, a local minimum at m = m_, and a global minimum at
m=m,, with m, >0>m_. See fig. 7.15.

With y = 0, we have a second order transition at a = 0. With y # 0, there is a discontinuous (first order)
transition at a, = 2y%/9b > 0 and m, = 2y/3b. This occurs before a reaches the value a = 0 where the
curvature at m = 0 turns negative. If we write a = a(T — 1)), then the expected second order transition
at T = T, is preempted by a first order transition at T, = Ty, + 2y*/9ab.

7.6.3 Magnetization dynamics

Suppose we now impose some dynamics on the system, of the simple relaxational type

om _ . of

ot om
where I' is a phenomenological kinetic coefficient. Assuming y > 0 and b > 0, it is convenient to
adimensionalize by writing

(7.160)

s . (7.161)

3
Il

U , a T , t

S l=

v b
b I'y?
Then we obtain

ou 8_(,0

%= "5 (7.162)
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Figure 7.16: Fixed points for p(u) = ru? — 2u? 4+ Tu* and flow under the dynamics @ = —¢/'(u).
Solid curves represent stable fixed points and dashed curves unstable fixed points. Magenta arrows
show behavior under slowly increasing control parameter r and dark blue arrows show behavior under
slowly decreasing r. For u > 0 there is a hysteresis loop. The thick black curve shows the equilibrium
thermodynamic value of u(r), i.e. that value which minimizes the free energy ¢(u). There is a first order
2

phase transition at r = %, where the thermodynamic value of u jumps from v =0 to u = 3.

where the dimensionless free energy function is
o(u) = dru® — 2u’ 4+ 2u' . (7.163)

We see that there is a single control parameter, r. The fixed points of the dynamics are then the stationary
points of ¢(u), where ¢'(u) = 0, with

¢u)=u(r—utu?) . (7.164)

The solutions to ¢'(u) = 0 are then given by
=0 , ur=ity/i-r . (7.165)

For r > % there is one fixed point at u = 0, which is attractive under the dynamics & = —¢'(u) since
O0)=r. Atr= i there occurs a saddle-node bifurcation and a pair of fixed points is generated, one
stable and one unstable. As we see from fig. 7.14, the interior fixed point is always unstable and the
two exterior fixed points are always stable. At r = 0 there is a transcritical bifurcation where two fixed
points of opposite stability collide and bounce off one another (metaphorically speaking).

At the saddle-node bifurcation, r = i and u = %, and we find p(u = %; r= i) = ﬁ, which is positive.

Thus, the thermodynamic state of the system remains at v = 0 until the value of ¢(u ) crosses zero.

This occurs when ¢(u) = 0 and ¢'(u) = 0, the simultaneous solution of which yields r = 2 and u = %.

Suppose we slowly ramp the control parameter r up and down as a function of the dimensionless time s.
Under the dynamics of eqn. 7.162, u(s) flows to the first stable fixed point encountered — this is always
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the case for a dynamical system with a one-dimensional phase space. Then as r is further varied, u
follows the position of whatever locally stable fixed point it initially encountered. Thus, u(r(s)) evolves
smoothly until a bifurcation is encountered. The situation is depicted by the arrows in fig. 7.16. The
equilibrium thermodynamic value for u(r) is discontinuous; there is a first order phase transition at r = %,
as we've already seen. As r is increased, u(r) follows a trajectory indicated by the magenta arrows. For
an negative initial value of wu, the evolution as a function of r will be reversible. However, if u(0) is
initially positive, then the system exhibits hysteresis, as shown. Starting with a large positive value of
r, u(s) quickly evolves to u = 07, which means a positive infinitesimal value. Then as r is decreased,
the system remains at u = 07 even through the first order transition, because v = 0 is an attractive
fixed point. However, once r begins to go negative, the u = 0 fixed point becomes repulsive, and u(s)

quickly flows to the stable fixed point u, = % + % — r. Further decreasing r, the system remains on
this branch. If r is later increased, then u(s) remains on the upper branch past r = 0, until the v, fixed
point annihilates with the unstable fixed point at u_ = % — \/% —r, at which time u(s) quickly flows

down to u = 0T again.

7.6.4 Sixth order Landau theory : tricritical point

Finally, consider a model with Z, symmetry, with the Landau free energy
f=fo+gam®+ Jom* + Fem® | (7.166)

with ¢ > 0 for stability. We seek the phase diagram in the (a,b) plane. Extremizing f with respect to m,
we obtain
of

5 =0=ma+ bm? + em*) | (7.167)

which is a quintic with five solutions over the complex m plane. One solution is obviously m = 0. The
other four are

b b

2
a
=+, —=— = — | —= . 7.168
m 2c <26> c ( )

For each + symbol in the above equation, there are two options, hence four roots in all.
If a > 0 and b > 0, then four of the roots are imaginary and there is a unique minimum at m = 0.

For a < 0, there are only three solutions to f’(m) = 0 for real m, since the — choice for the + sign under
the radical leads to imaginary roots. One of the solutions is m = 0. The other two are

mzi\/—%—l—\/(%f—% . (7.169)

The most interesting situation is @ > 0 and b < 0. If a > 0 and b < —2y/ac, all five roots are real. There
must be three minima, separated by two local maxima. Clearly if m* is a solution, then so is —m*. Thus,
the only question is whether the outer minima are of lower energy than the minimum at m = 0. We
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Figure 7.17: Behavior of the sextic free energy f(m) = %am2 + %bm4 + %cmﬁ. A:a>0and b>0; B:

a<0andb>0;C:a<0andb<0;D:a>0andb<—%\/ﬁ;E:a>0and—%\/ﬁ<b<—2\/ﬁ

; F: a >0 and —2y/ac < b < 0. The thick dashed line is a line of second order transitions, which meets
the thick solid line of first order transitions at the tricritical point, (a,b) = (0, 0).

assess this by demanding f(m*) = f(0), where m* is the position of the largest root (i.e. the rightmost
minimum). This gives a second quadratic equation,

0=1a+ ibm2 + %cm4 , (7.170)
which together with equation 7.167 gives

(7.171)



394 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

0.1 T [T T 17 I I — T
r=2/3
0

E - i
S : :
_o0.1 r=1/100 N
I r=-3,20 :

02 e e v v b e b e by

-1 -0.5 0 0.5 1

u

1.2

Figure 7.18: Free energy ¢(u) = 5ru” — %u‘l + %u6 for several different values of the control parameter r.

Thus, we have the following, for fixed a > 0:

b>—2yac : 1realroot m=0
—2y/ac > b > —% Vac : 5 real roots; minimum at m =0 (7.172)

b b\2
—%\/ﬁ>b : 5rea1roots;minimaatm:i\/—%—F\/(%) —%

The point (a,b) = (0,0), which lies at the confluence of a first order line and a second order line, is known
as a tricritical point.

7.6.5 Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics . = —I" f/(m). We adimensionalize by writing
|b] b? c
m=\/— -u , a=—-r , t=—=-s . 7.173
c c b2 ( )

Then we obtain once again the dimensionless equation

ou Oy
5= " Be (7.174)

where
o(u) = %ruz + %u‘l + %u6 . (7.175)
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unstable fixed points. The thick solid black and solid grey curves indicate the equilibrium thermodynamic

values for u; note the overall u — —u symmetry. Within the region r € [0, %] the dynamics are irreversible
3

and the system exhibits the phenomenon of hysteresis. There is a first order phase transition at r = 5.

In the above equation, the coefficient of the quartic term is positive if b > 0 and negative if b < 0. That
is, the coefficient is sgn(b). When b > 0 we can ignore the sextic term for sufficiently small u, and we
recover the quartic free energy studied earlier. There is then a second order transition at r = 0. .

New and interesting behavior occurs for b > 0. The fixed points of the dynamics are obtained by setting

¢'(u) = 0. We have

o(u) = 5ru2 — Zu + 1u6
: (7.176)
cp(u):u(r—u +u )

4

Thus, the equation ¢'(u) = 0 factorizes into a linear factor v and a quartic factor u* — u? + r which is

quadratic in 2. Thus, we can easily obtain the roots:

r<0 : uw'=0 ,u" =%+ %—F %—r
0<r<it w=0 L ut=E e =yl (7.177)
T>% u*:O

In fig. 7.19, we plot the fixed points and the hysteresis loops for this system. At r=1 there are two

1
symmetrically located saddle-node bifurcations at u = i\}i' We find p(u = £ T30 = %) 48, which is
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positive, indicating that the stable fixed point u* = 0 remains the thermodynamic minimum for the free
energy o(u) as r is decreased through r = 1. Setting ¢(u) = 0 and ¢'(u) = 0 simultaneously, we obtain

r = % and u = i@. The thermodynamic value for u therefore jumps discontinuously from v = 0 to

U= j:@ (either branch) at r = %; this is a first order transition.

Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated in the figure,
where the arrows show the evolution of u(s) for very slowly varying r(s). When the control parameter
r is large and positive, the flow is toward the sole fixed point at u* = 0. At r = i, two simultaneous
saddle-node bifurcations take place at u* = i%; the outer branch is stable and the inner branch unstable
in both cases. At r = 0 there is a subcritical pitchfork bifurcation, and the fixed point at u* = 0 becomes
unstable.

Suppose one starts off with r > i with some value v > 0. The flow @ = —¢/(u) then rapidly results in

u — 0. This is the ‘high temperature phase’ in which there is no magnetization. Now let r increase

slowly, using s as the dimensionless time variable. The scaled magnetization u(s) = u* (r(s)) will remain

pinned at the fixed point «* = 0. As r passes through r = i, two new stable values of u* appear, but

our system remains at u = 07, since u* = 0 is a stable fixed point. But after the subcritical pitchfork,
1

u* = 0 becomes unstable. The magnetization u(s) then flows rapidly to the stable fixed point at u* = 7

and follows the curve u*(r) = (3 + (3 — 7‘)1/2)1/2 for all r < 0.

Now suppose we start increasing r (i.e. increasing temperature). The magnetization follows the stable

fixed point u*(r) = (% + (% — 7")1/2) 1/2 past 7 = 0, beyond the first order phase transition point at r = 1%,
and all the way up to r = %, at which point this fixed point is annihilated at a saddle-node bifurcation.
The flow then rapidly takes u — u* = 07, where it remains as r continues to be increased further.

Within the region r € [0, ﬂ of control parameter space, the dynamics are said to be irreversible and the
behavior of u(s) is said to be hysteretic.

7.7 Mean Field Theory of Fluctuations

7.7.1 Correlation and response in mean field theory

Consider the Ising model,
H=-3> Jjo,0,—> Hyop (7.178)
i\j k

where the local magnetic field on site k is now H,. We assume without loss of generality that the diagonal

terms vanish: J;; = 0. Now consider the partition function Z = Tr e=B1 as a function of the temperature
T and the local field values {H,}. We have

0z :
_ = . _ﬁH g . .
o =0T o] =52 (o)
OZ
OH, OH,

(7.179)

=B2Tr [ai 0; e_ﬁg] =B%Z - (o, ;)
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Thus,
OF
m; _8—I{Z~ <Uz>
om. o2F 1 (7.180)

Y= 9H, T oHOH, kT {(rie) =t o)}

Expressions such as (0,), (o, aj>, etc. are in general called correlation functions. For example, we define
the spin-spin correlation function C’ij as

C;; = (o, o) — (0;) <O'j> ) (7.181)

. 2 . .
Expressions such as % and % are called response functions. The above relation between corre-

lation functions and response functions, C;; = kxT'X,;, is valid only for the equilibrium distribution. In
particular, this relationship is inwvalid if one uses an approximate distribution, such as the variational
density matrix formalism of mean field theory.

The question then arises: within mean field theory, which is more accurate: correlation functions or
response functions? A simple argument suggests that the response functions are more accurate represen-
tations of the real physics. To see this, let’s write the variational density matrix ¢"* as the sum of the
exact equilibrium (Boltzmann) distribution ¢®4 = Z~! exp(—ﬂﬁ ) plus a deviation dp:

Qvar — Qeq + 5@ . (7.182)

Then if we calculate a correlator using the variational distribution, we have
(o Uj>var =Tr [Qvar g; Uj]

(7.183)

=Tr [geq o; O'j] + Tr [5@ o; a]}

Thus, the variational density matrix gets the correlator right to first order in dp. On the other hand, the
free energy is given by

OF 1 o0
FY = Fed Z Er 00, + = Z ———| 00,005 + ... . (7.184)
o Qo’ 04 2 o0 8@(78@0,, 04
Here o denotes a state of the system, i.e. |o) =|0y,...,0, ), where every spin polarization is specified.

Since the free energy is an extremum (and in fact an absolute minimum) with respect to the distribution,
the second term on the RHS vanishes. This means that the free energy is accurate to second order in the
deviation dp.

7.7.2 Calculation of the response functions

Consider the variational density matrix o(o) =[], 0;(0;), where

1+m; 1—m,
0i(0;) = < 5 Z) Og,1 + < 5 Z> 05,1 - (7.185)
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The variational energy E = Tr(p H ) is
ZJ S m —ZHm (7.186)

and the entropy S = —k;T Tr (pln ) is

() ()

Setting the variation -2 W =0, with FF = FE — TS, we obtain the mean field equations,

m,; = tanh (ﬁJZ- My + BH;) (7.188)
where we use the summation convention: J;; m; = z ;; mj. Suppose T' > T, and m; is small. Then we
can expand the RHS of the above mean ﬁeld equatlons obtaining

Thus, the susceptibility tensor X is the inverse of the matrix (k,7-1—1J):

om,
X;:

]:8—Hj

1
ij ’

(kT -1-10) (7.190)
where I is the identity. Note also that so-called connected averages of the kind in eqn. 7.181 vanish
identically if we compute them using our variational density matrix, since all the sites are independent,
hence

(0,0, > Tr( var o j) =Tr (gi O’Z-) - Tr (gj O’j) = (0;) - <aj> , (7.191)
and therefore X;; = 0 if we compute the correlation functions themselves from the variational density
matrix, rather than from the free energy F. As we have argued above, the latter approximation is more
accurate.

Assuming J;; = J (R, — R;), where R; is a Bravais lattice site, we can Fourier transform the above
equation, resulting in

A~

.. H(q)
m(q) - kBT - j(Q)

Once again, our definition of lattice Fourier transform of a function ¢(R) is

q) =) ¢(R)e
R

i (7.193)
o(R) =0 i dla) e

O

=X(q)H(q) . (7.192)

where € is the unit cell in real space, called the Wigner-Seitz cell, and () is the first Brillouin zone, which
is the unit cell in reciprocal space. Similarly, we have

=Y I (1-ig-R-}(a-R*+...)
R

= J(0) - {1 — ¢*R? +O(q4)} ,

(7.194)
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where RJ(R
R? = 2LrRJ(R) (7.195)
243 J(R)
Here we have assumed inversion symmetry for the lattice, in which case
v v 2
Z RMRYJ d .M ; R’J(R) . (7.196)

On cubic lattices with nearest neighbor interactions only, one has R, = a/v/2d, where a is the lattice
constant and d is the dimension of space.

Thus, with the identification kyT, = J(0), we have

- 1
NG ESN Y reEelr
- 1 1 (7.197)
CRTLRZ 242+ 0(¢Y)
where /o
T-T.\"
=R, - c 1
E=R < T ) (7.198)
is the correlation length. With the definition
ET) < | T —T.|7" (7.199)

as T' — T, we obtain the mean field correlation length exponent v = % The exact result for the two-

dimensional Ising model is v = 1, whereas v ~ 0.6 for the d = 3 Ising model. Note that X(q = 0,7
diverges as (T — T,)~! for T > T..

In real space, we have
m; =Y Xy H; (7.200)

where

dd )
w—Q ~ X(g) e Ry (7.201)

Note that X(q) is properly periodic under ¢ — q + G, where G is a reciprocal lattice vector, which

satisfies ¢’ ® = 1 for any direct Bravais lattice vector R. Indeed, we have
g = kT — J(@) = kT =T Y e (7.202)

where § is a nearest neighbor separation vector, and where in the second line we have assumed nearest
neighbor interactions only. On cubic lattices in d dimensions, there are 2d nearest neighbor separation
vectors, § = +a €, where p € {1,...,d}. The real space susceptibility is then

Wdel Wded ein191 . emded
2 21 kyT — (2Jcosf, + ... +2Jcosf,)

—Tr —Tr

X(R) = (7.203)



400 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

where R = a ZZ=1 n, €, is a general direct lattice vector for the cubic Bravais lattice in d dimensions,
and the {n,} are integers.

The long distance behavior was discussed in chapter 6 (see §6.5.9 on Ornstein-Zernike theory?’). For
convenience we reiterate those results:

e Ind=1,
_ § ~Jal/¢
X1 (x) = <2kBTcR3 e . (7.204)
e Ind> 1, with r — oo and £ fixed,
gB=d)/2 gr/g d—3
Oz ~ . . . _
Xd (7’) ~ Cd kBTRz T(d—l)/Q 1+0 7’/6 s (7205)

where the C; are dimensionless constants.

e In d > 2, with £ — oo and r fixed (i.e. T — T at fixed separation r),

c, e /g d—3
= 5o}

In d = 2 dimensions we obtain

Xyo(r) = ]CB%QBE : 1n<§> e T/ {1 + O<ﬁ>} , (7.207)

where the C’C’l are dimensionless constants.

7.7.3 Beyond the Ising model

Consider a general spin model, and a variational density matrix g,,, which is a product of single site
density matrices:

Ovar [{Si}] = H o(S) (7.208)

where Tr( S) = m, is the local magnetization and S;, which may be a scalar (e.g., o; in the Ising
(4)

model previously discussed), is the local spin operator. Note that o;’(S;) depends parametrically on the
variational parameter(s) m,. Let the Hamiltonian be

QV&I‘

H=—1> JWstsy+> h(s)-> H;-S; . (7.209)
ij i i
The variational free energy is then

Fvar = _% JZV mf m]V + Z (:D(mia T) - Z qu mf 9 (7210)
@] i i

20There is a sign difference between the particle susceptibility defined in chapter 6 and the spin susceptibility defined here.
The origin of the difference is that the single particle potential v as defined was repulsive for v > 0, meaning the local density
response dn should be negative, while in the current discussion a positive magnetic field H prefers m > 0.
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where the single site free energy ¢(m,,T') in the absence of an external field is given by

o(m;, T) = Tr[ ol (S) (S)] + kT Tr 0" (S) n 0" (S)] (7.211)
We then have o 7)
v v ¥ mi?

For the noninteracting system, we have Ji‘;y = 0, and the weak field response must be linear. In this
limit we may write m! = x§,(T) H/ + O(H}), and we conclude

%?T) = ()], mi + O(mf) (7.213)

Note that this entails the following expansion for the single site free energy in zero field:
-1
p(my, T) = 5 [X*(T)] , m{my +O(m*) . (7.214)

Finally, we restore the interaction term and extremize F,,,. by setting dF,,,./Om! = 0. To linear order,
then,
(H” + Z T m ) (7.215)

Typically the local susceptibility is a scalar in the internal spin space, i.e. X?W(T) =x%T) d,,» in which
case we obtain
(6" 6,5 — X°(T) JE ) my = X(T)HE . (7.216)

In Fourier space, then,
. -1
(@) =X"(0) (1-X"(D) @) (7.217)

A

where J(q) is the matrix whose elements are J*(q). If J*(q) = J(q) 6", then the susceptibility is
isotropic in spin space, with
1

7.218
()]~ J(a) (2

X(q,T) =

Consider now the following illustrative examples:

(1) Quantum spin S with h(S) = 0 : We take the 2 axis to be that of the local external magnetic
field, i.e. H,. Write 0;(S) = 271 exp(uS?/k,T), where u = u(m,T) is obtained implicitly from
the relation m(u,T) = Tr(p; S%). The normalization constant is

S . 1
2= TrewS /il = 3 eiu/kol = Sinb[(5 + 5) u/ky T] (7.219)
P sinh[u/2k,T|
The relation between m, u, and T is then given by
. Olnz 1
= (S%) = k,T —— 5 = (S + 3)ctnh[(S+ 3) u/kyT] — 5 ctnh[u/2k,T]
7.220)
1 (
S50 owd)

3k, T
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The free-field single-site free energy is then

o(m,T) =kyTTr(o;Ing)) =um —k;TInz (7.221)
whence
dp ou Oz ou 4 3
am—u—i-mam kT Su B~ U= X0 (T)m+0O(m’) (7.222)

and we thereby obtain the result

(7.223)

which is the Curie susceptibility.

(ii) Classical spin § = Sn with h = 0 and nn an N-component unit vector : We take the single site

density matrix to be ¢,(S) = 2 texp(u - S/k,T). The single site field-free partition function is
then

dn S2 y? 4
z = Q—N exp(u - S/kBT) =1+ W + O(u*) (7.224)
and therefore
Olnz 52y 3

from which we read off x,(T) = S?/Nk,T. Note that this agrees in the classical (S — oo) limit,
for N = 3, with our previous result.

(iii) Quantum spin S with h(S) = A(S?)? : This corresponds to so-called easy plane anisotropy, meaning

that the single site energy h(S) is minimized when the local spin vector S lies in the (z,y) plane.
As in example (i), we write o;(S) = 27! exp(uS?/k,T), yielding the same expression for z and the
same relation between z and u. What is different is that we must evaluate the local energy,

0%In z
e(u,T)="Tr (gl h(S)) = A (k,T)? 52
A 1 B (25 + 1)2 BECERV VL, (7.226)
4 |sinh®[u/2k,T]  sinh®[(2S + Du/2k,T] | 6(ksT)?
We now have ¢ = e+ um — kT In z, from which we obtain the susceptibility
0Ty = S8 (7.227)
3(k, T+ A) '

Note that the local susceptibility no longer diverges as T' — 0, because there is always a gap in the
spectrum of h(S).
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7.8 Global Symmetries

7.8.1 Symmetries and symmetry groups

Interacting systems can be broadly classified according to their global symmetry group. Consider the
following five examples:

HIsimg = ZJ 0,0; o, € {-1,+1}
1<j
. 2rr(n; — n;)
H, ok = — Z J;; cos <#> n; €{1,2,...,p}
1<j
Hq—Potts = Z i O’ 0 o; € {1,2, cee ,q} (7228)
1<j
gXY = — Z J COS qb]) qbl S [0,277']
1<j
Howy =~ Jii 12, 2 02, e 51
1<j

The Ising Hamiltonian is left invariant by the global symmetry group Z,. This group has two elements,
which we write as I and 7. 1 is the identity operation, i.e. lo; = o, for all <. The 1 operation reverses the
spins: o, = —o; . By simultaneously reversing all the spins o; — —o;, the interactions remain invariant.
Note that n? = 1.

The degrees of freedom of the p-state clock model are integer variables n, each of which ranges from 1
to p. The Hamiltonian is invariant under the discrete group Z,,, whose p elements are generated by the
single operation 7, where

1 if me{1,2,...,p—1
nniz{nﬁ i e p—l (7.229)

1 if n;=p

Think of a clock with one hand and p ‘hour’ markings consecutively spaced by an angle 27 /p. In each
site 4, a hand points to one of the p hour marks; this determines n,. The operation n simply advances all
the hours by one tick, with hour p advancing to hour 1, just as 23:00 military time is followed one hour
later by 00:00. The interaction cos (27r(ni —n;) / p) is invariant under such an operation. The p elements
of the group Z, are then

I,n,n*, ..., Pt . (7.230)

We've already met up with the g-state Potts model, where each site supports a ‘spin’ o; which can be in
any of ¢ possible states, which we may label by integers {1, ..., ¢}. The energy of two interacting sites ¢
and j is —J;; ifo, = o; and zero otherwise. This energy function is invariant under global operations of the
symmetric group on q characters, S, which is the group of permutations of the sequence {1, 2, 3, ..., q}.
The group S, has ¢! elements. Note the difference between a Z, symmetry and an S, symmetry. In the
former case, the Hamiltonian is invariant only under the g-element cyclic permutations, e.g.

