
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #9 SOLUTIONS

(1) Consider a two-state Ising model, with an added quantum dash of flavor. You are
invited to investigate the transverse Ising model, whose Hamiltonian is written

Ĥ = −J
∑

〈ij〉

σx
i σx

j − H
∑

i

σz
i ,

where the σα
i are Pauli matrices:

σx
i =

(

0 1
1 0

)

i

, σz
i =

(

1 0
0 −1

)

i

.

(a) Using the trial density matrix,

̺i = 1

2
+ 1

2
mx σx

i + 1

2
mz σz

i

on each site, compute the mean field free energy F/NĴ(0) ≡ f(θ, h,mx,mz), where
θ = k

B
T/Ĵ(0), and h = H/Ĵ(0). Hint: Work in an eigenbasis when computing

Tr (̺ ln ̺).

(b) Derive the mean field equations for mx and mz .

(c) Show that there is always a solution with mx = 0, although it may not be the solution
with the lowest free energy. What is mz(θ, h) when mx = 0?

(d) Show that mz = h for all solutions with mx 6= 0.

(e) Show that for θ ≤ 1 there is a curve h = h∗(θ) below which mx 6= 0, and along which
mx vanishes. That is, sketch the mean field phase diagram in the (θ, h) plane. Is the
transition at h = h∗(θ) first order or second order?

(f) Sketch, on the same plot, the behavior of mx(θ, h) and mz(θ, h) as functions of the
field h for fixed θ. Do this for θ = 0, θ = 1

2
, and θ = 1.

Solution :

(a) We have Tr (̺ σx) = mx and Tr (̺ σz) = mz . The eigenvalues of ̺ are 1

2
(1 ± m), where

m = (m2
x + m2

z)
1/2. Thus,

f(θ, h,mx,mz) = −1

2
m2

x − hmz + θ

[

1 + m

2
ln

(

1 + m

2

)

+
1 − m

2
ln

(

1 − m

2

)

]

.
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(b) Differentiating with respect to mx and mz yields

∂f

∂mx

= 0 = −mx +
θ

2
ln

(

1 + m

1 − m

)

·
mx

m

∂f

∂mz

= 0 = −h +
θ

2
ln

(

1 + m

1 − m

)

·
mz

m
.

Note that we have used the result
∂m

∂mµ

=
mµ

m

where mα is any component of the vector m.

(c) If we set mx = 0, the first mean field equation is satisfied. We then have mz = m sgn(h),
and the second mean field equation yields mz = tanh(h/θ). Thus, in this phase we have

mx = 0 , mz = tanh(h/θ) .

(d) When mx 6= 0, we divide the first mean field equation by mx to obtain the result

m =
θ

2
ln

(

1 + m

1 − m

)

,

which is equivalent to m = tanh(m/θ). Plugging this into the second mean field equation,
we find mz = h. Thus, when mx 6= 0,

mz = h , mx =
√

m2 − h2 , m = tanh(m/θ) .

Note that the length of the magnetization vector, m, is purely a function of the temperature
θ in this phase and thus does not change as h is varied when θ is kept fixed. What does
change is the canting angle of m, which is α = tan−1(h/m) with respect to the ẑ axis.

(e) The two solutions coincide when m = h, hence

h = tanh(h/θ) =⇒ θ∗(h) =
2h

ln
(

1+h
1−h

) .

Inverting the above transcendental equation yields h∗(θ). The component mx, which
serves as the order parameter for this system, vanishes smoothly at θ = θc(h). The transi-
tion is therefore second order.

(f) See Fig. 1.
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Figure 1: Solution to the mean field equations for problem 2. Top panel: phase diagram.
The region within the thick blue line is a canted phase, where mx 6= 0 and mz = h > 0;
outside this region the moment is aligned along ẑ and mx = 0 with mz = tanh(h/θ).
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