_(12---q—1¢q
= 23..- ¢ 1
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Figure 7.20: A domain wall in a one-dimensional Ising model.

and its powers n! with 1 =0,...,q— 1.

All these models — the Ising, p-state clock, and g¢-state Potts models — possess a global symmetry group
which is discrete. That is, each of the symmetry groups Z,, Z,, S, is a discrete group, with a finite

number of elements. The XY Hamiltonian H xy on the other hand is invariant under a continuous
group of transformations ¢, — ¢, + a, where ¢, is the angle variable on site . More to the point, we
could write the interaction term cos(¢; — ¢;) as 16 z; + ziz;), where z; = €' is a phase which lives
on the unit circle, and 2] is the complex conjugate of z;. The model is then invariant under the global
transformation z; — €'®z,. The phases ¢** form a group under multlphcatlon called U(1), which is the
same as O(2). Equlvalently, we could write the interaction as §2, - .Q , where 2, = (cos ¢, , sin ¢;), which
explains the O(2), symmetry, since the symmetry operations are global rotations in the plane, which is
to say the two-dimensional orthogonal group. This last representation generalizes nicely to unit vectors
in n dimensions, where £2 = (2, 022, , 2). with £22 = 1. The dot product .Q Q is then invariant
under global rotations in this n-dlmenswnal space, which is the group O(n).

7.8.2 Lower critical dimension

Depending on whether the global symmetry group of a model is discrete or continuous, there exists a
lower critical dimension d, at or below which no phase transition may take place at finite temperature.
That is, for d < d,, the critical temperature is 7, = 0. Owing to its neglect of fluctuations, mean
field theory generally overestimates the value of T, because it overestimates the stability of the ordered
phase’!. Indeed, there are many examples where mean field theory predicts a finite 7, when the actual
critical temperature is T, = 0. This happens whenever d < d,.

Let’s test the stability of the ordered (ferromagnetic) state of the one-dimensional Ising model at low
temperatures. We consider order-destroying domain wall excitations which interpolate between regions
of degenerate, symmetry-related ordered phase, i.e. 7M1 and Jl]]]. For a system with a discrete
symmetry at low temperatures, the domain wall is abrupt, on the scale of a single lattice spacing. If the
exchange energy is J, then the energy of a single domain wall is 2.J, since a link of energy —.J is replaced
with one of energy +.J. However, there are N possible locations for the domain wall, hence its entropy

21Tt is a simple matter to concoct models for which the mean field transition temperature underestimates the actual critical
temperature. Consider for example an Ising model with interaction u(o,o’) = —e ! In(1+eoo’), where the spins take values
0,0’ = +1, and where 0 < € < 1. If we write 0 = (o) + do at each site and neglect terms quadratic in fluctuations, the
resulting mean field Hamiltonian is equivalent to a set of decoupled spins in an external field h = zm/(1 + 6m2). The mean
field transition temperature is To"" = z, the lattice coordination number, independent of e. On the other hand, we may also
write u(o,0’) = u. — J. oo’, where u, = —In(1 — €?)/2¢ and J. = ¢ ' tanh™*(¢). On the square lattice, where z = 4, one
has the exact result T.(e) = 2J./sinh™"(1), which diverges as ¢ — 1, while T}'" = 4 remains finite. For ¢ > 0.9265, one has
T.(e) > T,



7.8. GLOBAL SYMMETRIES 405

yYVyv oy AA AR A AV Yy LT
*&}_*;,-j* +*+§++*+*+tt*+*+t*+*++¢
RSN TR R N
VI Y b A A AN Y VY Y| Y
Joarat ity PAAA Y VY [y
v et by h A A AN VY YT
VIV REREEEEEN)/
Wopgb b v

Figure 7.21: Domain walls in the two-dimensional (left) and three-dimensional (right) Ising model.

is kg In N. For a system with M domain walls, the free energy is

F=2MJ—k,Tln (J\]\D
(7.231)
=N- {ZJx + k‘BT[xlnx +(1—2)In(1 - ZE)] } )

where x = M/N is the density of domain walls, and where we have used Stirling’s approximation for k!
when k is large. Extremizing with respect to z, we find

r _ _2J/k,T _ 1
- —e B — xr = 7e2j/kBT 1 . (7232)

The average distance between domain walls is 2!, which is finite for finite 7. Thus, the thermodynamic
state of the system is disordered, with no net average magnetization.

Consider next an Ising domain wall in d dimensions. Let the linear dimension of the system be L - a,
where L is a real number and a is the lattice constant. Then the energy of a single domain wall which
partitions the entire system is 2.J - L%~!. The domain wall entropy is difficult to compute, because the
wall can fluctuate significantly, but for a single domain wall we have S 2 kyIn L. Thus, the free energy
F =2JL% ' — k,TIn L is dominated by the energy term if d > 1, suggesting that the system may be
ordered. We can do a slightly better job in d = 2 by writing

Z ~ exp <Ld > Np e—2PJ/kBT> , (7.233)
P

where the sum is over all closd loops of perimeter P, and Np is the number of such loops. An example
of such a loop circumscribing a domain is depicted in the left panel of fig. 7.21. It turns out that

Np~wPP0. {1 + O(P—l)} , (7.234)
where k = z — 1 with z the lattice coordination number, and 6 is some exponent. We can understand the

kT factor in the following way. At each step along the perimeter of the loop, there are x = z—1 possible
directions to go (since one doesn’t backtrack). The fact that the loop must avoid overlapping itself and
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must return to its original position to be closed leads to the power law term P~¢ which is subleading
since kK P~% = exp(PInk — @In P) and P> In P for P> 1. Thus,

1
Fa-g L4y " prf =260l (7.235)
P

which diverges if Ink > 28J, i.e. if T > 2J/kyIn(z — 1). We identify this singularity with the phase
transition. The high temperature phase involves a proliferation of such loops. The excluded volume
effects between the loops, which we have not taken into account, then enter in an essential way so that
the sum converges. Thus, we have the following picture:

Ink < 26J : large loops suppressed ; ordered phase
Ink > 28J : large loops proliferate ; disordered phase

On the square lattice, we obtain

2J
TEpPros — Z= — 1 .82
k T: 3 82J
ke TSt = Qf‘]l =2.27J
sinh™" (1)

The agreement is better than we should reasonably expect from such a crude argument.

Nota bene : Beware of arguments which allegedly prove the existence of an ordered phase. Generally
speaking, any approximation will underestimate the entropy, and thus will overestimate the stability of
the putative ordered phase.

7.8.3 Continuous symmetries

When the global symmetry group is continuous, the domain walls interpolate smoothly between ordered
phases. The energy generally involves a stiffness term,

E=1Lp, /ddr (Vo) (7.236)
where 6(r) is the angle of a local rotation about a single axis and where py is the spin stiffness. Of course,

in O(n) models, the rotations can be with respect to several different axes simultaneously.

In the ordered phase, we have (r) = 6, a constant. Now imagine a domain wall in which 6(r) rotates by
27 across the width of the sample. We write 6(r) = 2mna /L, where L is the linear size of the sample (here
with dimensions of length) and n is an integer telling us how many complete twists the order parameter
field makes. The domain wall then resembles that in fig. 7.22. The gradient energy is

L
2 2
E=1p L4} /dx (%") = on?n?p, L2 . (7.237)
0
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Figure 7.22: A domain wall in an XY ferromagnet.
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Recall that in the case of discrete symmetry, the domain wall energy scaled as F oc L 1. Thus, with
S 2 kg In L for a single wall, we see that the entropy term dominates if d < 2, in which case there is no
finite temperature phase transition. Thus, the lower critical dimension d, depends on whether the global
symmetry is discrete or continuous, with

discrete global symmetry — d,=1
continuous global symmetry = d, =2

Note that all along we have assumed local, short-ranged interactions. Long-ranged interactions can
enhance order and thereby suppress d,.

Thus, we expect that for models with discrete symmetries, d, = 1 and there is no finite temperature
phase transition for d < 1. For models with continuous symmetries, d, = 2, and we expect T, = 0 for
d < 2. In this context we should emphasize that the two-dimensional XY model does exhibit a phase
transition at finite temperature, called the Kosterlitz- Thouless transition. However, this phase transition
is not associated with the breaking of the continuous global O(2) symmetry and rather has to do with
the unbinding of vortices and antivortices. So there is still no true long-ranged order below the critical
temperature T,..., even though there is a phase transition!

7.8.4 Random systems : Imry-Ma argument

Oftentimes, particularly in condensed matter systems, intrinsic randomness exists due to quenched impu-
rities, grain boundaries, immobile vacancies, etc. How does this quenched randomness affect a system’s
attempt to order at T' = 07 This question was taken up in a beautiful and brief paper by J. Imry and S.-K.
Ma, Phys. Rev. Lett. 35, 1399 (1975). Imry and Ma considered models in which there are short-ranged
interactions and a random local field coupling to the local order parameter:

Hgpp = —JZ 0,05 — Z H,o; (7.238)
(ij i
Hypo(m) = —JZ Q- 92, - Z H 2F (7.239)

where
(HE) =0 ,  (H}H) =I5, | (7.240)
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Figure 7.23: Left panel : Imry-Ma domains for an O(2) model. The arrows point in the direction of the

local order parameter field (£2(7)). Right panel : free energy density as a function of domain size Lq.
Keep in mind that the minimum possible value for Lg is the lattice spacing a.

where (( - )) denotes a configurational average over the disorder. Imry and Ma reasoned that a system
could try to lower its free energy by forming domains in which the order parameter takes advantage of
local fluctuations in the random field. The size of these domains is assumed to be L, a length scale to
be determined. See the sketch in the left panel of fig. 7.23.

There are two contributions to the energy of a given domain: bulk and surface terms. The bulk energy
is given by
Ebulk = _Hrms (Ld/a)d/2 5 (7241)

where a is the lattice spacing. This is because when we add together (L 4/ a)? random fields, the magnitude
of the result is proportional to the square root of the number of terms, i.e. to (L,/ a)d/ 2. The quantity

H,,. = /T is the root-mean-square fluctuation in the random field at a given site. The surface energy is

B {J (Lq/a)?1 (discrete symmetry) (7.249)

J(Lg/a)*?% (continuous symmetry)
We compute the critical dimension d. by balancing the bulk and surface energies,

d—1=3d = d, =2 (discrete)
d—2=1d = d, =4 (continuous)

The total free energy is F' = (V/ Lﬁ) -AFE, where AE = E, .+ E_ ;- Thus, the free energy per unit cell

is
1 1
F a \2% a \2¢

If d < d., the surface term dominates for small L, and the bulk term dominates for large L, There is

global minimum at
2
L dC J dc*d
Lo _ <E - ) , (7.244)

rms
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For d > d., the relative dominance of the bulk and surface terms is reversed, and there is a global
maximum at this value of L.

Sketches of the free energy f(L,) in both cases are provided in the right panel of fig. 7.23. We must keep
in mind that the domain size L; cannot become smaller than the lattice spacing a. Hence we should draw
a vertical line on the graph at L; = a and discard the portion L; < a as unphysical. For d < d., we see
that the state with L; = oo, i.e. the ordered state, is never the state of lowest free energy. In dimensions
d < d., the ordered state is always unstable to domain formation in the presence of a random field.

For d > d, there are two possibilities, depending on the relative size of J and H,,,. We can see this
by evaluating f(L; = a) = J — H,,; and f(Ly; = oo) = 0. Thus, if J > H, , the minimum energy
state occurs for L; = oo. In this case, the system has an ordered ground state, and we expect a finite
temperature transition to a disordered state at some critical temperature 7. > 0. If, on the other hand,
J < H then the fluctuations in H overwhelm the exchange energy at T' = 0, and the ground state is

rms’
disordered down to the very smallest length scale (i.e. the lattice spacing a).

Please read the essay, Memories of Shang-Keng Ma.

7.9 Ginzburg-Landau Theory

7.9.1 Ginzburg-Landau free energy

Including gradient terms in the free energy, we write
F[m(z), h(z)] = /ddx {fo +iam® +iom? +iem® —hm+ ik (Vm)?+... } : (7.245)

In principle, any term which does not violate the appropriate global symmetry will turn up in such an
expansion of the free energy, with some coefficient. Examples include ~m? (both m and h are odd under
time reversal), m?(Vm)?2, etc. We now ask: what function m(z) extremizes the free energy functional
F[m(x), h(x)]? The answer is that m(z) must satisfy the corresponding Euler-Lagrange equation, which
for the above functional is

am+bm?+cem® —h—kVim=0 . (7.246)

If @ > 0 and h is small (we assume b > 0 and ¢ > 0), we may neglect the m3 and m® terms. The above
equation then simplifies to (a —K V2) m = h. We solve by Fourier transform, obtaining

h(q)
a + kq?

m(q) = (7.247)

which, with h(x) appropriately defined, recapitulates the result in eqn. 7.192. Thus, we conclude that

. 1

= 7.248
@) = s (7.248)

which should be compared with eqn. 7.197. For continuous functions, we have

% . .
m(z) = /(;ﬂ'(;d m(q) e'T* , m(q) = /ddx m(x)e T . (7.249)
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We then have the result,
m(x) = /dda:’ X(xz—x')h(z') (7.250)

where

1 ddq eiq-(m—w’)
E/(Qﬂ)d @+

where the correlation length is € = \/k/a o< (T — T.)~'/2, as before.

X(x—a') = (7.251)

If a < 0 then there is a spontaneous magnetization and we write m(x) = mg + dm(x). Assuming h is
weak, we then have two equations

a+bmd+cmy=0

7.252
(a+3bm3 +5cmg — k V) dm = h ( )
If —a > 0 is small, we have m3 = —a/3b and
A h(g
or(q) = _ZG(JF)MF ; (7.253)

7.9.2 Domain wall profile

A particularly interesting application of Ginzburg-Landau theory is its application toward modeling the
spatial profile of defects such as vortices and domain walls. Consider, for example, the case of Ising (Z,)
symmetry with » = 0. We expand the free energy density to order m*:

F[m(z)| = /ddx {fo + fam® + tom® + Lk (Vm)z} . (7.254)

We assume a < 0, corresponding to 7' < T... Consider now a domain wall, where m(z — —o0) = —m,
and m(z — +00) = +m, where m, is the equilibrium magnetization, which we obtain from the Euler-
Lagrange equation,

am+bm® —kVim=0 |, (7.255)

assuming a uniform solution where Vim = 0. This gives my = 1/|a|/b. It is useful to scale m(x) by my,

writing m(x) = mg ¢(x). The scaled order parameter function ¢(x) interpolates between ¢(—o0) = —1
and ¢(4o00) = 1.

Thus, we have
EVH=—p+¢ (7.256)
where £ = \/k/|a|. We assume ¢(x) = ¢(z,) is only a function of the first coordinate. Then the

Euler-Lagrange equation becomes

d%p au
2_—_ 3:__
édﬁ— ¢+ ¢° = i (7.257)
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where U(¢) = —+(¢* — 1)2. The ‘potential’ U(¢) is an inverted double well, with maxima at ¢ = +1.
The equation qﬁ = —U’(¢), where dot denotes differentiation with respect to (, is simply Newton’s second
law with time replaced by space. In order to have a stationary solution at { — +oo where ¢ = =41,
the total energy must be F = U(¢ = +1) = 0, where E = %(;52 + U(¢). This leads to the first order
differential equation

d¢

1 _ 2
fd—:nl_g(l ) (7.258)

with solution
¢(x) = tanh(z,/2¢) = m(x) = m, tanh(z,/2§) . (7.259)
Note that the correlation length £ diverges at the Ising transition.

7.9.3 Derivation of Ginzburg-Landau free energy

We can make some progress in systematically deriving the Ginzburg-Landau free energy. Consider the
Ising model,

H
ky T =3 Kijojo;=) hoi+gy Ky . (7.260)
] i 7

where now K;; = J;; /kgT and h, = H,/k,T are the interaction energies and local magnetic fields in units
of kyT. The last term on the RHS above cancels out any contribution from diagonal elements of K.
Our derivation makes use of a generalization of the Gaussian integral,

7 1.2 2w 1/2 2
/d:z: e 2 b <—> /2 (7.261)
a
—0o0
The generalization is
oo [e%9) N/2
2 —1

/dxl . ./de e~ 2AiTie b @m)7 ;TitA ez biby (7.262)
—0o —oQ

where we use the Einstein convention of summing over repeated indices, and where we assume that the
matrix A is positive definite (else the integral diverges). This allows us to write

1 1
7 = e_iKn' Tr |:62Kijai 9 ehiai:|

= det™/%(27K) e—%Kn/dqsl . -/dqu ¢35 405 Ty e@ithi)e;

) L oo 0o P | . (7.263)
— det 1/2(27TK) e QK“/dQSl . /d¢N e~ 255 ¢;9; ezl ln[2cosh(¢l+hz)]

= /d¢1 . '/d¢N e~ P(¢150n)
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where

=13 K;'¢;¢;— > Incosh(g; + ;) + 3 Indet(2rK) + 3 Tr K — NIn2 . (7.264)
ij i

We assume the model is defined on a Bravais lattice, in which case we can write ¢; = ¢ . We can then
define the Fourier transforms,

1 N R 1 i
gbR:\/—NEq:qbqeqR 7 %ZWER:%G aR (7.265)

and
K(q)=) K(R)e R (7.266)
R

A few remarks about the lattice structure and periodic boundary conditions are in order. For a Bravais
lattice, we can write each direct lattice vector R as a sum over d basis vectors with integer coefficients, viz.
R = ZZ=1 n, a, , where d is the dimension of space. The reciprocal lattice vectors b, have dimensions
inverse to those of R and satisfy a,-b, = 27, . The set {bu} is complete, hence any wavevector g may

be expressed as
d

1
q=5-> 0,0, . (7.267)
pn=1

We can impose periodic boundary conditions on a system of size M; x M, x --- x M, by requiring

¢R+Zﬁ:1luMu% = ¢p (7.268)
This leads to the quantization of the wavevectors, which must then satisfy

eMuday — oMby — 1 (7.269)
and therefore 6, = 27wm /M, , where m,, is an integer. There are then M;M,--- M, = N independent
values of g, which can be taken to be those corresponding to my, € {1,... ’Mu}'

Let’s now expand the function <I>(q§) in powers of the ¢;, and to first order in the external fields h,. We
obtain

=33 (K@) = 1) 19, + 2 0h= 2 hnon + O 1) (7.270)
+3Tr K+ 1Trin(2rK) — N1n2

On a d-dimensional lattice, for a model with nearest neighbor interactions K, only, we have K (q) =
K> s €49 where 8 is a nearest neighbor separation vector. These are the eigenvalues of the matrix
K;;. We note that K, is then not positive definite, since there are negative eigenvalues??. To fix this, we
can add a term K|, everywhere along the diagonal. We then have

K(q) = Ky + K, Z cos(q-9) . (7.271)
[

22To evoke a negative eigenvalue on a d-dimensional cubic lattice, set qu = = for all u. The eigenvalue is then —2dKj.
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Here we have used the inversion symmetry of the Bravais lattice to eliminate the imaginary term. The
eigenvalues are all positive so long as K; > zK,, where z is the lattice coordination number. We can
therefore write K (q) = K(0) — a q? for small g, with a > 0. Thus, we can write

KYq)-1l=a+rg*+... . (7.272)

To lowest order in g the RHS is isotropic if the lattice has cubic symmetry, but anisotropy will enter in
higher order terms. We’ll assume isotropy at this level. This is not necessary but it makes the discussion
somewhat less involved. We can now write down our Ginzburg-Landau free energy density:

F=a¢’ +ic|VeP + 5o —ho | (7.273)
valid to lowest nontrivial order in derivatives, and to sixth order in ¢.

One might wonder what we have gained over the inhomogeneous variational density matrix treatment,
where we found

F=-3>"J(@ln(q)*->_ H(-q) m(q)

+]€BT§Z:{<1+2mi>ln<1+2mi>+(1—2mi>1n<1_2mi>} | (7.274)

Surely we could expand .J(g) = J(0) — $aq® + ... and obtain a similar expression for F. However, such a
derivation using the variational density matrix is only approximate. The method outlined in this section
is exact.

Let’s return to our complete expression for ®:

O(¢) = 0o(9) + Y _v(¢r) (7.275)
R
where
Bo(d) =5 G M@ || + 5 Tr <T1G—1> +1Trn <%> ~ N2 . (7.276)
q

Here we have defined

v(¢) = 3¢ — Incosh ¢

(7.277)
=2t -5t Em

and N

K
G(q) = # (7.278)

1-K(q)
We now want to compute

Z = / D¢ e~ %0(#) ¢~ Lrv(%R) (7.279)

where

Do =dp dey--doy . (7.280)
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We expand the second exponential factor in a Taylor series, allowing us to write

Z =2y (1= ((or) + 533 (v(0m) v(6m)) +.--) (7.281)

R R R
where
Zy = / D¢ e~ ®o(®)
(7.282)
InZ,=3Tr [ln(l +G) — i} + Nln2
1+G

and o

D¢ F e %o
<F(¢)> = ffD(b @ (7.283)

0

To evaluate the various terms in the expansion of eqn. 7.281, we invoke Wick’s theorem, which says

o0 o0 [e.e] [e.e]
_lo=1lp o _lgle x
(z, &, oz, Y= [day--[dzye 295 %% g g e, dy - | day e 295 *i
iy iy iop G tar
—o —o0 —0o0 —0o0

(7.284)
- Z 9532500 Gy i
all distinct
pairings
where the sets {j;,...,jy; } are all permutations of the set {i,...,4,; }. In particular, <xf> = 3(9“-)2, S0

(OR) —3< ZG > - (7.285)

Thus, if we write v(¢) ~ % #* and retain only the quartic term in v(¢), we obtain

F J—
kT

11 6)? - Nm2

—InZy=1Tr [i—ln(l—FG)] + Iy

1+G

. . (7.286)
- _ - 2_z 2 3
= Nln2+4N(TrG) il (G*) +0(G°)

Note that if we set K; to be diagonal, then K (q) and G(q) are constant functions of q. The O(G?) term
then vanishes, which i 1s required since the free energy cannot depend on the diagonal elements of K;;.

7.9.4 Ginzburg criterion

Let us define A(T, H,V, N) to be the usual (i.e. thermodynamic) Helmholtz free energy. Then

—BA _ / Dm e BFm@)] (7.287)
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where the functional F[m(x)] is of the Ginzburg-Landau form, given in eqn. 7.254. The integral above
is a functional integral. We can give it a more precise meaning by defining its measure in the case of
periodic functions m(x) confined to a rectangular box. Then we can expand

1 .
mx) = —= Y 1, €17 (7.288)
VV 4
and we define the measure
Dm = dmy [[ dRe g dim 1, (7.289)
q

qp: >0

Note that the fact that m(x) € R means that m_, = ;. We'll assume 7' > T, and H = 0 and we’ll
explore limit 7' — T," from above to analyze the properties of the critical region close to T.. In this limit
we can ignore all but the quadratic terms in m, and we have

_ ~ kT 1/2
e PA = /Dm exp (— 8 Z(a + K q?) |mq|2> = H <ﬁiqz> . (7.290)
q q
Thus,
2
1 a+Kq
We now assume that a(7') = at, where t is the dimensionless quantity

T-T,
==,

C

t

(7.292)

known as the reduced temperature.

We now compute the heat capacity Cy, = =T %. We are really only interested in the singular contri-
butions to Cf,, which means that we’re only interested in differentiating with respect to 1" as it appears
in a(T). We divide by N kg where N is the number of unit cells of our system, which we presume is a
lattice-based model. Note N, ~ V/a? where V' is the volume and a the lattice constant. The dimensionless
heat capacity per lattice site is then

A

Cy a?al [ d% 1
Cy _ 7.293
o= % =5 G TP (7.293)

where € = (r/at)'/? o [t|7%/? is the correlation length, and where A ~ a~! is an ultraviolet cutoff. We
define R, = (r/a)'/?, in which case
Ag

c=RAatgid. L / aq 1 (7.294)
* )@ T E

where ¢ = g&. Thus,
const. ifd >4
ct)y~<—Int ifd=4 (7.295)
272 ifd<4
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For d > 4, mean field theory is qualitatively accurate, with finite corrections. In dimensions d < 4, the
mean field result is overwhelmed by fluctuation contributions as ¢t — 07 (i.e. as T — T."). We see that
MFT is sensible provided the fluctuation contributions are small, i.e. provided R;*a%¢*~?¢ <« 1, which

entails t > t,, where
2d

t, = (%)m (7.296)

is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely ¢ > ¢,
is known as the Ginzburg criterion. The region |t| < t, is known as the critical region.

In a lattice ferromagnet, as we have seen, R, ~ a is on the scale of the lattice spacing itself, hence ¢, ~ 1
and the critical regime is very large. Mean field theory then fails quickly as T — 7. In a (conventional)
three-dimensional superconductor, R, is on the order of the Cooper pair size, and R,/a ~ 10% — 103,
hence t, = (a/R,)% ~ 10718 — 10712 is negligibly narrow. The mean field theory of the superconducting
transition — BCS theory — is then valid essentially all the way to T' = T,,.

7.10 Appendix I : Equivalence of the Mean Field Descriptions

In both the variational density matrix and mean field Hamiltonian methods as applied to the Ising model,
we obtained the same result m = tanh ((m+h) / 9). What is perhaps not obvious is whether these theories
are in fact the same, i.e. if their respective free energies agree. Indeed, the two free energy functions,

falm,h,0) = —5m _hmw{(HTm)ln(lzm)+<1_2m>ln<1_7m>} (7.297)

fa(m,h,0) =+ m2—01n <e+(m+h)/6 + e—(m+h)/9) ’

where f, is the variational density matrix result and f; is the mean field Hamiltonian result, clearly are
different functions of their arguments. However, it turns out that upon minimizing with respect to m
in each cast, the resulting free energies obey f,(h,0) = fg(h,0). This agreement may seem surprising.
The first method utilizes an approximate (variational) densfcy matrix applied to the exact Hamiltonian
H. The second method approximates the Hamiltonian as H,,,, but otherwise treats it exactly. The two
Landau expansions seem hopelessly different:

fA(m,h,H):—91n2—hm+%(9—1)m2+%m4+%m6+...

(m+h)?  (m+h)*  (m+h)° (7.298)

50 1208 456

fe(m,h,0) = —01In2 + %m2 —

We shall now prove that these two methods, the variational density matrix and the mean field approach,
are in fact equivalent, and yield the same free energy f(h,0).
Let us generalize the Ising model and write

= Jijeloi, o) — Z ®(0;) . (7.299)

1<j
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Here, each ‘spin’ o; may take on any of K possible values, {sy,...,s;}. For the S = 1 Ising model,
we would have K = 3 possibilities, with s; = —1, s, = 0, and s; = +1. But the set {s,}, with
a € {1,...,K}, is completely arbitrary?®. The ‘local field’ term ®(o) is also a completely arbitrary
function. It may be linear, with ®(¢) = Ho, for example, but it could also contain terms quadratic in o,
or whatever one desires.

The symmetric, dimensionless interaction function e(c,0’) = £(¢’, o) is a real symmetric K x K matrix.
According to the singular value decomposition theorem, any such matrix may be written in the form

NS
e(0,0') = Ay (o) Mp(0') (7.300)
p=1

where the {4,} are coefficients (the singular values), and the {\,(0)} are the singular vectors. The
number of terms N, in this decomposition is such that N, < K. This treatment can be generalized to
account for continuous o.

7.10.1 Variational Density Matrix

The most general single-site variational density matrix is written

o) = 3,0, - (7.301)

[e3

Thus, z,, is the probability for a given site to be in state «, with o = s,. The {z,} are the K variational
parameters, subject to the single normalization constraint, .z, = 1. We now have

1
NJ(0)

= _% Z Z Ap )‘p(sa) )‘p(sa’) Lo Lo — Z (:0(304) Ty + ezxa lnxa s

P a,a

= {Tr<gﬁ>+kBT Tr(glnm}

(7.302)

where ¢(c) = ®(0)/J(0). We extremize in the usual way, introducing a Lagrange undetermined multiplier
¢ to enforce the constraint. This means we extend the function f({z,}), writing

K
f*(xlw--v:EK’():f(:Elv""xK)_‘_C(Zxa_l) ’ (7303)
a=1

and freely extremizing with respect to the (K + 1) parameters {z,,...,x,(}. This yields K nonlinear
equations,

8 *
0= a% = 3 A Ap(80) Ap(50) 0 — l50) + 0 Inzy +CHE (7.304)
(0% p a/

231t needn’t be an equally spaced sequence, for example.
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for each «, and one linear equation, which is the normalization condition,

of*
0= o => z,—-1 . (7.305)

«

We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them,

Ta = % xp {% [Z D Ap Ap(80) Mp(50r) Tor + so(sa)] } : (7.306)
with

7 = /0 zexp{g[ZZpraw(sa,)xa,+¢<sa>]} - (7.307)

From the logarithm of z,, we may compute the entropy, and, finally, the free energy:

= % ZZAP Ap(saz) Ap(so/)gjaz Tyt — 0lnZ 5 (7308)

P o,

which is to be evaluated at the solution of 7.304, {z},(h,0)}

7.10.2 Mean Field Approximation

We now derive a mean field approximation in the spirit of that used in the Ising model above. We write
Ap(0) = (Ap(0)) + 6Ap(0) (7.309)
and abbreviate A, = (Ap(c)), the thermodynamic average of A,(c) on any given site. We then have

Ap(0) Ap(0) = X2+ Xy A, (0) 4+ Ap 6Ap(07) 46Xy (0) SA,(0”)
(7.310)
= =X2+ X (Ap(0) + Ap(0")) + 6Xp(0) 5, (")

The product d\,(0) I\, (0’) is of second order in fluctuations, and we neglect it. This leads us to the
mean field Hamiltonian,

Hye=+iNJ(0 ZAPS\;%—Z[j(O)ZApo)\p(ai)Jr{%ai)] . (7.311)

%

The free energy is then

GsY) ZA 9anexp{%[ZAp/_\p/\p(sa)+<p(sa)]} . (7.312)

The variational parameters are the mean field values {/_\p}.
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The single site probabilities {z,} are then

T = 5 o {g [ZAP Ao Aplsa) + eo(sc»] } , (7.313)

with Z implied by the normalization ) zo = 1. These results reproduce exactly what we found in eqn.
7.304, since the mean field equation here, 0f /0, = 0, yields

K
M= Mplsa)z, (7.314)
a=1

The free energy is immediately found to be

FO) =35> AN -0mZ | (7.315)
p

which again agrees with what we found using the variational density matrix.

Thus, whether one extremizes with respect to the set {z,...,2x,(}, or with respect to the set {\,},
the results are the same, in terms of all these parameters, as well as the free energy f(#). Generically,
both approaches may be termed ‘mean field theory’ since the variational density matrix corresponds to
a mean field which acts on each site independently?’.

7.11 Appendix II : Additional Examples

7.11.1 Blume-Capel model

The Blume-Capel model provides a simple and convenient way to model systems with vacancies. The
simplest version of the model is written

H=-13"J;SS;+A> 87 . (7.316)
@] i

The spin variables S; range over the values {—1, 0, +1}, so this is an extension of the S = 1 Ising model.
We explicitly separate out the diagonal terms, writing J;; = 0, and placing them in the second term on
the RHS above. We say that site ¢ is occupied if S; = 1 and vacant if S; = 0, and we identify —A
as the vacancy creation energy, which may be positive or negative, depending on whether vacancies are
disfavored or favored in our system.

We make the mean field Ansatz, writing S; = m + 65;. This results in the mean field Hamiltonian,

Hyp = 3NJ(0)m* = J(0)m)_S;+AY S . (7.317)

24The function ®(0) may involve one or more adjustable parameters which could correspond, for example, to an external
magnetic field h. We suppress these parameters when we write the free energy as f(9).
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i T p—.

|
—_
IIII|IIII

Figure 7.24: Mean field phase diagram for the Blume-Capel model. The black dot signifies a tricritical
point, where the coefficients of m? and m? in the Landau free energy expansion both vanish. The dashed
curve denotes a first order transition, and the solid curve a second order transition. The thin dotted line
is the continuation of the 6.(4) relation to zero temperature.

Once again, we adimensionalize, writing f = F/NJ(0), 8 = k,T/J(0), and § = A/.J(0). We assume

J(0) > 0. The free energy per site is then
£(0,6,m) = 3m* — 01n <1 +2¢7%/0 cosh(m/@)) . (7.318)

Extremizing with respect to m, we obtain the mean field equation,
o 2sinh(m/0)
~ exp(6/6) + 2cosh(m/0)

Note that m = 0 is always a solution. Finding the slope of the RHS at m = 0 and setting it to unity
gives us the critical temperature:

(7.319)

2
- — .32
Oc exp(d/6,) + 2 (7.320)

This is an implicit equation for 6, in terms of the vacancy energy ¢.

Let’s now expand the free energy in terms of the magnetization m. We find, to fourth order,

1 2
f=-0In (1 + 26_6/6) + —(9 — 7>m2
26 2+ exp(0/0) (7.321)

1 6
T2 2+ exp(0/0))67 <2 Texp(6/0) 1>m4 T

Note that setting the coefficient of the m? term to zero yields the equation for .. However, upon further
examination, we see that the coefficient of the m? term can also vanish. As we have seen, when both the
coefficients of the m? and the m* terms vanish, we have a tricritical point>®. Setting both coefficients to
zero, we obtain

0=1 , 0 =22 . (7.322)

25We should really check that the coefficient of the sixth order term is positive, but that is left as an exercise to the eager
student.
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At 8 = 0, it is easy to see we have a first order transition, simply by comparing the energies of the
paramagnetic (S; = 0) and ferromagnetic (S; = +1 or S; = —1) states. We have

E 0 if m = 0
A :{ nm (7.323)

NJ(©0) |i-A ifm==+l

These results are in fact exact, and not only valid for the mean field theory. Mean field theory is
approximate because it neglects fluctuations, but at zero temperature, there are no fluctuations to neglect!

The phase diagram is shown in fig. 7.24. Note that for § large and negative, vacancies are strongly
disfavored, hence the only allowed states on each site have S; = £1, which is our old friend the two-state
Ising model. Accordingly, the phase boundary there approaches the vertical line 8, = 1, which is the
mean field transition temperature for the two-state Ising model.

7.11.2 Ising antiferromagnet in an external field

Consider the following model:

ﬁ:JZJin—HZUi , (7.324)

with J > 0 and o, = 1. We've solved for the mean field phase diagram of the Ising ferromagnet; what
happens if the interactions are antiferromagnetic?

It turns out that under certain circumstances, the ferromagnet and the antiferromagnet behave exactly
the same in terms of their phase diagram, response functions, etc. This occurs when H = 0, and when
the interactions are between nearest neighbors on a bipartite lattice. A bipartite lattice is one which can
be divided into two sublattices, which we call A and B, such that an A site has only B neighbors, and a B
site has only A neighbors. The square, honeycomb, and body centered cubic (BCC) lattices are bipartite.
The triangular and face centered cubic lattices are non-bipartite. Now if the lattice is bipartite and the
interaction matrix J;; is nonzero only when ¢ and j are from different sublattices (they needn’t be nearest
neighbors only), then we can simply redefine the spin variables such that

4o, ifjeEA
o =3"% 1Y (7.325)
—0; if j€B
Then 02’-0;- = —o0,0;, and in terms of the new spin variables the exchange constant has reversed. The

thermodynamic properties are invariant under such a redefinition of the spin variables.

We can see why this trick doesn’t work in the presence of a magnetic field, because the field H would
have to be reversed on the B sublattice. In other words, the thermodynamics of an Ising ferromagnet
on a bipartite lattice in a uniform applied field is identical to that of the Ising antiferromagnet, with the
same exchange constant (in magnitude), in the presence of a staggered field H, = +H and H, = —H.

We treat this problem using the variational density matrix method, using two independent variational
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Figure 7.25: Graphical solution to the mean field equations for the Ising antiferromagnet in an external
field, here for § = 0.6. Clockwise from upper left: (a) h = 0.1, (b) h =0.5, (¢) h=1.1, (d) h = 1.4.

parameters m, and my for the two sublattices:

0a(0)

o0s(0)

With the usual adimensionalization, f =

1+m,
2

1+mg
2

1—-m,
2

50',1 + 50,—1

. (7.326)

Spr + 5

o,—1

F/NzJ, 0 =k,T/zJ, and h = H/zJ, we have the free energy

f(mA7mB) = %mAmB - % h (mA + mB) - % Hs(mA) - %es(mB) ) (7'327)
where the entropy function is
14+m 1+m 1-m 1-m
s(m) = — 5 ln< 5 ) +— ln< 5 >] (7.328)
Note that
ds 1 1+m d’s 1
— —_11 = .32
dm 2 n(l—m) ’ dm? 1 —m? (7.329)
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Differentiating f(m,,mg) with respect to the variational parameters, we obtain two coupled mean field
equations:

oF ¢ — n%:h—gh<l+n%>

om, 2 1—m,

of 6 1+my (7.330)
8mB 2 1—mB

Recognizing tanh™!(z) = 3 In [(1+x) / (1—:5)} , we may write these equations in an equivalent but perhaps

more suggestive form:

m, = tanh <h _emB> , mg = tanh <h _emA> . (7.331)

int = —#Jmy from their B neighbors, and
—zJm, from their A neighbors.

In other words, the A sublattice sites see an internal field H,

the B sublattice sites see an internal field H; . =

We can solve these equations graphically, as in fig. 7.25. Note that there is always a paramagnetic
solution with m, = m, = m, where

0 14+m h—m

However, we can see from the figure that there will be three solutions to the mean field equations provided
that g::b—g < —1 at the point of the solution where m, = m,; = m. This gives us two equations with
which to eliminate m, and mg, resulting in the curve

R*(0) =m+ g ln(H—m> with m=v1—-6 . (7.333)

1—m

Thus, for § < 1 and |h| < h*(0) there are three solutions to the mean field equations. It is usually the
case, the broken symmetry solutions, which mean those for which m, # my in our case, are of lower
energy than the symmetric solution(s). We show the curve h*(6) in fig. 7.26.

We can make additional progress by defining the average and staggered magnetizations m and my,

N~

m= %(mA + mB) ’ myg (mA - mB) . (7334)

We expand the free energy in terms of mg:

f(m,mg) = %m2—%mg—hm—%@s(m—l—ms)—%ﬁs(m—ms)

7.335
:%m2—hm—93(m)—%(1+93”(m)>m§—i&s”"(m)mﬁ—l—... ( )

The term quadratic in mg vanishes when 6 s”(m) = —1, i.e. when m = /1 — 6. It is easy to obtain

d? 2 d? 2(1 2
s _ . 2m , s _ 20 43m7) (7.336)
dm? (1 —m?2)2 dm* (1 —m?2)3
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Figure 7.26: Mean field phase diagram for the Ising antiferromagnet in an external field. The phase
diagram is symmetric under reflection in the A = 0 axis.

from which we learn that the coefficient of the quartic term, —ﬁ 6 s""(m), never vanishes. Therefore the
transition remains second order down to 6 = 0, where it finally becomes first order.

We can confirm the § — 0 limit directly. The two competing states are the ferromagnet, with m, =
my = £1, and the antiferromagnet, with m, = —my = £1. The free energies of these states are

fM=3-n ,  fM=-1 . (7.337)

There is a first order transition when f* = fA*™ yhich yields h = 1.

7.11.3 Canted quantum antiferromagnet

Consider the following model for quantum S = % spins:

H= ; {—J(UfU}E + 0'?0’?) + Aafaﬂ +1K <Zk:l> ojojoRof (7.338)
ij ij

where o; is the vector of Pauli matrices on site i. The spins live on a square lattice. The second sum is
over all square plaquettes. All the constants J, A, and K are positive.

Let’s take a look at the Hamiltonian for a moment. The J term clearly wants the spins to align ferro-
magnetically in the (z,y) plane (in internal spin space). The A term prefers antiferromagnetic alignment
along the 2 axis. The K term discourages any kind of moment along 2 and works against the A term.
We’d like our mean field theory to capture the physics behind this competition.

Accordingly, we break up the square lattice into two interpenetrating v/2 x v/2 square sublattices (each
rotated by 45° with respect to the original), in order to be able to describe an antiferromagnetic state. In
addition, we include a parameter o which describes the canting angle that the spins on these sublattices
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make with respect to the &-axis. That is, we write
_ 1 1 : T z
0y =3+ 3m(sinao” + cosa o”)

05 =1+ 3m(sinao® — cosa o?) (7.339)

Note that Tr g, = Tr g5 = 1 so these density matrices are normalized. Note also that the mean direction
for a spin on the A and B sublattices is given by
m,,=Tr(0,z0)=+mcosaz+msinaz . (7.340)

Thus, when o = 0, the system is an antiferromagnet with its staggered moment lying along the 2 axis.
When a = %77, the system is a ferromagnet with its moment lying along the & axis.

Finally, the eigenvalues of g, ; are still A, = %(1 + m), hence
s(m)=—Tr(o,Inp,) = —Tr(oxInoy)
1+m 1+m 1—-m 1—m (7.341)
In + In .
2 2 2 2

Note that we have taken m, = my = m, unlike the case of the antiferromagnet in a uniform field. The
reason is that there remains in our model a symmetry between A and B sublattices.

The free energy is now easily calculated:

F =Tr(oH) + k,TTr(oln o) (7.342)

= —2N<J sina 4+ A cosza) m? + %NKm4 cos*ar — Nk, T s(m)

We can adimensionalize by defining 6 = A/J, k = K/4J, and § = k,T/4J. Then the free energy per site
is f=F/ANJ is

flm,a) = —%m2 +3(1-9) m? cosa + %mmﬁ‘ costa —Os(m) . (7.343)

There are two variational parameters: m and #. We thus obtain two coupled mean field equations,

1
g—f =0=-m+(1-6)m cos?a + km? cos*a + %9 ln<1+—m>
m -m (7.344)
0
—f =0= (1 — 6+ km? cos2oz> m?sin a cos
Oa

Let’s start with the second of the mean field equations. Assuming m # 0, it is clear from eqn. 7.343 that

0 if 6<1
cosa =< (0 —1)/km? if 1<0<1+rm? (7.345)
1 if §>1+rm?
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Figure 7.27: Mean field phase diagram for the model of eqn. 7.338 for the case k = 1.

Suppose d < 1. Then we have cosa = 0 and the first mean field equation yields the familiar result

m = tanh (m/0) . (7.346)
Along the 6 axis, then, we have the usual ferromagnet-paramagnet transition at 6, = 1.
For 1 < 6 < 1+ km? we have canting with an angle

L [6-1
2

a=a"(m)=cos” (7.347)

Km

Substituting this into the first mean field equation, we once again obtain the relation m = tanh (m/ 9).

However, eventually, as 6 is increased, the magnetization will dip below the value my = /(6 — 1)/k.
This occurs at a dimensionless temperature

my 0—1

= ——<1 ; my =
0 tanh ™" (m,) 7 0 K

(7.348)

2

For 6 > 6,, we have § > 1+ xm?, and we must take cos?’ = 1. The first mean field equation then

becomes 0 )
om — km® = = ln( + m) , (7.349)

2 1—m

or, equivalently, m = tanh ((5m —km3)/ 9). A simple graphical analysis shows that a nontrivial solution
exists provided 6§ < §. Since cosa = %1, this solution describes an antiferromagnet, with m, = +mz2
and my; = Fmz. The resulting mean field phase diagram is then as depicted in fig. 7.27.

7.11.4 Coupled order parameters

Consider the Landau free energy

fm,¢) = Sa,m?+1b,m* + La,6° + 1b, 0"+ 3Am* ¢ . (7.350)
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We write
a,, =, 0, , ag=ayz0, (7.351)
where
-1, T-T,.,
0,, = T , 0, = T , (7.352)

where Tj is some temperature scale. We assume without loss of generality that T¢. ,, > T, & We begin
by rescaling:

o \L/2 o \/2

m= (b—m> m ) o= <b—m> ¢ . (7.353)

We then have
f=e {r (30, %+ 1wt +r7 (30,0% + 16" + 3 Aﬁﬂﬂ&ﬁ?} , (7.354)

where
1/2
Uy O a,, < b¢ )
e — , r=_m/(_% , Ne= — — (7.355)
O (b k)2 @y \ b, (b by) 1/

It proves convenient to perform one last rescaling, writing

m=r"Ym | ¢g=ry . (7.356)

Then
f= EO{%QHm m?+1im* 4+ 1g7t 9¢<p2 +iot+1 )\m2cp2} , (7.357)

where

12 ,p \1/4
= V= <a_m> <_¢> _ (7.358)
o, b,,
Note that we may write
_ o2 oy (1 A m? €0 (2 2 q0,,

f(m. @) =~ (m? %) (A 1> (902 +5 (m? ¢?) ,) (7.359)

The eigenvalues of the above 2 x 2 matrix are 1+ A, with corresponding eigenvectors ( ill) Since ¢? > 0,

we are only interested in the first eigenvector (}), corresponding to the eigenvalue 1 + A. Clearly when

A < 1 the free energy is unbounded from below, which is unphysical.

We now set
o _, or _

o= o0 (7.360)

and identify four possible phases:

e Phase I : m =0, ¢ = 0. The free energy is f; = 0.
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e Phase Il : m # 0 with ¢ = 0. The free energy is

F = (gb,m? +hmT) (7.361)

hence we require 6,, < 0 in this phase, in which case

&
m, =/—qb,, , fnz—zoq%;. (7.362)

e Phase III : m = 0 with ¢ # 0. The free energy is

&g _
f= 50 (10,0 + 39" (7.363)

hence we require 9¢ < 0 in this phase, in which case

€y _
Prr = _q_l 9¢ ) fm = _ZO q 2 935 . (7.364)

e Phase IV : m # 0 and ¢ # 0. Varying f yields

(D))

with solution

m2: qem_q 19¢)‘
A2 —1
. (7.366)
s 4 0¢—q9m/\
4 N1

Since m? and ¢? must each be nonnegative, phase IV exists only over a yet-to-be-determined subset
of the entire parameter space. The free energy is

202 4 g 262 —2)9, 0
. 7 7 ¢ (7.367)
102 —1)

We now define § = 0,, and 7 =0, — 0, = (T

T, 4 /T,. Note that 7 > 0. There are three possible
temperature ranges to consider.

, M

(1) 0 6> 6,, > 0. The only possible phases are I and IV. For phase IV, we must impose the conditions
m? > 0 and ¢2 > 0. If A2 > 1, then the numerators in eqns. 7.366 must each be positive:

2 0
q° 0, N 8

0, ’ g0

A<

2 0
(@, Y >
= A <min| —", . 7.368
m < 9(;5 q29m ( )

But since either ¢%6,,/0 s OF its inverse must be less than or equal to unity, this requires A < —1,
which is unphysical.
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If on the other hand we assume A? < 1, the non-negativeness of m? and ¢? requires

29 2
q’””,>\>‘z5

A >
6¢ q> 0.,

2 0
b, Y
= A> max( 5, q29m> >1 . (7.369)
Thus, A > 1 and we have a contradiction.

Therefore, the only allowed phase for § > 0 is phase I.

9¢ > 0 > 60,,. Now the possible phases are I, II, and IV. We can immediately rule out phase I
because f;; < f;. To compare phases II and IV, we compute

(gA0,, —q7'6,)

Af=fwv—Jfu= A2 1)

(7.370)

Thus, phase II has the lower energy if A> > 1. For A\? < 1, phase IV has the lower energy, but the
conditions m? > 0 and ¢? > 0 then entail

qum <A< qum = o] >6,>0 . (7.371)
Thus, A is restricted to the range
A€ [—1, —;l] . (7.372)
710,

With 0, =60 <0 and 0, = 0 + 7 > 0, the condition q?0,,| > 0, is found to be

— < — .
T<0< ) (7.373)
Thus, phase IV exists and has lower energy when
0
—r<f<—— and —l<A<-— tT , (7.374)
r+1 ré

where 7 = ¢°.

0> 9¢ > 0,,. In this regime, any phase is possible, however once again phase I can be ruled out
since phases II and III are of lower free energy. The condition that phase II have lower free energy
than phase III is

€ _
fio— fur = ZO(q %05 — ¢°07,) <0 (7.375)
i.e. |0, <r[0,], which means r|0| > || — 7. If r > 1 this is true for all § < 0, while if » <1 phase
IT is lower in energy only for |0] < 7/(1 — ).

We next need to test whether phase IV has an even lower energy than the lower of phases II and
III. We have

(gA0,, —q7'6,)
02 1)
(q0,, —q ' X6,)?
202 - 1)

fIV - fII =
(7.376)

Jv—fin =
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Figure 7.28: Phase diagram for 7 = 0.5, » = 1.5 (top) and 7 = 0.5, » = 0.25 (bottom). The hatched
purple region is unphysical, with a free energy unbounded from below. The blue lines denote second
order transitions. The thick red line separating phases II and III is a first order line.

In both cases, phase IV can only be the true thermodynamic phase if A> < 1. We then require
m? > 0 and ¢? > 0, which fixes

2 0
: q Hm 9]
A€ [—1,mln< 7, T >] . (7.377)

The upper limit will be the first term inside the rounded brackets if ¢%|6,,| < 0 g e i r[f] < |0]—7.
This is impossible if » > 1, hence the upper limit is given by the second term in the rounded brackets:
0+

ro
If » < 1, then the upper limit will be q26’m/6’¢ =7r0/(0 + 1) if || > 7/(1 —r), and will be
9¢/q29m =@ +7)/roif 0| <7/(1—7).

r>1:Xe [— 1, ] (condition for phase IV) . (7.378)

r<l ,—L<9<—T:)\E —1,0+T (phase IV)
1—7r ré
(7.379)
T ré
1 — : -1 hase 1
r<l ,0< T, )\6[ e (phase IV)
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Representative phase diagrams for the cases » > 1 and r < 1 are shown in fig. 7.28.
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Chapter 8

Nonequilibrium Phenomena

8.1 References

— H. Smith and H. H. Jensen, Transport Phenomena (Oxford, 1989)
An outstanding, thorough, and pellucid presentation of the theory of Boltzmann transport in clas-
sical and quantum systems.

— P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge,
2010)
Superb, modern discussion of a broad variety of issues and models in nonequilibrium statistical
physics.

— E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, 1981)
Volume 10 in the famous Landau and Lifshitz Course of Theoretical Physics. Surprisingly readable,
and with many applications (some advanced).

— M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
A superb modern text, with many insightful presentations of key concepts. Includes a very instruc-
tive derivation of the Boltzmann equation starting from the BBGKY hierarchy.

— J. A. McLennan, Introduction to Non-equilibrium Statistical Mechanics (Prentice-Hall, 1989)
Though narrow in scope, this book is a good resource on the Boltzmann equation.

— F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason. The later chapters discuss transport phenomena at an undergraduate level.

— N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (3rd edition, North-Holland,
2007)

This is a very readable and useful text. A relaxed but meaty presentation.
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8.2 Equilibrium, Nonequilibrium and Local Equilibrium

Classical equilibrium statistical mechanics is described by the full N-body distribution,

Z5t e—BHy (p.x) OCE

fo(wl,...,:cN;pl,...,pN): A (8.1)
=-1, L' ePuN o—BHy (p®)  GCE

We assume a Hamiltonian of the form

N 5 N N

A~ p

Hy = E —2;” + E v(x;) + E u(x; — x;), (8.2)
i=1 i=1 i<j

typically with v = 0, i.e. only two-body interactions. The quantity

d%, d% d%,, d%
f0($17"'7$N;p17"'7pN) }lld 1"' ]\][Id N (83)

is the probability, under equilibrium conditions, of finding N particles in the system, with particle #1
lying within d3a:1 of ; and having momentum within ddpl of p;, etc. The temperature 7" and chemical
potential p are constants, independent of position. Note that f({z;},{p;}) is dimensionless.

Nonequilibrium statistical mechanics seeks to describe thermodynamic systems which are out of equilib-
rium, meaning that the distribution function is not given by the Boltzmann distribution above. For a
general nonequilibrium setting, it is hopeless to make progress — we’d have to integrate the equations
of motion for all the constituent particles. However, typically we are concerned with situations where
external forces or constraints are imposed over some macroscopic scale. Examples would include the
imposition of a voltage drop across a metal, or a temperature differential across any thermodynamic
sample. In such cases, scattering at microscopic length and time scales described by the mean free path
¢ and the collision time T work to establish local equilibrium throughout the system. A local equilibrium
is a state described by a space and time varying temperature T'(r,t) and chemical potential p(r,t). As
we will see, the Boltzmann distribution with 7' = T'(r,¢) and p = u(r,t) will not be a solution to the
evolution equation governing the distribution function. Rather, the distribution for systems slightly out
of equilibrium will be of the form f = fY + §f, where f° describes a state of local equilibrium.

We will mainly be interested in the one-body distribution

flr,p;t) =

WE

(0(;(t) —7)d(pi(t) —p) )

1

<.
I

(8.4)

xzddpz f(r7$27"'7wN;p7p27"'7pN;t)

=
S

I
=
—

=2

In this chapter, we will drop the 1/h normalization for phase space integration. Thus, f(r,p,t) has
dimensions of h=¢, and f(r, p,t) d¥ d’ is the average number of particles found within d% of  and d%
of p at time t.
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In the GCE, we sum the RHS above over N. Assuming v = 0 so that there is no one-body potential to
break translational symmetry, the equilibrium distribution is time-independent and space-independent:

Or,p) =n (2rmk,T) ™3/ e P 2mkpT (8.5)

where n = N/V or n = n(T, u) is the particle density in the OCE or GCE. From the one-body distribution
we can compute things like the particle current, j, and the energy current, j.:

i) = [dh st 2 (5.6
glrt) = [a frpt) ) 2 (5.7

where £(p) = p?/2m. Clearly these currents both vanish in equilibrium, when f = f°, since fO(r,p)
depends only on p? and not on the direction of p. In a steady state nonequilibrium situation, the above
quantities are time-independent.

Thermodynamics says that
dg=Tds=de —pdn (8.8)

where s, ¢, and n are entropy density, energy density, and particle density, respectively, and dgq is the
differential heat density. This relation may be case as one among the corresponding current densities:

Thus, in a system with no particle flow, 7 = 0 and the heat current j, is the same as the energy current
Je-

When the individual particles are not point particles, they possess angular momentum as well as linear
momentum. Following Lifshitz and Pitaevskii, we abbreviate I" = (p, L) for these two variables for the
case of diatomic molecules, and I' = (p, L,n - L) in the case of spherical top molecules, where n is the
symmetry axis of the top. We then have, in d = 3 dimensions,

d3p point particles
dI' = d% LdLd$2; diatomic molecules (8.10)
d% L?dL dSf? ; dcosy symmetric tops

where ¥ = cos™ (7 - i/) We will call the set I' the ‘kinematic variables’. The instantaneous number
density at r is then

n(r,t) = /dF Fr,Iit) . (8.11)

One might ask why we do not also keep track of the angular orientation of the individual molecules. There
are two reasons. First, the rotations of the molecules are generally extremely rapid, so we are justified
in averaging over these motions. Second, the orientation of, say, a rotor does not enter into its energy.
While the same can be said of the spatial position in the absence of external fields, (i) in the presence
of external fields one must keep track of the position coordinate 7 since there is physical transport of
particles from one region of space to another, and (iii) the collision process, which as we shall see enters
the dynamics of the distribution function, takes place in real space.
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8.3 Boltzmann Transport Theory

8.3.1 Derivation of the Boltzmann equation

For simplicity of presentation, we assume point particles. Recall that

# of particles with positions within d% of

fr,p,t)d* d* = { (8.12)

r and momenta within d of p at time t.

We now ask how the distribution functions f(r,p,t) evolves in time. It is clear that in the absence of
collisions, the distribution function must satisfy the continuity equation,
0
—f+V-(uf):0 ) (8.13)
ot
This is just the condition of number conservation for particles. Take care to note that V and u are
siz-dimensional phase space vectors:

u:(i s U 2, Da ypy apz) (8.14)
o 9 90 o0 0 0
V= <%’8_y’£’8—m’8—py’8—pz> . (8.15)

The continuity equation describes a distribution in which each constituent particle evolves according to
a prescribed dynamics, which for a mechanical system is specified by
dr  OH dp  OH

_ T _F

@~ op P o G T oy ~Fe (8.16)

where F' is an external applied force. Here,

H(p,7) = e(p) + Uex(r) - (8.17)

For example, if the particles are under the influence of gravity, then Uy (r) = mg-r and F = —VU,, =
—mg.

Note that as a consequence of the dynamics, we have V-u = 0, i.e. phase space flow is incompressible,
provided that (p) is a function of p alone, and not of =. Thus, in the absence of collisions, we have

of

— +u-Vf=0 . 8.18

5 Tu VS (8.18)
The differential operator D; = 0; + u -V is sometimes called the ‘convective derivative’, because D, f is
the time derivative of f in a comoving frame of reference.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical dynamics.
In a collision process, a particle with momentum p and one with momentum p can instantaneously convert
into a pair with momenta p’ and p’, provided total momentum is conserved: p+p = p’ + p’. This means
that D, f # 0. Rather, we should write

of . of . df (of
o o TP op <at>coll

ot or 7 op (8.19)
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where the right side is known as the collision integral. The collision integral is in general a function of
r, p, and t and a functional of the distribution f.

After a trivial rearrangement of terms, we can write the Boltzmann equation as

of (of of
8t B < 8t >str " < at >c011 ’ (820)
where
af . of . Of
(E)m =" P op (8.21)

is known as the streaming term. Thus, there are two contributions to 9f/0t: streaming and collisions.

8.3.2 Collisionless Boltzmann equation

In the absence of collisions, the Boltzmann equation is given by

of 0e Of of

L =2 _ U, L =0 . 8.22

ot Tap ar YU Gp (8.22)
In order to gain some intuition about how the streaming term affects the evolution of the distribution
f(r,p,t), consider a case where F, , = 0. We then have

of . p Of
=4+ =-==0 . 8.23
ot + m or ( )
Clearly, then, any function of the form
f(’l’,p,t) :(P(T—'U(p)ta p) (824)

will be a solution to the collisionless Boltzmann equation, where v(p) = g—;. One possible solution would

be the Boltzmann distribution,
flr,p,t) = et/kaT e p?/2minT (8.25)
which is time-independent'. Here we have assumed a ballistic dispersion, ¢(p) = p?/2m.

For a slightly less trivial example, let the initial distribution be ¢(r,p) = Ae~r*/20% c=p?/ 2“2, so that

" 2
F(rp,t) = A (r=5) /207 izt (8.26)
Consider the one-dimensional version, and rescale position, momentum, and time so that
fla,p.t) = Aem3@ PO cmap® (8.27)

Consider the level sets of f, where f(z,p,t) = Ae 29", The equation for these sets is

T=ptta?2—p> . (8.28)

ndeed, any arbitrary function of P alone would be a solution. Ultimately, we require some energy exchanging processes,
such as collisions, in order for any initial nonequilibrium distribution to converge to the Boltzmann distribution.
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Figure 8.1: Level sets for a sample f(7,p,t) = Ae_%(f_ﬂ)Qe_%ﬁQ, for values f = Ae 3% with a in
equally spaced intervals from o = 0.2 (red) to a = 1.2 (blue). The time variable ¢ is taken to be t = 0.0
(upper left), 0.2 (upper right), 0.8 (lower right), and 1.3 (lower left).

For fixed ¢, these level sets describe the loci in phase space of equal probability densities, with the
probability density decreasing exponentially in the parameter a?. For £ = 0, the initial distribution
describes a Gaussian cloud of particles with a Gaussian momentum distribution. As ¢ increases, the
distribution widens in & but not in p — each particle moves with a constant momentum, so the set of
momentum values never changes. However, the level sets in the (Z, p) plane become elliptical, with a
semimajor axis oriented at an angle § = ctn ~!(¢) with respect to the Z axis. For # > 0, he particles at
the outer edges of the cloud are more likely to be moving away from the center. See the sketches in fig.
8.1

Suppose we add in a constant external force F,

Lt~ Then it is easy to show (and left as an exercise to the
reader to prove) that any function of the form

9

8.29
2m m ( )

t F._t2 F._.t
i = (r B B B
m

satisfies the collisionless Boltzmann equation (ballistic dispersion assumed).
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8.3.3 Collisional invariants

Consider a function A(r,p) of position and momentum. Its average value at time ¢ is

A(t) = /d?’rdgpA(r,p) f(r,p,t) . (8.30)

Taking the time derivative,

dA

of
_ (3.3
= [ Aee) G

:/d3rd3pA(r,p){—§r-(f*f)— %'(pf)Jr (%) H} (8.31)

0A dr O0A dp af
_ 3. 73 20 hufalniihet —7
_/drdp{<ar &t op dt>f+A(T’p) <6t>cou}

Hence, if A is preserved by the dynamics between collisions, then’

dA O0A dr 0A dp
E_ﬁ_r'a—i_@_p'a_o . (8.32)

We therefore have that the rate of change of A is determined wholly by the collision integral

dA [ 5 3 of
e /drdpA(r,p) <8t )cou . (8.33)

Quantities which are then conserved in the collisions satisfy A = 0. Such quantities are called collisional
invariants. Examples of collisional invariants include the particle number (A = 1), the components of
the total momentum (A = p,,) (in the absence of broken translational invariance, due e.g. to the presence
of walls), and the total energy (A = &(p)).

8.3.4 Scattering processes

What sort of processes contribute to the collision integral? There are two broad classes to consider. The
first involves potential scattering, where a particle in state |I") scatters, in the presence of an external
potential, to a state |I"). Recall that I" is an abbreviation for the set of kinematic variables, e.g. I' = (p, L)
in the case of a diatomic molecule. For point particles, I" = (p,, Py p,) and dI" = d°.

We now define the function w(F "\r ) such that

rate at which a particle within dI" of (7, I’
w(I'\T) f(r,Iyt)dl dI = ap ) ) _ (r, ) (8.34)

scatters to within dI" of (r,I") at time ¢.
*Recall from classical mechanics the definition of the Poisson bracket, {A, B} = g—’ﬁ . g—g — g—? . %. Then from Hamilton’s
equations T* = %—H and p = —%—f7 where H(p,T,t) is the Hamiltonian, we have ‘3—’3 = {A, H}. Invariants have zero Poisson

bracket with the Hamiltonian.
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I’ I’ I

I r I

Figure 8.2: Left: single particle scattering process |I') — |I"). Right: two-particle scattering process
| — |I'TY).

The units of wdl" are therefore 1/T. The differential scattering cross section for particle scattering is

then )
r\r
do = “N0) G (8.35)
n v

where v = p/m is the particle’s velocity and n the density.

The second class is that of two-particle scattering processes, i.e. |[I'I}) — |I["I7). We define the scattering
function w(I"I7 | I'I}) by

rate at which two particles within dI" of (v, I")
w(I'IT | T1Y) fo(r, Ty, Iy t)dldIy dIY AT = < and within dI7 of (r, ) scatter into states within
dI" of (r,I'") and dI of (r,I7) at time ¢,
(8.36)

folrops v 0l 1) = (O 6(x;(t) — 7) 8(p(t) — p) 6(;(t) — ') 6(p; () — P') ) (8.37)
i

where

is the nonequilibrium two-particle distribution for point particles. The differential scattering cross section

1S
r'rl|rr
do = WD) e (8.38)
v — v, !

We assume, in both cases, that any scattering occurs locally, i.e. the particles attain their asymptotic
kinematic states on distance scales small compared to the mean interparticle separation. In this case we
can treat each scattering process independently. This assumption is particular to rarefied systems, i.e.
gases, and is not appropriate for dense liquids. The two types of scattering processes are depicted in fig.
8.2.

In computing the collision integral for the state |r, I"), we must take care to sum over contributions from
transitions out of this state, i.e. |[I') — |I'"), which reduce f(r,I"), and transitions into this state, i.e.
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|I") — |I'), which increase f(r,I"). Thus, for one-body scattering, we have

%f(r,]“;t): (%{)Cdl:/dr' {w(F|F’)f('r,F’;t)—w(F’|F)f('r,F;t)} . (8.39)

For two-body scattering, we have

D 5,
th('r,F;t) = (a_{> = /dFl/dF’/dF{ {w(FFl | I'IY) fo(r, I 7, I50)
coll

—u)(F/Fll|FF1) fQ(T,F;T7F1;t)}

(8.40)

Unlike the one-body scattering case, the kinetic equation for two-body scattering does not close, since
the LHS involves the one-body distribution f = f; and the RHS involves the two-body distribution f,.
To close the equations, we make the approzimation

folr, Ty7, Tit) = f(r,T;t) f(7, ;1) . (8.41)

We then have

—f v T:t) /dFl/dF/dfl (T | ') f(r, T 0) £ (e, TLst) .
—w(I'T [T f(r,T3t) f(r, i)}

8.3.5 Detailed balance

Classical mechanics places some restrictions on the form of the kernel w(FFl | I’ Fl’) In particular, if
I'" = (—p, —L) denotes the kinematic variables under time reversal, then

w( ' | I') =w(I I | 717 (8.43)
This is because the time reverse of the process |I'T}) — |I'I7) is [I""T{") — | IT).
In equilibrium, we must have
w(I'I{ | DL D) f20) d'T = w(D70F | D7 T{T) 207 £ dirT (8.44)
where
d'r =drdrydr'ar; , d'T" =drtdrydr'tary” . (8.45)

Since dI" = dI'" etc., we may cancel the differentials above, and after invoking eqn. 8.43 and suppressing
the common 7 label, we find

) o) = o T (8.46)
This is the condition of detailed balance. For the Boltzmann distribution, we have fO(I") = Ae—c/ksT
where A is a constant and where ¢ = ¢(I) is the kinetic energy, e.g. (I') = p?/2m in the case of point
particles. Note that e(I'") = e(I"). Detailed balance is satisfied because the kinematics of the collision

requires energy conservation:
ete =€+ . (8.47)
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Since momentum is also kinematically conserved, i.e.

p+p =p +p] , (8.48)

any distribution of the form
o) = AemEPV)/ksT (8.49)

also satisfies detailed balance, for any velocity parameter V. This distribution is appropriate for gases
which are flowing with average particle V.

In addition to time-reversal, parity is also a symmetry of the microscopic mechanical laws. Under the
parity operation P, we have r — —r and p — —p. Note that a pseudovector such as L = r x p
is unchanged under P. Thus, I'" = (—p,L). Under the combined operation of C' = PT, we have
I'’ = (p,—L). If the microscopic Hamiltonian is invariant under C', then we must have

w(I'IT | TH) =w(l°rY | 17°17°) . (8.50)
For point particles, invariance under 7" and P then means

w(p',p| |p,p) = wp,p, P, P})) (8.51)

and therefore the collision integral takes the simplified form,

Df(p)
Dt

= (%{)M = /d3p1/d3p’/d3p’1w(p’,p’1Ip,pl) {f(p’)f(p’l) ~ 1) f(p)} (8.52)

where we have suppressed both r and t variables.

The most general statement of detailed balance is

o) o) w(y|rn)

= 8.53
Oy Iy w(rn | 1) 52
Under this condition, the collision term vanishes for f = f°, which is the equilibrium distribution.
8.3.6 Kinematics and cross section
We can rewrite eqn. 8.52 in the form
Df(p) _ 3 Jdo / /
D2 = [, [a2 10— o) 57 {0 1) - F0) 700} (8.54)

where g—g is the differential scattering cross section. If we recast the scattering problem in terms of center-
of-mass and relative coordinates, we conclude that the total momentum is conserved by the collision, and
furthermore that the energy in the CM frame is conserved, which means that the magnitude of the relative
momentum is conserved. Thus, we may write p’ — p| = |p — p,| .Q, where §2 is a unit vector. Then p’
and p} are determined to be

(P+P1+|P—P1|Q)

. (8.55)
(P+P1 —|p—pil Q)

1
2
11
2
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8.3.7 H-theorem

Let’s consider the Boltzmann equation with two particle collisions. We define the local (i.e. r-dependent)
quantity

po(rt) = /d[‘(p(F, £ F(Lrt) (8.56)

At this point, (I, f) is arbitrary. Note that the ¢(I", f) factor has r and ¢ dependence through its
dependence on f, which itself is a function of 7, I, and t. We now compute

9py _ Nef) _ Nef) Of
a—f—/df—_/dFWE

o
_ /dF w-V(of) - /dF W@L}f) <%>mu (8.57)

_ _jédZﬁ-(ucpf) —/dra(aL}f) <%>wu

The first term on the last line follows from the divergence theorem, and vanishes if we assume f = 0 for
infinite values of the kinematic variables, which is the only physical possibility. Thus, the rate of change
of p, is entirely due to the collision term. Thus,

9]
P - /dF/dFl/dF’/dF{ {w(@ri TR ffix = w(IL | T'TY) £/ x}
(8.58)
= [ar[ar, [ar' [ariw(r'r r) £5 00 1)
Whel"efEf(F), f,Ef(F,)> fl Ef(Fl)v f{ Ef(Fll)7 X:X(F)7With
A(ef) dp
- — -t 8.59
X=—gi =t 3 7 (8.59)
We now invoke the symmetry
w('M | I'y) =w(IT |\ (8.60)
which allows us to write
0
% = %/d[‘/dfl dF'/dFllw(F'FﬂFFl)ffl(X—l—Xl—X'—Xll) . (8.61)
This shows that p,, is preserved by the collision term if x(I) is a collisional invariant.
Now let us consider ¢(f) =In f. We define h = phD:ln 5 We then have
oh _ 1 dr[dry [ dr'|drjwf'f] -zl (8.62)
a = -3 1 1w 1-rinxe .

where w = w(I"I7 | I'I}) and « = f f,/f'f{. We next invoke the resuls

/ dr’ / dIrfw(I'r{| ) = / dr’ / dIf w(Ir'ry | I') (8.63)
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which is a statement of unitarity of the scattering matrix®. Multiplying both sides by f(I") f(I7), then
integrating over I" and I, and finally changing variables (I, I7) <> (I"',I7), we find

O:/dF/dFl/dF’/dF{w(ffl—f’f{):/dF/dFl/dF’/dF{wf’f{(a;—1) . (8.64)

Multiplying this result by % and adding it to the previous equation for h, we arrive at our final result,

h
%:—%/df/dﬂ/df'/dﬂwf'f{ (zlnx —x+1) . (8.65)
Note that w, f’, and f{ are all nonnegative. It is then easy to prove that the function g(z) = xlnz—z+1

is nonnegative for all positive x values®, which therefore entails the important result

Oh(r,t)
ot

<0 . (8.66)

Boltzmann’s H function is the space integral of the h density: H= [ d% h.

Thus, everywhere in space, the function h(r,t) is monotonically decreasing or constant, due to collisions.
In equilibrium, h = 0 everywhere, which requires x = 1, i.e.

) foU) = £ ) (8.67)
or, taking the logarithm,
In fO(0) +In fO(Iy) = In fO(I") + In fO(17) . (8.68)

But this means that In f° is itself a collisional invariant, and if 1, p, and e are the only collisional
invariants, then In 0 must be expressible in terms of them. Thus,

7 V-p €

Inf* = —
AN S

(8.69)

where 1, V', and T are constants which parameterize the equilibrium distribution f%(p), corresponding
to the chemical potential, flow velocity, and temperature, respectively.

8.4 Weakly Inhomogeneous Gas

Consider a gas which is only weakly out of equilibrium. We follow the treatment in Lifshitz and Pitaevskii,
86. As the gas is only slightly out of equilibrium, we seek a solution to the Boltzmann equation of the
form f = f° + of, where f° is describes a local equilibrium. Recall that such a distribution function
is annihilated by the collision term in the Boltzmann equation but not by the streaming term, hence a
correction df must be added in order to obtain a solution.

3See Lifshitz and Pitaevskii, Physical Kinetics, §2.

“The function g(z) = rlnz — = + 1 satisfies g’(z) = Inx, hence g'(z) < 0 on the interval z € [0,1) and ¢’(z) > 0 on
x € (1,00]. Thus, g(x) monotonically decreases from ¢g(0) =1 to g(1) = 0, and then monotonically increases to g(co) = oo,
never becoming negative.
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The most general form of local equilibrium is described by the distribution

— eIl .
fo>r, ) = Cexp <,u SH+V p> , (8.70)
kT
where p = p(r,t), T =T(r,t), and V = V (r,t) vary in both space and time. Note that
aT afo
0 pr— . —_— —_— . —_— —_——
df —(d,u—l—p AV + (e — p Vp)T de)( 85)
. (8.71)
1 aT af
where we have assumed V' = 0 on average, and used
dy = <§;> T + <g"> dp
P (8.72)

1
=—sdl'+—dp |,
n

where s is the entropy per particle and n is the number density. We have further written h = p + T's,
which is the enthalpy per particle. Here, ¢, is the heat capacity per particle at constant pressure’. Finally,
note that when f is the Maxwell-Boltzmann distribution, we have

o _ 0

S kB—T (8.73)
The Boltzmann equation is written
0 p 0 0 of
<8t+m o FF 5 >(f +0f) = <3t>cou : (8.74)

The RHS of this equation must be of order §f because the local equilibrium distribution f° is annihilated
by the collision integral. We therefore wish to evaluate one of the contributions to the LHS of this
equation,

a_fo+£ 8_fo+F.6_fO:< 8f0>{1 ap+€_ha_T+mv-[(v.V)V}

ot m  Or op Oe n Ot T Ot
ov 1 € —

To simplify this, first note that Newton’s laws applied to an ideal fluid give pV = —Vp, where p = mn
is the mass density. Corrections to this result, e.g. viscosity and nonlinearity in V', are of higher order.

(8.75)

hv-VT—F'v}

5In the chapter on thermodynamics, we adopted a slightly different definition of ¢p as the heat capacity per mole. In this
chapter ¢, is the heat capacity per particle.
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Next, continuity for particle number means 7+ V-(nV') = 0. We assume V is zero on average and that
all derivatives are small, hence V-(nV) =V -Vn+nV.-V =~ nV-V. Thus,

Odlnn  Odlnp OInT
T T A

where we have invoked the ideal gas law n = p/k,T above.

(8.76)

Next, we invoke conservation of entropy. If s is the entropy per particle, then ns is the entropy per unit
volume, in which case we have the continuity equation
d(ns)
ot

+ V- (nsV) = n<% +V-Vs> +s<% +V-(nV)> =0 . (8.77)

The second bracketed term on the RHS vanishes because of particle continuity, leaving us with §+V-Vs =
$=0 (since V =0 on average, and any gradient is first order in smallness). Now thermodynamics says

0s 0s
ds = <—> dTl + <—> dp
oT b op )p

. " (8.78)
=24r - 24
T D P
since T(g—%)p = ¢, and (g—;)T = (g—%)p, where v = V/N. Thus,
¢, OInT  Olnp
— — =0 . 8.79
kg Ot ot ( )
We now have in eqns. 8.76 and 8.79 two equations in the two unknowns 619‘;T and 6};]) , yielding
alantT :—f—B A\ 4 (8.80)
\%4
8(};]) - —:j—p vV . (8.81)
1%
Thus eqn. 8.75 becomes
of° p 0f° afO° ofN [ e(I) —h
= 2 7 L p. 2 () . vT
ot “m or 7 op oe 7 v VT mats Qg
8.82
h—Tc,—e(I") (8.82)
VV_-F- v ,
cy kg
where oy
1 /oV, 38
Qup = B (8—1’5 + 8—%> . (8.83)

Therefore, the Boltzmann equation takes the form

B _ 0
{LF; hy VT +muv,vg Qup — o) —ht T, V-V —F'v} / + o _ <8f> . (8.84)
coll

ey kg kT ot \ ot
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Notice we have dropped the terms v - % and F - %—‘g, since df must already be first order in smallness,

and both the 8% operator as well as F' add a second order of smallness, which is negligible. Typically %
is nonzero if the applied force F(t) is time-dependent. We use the convention of summing over repeated
indices. Note that 5oc6 Qaﬁ = Q,, = V-V. For ideal gases in which only translational and rotational
degrees of freedom are excited, h = ¢, T

8.5 Relaxation Time Approximation

8.5.1 Approximation of collision integral

We now consider a very simple model of the collision integral,

(ﬁ) I e (8.85)
coll

ot T T

This model is known as the relaxation time approzimation. Here, fO = fO(r, p,t) is a distribution function
which describes a local equilibrium at each position r and time ¢. The quantity 7 is the relaxzation time,
which can in principle be momentum-dependent, but which we shall first consider to be constant. In the
absence of streaming terms, we have

oof _of

el of (r,p,t) = 6f (r,p,0) /7 . (8.86)

The distribution f then relaxes to the equilibrium distribution f° on a time scale 7. We note that this
approximation is obviously flawed in that all quantities — even the collisional invariants — relax to their

equilibrium values on the scale 7. In the Appendix, we consider a model for the collision integral in which
the collisional invariants are all preserved, but everything else relaxes to local equilibrium at a single rate.

8.5.2 Computation of the scattering time
Consider two particles with velocities v and v’. The average of their relative speed is
(Jlo—2'|)= /dgv/dgv/ Pw) P v -] (8.87)

where P(v) is the Maxwell velocity distribution,

P m 3/2 m’U2
(v) = <2kaT> P <_2kBT> ’ (8.:88)

which follows from the Boltzmann form of the equilibrium distribution f°(p). It is left as an exercise for
the student to verify that

= (o = v'l) = == (

= (8.89)
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T

rel

Figure 8.3: Graphic representation of the equation n o v, 7 = 1, which yields the scattering time 7 in
terms of the number density n, average particle pair relative velocity o1, and two-particle total scattering
cross section o. The equation says that on average there must be one particle within the tube.

Note that v, = V27, where ¥ is the average particle speed. Let o be the total scattering cross section,
which for hard spheres is ¢ = wd?, where d is the hard sphere diameter. Then the rate at which particles
scatter is

1 _
; =NV 0 . (890)

The particle mean free path is then
1

V2no

While the scattering length is not temperature-dependent within this formalism, the scattering time is

T-dependent, with
1 VT m 1/2
() no.,o 4na<kBT> (8.92)

(=0T = (8.91)

As T — 0, the collision time diverges as 7 o« T2, because the particles on average move more slowly
at lower temperatures. The mean free path, however, is independent of T, and is given by £ =1/ V2no.

8.5.3 Thermal conductivity

We consider a system with a temperature gradient V71" and seek a steady state (i.e. time-independent)
solution to the Boltzmann equation. We assume F, = Qaﬁ = 0. Appealing to eqn. 8.84, and using the
relaxation time approximation for the collision integral, we have
T(e—¢,T)

of =———L 2 (v-VT) O . 8.93

f = 0V (593)
We are now ready to compute the energy and particle currents. In order to compute the local density of
any quantity A(r,p), we multiply by the distribution f(7,p) and integrate over momentum:

pAOzt)zl/ﬁﬁh4Uup)fOnp,w ; (8.94)

For the energy (thermal) current, we let A = ev, = €p,/m, in which case p, = j,. Note that [d¥p f0 =
0 since fY is isotropic in p even when p and T depend on 7. Thus, only df enters into the calculation of
the various currents. Thus, the energy (thermal) current is

jo(r) = /d?’pava 5f = — o7

(v e (e - ¢, T)) 9 (8.95)

nrt

e




8.5. RELAXATION TIME APPROXIMATION 449

where the repeated index § is summed over, and where momentum averages are defined relative to the
equilibrium distribution, i.e.

(6(0)) = [Eo() ') / ¥ £'(9) = [ @ P(o) o) (8.96)

In this context, it is useful to invoke the identity d* f°(p) = nd*% P(v), where

3/2
_ m —m(v—V)2/2k,T
P(v) <27rl<:BT> e B (8.97)

is the Maxwell velocity distribution.

Note that if ¢ = ¢(¢) is a function of the energy, and if V' = 0, then
d* fO>p) = nd® P(v) =nP(e)de | (8.98)

where

P(e) = (k7)Mo T (8.99)

oo ~
is the Maxwellian distribution of single particle energies. This distribution is normalized with [de P(e) =
0

1. Averages with respect to this distribution are given by

(6(2)) = / dz 6(2) P(e) = 2 (k1) / de £V/2 g(e) e~=/hnT (8.100)
0 0

If ¢(e) is homogeneous, then for any a we have

(%)= Zl(a+3) (kD)™ (8.101)

Due to spatial isotropy, it is clear that we can replace

2
vl = Lo?s, = % B (8.102)
in eqn. 8.95. We then have j, = —x VT, with
2nt 9 5SnTkiT ~
K= W<E (e—¢,T)) = 2mB =gnlvc, (8.103)
where we have used ¢, = %sz and 02 = SifnT. The quantity x is called the thermal conductivity. Note

that x oc T1/2.
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z —_—

_
—_—
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V,=0 ! |

Figure 8.4: Gedankenexperiment to measure shear viscosity 7 in a fluid. The lower plate is fixed. The
viscous drag force per unit area on the upper plate is Fyrag/A = —nV/d. This must be balanced by an
applied force F'.

8.5.4 Viscosity

Consider the situation depicted in fig. 8.4. A fluid filling the space between two large flat plates at z = 0
and z = d is set in motion by a force F' = F& applied to the upper plate; the lower plate is fixed. It
is assumed that the fluid’s velocity locally matches that of the plates. Fluid particles at the top have
an average r-component of their momentum (p,) = mV. As these particles move downward toward
lower z values, they bring their z-momenta with them. Therefore there is a downward (—2-directed)
flow of (p,). Since z-momentum is constantly being drawn away from z = d plane, this means that
there is a —x-directed wviscous drag on the upper plate. The viscous drag force per unit area is given by
Fyag/A = —nV/d, where V/d = 9V, /0z is the velocity gradient and 7 is the shear viscosity. In steady
state, the applied force balances the drag force, i.e. '+ F drag = 0. Clearly in the steady state the net
momentum density of the fluid does not change, and is given by % pV &, where p is the fluid mass density.
The momentum per unit time injected into the fluid by the upper plate at z = d is then extracted by the
lower plate at z = 0. The momentum flux density 11, = n (p, v, ) is the drag force on the upper surface

per unit area: I, = —n aav’”. The units of viscosity are [n] = M/LT.

z

We now provide some formal definitions of viscosity. As we shall see presently, there is in fact a second
type of viscosity, called second viscosity or bulk viscosity, which is measurable although not by the type
of experiment depicted in fig. 8.4.

The momentum flux tensor II, 5 =n (D vg ) is defined to be the current of momentum component p,, in
the direction of increasing x - For a gas in motion with average velocity V, we have

M,z =nm((V, + v;)(VB + v’ﬁ) )
=nmV, Vs +nm (v,vjs) (8.104)
:anaVB—I—%nm(vﬂ)éaﬁ :pVaVB +p50ﬁﬁ 5

where v’ is the particle velocity in a frame moving with velocity V, and where we have invoked the ideal
gas law p = nkyT. The mass density is p = nm.

When V is spatially varying,
Hog=poapg+pVoVs—0ap (8.105)
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where Onp I8 the wviscosity stress tensor. Any symmetric tensor, such as 04, Can be decomposed into a
sum of (i) a traceless component, and (ii) a component proportional to the identity matrix. Since Oup
should be, to first order, linear in the spatial derivatives of the components of the velocity field V', there
is a unique two-parameter decomposition:

v
Gap = (av + 2 —%V-V6a6> +(V- Vg
Oxg ~ Ozg (8.106)

=2 (Qus ~ 5T (Q) o) +C Tr(Q) b

The coefficient of the traceless component is 7, known as the shear viscosity. The coefficient of the
component proportional to the identity is ¢, known as the bulk viscosity. The full stress tensor Oup
contains a contribution from the pressure:

The differential force dF, that a fluid exerts on on a surface element n dA is
dF, = —o,3ngdA (8.108)

where we are using the Einstein summation convention and summing over the repeated index 5. We will
now compute the shear viscosity 7 using the Boltzmann equation in the relaxation time approximation.

Appealing again to eqn. 8.84, with F' =0 and h = ¢, T, we find

5f = —— 0, + %l vr_ v.v o (8.109)
= k;BT m'Ua'UB ap T v Cv/k . .
We assume VI = V-V =0, and we compute the momentum flux:
= n/d D PV, Of
nm T
= kBT Qaﬁ < Vg U, Vg Uﬁ > (8110)
nTt 3V aV 2 2 8‘/ aV
— . — k T 4 T
kBT<82 ax><m”~f mv) = —nrky <8x+82>
Thus, if V, = V,(z), we have
ov,
I, = —ntk,T 5 (8.111)
from which we read off the viscosity,
n=nk,TT=gnmlv . (8.112)

Note that 7(T) o< T2,

How well do these predictions hold up? In fig. 8.5, we plot data for the thermal conductivity of argon
and the shear viscosity of helium. Both show a clear sublinear behavior as a function of temperature, but
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Figure 8.5: Left: thermal conductivity (A in figure) of Ar between T'= 800K and 7' = 2600 K. The best
fit to a single power law A\ = aT? results in b = 0.651. Source: G. S. Springer and E. W. Wingeier, J.
Chem Phys. 59, 1747 (1972). Right: log-log plot of shear viscosity (u in figure) of He between T ~ 15 K
and T ~ 1000K. The red line has slope % The slope of the data is approximately 0.633. Source: J.
Kestin and W. Leidenfrost, Physica 25, 537 (1959).

the slope dInk/dInT is approximately 0.65 and dlnn/dInT is approximately 0.63. Clearly the simple
model is not even getting the functional dependence on T right, let alone its coefficient. Still, our crude
theory is at least qualitatively correct.

Why do both k(T") as well as n(T) decrease at low temperatures? The reason is that the heat current
which flows in response to VT as well as the momentum current which flows in response to 9V, /0z
are due to the presence of collisions, which result in momentum and energy transfer between particles.
This is true even when total energy and momentum are conserved, which they are not in the relaxation
time approximation. Intuitively, we might think that the viscosity should increase as the temperature
is lowered, since common experience tells us that fluids ‘gum up’ as they get colder — think of honey
as an extreme example. But of course honey is nothing like an ideal gas, and the physics behind the
crystallization or glass transition which occurs in real fluids when they get sufficiently cold is completely
absent from our approach. In our calculation, viscosity results from collisions, and with no collisions
there is no momentum transfer and hence no viscosity. If, for example, the gas particles were to simply
pass through each other, as though they were ghosts, then there would be no opposition to maintaining
an arbitrary velocity gradient.

8.5.5 Oscillating external force

() = Fe ™! is applied. For a system of charged
particles, this force would arise from an external electric field F, , = qFE e~ where ¢ is the charge of
each particle. We'll assume V7' = 0. The Boltzmann equation is then written

Suppose a uniform oscillating external force F;

Of P Of oo OF _ F—f°
E‘FE §+F€ ap— - . (8.113)
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We again write f = fO + &f, and we assume Jf is spatially constant. Thus,

08 | o i, O Of
o FFe o =—— (8.114)

If we assume &f (t) = &f (w) e~ then the above differential equation is converted to an algebraic equation,
with solution

Te—zwt af(]
of (t) = F - . 8.115
f(2) 11— iwr O ( )
We now compute the particle current:
Jalrt) = [dp v
T e—iwt F
T 1—iwr Ky T (P) va g (8.116)
Te Wt nF, nr F, et
= d P 2_ 2 lam
1 —iwr 3k:T (v)v m 11— iwT
If the particles are electrons, with charge ¢ = —e, then the electrical current is (—e) times the particle

current. We then obtain

2 —iwt
ne‘tr FE_e .
gl () = — 10‘_ — =0,5W) Ege wt (8.117)

where

nezr 1

OaB (w) =
is the frequency-dependent electrical conductivity tensor. Of course for fermions such as electrons, we
should be using the Fermi distribution in place of the Maxwell-Boltzmann distribution for f°(p). This
affects the relation between n and p only, and the final result for the conductivity tensor Jaﬁ(w) is
unchanged.

(8.118)

m 1 —dwr P

8.5.6 Quick and Dirty Treatment of Transport

Suppose we have some averaged intensive quantity ¢ which is spatially dependent through T'(r) or u(r)
or V (r). For simplicity we will write ¢ = ¢(z). We wish to compute the current of ¢ across some surface
whose equation is dz = 0. If the mean free path is £, then the value of ¢ for particles crossing this surface
in the +2 direction is ¢(z — £ cosf), where € is the angle the particle’s velocity makes with respect to
Z, i.e. cos = v, /v. We perform the same analysis for particles moving in the —2 direction, for which
¢ = ¢(z+ Lcosh). The current of ¢ through this surface is then

Jo = nﬁ/dgv P(v)v, ¢(z — Lcosh) + nﬁ/dgv P(v)v, ¢(z + L cosb)

v,>0 v,<0 (8119)

¢ 99 .

02
— —n€ P('u) = = —gnvﬁ 92 ,
v
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where U = 4/ % is the average particle speed. If the z-dependence of ¢ comes through the dependence
of ¢ on the local temperature 7', then we have

0¢

. 1, _
=—zno—=VIT=-KVT 8.120

where 96

1 9=
is the transport coefficient. If ¢ = (g), then g—‘b = ¢p, where ¢, is the heat capacity per particle at constant
pressure. We then find j, = —x VT with thermal conductivity

k=gnlbc, . (8.122)

Our Boltzmann equation calculation yielded the same result, but with a prefactor of ¢ instead of %

We can make a similar argument for the viscosity. In this case ¢ = (p,) is spatially varying through its
dependence on the flow velocity V' (r). Clearly 0¢/0V, = m, hence

oV,
0z
from which we identify the viscosity, n = %nm%. Once again, this agrees in its functional dependences

with the Boltzmann equation calculation in the relaxation time approximation. Only the coefficients
differ. The ratio of the coefficients is Kqpc/Kppr = 3% = 0.849 in both cases®.

gy =1, = —gnmlv (8.123)

8.5.7 Thermal diffusivity, kinematic viscosity, and Prandtl number

Suppose, under conditions of constant pressure, we add heat ¢ per unit volume to an ideal gas. We
know from thermodynamics that its temperature will then increase by an amount AT = g/nc,. If a heat
current j, flows, then the continuity equation for energy flow requires

oT .
In a system where there is no net particle current, the heat current j, is the same as the energy current
Je, and since j, = —x VT, we obtain a diffusion equation for temperature,
oT K
— = VT . (8.125)
ot nc,

The combination a = k/nc, is known as the thermal diffusivity. Our Boltzmann equation calculation
in the relaxation time approximation yielded the result k = nk,T'rc,/m. Thus, we find a = k,T'7/m

via this method. Note that the dimensions of a are the same as for any diffusion constant D, namely
[a] = L?/T.

Another quantity with dimensions of L?/T is the kinematic viscosity, v = 1n/p, where p = nm is the mass
density. We found 1 = nk,T'7 from the relaxation time approximation calculation, hence v = k,TT/m.
The ratio v/a, called the Prandtl number, Pr = nc,/mk, is dimensionless. According to our calculations,
Pr = 1. According to table 8.1, most monatomic gases have Pr ~ %

SHere we abbreviate QDC for ‘quick and dirty calculation’ and BRT for ‘Boltzmann equation in the relazation time
approximation’.
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| Gas | n (uPa-s) | k mW/m-K) [ ¢, /ky | Pr |

He 19.5 149 2.50 | 0.682
Ar 22.3 17.4 2.50 | 0.666
Xe 22.7 5.46 2.50 | 0.659
H, 8.67 179 3.47 | 0.693
Ny 17.6 25.5 3.53 | 0.721
O, 20.3 26.0 3.50 | 0.711
CH, 11.2 33.5 429 | 0.74
CO, 14.8 18.1 4.47 | 0.71
NH;, 10.1 24.6 4.50 | 0.90

Table 8.1: Viscosities, thermal conductivities, and Prandtl numbers for some common gases at 7' = 293 K
and p = latm. (Source: Table 1.1 of Smith and Jensen, with data for triatomic gases added.)

8.6 Diffusion and the Lorentz model

8.6.1 Failure of the relaxation time approximation

As we remarked above, the relaxation time approximation fails to conserve any of the collisional invariants.
It is therefore unsuitable for describing hydrodynamic phenomena such as diffusion. To see this, let
f(r,v,t) be the distribution function, here written in terms of position, velocity, and time rather than
position, momentum, and time as before’. In the absence of external forces, the Boltzmann equation in
the relaxation time approximation is

of of  f-=/°

E—i—v-a = . . (8.126)
The density of particles in velocity space is given by

(v, t) = /d3r f(r,v,t) . (8.127)

In equilibrium, this is the Maxwell distribution times the total number of particles: ny(v) = NPy (v).
The number of particles as a function of time, N(t) = [d% fi(v,t), should be a constant.

Integrating the Boltzmann equation one has

on  i—y
e =l (8.128)
Thus, with én(v,t) = n(v,t) — ny(v), we have
Si(v,t) = 6a(v,0) e V™ . (8.129)

Thus, n(v,t) decays exponentially to zero with time constant 7, from which it follows that the total
particle number exponentially relaxes to N,. This is physically incorrect; local density perturbations
can’t just vanish. Rather, they diffuse.

"The difference is trivial, since P = mv.
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8.6.2 Modified Boltzmann equation and its solution

To remedy this unphysical aspect, consider the modified Boltzmann equation,

9 of 1 dé 1
a{+ ai ?[_H/ﬁf]z?w_l)f’ (5130

where P is a projector onto a space of isotropic functions of v: PF = [ % F(v) for any function F(v).
Note that P F is a function of the speed v = |v|. For this modified equation, known as the Lorentz model,
one finds 9;n = 0.

The model in eqn. 8.130 is known as the Lorentz model®. To solve it, we consider the Laplace transform,

f(k,v,s) /dteSt/d —ikT fpwt) . (8.131)

Taking the Laplace transform of eqn. 8.130, we find
(s+iv-k+71") fk,v,8) =77 P f(k,v,s) + f(k,v,t=0) . (8.132)

We now solve for Pf(k,'v, s):

5 71 5 f(k,v,t =0)
k = Pflk L 1
f( ,'U,S) S+Z’Uk+7—_1 f( ’v’8)+s+iv‘k+7—_1 ) (8 33)
which entails
A do 1 A dvo  f(k,v,t=0)
Pf(k =|[/— Pf(k — — 134
Sk, v, s) [/477 s—l—z’v-k—l—T—l] flk,v, ) + Ar s+ iv-k+ 711 (8.134)
Now we have
1
do
/47r s+1v- k:—l—T /dws—l—zvkw—iﬂ-
-1 (8.135)
= itam_l okT
vk 1+7s
Thus,
1 f vkr \| [do f(k,v,t=0)
Pf(k =|1—-—tan ' —— — - 1
f(k,v, s) [ vkt 0 <1+7‘s> At s+iv-k+ 711 (8.136)
We now have the solution to Lorentz’s modified Boltzmann equation:
-1
A -1 k dv k,v,t=
f(k,’lJ,S): . Tk -1 _Tta‘n_l<1v : > /4_U f(.7v7k Ozl
s+iv-k+T1 +7s Ts+iv-k+T (8.137)

f(k,v,t=0)
s+iv-k+711

8See the excellent discussion in the book by Krapivsky, Redner, and Ben-Naim, cited in §8.1.
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Let us assume an initial distribution which is perfectly localized in both r and wv:
flr,v,t=0)=0(v—1v,) . (8.138)
For these initial conditions, we find

dv f(k,v,t=0) _ 1 5(v = vp)
i s+w-k+71 s+ivyg-k+71 0 4wl

(8.139)

We further have that

1 _1( vkt 172,22
1—%‘5&11 <1+Ts>zs7'+§kv7' +... 0, (8.140)
and therefore
. 1 71 1 d(v — )
f(k,v,s) = ~ S - - 1,212 ’ 2
s+iv-k+T1 s+ivg-k+T1 s+ gugksT + ... 4o

50— vg) (8.141)

s+ivy-k+771

We are interested in the long time limit ¢ > 7 for f(r,v,t). This is dominated by s ~ t~!, and we assume
that 77! is dominant over s and iv - k. We then have

5 1 d(v —vy)
k,v,s) ~ : 0 8.142
/ ) s+ vkt dmug ( )
Performing the inverse Laplace and Fourier transforms, we obtain
—3/2 —r2/4Dt 6(v —vp)
flr,v,t) = (47 Dt) e e, (8.143)

2
4mug

where the diffusion constant is D = %ng. The units are [D] = L?/T. Integrating over velocities, we

have the density
n(r,t) = / d* f(r,v,t) = (drDt) 32 e ?/ADE (8.144)

Note that [d% n(r,t) =1 at all times. Total particle number is conserved!

8.7 Linearized Boltzmann Equation

8.7.1 Linearizing the collision integral

We now return to the classical Boltzmann equation and consider a more formal treatment of the collision
term in the linear approximation. We will assume time-reversal symmetry, in which case

@—{)mu:/d:”pl/dsp//d?’pi w(p’, Py p.p1) {f(p’)f(p’l)—f(p)f(pl)} . (8.145)
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The collision integral is nonlinear in the distribution f. We linearize by writing

f) =)+ PP)v®) (8.146)
where we assume 1(p) is small. We then have, to first order in v,
(%) =rwiviow) . (8.147)
coll

where the action of the linearized collision operator is given by
Ly = /d3p1 dgp’/d?’p’l W(p’,p’l |p.p1) fO(p1) {w(p’) +9(ph) — 9 (p) — ¢(p1)}
(8.148)
= [y [0 —wl 57 00 {06)+ viph) ~ o)~ vip)}

where we have invoked eqn. 8.54 to write the RHS in terms of the differential scattering cross section.
In deriving the above result, we have made use of the detailed balance relation,

o) ) = 20 1°01) (8.149)
We have also suppressed the r dependence in writing f(p), f°(p), and ¥ (p).

From eqn. 8.84, we then have the linearized equation

(L - —>1,z) Y, (8.150)

where, for point particles,

1 Je@)—¢T kg e(p)
Y = kBT{ T v VT +mu,vg Qs — e VV-F v, . (8.151)
Eqgn. 8.150 is an inhomogeneous linear equation, which can be solved by inverting the operator L— %.

8.7.2 Linear algebraic properties of L

Although L is an integral operator, it shares many properties with other linear operators with which you
are familiar, such as matrices and differential operators. We can define an inner product’,

(y |9y) = /d3p (p) 1 (0) (D) (8.152)

Note that this is not the usual Hilbert space inner product from quantum mechanics, since the factor
fO(p) is included in the metric. This is necessary in order that L be self-adjoint:

(P Lipy) = (L | 4n) (8.153)

9The requirements of an inner product (f|g) are symmetry, linearity, and non-negative definiteness.
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We can now define the spectrum of normalized eigenfunctions of L, which we write as ¢, (p). The
eigenfunctions satisfy the eigenvalue equation,

Lo, = -\, 0, (8.154)

and may be chosen to be orthonormal,

(| B0) = O (8.155)

Of course, in order to obtain the eigenfunctions ¢, we must have detailed knowledge of the function
w(p',py [P, p1)-

Recall that there are five collisional invariants, which are the particle number, the three components of
the total particle momentum, and the particle energy. To each collisional invariant, there is an associated
eigenfunction ¢,, with eigenvalue A\,, = 0. One can check that these normalized eigenfunctions are

on(P) = —= (8.156)

Gy, (D) = —22 (8.157)

V/nmk, T
6.(p) = \/3% <% - g) . (8.15)

If there are no temperature, chemical potential, or bulk velocity gradients, and there are no external
forces, then Y = 0 and the only changes to the distribution are from collisions. The linearized Boltzmann
equation becomes

o

> =L (8.159)
We can therefore write the most general solution in the form
/
U(p,t) =Y Cponlp)e ™", (8.160)
n

where the prime on the sum reminds us that collisional invariants are to be excluded. All the eigenvalues
A, aside from the five zero eigenvalues for the collisional invariants, must be positive. Any negative
eigenvalue would cause ¥(p,t) to increase without bound, and an initial nonequilibrium distribution
would not relax to the equilibrium f°(p), which we regard as unphysical. Henceforth we will drop the
prime on the sum but remember that C,, = 0 for the five collisional invariants.

Recall also the particle, energy, and thermal (heat) currents,
i= [ )= [ 1 m)vite) = (v]0)
o= [dve o) = [d Pw)vvp) = (ve]0) (8.161)
o= [0 =) fp) = [db 1)~ ) 0e) = (v 1) |0)

Note jq :jz-: - MJ
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8.7.3 Steady state solution to the linearized Boltzmann equation

Under steady state conditions, there is no time dependence, and the linearized Boltzmann equation takes
the form

Ly=Y . (8.162)

We may expand 1 in the eigenfunctions ¢,, and write ¢ = > C, ¢,,. Applying L and taking the inner

product with qﬁj, we have

1

C’j:—x(gbﬂY) . (8.163)
J

Thus, the formal solution to the linearized Boltzmann equation is
1
w(p) == 3 (oalY) dulp) - (8.164)

This solution is applicable provided | Y ) is orthogonal to the five collisional invariants.

Thermal conductivity

For the thermal conductivity, we take VT = 0,T &, and

1 0T

y——_ 2.
kpT? 0z % 7

(8.165)

where X, = (¢ —c,T) v,. Under the conditions of no particle flow (j = 0), we have j, = —x 9, T &. Then
we have

oT
X =—K— . 1
(X l9) = —r o (8.166)
Viscosity
For the viscosity, we take
m JdV,
Y = . X 8.167
kT oy ~ "7 ( )

with X, = v, v,. We then

o (8.168)

Thus,

z (8.169)
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8.7.4 Variational approach

Following the treatment in chapter 1 of Smith and Jensen, define H = —L. We have that H is a positive
semidefinite operator, whose only zero eigenvalues correspond to the collisional invariants. We then have
the Schwarz inequality,

(I H[0) (6| H|$)> (¢ H|v)" | (8.170)

for any two Hilbert space vectors |¢) and |¢). Consider now the above calculation of the thermal

conductivity. We have
- 1 T

Hq/;:—ma—x (8.171)
B
and therefore , )
kBT 2 1 ( ¢ | X >
R (A [Y) > AL (8.172)
(0T'/0x)? ksT? (¢ H | o)
Similarly, for the viscosity, we have
. m OV,
Hy = — X, |, 8.173
kT oy " ( )
from which we derive )
. 2 X
T iy s 7 (91%) (8.174)

U:(avx/ay)g <¢| |71Z)>—k,BT (gb|f{|¢>

In order to get a good lower bound, we want ¢ in each case to have a good overlap with X, ,. One
approach then is to take ¢ = X, . which guarantees that the overlap will be finite (and not zero due to
symmetry, for example). We illustrate this method with the viscosity calculation. We have

m? <vay ‘ Uz Uy >2

n= ~ (8.175)
kBT (vay | H | Vg Uy >

Now the linearized collision operator L acts as

(01L10) = [abg®) o) [y [a2 55 10 = 01l o) {00 + 6(p0) — wl0) — 06D} - (8176)

Here the kinematics of the collision guarantee total energy and momentum conservation, so p’ and p} are
determined as in eqn. 8.55.

We have df2 = sin y dx dyp, where Y is the scattering angle depicted in fig. 8.6 and ¢ is the azimuthal
angle of the scattering. The differential scattering cross section is obtained by elementary mechanics and
is known to be

0o d(b?/2)
ZZ 1
on ‘ dsiny (8.177)
where b is the impact parameter. The scattering angle is
x(b,u) —7T—2/d7‘ , (8.178)

4
b27"2 2U~(7‘)27“
mu
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b
b+ db

Figure 8.6: Scattering in the CM frame. O is the force center and P is the point of periapsis. The impact
parameter is b, and Y is the scattering angle. ¢¢ is the angle through which the relative coordinate moves

between periapsis and infinity.

where m = 1

distance of closest approach, which occurs when 7 = 0, i.e.

2 e
mu” = Gy +U(rp)

N[

where ¢ = mub is the relative coordinate angular momentum.

We work in center-of-mass coordinates, so the velocities are

v=V+iu v =
v=V—3lu v =
with |u| = |u/| and @ - @’ = cos x. Then if ¥(p) = v,v,, we have

A®) = p(p) + ¥(py) — ¥(p) — v(P}) = 3 (u,u,

We may write

u :u(sinxcosgoél +sinxsin<,0é2+cosxé3> ,

where é; = @. With this parameterization, we have

2w

/dcp T(ugqug — ubulp) = —msin®y (u? 05 — Buug)
0

Note that we have used here the relation

€10 €18 t €2q €28 F €34 €33 = Oy

which holds since the LHS is a projector 35, [&;)(é,].

V +
VvV —

N[ N[—=

Y

u/
u/

!
—Uu,u

zm is the reduced mass, and r, is the relative coordinate separation at periapsis, i.e. the

(8.179)

(8.180)
(8.181)

(8.182)

(8.183)

(8.184)

(8.185)
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It is convenient to define the following integral:
= /db b sinx(b, u)
0

Since the Jacobian

(Ov, 0vy)
‘d Sanie

we have

~ 9 m
<vay‘L’vay> =n <27Tk‘BT

This yields

3
) /d3V/d3u e~V /T gmmu [4kgT 3TWUIuy - R(u) - v,v,

(v, | ﬁ\vxvy> = I—0n2 (v’ R(u))

<F /duu e~ /4k TF //duu e~ /4kT

It is easy to compute the term in the numerator of eqn. 8.175:

3/2 2
_ m 3, —mw?j2kgT 2 2 _ [ KkeT
(v, |v,0,) _n<27rkBT> /d v?/ vy Uy, n( ; >

Putting it all together, we find
40 (k,T)3 /<u5 R(w)

where

Tm?
The computation for « is a bit more tedious. One has ¢ (p) = (¢ — ¢,T) v, in which case
A@W) = 3m|(V - w)u, — (V) uf]

Ultimately, one obtains the lower bound
o 150k, (k,T)3 5
—W 3 (v’ R(u))
Thus, independent of the potential, this variational calculation yields a Prandtl number of

bV MG
a mk 3

which is very close to what is observed in dilute monatomic gases (see Tab. 8.1).
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(8.186)

(8.187)

(8.188)

(8.189)

(8.190)

(8.191)

(8.192)

(8.193)

(8.194)

(8.195)

While the variational expressions for n and k are complicated functions of the potential, for hard sphere
scattering the calculation is simple, because b = dsin ¢y = d cos(%x), where d is the hard sphere diameter.
Thus, the impact parameter b is independent of the relative speed u, and one finds R(u) = %d?’ . Then

u _ 3u5 _% kBT5/22
(08 R() = b (u) = 2 ()

(8.196)
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and one finds

1/2 1/2
5 (mk,T) 75 kg (k;BT> (8.197)

> — > —
"= 6 /rd? N YN 2

m
8.8 The Equations of Hydrodynamics

We now derive the equations governing fluid flow. The equations of mass and momentum balance are

%Jrv.(pv):o (8.198)
a(pV,) 8Haﬁ
@ = 1
D + 9P 0 , (8.199)
where i
Top
aVoe 8‘/6 2
HaB:pVaVB+p6aﬁ_ n %—F%—gV'V(saﬁ +CVV50¢B . (8200)
B «
Substituting the continuity equation into the momentum balance equation, one arrives at
pg—kp(V-V)V:—Vp—i-nV V+(+3nV(V-V) (8.201)

which, together with continuity, are known as the Navier-Stokes equations. These equations are supple-
mented by an equation describing the conservation of energy,
Os %

TO_T +T'V-(sV)=0d,4 a—azg + V- (kVT) . (8.202)
Note that the LHS of eqn. 8.201 is p DV /Dt, where D /Dt is the convective derivative. Multiplying by
a differential volume, this gives the mass times the acceleration of a differential local fluid element. The
RHS, multiplied by the same differential volume, gives the differential force on this fluid element in a
frame instantaneously moving with constant velocity V. Thus, this is Newton’s Second Law for the fluid.

8.9 Nonequilibrium Quantum Transport

8.9.1 Boltzmann equation for quantum systems

Almost everything we have derived thus far can be applied, mutatis mutandis, to quantum systems.
The main difference is that the distribution f° corresponding to local equilibrium is no longer of the
Maxwell-Boltzmann form, but rather of the Bose-Einstein or Fermi-Dirac form,

-1
fOr k,t) = {exp <%> F 1} , (8.203)
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where the top sign applies to bosons and the bottom sign to fermions. Here we shift to the more common
notation for quantum systems in which we write the distribution in terms of the wavevector k = p/h
rather than the momentum p. The quantum distributions satisfy detailed balance with respect to the
quantum collision integral

of %, [ d% [ d% ! g1 : /
<E>Con - /(2w)13/(2ﬂ)3/(277)13 w {f AAENHAEfH) - FHAEF) Q£ fl)} (8.204)

where w = w(k,ky | K, K}), [ = f(k), fy = f(ky), [/ = f(K), and f{ = f(k}), and where we have
assumed time-reversal and parity symmetry. Detailed balance requires

f fi f f1

. p— . .2
T£f 1xf 1xf 1xf (8.205)
where f = f9 is the equilibrium distribution. One can check that
1
f=F0— = S _ s (8.206)

ECEDES 1+f

which is the Boltzmann distribution, which we have already shown to satisfy detailed balance. For the
streaming term, we have

af° <€—,u>
df’ =k, T ——d
BT 0e kT

afo dp (e —p)dT  de
_. ol ) an 2
T 2 { T k1% R (8:207)
B af° (ou e—pun 0T Oe
from which we read off
oo (o e o)
or Oe | Or T Or (8.208)
ot _ . of°
ok e

The most important application is to the theory of electron transport in metals and semiconductors,
in which case fY is the Fermi distribution. In this case, the quantum collision integral also receives a
contribution from one-body scattering in the presence of an external potential U(r), which is given by
Fermi’s Golden Rule:

<—8J;(tk)) = 2% STE UK (F(E) = f(K)) 6(e(k) — (k)
coll KO
_ 2m &k -
TV J (2)
Q

(8.209)

The wavevectors are now restricted to the first Brillouin zone, and the dispersion ¢(k) is no longer the
ballistic form ¢ = h?k?/2m but rather the dispersion for electrons in a particular energy band (typically
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the valence band) of a solid'’. Note that f = f° satisfies detailed balance with respect to one-body
collisions as well'!.

In the presence of a weak electric field E and a (not necessarily weak) magnetic field B, we have, within
the relaxation time approximation, f = f9 + §f with

€ wxn. 2
ot hel ok

v- [eﬁ—kg_MVT]a—‘)w——é—f

= 8.210
T Oe T ( )
where £ = —V (¢ — p/e) = E — e~ 'V is the gradient of the ‘electrochemical potential’ ¢ — e~ !p. In
deriving the above equation, we have worked to lowest order in small quantities. This entails dropping
terms like v - %—? (higher order in spatial derivatives) and E - %—‘Zp (both E and d6f are assumed small).
Typically 7 is energy-dependent, i.e. T = T(E(k))

We can use eqn. 8.210 to compute the electrical current j and the thermal current j,,

3
Jj= —26/% v of (8.211)
Q
3
jq:2/% (e—p)vdof . (8.212)
Q

Here the factor of 2 is from spin degeneracy of the electrons (we neglect Zeeman splitting).

In the presence of a time-independent temperature gradient and electric field, linearized Boltzmann
equation in the relaxation time approximation has the solution

§f = —r(e)v - <e5+ ‘E_T“ VT) (—%—"j) . (8.213)

We now consider both the electrical current'? j as well as the thermal current density j,. One readily
obtains

. d%
]:—QG/W U5fEL118—L12VT (8.214)
Q2
. 43 B
Jq =2 (271')3 (E — /L) ’U(Sf = L21 E— L22 vT (8.215)
Q2

10We neglect interband scattering here, which can be important in practical applications, but which is beyond the scope
of these notes.

"The transition rate from |k’) to |k) is proportional to the matrix element and to the product f'(1 — f). The reverse
process is proportional to f(1—f’). Subtracting these factors, one obtains f'— f, and therefore the nonlinear terms felicitously
cancel in eqn. 8.209.

2In this section we use J to denote electrical current, rather than particle number current as before.
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where the transport coefficients L' etc. are matrices:

2 0 a B
aﬁ_ e af v* v
LY =118 = 3h /daT G <—ai> /dS | 1|’ (8.217)
vB
ap _ 4 . 2 _% v
L5y = 47r3hT /d€7’(€) (e < e >/dS . (8.218)
If we define the hierarchy of integral expressions
1 af° v P
=" [d — )" (== [dS. —— 8.219
5% = o [er@ e - (<L) fas (5219
then we may write
O[ o (6% o 1 Q
116 =€ ~7 ’ L216 —TL12 =€ 16 ’ L226 -7 25 : (8.220)

The linear relations in eqn. (8.215) may be recast in the following form:

E=pj+QVT

) ] (8.221)
Jg=NJ3—sVT |
where the matrices p, @, M, and x are given by
p=Ly @=Ly Ly (8.222)
M= Ly Ly} ko= Ly — Loy Ly Ly (8.223)
or, in terms of the 7,
1 1
=5 T5 Q= —— Jo - Ty (8.224)
_ 1 -1 1 -1
r]——gjlj(] ’{—T<j2_j1j0 j1> ) (8225)

These equations describe a wealth of transport phenomena:

e Electrical resistance (VT = B = 0)
An electrical current j will generate an electric field €= pj, where p is the electrical resistivity.

e Peltier effect (VT = B =0)
An electrical current j will generate an heat current j, = g, where M is the Peltier coefficient.

e Thermal conduction (3 = B =0)
A temperature gradient VT gives rise to a heat current j, = —xVT, where x is the thermal
conductivity.
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T=T

T=T

V = (QBfQA)(T1_To)

Figure 8.7: A thermocouple is a junction formed of two dissimilar metals. With no electrical current
passing, an electric field is generated in the presence of a temperature gradient, resulting in a voltage
V =Va — V.

e Seebeck effect (j = B =0)
A temperature gradient VT gives rise to an electric field € = QVT, where @ is the Seebeck
coefficient.

One practical way to measure the thermopower is to form a junction between two dissimilar metals, A
and B. The junction is held at temperature T7 and the other ends of the metals are held at temperature
Ty. One then measures a voltage difference between the free ends of the metals — this is known as the
Seebeck effect. Integrating the electric field from the free end of A to the free end of B gives

B

Vi Vo= - / E-dl = (Qp — Qa)(T1 ~To) . (8.226)
A

What one measures here is really the difference in thermopowers of the two metals. For an absolute
measurement of @, replace B by a superconductor (@ = 0 for a superconductor). A device which
converts a temperature gradient into an emf is known as a thermocouple.

The Peltier effect has practical applications in refrigeration technology. Suppose an electrical current I
is passed through a junction between two dissimilar metals, A and B. Due to the difference in Peltier
coefficients, there will be a net heat current into the junction of W = (Ma — Mp) I. Note that this is
proportional to I, rather than the familiar I? result from Joule heating. The sign of W depends on the
direction of the current. If a second junction is added, to make an ABA configuration, then heat absorbed
at the first junction will be liberated at the second. '3

BT create a refrigerator, stick the cold junction inside a thermally insulated box and the hot junction outside the box.
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e s ot s 1 5 . s s s e e g ', ) s e -, .

Iq = (HB-*HA){
Figure 8.8: A sketch of a Peltier effect refrigerator. An electrical current I is passed through a junction

between two dissimilar metals. If the dotted line represents the boundary of a thermally well-insulated
body, then the body cools when Mg > My, in order to maintain a heat current balance at the junction.

8.9.2 The Heat Equation

We begin with the continuity equations for charge density p and energy density e:

dp

5 TV =0 (8.227)
Oe . .

where FE is the electric field'*. Now we invoke local thermodynamic equilibrium and write

0 _ 0= dn 0 OT
ot  On Ot  OT Ot

w op oT
- _£=F - 8.229
e Ot ey ot ( )
where n is the electron number density (n = —p/e) and ¢, is the specific heat. We may now write
LT 0 by
Vot ot e ot
:j-E—V~j€—gV-j
=j-E-V-j, . (8.230)

' Note that it is F - J and not £ J which is the source term in the energy continuity equation.
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Invoking j, = Mj —kV T, we see that if there is no electrical current (j = 0), we obtain the heat equation

or or

CV a = I{aﬁ W (8231)

This results in a time scale 7, for temperature diffusion 7, = CL2CV /k, where L is a typical length scale
and C is a numerical constant. For a cube of size L subjected to a sudden external temperature change,
L is the side length and C = 1/372 (solve by separation of variables).

8.9.3 Calculation of Transport Coefficients

We will henceforth assume that sufficient crystalline symmetry exists (e.g. cubic symmetry) to render
all the transport coefficients multiples of the identity matrix. Under such conditions, we may write

T = T Sap with
1 of°
Tn = 557 /da T(e) (e — )" (—8—];) /dS6 lv| . (8.232)

The low-temperature behavior is extracted using the Sommerfeld expansion,

- (8.233)

z E_Zda H(e) (_88_fo> = 1D csc(nD) H(e) .

— H(p) + %2(kBT)2 H' (1) + ... (8.234)

where D = kT % is a dimensionless differential operator.'®

Let us now perform some explicit calculations in the case of a parabolic band with an energy-independent
scattering time 7. In this case, one readily finds

T, = % 5§3/2 rDescnDe®? (e — p)" ey (8.235)
where o, = ne?r/m*. Note that
1 (2m*ep
n— @< . F> (8.236)
and that e and p are related by
e = 1D esc D/ (8.237)
e=p

S Remember that physically the fixed quantities are temperature and total carrier number density (or charge density, in
the case of electron and hole bands), and not temperature and chemical potential. An equation of state relating n, u, and
T is then inverted to obtain p(n,T), so that all results ultimately may be expressed in terms of n and T.
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Thus,
99
j():g
o w2 (k,T)?
512—377( o1 (8.238)
e p
2
oy 9
= — —(k,T
To= B kTP .

1

)

from which we obtain the low-T" results p = o

2 k2T 72 nt
_ —_—— K= —
2 eep 3 m*

k2T (8.239)
and of course M = T'Q. The predicted universal ratio

= — (kg/e)? =245 x 1078 V?K™2 | (8.240)

Ko w2
ol 3
is known as the Wiedemann-Franz law. Note also that our result for the thermopower is unambiguously

negative. In actuality, several nearly free electron metals have positive low-temperature thermopowers
(Cs and Li, for example). What went wrong? We have neglected electron-phonon scattering!

8.9.4 Onsager Relations

Transport phenomena are described in general by a set of linear relations,
Ji =Ly Fy, (8.241)

where the {F}} are generalized forces and the {J;} are generalized currents. Moreover, to each force F;
corresponds a unique conjugate current J;, such that the rate of internal entropy production is

S:Z,-:FiJi — Fizg—i (8.242)
The Onsager relations (also known as Onsager reciprocity) state that
Lix(B) =nimk Lei(—B) (8.243)
where 7; describes the parity of J; under time reversal:
Jr=mdi (8.244)

where JZ-T is the time reverse of J,. To justify the Onsager relations requires a microscopic description of
our nonequilibrium system.

The Onsager relations have some remarkable consequences. For example, they require, for B = 0, that the
thermal conductivity tensor x; ; of any crystal must be symmetric, independent of the crystal structure.
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In general,this result does not follow from considerations of crystalline symmetry. It also requires that for
every ‘off-diagonal’ transport phenomenon, e.g. the Seebeck effect, there exists a distinct corresponding
phenomenon, e.g. the Peltier effect.

For the transport coefficients studied, Onsager reciprocity means that in the presence of an external
magnetic field,

us(B) = 3 (~B) (8.215)
Kop(B) = kg, (—B) (8.246)
Mas(B) =T Qg,(—B) . (8.247)

Let’s consider an isotropic system in a weak magnetic field, and expand the transport coefficients to first
order in B:

Pop(B) = pd,5+veas, BY (8.248)
Kopg(B) =£K6,5 + @eqp, B (8.249)
Qus(B) = Q0,5+ Ceup, B (8.250)
Mo5(B) =Md,5+0€ (8.251)

Onsager reciprocity requires M =T and § =T (. We can now write

E=pj+vixB+QVIT+(VITxB (8.252)
j,=Mj+0jxB-rVT-wVTxB . (8.253)

There are several new phenomena lurking:

o Hall effect (g—x = 8y =jy, =0)
An electrical current j = j, € and a field B = B, 2 yield an electric field £ The Hall coefficient is
Ry =¢&y/jz B: = —v.

e Ettingshausen effect (g—g = jy = jqy = 0)

An electrical current j = j, & and a field B = B, 2 yield a temperature gradient %—Z. The Etting-
shausen coefficient is P = %—Z/jx B. = —0/k.

o Nernst effect (j. = jy = %Z =0)
A temperature gradlent VT = a—T and a field B = B, 2 yield an electric field £ The Nernst

coefficient is A = &, /2 W B, = —C.

e Righi-Leduc effect (j, = jy, = Ey =0)
A temperature gradient V1T = ac and afield B = B, 2 yield an orthogonal temperature gradient
%Z;. The Righi-Leduc coefﬁcuent is L= 8y / IR, = /Q.
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8.10 Stochastic Processes

A stochastic process is one which is partially random, i.e. it is not wholly deterministic. Typically the
randomness is due to phenomena at the microscale, such as the effect of fluid molecules on a small particle,
such as a piece of dust in the air. The resulting motion (called Brownian motion in the case of particles
moving in a fluid) can be described only in a statistical sense. That is, the full motion of the system is
a functional of one or more independent random variables. The motion is then described by its averages
with respect to the various random distributions.

8.10.1 Langevin equation and Brownian motion

Consider a particle of mass M subjected to dissipative and random forcing. We’ll examine this system
in one dimension to gain an understanding of the essential physics. We write

p+yp=F+n(t) . (8.254)

Here, 7 is the damping rate due to friction, F' is a constant external force, and 7(t) is a stochastic random
force. This equation, known as the Langevin equation, describes a ballistic particle being buffeted by
random forcing events. Think of a particle of dust as it moves in the atmosphere; F' would then represent
the external force due to gravity and 7n(t) the random forcing due to interaction with the air molecules.
For a sphere of radius a moving with velocity v in a fluid, the Stokes drag is given by deg = —6mnav,
where a is the radius. Thus,

_ bma

TStokes — M ’ (8255)

where M is the mass of the particle. It is illustrative to compute v in some setting. Consider a micron
sized droplet (a = 10~% cm) of some liquid of density p ~ 1.0g/cm?® moving in air at 7" = 20° C. The
viscosity of air is 7 = 1.8 x 107*g/cm - s at this temperature'®. If the droplet density is constant, then
v = 9n/2pa? = 8.1 x 10* s71, hence the time scale for viscous relaxation of the particle is 7 = vy~ = 12 us.
We should stress that the viscous damping on the particle is of course due to the fluid molecules, in
some average ‘coarse-grained’ sense. The random component to the force n(t) would then represent the
fluctuations with respect to this average.

We can easily integrate this equation:

d
S (pet) = F et (b e
F ¢ (8.256)
p(t) =p0)e " +=(1—e") + /ds n(s) e’

! 0
Note that p(t) is indeed a functional of the random function 7(t). We can therefore only compute averages
in order to describe the motion of the system.

'$The cgs unit of viscosity is the Poise (P). 1P = 1g/cm-s.
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The first average we will compute is that of p itself. In so doing, we assume that 7(¢) has zero mean:
(n(t)) = 0. Then

F
{(p(t)) =p(0)e " + b (1—e) . (8.257)
On the time scale 41, the initial conditions p(0) are effectively forgotten, and asymptotically for ¢ > v~ *
we have (p(t)) — F/v, which is the terminal momentum.
Next, consider
t
2 5 5o
B0 = () + [dsy [ dsy @70 620 (o) n(s)) (8.258)
0

We now need to know the two-time correlator <’I’}(81) 7’}(82)>. We assume that the correlator is a function
only of the time difference As = s; — s,, so that the random force n(s) satisfies

(n(s)) =0 (8.259)

<77(31) 77(32)> =¢(s1 —s9) - (8.260)

The function ¢(s) is the autocorrelation function of the random force. A macroscopic object moving in

a fluid is constantly buffeted by fluid particles over its entire perimeter. These different fluid particles

are almost completely uncorrelated, hence ¢(s) is basically nonzero except on a very small time scale T

which is the time a single fluid particle spends interacting with the object. We can take Ty — 0 and
approximate

o(s)=To(s) . (8.261)
We shall determine the value of I" from equilibrium thermodynamic considerations below.

With this form for ¢(s), we can easily calculate the equal time momentum autocorrelation:

t

0 (8.262)
25 (12

Consider the case where ' = 0 and the limit ¢ > ~v~!. We demand that the object thermalize at
temperature 7. Thus, we impose the condition

P(t) 1
where M is the particle’s mass. This determines the value of I

We can now compute the general momentum autocorrelator:

/

(p(t)p(t")) — (p(t / / ds' 70 0 ((s) n(s")) (8.264)
0

MkBTe"Y‘t I (4 = 00, |t — /| finite)
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The full expressions for this and subsequent expressions, including subleading terms, are contained in an
appendix, §8.14.

Let’s now compute the position z(t). We find

z(t) = (z(t)) + %/ds/dsl n(sy)er1=9) (8.265)
0

where

(z(t)) = 2(0) + f—t 4L <v(0) - i) (1—e) . (8.266)

Note that for vt < 1 we have (z(t)) = z(0) +v(0)t + LM ~1Ft?> + O(t3), as is appropriate for ballistic
particles moving under the influence of a constant force. This long time limit of course agrees with our
earlier evaluation for the terminal velocity, v,, = (p(c0))/M = F/yM. We next compute the position
autocorrelation:

<:17(t):17(t/)> — <x(t)><:1:(t/)> = %/ds/ds’ 6_7(s+s,)/dsl/d8/1 e(s1+52) <’I’}(81)’I’}(82)>
0 0 0 0

= Zj;fmin(t,t’) +0(1)

In particular, the equal time autocorrelator is

(2%(t)) — <x(t)>2 = 2?‘?\?’5 =2Dt (8.267)

at long times, up to terms of order unity. Here, D = k,T/yM is the diffusion constant. For a liquid
droplet of radius @ = 1 ym moving in air at 7' = 293K, for which n = 1.8 x 1074 P, we have

D— kT (1.38 x 10719 erg/K) (293 K)

- = =119 x 107 "cm?/s . $.968
6mna 67 (1.8 x 1074 P) (10~* cm) x cm” /s ( )

This result presumes that the droplet is large enough compared to the intermolecular distance in the
fluid that one can adopt a continuum approach and use the Navier-Stokes equations, and then assuming
a laminar flow.

If we consider molecular diffusion, the situation is quite a bit different. As we shall derive below in §8.10.3,
the molecular diffusion constant is D = ¢?/27, where £ is the mean free path and 7 is the collision time.
As we found in eqn. 8.90, the mean free path ¢, collision time 7, number density n, and total scattering
cross section ¢ are related by ¢ = o7 = 1/v/2n0o, where v = /8k,T/7m is the average particle speed.
Approximating the particles as hard spheres, we have o = 4ma?, where a is the hard sphere radius. At
T =293K, and p = 1atm, we have n = p/k,T = 2.51 x 10! cm~3. Since air is predominantly composed
of N, molecules, we take a = 1.90 X 1078 cm and m = 28.0amu = 4.65 x 10723 g, which are appropriate
for N,. We find an average speed of o = 471m/s and a mean free path of £ = 6.21 x 107%cm. Thus,
D = %61’) = 0.146 cm?/s. Though much larger than the diffusion constant for large droplets, this is still
too small to explain common experiences. Suppose we set the characteristic distance scale at d = 10cm



476 CHAPTER 8. NONEQUILIBRIUM PHENOMENA

and we ask how much time a point source would take to diffuse out to this radius. The answer is
At = d?/2D = 343, which is between five and six minutes. Yet if someone in the next seat emits a foul
odor, your sense the offending emission in on the order of a second. What this tells us is that diffusion
isn’t the only transport process involved in these and like phenomena. More important are convection
currents which distribute the scent much more rapidly.

8.10.2 Langevin equation for a particle in a harmonic well

Consider next the equation
MX +yMX + Mw2X = Fy+n(t) , (8.269)

where F{ is a constant force. We write X = ;7% + = and measure x relative to the potential minimum,
0

yielding
1
ityitwie= LR (8.270)
At this point there are several ways to proceed.

Perhaps the most straightforward is by use of the Laplace transform. Recall:

2(v) = [dte " n(v) (8.271)

/

o(t) = /2‘1—; ) (8.272)
C

where the contour C proceeds from a — ioo to a + ico such that all poles of the integrand lie to the left
of C. We then have

o (o]

1 1

M/dte_”tn(t) = M/dte_”t <:'15—|—7:1'3—|—w(2]:13>
0 0

=~ +7)2(0) —#(0) + (* + w +wi) 2(v) . (8.273)
Thus, we have
L wHEy ) +i0) | 1 1 7’ 0
= ————— [dte ' n(t) . 8.274
(v) T a2 +7 o S—— 0 e " n(t) (8.274)
Now we may write
+rwrwi=wv-v)v-v.) , (8.275)
where
vy =—37+4/32 —uw} . (8.276)

Note that Re(v,.) <0 and that v +v, = —v_.
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Performing the inverse Laplace transform, we obtain

z(t) = %(w et —v_ e”+t) - %(ew — eU) + O/ ds K(t — s)n(s) (8.277)
where
K(t—s)= % <e”+(t_5) - eut—S)) (8.278)

is the response kernel and O(t — s) is the step function which is unity for ¢ > s and zero otherwise. The
response is causal, i.e. x(t) depends on 7(s) for all previous times s < ¢, but not for future times s > t.
Note that K(7) decays exponentially for 7 — oo, if Re(r,) < 0. The marginal case where wy = 0 and
v, = 0 corresponds to the diffusion calculation we performed in the previous section.

8.10.3 Discrete random walk

Consider an object moving on a one-dimensional lattice in such a way that every time step it moves either
one unit to the right or left, at random. If the lattice spacing is ¢, then after n time steps the position
will be

z, =Y o; (8.279)
j=1

where

+1 if motion is one unit to right at time step j
o, = { & pJ (8.280)

—1 if motion is one unit to left at time step j

Clearly (0;) =0, so (z,) = 0. Now let us compute

(z2) = ¢* En: f: (ojo;) =nl® | (8.281)

j=15/=1

where we invoke <O'j0'j/> = 5jj, . If the length of each time step is 7, then we have, with ¢t = nr,

€2
= —t
T

(z%(t)) : (8.282)

and we identify the diffusion constant D = ¢2/27 .
Now suppose that the random walk is biased, and the probability for each independent step is given by
P(U) = p50,1 + qéa,—l ’ (8283)

where p + ¢ = 1. Then
(0;)=p—q=2p—1 (8.284)
and

=(2p -1 +4p(1—p)é;;

(8.285)
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Then
(z,) = (2p—1)In (8.286)
(22) = (z, ) =4p(1—p) n . (8.287)

8.10.4 Fokker-Planck equation

Suppose z(t) is a stochastic variable. We define the quantity

dx(t) = x(t + ot) — z(t) (8.288)

and we assume
(0x(t)) = Fi(x(t)) ot (8.289)
([62(t)]?) = Fo(=(t)) 6t (8.290)

but <[5az(t)]n> = O((6t)?) for n > 2. Then = 1 term is due to drift and the n = 2 term is due to diffusion.
Now consider the conditional probability density, P(z,t|x,%;), defined to be the probability distribution
for x = x(t) given that z(¢,) = 4. The conditional probability density satisfies the composition rule,

o0

P(xy,ty | wo, 1) = /dxl P(xy,ty |21, t)) Pz, ty |20, t0) (8.291)
—0o0

for any value of ¢;. This is also known as the Chapman-Kolmogorov equation. In words, what it says
is that the probability density for a particle being at x, at time t,, given that it was at x, at time ¢,
is given by the product of the probability density for being at x, at time ¢, given that it was at =, at
t,, multiplied by that for being at x; at t; given it was at z at t,, integrated over z;. This should be
intuitively obvious, since if we pick any time t; € [t,,%,], then the particle had to be somewhere at that
time. Indeed, one wonders how Chapman and Kolmogorov got their names attached to a result that is
so obvious. At any rate, a picture is worth a thousand words: see fig. 8.9.

Proceeding, we may write

oo

P(x,t+ 0t |z, ty) = /dm'P(az,t+6t!x',t) P t]xg, tg) - (8.292)
Now
P(z,t+6t|a’,t) = (5(x — da(t) — 2')
d 9, d?
= a1+ (0x(t)) e + ${[6z(t)]") s +... } §(z — ') (8.293)

d%(z — 2')
12

St + LRy () 5t +0((0)?)

where the average is over the random variables. We now insert this result into eqn. 8.292, integrate by
parts, divide by dt, and then take the limit ¢ — 0. The result is the Fokker-Planck equation,

oP 0 1 02

——[Fl(x) P((L’,t)] + 5 @[

e Fy(z) P(x,t)] . (8.294)
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«— T —

Figure 8.9: Interpretive sketch of the mathematics behind the Chapman-Kolmogorov equation.

8.10.5 Brownian motion redux

Let’s apply our Fokker-Planck equation to a description of Brownian motion. From our earlier results,
we have

F

Fi(z) = —

Fy(x) =2D . (8.295)
A formal proof of these results is left as an exercise for the reader. The Fokker-Planck equation is then

2
oP _ 0P 0P

e I 222 (8.296)

where u = F/yM is the average terminal velocity. If we make a Galilean transformation and define
y=x—ut , s=t (8.297)
then our Fokker-Planck equation takes the form

oP 0*P

This is known as the diffusion equation. Eqn. 8.296 is also a diffusion equation, rendered in a moving
frame.

While the Galilean transformation is illuminating, we can easily solve eqn. 8.296 without it. Let’s take
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a look at this equation after Fourier transforming from x to ¢:

o0

P(z,t) = / ;l—i ' P(q,t) (8.299)

o0

P(q,t) = / dr e % P(x,t) . (8.300)

—0o0

Then as should be well known to you by now, we can replace the operator 8% with multiplication by g,
resulting in

0 - R
5; D(@t) = =(Dg” +iqu) P(q,1) (8.301)

with solution
P(q,t) = e Pat e=iaut P(q 0) . (8.302)

We now apply the inverse transform to get back to x-space:

Tdo 7 o
P(x,t) = /% 1T o=D*t g—iqut [ g o —iqz P(2,0)

T rd . ,

_ /dl‘/ P(:E/,O)/—q e—Dq2t ezq(m—ut—m) (8303)

27
= /dm' K(z—a',t) P(«',0) ,
where )

K(z,t) = e~ (w—ut)*/4Dt (8.304)

VA Dt

is the diffusion kernel. We now have a recipe for obtaining P(z,t) given the initial conditions P(x,0). If
P(x,0) = §(z), describing a particle confined to an infinitesimal region about the origin, then P(x,t) =
K (z,t) is the probability distribution for finding the particle at x at time ¢. There are two aspects to
K(x,t) which merit comment. The first is that the center of the distribution moves with velocity w.
This is due to the presence of the external force. The second is that the standard deviation o = 2Dt
is increasing in time, so the distribution is not only shifting its center but it is also getting broader as
time evolves. This movement of the center and broadening are what we have called drift and diffusion,
respectively.

8.10.6 Master Equation

Another way to model stochastic processes is via the master equation, which was discussed in chapter 3.

Recall that if P;(t) is the probability for a system to be in state |i) at time ¢ and W;; is the transition
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rate from state |j) to state | i), then

dp,
=2 (WP —WyP) (8.305)

J

Consider a birth-death process in which the states |n ) are labeled by nonnegative integers. Let «,, denote
the rate of transitions from |n) — |n + 1) and let ,, denote the rate of transitions from [n) — |n —1).
The master equation then takes the form'’

dP,
d—tn = an—IPn—l + 5n+1Pn+1 - (an + Bn)Pn : (8306)
Let us assume we can write o,, = Ka(n/K) and 8, = KB(n/K), where K > 1. We assume the
distribution P,(t) has a time-dependent maximum at n = K¢(t) and a width proportional to v K. We
expand relative to this maximum, writing n = K¢(t) + VK ¢ and we define P, (t) = IT(£,t). We now
rewrite the master equation in eqn. 8.306 in terms of IT(£,t). Since n is an independent variable, we set

dn=K¢dt +VKdé = d¢| =-VEddt . (8.307)
Therefore P ol oI

Next, we write, for any function f,, ,

fo=Kf(o+ K %)

= Kf(9)+ K26 1'(9) + 56 f1(9) + ... (530
Similarly,
fosr =Kf(p+ K V26 £ K1)
= Kf(9) + K2 f(0) £ f(0) + 56 1) + ... (10
Dividing both sides of eqn. 8.306 by VK, we have
—aa—]g p+ K172 86—]3 = (B—a) %—Z+K—1/2{(ﬁ’—a’) 3 a—g+%(a+ﬁ) %Jr(ﬁ’—a’)n}Jr. .. (8.311)
Equating terms of order K yields the equation
o= f(d)=ale) - B(o) - (8.312)
Equating terms of order K ~1/2 yields the Fokker-Planck equation,
O = ~1(0(0) 2 (€11) + bo(o(0) 35 (s:3)

"We further demand 8,,—¢ = 0 and P_,(t) = 0 at all times.
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where g(¢) = a(¢) + B(4). If in the limit ¢ — 0o, eqn. 8.312 evolves to a stable fixed point ¢*, then the
stationary solution of the Fokker-Planck eqn. 8.313, I1,(§) = II(§,t = oo) must satisfy

0 o1, 1

16" g (€11) + 5900") 5t =0 = Megl6) = We‘f%’z 7 (8.314)
where .
0% = -5 f(f(b ¢2) : (8.315)

Now both a and § are rates, hence both are positive and thus g(¢) > 0. We see that the condition

02 > 0, which is necessary for a normalizable equilibrium distribution, requires f’(¢*) < 0, which is

saying that the fixed point in eqn. 8.312 is stable.

8.11 Appendix I : Boltzmann Equation and Collisional Invariants

Problem : The linearized Boltzmann operator L is a complicated functional. Suppose we replace L by
L, where

3/2 2
_ m 3 _ mu
Lip = —yip(v,t) + 7<2kaT> /d U exp < 2/<¢BT>

OO STV 3 (L YL R
kT T3\ ok 2 )\ 2k, T T 2 w
(8.316)

Show that £ shares all the important properties of L. What is the meaning of v? Expand (v,t) in
spherical harmonics and Sonine polynomials,

Z aMm ) xZ/2 Yrﬁ(ﬁ% (8317)

rém

with o = mv?/2k,T, and thus express the action of the linearized Boltzmann operator algebraically on
the expansion coefficients a,.gn,(t).

The Sonine polynomials S7(x) are a complete, orthogonal set which are convenient to use in the calcu-
lation of transport coefficients. They are defined as

" = Na+n+1)(-z)™
Sal@) = F(ai—m—k 1) (21(— n)z)!m! ’ (8:318)

and satisfy the generalized orthogonality relation

MNa+n+1)

— 5 .. (8.319)

nn

/d:ne S (x) ST (x) =



8.11. APPENDIX I : BOLTZMANN EQUATION AND COLLISIONAL INVARIANTS 483

Solution : The ‘important properties’ of L are that it annihilate the five collisional invariants, i.e. 1, v,
and v2, and that all other eigenvalues are negative. That this is true for £ can be verified by an explicit
calculation.

Plugging the conveniently parameterized form of ¢ (v,t) into £, we have

e}

=7 Z arém 1 ) 42 YZ 'fL 3/2 Z arém /dl‘l :171/2 e N1
rém rém (8320)

x /dﬁl [1 +2220 Aoy + 2 (2 — 3) (2, — g)} S;+%(a;l) 22V (hy)

where we’ve used

2k T 1/2 kT —-1/2
u= ni xl/ : du = 2B—mx1 / dr, . (8.321)
Now recall Y (n) = \/% and
Yi(n) = — ism@ew Yl(ﬁ):\/iCOSQ Y1 (R) = +4/— sinfe
! i 0 4 -1 8
S?/2($) =1 S§/2($) =1 511/2(117) =5-z
which allows us to write
1 =47 Y (R) YY" () (8.322)
o 47 R "
e = Yo (R) Y (R) + Y (R) Y () + YA (R) Y T (Re) | (8.323)

We can do the integrals by appealing to the orthogonality relations for the spherical harmonics and Sonine
polynomials:

/dﬁ Yrﬁ,(ﬁ’) ler;’*(ﬁ) = 0w Oy (8324)
! —r .o Qn n’ I'n+a+1
/da:e x® SH(x) Sh (z) = 7(“” ) ) Opnt - (8.325)
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Integrating first over the direction vector mnyq,

(8.326)
22} Z YL () YL (1) S5 (x) 895 ()

m/=—1
r 0/2 ~
+%YO( )Yy (A )51/2( )511/2(331)} SH%(%)%/ Yo (h1)
we obtain the intermediate result

&/J =7 Z arfm é-l-l (‘r) b2 YZ (ﬁ)

rém

2 Zwm / day 27" e [Y&(ﬁ) 010 6mo S o () 89 (1)
v 0 (8.327)

L2 x1/2 1/2 Z Vb (R) 811 Sy g/z($)sg/2($1)
m/=—1

# 3P0 8000 81 (0) Sl | 87,y o) a1

Appealing now to the orthogonality of the Sonine polynomials, and recalling that
rd=ve ., TM)=1 , TE+1)=2z0() , (8.328)

we integrate over ;. For the first term in brackets, we invoke the orthogonality relation with n = 0
and o = 5%, giving F(%) = %ﬁ For the second bracketed term, we have n = 0 but a = g, and we
obtain I'(5) = %F(%), while the third bracketed term involves leads to n = 1 and a = , also yielding

I'(5) = 2I'(3). Thus, we obtain the simple and pleasing result

= >yt L1 (z) 22 YL (R) (8.329)

rém T2

where the prime on the sum indicates that the set
Cl = {(0,0,0) . (1,0,0) , (0,1,1) , (0,1,0) , (0,1, —1)} (8.330)

are to be excluded from the sum. But these are just the functions which correspond to the five collisional
invariants! Thus, we learn that

wrﬁm('v) - Nrfm ST

T (@) e Y (R), (8.331)

1
2
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is an eigenfunction of £ with eigenvalue —~ if (r,£,m) does not correspond to one of the five collisional
invariants. In the latter case, the eigenvalue is zero. Thus, the algebraic action of £ on the coefficients
Qrpm is

(La)rim = — Qo if (1,0, m) ¢ CI (8.332)
=0 if (r,4,m) € CI '

The quantity 7 = v~ ! is the relaxation time.

It is pretty obvious that L is self-adjoint, since
(9120) = (£6] ) = [d% °(0) d(o) Ll (o)
3/2 2
L m 3 _ mw
= —yn <2ﬂkBT) [ exp< %BT>¢<”W<”>
n m 3/d3/d3 _mu2 _m'v2
o 2k, T v @ exp 2k,T P 2k,T
m 42 mu’ 3\ (me? 3 b(u)
kT 3\t 2 )k, T 2) |

where n is the bulk number density and f(v) is the Maxwellian velocity distribution.

(8.333)

x p(v) |1+

8.12 Appendix II : Distributions and Functionals

Let x € R be a random variable, and P(z) a probability distribution for z. The average of any function
¢(x) is then

($(x)) = / dz P(x) 6(x) / / iz P(x) . (8.334)

Let n(t) be a random function of ¢, with n(t) € R, and let P[n(t)] be the probability distribution
functional for n(t). Then if @[n(t)] is a functional of n(t), the average of @ is given by

/an[n(t)}qs[n(t)] / Dy P[n(t)] (8.335)

The expression [Dn Pln|@[n] is a functional integral. A functional integral is a continuum limit of a
multivariable integral. Suppose 7(t) were defined on a set of ¢ values ¢, = nr. A functional of 7(t)
becomes a multivariable function of the values 7, = 7(t,). The metric then becomes Dn — [, dn,, .

In fact, for our purposes we will not need to know any details about the functional measure Dn; we will
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Figure 8.10: Discretization of a continuous function n(t). Upon discretization, a functional @ [n(t)]
becomes an ordinary multivariable function @({n;}).

finesse this delicate issue'®. Consider the generating functional,

[e.e]

Z[J(t)] = /Dn P[n] exp ( / dt J(t)n(t)> . (8.336)
It is clear that
1 5"Z[J) B
2171 570+ 87) | Ly (n(ty)---n(t,)) (8.337)

The function J(t) is an arbitrary source function. We differentiate with respect to it in order to find the
n-field correlators.

Let’s compute the generating function for a class of distributions of the Gaussian form,

Pn) —exp< /dt 29t 4 n? ) (8.338)

:eXp< 2F/‘;”(1+wr)\n |> . (8.339)

Then Fourier transforming the source function J(t), it is easy to see that
dw |J(w
Z[J) = Z[0] - exp ( 3 / ~ u) . (8.340)

21 1+ w272

—00

18 A discussion of measure for functional integrals is found in R. P. Feynman and A. R. Hibbs, Quantum Mechanics and
Path Integrals.
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Note that with n(t) € R and J(t) € R we have n*(w) = n(—w) and J*(w) = J(—w). Transforming back
to real time, we have

Z[J] = Z|[0] - exp (% /dt/dt’ J(t)G(t —t") J(t’)) , (8.341)
where r r
—  elsl/r () =
G(s) 5 ¢ , G(w) T (8.342)
is the Green’s function, in real and Fourier space. Note that
/ ds G(s) = G(0) = I . (8.343)
We can now compute
(n(t1)n(ty)) = G(ty — to) (8.344)
(n(t1) nlta) n(ts) n(ty)) = Gty —t,) Glts — ty) + Gty — t3) Gty — ty) (8.345)

+ G(ty —ty) Gty — t3)

The generalization is now easy to prove, and is known as Wick’s theorem:

(n(ty)-nlte,)) = D Gty —t;,)--Glt, | —t;,) (8.346)

contractions

where the sum is over all distinct contractions of the sequence 1-2---2n into products of pairs. How
many terms are there? Some simple combinatorics answers this question. Choose the index 1. There
are (2n — 1) other time indices with which it can be contracted. Now choose another index. There are
(2n — 3) indices with which that index can be contracted. And so on. We thus obtain

2n)!
=2n—-1)2n—-3)---3-1= (21”2'

# of contractions

C) =" t193...00

(8.347)

8.13 Appendix III : General Linear Autonomous Inhomogeneous ODEs

We can also solve general autonomous linear inhomogeneous ODEs of the form

d"x d"lx dx
(ﬁ_n+an—1W+'~+a1E+%x:§(t) . (8.348)
We can write this as
Loal) =€) (8.349)
where £, is the n'* order differential operator
dr dn1 d
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The general solution to the inhomogeneous equation is given by

- /dt’ Gt the) (8.351)

where G(t,t') is the Green’s function. Note that £, z, (t) = 0. Thus, in order for eqns. 8.349 and 8.351
to be true, we must have

this vanishes

—— x
Coa(t) = Ly () + /dt’ﬁtG(t,t’)f(t’):g(t) , (8.352)
which means that
L,GtY)=6t-1t) |, (8.353)
where §(t — t') is the Dirac d-function.
If the differential equation £, z(t) = £(t) is defined over some finite or semi-infinite ¢ interval with

prescribed boundary conditions on z(t) at the endpoints, then G(¢,t¢") will depend on ¢ and ¢’ separately.
For the case we are now considering, let the interval be the entire real line t € (—o0,00). Then G(t,t') =
G(t —t') is a function of the single variable t — t'.

Note that £, = ﬁ(%) may be considered a function of the differential operator %. If we now Fourier
transform the equation £, x(t) = £(t), we obtain
/O:ltew{(t) = /oodtem o L cova L, z(t)
B den gt T gy 0
o - (8.354)
— /dt et {(—z‘w)” +a, 1 (—iw)" .+ ay (—iw) + ao} z(t)

Thus, if we define
Z a, (—iw)F (8.355)

then we have £(w) #(w) = £(w), where a, = 1. According to the Fundamental Theorem of Algebra, the
n*™ degree polynomial £( ) may be uniquely factored over the complex w plane into a product over n
roots:

N

Lw)=(—)"(w—w)(w—wz) - (w—wy) . (8.356)

If the {a,} are all real, then [ﬁ(w)]* — L(—w*), hence if £ is a root then so is —£2*. Thus, the roots
appear in pairs which are symmetric about the imaginary axis. ILe. if {2 = a + ib is a root, then so is
—(2" = —a+1ib.

The general solution to the homogeneous equation is

=> A et (8.357)
o=1
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which involves n arbitrary complex constants A;. The susceptibility, or Green’s function in Fourier space,
G(w) is then
Gw) 1 in (8.358)
w) = — = , .
L(w) (Ww—wi)(w—wz)  (w—wy)

Note that [G(w)] * = G(~w), which is equivalent to the statement that G(t — ') is a real function of its
argument. The general solution to the inhomogeneous equation is then

oo

z(t) =z, (t) + /dt’ Git—-t)e) (8.359)

— 00

where z, (t) is the solution to the homogeneous equation, i.e. with zero forcing, and where

Oodw ; N A
N — G —iw(t—t)
Gt—-1t) /27? e G(w)
. (8.360)
—iw(t—t") —twg (t—t)
:Z-n/d_w ¢ =Y _ew-t)
S e w) @ w2 i)

where we assume that Imw, < 0 for all o. This guarantees causality — the response x(t) to the influence
&(t') is nonzero only for ¢ > .

As an example, consider the familiar case

N

L(w) = —w? —inw + wd
=-(w-wy)(w-w_) , (8.361)
with wy, = —%y+ 3, and B = /w3 — 372 . This yields
L(wy)=Flwy —w_)=7F28 . (8.362)

Then according to equation 8.360,

e—inrs e—iwis
G(s) = + o(s)
il (wy)  il'(w_)
e—ﬁ/s/2 e~ Bs e—“/S/Q etBs
= T
{ —2if3 2i3

(8.363)

} O(s) = B~ e™79/% sin(Bs) O(s)

Now let us evaluate the two-point correlation function (x(t)z(t')), assuming the noise is correlated
according to <£ (s)&(s )> = ¢(s — s’). We assume t,t' — oo so the transient contribution x, is negligible.
We then have

 fdw

(e(t) a(t))) = /ds /ds’G(t—s)G(t’—s’) (E6)E) = [22 4(w)

—0o0 —00 —00

G e (8.364)
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Higher order ODEs

Note that any n'* order ODE, of the general form

d"x dx d"lz

may be represented by the first order system ¢ = V(). To see this, define ¢, = d* 1z /dtF1 | with
k=1,...,n. Thus, for k <n we have ¢, = ¢, , and ¢, = F. In other words,

$ V(o)
P 2
d :
7 = : . (8.366)
Pn—1 Pn
©n F(‘:Dl’"w('pp)
An inhomogeneous linear n'™ order ODE,
d"r d" dx
w—l—an_lw—l—...—l-ala—l—aox:f(t) (8367)
may be written in matrix form, as
Q 3
% —N—
N 0 1 o - 0 ©1 0
d | %2 o 0 b 0 % 0
il B : : : + : . (8.368)
Thus,
G=Qp+¢ (8.369)

and if the coefficients ¢, are time-independent, i.e. the ODE is autonomous.

For the homogeneous case £(t) = 0, the solution is obtained by exponentiating the constant matrix Qt:

p(t) = exp(Q1) p(0) ; (8.370)

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not
autonomous, then @) = Q(¢) is time-dependent, and the solution is given by the path-ordered exponential,

p(t) = Pexp { /dt/Q(t/)} p(0) (8.371)

0

where P is the path ordering operator which places earlier times to the right. As defined, the equation
¢ = V(g) is autonomous, since the t-advance mapping g, depends only on ¢ and on no other time
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variable. However, by extending the phase space M 3 ¢ from M — M x R, which is of dimension n + 1,
one can describe arbitrary time-dependent ODEs.

In general, path ordered exponentials are difficult to compute analytically. We will henceforth consider
the autonomous case where () is a constant matrix in time. We will assume the matrix @) is real, but other
than that it has no helpful symmetries. We can however decompose it into left and right eigenvectors:

Q=Y VoRoils; - (8.372)
o=1

Or, in bra-ket notation, @ =", v, |Rs)(Ls|. The normalization condition we use is (L, |R,, ) =6,/ ,
where {VJ} are the eigenvalues of (). The eigenvalues may be real or imaginary. Since the characteristic
polynomial P(v) = det (vI — @) has real coefficients, we know that the eigenvalues of () are either real
or come in complex conjugate pairs.

Consider, for example, the n = 2 system we studied earlier. Then

0 1
= . 8.373
© (—w% —’Y> (5373)
The eigenvalues are as before: v, = —%’y + %72 — w% . The left and right eigenvectors are
+1 1
L, =— (- 1 = . 374
£= (v 1) . Ry <V:|:> (8.374)

The utility of working in a left-right eigenbasis is apparent once we reflect upon the result
n
F@Q) =) fw,) |Ro)(Lo| (8.375)
o=1
for any function f. Thus, the solution to the general autonomous homogeneous case is

l@(t)) => e |R, ) (L, |#(0)) (8.376)
o=1

pit) = €' R, ;Y L, ;0;(0) . (8.377)
o=1 j=1

If Re (v,) < 0 for all o, then the initial conditions ¢(0) are forgotten on time scales 7, = v, 1. Physicality
demands that this is the case.

Now let’s consider the inhomogeneous case where £(t) # 0. We begin by recasting eqn. 8.369 in the form
— (e @) = @e@R) . (8.378)

We can integrate this directly:

o(t) = 9 o(0) + /ds Q=) g(s) . (8.379)
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In component notation,

n

pit)=> 'R, (L,|9(0))+ > R, / ds e’ =) (L, | €&(s)). (8.380)
o=1 0

o=1

Note that the first term on the RHS is the solution to the homogeneous equation, as must be the case
when &(s) = 0.

The solution in eqn. 8.380 holds for general @ and &(s). For the particular form of @ and &(s) in eqn.
8.368, we can proceed further. For starters, (L,|£(s)) = L, &(s). We can further exploit a special
feature of the Q matrix to analytically determine all its left and right eigenvectors. Applying @ to the
right eigenvector |R,), we obtain

RU,]' =Vs Ra,j—l (] > 1) . (8381)

We are free to choose R,; =1 for all o and defer the issue of normalization to the derivation of the left
eigenvectors. Thus, we obtain the pleasingly simple result,

R, =vEt . (8.382)

Applying @ to the left eigenvector (L_|, we obtain

—agLyyp =Vy Ly (8.383)
Lyji—aj 1 Lon=v,Lo5  (3>1) . (8.384)
From these equations we may derive
L k-1 ' I n '
Lyp=— Vcrn Z“J’ pyi—h=1 = VL" Zaj pi—h=1 (8.385)
7 =0 7 j=k

The equality in the above equation is derived using the result P(v,) = Z?:o a; v = 0. Recall also that

a,, = 1. We now impose the normalization condition,

n
> Ly Ryp=1 . (8.386)
k=1
This condition determines our last remaining unknown quantity (for a given o), L, ,:
n
(Lo |Ry) = Loy kapvi™ =Pv,) Ly, (8.387)
k=1

where P’(v) is the first derivative of the characteristic polynomial. Thus, we obtain another neat result,

1

Fon = P,

(8.388)
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Now let us evaluate the general two-point correlation function,

ij/(t7t/) = <<Pj(t) ‘Pj/(t/)> - <‘pj(t)> <‘pj’(t/)>
We write

(E0)E) = 95— ) = [ 2 ) emite=)

—00

493

(8.389)

(8.390)

When ¢(w) is constant, we have (&(s)€(8)) = d(t)8(s — ). This is the case of so-called white noise,
when all frequencies contribute equally. The more general case when QAS(w) is frequency-dependent is

known as colored noise. Appealing to eqn. 8.380, we have

i_q t’

t
J
;" /dS el/g(t—s)/dsl eVJ/(t’—s’) (b(s _ S/)
0

/ vty
C"/ t,t = g
) =Y e

o,0’ (VJ’) 0
B Z Vg—l Vi'i—l /ood_w (Zg(w) (e—iwt o euat)(eiwt’ _ ez/o,t’)
o g-’ P,(VO') P,(Vo'/)_ 27T ((A} - iVO’)(w + Z‘Vo")

In the limit ¢,# — oo, assuming Re (v,) < 0 for all o (i.e. no diffusion), the exponentials e’~* and e

may be neglected, and we then have

j'-1 7 —iw(t—t'
v v dw  P(w)e@t=t)
Ciptt) =) /_

27 (w — iy, (w + iv,)

8.14 Appendix IV : Correlations in the Langevin formalism

As shown above, integrating the Langevin equation p + yp = F + n(t) yields

t
p(t) =p(0) ™™ + % (1—e)+ / dsn(s) )
0

. Thus, the momentum autocorrelator is

tift <t

t t
(PO = (Op(E) = [as e @070 0 ) )

0 0

tmin
= Fe_“*(”t/)/ds e¥® = Mk, T (e—vlt—t’l _ e—v(t+t’)> 7
0
where
1 /
tmin — min(t7t/) = {t lf t<t

(8.391)

(8.392)

’
vt

(8.393)

(8.394)

(8.395)

(8.396)
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t/
s < s
/
& A s> g
3
S
0
0 S t

Figure 8.11: Regions for some of the double integrals encountered in the text.

is the lesser of t and ¢'. Here we have used the result

/ds/ds V(s +s) /ds /ds eV 5(s — /ds e 27tmin - 1) . (8.397)

One way to intuitively understand this result is as follows. The double integral over s and s’ is over a
rectangle of dimensions ¢ x #’. Since the d-function can only be satisfied when s = s/, there can be no
contribution to the integral from regions where s > ¢’ or s’ > ¢. Thus, the only contributions can arise
from integration over the square of dimensions ¢ ; Xt _. . Note also

t+t —2min(t,t') = [t — /| . (8.398)

Let’s now compute the position z(¢). We have

z(t) = z(0) + %/tds p(s)
/ds [< ——> e+
+ %/ds/dsl n(sy)e’179)
0o 0

with v = p/M. Since (n(t)) = 0, we have

t s
1
+ M/ds/dsl n(sy) 175 (8.399)
0 0

(8.400)
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Note that for vt < 1 we have (z(t)) = z(0) +v(0)t + LM ~1Ft* + O(t), as is appropriate for ballistic
particles moving under the influence of a constant force. This long time limit of course agrees with our
earlier evaluation for the terminal velocity, v, = <p(oo)> /M = F/yM.

We next compute the position autocorrelation:

<:E(t)$(t/)> — <3:(t)><:n(t/)> = %/ds/ds’ 6_7(s+s,)/dsl/d8/1 e(s1+52) <’I’}(81)’I’}(82)>
0 0 0 0

_ L (e=s=s1 _ g=rlsts)
= /ds/ds <e e > (8.401)
0 0

We have to be careful in computing the double integral of the first term in brackets on the RHS. We can
assume, without loss of generality, that ¢ > ¢/. Then

S/

t ot t/ t t/
/ds/ds’ e M5 = /ds' eysl/ds e 7+ /ds'e_“*s// ,s€e®
(8.402)
0 0 0 s! 0

0
=27y f (e e 1 - e )
We then find, for t > ¢/,
%, T, kT

_ —t —t! —(t—t' —(t+t!
(z(t)z(t')) — (z(t))(z(t)) = M t+ 20 (267" +2e7" —2—¢ V=t _ e )) . (8.403)
In particular, the equal time autocorrelator is
9 o 2k, T kT _ 9
(2*(t)) — (z(t)) = 7]?4 t+ ny (et =3 -2 . (8.404)
We see that for long times
(22(t)) = (x(t)} ~ 2Dt | (8.405)

where D = k,T/yM is the diffusion constant.

8.15 Appendix V : Kramers-Kronig Relations

Suppose x(w) = G (w) is analytic in the UHP'. Then for all v, we must have

[dv ()

2T v —w + 1€
— 0

=0 (8.406)

where € is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming
X(w) vanishes sufficiently rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak
restriction on ¥(w), given the fact that the denominator already causes the integrand to vanish as |w| ™!,

9In this section, we use the notation ¥(w) for the susceptibility, rather than G(w)
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Let us examine the function

1 V—uw 1€
_ N - 8.407
v—w+tie W-—w?+4+e (v—w)?+e ( )

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the
limit € — 0, is equivalent to taking a principal part of the integral. That is, for any function F'(v) which
is regular at v = w,

. T dv V—w T dv F(v)
| — = F(v) = — . 4
50 ) 2r (v —w)? + € () p/ v —w (8.408)

The principal part symbol g means that the singularity at v = w is elided, either by smoothing out the
function 1/(v — €) as above, or by simply cutting out a region of integration of width € on either side of
V=uw.

The imaginary part is more interesting. Let us write

€

h =
(u) u? + €2

(8.409)

For |u| > ¢, h(u) ~ ¢/u?, which vanishes as € — 0. For u = 0, h(0) = 1/e which diverges as ¢ — 0. Thus,
h(u) has a huge peak at u = 0 and rapidly decays to 0 as one moves off the peak in either direction a
distance greater that e. Finally, note that

[e.e]

/du h(u) =m (8.410)

—00
a result which itself is easy to show using contour integration. Putting it all together, this tells us that

€

Thus, for positive infinitesimal ¢,
1 P .
e imd(u) (8.412)

a most useful result.
We now return to our initial result 8.406, and we separate y(w) into real and imaginary parts:

X(w) = ¥'(w) +ix"(w) . (8.413)
(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore

have, for every real value of w,

o

0 :_/;Z—Z [X'(V) + ix”(l/)] [% —amd(v — w)] . (8.414)
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Taking the real and imaginary parts of this equation, we derive the Kramers-Krdonig relations:

[e.e]

K() =+ [ LX)
- (8.415)
X' (w) = —p/d% ff’g

—00
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